WO2017094529A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2017094529A1
WO2017094529A1 PCT/JP2016/084246 JP2016084246W WO2017094529A1 WO 2017094529 A1 WO2017094529 A1 WO 2017094529A1 JP 2016084246 W JP2016084246 W JP 2016084246W WO 2017094529 A1 WO2017094529 A1 WO 2017094529A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display device
polarizer
crystal display
film
Prior art date
Application number
PCT/JP2016/084246
Other languages
French (fr)
Japanese (ja)
Inventor
敏行 飯田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016200417A external-priority patent/JP6758148B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020187014690A priority Critical patent/KR102523068B1/en
Priority to CN201680069960.0A priority patent/CN108292063B/en
Priority to KR1020227043204A priority patent/KR102565008B1/en
Publication of WO2017094529A1 publication Critical patent/WO2017094529A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133624Illuminating devices characterised by their spectral emissions

Definitions

  • the present invention relates to a liquid crystal display device.
  • liquid crystal display devices such as mobile phones, smartphones, tablet personal computers (PCs), car navigation systems, digital signage, window displays, etc.
  • PCs personal computers
  • the transmission axis direction of the polarized sunglasses and the emission of the liquid crystal display device depend on the viewing angle.
  • the screen becomes black and the display image may not be visually recognized.
  • a technique for arranging a ⁇ / 4 plate or an ultrahigh retardation film on the viewing side of the liquid crystal display device has been proposed.
  • the present invention has been made in order to solve the above-described conventional problems, and the object of the present invention is excellent in color reproducibility and excellent in visibility when viewed through an optical member having a polarizing action and color.
  • An object is to provide a liquid crystal display device in which unevenness is suppressed.
  • the liquid crystal display device of the present invention includes a liquid crystal panel including a liquid crystal cell, a first polarizer disposed on the viewing side of the liquid crystal cell, and a second polarizer disposed on the back side of the liquid crystal cell; A retardation layer disposed on the viewing side of the liquid crystal panel; and a backlight source that illuminates the liquid crystal panel from the back side.
  • the in-plane retardation Re (550) of the retardation layer is 100 nm to 180 nm, and satisfies the relationship of Re (450) ⁇ Re (550) ⁇ Re (650).
  • the angle formed by the slow axis of the retardation layer and the long side of the liquid crystal panel is 35 ° to 55 °.
  • the backlight source has a discontinuous emission spectrum.
  • the emission spectrum of the backlight source has a peak P1 in the wavelength region of 430 nm to 470 nm, a peak P2 in the wavelength region of 530 nm to 570 nm, and a peak P3 in the wavelength region of 630 nm to 670 nm.
  • the wavelength of the peak P1 is ⁇ 1, the height is hP1 and the half width is ⁇ 1, the wavelength of the peak P2 is ⁇ 2, the height is hP2 and the half width is ⁇ 2, the wavelength of the peak P3 is ⁇ 3, the height is hP3 and the half width is ⁇ 3.
  • the height of the valley between the peak P1 and the peak P2 is hB1
  • the height of the valley between the peak P2 and the peak P3 is hB2
  • these are expressed by the following relational expressions (1) to (3). Satisfy: ( ⁇ 2 ⁇ 1) / ( ⁇ 2 + ⁇ 1)> 1 (1) ( ⁇ 3- ⁇ 2) / ( ⁇ 3 + ⁇ 2)> 1 (2) 0.8 ⁇ ⁇ hP2 ⁇ (hB2 + hB1) / 2 ⁇ / hP2 ⁇ 1 (3).
  • the refractive index ellipsoid of the retardation layer exhibits a relationship of nx>nz> ny, and the Nz coefficient is 0.2 to 0.8.
  • the liquid crystal display device further includes another retardation layer whose refractive index ellipsoid shows a relationship of nz> nx ⁇ ny between the liquid crystal panel and the retardation layer.
  • the backlight source includes a red color LED, a green color LED, and a blue color LED, and the phosphor of the red color LED is a tetravalent manganese ion. It is activated.
  • the backlight source includes an LED that emits blue light and a wavelength conversion layer that includes quantum dots.
  • the absorption axis of the first polarizer is substantially perpendicular or parallel to the long side of the liquid crystal panel
  • the absorption axis of the second polarizer is the length of the liquid crystal panel. It is substantially orthogonal or parallel to the side, and the absorption axis of the first polarizer and the absorption axis of the second polarizer are substantially orthogonal.
  • a retardation light source having a specific emission spectrum and using a backlight layer having a specific emission spectrum and a so-called reverse dispersion wavelength dependency and having a predetermined in-plane retardation are visually recognized at a specific axis angle.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present invention. It is a figure which shows typically an example of the emission spectrum of the backlight light source which can be used for the liquid crystal display device by embodiment of this invention. It is a figure which shows typically an example of the emission spectrum of the conventional backlight light source.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re ( ⁇ )” is the in-plane retardation of the film measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (450) is the in-plane retardation of the film measured with light having a wavelength of 450 nm at 23 ° C.
  • Thickness direction retardation (Rth) is a retardation in the thickness direction of the film measured with light having a wavelength of 550 nm at 23 ° C.
  • Rth (450) is the retardation in the thickness direction of the film measured with light having a wavelength of 450 nm at 23 ° C.
  • Substantially orthogonal or parallel include the case where the angle between the two directions is 90 ° ⁇ 10 °, preferably 90 ° ⁇ 7 °. And more preferably 90 ° ⁇ 5 °.
  • the expressions “substantially parallel” and “substantially parallel” include the case where the angle between two directions is 0 ° ⁇ 10 °, preferably 0 ° ⁇ 7 °, more preferably 0 ° ⁇ 5 °.
  • the term “orthogonal” or “parallel” may include a substantially orthogonal state or a substantially parallel state. (7) Angle When this specification refers to an angle, the angle includes angles in both clockwise and counterclockwise directions unless otherwise specified.
  • A. 1 is a schematic sectional view of a liquid crystal display device according to an embodiment of the present invention.
  • the liquid crystal display device 500 of this embodiment includes a liquid crystal panel 100, a retardation layer 200 disposed on the viewing side of the liquid crystal panel 100, and a backlight light source 300 that illuminates the liquid crystal panel 100 from the back side.
  • another retardation layer 400 may be further disposed between the liquid crystal panel 100 and the retardation layer 200.
  • Another retardation layer may be omitted according to the purpose, configuration, desired characteristics, and the like.
  • the retardation layer 200 may be referred to as a first retardation layer, and another retardation layer 400 may be referred to as a second retardation layer.
  • the in-plane retardation Re (550) of the first retardation layer 200 is 100 nm to 180 nm, preferably 110 nm to 170 nm, more preferably 120 nm to 160 nm, and particularly preferably. Is from 135 nm to 155 nm.
  • the first retardation layer 200 satisfies the relationship of Re (450) ⁇ Re (550) ⁇ Re (650).
  • the backlight source 300 has a discontinuous emission spectrum.
  • the liquid crystal panel 100 includes a liquid crystal cell 10, a first polarizer 20 disposed on the viewing side of the liquid crystal cell 10, and a second polarizer 30 disposed on the back side of the liquid crystal cell 10.
  • the absorption axis of the first polarizer 20 is substantially orthogonal or parallel to the long side of the liquid crystal panel 100 (liquid crystal cell 10).
  • the absorption axis of the second polarizer 30 is also substantially orthogonal or parallel to the long side of the liquid crystal panel 100 (liquid crystal cell 10). Note that the long side of the liquid crystal panel may be the left-right direction or the vertical direction of the display screen.
  • the absorption axis of the first polarizer 20 and the absorption axis of the second polarizer 30 are substantially orthogonal.
  • a protective film may be disposed on one side or both sides of the first polarizer 20.
  • a protective film may be disposed on one side or both sides of the second polarizer 30.
  • the angle formed between the slow axis of the first retardation layer 200 and the long side of the liquid crystal panel 100 is 35 ° to 55 °, preferably 38 ° to 52 °, more preferably 40 ° to 50 °. More preferably 42 ° to 48 °, particularly preferably 44 ° to 46 °, and particularly preferably about 45 °. Therefore, the angle formed by the slow axis of the first retardation layer 200 and the absorption axis of the first polarizer 20 is preferably 35 ° to 55 °, more preferably 38 ° to 52 °. More preferably, it is 40 ° to 50 °, particularly preferably 42 ° to 48 °, particularly preferably 44 ° to 46 °, and most preferably about 45 °.
  • a conductive layer may be provided between the first polarizer 20 and the liquid crystal cell 10.
  • the liquid crystal display device can function as a so-called inner touch panel type input display device in which a touch sensor is incorporated between a display cell (liquid crystal cell) and a polarizer.
  • any appropriate optical compensation layer (further different position) is provided between the first polarizer 20 and the liquid crystal cell 10 and / or between the second polarizer 30 and the liquid crystal cell 10.
  • a phase difference layer may be disposed.
  • the number, combination, arrangement position, arrangement order, optical characteristics (for example, refractive index ellipsoid, in-plane phase difference, thickness direction phase difference, Nz coefficient), mechanical characteristics, etc. of such an optical compensation layer are the purpose, It can be appropriately set according to the configuration and desired characteristics of the liquid crystal display device.
  • the liquid crystal cell 10 includes a pair of substrates 11 and 12 and a liquid crystal layer 13 as a display medium sandwiched between the substrates.
  • one substrate 11 is provided with a color filter and a black matrix
  • the other substrate 12 is provided with a switching element for controlling the electro-optical characteristics of the liquid crystal and a gate signal is given to this switching element.
  • a scanning line and a signal line for supplying a source signal, a pixel electrode, and a counter electrode are provided.
  • the distance (cell gap) between the substrates 11 and 12 can be controlled by a spacer or the like.
  • an alignment film made of polyimide can be provided on the side of the substrates 11 and 12 that is in contact with the liquid crystal layer 13.
  • the liquid crystal layer 13 includes liquid crystal molecules aligned in a homogeneous alignment in the absence of an electric field.
  • Typical examples of drive modes using such a liquid crystal layer exhibiting a three-dimensional refractive index include an in-plane switching (IPS) mode and a fringe field switching (FFS) mode.
  • the IPS mode includes a super-in-plane switching (S-IPS) mode and an advanced super-in-plane switching (AS-IPS) mode employing a V-shaped electrode or a zigzag electrode.
  • the FFS mode includes an advanced fringe field switching (A-FFS) mode and an ultra fringe field switching (U-FFS) mode employing a V-shaped electrode or a zigzag electrode.
  • A-FFS advanced fringe field switching
  • U-FFS ultra fringe field switching
  • the liquid crystal layer 13 includes liquid crystal molecules aligned in a homeotropic alignment in the absence of an electric field.
  • a drive mode using liquid crystal molecules aligned in a homeotropic alignment in the absence of an electric field is a vertical alignment (VA) mode.
  • VA mode includes a multi-domain VA (MVA) mode.
  • VA mode using liquid crystal molecules aligned in a homeotropic alignment in the absence of such an electric field
  • the halftone transmittance in the oblique direction is higher than the halftone transmittance in the front direction. Therefore, there is an advantage that the halftone viewed from an oblique direction is bright and there is little blackout.
  • Polarizer Any appropriate polarizer may be adopted as the first polarizer 20 and the second polarizer 30.
  • the materials, thicknesses, optical characteristics, and the like of the first polarizer 20 and the second polarizer 30 may be the same or different.
  • the first polarizer 20 and the second polarizer 30 may be collectively referred to as a polarizer.
  • the resin film forming the polarizer may be a single layer resin film or a laminate of two or more layers.
  • polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films.
  • PVA polyvinyl alcohol
  • polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
  • the dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution.
  • the stretching ratio of the uniaxial stretching is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye
  • the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
  • a polarizer obtained by using a laminate a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin
  • a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate.
  • a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it.
  • a PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution.
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate.
  • Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
  • the thickness of the polarizer is preferably 15 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, still more preferably 3 ⁇ m to 10 ⁇ m, and particularly preferably 3 ⁇ m to 8 ⁇ m.
  • the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained. Furthermore, if the thickness of the polarizer is in such a range, it can contribute to the thinning of the liquid crystal display device.
  • the polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm.
  • the single transmittance of the polarizer is preferably 43.0% to 46.0%, more preferably 44.5% to 46.0%.
  • the polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • a protective film may be disposed on one side or both sides of the first polarizer 20, and a protective film may be disposed on one side or both sides of the second polarizer 30. That is, the polarizer may be a component of the liquid crystal display device alone, or may be a component of the liquid crystal display device as a polarizing plate including the polarizer and the protective film. Further, the polarizer and the protective film may be separately laminated (that is, the polarizer and the protective film, respectively) to be a constituent element of the liquid crystal display device.
  • the protective film is formed of any appropriate film.
  • the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials.
  • transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate.
  • thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included.
  • a glassy polymer such as a siloxane polymer is also included.
  • a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned.
  • the polymer film can be, for example, an extruded product of the resin composition.
  • the thickness of the protective film is preferably 20 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 100 ⁇ m, and still more preferably 35 ⁇ m to 95 ⁇ m.
  • the inner protective film may be optically isotropic.
  • “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 10 nm to +10 nm.
  • the in-plane retardation Re (550) of the first retardation layer 200 is 100 nm to 180 nm, preferably 110 nm to 170 nm, more preferably 120 nm to 160 nm, Particularly preferred is 135 nm to 155 nm. That is, the first retardation layer can function as a so-called ⁇ / 4 plate. Therefore, the first retardation layer has a function of converting linearly polarized light emitted from the polarizer to the viewer side into elliptically polarized light or circularly polarized light.
  • the liquid crystal display device of the present invention can be suitably used outdoors.
  • the first retardation layer satisfies the relationship of Re (450) ⁇ Re (550) ⁇ Re (650). That is, the first retardation layer shows the wavelength dependence of reverse dispersion in which the retardation value increases with the wavelength of the measurement light.
  • Re (450) / Re (550) of the first retardation layer is preferably 0.8 or more and less than 1.0, and more preferably 0.8 to 0.95.
  • Re (550) / Re (650) is preferably 0.8 or more and less than 1.0, and more preferably 0.8 to 0.97.
  • the first retardation layer typically has a refractive index characteristic of nx> ny and has a slow axis.
  • the angle formed between the slow axis of the first retardation layer 200 and the absorption axis of the first polarizer 20 is preferably 35 ° to 55 °, more preferably 38 ° to 52 °. More preferably 40 ° to 50 °, particularly preferably 42 ° to 48 °, particularly preferably 44 ° to 46 °, and most preferably about 45 °. If the angle is in such a range, the first retardation layer is a ⁇ / 4 plate, and the first retardation layer is arranged on the viewing side with respect to the first polarizer (viewing side polarizer). Thus, even when the display screen is viewed through an optical member having a polarizing action (for example, polarized sunglasses), excellent visibility can be realized. Therefore, the liquid crystal display device of the present invention can be suitably used even outdoors.
  • the first retardation layer exhibits any appropriate refractive index ellipsoid as long as it has a relationship of nx> ny.
  • the refractive index ellipsoid of the first retardation layer shows a relationship of nx> nz> ny.
  • the Nz coefficient of the first retardation layer is preferably 0.2 to 0.8, more preferably 0.3 to 0.7, still more preferably 0.4 to 0.6, particularly Preferably it is about 0.5.
  • the absolute value of the photoelastic coefficient of the first retardation layer is preferably 2 ⁇ 10 ⁇ 11 m 2 / N or less, more preferably 2.0 ⁇ 10 ⁇ 13 m 2 / N to 1.5 ⁇ 10 ⁇ 11. m 2 / N, more preferably from 1.0 ⁇ 10 -12 m 2 /N ⁇ 1.2 ⁇ 10 -11 m 2 / N resin.
  • the thickness of the first retardation layer can be set so as to function most appropriately as a ⁇ / 4 plate. In other words, the thickness can be set so as to obtain a desired in-plane retardation. Specifically, the thickness is preferably 1 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 80 ⁇ m, still more preferably 10 ⁇ m to 60 ⁇ m, and particularly preferably 30 ⁇ m to 50 ⁇ m.
  • the first retardation layer is formed of any appropriate resin that can satisfy the above characteristics.
  • the resin that forms the first retardation layer include polycarbonate resins, polyvinyl acetal resins, cycloolefin resins, acrylic resins, and cellulose ester resins. Polycarbonate resin is preferable.
  • the polycarbonate resin any appropriate polycarbonate resin can be used as long as the effects of the present invention can be obtained.
  • the polycarbonate resin includes a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri, or polyethylene glycol, and an alkylene.
  • the polycarbonate resin is derived from a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, a structural unit derived from an alicyclic dimethanol and / or a di-, tri- or polyethylene glycol. More preferably, a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, and a structural unit derived from di, tri, or polyethylene glycol.
  • the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. Details of the polycarbonate resin that can be suitably used in the present invention are described in, for example, Japanese Patent Application Laid-Open Nos. 2014-10291 and 2014-26266, and the description is incorporated herein by reference. The
  • the glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 250 ° C. or lower, more preferably 120 ° C. or higher and 230 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, there is a possibility of causing a dimensional change after film formation, and the image quality of the obtained liquid crystal display device may be lowered. If the glass transition temperature is excessively high, the molding stability at the time of film molding may deteriorate, and the transparency of the film may be impaired.
  • the glass transition temperature is determined according to JIS K 7121 (1987).
  • the molecular weight of the polycarbonate resin can be represented by a reduced viscosity.
  • the reduced viscosity is measured using a Ubbelohde viscometer at a temperature of 20.0 ° C. ⁇ 0.1 ° C., using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.6 g / dL.
  • the lower limit of the reduced viscosity is usually preferably 0.30 dL / g, more preferably 0.35 dL / g or more.
  • the upper limit of the reduced viscosity is usually preferably 1.20 dL / g, more preferably 1.00 dL / g, still more preferably 0.80 dL / g.
  • the reduced viscosity is less than the lower limit, there may be a problem that the mechanical strength of the molded product is reduced.
  • the reduced viscosity is larger than the upper limit, the fluidity at the time of molding is lowered, and there may be a problem that productivity and moldability are lowered.
  • the retardation film constituting the first retardation layer can be obtained, for example, by stretching a film formed from the polycarbonate resin.
  • Any appropriate molding method can be adopted as a method of forming a film from a polycarbonate-based resin. Specific examples include compression molding methods, transfer molding methods, injection molding methods, extrusion molding methods, blow molding methods, powder molding methods, FRP molding methods, cast coating methods (for example, casting methods), calendar molding methods, and hot presses. Law. Extrusion molding or cast coating is preferred. This is because the smoothness of the resulting film can be improved and good optical uniformity can be obtained.
  • the molding conditions can be appropriately set according to the composition and type of the resin used, the properties desired for the retardation film, and the like.
  • the thickness of the resin film can be set to any appropriate value depending on the desired thickness of the obtained retardation film, the desired optical properties, the stretching conditions described later, and the like.
  • the thickness is preferably 50 ⁇ m to 300 ⁇ m.
  • Any appropriate stretching method and stretching conditions may be employed for the stretching.
  • various stretching methods such as free end stretching, fixed end stretching, free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially.
  • the stretching direction can also be performed in various directions and dimensions such as a length direction, a width direction, a thickness direction, and an oblique direction.
  • a retardation film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained by appropriately selecting the stretching method and stretching conditions.
  • the retardation film is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end.
  • the fixed end uniaxial stretching there is a method of stretching in the width direction (lateral direction) while running the resin film in the longitudinal direction.
  • the draw ratio is preferably 1.1 to 3.5 times.
  • the retardation film can be produced by continuously stretching a long resin film obliquely in a direction at a predetermined angle with respect to the longitudinal direction.
  • a long stretched film having an orientation angle of a predetermined angle with respect to the longitudinal direction of the film (slow axis in the direction of the predetermined angle) is obtained.
  • the predetermined angle may be an angle formed by the absorption axis of the first polarizer and the slow axis of the first retardation layer in the liquid crystal display device.
  • the angle is preferably 35 ° to 55 °, more preferably 38 ° to 52 °, still more preferably 40 ° to 50 °, and particularly preferably 42 ° to 48 °. Especially preferred is 44 ° to 46 °, most preferred about 45 °.
  • Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions.
  • the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
  • a retardation film having a desired in-plane retardation and having a slow axis in the desired direction (substantially long film) Shaped retardation film) can be obtained.
  • Examples of the oblique stretching method include, for example, JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A-2000-9912, JP-A-2002-86554, Examples thereof include the method described in JP-A-2002-22944.
  • a retardation film that is, a retardation film having an Nz coefficient of less than 1.0
  • a retardation film having an Nz coefficient of less than 1.0 is a heat-shrinkable film via, for example, an acrylic adhesive on one or both sides of a resin film.
  • a retardation film having a desired Nz coefficient can be obtained by adjusting the configuration of the heat-shrinkable film (for example, shrinkage force) and stretching conditions (for example, stretching temperature).
  • the stretching temperature of the film can vary depending on the in-plane retardation value and thickness desired for the retardation film, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C to Tg + 30 ° C, more preferably Tg-15 ° C to Tg + 15 ° C, and most preferably Tg-10 ° C to Tg + 10 ° C. By stretching at such a temperature, a retardation film having appropriate characteristics in the present invention can be obtained. Tg is the glass transition temperature of the constituent material of the film.
  • a commercially available film may be used as the polycarbonate resin film.
  • Specific examples of commercially available products include “Pure Ace WR-S”, “Pure Ace WR-W”, “Pure Ace WR-M” manufactured by Teijin Limited, and “NRF” manufactured by Nitto Denko Corporation. It is done.
  • a commercially available film may be used as it is, and a commercially available film may be used after secondary processing (for example, stretching treatment, surface treatment) depending on the purpose.
  • the backlight light source 300 is included in a backlight unit (not shown).
  • the backlight unit typically includes a light guide plate, a diffusion sheet, a prism sheet, and the like in addition to the light source.
  • the backlight light source has a discontinuous emission spectrum. “Having a discontinuous emission spectrum” means that there is a clear peak in each wavelength region of red (R), green (G), and blue (B), and the respective peaks are clearly distinguished. That means.
  • FIG. 2 is a diagram schematically showing an example of a discontinuous emission spectrum. As shown in FIG.
  • the emission spectrum of the backlight light source preferably has a peak P1 in the wavelength region (blue wavelength region) of 430 nm to 470 nm, more preferably 440 nm to 460 nm, preferably 530 nm to 570 nm, more preferably 540 nm. It has a peak P2 in the wavelength region of ⁇ 560 nm (green wavelength region), and a peak P3 in the wavelength region of 630 nm to 670 nm, more preferably 640 nm to 660 nm (red wavelength region).
  • the valley height hB2 between the peak P2 and the peak P3 satisfy the following relational expressions (1) to (3): ( ⁇ 2 ⁇ 1) / ( ⁇ 2 + ⁇ 1)> 1 (1) ( ⁇ 3- ⁇ 2) / ( ⁇ 3 + ⁇ 2)> 1 (2) 0.8 ⁇ ⁇ hP2 ⁇ (hB2 + hB1) / 2 ⁇ / hP2 ⁇ 1 (3).
  • Equation (1) means that the relationship between blue light and green light is independent as a light source without being mixed.
  • Equation (2) means that the relationship between green light and red light is independent as a light source without being mixed.
  • Equation (3) means that the valleys between the peaks P1, P2 and P3 are low and the peaks of blue light, green light and red light are clearly distinguished.
  • the color reproducibility is improved. Due to the synergistic effect of the backlight source 300 having an emission spectrum satisfying the expressions (1) to (3) and the first retardation layer 200 described above, the color reproducibility is excellent and the polarizing action is achieved. It is possible to realize a liquid crystal display device that is excellent in visibility when visually recognized through an optical member and in which color unevenness is suppressed. For example, an optical having color reproducibility and polarization action as compared with a conventional backlight light source having a light emission spectrum as shown in FIG. 3 (a white light source simply combining LEDs that emit red light, green light and blue light). Visibility and color unevenness when viewed through the member can be significantly improved.
  • the backlight light source has any suitable configuration capable of realizing the emission spectrum as described above.
  • the backlight source includes a red color LED, a green color LED, and a blue color LED, and the phosphor of the red color LED is activated with tetravalent manganese ions. ing.
  • the phosphor of the red color LED is activated with tetravalent manganese ions.
  • the phosphor of the red color LED is activated with tetravalent manganese ions. ing.
  • a backlight light source having a general configuration including a red color LED, a green color LED, and a blue color LED is described in, for example, Japanese Patent Application Laid-Open No. 2012-256014. The descriptions in these publications are incorporated herein by reference.
  • the backlight source includes a blue color LED and a wavelength conversion layer including quantum dots.
  • a blue color LED part of the blue light emitted from the LED is converted into red light and green light by the wavelength conversion layer, and part of the blue light is emitted as blue light as it is.
  • white light can be realized.
  • an emission spectrum emission spectrum as shown in FIG. 2 in which the peaks of red light, green light, and blue light are clear and the overlap of each color light is small is realized. be able to.
  • the wavelength conversion layer typically includes a matrix and quantum dots dispersed in the matrix.
  • Any appropriate material can be used as a material constituting the matrix (hereinafter also referred to as matrix material). Examples of such materials include resins, organic oxides, and inorganic oxides.
  • the matrix material preferably has low oxygen permeability and moisture permeability, high light stability and chemical stability, a predetermined refractive index, excellent transparency, and / or Have excellent dispersibility with respect to quantum dots.
  • the matrix material is preferably a resin.
  • the resin may be a thermoplastic resin, a thermosetting resin, or an active energy ray curable resin (for example, an electron beam curable resin, an ultraviolet curable resin, or a visible light curable resin). May be.
  • a thermosetting resin or an ultraviolet curable resin is preferable, and a thermosetting resin is more preferable.
  • the resins may be used alone or in combination (for example, blend, copolymerization).
  • Quantum dots can control the wavelength conversion characteristics of the wavelength conversion layer. Specifically, a wavelength conversion layer that realizes light having a desired emission center wavelength can be formed by appropriately combining quantum dots having different emission center wavelengths.
  • the emission center wavelength of the quantum dot can be adjusted by the material and / or composition, particle size, shape, etc. of the quantum dot.
  • the quantum dot include a quantum dot having an emission center wavelength in a wavelength band in the range of 600 nm to 680 nm (hereinafter referred to as quantum dot A), and a quantum dot having an emission center wavelength in a wavelength band in the range of 500 nm to 600 nm (hereinafter referred to as “dots”).
  • Quantum dots B) and quantum dots having an emission center wavelength in the wavelength band of 400 nm to 500 nm are known.
  • the quantum dots A are excited by excitation light (in the present invention, light from a backlight light source) to emit red light, the quantum dots B emit green light, and the quantum dots C emit blue light.
  • excitation light in the present invention, light from a backlight light source
  • the quantum dots B emit green light
  • the quantum dots C emit blue light.
  • the quantum dots can be composed of any suitable material.
  • the quantum dots are preferably composed of an inorganic material, more preferably an inorganic conductor material or an inorganic semiconductor material.
  • Semiconductor materials include, for example, II-VI, III-V, IV-VI, and IV semiconductors.
  • Specific examples include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, Sn, Te, SnS PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , (Al, Ga, In) 2 (S, Se, Te) 3 , Al 2 CO is mentioned. These may be used alone or in combination of two or more.
  • the size of the quantum dot is preferably 1 nm to 10 nm, more preferably 2 nm to 8 nm. If the size of the quantum dot is in such a range, each of green and red emits sharp light and high color rendering can be realized. For example, green light can be emitted with a quantum dot size of about 7 nm, and red light can be emitted with about 3 nm.
  • the size of the quantum dot is, for example, an average particle diameter when the quantum dot is a true sphere, and is a dimension along the minimum axis in the shape when the quantum dot is other than that.
  • any appropriate shape can be adopted depending on the purpose. Specific examples include a true sphere shape, a flake shape, a plate shape, an elliptic sphere shape, and an indefinite shape.
  • Quantum dots can be blended in a proportion of preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, with respect to 100 parts by weight of the matrix material.
  • the blending amount of the quantum dots is in such a range, a liquid crystal display device excellent in hue balance of all RGB can be realized.
  • quantum dots Details of the quantum dots are disclosed in, for example, JP2012-169271A, JP2015-102857A, JP2015-65158A, JP2013-544018A, JP2013-544018A, Special Table. No. 2010-533976, and the descriptions of these publications are incorporated herein by reference. A commercial item may be used for the quantum dot.
  • the thickness of the wavelength conversion layer is preferably 1 ⁇ m to 500 ⁇ m, more preferably 100 ⁇ m to 400 ⁇ m. When the thickness of the wavelength conversion layer is in such a range, conversion efficiency and durability can be excellent.
  • the wavelength conversion layer is disposed as a film on the emission side of the LED (light source) in the backlight unit.
  • the second retardation layer 400 has a relationship in which the refractive index characteristic is nz> nx ⁇ ny.
  • the thickness direction retardation Rth (550) of the second retardation layer is preferably ⁇ 260 nm to ⁇ 10 nm, more preferably ⁇ 230 nm to ⁇ 15 nm, and still more preferably ⁇ 215 nm to ⁇ 20 nm.
  • the in-plane retardation Re (550) of the second retardation layer is preferably 10 nm to 150 nm, more preferably 10 nm to 80 nm.
  • the second retardation layer can be formed of any appropriate material.
  • a liquid crystal layer fixed in homeotropic alignment is preferable.
  • the liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the liquid crystal compound and the method for forming the liquid crystal layer include the liquid crystal compounds and methods described in JP-A-2002-333642, [0020] to [0042].
  • the thickness is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.2 ⁇ m to 3 ⁇ m.
  • the second retardation layer may be a retardation film formed of a fumaric acid diester resin described in JP 2012-32784 A.
  • the thickness is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m.
  • the conductive layer (not shown) is typically transparent (ie, the conductive layer is a transparent conductive layer).
  • the liquid crystal display device can function as a so-called inner touch panel type input display device.
  • the conductive layer may be used alone as a constituent layer of the liquid crystal display device, or may be provided to the liquid crystal display device as a laminate with the base material (conductive layer with base material). In the case where the conductive layer is formed by itself, the conductive layer can be transferred from the base material on which the conductive layer is formed to a predetermined position of the liquid crystal display device.
  • the conductive layer can be patterned as needed. By conducting the patterning, a conductive portion and an insulating portion can be formed. As a result, an electrode can be formed.
  • the electrode can function as a touch sensor electrode that senses contact with the touch panel.
  • the pattern shape is preferably a pattern that works well as a touch panel (for example, a capacitive touch panel). Specific examples include the patterns described in JP2011-511357A, JP2010-164938A, JP2008-310550A, JP2003-511799A, and JP2010-541109A. It is done.
  • the total light transmittance of the conductive layer is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • a transparent conductive layer having openings can be formed, and a transparent conductive layer having a high light transmittance can be obtained.
  • the density of the conductive layer is preferably 1.0 g / cm 3 to 10.5 g / cm 3 , more preferably 1.3 g / cm 3 to 3.0 g / cm 3 .
  • the surface resistance value of the conductive layer is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 500 ⁇ / ⁇ , and further preferably 1 ⁇ / ⁇ to 250 ⁇ / ⁇ .
  • Typical examples of the conductive layer include a conductive layer containing a metal oxide, a conductive layer containing a conductive nanowire, and a conductive layer containing a metal mesh.
  • a conductive layer including conductive nanowires or a conductive layer including a metal mesh is preferable. This is because it is excellent in bending resistance and it is difficult to lose conductivity even when bent, so that a conductive layer that can be bent well can be formed. As a result, the liquid crystal display device can be configured to be bendable.
  • a conductive layer containing a metal oxide is formed on any appropriate base material by any appropriate film formation method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It can be formed by forming an oxide film.
  • the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
  • the conductive layer containing conductive nanowires is formed by applying a dispersion liquid (conductive nanowire dispersion liquid) in which conductive nanowires are dispersed in a solvent onto any appropriate substrate, and then drying the coating layer.
  • a dispersion liquid conductive nanowire dispersion liquid
  • Any appropriate conductive nanowire can be used as the conductive nanowire as long as the effects of the present invention can be obtained.
  • the conductive nanowire refers to a conductive substance having a needle shape or a thread shape and a diameter of nanometer size.
  • the conductive nanowire may be linear or curved. As described above, the conductive layer including the conductive nanowire has excellent bending resistance.
  • a conductive layer containing conductive nanowires can form a good electrical conduction path even with a small amount of conductive nanowires by forming gaps between conductive nanowires and forming a mesh.
  • a conductive layer having a small electric resistance can be obtained.
  • openings can be formed in the mesh gaps to obtain a conductive layer having a high light transmittance.
  • the conductive nanowire include metal nanowires made of metal, conductive nanowires including carbon nanotubes, and the like.
  • the ratio between the thickness d and the length L of the conductive nanowire is preferably 10 to 100,000, more preferably 50 to 100,000, still more preferably 100 to 10,000.
  • the conductive nanowires having a large aspect ratio are used in this way, the conductive nanowires can cross well and high conductivity can be expressed by a small amount of conductive nanowires. As a result, a conductive layer having a high light transmittance can be obtained.
  • the thickness of the conductive nanowire means the diameter when the cross section of the conductive nanowire is circular, and the short diameter when the cross section of the conductive nanowire is elliptical. If it is square, it means the longest diagonal.
  • the thickness and length of the conductive nanowire can be confirmed by a scanning electron microscope or a transmission electron microscope.
  • the thickness of the conductive nanowire is preferably less than 500 nm, more preferably less than 200 nm, still more preferably 1 nm to 100 nm, and particularly preferably 1 nm to 50 nm. If it is such a range, a conductive layer with high light transmittance can be formed.
  • the length of the conductive nanowire is preferably 2.5 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, and further preferably 20 ⁇ m to 100 ⁇ m. Within such a range, a conductive layer having high conductivity can be obtained.
  • the metal constituting the conductive nanowire any appropriate metal can be used as long as it is a highly conductive metal.
  • the metal nanowire is preferably composed of one or more metals selected from the group consisting of gold, platinum, silver, and copper. Among these, silver, copper, or gold is preferable from the viewpoint of conductivity, and silver is more preferable.
  • a material obtained by performing a plating process for example, a gold plating process
  • any appropriate carbon nanotube can be used as the carbon nanotube.
  • so-called multi-walled carbon nanotubes, double-walled carbon nanotubes, single-walled carbon nanotubes and the like are used.
  • single-walled carbon nanotubes are preferably used because of their high conductivity.
  • any appropriate metal mesh can be used as long as the effects of the present invention can be obtained.
  • the thickness of the conductive layer is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.05 ⁇ m to 3 ⁇ m, and still more preferably 0.1 ⁇ m to 1 ⁇ m. If it is such a range, the conductive layer excellent in electroconductivity and light transmittance can be obtained. When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 0.01 ⁇ m to 0.05 ⁇ m.
  • Adhesive Layer or Adhesive Layer Any appropriate pressure-sensitive adhesive layer or adhesive layer is used for laminating each layer and the optical member constituting the liquid crystal display device of the present invention.
  • the pressure-sensitive adhesive layer is typically formed of an acrylic pressure-sensitive adhesive.
  • the adhesive layer is typically formed of a polyvinyl alcohol-based adhesive.
  • Thickness The thickness was measured using a dial gauge (manufactured by PEACOCK, product name “DG-205”, dial gauge stand (product name “pds-2”)).
  • Retardation A 50 mm ⁇ 50 mm sample was cut out from each retardation film and the liquid crystal solidified layer to obtain a measurement sample, which was measured using Axoscan manufactured by Axometrics. The measurement wavelength was 450 nm, 550 nm, and the measurement temperature was 23 ° C.
  • the average refractive index was measured using an Abbe refractometer manufactured by Atago Co., Ltd., and the refractive indexes nx, ny, and nz were calculated from the obtained retardation values.
  • BHEPF 9,9- [4- (2-hydroxyethoxy) phenyl] fluorene
  • ISB isosorbide
  • DEG diethylene glycol
  • DPC diphenyl carbonate
  • magnesium acetate tetrahydrate in a molar
  • Nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, and then the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Subsequently, the temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240 ° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was obtained.
  • a single-screw extruder manufactured by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.), T-die (width 900 mm, set temperature: 220). ° C), a chill roll (set temperature: 125 ° C), and a film forming apparatus equipped with a winder, a polycarbonate resin film having a thickness of 70 ⁇ m was produced.
  • the polycarbonate resin film obtained had a water absorption rate of 1.2%.
  • the obtained polycarbonate resin film was uniaxially stretched 2.0 times at 133 ° C. to obtain a retardation film A (thickness 50 ⁇ m).
  • Re (550) of the obtained retardation film A was 140 nm
  • Rth (550) was 140 nm
  • Re (450) / Re (550) was 0.89.
  • A-PET amorphous-polyethylene terephthalate film (manufactured by Mitsubishi Plastics Co., Ltd., trade name: Novaclear SH046 200 ⁇ m) was prepared as a base material, and the surface was subjected to corona treatment (58 W / m 2 / min).
  • corona treatment 58 W / m 2 / min.
  • 1 wt% of acetoacetyl-modified PVA manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Gohsephimer Z200 (polymerization degree 1200, saponification degree 99.0% or more, acetoacetyl modification degree 4.6%) is added.
  • the boric acid aqueous solution for insolubilization in this step contains 3 parts by weight of boric acid content with respect to 100 parts by weight of water.
  • a colored laminate was produced by dyeing the stretched laminate after the insolubilization step.
  • iodine is adsorbed on the PVA layer contained in the stretched laminate by immersing the stretched laminate in a dyeing solution.
  • the staining solution contains iodine and potassium iodide, the temperature of the staining solution is 30 ° C., water is used as a solvent, the iodine concentration is in the range of 0.08 to 0.25 wt%, and the potassium iodide concentration Was in the range of 0.56 to 1.75% by weight.
  • the ratio of iodine to potassium iodide concentration was 1: 7.
  • the iodine concentration and the immersion time were set so that the single transmittance of the PVA resin layer constituting the polarizer was 40.9%.
  • the colored laminate was immersed in an aqueous boric acid solution for crosslinking at 30 ° C. for 60 seconds to perform a step of crosslinking the PVA molecules of the PVA layer on which iodine was adsorbed.
  • the boric acid aqueous solution for crosslinking used in this crosslinking step had a boric acid content of 3 parts by weight with respect to 100 parts by weight of water and a potassium iodide content of 3 parts by weight with respect to 100 parts by weight of water. Is.
  • the obtained colored laminate is stretched 2.7 times in a boric acid aqueous solution at a stretching temperature of 70 ° C. in the same direction as the previous stretching in air, whereby the final stretching ratio is increased.
  • the film was stretched by 5.4 times to obtain an optical film laminate including the test polarizer.
  • the boric acid aqueous solution used in this stretching step has a boric acid content of 4.0 parts by weight with respect to 100 parts by weight of water and a potassium iodide content of 5 parts by weight with respect to 100 parts by weight of water. It is.
  • the obtained optical film laminate was taken out from the boric acid aqueous solution, and the boric acid adhering to the surface of the PVA layer was washed with an aqueous solution containing 4 parts by weight of potassium iodide with respect to 100 parts by weight of water.
  • the washed optical film laminate was dried by a drying process using hot air at 60 ° C. to obtain a polarizer having a thickness of 5 ⁇ m laminated on the PET film.
  • the retardation film A is attached to the surface opposite to the PET with a UV curable adhesive on the 5 ⁇ m thick polarizer laminated on the PET film. Bonding was performed so that the angle between the slow axis and the absorption axis of the polarizer was substantially 45 °. Furthermore, the PET film was peeled from this laminate to obtain a polarizing plate with a retardation layer.
  • the surface on the viewing side of the liquid crystal cell is the surface on the polarizer side of the polarizing plate with the retardation plate so that the absorption axis of the polarizer is orthogonal to the initial alignment direction of the liquid crystal cell (first The angle between the slow axis of the retardation layer and the long side of the liquid crystal panel is 45 °, and the angle between the absorption axis of the polarizer and the long side of the liquid crystal panel is 0 °), an acrylic adhesive A liquid crystal panel was obtained by laminating via an agent (thickness 20 ⁇ m). The backlight unit of the smartphone was attached to the liquid crystal panel on which the polarizing plate with a retardation plate was laminated to obtain the liquid crystal display device of this example. A white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state. The evaluation results are shown in Table 1.
  • Example 2 (Preparation of retardation film B constituting the first retardation layer) A polycarbonate resin (10 kg) obtained in the same manner as in Example 1 was dissolved in methylene chloride (73 kg) to prepare a birefringent layer forming material. Next, the birefringent layer-forming material was directly coated on a shrinkable film (longitudinal uniaxially stretched polypropylene film, trade name “Noblen” manufactured by Tokyo Ink Co., Ltd.), and the coating film was dried at 30 ° C. at 5 ° C. The laminate was dried at 80 ° C. for 5 minutes for 5 minutes to form a shrinkable film / birefringent layer laminate. The obtained laminate is stretched at a stretching temperature of 155 ° C.
  • a shrinkable film longitudinal uniaxially stretched polypropylene film, trade name “Noblen” manufactured by Tokyo Ink Co., Ltd.
  • a retardation film B (thickness 60 ⁇ m) was obtained.
  • Re (550) of the obtained retardation film B was 140 nm
  • Rth (550) was 70 nm
  • Re (450) / Re (550) was 0.89.
  • the slow axis direction of the retardation film B was 90 ° with respect to the longitudinal direction.
  • a polarizing plate with a retardation layer was prepared in the same manner as in Example 1 except that the retardation film B was used in place of the retardation film A, and the polarizing plate with a retardation layer was used.
  • a liquid crystal display device was produced. A white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state. The evaluation results are shown in Table 1.
  • Example 3> (Preparation of the liquid crystal solidified layer constituting the second retardation layer) 20 parts by weight of a side chain type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mol% of the monomer units and are represented by block polymer for convenience: weight average molecular weight 5000), Dissolve 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name: Palicolor LC242) and 5 parts by weight of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) in 200 parts by weight of cyclopentanone.
  • a side chain type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mol% of the monomer units and are represented by block polymer for convenience: weight average molecular weight 5000), Dissolve 80 parts by weight of a polymerizable
  • a liquid crystal coating solution was prepared. And after apply
  • the liquid crystal solidified layer was formed on the surface opposite to the PET film via a UV curable adhesive, and the base film The base film was peeled off when removing the film and the polarizer was bonded so that the absorption axis of the polarizer was substantially parallel. Further, the base film is removed, and the retardation film A produced in the same manner as in Example 1 is provided on the opposite side of the liquid crystal solidified layer from the polarizer with a UV curable adhesive as its slow axis. Bonding was performed so that the angle with the absorption axis of the polarizer was substantially 45 °. Furthermore, after peeling the PET film from this laminate, an acrylic protective film or a retardation layer as needed was bonded via a UV curable adhesive to produce a polarizing plate with a retardation layer.
  • Example 1 A liquid crystal display device was produced in the same manner as in Example 1 except that the polarizing plate with a retardation layer was used and a smartphone having a different backlight was used. A white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state. The evaluation results are shown in Table 1.
  • Example 4> (Preparation of retardation film C constituting the first retardation layer)
  • the polycarbonate resin obtained in the same manner as in Example 1 was vacuum-dried at 80 ° C. for 5 hours, and then a single-screw extruder (manufactured by Isuzu Chemical Industries, screw diameter 25 mm, cylinder setting temperature: 220 ° C.), T-die ( A polycarbonate resin film having a thickness of 130 ⁇ m was prepared using a film forming apparatus equipped with a width of 900 mm, a set temperature: 220 ° C., a chill roll (set temperature: 125 ° C.), and a winder.
  • the polycarbonate resin film obtained had a water absorption rate of 1.2%.
  • the polycarbonate resin film was obliquely stretched by a method according to Example 1 of JP 2014-194383 A to obtain a retardation film C.
  • the specific production procedure of the retardation film C is as follows: A polycarbonate resin film (thickness 130 ⁇ m, width 765 mm) was preheated to 142 ° C. in the preheating zone of the stretching apparatus. In the preheating zone, the clip pitch of the left and right clips was 125 mm. Next, as soon as the film entered the first oblique stretching zone C1, the clip pitch of the right clip began to increase and increased from 125 mm to 177.5 mm in the first oblique stretching zone C1. The clip pitch change rate was 1.42.
  • the clip pitch of the left clip started to decrease and decreased from 125 mm to 90 mm in the first oblique stretching zone C1.
  • the clip pitch change rate was 0.72.
  • the clip pitch of the left clip started to increase and increased from 90 mm to 177.5 mm in the second oblique stretching zone C2.
  • the clip pitch of the right clip was maintained at 177.5 mm in the second oblique stretching zone C2.
  • stretching in the width direction was performed 1.9 times.
  • the oblique stretching was performed at 135 ° C.
  • MD shrinkage treatment was performed in the shrinkage zone.
  • the clip pitches of the left clip and right clip were both reduced from 177.5 mm to 165 mm.
  • the shrinkage rate in the MD shrinkage treatment was 7.0%.
  • a retardation film C (thickness 40 ⁇ m) was obtained.
  • Re (550) of the obtained retardation film C was 140 nm
  • Rth (550) was 168 nm
  • Re (450) / Re (550) was 0.89.
  • the slow axis direction of the retardation film C was 45 ° with respect to the longitudinal direction.
  • ⁇ Comparative Example 1> (Preparation of retardation film D constituting first retardation layer) A biaxially stretched polypropylene film (trade name “Trephan” (thickness 60 ⁇ m) manufactured by Toray, Inc.) is placed on both sides of a commercially available Arton film (manufactured by JSR, thickness 70 ⁇ m) via an acrylic adhesive layer (thickness 15 ⁇ m). Pasted together. Thereafter, the longitudinal direction of the film was held with a roll stretching machine, and the film was stretched 1.45 times in an air circulation type thermostatic oven at 147 ° C. to obtain a retardation film D. Re (550) of the obtained retardation film D was 140 nm, Rth (550) was 70 nm, and Re (450) / Re (550) was 1.00.
  • Re (550) of the obtained retardation film D was 140 nm
  • Rth (550) was 70 nm
  • Re (450) / Re (550) was 1.00.
  • ⁇ Comparative Example 2> (Preparation of retardation film E constituting the first retardation layer) A commercially available ARTON film (manufactured by JSR Co., Ltd., thickness 100 ⁇ m) is stretched 1.8 times in a 147 ° C. air-circulating constant temperature oven while maintaining the longitudinal direction of the film with a roll stretching machine to obtain a retardation film E. It was. Re (550) of the obtained retardation film E was 140 nm, Rth (550) was 140 nm, and Re (450) / Re (550) was 1.00.
  • the liquid crystal panel on which the polarizing plate with a retardation plate was laminated was attached to the smartphone to obtain the liquid crystal display device of this example.
  • a white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state.
  • the evaluation results are shown in Table 1.
  • the polymer film obtained had a light transmittance of 93% at a wavelength of 590 nm.
  • the in-plane retardation value of the polymer film: Re (590) was 5.0 nm, and the retardation value in the thickness direction: Rth (590) was 12.0 nm.
  • the average refractive index was 1.576.
  • the obtained polymer film was uniaxially stretched 1.5 times in an air circulation type thermostatic oven at 150 ° C. to obtain a retardation film F.
  • Re (550) of the obtained retardation film F was 140 nm
  • Rth (550) was 140 nm
  • Re (450) / Re (550) was 1.06.
  • Example 1 Preparation of polarizing plate with retardation layer and liquid crystal display device
  • a polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that the retardation film F was used in place of the retardation film A, and the polarizing plate with a retardation layer was used in the same manner as in Example 1.
  • a liquid crystal display device was produced. A white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state. The evaluation results are shown in Table 1.
  • the liquid crystal display device of the present invention includes portable information terminals (PDAs), mobile phones, watches, digital cameras, portable game devices such as portable game machines, OA devices such as personal computer monitors, notebook computers, copy machines, video cameras, liquid crystal televisions, Household electrical equipment such as microwave ovens, back monitors, car navigation system monitors, in-car equipment such as car audio, display equipment such as commercial store information monitors, security equipment such as monitoring monitors, nursing care monitors, medical care It can be suitably used for various uses such as nursing care and medical equipment such as monitors for medical use.
  • PDAs portable information terminals
  • portable game devices such as portable game machines
  • OA devices such as personal computer monitors, notebook computers, copy machines, video cameras, liquid crystal televisions, Household electrical equipment such as microwave ovens, back monitors, car navigation system monitors, in-car equipment such as car audio, display equipment such as commercial store information monitors, security equipment such as monitoring monitors, nursing care monitors, medical care It can be suitably used for various uses such as nursing care and medical equipment such

Abstract

The purpose of the present invention is to provide a liquid crystal display device that has superior color reproducibility, superior visibility when viewed through an optical member, said optical member having a polarizing effect, and minimized color irregularity. A liquid crystal display device (500) according to the present invention comprises: a liquid crystal panel (100) that includes a liquid crystal cell (10), a first polarizer (20) positioned on a viewing side of the liquid crystal cell (10), and a second polarizer (30) positioned on a back surface side; a phase difference layer (200) that is positioned on the viewing side of the liquid crystal panel (100); and a backlight light source (300) that illuminates the liquid crystal panel (100) from the back surface side. The in-plane phase difference Re(550) of the phase difference layer (200) is 100nm-180nm and satisfies the relationship Re(450)<Re(550)<Re(650). The angle formed by the slow axis of the phase difference layer (200) and a long side of the liquid crystal panel (100) is 35°-55°. The backlight light source (300) has a discontinuous emission spectrum.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関する。 The present invention relates to a liquid crystal display device.
 近年、携帯電話、スマートフォン、タブレット型パーソナルコンピューター(PC)、カーナビゲーションシステム、デジタルサイネージ、ウィンドウディスプレイなどのように、液晶表示装置が強い外光の下使用される機会が増加している。このように屋外で液晶表示装置が使用される場合、視認者が偏光サングラスをかけて当該液晶表示装置を見る際に、視認者が見る角度によっては偏光サングラスの透過軸方向と液晶表示装置の出射側の透過軸方向とがクロスニコル状態となり、その結果、画面が黒くなり、表示画像が視認されない場合がある。このような問題を解決するために、液晶表示装置の視認側にλ/4板や超高位相差フィルムを配置する技術が提案されている。 In recent years, liquid crystal display devices such as mobile phones, smartphones, tablet personal computers (PCs), car navigation systems, digital signage, window displays, etc. have been increasingly used under strong external light. Thus, when a liquid crystal display device is used outdoors, when a viewer views the liquid crystal display device wearing polarized sunglasses, the transmission axis direction of the polarized sunglasses and the emission of the liquid crystal display device depend on the viewing angle. As a result, the screen becomes black and the display image may not be visually recognized. In order to solve such a problem, a technique for arranging a λ / 4 plate or an ultrahigh retardation film on the viewing side of the liquid crystal display device has been proposed.
 一方、液晶表示装置の色再現性を向上させるために、バックライト光源を赤色(R)、緑色(G)、青色(B)の単独光源の特性に近づける試みがなされている。しかし、このような試みにおいて、偏光サングラス対策として単に液晶表示装置の視認側にλ/4板や超高位相差フィルムを配置しても、色つきおよび/または色むらが生じる等の問題がある。 On the other hand, in order to improve the color reproducibility of the liquid crystal display device, an attempt has been made to bring the backlight light source closer to the characteristics of a single light source of red (R), green (G), and blue (B). However, in such an attempt, there is a problem that coloring and / or color unevenness occurs even if a λ / 4 plate or an ultrahigh retardation film is simply disposed on the viewing side of the liquid crystal display device as a countermeasure against polarized sunglasses.
特開2005-352068号公報JP 2005-352068 A 特開2011-107198号公報JP2011-107198A
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、色再現性に優れ、かつ、偏光作用を有する光学部材を通して視認した際の視認性に優れおよび色むらが抑制されている液晶表示装置を提供することにある。 The present invention has been made in order to solve the above-described conventional problems, and the object of the present invention is excellent in color reproducibility and excellent in visibility when viewed through an optical member having a polarizing action and color. An object is to provide a liquid crystal display device in which unevenness is suppressed.
 本発明の液晶表示装置は、液晶セルと該液晶セルの視認側に配置された第1の偏光子と該液晶セルの背面側に配置された第2の偏光子とを含む液晶パネルと;該液晶パネルの視認側に配置された位相差層と;該液晶パネルを背面側から照明するバックライト光源と;を備える。位相差層の面内位相差Re(550)は100nm~180nmであり、かつ、Re(450)<Re(550)<Re(650)の関係を満たす。該位相差層の遅相軸と該液晶パネルの長辺とのなす角度は35°~55°である。該バックライト光源は不連続な発光スペクトルを有する。
 1つの実施形態においては、上記バックライト光源の発光スペクトルは、430nm~470nmの波長領域にピークP1、530nm~570nmの波長領域にピークP2、および、630nm~670nmの波長領域にピークP3を有する。ピークP1の波長をλ1、高さをhP1および半値幅をΔλ1、ピークP2の波長をλ2、高さをhP2および半値幅をΔλ2、ピークP3の波長をλ3、高さをhP3および半値幅をΔλ3、ピークP1とピークP2との間の谷の高さをhB1、ピークP2とピークP3との間の谷の高さをhB2としたときに、これらが下記の関係式(1)~(3)を満足する:
   (λ2-λ1)/(Δλ2+Δλ1)>1         ・・・(1)
   (λ3-λ2)/(Δλ3+Δλ2)>1         ・・・(2)
   0.8≦{hP2-(hB2+hB1)/2}/hP2≦1 ・・・(3)。
 1つの実施形態においては、上記位相差層の屈折率楕円体はnx>nz>nyの関係を示し、Nz係数は0.2~0.8である。
 1つの実施形態においては、上記液晶表示装置は、液晶パネルと上記位相差層との間に、屈折率楕円体がnz>nx≧nyの関係を示す別の位相差層をさらに備える。
 1つの実施形態においては、上記バックライト光源は、赤色を発色するLEDと緑色を発色するLEDと青色を発色するLEDとを含み、該赤色を発色するLEDの蛍光体が4価のマンガンイオンで賦活されている。別の実施形態においては、上記バックライト光源は、青色を発色するLEDと量子ドットを含む波長変換層とを含む。
 1つの実施形態においては、上記第1の偏光子の吸収軸は上記液晶パネルの長辺に対して実質的に直交または平行であり、上記第2の偏光子の吸収軸は該液晶パネルの長辺に対して実質的に直交または平行であり、該第1の偏光子の吸収軸と該第2の偏光子の吸収軸とは実質的に直交している。
The liquid crystal display device of the present invention includes a liquid crystal panel including a liquid crystal cell, a first polarizer disposed on the viewing side of the liquid crystal cell, and a second polarizer disposed on the back side of the liquid crystal cell; A retardation layer disposed on the viewing side of the liquid crystal panel; and a backlight source that illuminates the liquid crystal panel from the back side. The in-plane retardation Re (550) of the retardation layer is 100 nm to 180 nm, and satisfies the relationship of Re (450) <Re (550) <Re (650). The angle formed by the slow axis of the retardation layer and the long side of the liquid crystal panel is 35 ° to 55 °. The backlight source has a discontinuous emission spectrum.
In one embodiment, the emission spectrum of the backlight source has a peak P1 in the wavelength region of 430 nm to 470 nm, a peak P2 in the wavelength region of 530 nm to 570 nm, and a peak P3 in the wavelength region of 630 nm to 670 nm. The wavelength of the peak P1 is λ1, the height is hP1 and the half width is Δλ1, the wavelength of the peak P2 is λ2, the height is hP2 and the half width is Δλ2, the wavelength of the peak P3 is λ3, the height is hP3 and the half width is Δλ3. When the height of the valley between the peak P1 and the peak P2 is hB1, and the height of the valley between the peak P2 and the peak P3 is hB2, these are expressed by the following relational expressions (1) to (3). Satisfy:
(Λ2−λ1) / (Δλ2 + Δλ1)> 1 (1)
(Λ3-λ2) / (Δλ3 + Δλ2)> 1 (2)
0.8 ≦ {hP2− (hB2 + hB1) / 2} / hP2 ≦ 1 (3).
In one embodiment, the refractive index ellipsoid of the retardation layer exhibits a relationship of nx>nz> ny, and the Nz coefficient is 0.2 to 0.8.
In one embodiment, the liquid crystal display device further includes another retardation layer whose refractive index ellipsoid shows a relationship of nz> nx ≧ ny between the liquid crystal panel and the retardation layer.
In one embodiment, the backlight source includes a red color LED, a green color LED, and a blue color LED, and the phosphor of the red color LED is a tetravalent manganese ion. It is activated. In another embodiment, the backlight source includes an LED that emits blue light and a wavelength conversion layer that includes quantum dots.
In one embodiment, the absorption axis of the first polarizer is substantially perpendicular or parallel to the long side of the liquid crystal panel, and the absorption axis of the second polarizer is the length of the liquid crystal panel. It is substantially orthogonal or parallel to the side, and the absorption axis of the first polarizer and the absorption axis of the second polarizer are substantially orthogonal.
 本発明の実施形態によれば、特定の発光スペクトルを有するバックライト光源を用い、かつ、いわゆる逆分散波長依存性を有し所定の面内位相差を有する位相差層を特定の軸角度で視認側に配置することにより、色再現性に優れ、かつ、偏光作用を有する光学部材を通して視認した際の視認性に優れおよび色むらが抑制されている液晶表示装置を実現することができる。 According to an embodiment of the present invention, a retardation light source having a specific emission spectrum and using a backlight layer having a specific emission spectrum and a so-called reverse dispersion wavelength dependency and having a predetermined in-plane retardation are visually recognized at a specific axis angle. By disposing on the side, it is possible to realize a liquid crystal display device that is excellent in color reproducibility, excellent in visibility when viewed through an optical member having a polarizing action, and in which color unevenness is suppressed.
本発明の1つの実施形態による液晶表示装置の概略断面図である。1 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present invention. 本発明の実施形態による液晶表示装置に用いられ得るバックライト光源の発光スペクトルの一例を模式的に示す図である。It is a figure which shows typically an example of the emission spectrum of the backlight light source which can be used for the liquid crystal display device by embodiment of this invention. 従来のバックライト光源の発光スペクトルの一例を模式的に示す図である。It is a figure which shows typically an example of the emission spectrum of the conventional backlight light source.
 以下、本発明の代表的な実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, representative embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定したフィルムの面内位相差である。例えば、「Re(450)」は、23℃における波長450nmの光で測定したフィルムの面内位相差である。Re(λ)は、フィルムの厚みをd(nm)としたとき、式:Re=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長550nmの光で測定したフィルムの厚み方向の位相差である。例えば、「Rth(450)」は、23℃における波長450nmの光で測定したフィルムの厚み方向の位相差である。Rth(λ)は、フィルムの厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)nx=ny、nx=nz、ny=nz
 nx=nyとは、nxとnyが完全に同一である場合だけでなく、nxとnyとが実質的に同一である場合も包含する。nx=nzおよびny=nzの関係についても同様である。
(6)実質的に直交または平行
 「実質的に直交」および「略直交」という表現は、2つの方向のなす角度が90°±10°である場合を包含し、好ましくは90°±7°であり、さらに好ましくは90°±5°である。「実質的に平行」および「略平行」という表現は、2つの方向のなす角度が0°±10°である場合を包含し、好ましくは0°±7°であり、さらに好ましくは0°±5°である。さらに、単に「直交」または「平行」というときは、実質的に直交または実質的に平行な状態を含み得るものとする。
(7)角度
 本明細書において角度に言及するときは、特に明記しない限り、当該角度は時計回りおよび反時計回りの両方の方向の角度を包含する。
(Definition of terms and symbols)
The definitions of terms and symbols in this specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re (λ)” is the in-plane retardation of the film measured with light having a wavelength of λ nm at 23 ° C. For example, “Re (450)” is the in-plane retardation of the film measured with light having a wavelength of 450 nm at 23 ° C. Re (λ) is determined by the formula: Re = (nx−ny) × d, where d (nm) is the thickness of the film.
(3) Thickness direction retardation (Rth)
“Rth (λ)” is a retardation in the thickness direction of the film measured with light having a wavelength of 550 nm at 23 ° C. For example, “Rth (450)” is the retardation in the thickness direction of the film measured with light having a wavelength of 450 nm at 23 ° C. Rth (λ) is determined by the formula: Rth = (nx−nz) × d, where d (nm) is the thickness of the film.
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) nx = ny, nx = nz, ny = nz
nx = ny includes not only the case where nx and ny are completely the same, but also the case where nx and ny are substantially the same. The same applies to the relationship of nx = nz and ny = nz.
(6) Substantially orthogonal or parallel The expressions “substantially orthogonal” and “substantially orthogonal” include the case where the angle between the two directions is 90 ° ± 10 °, preferably 90 ° ± 7 °. And more preferably 90 ° ± 5 °. The expressions “substantially parallel” and “substantially parallel” include the case where the angle between two directions is 0 ° ± 10 °, preferably 0 ° ± 7 °, more preferably 0 ° ± 5 °. Furthermore, the term “orthogonal” or “parallel” may include a substantially orthogonal state or a substantially parallel state.
(7) Angle When this specification refers to an angle, the angle includes angles in both clockwise and counterclockwise directions unless otherwise specified.
A.液晶表示装置の全体構成
 図1は、本発明の1つの実施形態による液晶表示装置の概略断面図である。図面においては、見やすくするために、各層および各光学部材の厚みの比率は実際とは異なっている。本実施形態の液晶表示装置500は、液晶パネル100と、液晶パネル100の視認側に配置された位相差層200と、液晶パネル100を背面側から照明するバックライト光源300と、を備える。図示例では、液晶パネル100と位相差層200との間に、別の位相差層400がさらに配置され得る。目的、構成および所望の特性等に応じて、別の位相差層は省略されてもよい。なお、便宜上、位相差層200を第1の位相差層と、別の位相差層400を第2の位相差層と称する場合がある。本発明の実施形態においては、第1の位相差層200の面内位相差Re(550)は100nm~180nmであり、好ましくは110nm~170nmであり、さらに好ましくは120nm~160nmであり、特に好ましくは135nm~155nmである。さらに、第1の位相差層200は、Re(450)<Re(550)<Re(650)の関係を満たす。加えて、本発明の実施形態においては、バックライト光源300は不連続な発光スペクトルを有する。
A. 1 is a schematic sectional view of a liquid crystal display device according to an embodiment of the present invention. In the drawings, the thickness ratios of the respective layers and the respective optical members are different from actual ones for easy viewing. The liquid crystal display device 500 of this embodiment includes a liquid crystal panel 100, a retardation layer 200 disposed on the viewing side of the liquid crystal panel 100, and a backlight light source 300 that illuminates the liquid crystal panel 100 from the back side. In the illustrated example, another retardation layer 400 may be further disposed between the liquid crystal panel 100 and the retardation layer 200. Another retardation layer may be omitted according to the purpose, configuration, desired characteristics, and the like. For convenience, the retardation layer 200 may be referred to as a first retardation layer, and another retardation layer 400 may be referred to as a second retardation layer. In the embodiment of the present invention, the in-plane retardation Re (550) of the first retardation layer 200 is 100 nm to 180 nm, preferably 110 nm to 170 nm, more preferably 120 nm to 160 nm, and particularly preferably. Is from 135 nm to 155 nm. Further, the first retardation layer 200 satisfies the relationship of Re (450) <Re (550) <Re (650). In addition, in the embodiment of the present invention, the backlight source 300 has a discontinuous emission spectrum.
 液晶パネル100は、液晶セル10と、液晶セル10の視認側に配置された第1の偏光子20と、液晶セル10の背面側に配置された第2の偏光子30と、を含む。第1の偏光子20の吸収軸は液晶パネル100(液晶セル10)の長辺に対して実質的に直交または平行である。第2の偏光子30の吸収軸もまた、液晶パネル100(液晶セル10)の長辺に対して実質的に直交または平行である。なお、液晶パネルの長辺は、表示画面の左右方向であってもよく上下方向であってもよい。第1の偏光子20の吸収軸と第2の偏光子30の吸収軸とは、実質的に直交している。第1の偏光子20の片側または両側に保護フィルム(図示せず)が配置されてもよい。同様に、第2の偏光子30の片側または両側にも保護フィルム(図示せず)が配置されてもよい。 The liquid crystal panel 100 includes a liquid crystal cell 10, a first polarizer 20 disposed on the viewing side of the liquid crystal cell 10, and a second polarizer 30 disposed on the back side of the liquid crystal cell 10. The absorption axis of the first polarizer 20 is substantially orthogonal or parallel to the long side of the liquid crystal panel 100 (liquid crystal cell 10). The absorption axis of the second polarizer 30 is also substantially orthogonal or parallel to the long side of the liquid crystal panel 100 (liquid crystal cell 10). Note that the long side of the liquid crystal panel may be the left-right direction or the vertical direction of the display screen. The absorption axis of the first polarizer 20 and the absorption axis of the second polarizer 30 are substantially orthogonal. A protective film (not shown) may be disposed on one side or both sides of the first polarizer 20. Similarly, a protective film (not shown) may be disposed on one side or both sides of the second polarizer 30.
 第1の位相差層200の遅相軸と液晶パネル100の長辺とのなす角度は35°~55°であり、好ましくは38°~52°であり、より好ましくは40°~50°であり、さらに好ましくは42°~48°であり、特に好ましくは44°~46°であり、とりわけ好ましくは約45°である。したがって、第1の位相差層200の遅相軸と第1の偏光子20の吸収軸とのなす角度は、好ましくは35°~55°であり、より好ましくは38°~52°であり、さらに好ましくは40°~50°であり、特に好ましくは42°~48°であり、とりわけ好ましくは44°~46°であり、最も好ましくは約45°である。 The angle formed between the slow axis of the first retardation layer 200 and the long side of the liquid crystal panel 100 is 35 ° to 55 °, preferably 38 ° to 52 °, more preferably 40 ° to 50 °. More preferably 42 ° to 48 °, particularly preferably 44 ° to 46 °, and particularly preferably about 45 °. Therefore, the angle formed by the slow axis of the first retardation layer 200 and the absorption axis of the first polarizer 20 is preferably 35 ° to 55 °, more preferably 38 ° to 52 °. More preferably, it is 40 ° to 50 °, particularly preferably 42 ° to 48 °, particularly preferably 44 ° to 46 °, and most preferably about 45 °.
 1つの実施形態においては、第1の偏光子20と液晶セル10との間に導電層(図示せず)が設けられてもよい。このような導電層を設けることにより、液晶表示装置は、表示セル(液晶セル)と偏光子との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置として機能し得る。 In one embodiment, a conductive layer (not shown) may be provided between the first polarizer 20 and the liquid crystal cell 10. By providing such a conductive layer, the liquid crystal display device can function as a so-called inner touch panel type input display device in which a touch sensor is incorporated between a display cell (liquid crystal cell) and a polarizer.
 必要に応じて、第1の偏光子20と液晶セル10との間、および/または、第2の偏光子30と液晶セル10との間に、任意の適切な光学補償層(さらに別の位相差層)が配置されてもよい。このような光学補償層の配置数、組み合わせ、配置位置、配置順序、光学特性(例えば、屈折率楕円体、面内位相差、厚み方向位相差、Nz係数)、機械的特性等は、目的、液晶表示装置の構成および所望の特性に応じて適切に設定され得る。 If necessary, any appropriate optical compensation layer (further different position) is provided between the first polarizer 20 and the liquid crystal cell 10 and / or between the second polarizer 30 and the liquid crystal cell 10. A phase difference layer) may be disposed. The number, combination, arrangement position, arrangement order, optical characteristics (for example, refractive index ellipsoid, in-plane phase difference, thickness direction phase difference, Nz coefficient), mechanical characteristics, etc. of such an optical compensation layer are the purpose, It can be appropriately set according to the configuration and desired characteristics of the liquid crystal display device.
 以下、液晶表示装置の構成要素(光学フィルム、光学部材)について説明する。 Hereinafter, components (optical film, optical member) of the liquid crystal display device will be described.
B.液晶パネル
B-1.液晶セル
 液晶セル10は、一対の基板11、12と、当該基板間に挟持された表示媒体としての液晶層13とを有する。一般的な構成においては、一方の基板11に、カラーフィルターおよびブラックマトリクスが設けられており、他方の基板12に、液晶の電気光学特性を制御するスイッチング素子と、このスイッチング素子にゲート信号を与える走査線およびソース信号を与える信号線と、画素電極および対向電極とが設けられている。上記基板11、12の間隔(セルギャップ)は、スペーサー等によって制御できる。上記基板11、12の液晶層13と接する側には、例えば、ポリイミドからなる配向膜等を設けることができる。
B. Liquid crystal panel B-1. Liquid Crystal Cell The liquid crystal cell 10 includes a pair of substrates 11 and 12 and a liquid crystal layer 13 as a display medium sandwiched between the substrates. In a general configuration, one substrate 11 is provided with a color filter and a black matrix, and the other substrate 12 is provided with a switching element for controlling the electro-optical characteristics of the liquid crystal and a gate signal is given to this switching element. A scanning line and a signal line for supplying a source signal, a pixel electrode, and a counter electrode are provided. The distance (cell gap) between the substrates 11 and 12 can be controlled by a spacer or the like. For example, an alignment film made of polyimide can be provided on the side of the substrates 11 and 12 that is in contact with the liquid crystal layer 13.
 1つの実施形態においては、液晶層13は、電界が存在しない状態でホモジニアス配列に配向させた液晶分子を含む。このような液晶層(結果として、液晶セル)は、代表的には、屈折率楕円体がnx>ny=nzの関係を示す。このような3次元屈折率を示す液晶層を用いる駆動モードの代表例としては、インプレーンスイッチング(IPS)モード、フリンジフィールドスイッチング(FFS)モード等が挙げられる。IPSモードは、V字型電極又はジグザグ電極等を採用した、スーパー・インプレーンスイッチング(S-IPS)モードや、アドバンスド・スーパー・インプレーンスイッチング(AS-IPS)モードを包含する。FFSモードは、V字型電極又はジグザグ電極等を採用した、アドバンスド・フリンジフィールドスイッチング(A-FFS)モードや、ウルトラ・フリンジフィールドスイッチング(U-FFS)モードを包含する。このような電界が存在しない状態でホモジニアス配列に配向させた液晶分子を用いる駆動モード(例えば、IPSモード、FFSモード)は斜めの階調反転がなく、斜め視野角が広いため、斜めからの視認性が優れるという利点がある。 In one embodiment, the liquid crystal layer 13 includes liquid crystal molecules aligned in a homogeneous alignment in the absence of an electric field. Such a liquid crystal layer (as a result, a liquid crystal cell) typically has a refractive index ellipsoid having a relationship of nx> ny = nz. Typical examples of drive modes using such a liquid crystal layer exhibiting a three-dimensional refractive index include an in-plane switching (IPS) mode and a fringe field switching (FFS) mode. The IPS mode includes a super-in-plane switching (S-IPS) mode and an advanced super-in-plane switching (AS-IPS) mode employing a V-shaped electrode or a zigzag electrode. The FFS mode includes an advanced fringe field switching (A-FFS) mode and an ultra fringe field switching (U-FFS) mode employing a V-shaped electrode or a zigzag electrode. In such a driving mode (for example, IPS mode or FFS mode) using liquid crystal molecules aligned in a homogeneous arrangement in the absence of an electric field, there is no oblique gradation inversion and the oblique viewing angle is wide. There is an advantage that the property is excellent.
 別の実施形態においては、液晶層13は、電界が存在しない状態でホメオトロピック配列に配向させた液晶分子を含む。電界が存在しない状態でホメオトロピック配列に配向させた液晶分子を用いる駆動モードとしては、例えば、バーティカル・アライメント(VA)モードが挙げられる。VAモードは、マルチドメインVA(MVA)モードを包含する。このような電界が存在しない状態でホメオトロピック配列に配向させた液晶分子を用いる駆動モード(例えば、VAモード)は、斜め方向の中間調の透過率が正面方向の中間調の透過率よりも高いので、斜めからみた中間調が明るく、黒つぶれが少ないという利点がある。 In another embodiment, the liquid crystal layer 13 includes liquid crystal molecules aligned in a homeotropic alignment in the absence of an electric field. An example of a drive mode using liquid crystal molecules aligned in a homeotropic alignment in the absence of an electric field is a vertical alignment (VA) mode. The VA mode includes a multi-domain VA (MVA) mode. In a drive mode (for example, VA mode) using liquid crystal molecules aligned in a homeotropic alignment in the absence of such an electric field, the halftone transmittance in the oblique direction is higher than the halftone transmittance in the front direction. Therefore, there is an advantage that the halftone viewed from an oblique direction is bright and there is little blackout.
B-2.偏光子
 第1の偏光子20および第2の偏光子30としては、任意の適切な偏光子が採用され得る。第1の偏光子20および第2の偏光子30の材料、厚み、光学特性等は、同一であってもよく異なっていてもよい。以下、第1の偏光子20および第2の偏光子30をまとめて偏光子と称する場合がある。
B-2. Polarizer Any appropriate polarizer may be adopted as the first polarizer 20 and the second polarizer 30. The materials, thicknesses, optical characteristics, and the like of the first polarizer 20 and the second polarizer 30 may be the same or different. Hereinafter, the first polarizer 20 and the second polarizer 30 may be collectively referred to as a polarizer.
 偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。 The resin film forming the polarizer may be a single layer resin film or a laminate of two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films. In addition, there may be mentioned polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products. Preferably, a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution. The stretching ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye | stain after extending | stretching. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 As a specific example of a polarizer obtained by using a laminate, a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin Examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate. For example, a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it. A PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate. Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
 偏光子の厚みは、好ましくは15μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~10μmであり、特に好ましくは3μm~8μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。さらに、偏光子の厚みがこのような範囲であれば、液晶表示装置の薄型化に貢献し得る。 The thickness of the polarizer is preferably 15 μm or less, more preferably 1 μm to 12 μm, still more preferably 3 μm to 10 μm, and particularly preferably 3 μm to 8 μm. When the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained. Furthermore, if the thickness of the polarizer is in such a range, it can contribute to the thinning of the liquid crystal display device.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは43.0%~46.0%であり、より好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm. The single transmittance of the polarizer is preferably 43.0% to 46.0%, more preferably 44.5% to 46.0%. The polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
 上記のとおり、第1の偏光子20の片側または両側に保護フィルムが配置されてもよく、第2の偏光子30の片側または両側に保護フィルムが配置されてもよい。すなわち、偏光子は単独で液晶表示装置の構成要素とされてもよく、偏光子と保護フィルムとを含む偏光板として液晶表示装置の構成要素とされてもよい。さらに、偏光子と保護フィルムとを別個に積層して(すなわち、偏光子および保護フィルムがそれぞれ)液晶表示装置の構成要素とされてもよい。 As described above, a protective film may be disposed on one side or both sides of the first polarizer 20, and a protective film may be disposed on one side or both sides of the second polarizer 30. That is, the polarizer may be a component of the liquid crystal display device alone, or may be a component of the liquid crystal display device as a polarizing plate including the polarizer and the protective film. Further, the polarizer and the protective film may be separately laminated (that is, the polarizer and the protective film, respectively) to be a constituent element of the liquid crystal display device.
 保護フィルムは、任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。 The protective film is formed of any appropriate film. Specific examples of the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials. And transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate. Further, thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included. In addition to this, for example, a glassy polymer such as a siloxane polymer is also included. Further, a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As a material for this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain For example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned. The polymer film can be, for example, an extruded product of the resin composition.
 保護フィルムの厚みは、好ましくは20μm~200μm、より好ましくは30μm~100μm、さらに好ましくは35μm~95μmである。 The thickness of the protective film is preferably 20 μm to 200 μm, more preferably 30 μm to 100 μm, and still more preferably 35 μm to 95 μm.
 第1の偏光子20および/または第2の偏光子30の液晶セル10側に保護フィルム(内側保護フィルム)が配置される場合、当該内側保護フィルムは、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。 When a protective film (inner protective film) is disposed on the liquid crystal cell 10 side of the first polarizer 20 and / or the second polarizer 30, the inner protective film may be optically isotropic. preferable. In this specification, “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is −10 nm to +10 nm. Say.
C.第1の位相差層
 上記のとおり、第1の位相差層200の面内位相差Re(550)は100nm~180nmであり、好ましくは110nm~170nmであり、さらに好ましくは120nm~160nmであり、特に好ましくは135nm~155nmである。すなわち、第1の位相差層は、いわゆるλ/4板として機能し得る。したがって、第1の位相差層は、偏光子から視認側に出射された直線偏光を楕円偏光または円偏光に変換する機能を有する。このように、λ/4板として機能し得る第1の位相差層を上記のような特定の軸関係で視認側偏光子(第1の偏光子20)よりも視認側に配置することにより、偏光作用を有する光学部材(例えば、偏光サングラス)を介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、本発明の液晶表示装置は屋外で好適に用いられ得る。
C. First retardation layer As described above, the in-plane retardation Re (550) of the first retardation layer 200 is 100 nm to 180 nm, preferably 110 nm to 170 nm, more preferably 120 nm to 160 nm, Particularly preferred is 135 nm to 155 nm. That is, the first retardation layer can function as a so-called λ / 4 plate. Therefore, the first retardation layer has a function of converting linearly polarized light emitted from the polarizer to the viewer side into elliptically polarized light or circularly polarized light. In this way, by disposing the first retardation layer that can function as a λ / 4 plate on the viewer side with respect to the viewer side polarizer (first polarizer 20) with the specific axial relationship as described above, Even when the display screen is viewed through an optical member having a polarizing action (for example, polarized sunglasses), excellent visibility can be realized. Therefore, the liquid crystal display device of the present invention can be suitably used outdoors.
 さらに、第1の位相差層は、上記のとおり、Re(450)<Re(550)<Re(650)の関係を満たす。すなわち、第1の位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散の波長依存性を示す。第1の位相差層のRe(450)/Re(550)は、好ましくは0.8以上1.0未満であり、より好ましくは0.8~0.95である。Re(550)/Re(650)は、好ましくは0.8以上1.0未満であり、より好ましくは0.8~0.97である。 Further, as described above, the first retardation layer satisfies the relationship of Re (450) <Re (550) <Re (650). That is, the first retardation layer shows the wavelength dependence of reverse dispersion in which the retardation value increases with the wavelength of the measurement light. Re (450) / Re (550) of the first retardation layer is preferably 0.8 or more and less than 1.0, and more preferably 0.8 to 0.95. Re (550) / Re (650) is preferably 0.8 or more and less than 1.0, and more preferably 0.8 to 0.97.
 第1の位相差層は、代表的には屈折率特性がnx>nyの関係を示し、遅相軸を有する。第1の位相差層200の遅相軸と第1の偏光子20の吸収軸とのなす角度は、上記のとおり、好ましくは35°~55°であり、より好ましくは38°~52°であり、さらに好ましくは40°~50°であり、特に好ましくは42°~48°であり、とりわけ好ましくは44°~46°であり、最も好ましくは約45°である。当該角度がこのような範囲であれば、第1の位相差層をλ/4板とし、および、第1の位相差層を第1の偏光子(視認側偏光子)よりも視認側に配置することにより、偏光作用を有する光学部材(例えば、偏光サングラス)を介して表示画面を視認した場合でも、優れた視認性に実現することができる。したがって、本発明の液晶表示装置は、屋外でも好適に用いられ得る。 The first retardation layer typically has a refractive index characteristic of nx> ny and has a slow axis. As described above, the angle formed between the slow axis of the first retardation layer 200 and the absorption axis of the first polarizer 20 is preferably 35 ° to 55 °, more preferably 38 ° to 52 °. More preferably 40 ° to 50 °, particularly preferably 42 ° to 48 °, particularly preferably 44 ° to 46 °, and most preferably about 45 °. If the angle is in such a range, the first retardation layer is a λ / 4 plate, and the first retardation layer is arranged on the viewing side with respect to the first polarizer (viewing side polarizer). Thus, even when the display screen is viewed through an optical member having a polarizing action (for example, polarized sunglasses), excellent visibility can be realized. Therefore, the liquid crystal display device of the present invention can be suitably used even outdoors.
 第1の位相差層は、nx>nyの関係を有する限り、任意の適切な屈折率楕円体を示す。好ましくは、第1の位相差層の屈折率楕円体は、nx>nz>nyの関係を示す。第1の位相差層のNz係数は、好ましくは0.2~0.8であり、より好ましくは0.3~0.7であり、さらに好ましくは0.4~0.6であり、特に好ましくは約0.5である。このような関係を満たすことにより、偏光作用を有する光学部材(例えば、偏光サングラス)を介して斜め方向から見た場合の色つきが抑制されるという利点を有する。 The first retardation layer exhibits any appropriate refractive index ellipsoid as long as it has a relationship of nx> ny. Preferably, the refractive index ellipsoid of the first retardation layer shows a relationship of nx> nz> ny. The Nz coefficient of the first retardation layer is preferably 0.2 to 0.8, more preferably 0.3 to 0.7, still more preferably 0.4 to 0.6, particularly Preferably it is about 0.5. By satisfying such a relationship, there is an advantage that coloring is suppressed when viewed from an oblique direction through an optical member having a polarizing action (for example, polarized sunglasses).
 第1の位相差層は、光弾性係数の絶対値が好ましくは2×10-11/N以下、より好ましくは2.0×10-13/N~1.5×10-11/N、さらに好ましくは1.0×10-12/N~1.2×10-11/Nの樹脂を含む。光弾性係数の絶対値がこのような範囲であれば、加熱時の収縮応力が発生した場合に位相差変化が生じにくい。その結果、液晶表示装置の熱ムラが良好に防止され得る。 The absolute value of the photoelastic coefficient of the first retardation layer is preferably 2 × 10 −11 m 2 / N or less, more preferably 2.0 × 10 −13 m 2 / N to 1.5 × 10 −11. m 2 / N, more preferably from 1.0 × 10 -12 m 2 /N~1.2×10 -11 m 2 / N resin. When the absolute value of the photoelastic coefficient is in such a range, a phase difference change is unlikely to occur when a shrinkage stress is generated during heating. As a result, the thermal unevenness of the liquid crystal display device can be satisfactorily prevented.
 第1の位相差層の厚みは、λ/4板として最も適切に機能し得るように設定され得る。言い換えれば、厚みは、所望の面内位相差が得られるように設定され得る。具体的には、厚みは、好ましくは1μm~80μmであり、より好ましくは10μm~80μmであり、さらに好ましくは10μm~60μmであり、特に好ましくは30μm~50μmである。 The thickness of the first retardation layer can be set so as to function most appropriately as a λ / 4 plate. In other words, the thickness can be set so as to obtain a desired in-plane retardation. Specifically, the thickness is preferably 1 μm to 80 μm, more preferably 10 μm to 80 μm, still more preferably 10 μm to 60 μm, and particularly preferably 30 μm to 50 μm.
 第1の位相差層は、上記のような特性を満足し得る任意の適切な樹脂で形成される。第1の位相差層を形成する樹脂としては、ポリカーボネート樹脂、ポリビニルアセタール樹脂、シクロオレフィン系樹脂、アクリル系樹脂、セルロースエステル系樹脂等が挙げられる。好ましくは、ポリカーボネート樹脂である。 The first retardation layer is formed of any appropriate resin that can satisfy the above characteristics. Examples of the resin that forms the first retardation layer include polycarbonate resins, polyvinyl acetal resins, cycloolefin resins, acrylic resins, and cellulose ester resins. Polycarbonate resin is preferable.
 上記ポリカーボネート樹脂としては、本発明の効果が得られる限りにおいて、任意の適切なポリカーボネート樹脂を用いることができる。好ましくは、ポリカーボネート樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、本発明に好適に用いられ得るポリカーボネート樹脂の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報に記載されており、当該記載は本明細書に参考として援用される。 As the polycarbonate resin, any appropriate polycarbonate resin can be used as long as the effects of the present invention can be obtained. Preferably, the polycarbonate resin includes a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri, or polyethylene glycol, and an alkylene. A structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol. Preferably, the polycarbonate resin is derived from a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, a structural unit derived from an alicyclic dimethanol and / or a di-, tri- or polyethylene glycol. More preferably, a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, and a structural unit derived from di, tri, or polyethylene glycol. The polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. Details of the polycarbonate resin that can be suitably used in the present invention are described in, for example, Japanese Patent Application Laid-Open Nos. 2014-10291 and 2014-26266, and the description is incorporated herein by reference. The
 ポリカーボネート樹脂のガラス転移温度は、110℃以上250℃以下であることが好ましく、より好ましくは120℃以上230℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性があり、又、得られる液晶表示装置の画像品質を下げる場合がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。 The glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 250 ° C. or lower, more preferably 120 ° C. or higher and 230 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, there is a possibility of causing a dimensional change after film formation, and the image quality of the obtained liquid crystal display device may be lowered. If the glass transition temperature is excessively high, the molding stability at the time of film molding may deteriorate, and the transparency of the film may be impaired. The glass transition temperature is determined according to JIS K 7121 (1987).
 前記ポリカーボネート樹脂の分子量は、還元粘度で表すことができる。還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の下限は、通常0.30dL/gが好ましく、より好ましは0.35dL/g以上である。還元粘度の上限は、通常1.20dL/gが好ましく、より好ましくは1.00dL/g、更に好ましくは0.80dL/gである。還元粘度が前記下限値より小さいと成形品の機械的強度が小さくなるという問題が生じる場合がある。一方、還元粘度が前記上限値より大きいと、成形する際の流動性が低下し、生産性や成形性が低下するという問題が生じる場合がある。 The molecular weight of the polycarbonate resin can be represented by a reduced viscosity. The reduced viscosity is measured using a Ubbelohde viscometer at a temperature of 20.0 ° C. ± 0.1 ° C., using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.6 g / dL. The lower limit of the reduced viscosity is usually preferably 0.30 dL / g, more preferably 0.35 dL / g or more. The upper limit of the reduced viscosity is usually preferably 1.20 dL / g, more preferably 1.00 dL / g, still more preferably 0.80 dL / g. If the reduced viscosity is less than the lower limit, there may be a problem that the mechanical strength of the molded product is reduced. On the other hand, if the reduced viscosity is larger than the upper limit, the fluidity at the time of molding is lowered, and there may be a problem that productivity and moldability are lowered.
 第1の位相差層を構成する位相差フィルムは、例えば、上記ポリカーボネート系樹脂から形成されたフィルムを延伸することにより得られる。ポリカーボネート系樹脂からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。具体例としては、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等が挙げられる。押出成形法またはキャスト塗工法が好ましい。得られるフィルムの平滑性を高め、良好な光学的均一性を得ることができるからである。成形条件は、使用される樹脂の組成や種類、位相差フィルムに所望される特性等に応じて適宜設定され得る。 The retardation film constituting the first retardation layer can be obtained, for example, by stretching a film formed from the polycarbonate resin. Any appropriate molding method can be adopted as a method of forming a film from a polycarbonate-based resin. Specific examples include compression molding methods, transfer molding methods, injection molding methods, extrusion molding methods, blow molding methods, powder molding methods, FRP molding methods, cast coating methods (for example, casting methods), calendar molding methods, and hot presses. Law. Extrusion molding or cast coating is preferred. This is because the smoothness of the resulting film can be improved and good optical uniformity can be obtained. The molding conditions can be appropriately set according to the composition and type of the resin used, the properties desired for the retardation film, and the like.
 樹脂フィルム(未延伸フィルム)の厚みは、得られる位相差フィルムの所望の厚み、所望の光学特性、後述の延伸条件などに応じて、任意の適切な値に設定され得る。好ましくは50μm~300μmである。 The thickness of the resin film (unstretched film) can be set to any appropriate value depending on the desired thickness of the obtained retardation film, the desired optical properties, the stretching conditions described later, and the like. The thickness is preferably 50 μm to 300 μm.
 上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸、自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、長さ方向、幅方向、厚さ方向、斜め方向等、様々な方向や次元に行なうことができる。 Any appropriate stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) may be employed for the stretching. Specifically, various stretching methods such as free end stretching, fixed end stretching, free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially. The stretching direction can also be performed in various directions and dimensions such as a length direction, a width direction, a thickness direction, and an oblique direction.
 上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する位相差フィルムを得ることができる。 A retardation film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained by appropriately selecting the stretching method and stretching conditions.
 1つの実施形態においては、位相差フィルムは、樹脂フィルムを一軸延伸もしくは固定端一軸延伸することにより作製される。固定端一軸延伸の具体例としては、樹脂フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。 In one embodiment, the retardation film is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end. As a specific example of the fixed end uniaxial stretching, there is a method of stretching in the width direction (lateral direction) while running the resin film in the longitudinal direction. The draw ratio is preferably 1.1 to 3.5 times.
 別の実施形態においては、位相差フィルムは、長尺状の樹脂フィルムを長手方向に対して所定の角度の方向に連続的に斜め延伸することにより作製され得る。斜め延伸を採用することにより、フィルムの長手方向に対して所定の角度の配向角(所定の角度の方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、偏光子との積層に際してロールトゥロールが可能となり、製造工程を簡略化することができる。なお、上記所定の角度は、液晶表示装置において第1の偏光子の吸収軸と第1の位相差層の遅相軸とがなす角度であり得る。当該角度は、上記のとおり、好ましくは35°~55°であり、より好ましくは38°~52°であり、さらに好ましくは40°~50°であり、特に好ましくは42°~48°であり、とりわけ好ましくは44°~46°であり、最も好ましくは約45°である。 In another embodiment, the retardation film can be produced by continuously stretching a long resin film obliquely in a direction at a predetermined angle with respect to the longitudinal direction. By adopting oblique stretching, a long stretched film having an orientation angle of a predetermined angle with respect to the longitudinal direction of the film (slow axis in the direction of the predetermined angle) is obtained. For example, with a polarizer Roll-to-roll is possible at the time of lamination, and the manufacturing process can be simplified. The predetermined angle may be an angle formed by the absorption axis of the first polarizer and the slow axis of the first retardation layer in the liquid crystal display device. As described above, the angle is preferably 35 ° to 55 °, more preferably 38 ° to 52 °, still more preferably 40 ° to 50 °, and particularly preferably 42 ° to 48 °. Especially preferred is 44 ° to 46 °, most preferred about 45 °.
 斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。 Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions. The tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
 上記延伸機において左右の速度をそれぞれ適切に制御することにより、上記所望の面内位相差を有し、かつ、上記所望の方向に遅相軸を有する位相差フィルム(実質的には、長尺状の位相差フィルム)が得られ得る。 By appropriately controlling the left and right velocities in the stretching machine, a retardation film having a desired in-plane retardation and having a slow axis in the desired direction (substantially long film) Shaped retardation film) can be obtained.
 斜め延伸の方法としては、例えば、特開昭50-83482号公報、特開平2-113920号公報、特開平3-182701号公報、特開2000-9912号公報、特開2002-86554号公報、特開2002-22944号公報等に記載の方法が挙げられる。 Examples of the oblique stretching method include, for example, JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A-2000-9912, JP-A-2002-86554, Examples thereof include the method described in JP-A-2002-22944.
 本発明の実施形態に好適に用いられ得る位相差フィルム(すなわち、Nz係数が1.0未満である位相差フィルム)は、樹脂フィルムの片面または両面に例えばアクリル系粘着剤を介して熱収縮フィルムを貼り合わせて積層体を形成し、当該積層体を上記のような延伸に供することにより作製することができる。熱収縮フィルムの構成(例えば、収縮力)および延伸条件(例えば、延伸温度)を調整することにより、所望のNz係数を有する位相差フィルムを得ることができる。 A retardation film (that is, a retardation film having an Nz coefficient of less than 1.0) that can be suitably used in an embodiment of the present invention is a heat-shrinkable film via, for example, an acrylic adhesive on one or both sides of a resin film. Can be manufactured by forming a laminated body and subjecting the laminated body to stretching as described above. A retardation film having a desired Nz coefficient can be obtained by adjusting the configuration of the heat-shrinkable film (for example, shrinkage force) and stretching conditions (for example, stretching temperature).
 上記フィルムの延伸温度は、位相差フィルムに所望される面内位相差値および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸倍率等に応じて変化し得る。具体的には、延伸温度は、好ましくはTg-30℃~Tg+30℃、さらに好ましくはTg-15℃~Tg+15℃、最も好ましくはTg-10℃~Tg+10℃である。このような温度で延伸することにより、本発明において適切な特性を有する位相差フィルムが得られ得る。なお、Tgは、フィルムの構成材料のガラス転移温度である。 The stretching temperature of the film can vary depending on the in-plane retardation value and thickness desired for the retardation film, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C to Tg + 30 ° C, more preferably Tg-15 ° C to Tg + 15 ° C, and most preferably Tg-10 ° C to Tg + 10 ° C. By stretching at such a temperature, a retardation film having appropriate characteristics in the present invention can be obtained. Tg is the glass transition temperature of the constituent material of the film.
 ポリカーボネート系樹脂フィルムとして市販のフィルムを用いてもよい。市販品の具体例としては、帝人社製の商品名「ピュアエースWR-S」、「ピュアエースWR-W」、「ピュアエースWR-M」、日東電工社製の商品名「NRF」が挙げられる。市販のフィルムをそのまま用いてもよく、市販のフィルムを目的に応じて2次加工(例えば、延伸処理、表面処理)して用いてもよい。 A commercially available film may be used as the polycarbonate resin film. Specific examples of commercially available products include “Pure Ace WR-S”, “Pure Ace WR-W”, “Pure Ace WR-M” manufactured by Teijin Limited, and “NRF” manufactured by Nitto Denko Corporation. It is done. A commercially available film may be used as it is, and a commercially available film may be used after secondary processing (for example, stretching treatment, surface treatment) depending on the purpose.
D.バックライト光源
 バックライト光源300は、バックライトユニット(図示せず)に含まれる。バックライトユニットは、光源に加えて、代表的には導光板、拡散シートおよびプリズムシート等を含む。バックライト光源は、上記のとおり不連続な発光スペクトルを有する。「不連続な発光スペクトルを有する」とは、赤色(R)、緑色(G)および青色(B)のそれぞれの波長領域に明確なピークが存在し、かつ、当該それぞれのピークが明確に区別されることをいう。図2は、不連続な発光スペクトルの一例を模式的に示す図である。図2に示すように、バックライト光源の発光スペクトルは、好ましくは430nm~470nm、より好ましくは440nm~460nmの波長領域(青色の波長領域)にピークP1、好ましくは530nm~570nm、より好ましくは540nm~560nmの波長領域(緑色の波長領域)にピークP2、および、好ましくは630nm~670nm、より好ましくは640nm~660nmの波長領域(赤色の波長領域)にピークP3を有する。好ましくは、ピークP1の波長λ1、高さhP1および半値幅Δλ1、ピークP2の波長λ2、高さhP2および半値幅Δλ2、ピークP3の波長λ3、高さhP3および半値幅Δλ3、ピークP1とピークP2との間の谷の高さhB1、ならびに、ピークP2とピークP3との間の谷の高さhB2は、下記の関係式(1)~(3)を満足する:
   (λ2-λ1)/(Δλ2+Δλ1)>1         ・・・(1)
   (λ3-λ2)/(Δλ3+Δλ2)>1         ・・・(2)
   0.8≦{hP2-(hB2+hB1)/2}/hP2≦1 ・・・(3)。
式(1)の(λ2-λ1)/(Δλ2+Δλ1)は、より好ましくは1.01~2.00であり、さらに好ましくは1.10~1.50である。式(2)の(λ3-λ2)/(Δλ3+Δλ2)は、より好ましくは1.01~2.00であり、さらに好ましくは1.10~1.50である。式(3)の{hP2-(hB2+hB1)/2}は、より好ましくは0.85~1であり、さらに好ましくは0.9~1である。式(1)は、青色光と緑色光との関係が光源として混色せず独立していることを意味する。式(2)は、緑色光と赤色光との関係が光源として混色せず独立していることを意味する。式(3)は、ピークP1、P2およびP3の間の谷間が低く、青色光、緑色光および赤色光のピークが明確に区別されていることを意味する。式(1)~(3)を規定することにより、色再現性が向上するという利点がある。式(1)~式(3)を満足する発光スペクトルを有するバックライト光源300と上記の第1の位相差層200との相乗的な効果により、色再現性に優れ、かつ、偏光作用を有する光学部材を通して視認した際の視認性に優れおよび色むらが抑制されている液晶表示装置を実現することができる。例えば、図3に示すような発光スペクトルを有する従来のバックライト光源(赤色光、緑色光および青色光を発色するLEDを単に組み合わせた白色光源)に比べて、色再現性、偏光作用を有する光学部材を通して視認した際の視認性および色むらをすべて顕著に向上させることができる。
D. Backlight light source The backlight light source 300 is included in a backlight unit (not shown). The backlight unit typically includes a light guide plate, a diffusion sheet, a prism sheet, and the like in addition to the light source. As described above, the backlight light source has a discontinuous emission spectrum. “Having a discontinuous emission spectrum” means that there is a clear peak in each wavelength region of red (R), green (G), and blue (B), and the respective peaks are clearly distinguished. That means. FIG. 2 is a diagram schematically showing an example of a discontinuous emission spectrum. As shown in FIG. 2, the emission spectrum of the backlight light source preferably has a peak P1 in the wavelength region (blue wavelength region) of 430 nm to 470 nm, more preferably 440 nm to 460 nm, preferably 530 nm to 570 nm, more preferably 540 nm. It has a peak P2 in the wavelength region of ˜560 nm (green wavelength region), and a peak P3 in the wavelength region of 630 nm to 670 nm, more preferably 640 nm to 660 nm (red wavelength region). Preferably, the wavelength λ1, the height hP1 and the half width Δλ1 of the peak P1, the wavelength λ2, the height hP2 and the half width Δλ2, the wavelength λ3 of the peak P3, the height hP3 and the half width Δλ3, the peak P1 and the peak P2 And the valley height hB2 between the peak P2 and the peak P3 satisfy the following relational expressions (1) to (3):
(Λ2−λ1) / (Δλ2 + Δλ1)> 1 (1)
(Λ3-λ2) / (Δλ3 + Δλ2)> 1 (2)
0.8 ≦ {hP2− (hB2 + hB1) / 2} / hP2 ≦ 1 (3).
(Λ2−λ1) / (Δλ2 + Δλ1) in the formula (1) is more preferably 1.01 to 2.00, and further preferably 1.10 to 1.50. (Λ3-λ2) / (Δλ3 + Δλ2) in the formula (2) is more preferably 1.01 to 2.00, and further preferably 1.10 to 1.50. {HP2- (hB2 + hB1) / 2} in the formula (3) is more preferably 0.85 to 1, and further preferably 0.9 to 1. Equation (1) means that the relationship between blue light and green light is independent as a light source without being mixed. Equation (2) means that the relationship between green light and red light is independent as a light source without being mixed. Equation (3) means that the valleys between the peaks P1, P2 and P3 are low and the peaks of blue light, green light and red light are clearly distinguished. By defining the expressions (1) to (3), there is an advantage that the color reproducibility is improved. Due to the synergistic effect of the backlight source 300 having an emission spectrum satisfying the expressions (1) to (3) and the first retardation layer 200 described above, the color reproducibility is excellent and the polarizing action is achieved. It is possible to realize a liquid crystal display device that is excellent in visibility when visually recognized through an optical member and in which color unevenness is suppressed. For example, an optical having color reproducibility and polarization action as compared with a conventional backlight light source having a light emission spectrum as shown in FIG. 3 (a white light source simply combining LEDs that emit red light, green light and blue light). Visibility and color unevenness when viewed through the member can be significantly improved.
 バックライト光源は、上記のような発光スペクトルを実現し得る任意の適切な構成とされる。1つの実施形態においては、バックライト光源は、赤色を発色するLEDと緑色を発色するLEDと青色を発色するLEDとを含み、赤色を発色するLEDの蛍光体が4価のマンガンイオンで賦活されている。赤色を発色するLEDの蛍光体を賦活することにより、図3に示す発光スペクトルにおける赤色光と緑色光との重なりを小さくして、図2に示すような発光スペクトルを実現することができる。このような4価のマンガンイオンで賦活された赤色蛍光体の好ましい具体例としては、William  M.Yen  and  Marvin  J.Weber著  CRC出版  「INORGANIC  PHOSPHORS」  p.212(SECTION4:PHOSPHOR  DATAの4.10  Miscellaneous  Oxides)に例示されている、Mn4+賦活Mgフルオロジャーマネート蛍光体(2.5MgO・MgF:Mn4+)及びJournal  of  the  Electrochemical  Society:SOLID-STATE  SCIENCE  AND  TECHNOLOGY、July  1973、p942に例示されている、M :Mn4+(M=Li,Na,K,Rb,Cs;M=Si、Ge、Sn,Ti,Zr)蛍光体が挙げられる。このような赤色蛍光体を用いたバックライト光源は、例えば特開2015-52648号公報に記載されている。また、赤色を発色するLEDと緑色を発色するLEDと青色を発色するLEDとを含む一般的な構成のバックライト光源は、例えば特開2012-256014号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。 The backlight light source has any suitable configuration capable of realizing the emission spectrum as described above. In one embodiment, the backlight source includes a red color LED, a green color LED, and a blue color LED, and the phosphor of the red color LED is activated with tetravalent manganese ions. ing. By activating the phosphor of the LED that develops red color, the overlap of red light and green light in the emission spectrum shown in FIG. 3 can be reduced, and the emission spectrum as shown in FIG. 2 can be realized. As a preferable specific example of such a red phosphor activated with tetravalent manganese ions, William M. et al. Yen and Marvin J.H. Weber CRC Publishing "INORGANIC PHOSPHORS" p. 212 (SECTION 4: PHOSPHOR DATA 4.10 Miscellaneous Oxides), Mn 4+ activated Mg fluorogermanate phosphor (2.5MgO · MgF 2 : Mn 4+ ) and Journal of the ElectroSocial A: M 1 2 M 2 F 6 : Mn 4+ (M 1 = Li, Na, K, Rb, Cs; M 2 = Si, Ge, Sn, Ti, Zr, exemplified in SCIENCE AND TECHNOLOGY, July 1973, p942 ) Phosphors. A backlight light source using such a red phosphor is described in, for example, Japanese Patent Application Laid-Open No. 2015-52648. Further, a backlight light source having a general configuration including a red color LED, a green color LED, and a blue color LED is described in, for example, Japanese Patent Application Laid-Open No. 2012-256014. The descriptions in these publications are incorporated herein by reference.
 別の実施形態においては、バックライト光源は、青色を発色するLEDと量子ドットを含む波長変換層とを含む。このような構成であれば、LEDから出た青色光の一部が波長変換層により赤色光および緑色光に変換され、青色光の一部はそのまま青色光として出射される。その結果、白色光を実現することができる。さらに、波長変換層を適切に構成することにより、赤色光、緑色光および青色光のピークが明確で、かつ、各色光の重なりが小さい発光スペクトル(図2に示すような発光スペクトル)を実現することができる。 In another embodiment, the backlight source includes a blue color LED and a wavelength conversion layer including quantum dots. With such a configuration, part of the blue light emitted from the LED is converted into red light and green light by the wavelength conversion layer, and part of the blue light is emitted as blue light as it is. As a result, white light can be realized. Furthermore, by appropriately configuring the wavelength conversion layer, an emission spectrum (emission spectrum as shown in FIG. 2) in which the peaks of red light, green light, and blue light are clear and the overlap of each color light is small is realized. be able to.
 波長変換層は、代表的には、マトリックスと該マトリックス中に分散された量子ドットとを含む。マトリックスを構成する材料(以下、マトリックス材料とも称する)としては、任意の適切な材料を用いることができる。このような材料としては、樹脂、有機酸化物、無機酸化物が挙げられる。マトリックス材料は、好ましくは、低い酸素透過性および透湿性を有し、高い光安定性および化学的安定性を有し、所定の屈折率を有し、優れた透明性を有し、および/または、量子ドットに対して優れた分散性を有する。これらを総合的に考慮すると、マトリックス材料は、好ましくは樹脂である。樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよく、活性エネルギー線硬化性樹脂(例えば、電子線硬化型樹脂、紫外線硬化型樹脂、可視光線硬化型樹脂)であってもよい。好ましくは、熱硬化性樹脂または紫外線硬化型樹脂であり、より好ましくは熱硬化性樹脂である。樹脂は、単独で用いてもよく、組み合わせて(例えば、ブレンド、共重合)用いてもよい。 The wavelength conversion layer typically includes a matrix and quantum dots dispersed in the matrix. Any appropriate material can be used as a material constituting the matrix (hereinafter also referred to as matrix material). Examples of such materials include resins, organic oxides, and inorganic oxides. The matrix material preferably has low oxygen permeability and moisture permeability, high light stability and chemical stability, a predetermined refractive index, excellent transparency, and / or Have excellent dispersibility with respect to quantum dots. Considering these comprehensively, the matrix material is preferably a resin. The resin may be a thermoplastic resin, a thermosetting resin, or an active energy ray curable resin (for example, an electron beam curable resin, an ultraviolet curable resin, or a visible light curable resin). May be. A thermosetting resin or an ultraviolet curable resin is preferable, and a thermosetting resin is more preferable. The resins may be used alone or in combination (for example, blend, copolymerization).
 量子ドットは、波長変換層の波長変換特性を制御し得る。具体的には、異なる発光中心波長を有する量子ドットを適切に組み合わせて用いることにより、所望の発光中心波長を有する光を実現する波長変換層を形成することができる。量子ドットの発光中心波長は、量子ドットの材料および/または組成、粒子サイズ、形状等により調整することができる。量子ドットとしては、例えば、600nm~680nmの範囲の波長帯域に発光中心波長を有する量子ドット(以下、量子ドットA)、500nm~600nmの範囲の波長帯域に発光中心波長を有する量子ドット(以下、量子ドットB)、400nm~500nmの波長帯域に発光中心波長を有する量子ドット(以下、量子ドットC)が知られている。量子ドットAは、励起光(本発明においては、バックライト光源からの光)により励起され赤色光を発光し、量子ドットBは緑色光を発光し、量子ドットCは青色光を発光する。これらを適切に組み合わせることにより、所定の波長の光(バックライト光源からの光)を波長変換層に入射および通過させると、所望の波長帯域に発光中心波長を有する光を実現することができる。 Quantum dots can control the wavelength conversion characteristics of the wavelength conversion layer. Specifically, a wavelength conversion layer that realizes light having a desired emission center wavelength can be formed by appropriately combining quantum dots having different emission center wavelengths. The emission center wavelength of the quantum dot can be adjusted by the material and / or composition, particle size, shape, etc. of the quantum dot. Examples of the quantum dot include a quantum dot having an emission center wavelength in a wavelength band in the range of 600 nm to 680 nm (hereinafter referred to as quantum dot A), and a quantum dot having an emission center wavelength in a wavelength band in the range of 500 nm to 600 nm (hereinafter referred to as “dots”). Quantum dots B) and quantum dots having an emission center wavelength in the wavelength band of 400 nm to 500 nm (hereinafter, quantum dots C) are known. The quantum dots A are excited by excitation light (in the present invention, light from a backlight light source) to emit red light, the quantum dots B emit green light, and the quantum dots C emit blue light. By appropriately combining these, when light having a predetermined wavelength (light from the backlight light source) enters and passes through the wavelength conversion layer, light having a light emission center wavelength in a desired wavelength band can be realized.
 量子ドットは、任意の適切な材料で構成され得る。量子ドットは、好ましくは無機材料、より好ましくは無機導体材料または無機半導体材料で構成され得る。半導体材料としては、例えば、II-VI族、III-V族、IV-VI族、およびIV族の半導体が挙げられる。具体例としては、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si、Ge、Al、(Al、Ga、In)(S、Se、Te)、AlCOが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。量子ドットは、p型ドーパントまたはn型ドーパントを含んでいてもよい。 The quantum dots can be composed of any suitable material. The quantum dots are preferably composed of an inorganic material, more preferably an inorganic conductor material or an inorganic semiconductor material. Semiconductor materials include, for example, II-VI, III-V, IV-VI, and IV semiconductors. Specific examples include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, Sn, Te, SnS PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , (Al, Ga, In) 2 (S, Se, Te) 3 , Al 2 CO is mentioned. These may be used alone or in combination of two or more. The quantum dot may contain a p-type dopant or an n-type dopant.
 量子ドットのサイズは、所望の発光波長に応じて任意の適切なサイズが採用され得る。量子ドットのサイズは、好ましくは1nm~10nmであり、より好ましくは2nm~8nmである。量子ドットのサイズがこのような範囲であれば、緑色および赤色のそれぞれがシャープな発光を示し、高演色性を実現することができる。例えば、緑色光は量子ドットのサイズが7nm程度で発光し得、赤色光は3nm程度で発光し得る。量子ドットのサイズは、量子ドットが例えば真球状である場合には平均粒径であり、それ以外の形状である場合には当該形状における最小軸に沿った寸法である。なお、量子ドットの形状としては、目的に応じて任意の適切な形状が採用され得る。具体例としては、真球状、燐片状、板状、楕円球状、不定形が挙げられる。 Any appropriate size can be adopted as the size of the quantum dot depending on the desired emission wavelength. The size of the quantum dots is preferably 1 nm to 10 nm, more preferably 2 nm to 8 nm. If the size of the quantum dot is in such a range, each of green and red emits sharp light and high color rendering can be realized. For example, green light can be emitted with a quantum dot size of about 7 nm, and red light can be emitted with about 3 nm. The size of the quantum dot is, for example, an average particle diameter when the quantum dot is a true sphere, and is a dimension along the minimum axis in the shape when the quantum dot is other than that. As the shape of the quantum dot, any appropriate shape can be adopted depending on the purpose. Specific examples include a true sphere shape, a flake shape, a plate shape, an elliptic sphere shape, and an indefinite shape.
 量子ドットは、マトリックス材料100重量部に対して、好ましくは1重量部~50重量部、より好ましくは2重量部~30重量部の割合で配合され得る。量子ドットの配合量がこのような範囲であれば、RGBすべての色相バランスに優れた液晶表示装置を実現することができる。 Quantum dots can be blended in a proportion of preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, with respect to 100 parts by weight of the matrix material. When the blending amount of the quantum dots is in such a range, a liquid crystal display device excellent in hue balance of all RGB can be realized.
 量子ドットの詳細は、例えば、特開2012-169271号公報、特開2015-102857号公報、特開2015-65158号公報、特表2013-544018号公報、特表2013-544018号公報、特表2010-533976号公報に記載されており、これらの公報の記載は本明細書に参考として援用される。量子ドットは、市販品を用いてもよい。 Details of the quantum dots are disclosed in, for example, JP2012-169271A, JP2015-102857A, JP2015-65158A, JP2013-544018A, JP2013-544018A, Special Table. No. 2010-533976, and the descriptions of these publications are incorporated herein by reference. A commercial item may be used for the quantum dot.
 波長変換層の厚みは、好ましくは1μm~500μmであり、より好ましくは100μm~400μmである。波長変換層の厚みがこのような範囲であれば、変換効率および耐久性に優れ得る。 The thickness of the wavelength conversion layer is preferably 1 μm to 500 μm, more preferably 100 μm to 400 μm. When the thickness of the wavelength conversion layer is in such a range, conversion efficiency and durability can be excellent.
 波長変換層は、バックライトユニットにおいて、フィルムとしてLED(光源)の出射側に配置される。 The wavelength conversion layer is disposed as a film on the emission side of the LED (light source) in the backlight unit.
E.第2の位相差層
 第2の位相差層400は、上記のとおり、屈折率特性がnz>nx≧nyの関係を示す。第2の位相差層の厚み方向の位相差Rth(550)は、好ましくは-260nm~-10nm、より好ましくは-230nm~-15nm、さらに好ましくは-215nm~-20nmである。このような光学特性を有する第2の位相差層を設けることにより、偏光作用を有する光学部材(例えば、偏光サングラス)を介して斜め方向から見たときの色つきが顕著に改善され、結果として、非常に優れた視野角特性を有する液晶表示装置が得られ得る。
E. Second Retardation Layer As described above, the second retardation layer 400 has a relationship in which the refractive index characteristic is nz> nx ≧ ny. The thickness direction retardation Rth (550) of the second retardation layer is preferably −260 nm to −10 nm, more preferably −230 nm to −15 nm, and still more preferably −215 nm to −20 nm. By providing the second retardation layer having such optical characteristics, coloring when viewed from an oblique direction through an optical member having a polarizing action (for example, polarized sunglasses) is remarkably improved, and as a result A liquid crystal display device having very excellent viewing angle characteristics can be obtained.
 1つの実施形態においては、第2の位相差層は、その屈折率がnx=nyの関係を示す。別の実施形態においては、第2の位相差層は、その屈折率がnx>nyの関係を示す。したがって、第2の位相差層は、遅相軸を有する場合がある。この場合、第2の位相差層の遅相軸は、第1の偏光子20の吸収軸に対して実質的に直交または平行である。また、第2の位相差層の面内位相差Re(550)は、好ましくは10nm~150nmであり、より好ましくは10nm~80nmである。 In one embodiment, the second retardation layer has a refractive index of nx = ny. In another embodiment, the second retardation layer exhibits a relationship in which the refractive index is nx> ny. Therefore, the second retardation layer may have a slow axis. In this case, the slow axis of the second retardation layer is substantially orthogonal or parallel to the absorption axis of the first polarizer 20. The in-plane retardation Re (550) of the second retardation layer is preferably 10 nm to 150 nm, more preferably 10 nm to 80 nm.
 第2の位相差層は、任意の適切な材料で形成され得る。好ましくは、ホメオトロピック配向に固定された液晶層である。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該液晶層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0042]に記載の液晶化合物および形成方法が挙げられる。この場合、厚みは、好ましくは0.1μm~5μmであり、より好ましくは0.2μm~3μmである。 The second retardation layer can be formed of any appropriate material. A liquid crystal layer fixed in homeotropic alignment is preferable. The liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the liquid crystal compound and the method for forming the liquid crystal layer include the liquid crystal compounds and methods described in JP-A-2002-333642, [0020] to [0042]. In this case, the thickness is preferably 0.1 μm to 5 μm, more preferably 0.2 μm to 3 μm.
 別の好ましい具体例として、第2の位相差層は、特開2012-32784号公報に記載のフマル酸ジエステル系樹脂で形成された位相差フィルムであってもよい。この場合、厚みは、好ましくは5μm~80μmであり、より好ましくは10μm~50μmである。 As another preferred specific example, the second retardation layer may be a retardation film formed of a fumaric acid diester resin described in JP 2012-32784 A. In this case, the thickness is preferably 5 μm to 80 μm, more preferably 10 μm to 50 μm.
F.導電層
 導電層(図示せず)は、代表的には透明である(すなわち、導電層は透明導電層である)。第1の偏光子20と液晶セル10との間に導電層を形成することにより、液晶表示装置は、いわゆるインナータッチパネル型入力表示装置として機能し得る。
F. Conductive Layer The conductive layer (not shown) is typically transparent (ie, the conductive layer is a transparent conductive layer). By forming a conductive layer between the first polarizer 20 and the liquid crystal cell 10, the liquid crystal display device can function as a so-called inner touch panel type input display device.
 導電層は、単独で液晶表示装置の構成層とされてもよく、基材との積層体(基材付導電層)として液晶表示装置に供せられてもよい。導電層単独で構成される場合には、導電層は、当該導電層が形成された基材から液晶表示装置の所定の位置に転写され得る。 The conductive layer may be used alone as a constituent layer of the liquid crystal display device, or may be provided to the liquid crystal display device as a laminate with the base material (conductive layer with base material). In the case where the conductive layer is formed by itself, the conductive layer can be transferred from the base material on which the conductive layer is formed to a predetermined position of the liquid crystal display device.
 導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサ電極として機能し得る。パターンの形状はタッチパネル(例えば、静電容量方式タッチパネル)として良好に動作するパターンが好ましい。具体例としては、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。 The conductive layer can be patterned as needed. By conducting the patterning, a conductive portion and an insulating portion can be formed. As a result, an electrode can be formed. The electrode can function as a touch sensor electrode that senses contact with the touch panel. The pattern shape is preferably a pattern that works well as a touch panel (for example, a capacitive touch panel). Specific examples include the patterns described in JP2011-511357A, JP2010-164938A, JP2008-310550A, JP2003-511799A, and JP2010-541109A. It is done.
 導電層の全光線透過率は、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上である。例えば、後述の導電性ナノワイヤを用いれば、開口部が形成された透明導電層を形成することができ、光透過率の高い透明導電層を得ることができる。 The total light transmittance of the conductive layer is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more. For example, if a conductive nanowire described later is used, a transparent conductive layer having openings can be formed, and a transparent conductive layer having a high light transmittance can be obtained.
 導電層の密度は、好ましくは1.0g/cm~10.5g/cmであり、より好ましくは1.3g/cm~3.0g/cmである。 The density of the conductive layer is preferably 1.0 g / cm 3 to 10.5 g / cm 3 , more preferably 1.3 g / cm 3 to 3.0 g / cm 3 .
 導電層の表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~500Ω/□であり、さらに好ましくは1Ω/□~250Ω/□である。 The surface resistance value of the conductive layer is preferably 0.1Ω / □ to 1000Ω / □, more preferably 0.5Ω / □ to 500Ω / □, and further preferably 1Ω / □ to 250Ω / □.
 導電層の代表例としては、金属酸化物を含む導電層、導電性ナノワイヤを含む導電層、金属メッシュを含む導電層が挙げられる。好ましくは、導電性ナノワイヤを含む導電層または金属メッシュを含む導電層である。耐屈曲性に優れ、屈曲しても導電性が失われ難いので、良好に折り曲げ可能な導電層が形成され得るからである。その結果、液晶表示装置を屈曲可能に構成し得る。 Typical examples of the conductive layer include a conductive layer containing a metal oxide, a conductive layer containing a conductive nanowire, and a conductive layer containing a metal mesh. A conductive layer including conductive nanowires or a conductive layer including a metal mesh is preferable. This is because it is excellent in bending resistance and it is difficult to lose conductivity even when bent, so that a conductive layer that can be bent well can be formed. As a result, the liquid crystal display device can be configured to be bendable.
 金属酸化物を含む導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。なかでも好ましくは、インジウム-スズ複合酸化物(ITO)である。 A conductive layer containing a metal oxide is formed on any appropriate base material by any appropriate film formation method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It can be formed by forming an oxide film. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Of these, indium-tin composite oxide (ITO) is preferable.
 導電性ナノワイヤを含む導電層は、導電性ナノワイヤを溶剤に分散させた分散液(導電性ナノワイヤ分散液)を、任意の適切な基材上に塗布した後、塗布層を乾燥させて、形成することができる。導電性ナノワイヤとしては、本発明の効果が得られる限りにおいて任意の適切な導電性ナノワイヤが用いられ得る。導電性ナノワイヤとは、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。導電性ナノワイヤは直線状であってもよく、曲線状であってもよい。導電性ナノワイヤを含む導電層は、上記のとおり耐屈曲性に優れる。また、導電性ナノワイヤを含む導電層は、導電性ナノワイヤ同士が隙間を形成して網の目状となることにより、少量の導電性ナノワイヤであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい導電層を得ることができる。さらに、導電性ナノワイヤが網の目状となることにより、網の目の隙間に開口部を形成して、光透過率の高い導電層を得ることができる。導電性ナノワイヤとしては、例えば、金属により構成される金属ナノワイヤ、カーボンナノチューブを含む導電性ナノワイヤ等が挙げられる。 The conductive layer containing conductive nanowires is formed by applying a dispersion liquid (conductive nanowire dispersion liquid) in which conductive nanowires are dispersed in a solvent onto any appropriate substrate, and then drying the coating layer. be able to. Any appropriate conductive nanowire can be used as the conductive nanowire as long as the effects of the present invention can be obtained. The conductive nanowire refers to a conductive substance having a needle shape or a thread shape and a diameter of nanometer size. The conductive nanowire may be linear or curved. As described above, the conductive layer including the conductive nanowire has excellent bending resistance. In addition, a conductive layer containing conductive nanowires can form a good electrical conduction path even with a small amount of conductive nanowires by forming gaps between conductive nanowires and forming a mesh. Thus, a conductive layer having a small electric resistance can be obtained. Further, when the conductive nanowires have a mesh shape, openings can be formed in the mesh gaps to obtain a conductive layer having a high light transmittance. Examples of the conductive nanowire include metal nanowires made of metal, conductive nanowires including carbon nanotubes, and the like.
 導電性ナノワイヤの太さdと長さLとの比(アスペクト比:L/d)は、好ましくは10~100,000であり、より好ましくは50~100,000であり、さらに好ましくは100~10,000である。このようにアスペクト比の大きい導電性ナノワイヤを用いれば、導電性ナノワイヤが良好に交差して、少量の導電性ナノワイヤにより高い導電性を発現させることができる。その結果、光透過率の高い導電層を得ることができる。なお、本明細書において、「導電性ナノワイヤの太さ」とは、導電性ナノワイヤの断面が円状である場合はその直径を意味し、楕円状である場合はその短径を意味し、多角形である場合は最も長い対角線を意味する。導電性ナノワイヤの太さおよび長さは、走査型電子顕微鏡または透過型電子顕微鏡によって確認することができる。 The ratio between the thickness d and the length L of the conductive nanowire (aspect ratio: L / d) is preferably 10 to 100,000, more preferably 50 to 100,000, still more preferably 100 to 10,000. When conductive nanowires having a large aspect ratio are used in this way, the conductive nanowires can cross well and high conductivity can be expressed by a small amount of conductive nanowires. As a result, a conductive layer having a high light transmittance can be obtained. In this specification, “the thickness of the conductive nanowire” means the diameter when the cross section of the conductive nanowire is circular, and the short diameter when the cross section of the conductive nanowire is elliptical. If it is square, it means the longest diagonal. The thickness and length of the conductive nanowire can be confirmed by a scanning electron microscope or a transmission electron microscope.
 導電性ナノワイヤの太さは、好ましくは500nm未満であり、より好ましくは200nm未満であり、さらに好ましくは1nm~100nmであり、特に好ましくは1nm~50nmである。このような範囲であれば、光透過率の高い導電層を形成することができる。導電性ナノワイヤの長さは、好ましくは2.5μm~1000μmであり、より好ましくは10μm~500μmであり、さらに好ましくは20μm~100μmである。このような範囲であれば、導電性の高い導電層を得ることができる。 The thickness of the conductive nanowire is preferably less than 500 nm, more preferably less than 200 nm, still more preferably 1 nm to 100 nm, and particularly preferably 1 nm to 50 nm. If it is such a range, a conductive layer with high light transmittance can be formed. The length of the conductive nanowire is preferably 2.5 μm to 1000 μm, more preferably 10 μm to 500 μm, and further preferably 20 μm to 100 μm. Within such a range, a conductive layer having high conductivity can be obtained.
 導電性ナノワイヤ(金属ナノワイヤ)を構成する金属としては、導電性の高い金属である限り、任意の適切な金属が用いられ得る。金属ナノワイヤは、好ましくは、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成される。なかでも好ましくは、導電性の観点から、銀、銅または金であり、より好ましくは銀である。また、上記金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。 As the metal constituting the conductive nanowire (metal nanowire), any appropriate metal can be used as long as it is a highly conductive metal. The metal nanowire is preferably composed of one or more metals selected from the group consisting of gold, platinum, silver, and copper. Among these, silver, copper, or gold is preferable from the viewpoint of conductivity, and silver is more preferable. Alternatively, a material obtained by performing a plating process (for example, a gold plating process) on the metal may be used.
 カーボンナノチューブとしては、任意の適切なカーボンナノチューブが用いられ得る。例えば、いわゆる多層カーボンナノチューブ、二層カーボンナノチューブ、単層カーボンナノチューブ等が用いられる。なかでも、導電性が高い点から、単層カーボンナノチューブが好ましく用いられる。 Any appropriate carbon nanotube can be used as the carbon nanotube. For example, so-called multi-walled carbon nanotubes, double-walled carbon nanotubes, single-walled carbon nanotubes and the like are used. Among these, single-walled carbon nanotubes are preferably used because of their high conductivity.
 金属メッシュとしては、本発明の効果が得られる限りにおいて任意の適切な金属メッシュが用いられ得る。例えば、フィルム基材上に設けられた金属配線層が網目状にパターン形成されたものを用いることができる。 As the metal mesh, any appropriate metal mesh can be used as long as the effects of the present invention can be obtained. For example, it is possible to use a metal wiring layer provided on a film substrate that is patterned in a mesh pattern.
 導電性ナノワイヤおよび金属メッシュの詳細は、例えば、特開2014-113705号公報および特開2014-219667号公報に記載されている。当該公報の記載は、本明細書に参考として援用される。 Details of the conductive nanowire and the metal mesh are described in, for example, Japanese Patent Application Laid-Open Nos. 2014-113705 and 2014-219667. The description of the publication is incorporated herein by reference.
 導電層の厚みは、好ましくは0.01μm~10μmであり、より好ましくは0.05μm~3μmであり、さらに好ましくは0.1μm~1μmである。このような範囲であれば、導電性および光透過性に優れる導電層を得ることができる。なお、導電層が金属酸化物を含む場合、導電層の厚みは、好ましくは0.01μm~0.05μmである。 The thickness of the conductive layer is preferably 0.01 μm to 10 μm, more preferably 0.05 μm to 3 μm, and still more preferably 0.1 μm to 1 μm. If it is such a range, the conductive layer excellent in electroconductivity and light transmittance can be obtained. When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 0.01 μm to 0.05 μm.
G.粘着剤層または接着剤層
 本発明の液晶表示装置を構成する各層および光学部材の積層には、任意の適切な粘着剤層または接着剤層が用いられる。粘着剤層は、代表的にはアクリル系粘着剤で形成される。接着剤層は、代表的にはポリビニルアルコール系接着剤で形成される。
G. Adhesive Layer or Adhesive Layer Any appropriate pressure-sensitive adhesive layer or adhesive layer is used for laminating each layer and the optical member constituting the liquid crystal display device of the present invention. The pressure-sensitive adhesive layer is typically formed of an acrylic pressure-sensitive adhesive. The adhesive layer is typically formed of a polyvinyl alcohol-based adhesive.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は以下の通りである。また、特に明記しない限り、実施例における「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In addition, the measuring method of each characteristic is as follows. Unless otherwise specified, “parts” and “%” in the examples are based on weight.
(1)厚み
 ダイヤルゲージ(PEACOCK社製、製品名「DG-205」、ダイヤルゲージスタンド(製品名「pds-2」))を用いて測定した。
(2)位相差
 各位相差フィルムおよび液晶固化層から50mm×50mmのサンプルを切り出して測定サンプルとし、Axometrics社製のAxoscanを用いて測定した。測定波長は450nm、550nm、測定温度は23℃であった。
 また、アタゴ社製のアッベ屈折率計を用いて平均屈折率を測定し、得られた位相差値から屈折率nx、ny、nzを算出した。
(3)吸水率
 JIS K 7209に記載の「プラスチックの吸水率及び沸騰吸水率試験方法」に準拠して測定した。試験片の大きさは50mm辺の正方形で、水温25℃の水に24時間試験片を浸水させた後、浸水前後の重量変化を測定することにより求めた。単位は%である。
(4)バックライトスペクトル測定
 各実施例および各比較例で得られた液晶表示装置に白画像を表示させ、Topcon社製SR-UL1Rを用いて発光スペクトルの測定を行った。得られた発光スペクトルについての図2に示す波長λ1、波長λ2、波長λ3、高さhP1、高さhP2、高さhP3、高さhB1、高さhB2、半値幅Δλ1、半値幅Δλ2、および半値幅Δλ3に基づいて、以下の式(4)、(5)、および(6)で示される値を求めた。なお、液晶表示装置に白画像を表示させたときの表示光のスペクトルはバックライト光源の発光スペクトルと概ね等しいことから、白画像を表示させたときの表示光のスペクトルをバックライト光源の発光スペクトルとした。
(λ2-λ1)/(Δλ2+Δλ1)     ・・・(4)
(λ3-λ2)/(Δλ3+Δλ2)     ・・・(5)
{hP2-(hB2+hB1)/2}/hP2 ・・・(6)
(5)視認性評価
 各実施例および各比較例で得られた液晶表示装置に白画像を表示させ、偏光サングラス越しに画像を観察した際の視認性を、以下の基準で評価した。
良好・・・色つきおよび虹ムラが発生しなかった
不良・・・色つきが発生した
(1) Thickness The thickness was measured using a dial gauge (manufactured by PEACOCK, product name “DG-205”, dial gauge stand (product name “pds-2”)).
(2) Retardation A 50 mm × 50 mm sample was cut out from each retardation film and the liquid crystal solidified layer to obtain a measurement sample, which was measured using Axoscan manufactured by Axometrics. The measurement wavelength was 450 nm, 550 nm, and the measurement temperature was 23 ° C.
Moreover, the average refractive index was measured using an Abbe refractometer manufactured by Atago Co., Ltd., and the refractive indexes nx, ny, and nz were calculated from the obtained retardation values.
(3) Water absorption rate Measured according to “Test method for water absorption rate and boiling water absorption rate of plastic” described in JIS K 7209. The size of the test piece was a square with a side of 50 mm, and was obtained by immersing the test piece in water at a water temperature of 25 ° C. for 24 hours and then measuring the weight change before and after the immersion. The unit is%.
(4) Backlight spectrum measurement A white image was displayed on the liquid crystal display device obtained in each example and each comparative example, and an emission spectrum was measured using SR-UL1R manufactured by Topcon. With respect to the obtained emission spectrum, the wavelength λ1, wavelength λ2, wavelength λ3, height hP1, height hP2, height hP3, height hB1, height hB2, half width Δλ1, half width Δλ2, and half shown in FIG. Based on the value width Δλ3, values represented by the following formulas (4), (5), and (6) were obtained. Since the spectrum of the display light when the white image is displayed on the liquid crystal display device is substantially equal to the emission spectrum of the backlight light source, the spectrum of the display light when the white image is displayed is the emission spectrum of the backlight light source. It was.
(Λ2-λ1) / (Δλ2 + Δλ1) (4)
(Λ3-λ2) / (Δλ3 + Δλ2) (5)
{HP2- (hB2 + hB1) / 2} / hP2 (6)
(5) Visibility evaluation A white image was displayed on the liquid crystal display devices obtained in each example and each comparative example, and the visibility when the image was observed through polarized sunglasses was evaluated according to the following criteria.
Good: Coloring and rainbow unevenness did not occur. Coloring occurred.
<実施例1>
(第1の位相差層を構成する位相差フィルムAの作製)
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。9,9-[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BHEPF)、イソソルビド(ISB)、ジエチレングリコール(DEG)、ジフェニルカーボネート(DPC)、および酢酸マグネシウム4水和物を、モル比率でBHEPF/ISB/DEG/DPC/酢酸マグネシウム=0.348/0.490/0.162/1.005/1.00×10-5になるように仕込んだ。反応器内を十分に窒素置換した後(酸素濃度0.0005~0.001vol%)、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。
 第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、反応液をストランドの形態で抜出し、回転式カッターでペレット化を行い、BHEPF/ISB/DEG=34.8/49.0/16.2[mol%]の共重合組成のポリカーボネート樹脂を得た。このポリカーボネート樹脂の還元粘度は0.430dL/g、ガラス転移温度は128℃であった。得られたポリカーボネート樹脂を80℃で5時間真空乾燥をした後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅900mm、設定温度:220℃)、チルロール(設定温度:125℃)および巻取機を備えたフィルム製膜装置を用いて、厚み70μmのポリカーボネート樹脂フィルムを作製した。得られたポリカーボネート樹脂フィルムの吸水率は1.2%であった。得られたポリカーボネート樹脂フィルムを133℃で、2.0倍に一軸延伸することで、位相差フィルムA(厚み50μm)を得た。得られた位相差フィルムAのRe(550)は140nm、Rth(550)は140nm、Re(450)/Re(550)は0.89であった。
<Example 1>
(Preparation of retardation film A constituting the first retardation layer)
Polymerization was carried out using a batch polymerization apparatus comprising two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100 ° C. 9,9- [4- (2-hydroxyethoxy) phenyl] fluorene (BHEPF), isosorbide (ISB), diethylene glycol (DEG), diphenyl carbonate (DPC), and magnesium acetate tetrahydrate in a molar ratio of BHEPF / ISB / DEG / DPC / magnesium acetate = 0.348 / 0.490 / 0.162 / 1.005 / 1.00 × 10 −5 . After sufficiently replacing the inside of the reactor with nitrogen (oxygen concentration 0.0005 to 0.001 vol%), heating was performed with a heating medium, and stirring was started when the internal temperature reached 100 ° C. After 40 minutes from the start of temperature increase, the internal temperature was reached to 220 ° C., and control was performed so as to maintain this temperature. The phenol vapor produced as a by-product with the polymerization reaction was led to a reflux condenser at 100 ° C., and a monomer component contained in a small amount in the phenol vapor was returned to the reactor, and the phenol vapor not condensed was led to a condenser at 45 ° C. and recovered.
Nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, and then the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Subsequently, the temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240 ° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was obtained. When a predetermined power is reached, nitrogen is introduced into the reactor, the pressure is restored, the reaction solution is withdrawn in the form of a strand, pelletized with a rotary cutter, and BHEPF / ISB / DEG = 34.8 / 49.0 / A polycarbonate resin having a copolymer composition of 16.2 [mol%] was obtained. This polycarbonate resin had a reduced viscosity of 0.430 dL / g and a glass transition temperature of 128 ° C. The obtained polycarbonate resin was vacuum-dried at 80 ° C. for 5 hours, and then a single-screw extruder (manufactured by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.), T-die (width 900 mm, set temperature: 220). ° C), a chill roll (set temperature: 125 ° C), and a film forming apparatus equipped with a winder, a polycarbonate resin film having a thickness of 70 µm was produced. The polycarbonate resin film obtained had a water absorption rate of 1.2%. The obtained polycarbonate resin film was uniaxially stretched 2.0 times at 133 ° C. to obtain a retardation film A (thickness 50 μm). Re (550) of the obtained retardation film A was 140 nm, Rth (550) was 140 nm, and Re (450) / Re (550) was 0.89.
(偏光子の作製)
 A-PET(アモルファス-ポリエチレンテレフタレート)フィルム、(三菱樹脂(株)製、商品名:ノバクリア SH046 200μm)を基材として用意し、表面にコロナ処理(58W/m/min)を施した。一方、アセトアセチル変性PVA(日本合成化学工業(株)製 商品名:ゴーセファイマー Z200(重合度1200、ケン化度99.0%以上、アセトアセチル変性度4.6%))を1wt%添加したPVA(重合度4200、ケン化度99.2%)を用意して、乾燥後の膜厚が12μmになるように基材上に塗布し、60℃の雰囲気下において熱風乾燥により10分間乾燥して、基材上にPVA系樹脂の層を設けた積層体を作製した。
 次いで、この積層体を、まず空気中130℃でMD方向を2.0倍に延伸して、延伸積層体を生成した。次に、延伸積層体を液温30℃のホウ酸不溶化水溶液に30秒間浸漬することによって、延伸積層体に含まれるPVA分子が配向されたPVA層を不溶化する工程を行った。この工程における不溶化用ホウ酸水溶液は、ホウ酸含有量を、水100重量部に対して3重量部含むものとした。不溶化工程を経たこの延伸積層体を染色することによって、着色積層体を生成した。この着色積層体は、延伸積層体を染色液に浸漬することによって、延伸積層体に含まれるPVA層にヨウ素を吸着させたものである。染色液は、ヨウ素及びヨウ化カリウムを含んでおり、染色液の液温は30℃とし、水を溶媒として、ヨウ素濃度を0.08~0.25重量%の範囲内とし、ヨウ化カリウム濃度を0.56~1.75重量%の範囲内とした。ヨウ素とヨウ化カリウムの濃度の比は、1対7とした。染色条件として、偏光子を構成するPVA系樹脂層の単体透過率が40.9%になるように、ヨウ素濃度及び浸漬時間を設定した。
 次に、着色積層体を30℃の架橋用ホウ酸水溶液に60秒間浸漬することによって、ヨウ素を吸着させたPVA層のPVA分子同士に架橋処理を施す工程を行った。この架橋工程に使用する架橋用ホウ酸水溶液は、ホウ酸含有量を、水100重量部に対して3重量部とし、ヨウ化カリウム含有量を、水100重量部に対して3重量部としたものである。さらに、得られた着色積層体を、ホウ酸水溶液中において、延伸温度70℃で、先の空気中での延伸と同様の方向に2.7倍に延伸することにより、最終的な延伸倍率が5.4倍となる延伸を行って、供試用偏光子を含む光学フィルム積層体を得た。この延伸工程において使用されるホウ酸水溶液は、ホウ酸含有量を水100重量部に対して4.0重量部とし、ヨウ化カリウム含有量を水100重量部に対して5重量部としたものである。得られた光学フィルム積層体をホウ酸水溶液から取り出し、PVA層の表面に付着したホウ酸を、ヨウ化カリウム含有量が水100重量部に対して4重量部含む水溶液で洗浄した。洗浄された光学フィルム積層体を60℃の温風による乾燥工程によって乾燥し、PETフィルムに積層された厚みが5μmの偏光子を得た。
(Production of polarizer)
An A-PET (amorphous-polyethylene terephthalate) film (manufactured by Mitsubishi Plastics Co., Ltd., trade name: Novaclear SH046 200 μm) was prepared as a base material, and the surface was subjected to corona treatment (58 W / m 2 / min). On the other hand, 1 wt% of acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Gohsephimer Z200 (polymerization degree 1200, saponification degree 99.0% or more, acetoacetyl modification degree 4.6%)) is added. Prepared PVA (polymerization degree 4200, saponification degree 99.2%), coated on a substrate so that the film thickness after drying becomes 12 μm, and dried for 10 minutes by hot air drying in an atmosphere of 60 ° C. And the laminated body which provided the layer of the PVA-type resin on the base material was produced.
Next, the laminate was first stretched 2.0 times in the MD direction at 130 ° C. in air to produce a stretched laminate. Next, a step of insolubilizing the PVA layer in which the PVA molecules contained in the stretched laminate were oriented was performed by immersing the stretched laminate in a boric acid insolubilized aqueous solution having a liquid temperature of 30 ° C. for 30 seconds. The boric acid aqueous solution for insolubilization in this step contains 3 parts by weight of boric acid content with respect to 100 parts by weight of water. A colored laminate was produced by dyeing the stretched laminate after the insolubilization step. In this colored laminate, iodine is adsorbed on the PVA layer contained in the stretched laminate by immersing the stretched laminate in a dyeing solution. The staining solution contains iodine and potassium iodide, the temperature of the staining solution is 30 ° C., water is used as a solvent, the iodine concentration is in the range of 0.08 to 0.25 wt%, and the potassium iodide concentration Was in the range of 0.56 to 1.75% by weight. The ratio of iodine to potassium iodide concentration was 1: 7. As dyeing conditions, the iodine concentration and the immersion time were set so that the single transmittance of the PVA resin layer constituting the polarizer was 40.9%.
Next, the colored laminate was immersed in an aqueous boric acid solution for crosslinking at 30 ° C. for 60 seconds to perform a step of crosslinking the PVA molecules of the PVA layer on which iodine was adsorbed. The boric acid aqueous solution for crosslinking used in this crosslinking step had a boric acid content of 3 parts by weight with respect to 100 parts by weight of water and a potassium iodide content of 3 parts by weight with respect to 100 parts by weight of water. Is. Further, the obtained colored laminate is stretched 2.7 times in a boric acid aqueous solution at a stretching temperature of 70 ° C. in the same direction as the previous stretching in air, whereby the final stretching ratio is increased. The film was stretched by 5.4 times to obtain an optical film laminate including the test polarizer. The boric acid aqueous solution used in this stretching step has a boric acid content of 4.0 parts by weight with respect to 100 parts by weight of water and a potassium iodide content of 5 parts by weight with respect to 100 parts by weight of water. It is. The obtained optical film laminate was taken out from the boric acid aqueous solution, and the boric acid adhering to the surface of the PVA layer was washed with an aqueous solution containing 4 parts by weight of potassium iodide with respect to 100 parts by weight of water. The washed optical film laminate was dried by a drying process using hot air at 60 ° C. to obtain a polarizer having a thickness of 5 μm laminated on the PET film.
(位相差層付偏光板の作製)
 上述のように作製された偏光子において、PETフィルムに積層された厚みが5μmの偏光子に対し、PETとは反対側の面に、UV硬化型接着剤を介して、上記位相差フィルムAをその遅相軸と偏光子の吸収軸との角度が実質的に45°になるように貼り合せた。さらに、この積層体からPETフィルムを剥離し、位相差層付偏光板を得た。
(Preparation of polarizing plate with retardation layer)
In the polarizer produced as described above, the retardation film A is attached to the surface opposite to the PET with a UV curable adhesive on the 5 μm thick polarizer laminated on the PET film. Bonding was performed so that the angle between the slow axis and the absorption axis of the polarizer was substantially 45 °. Furthermore, the PET film was peeled from this laminate to obtain a polarizing plate with a retardation layer.
(液晶表示装置の作製)
 IPS方式の液晶表示装置を備えるスマートフォン(SONY社製XperiaZ4:バックライトの発光スペクトルは不連続)の液晶表示装置から液晶パネルを取り出し、液晶セルの視認側に配置されていた偏光板を取り除いて、該液晶セルのガラス面を洗浄した。続いて、上記液晶セルの視認側の表面に、上記位相差板付偏光板の偏光子側の面を、偏光子の吸収軸が該液晶セルの初期配向方向に対して直交するように(第1の位相差層の遅相軸と液晶パネルの長辺とのなす角度が45°となり、偏光子の吸収軸と液晶パネルの長辺とのなす角度が0°となるように)、アクリル系粘着剤(厚み20μm)を介して積層し、液晶パネルを得た。位相差板付偏光板を積層した上記液晶パネルに上記スマートフォンのバックライトユニットを取り付け、本実施例の液晶表示装置とした。当該液晶表示装置に白画像を表示させ、白画像状態で偏光サングラス越しに視認性を評価した。評価結果を表1に示す。
(Production of liquid crystal display device)
Take out the liquid crystal panel from the liquid crystal display device of the smartphone (SONY Xperia Z4: the backlight emission spectrum is discontinuous) equipped with an IPS liquid crystal display device, remove the polarizing plate placed on the viewing side of the liquid crystal cell, The glass surface of the liquid crystal cell was washed. Subsequently, the surface on the viewing side of the liquid crystal cell is the surface on the polarizer side of the polarizing plate with the retardation plate so that the absorption axis of the polarizer is orthogonal to the initial alignment direction of the liquid crystal cell (first The angle between the slow axis of the retardation layer and the long side of the liquid crystal panel is 45 °, and the angle between the absorption axis of the polarizer and the long side of the liquid crystal panel is 0 °), an acrylic adhesive A liquid crystal panel was obtained by laminating via an agent (thickness 20 μm). The backlight unit of the smartphone was attached to the liquid crystal panel on which the polarizing plate with a retardation plate was laminated to obtain the liquid crystal display device of this example. A white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state. The evaluation results are shown in Table 1.
<実施例2>
(第1の位相差層を構成する位相差フィルムBの作製)
 実施例1と同様にして得られたポリカーボネート樹脂(10kg)を塩化メチレン(73kg)に溶解させ、複屈折層形成材料を調製した。ついで、収縮性フィルム(縦一軸延伸ポリプロピレンフィルム、東京インキ(株)製、商品名「ノーブレン」)の上に直接上記複屈折層形成材料を塗工し、その塗膜を乾燥温度30℃で5分間、80℃で5分間乾燥させ、収縮性フィルム/複屈折層の積層体を形成した。得られた積層体を、同時2軸延伸機を用いて、延伸温度155℃でMD方向に収縮倍率0.80、TD方向に1.3倍延伸することで収縮性フィルム上に位相差フィルムBを形成した。ついで、当該位相差フィルムBを収縮性フィルムから剥離した。
 以上のようにして、位相差フィルムB(厚み60μm)を得た。得られた位相差フィルムBのRe(550)は140nm、Rth(550)は70nm、Re(450)/Re(550)は0.89であった。位相差フィルムBの遅相軸方向は、長手方向に対して90°であった。
<Example 2>
(Preparation of retardation film B constituting the first retardation layer)
A polycarbonate resin (10 kg) obtained in the same manner as in Example 1 was dissolved in methylene chloride (73 kg) to prepare a birefringent layer forming material. Next, the birefringent layer-forming material was directly coated on a shrinkable film (longitudinal uniaxially stretched polypropylene film, trade name “Noblen” manufactured by Tokyo Ink Co., Ltd.), and the coating film was dried at 30 ° C. at 5 ° C. The laminate was dried at 80 ° C. for 5 minutes for 5 minutes to form a shrinkable film / birefringent layer laminate. The obtained laminate is stretched at a stretching temperature of 155 ° C. at a stretching temperature of 155 ° C. by stretching the shrinkage ratio to 0.80 in the MD direction and 1.3 times in the TD direction, thereby forming the retardation film B on the shrinkable film. Formed. Next, the retardation film B was peeled from the shrinkable film.
Thus, a retardation film B (thickness 60 μm) was obtained. Re (550) of the obtained retardation film B was 140 nm, Rth (550) was 70 nm, and Re (450) / Re (550) was 0.89. The slow axis direction of the retardation film B was 90 ° with respect to the longitudinal direction.
(位相差層付偏光板および液晶表示装置の作製)
 位相差フィルムAの代わりに上記位相差フィルムBを用いたこと以外は実施例1と同様にして位相差層付偏光板を作製し、当該位相差層付偏光板を用いたこと以外は実施例1と同様にして液晶表示装置を作製した。当該液晶表示装置に白画像を表示させ、白画像状態で偏光サングラス越しに視認性を評価した。評価結果を表1に示す。
(Preparation of polarizing plate with retardation layer and liquid crystal display device)
A polarizing plate with a retardation layer was prepared in the same manner as in Example 1 except that the retardation film B was used in place of the retardation film A, and the polarizing plate with a retardation layer was used. In the same manner as in Example 1, a liquid crystal display device was produced. A white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state. The evaluation results are shown in Table 1.
<実施例3>
(第2の位相差層を構成する液晶固化層の作製)
 下記化学式(I)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、基材フィルム(ノルボルネン系樹脂フィルム:日本ゼオン(株)製、商品名「ゼオネックス」)に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、基材フィルム上に第2の位相差層となる液晶固化層(厚み:1.10μm)を形成した。この液晶固化層のRe(550)は0nm、Rth(550)は-100nmであり、nz>nx=nyの屈折率特性を示した。
<Example 3>
(Preparation of the liquid crystal solidified layer constituting the second retardation layer)
20 parts by weight of a side chain type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mol% of the monomer units and are represented by block polymer for convenience: weight average molecular weight 5000), Dissolve 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name: Palicolor LC242) and 5 parts by weight of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Specialty Chemicals) in 200 parts by weight of cyclopentanone. Thus, a liquid crystal coating solution was prepared. And after apply | coating the said coating liquid to a base film (norbornene-type resin film: Nippon Zeon Co., Ltd. make, brand name "ZEONEX") with a bar coater, a liquid crystal is dried by heating at 80 degreeC for 4 minutes. Oriented. The liquid crystal layer was irradiated with ultraviolet rays to cure the liquid crystal layer, thereby forming a liquid crystal solidified layer (thickness: 1.10 μm) serving as a second retardation layer on the base film. This liquid crystal solidified layer had Re (550) of 0 nm, Rth (550) of −100 nm, and exhibited a refractive index characteristic of nz> nx = ny.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(位相差層付偏光板の作製)
 実施例1と同様にして得られたPETフィルムと偏光子との積層体に対し、PETフィルムとは反対側の面に、UV硬化型接着剤を介して、上記液晶固化層を、基材フィルムを除去する際の基材フィルムの剥がし方向と偏光子の吸収軸とが実質的に平行となるように貼り合せた。さらに、上記基材フィルムを除去して、液晶固化層の偏光子とは反対側に、UV硬化型接着剤を介して、実施例1と同様に作製した位相差フィルムAをその遅相軸と偏光子の吸収軸との角度が実質的に45°になるように貼り合せた。さらに、この積層体からPETフィルムを剥離した後、UV硬化型接着剤を介して、アクリル系保護フィルム、あるいは必要に応じて位相差層を貼り合せ、位相差層付偏光板を作製した。
(Preparation of polarizing plate with retardation layer)
For the laminate of the PET film and the polarizer obtained in the same manner as in Example 1, the liquid crystal solidified layer was formed on the surface opposite to the PET film via a UV curable adhesive, and the base film The base film was peeled off when removing the film and the polarizer was bonded so that the absorption axis of the polarizer was substantially parallel. Further, the base film is removed, and the retardation film A produced in the same manner as in Example 1 is provided on the opposite side of the liquid crystal solidified layer from the polarizer with a UV curable adhesive as its slow axis. Bonding was performed so that the angle with the absorption axis of the polarizer was substantially 45 °. Furthermore, after peeling the PET film from this laminate, an acrylic protective film or a retardation layer as needed was bonded via a UV curable adhesive to produce a polarizing plate with a retardation layer.
(液晶表示装置の作製)
 上記位相差層付偏光板を用いたこと、および異なるバックライトを備えるスマートフォンを用いたこと以外は実施例1と同様にして液晶表示装置を作製した。当該液晶表示装置に白画像を表示させ、白画像状態で偏光サングラス越しに視認性を評価した。評価結果を表1に示す。
(Production of liquid crystal display device)
A liquid crystal display device was produced in the same manner as in Example 1 except that the polarizing plate with a retardation layer was used and a smartphone having a different backlight was used. A white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state. The evaluation results are shown in Table 1.
<実施例4>
(第1の位相差層を構成する位相差フィルムCの作製)
 実施例1と同様にして得られたポリカーボネート樹脂を80℃で5時間真空乾燥をした後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅900mm、設定温度:220℃)、チルロール(設定温度:125℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmのポリカーボネート樹脂フィルムを作製した。得られたポリカーボネート樹脂フィルムの吸水率は1.2%であった。
 上記ポリカーボネート樹脂フィルムを、特開2014-194483号公報の実施例1に準じた方法で斜め延伸し、位相差フィルムCを得た。
 位相差フィルムCの具体的な作製手順は以下のとおりである:ポリカーボネート樹脂フィルム(厚み130μm、幅765mm)を延伸装置の予熱ゾーンで142℃に予熱した。予熱ゾーンにおいては、左右のクリップのクリップピッチは125mmであった。次に、フィルムが第1の斜め延伸ゾーンC1に入ると同時に、右側クリップのクリップピッチの増大を開始し、第1の斜め延伸ゾーンC1において125mmから177.5mmまで増大させた。クリップピッチ変化率は1.42であった。第1の斜め延伸ゾーンC1において、左側クリップのクリップピッチについてはクリップピッチの減少を開始し、第1の斜め延伸ゾーンC1において125mmから90mmまで減少させた。クリップピッチ変化率は0.72であった。さらに、フィルムが第2の斜め延伸ゾーンC2に入ると同時に、左側クリップのクリップピッチの増大を開始し、第2の斜め延伸ゾーンC2において90mmから177.5mmまで増大させた。一方、右側クリップのクリップピッチは、第2の斜め延伸ゾーンC2において177.5mmのまま維持した。また、上記斜め延伸と同時に、幅方向にも1.9倍の延伸を行った。なお、上記斜め延伸は135℃で行った。次いで、収縮ゾーンにおいて、MD収縮処理を行った。具体的には、左側クリップおよび右側クリップのクリップピッチをともに177.5mmから165mmまで減少させた。MD収縮処理における収縮率は7.0%であった。
 以上のようにして、位相差フィルムC(厚み40μm)を得た。得られた位相差フィルムCのRe(550)は140nm、Rth(550)は168nm、Re(450)/Re(550)は0.89であった。位相差フィルムCの遅相軸方向は、長手方向に対して45°であった。
<Example 4>
(Preparation of retardation film C constituting the first retardation layer)
The polycarbonate resin obtained in the same manner as in Example 1 was vacuum-dried at 80 ° C. for 5 hours, and then a single-screw extruder (manufactured by Isuzu Chemical Industries, screw diameter 25 mm, cylinder setting temperature: 220 ° C.), T-die ( A polycarbonate resin film having a thickness of 130 μm was prepared using a film forming apparatus equipped with a width of 900 mm, a set temperature: 220 ° C., a chill roll (set temperature: 125 ° C.), and a winder. The polycarbonate resin film obtained had a water absorption rate of 1.2%.
The polycarbonate resin film was obliquely stretched by a method according to Example 1 of JP 2014-194383 A to obtain a retardation film C.
The specific production procedure of the retardation film C is as follows: A polycarbonate resin film (thickness 130 μm, width 765 mm) was preheated to 142 ° C. in the preheating zone of the stretching apparatus. In the preheating zone, the clip pitch of the left and right clips was 125 mm. Next, as soon as the film entered the first oblique stretching zone C1, the clip pitch of the right clip began to increase and increased from 125 mm to 177.5 mm in the first oblique stretching zone C1. The clip pitch change rate was 1.42. In the first oblique stretching zone C1, the clip pitch of the left clip started to decrease and decreased from 125 mm to 90 mm in the first oblique stretching zone C1. The clip pitch change rate was 0.72. Furthermore, as soon as the film entered the second oblique stretching zone C2, the clip pitch of the left clip started to increase and increased from 90 mm to 177.5 mm in the second oblique stretching zone C2. On the other hand, the clip pitch of the right clip was maintained at 177.5 mm in the second oblique stretching zone C2. Simultaneously with the oblique stretching, stretching in the width direction was performed 1.9 times. The oblique stretching was performed at 135 ° C. Next, MD shrinkage treatment was performed in the shrinkage zone. Specifically, the clip pitches of the left clip and right clip were both reduced from 177.5 mm to 165 mm. The shrinkage rate in the MD shrinkage treatment was 7.0%.
Thus, a retardation film C (thickness 40 μm) was obtained. Re (550) of the obtained retardation film C was 140 nm, Rth (550) was 168 nm, and Re (450) / Re (550) was 0.89. The slow axis direction of the retardation film C was 45 ° with respect to the longitudinal direction.
(位相差層付偏光板および液晶表示装置の作製)
 位相差フィルムAの代わりに上記位相差フィルムCを用いたこと以外は実施例1と同様にして位相差層付偏光板を作製し、当該位相差層付偏光板を用いたこと以外は実施例1と同様にして液晶表示装置を作製した。当該液晶表示装置に白画像を表示させ、白画像状態で偏光サングラス越しに視認性を評価した。評価結果を表1に示す。
(Preparation of polarizing plate with retardation layer and liquid crystal display device)
A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that the retardation film C was used in place of the retardation film A, and the polarizing plate with a retardation layer was used. In the same manner as in Example 1, a liquid crystal display device was produced. A white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state. The evaluation results are shown in Table 1.
<比較例1>
(第1の位相差層を構成する位相差フィルムDの作製)
 市販のアートンフィルム(JSR社製、厚み70μm)の両側に、二軸延伸ポリプロピレンフィルム(東レ製、商品名「トレファン」(厚み60μm)) を、アクリル系粘着剤層(厚み15μm)を介して貼り合せた。その後、ロール延伸機でフィルムの長手方向を保持して、147℃の空気循環式恒温オーブン内で1.45倍に延伸して位相差フィルムDを得た。得られた位相差フィルムDのRe(550)は140nm、Rth(550)は70nm、Re(450)/Re(550)は1.00であった。
<Comparative Example 1>
(Preparation of retardation film D constituting first retardation layer)
A biaxially stretched polypropylene film (trade name “Trephan” (thickness 60 μm) manufactured by Toray, Inc.) is placed on both sides of a commercially available Arton film (manufactured by JSR, thickness 70 μm) via an acrylic adhesive layer (thickness 15 μm). Pasted together. Thereafter, the longitudinal direction of the film was held with a roll stretching machine, and the film was stretched 1.45 times in an air circulation type thermostatic oven at 147 ° C. to obtain a retardation film D. Re (550) of the obtained retardation film D was 140 nm, Rth (550) was 70 nm, and Re (450) / Re (550) was 1.00.
(位相差層付偏光板および液晶表示装置の作製)
 位相差フィルムAの代わりに上記位相差フィルムDを用いたこと以外は実施例1と同様にして位相差層付偏光板を作製し、当該位相差層付偏光板を用いたこと以外は実施例1と同様にして液晶表示装置を作製した。当該液晶表示装置に白画像を表示させ、白画像状態で偏光サングラス越しに視認性を評価した。評価結果を表1に示す。
(Preparation of polarizing plate with retardation layer and liquid crystal display device)
A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that the retardation film D was used in place of the retardation film A, and the polarizing plate with a retardation layer was used. In the same manner as in Example 1, a liquid crystal display device was produced. A white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state. The evaluation results are shown in Table 1.
<比較例2>
(第1の位相差層を構成する位相差フィルムEの作製)
 市販のアートンフィルム(JSR社製、厚み100μm)をロール延伸機でフィルムの長手方向を保持して、147℃の空気循環式恒温オーブン内で1.8倍に延伸して位相差フィルムEを得た。得られた位相差フィルムEのRe(550)は140nm、Rth(550)は140nm、Re(450)/Re(550)は1.00であった。
<Comparative Example 2>
(Preparation of retardation film E constituting the first retardation layer)
A commercially available ARTON film (manufactured by JSR Co., Ltd., thickness 100 μm) is stretched 1.8 times in a 147 ° C. air-circulating constant temperature oven while maintaining the longitudinal direction of the film with a roll stretching machine to obtain a retardation film E. It was. Re (550) of the obtained retardation film E was 140 nm, Rth (550) was 140 nm, and Re (450) / Re (550) was 1.00.
(位相差層付偏光板の作製)
 上記位相差フィルムEを用いたこと以外は実施例1と同様にして位相差層付偏光板を作製した。
(Preparation of polarizing plate with retardation layer)
A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that the retardation film E was used.
(液晶表示装置の作製)
 IPS方式の液晶表示装置を備えるスマートフォン(Apple社製iphone5:バックライトの発光スペクトルは連続)の液晶表示装置から液晶パネルを取り出し、液晶セルの視認側に配置されていた偏光板を取り除いて、該液晶セルのガラス面を洗浄した。続いて、上記液晶セルの視認側の表面に、上記位相差板付偏光板の偏光子側の面を、偏光子の吸収軸が該液晶セルの初期配向方向に対して直交するように、アクリル系粘着剤(厚み20μm)を介して積層し、液晶パネルを得た。位相差板付偏光板を積層した上記液晶パネルを上記スマートフォンに取り付け、本実施例の液晶表示装置とした。当該液晶表示装置に白画像を表示させ、白画像状態で偏光サングラス越しに視認性を評価した。評価結果を表1に示す。
(Production of liquid crystal display device)
Take out the liquid crystal panel from the liquid crystal display device of the smartphone (Apple 5 iPhone 5: backlight emission spectrum is continuous) equipped with the IPS liquid crystal display device, remove the polarizing plate placed on the viewing side of the liquid crystal cell, The glass surface of the liquid crystal cell was washed. Subsequently, the surface on the viewing side of the liquid crystal cell is the surface on the polarizer side of the polarizing plate with retardation plate, and the acrylic system is such that the absorption axis of the polarizer is orthogonal to the initial alignment direction of the liquid crystal cell. It laminated | stacked through the adhesive (thickness 20 micrometers), and obtained the liquid crystal panel. The liquid crystal panel on which the polarizing plate with a retardation plate was laminated was attached to the smartphone to obtain the liquid crystal display device of this example. A white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state. The evaluation results are shown in Table 1.
<比較例3>
(第1の位相差層を構成する位相差フィルムFの作製)
 カーボネート前駆物質としてホスゲン、芳香族2価フェノール成分として(A)2,2-ビス(4- ヒドロキシフェニル) プロパンおよび(B)1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンを用いて、常法に従い(A):(B)の重量比が4:6であって、重量平均分子量(Mw)60,000である下記化学式(II)および(III)の繰り返し単位を含むポリカーボネート系樹脂[数平均分子量(M n)=33,000、Mw/Mn=1.78]を得た。上記ポリカーボネート系樹脂70重量部と、重量平均分子量(Mw)1,300のスチレン系樹脂[数平均分子量(Mn)=716、Mw/Mn=1.78](三洋化成製ハイマーSB75)30重量部とをジクロロメタン300重量部に加え、室温下で4時間攪拌混合して透明な溶液を得た。この溶液をガラス板上にキャストし、室温で15 分間放置した後、ガラス板から剥離して、80℃のオーブンで10分、120℃で20分乾燥して、厚み40μm 、ガラス転移温度(Tg)が140℃ の高分子フィルムを得た。得られた高分子フィルムの波長590nmにおける光透過率は93%であった。また、上記高分子フィルムの面内位相差値:Re(590)は5.0nm、厚み方向の位相差値:Rth(590)は12.0nmであった。平均屈折率は、1.576であった。
 得られた高分子フィルムを150℃の空気循環式恒温オーブン内で1.5倍に一軸延伸して位相差フィルムFを得た。得られた位相差フィルムFのRe(550)は140nm、Rth(550)は140nm、Re(450)/Re(550)は1.06であった。
<Comparative Example 3>
(Preparation of retardation film F constituting the first retardation layer)
Phosgene as the carbonate precursor, (A) 2,2-bis (4-hydroxyphenyl) propane as the aromatic dihydric phenol component, and (B) 1,1-bis (4-hydroxyphenyl) -3,3,5- Using trimethylcyclohexane, a repeating unit of the following chemical formulas (II) and (III) having a weight ratio of (A) :( B) of 4: 6 and a weight average molecular weight (Mw) of 60,000 according to a conventional method Polycarbonate resin [number average molecular weight (Mn) = 33,000, Mw / Mn = 1.78] was obtained. 70 parts by weight of the above polycarbonate resin and 30 parts by weight of a styrene resin having a weight average molecular weight (Mw) of 1,300 [number average molecular weight (Mn) = 716, Mw / Mn = 1.78] (Sanyo Kasei Heimer SB75) Was added to 300 parts by weight of dichloromethane and stirred and mixed at room temperature for 4 hours to obtain a transparent solution. This solution was cast on a glass plate and allowed to stand at room temperature for 15 minutes, then peeled off from the glass plate, dried in an oven at 80 ° C. for 10 minutes, and then at 120 ° C. for 20 minutes, and had a thickness of 40 μm and a glass transition temperature (Tg ) Obtained a polymer film of 140 ° C. The polymer film obtained had a light transmittance of 93% at a wavelength of 590 nm. The in-plane retardation value of the polymer film: Re (590) was 5.0 nm, and the retardation value in the thickness direction: Rth (590) was 12.0 nm. The average refractive index was 1.576.
The obtained polymer film was uniaxially stretched 1.5 times in an air circulation type thermostatic oven at 150 ° C. to obtain a retardation film F. Re (550) of the obtained retardation film F was 140 nm, Rth (550) was 140 nm, and Re (450) / Re (550) was 1.06.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(位相差層付偏光板および液晶表示装置の作製)
 位相差フィルムAの代わりに上記位相差フィルムFを用いたこと以外は実施例1と同様にして位相差層付偏光板を作製し、当該位相差層付偏光板を用いたこと以外は実施例1と同様にして液晶表示装置を作製した。当該液晶表示装置に白画像を表示させ、白画像状態で偏光サングラス越しに視認性を評価した。評価結果を表1に示す。
(Preparation of polarizing plate with retardation layer and liquid crystal display device)
A polarizing plate with a retardation layer was produced in the same manner as in Example 1 except that the retardation film F was used in place of the retardation film A, and the polarizing plate with a retardation layer was used in the same manner as in Example 1. In the same manner as in Example 1, a liquid crystal display device was produced. A white image was displayed on the liquid crystal display device, and the visibility was evaluated through polarized sunglasses in a white image state. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の液晶表示装置は、携帯情報端末(PDA),携帯電話,時計,デジタルカメラ,携帯ゲーム機などの携帯機器、パソコンモニター,ノートパソコン,コピー機などのOA機器、ビデオカメラ,液晶テレビ,電子レンジなどの家庭用電気機器、バックモニター,カーナビゲーションシステム用モニター,カーオーディオなどの車載用機器、商業店舗用インフォメーション用モニターなどの展示機器、監視用モニターなどの警備機器、介護用モニター,医療用モニターなどの介護・医療機器などの各種用途に好適に用いることができる。 The liquid crystal display device of the present invention includes portable information terminals (PDAs), mobile phones, watches, digital cameras, portable game devices such as portable game machines, OA devices such as personal computer monitors, notebook computers, copy machines, video cameras, liquid crystal televisions, Household electrical equipment such as microwave ovens, back monitors, car navigation system monitors, in-car equipment such as car audio, display equipment such as commercial store information monitors, security equipment such as monitoring monitors, nursing care monitors, medical care It can be suitably used for various uses such as nursing care and medical equipment such as monitors for medical use.
 10   液晶セル
 11   基板
 12   基板
 13   液晶層
 20   第1の偏光子
 30   第2の偏光子
100   液晶パネル
200   位相差層(第1の位相差層)
300   バックライト光源
400   別の位相差層(第2の位相差層)
500   液晶表示装置
DESCRIPTION OF SYMBOLS 10 Liquid crystal cell 11 Board | substrate 12 Board | substrate 13 Liquid crystal layer 20 1st polarizer 30 2nd polarizer 100 Liquid crystal panel 200 Phase difference layer (1st phase difference layer)
300 Backlight source 400 Another retardation layer (second retardation layer)
500 Liquid crystal display device

Claims (7)

  1.  液晶セルと該液晶セルの視認側に配置された第1の偏光子と該液晶セルの背面側に配置された第2の偏光子とを含む液晶パネルと;
     該液晶パネルの視認側に配置された位相差層と;
     該液晶パネルを背面側から照明するバックライト光源と;を備え、
     該位相差層の面内位相差Re(550)が100nm~180nmであり、かつ、Re(450)<Re(550)<Re(650)の関係を満たし、
     該位相差層の遅相軸と該液晶パネルの長辺とのなす角度が35°~55°であり、
     該バックライト光源が不連続な発光スペクトルを有する、
     液晶表示装置。
    A liquid crystal panel including a liquid crystal cell, a first polarizer disposed on the viewing side of the liquid crystal cell, and a second polarizer disposed on the back side of the liquid crystal cell;
    A retardation layer disposed on the viewing side of the liquid crystal panel;
    A backlight source that illuminates the liquid crystal panel from the back side;
    The in-plane retardation Re (550) of the retardation layer is 100 nm to 180 nm, and satisfies the relationship of Re (450) <Re (550) <Re (650),
    The angle formed by the slow axis of the retardation layer and the long side of the liquid crystal panel is 35 ° to 55 °,
    The backlight source has a discontinuous emission spectrum;
    Liquid crystal display device.
  2.  前記バックライト光源の発光スペクトルが、430nm~470nmの波長領域にピークP1、530nm~570nmの波長領域にピークP2、および、630nm~670nmの波長領域にピークP3を有し、
     ピークP1の波長をλ1、高さをhP1および半値幅をΔλ1、ピークP2の波長をλ2、高さをhP2および半値幅をΔλ2、ピークP3の波長をλ3、高さをhP3および半値幅をΔλ3、ピークP1とピークP2との間の谷の高さをhB1、ピークP2とピークP3との間の谷の高さをhB2としたときに、これらが下記の関係式(1)~(3)を満足する、請求項1に記載の液晶表示装置:
       (λ2-λ1)/(Δλ2+Δλ1)>1         ・・・(1)
       (λ3-λ2)/(Δλ3+Δλ2)>1         ・・・(2)
       0.8≦{hP2-(hB2+hB1)/2}/hP2≦1 ・・・(3)。
    The emission spectrum of the backlight source has a peak P1 in a wavelength region of 430 nm to 470 nm, a peak P2 in a wavelength region of 530 nm to 570 nm, and a peak P3 in a wavelength region of 630 nm to 670 nm,
    The wavelength of the peak P1 is λ1, the height is hP1 and the half width is Δλ1, the wavelength of the peak P2 is λ2, the height is hP2 and the half width is Δλ2, the wavelength of the peak P3 is λ3, the height is hP3 and the half width is Δλ3. When the height of the valley between the peak P1 and the peak P2 is hB1, and the height of the valley between the peak P2 and the peak P3 is hB2, these are expressed by the following relational expressions (1) to (3). The liquid crystal display device according to claim 1, wherein:
    (Λ2−λ1) / (Δλ2 + Δλ1)> 1 (1)
    (Λ3-λ2) / (Δλ3 + Δλ2)> 1 (2)
    0.8 ≦ {hP2− (hB2 + hB1) / 2} / hP2 ≦ 1 (3).
  3.  前記位相差層の屈折率楕円体がnx>nz>nyの関係を示し、Nz係数が0.2~0.8である、請求項1または2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein the refractive index ellipsoid of the retardation layer shows a relationship of nx> nz> ny and the Nz coefficient is 0.2 to 0.8.
  4.  前記液晶パネルと前記位相差層との間に、屈折率楕円体がnz>nx≧nyの関係を示す別の位相差層をさらに備える、請求項1から3のいずれかに記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, further comprising: another retardation layer having a refractive index ellipsoid showing a relationship of nz> nx ≧ ny between the liquid crystal panel and the retardation layer. 5. .
  5.  前記バックライト光源が、赤色を発色するLEDと緑色を発色するLEDと青色を発色するLEDとを含み、該赤色を発色するLEDの蛍光体が4価のマンガンイオンで賦活されている、請求項1から4のいずれかに記載の液晶表示装置。 The backlight light source includes an LED that develops red, an LED that develops green, and an LED that develops blue. The phosphor of the LED that develops red is activated with tetravalent manganese ions. 5. A liquid crystal display device according to any one of 1 to 4.
  6.  前記バックライト光源が、青色を発色するLEDと量子ドットを含む波長変換層とを含む、請求項1から4のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 4, wherein the backlight light source includes a blue color LED and a wavelength conversion layer including quantum dots.
  7.  前記第1の偏光子の吸収軸が前記液晶パネルの長辺に対して実質的に直交または平行であり、前記第2の偏光子の吸収軸が該液晶パネルの長辺に対して実質的に直交または平行であり、該第1の偏光子の吸収軸と該第2の偏光子の吸収軸とが実質的に直交している、請求項1から6のいずれかに記載の液晶表示装置。 The absorption axis of the first polarizer is substantially perpendicular or parallel to the long side of the liquid crystal panel, and the absorption axis of the second polarizer is substantially parallel to the long side of the liquid crystal panel. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is orthogonal or parallel, and the absorption axis of the first polarizer and the absorption axis of the second polarizer are substantially orthogonal.
PCT/JP2016/084246 2015-11-30 2016-11-18 Liquid crystal display device WO2017094529A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187014690A KR102523068B1 (en) 2015-11-30 2016-11-18 liquid crystal display
CN201680069960.0A CN108292063B (en) 2015-11-30 2016-11-18 Liquid crystal display device having a plurality of pixel electrodes
KR1020227043204A KR102565008B1 (en) 2015-11-30 2016-11-18 Liquid crystal display

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-233755 2015-11-30
JP2015233755 2015-11-30
JP2016200417A JP6758148B2 (en) 2015-11-30 2016-10-11 Liquid crystal display device
JP2016-200417 2016-10-11

Publications (1)

Publication Number Publication Date
WO2017094529A1 true WO2017094529A1 (en) 2017-06-08

Family

ID=58797172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084246 WO2017094529A1 (en) 2015-11-30 2016-11-18 Liquid crystal display device

Country Status (3)

Country Link
KR (1) KR102565008B1 (en)
CN (1) CN113917738A (en)
WO (1) WO2017094529A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286611A (en) * 2006-03-21 2007-11-01 Semiconductor Energy Lab Co Ltd Backlight device and display device
JP2009009062A (en) * 2007-06-29 2009-01-15 Nitto Denko Corp Laminated polarizing plate, its manufacturing method, and liquid crystal display device
JP2015094903A (en) * 2013-11-13 2015-05-18 日亜化学工業株式会社 Manufacturing method of image display device, and selection method of light-emitting device and color filter
JP2015111518A (en) * 2013-12-06 2015-06-18 株式会社ジャパンディスプレイ Backlight and liquid crystal display device using the same
JP2015125436A (en) * 2013-12-27 2015-07-06 大日本印刷株式会社 Optical film, image display device, and production method of optical film
US20150277006A1 (en) * 2014-03-31 2015-10-01 Fujifilm Corporation Optical film, polarizing plate, and method for producing optical film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352068A (en) 2004-06-09 2005-12-22 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display device
JP4618675B2 (en) * 2005-02-08 2011-01-26 日東電工株式会社 Retardation film, polarizing element, liquid crystal panel, and liquid crystal display device
US7731377B2 (en) * 2006-03-21 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Backlight device and display device
JP4888853B2 (en) 2009-11-12 2012-02-29 学校法人慶應義塾 Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
CN106415339B (en) * 2014-05-23 2019-08-02 住友化学株式会社 Optical laminate and image display device
CN104154468B (en) * 2014-09-01 2016-08-31 深圳市华星光电技术有限公司 Backlight module
JP2015127830A (en) * 2015-03-20 2015-07-09 日東電工株式会社 Retardation film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286611A (en) * 2006-03-21 2007-11-01 Semiconductor Energy Lab Co Ltd Backlight device and display device
JP2009009062A (en) * 2007-06-29 2009-01-15 Nitto Denko Corp Laminated polarizing plate, its manufacturing method, and liquid crystal display device
JP2015094903A (en) * 2013-11-13 2015-05-18 日亜化学工業株式会社 Manufacturing method of image display device, and selection method of light-emitting device and color filter
JP2015111518A (en) * 2013-12-06 2015-06-18 株式会社ジャパンディスプレイ Backlight and liquid crystal display device using the same
JP2015125436A (en) * 2013-12-27 2015-07-06 大日本印刷株式会社 Optical film, image display device, and production method of optical film
US20150277006A1 (en) * 2014-03-31 2015-10-01 Fujifilm Corporation Optical film, polarizing plate, and method for producing optical film

Also Published As

Publication number Publication date
KR102565008B1 (en) 2023-08-09
KR20230003306A (en) 2023-01-05
CN113917738A (en) 2022-01-11

Similar Documents

Publication Publication Date Title
JP6877945B2 (en) Polarizing plate with retardation layer and image display device
JP7066796B2 (en) Liquid crystal display device
TWI550319B (en) An optical member, a polarizing plate group, and a liquid crystal display device
TWI673524B (en) Long strip optical laminate and image display device
JP5745686B2 (en) ORGANIC EL DISPLAY ELEMENT HAVING OPTICAL LAMINATE
KR102118016B1 (en) Continuous optical film laminate, roll of continuous optical film laminate and IPS liquid crystal display device
KR102627997B1 (en) Optical laminates and image display devices
KR102560037B1 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
WO2017094530A1 (en) Phase difference layer-provided polarizing plate and image display device
KR102441977B1 (en) image display device
KR102574840B1 (en) liquid crystal display
KR102565008B1 (en) Liquid crystal display
CN115728854A (en) Polarizing plate with phase difference layer and image display device
JP2012145735A (en) Liquid crystal panel and liquid crystal display device
CN117908178A (en) Polarizing plate with retardation layer and image display device
JP2020076938A (en) Polarizing plate with retardation layer and image display using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187014690

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870467

Country of ref document: EP

Kind code of ref document: A1