WO2017094246A1 - 通信システム、管理装置、制御装置、及び通信方法 - Google Patents

通信システム、管理装置、制御装置、及び通信方法 Download PDF

Info

Publication number
WO2017094246A1
WO2017094246A1 PCT/JP2016/004973 JP2016004973W WO2017094246A1 WO 2017094246 A1 WO2017094246 A1 WO 2017094246A1 JP 2016004973 W JP2016004973 W JP 2016004973W WO 2017094246 A1 WO2017094246 A1 WO 2017094246A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication terminal
server
base station
control device
Prior art date
Application number
PCT/JP2016/004973
Other languages
English (en)
French (fr)
Inventor
太田 和伸
一廣 江頭
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP16870187.8A priority Critical patent/EP3386264B1/en
Priority to US15/780,265 priority patent/US10671441B2/en
Priority to JP2017553620A priority patent/JP6784263B2/ja
Publication of WO2017094246A1 publication Critical patent/WO2017094246A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • G06F9/5077Logical partitioning of resources; Management or configuration of virtualized resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • G06F9/45558Hypervisor-specific management and integration aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/082Mobility data transfer for traffic bypassing of mobility servers, e.g. location registers, home PLMNs or home agents
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • G06F9/45558Hypervisor-specific management and integration aspects
    • G06F2009/45595Network integration; Enabling network access in virtual machine instances
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Definitions

  • the present invention relates to a communication system, a management apparatus, a communication method, and a program, and more particularly to a communication system, a management apparatus, a communication method, and a program for controlling the communication apparatus.
  • Non-Patent Document 1 describes a network configuration using MEC.
  • a server that provides a service be placed near a terminal held by a user. Therefore, it is considered to arrange a server in the vicinity of the base station in the mobile communication system. It is expected that the transmission time between the terminal and the server is shortened (transmission delay is reduced) by arranging the server in the vicinity of the radio base station to which the terminal is connected. Further, by arranging the server in the vicinity of the base station, data can be directly transmitted (offloaded) from the base station to the server without going through the core network. Alternatively, data can be transmitted directly from the server to the base station without going through the core network. As a result, traffic flowing into the core network can be reduced, and it is expected to reduce the load on the core network.
  • the server that provides the service is located near the base station, if the route between the terminal that wants to provide the service and the server is not efficiently set, the terminal is not necessarily connected from the server. There is a problem that a low-latency service cannot be received.
  • An object of the present invention is to provide a communication system, a management apparatus, a communication method, and a program that allow a server to provide a low-delay service to a communication terminal.
  • a communication system includes a communication terminal, a base station that connects the communication terminal, a management device that manages position information of the communication terminal, and a server that provides a communication service to the communication terminal
  • a communication device that connects the base station and the server, and a control device that controls activation or stop of the communication function of the communication device, and the server is disposed in the vicinity of the base station.
  • the management device transmits position information of the communication terminal to the control device, and the control device controls activation or stop of a communication function of the communication device based on the position information, and the control
  • the apparatus notifies the communication terminal of activation or suspension of the communication function via the management apparatus.
  • a management apparatus connects a location information management unit that manages location information of a communication terminal connected to a base station, and a server that provides a communication service to the base station and the communication terminal.
  • a communication unit that transmits position information of the communication terminal to a control device that controls activation or stop of a communication function included in the communication device based on the position information; and the server is disposed in the vicinity of the base station. The control device notifies the communication terminal of activation or stop of the communication function via the management device.
  • the communication method includes a communication apparatus that manages position information of a communication terminal connected to a base station and connects the base station and a server that provides a communication service to the communication terminal.
  • the position information of the communication terminal is transmitted to a control device that controls activation or stop of a function based on the position information, the server is disposed in the vicinity of the base station, and the control device The activation or the stop of the function is notified to the communication terminal via the management device.
  • a program according to a fourth aspect of the present invention is a communication function of a communication device that manages position information of a communication terminal connected to a base station and connects the base station and a server that provides a communication service to the communication terminal.
  • a control device that controls starting or stopping of the communication terminal based on the position information, causing the computer to execute transmission of the position information of the communication terminal, wherein the server is disposed in the vicinity of the base station, and The apparatus notifies the communication terminal of activation or suspension of the communication function via the management apparatus.
  • a communication system it is possible to provide a communication system, a management apparatus, a communication method, and a program in which a server can provide a low-latency service to a communication terminal.
  • FIG. 1 is a configuration diagram of a communication system according to a first exemplary embodiment
  • FIG. 3 is a diagram showing a flow of user data in the communication system according to the first exemplary embodiment.
  • FIG. 3 is a configuration diagram of a communication system according to a second exemplary embodiment.
  • It is a block diagram of the virtualization system concerning Embodiment 2.
  • FIG. It is a block diagram of MME concerning Embodiment 2.
  • FIG. It is a figure which shows an example of the flow of the Attach process regarding UE concerning Embodiment 2.
  • FIG. It is a figure which shows the other example of the flow of the Attach process regarding UE concerning Embodiment 2.
  • FIG. It is a figure which shows the flow of the virtual SGW and virtual PGW concerning Embodiment 3.
  • FIG. 1 It is a figure which shows the flow of the Attach process regarding UE concerning Embodiment 4.
  • FIG. 2 It is a figure which shows the information which linked
  • FIG. 1 It is a figure which shows the flow of the Attach process regarding UE concerning Embodiment 5.
  • FIG. 1 It is a figure which shows the modification 1 of the connection form between MME and MANO concerning Embodiment 7.
  • FIG. It is a figure which shows the modification 3 of the connection form between MME and MANO concerning Embodiment 7.
  • FIG. It is a figure which shows the deployment pattern of VIM which comprises MANO concerning Embodiment 8.
  • FIG. It is a figure which shows the modification 1 of the deployment pattern of VIM which comprises MANO concerning Embodiment 8.
  • FIG. It is a figure which shows the modification 2 of the deployment pattern of VIM which comprises MANO concerning Embodiment 8.
  • FIG. It is a figure which shows the modification 3 of the deployment pattern of VIM which comprises MANO concerning Embodiment 8.
  • FIG. It is a figure explaining the reference point through which the positional information regarding UE concerning Embodiment 8 flows. It is a block diagram of the node apparatus concerning each embodiment.
  • FIG. 1 A configuration example of the communication system according to the first embodiment of the present disclosure will be described with reference to FIG. 1 includes a communication terminal 10, a base station 20, a management device 30, a communication device 40, a server 50, and a control device 60.
  • the communication terminal 10, the base station 20, the management device 30, the communication device 40, the server 50, and the control device 60 may be computer devices that operate when a processor executes a program stored in a memory.
  • the communication terminal 10 may be a mobile phone terminal, a smartphone terminal, a tablet terminal, or the like. Further, the communication terminal 10 may be an M2M terminal, an MTC (Machine Type Communication) terminal, an IoT terminal, or the like.
  • the server 50 provides a communication service to the communication terminal 10.
  • the communication service may be a service that requests a delay time shorter than a predetermined delay time as a transmission delay.
  • the communication service may be a service that requires real-time control such as remote operation control or remote surgery.
  • the communication service may be a service related to packet data transmission such as a moving image distribution service or a voice call service.
  • the server 50 may be arranged near or close to the base station 20 to which the communication terminal 10 is connected.
  • the base station 20 may be connected to the communication terminal 10 wirelessly or by wire.
  • the vicinity of the base station 20 may be a distance where the distance between the base station 20 and the server 50 is shorter than a predetermined distance.
  • the vicinity of the base station 20 may be a position adjacent to the base station 20.
  • the position adjacent to the base station 20 may be, for example, the position of the same building as the building (or station) where the base station 20 exists, and is a building existing around the building where the base station 20 exists. It may be a position.
  • the vicinity of the base station 20 is not limited to physically close (physically, geographically close) but also includes temporal proximity (temporally close) or topologically close (topologically close).
  • the management device 30 detects and manages the location information of the communication terminal 10.
  • the location information may be, for example, information for identifying the base station 20 with which the communication terminal 10 communicates, or may be a call area (paging area) of the communication terminal 10 or a location registration area of the communication terminal 10.
  • the management device 30 transmits the position information of the communication terminal 10 to the control device 60.
  • the communication device 40 has a communication function.
  • the control device 60 instructs the communication device 40 to start the communication function of the communication device 40.
  • the control device 60 may instruct the activation of the communication device 40 itself.
  • the communication function may be referred to as a network function.
  • the control device 60 receives the position information of the communication terminal 10 transmitted from the management device 30.
  • the control device 60 controls activation and stop of the communication function of the communication device 40 based on the received position information.
  • the control apparatus 60 may control starting and a stop of communication apparatus 40 itself based on the positional information. Note that when the communication function of the communication device 40 has already been activated, the activated communication device 40 may be diverted or used.
  • the control device 60 When the control device 60 receives the position information of the communication terminal 10, based on the position information, the control device 60 uses the communication terminal 10 in the communication device 40 arranged near or close to the base station 20 to which the communication terminal 10 is connected. A communication function for data transmission between the server 50 and the server 50 is activated. In that case, based on the positional information which shows the position of the communication terminal 10, the communication function of the communication apparatus 40 arrange
  • the communication device 40 arranged in the vicinity of the communication terminal 10 is a communication device 40 in a position that can satisfy the delay time required by the communication service in data transmission between the communication terminal 10 and the server 50. There may be.
  • the communication device 40 arranged in the vicinity of the communication terminal 10 may be the communication device 40 in a position adjacent to the base station 20 with which the communication terminal 10 is communicating.
  • the position adjacent to the base station 20 may be, for example, the position of the same building as the building where the base station 20 exists, or the position of a building existing around the building where the base station 20 exists. Good.
  • the control device 60 stops the communication terminal 10 using the server 50 or the communication device 40 and does not exist for a predetermined time.
  • the communication device 40 may be stopped when elapses or when the number of communication terminals 10 being used falls below a threshold.
  • the communication function includes a gateway function that relays data transmitted / received (transmitted or received) between the communication terminal 10 and the server 50 that provides the service.
  • the control device 60 is based on the location information of the communication terminal 10, and is disposed in the vicinity of the communication terminal 10 or the base station 20 to which the communication terminal 10 is connected.
  • the communication function of the device 40 can be activated.
  • the communication terminal 10 can receive a service from the server 50 arranged in the vicinity of the base station 20 via the activated communication device 40.
  • the transmission route or transmission path between the communication terminal 10 and the server 50 can be optimized or made efficient.
  • the transmission time in data transmission between the communication terminal 10 and the server 50 can be shortened or reduced as compared with the case of using other communication devices arranged at arbitrary positions.
  • a communication system with a short transmission time is effective for services that require low delay such as V2X.
  • FIG. 2 includes a communication terminal 10, a base station 20, a management device 30, a control device 60, a local GW 71, a local server 73, an SGW 74, a PGW 76, an external NW 84, and a server 86. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the local GW 71 corresponds to the communication device 40 in FIG.
  • the local server 73 corresponds to the server 50 in FIG.
  • the local GW 71 may be installed in the same device as the local server 73, and the local GW 71 may be configured by a device different from the local server 73.
  • User data may be referred to as U (User) -Plane data.
  • control data as data used for construction of a communication path for user data.
  • the control data may be referred to as C (Control) -Plane data.
  • the SGW 74 and PGW 76 are gateway devices that relay user data.
  • the SGW 74 and the PGW 76 constitute a core network.
  • the SGW 74 and the PGW 76 are physical nodes.
  • the external NW (external network) 84 is a network different from the mobile network configured by the base station 20, the SGW 74, and the PGW 76.
  • the external NW 84 may be a PDN (Packet Data Network) or the so-called Internet.
  • the server 86 exists on the external NW 84 and is a server that provides various services. Further, some functions of the server 86 may be moved to the local server 73 in advance.
  • the control device 60 controls the start or stop of the local GW 71 using the position information of the communication terminal 10 transmitted from the management device 30. Further, the control device 60 may control activation or stop of the gateway function of the local GW 71. In the following description, starting or stopping includes not only starting or stopping the device itself but also starting or stopping a function of the device. For example, the control device 60 specifies the local GW 71 located in the vicinity of the base station 20 or the local GW 71 close to the base station 20, and controls the start or stop of the specified local GW 71. Further, the control device 60 may control the start or stop of not only the local GW 71 but also the local server 73 using the position information transmitted from the management device 30.
  • control device 60 determines at least the local GW 71 and the local server 73 based on the type of the communication terminal 10, the type of the requested service, or the delay time requested by the service. One start or stop may be controlled.
  • user data transmitted between the communication terminal 10 and the local server 73 passes through the base station 20 and the local GW 71. That is, the communication terminal 10 can receive a service from the local server 73 arranged in the vicinity of the base station 20 via the activated local GW 71 without passing through the SGW 74 and PGW 76 on the core network side.
  • the communication terminal 10 can also receive local services such as provision of regional information from the local server 73 located in the vicinity of the base station 20.
  • control device 60 can start and stop the local GW 71 and the local server 73 using the position information, thereby reducing the power consumption of the station where the local GW 71 and the local server 73 are arranged.
  • the local GW 71 and the local server 73 are activated based on the type of the communication terminal 10, the type of the requested service, or the delay time requested by the service, the local GW 71 for the traffic of the service requiring low delay. For services that do not require low delay, traffic load can be distributed through the core network.
  • the communication system in FIG. 3 includes a UE (User Equipment) 70, an eNB (evolved Node B) 72, an MEC 83, an MME 90, a DNS (Domain Name System) 100, and a MANO (Management And Network Orchestration) 32.
  • the solid line in FIG. 3 indicates the transmission path of user data
  • the alternate long and short dash line indicates the transmission path of control data (control plane) defined in 3GPP
  • the dotted line indicates control data other than the control data defined in 3GPP.
  • the transmission path is shown.
  • the UE 70 is a general term for communication terminals in 3GPP and corresponds to the communication terminal 10 in FIG.
  • the eNB 72 is a base station that supports LTE as a radio system, and corresponds to the base station 20 in FIG.
  • the MME 90 is a node device defined in 3GPP and corresponds to the management device 30 in FIG.
  • the MANO 32 is a device that controls the virtualization system, and corresponds to the control device 60 of FIG.
  • the MEC 83 is a system that provides a low-delay service or a local service, and may be referred to as an MEC system or the like.
  • the MEC 83 includes a virtual SGW 78, a virtual PGW 80, an MEC server 82, and a DHCP (Dynamic Host Configuration Configuration Protocol) 120.
  • the DHCP 120 may be referred to as a DHCP server or a DHCP entity.
  • the MEC server 82 corresponds to the server 50 in FIG.
  • the virtual SGW 78 and the virtual PGW 80 correspond to the local GW 71 in FIG.
  • the MEC server 82 is a server that provides a communication service to the UE 70.
  • the communication service provided by the MEC server 82 may be, for example, a service that requires a very short delay time in order to realize real-time communication.
  • the MEC server 82 may be arranged in the vicinity of the eNB 72 such as the same building as the eNB 72 or a building adjacent to the building where the eNB 72 is arranged in order to satisfy an extremely short delay time. By being arranged in this way, the MEC server 82 is arranged at a position physically close to the UE 70, so that the transmission delay of data transmitted and received between the MEC server 82 and the UE 70 can be shortened.
  • the virtual SGW 78 and the virtual PGW 80 are an SGW function and a PGW function activated by the MANO 32 in the local GW 71.
  • the MANO 32 may activate a virtual LGW (Local Gateway) function in the local GW 71.
  • LGW Local Gateway
  • the local GW 71 has physical resources and software resources.
  • the local GW 71 may operate as a virtual network device by activating various network functions using software resources.
  • the network function may be a function executed in MME (Mobility Management Entity), SGW, or PGW defined in 3GPP (3rd Generation Generation Partnership Project).
  • MME Mobility Management Entity
  • SGW Serving Mobility Management Entity
  • PGW Packet Data Network Gateway
  • the function performed in SGW and PGW may be called a gateway function.
  • the local GW 71 can operate as the MME by activating the MME function as a network function.
  • the DNS 100 manages the domain names and IP addresses of the virtual SGW 78 and the virtual PGW 80 in association with each other.
  • the DHCP 120 manages the IP address of the MEC server 82.
  • FIG. 4 mainly shows the configurations of the MANO 32, the virtual SGW 78, the virtual PGW 80, and the MME 90 shown in FIG.
  • the virtualization system of FIG. 4 mainly shows a system configuration for realizing NFV (Network Function Virtualization) proposed by ETSI (European Telecommunications Standards Institute).
  • NFV Network Function Virtualization
  • NE 4 includes NE (Network Element) 22, NE 24, MANO (Management And Network Orchestration) 32, NFVI (NFV Infrastructure) 42, VNF (Virtualized Network Function) 44, VNF 46, DM (Domain Manager) 64, DM 66 and OSS (Operation Support System) / BSS (Business Support System) 61.
  • the NE22, DM64, and DM66 have EMS (Element Management System) 23, EMS65, and EMS67, respectively.
  • the MANO 32 includes an NFVO (NFV Orchestrator) 34, a VNFM (VNF Manager) 36, and a VIM (Virtualized Infrastructure Manager) 38.
  • the OSS / BSS 61 has an NMS (Network Management System) 62.
  • NE22 and NE24 are, for example, node devices arranged in a mobile network.
  • the NE 22 may be an MME defined in 3GPP.
  • the NE 24 may be SGW or PGW defined in 3GPP.
  • the NE that is the MME corresponds to the management apparatus 30 in FIG.
  • NE22 and NE24 are physical nodes.
  • VNF 44 and VNF 46 are software resources for starting or providing a network function used in the mobile network.
  • the NFVI 42 is a physical resource for executing VNF.
  • a device constituted by the NFVI 42, the VNF 44, and the VNF 46 corresponds to the local GW 71 in FIG. 2, and corresponds to the S / P-GW (LGW) 78/80 in FIG. These may be referred to as VM (Virtual Machine).
  • the OSS / BSS 61 is a system that manages the entire virtualization system using the NMS 62.
  • the DM 64 and DM 66 are arranged for each domain and manage devices constituting the domain.
  • EMS 23 is a function for managing the NE 22.
  • the EMS 65 is a function for managing the DM 64
  • the EMS 67 is a function for managing the DM 66.
  • MANO 32 controls the virtualization system using NFVO 34, VNFM 36, and VIM 38.
  • MANO 32 may be a device group having a plurality of servers or may be a single server device.
  • MANO 32 corresponds to the control device 60 of FIG.
  • the NFVO 34 is connected to the NMS 62 and controls resources or operations of the entire virtualization system.
  • the VNFM 36 is connected to the DM 66, the VNF 44, and the VNF 46, and mainly performs activation control of the network function in the VNF 44 and the VNF 46. For example, the VNFM 36 selects a network function to be activated in the VNF 44 and the VNF 46. Further, the VNFM 36 transmits a message instructing activation of the selected network function to the VNF 44 and the VNF 46.
  • the VIM 38 controls the NFVI 42.
  • the reference point between the EMS 23 and the NMS 62 is defined as Itf-N.
  • the reference point between the DM 64 and DM 66 and the NMS 62 is defined as Itf-N.
  • a reference point between the VNF 44 and the NFVI 42 is defined as Vn-Nf.
  • the reference point between the NMS 62 and the NFVO 34 is defined as Os-Ma-nfvo.
  • the reference point between the EMS 67 and the VNFM 36 is defined as Ve-Vnfm-em.
  • the reference point between the VNF 46 and the VNFM 36 is defined as Ve-Vnfm-vn.
  • the reference point between the NFVI 42 and the VIM 38 is defined as Nf-Vi.
  • the reference point between the NFVO 34 and the VNFM 36 is defined as Or-Vnfm.
  • the reference point between the VNFM 36 and the VIM 38 is defined as Vi-Vnfm.
  • the reference point between the NFVO 34 and the VIM 38 is defined as Or-Vi.
  • the NFVO 34 receives the location information of the UE 70 from the NE 22 operating as the MME via the NMS 62.
  • the NFVO 34 outputs the position information of the UE 70 to the VNFM 36.
  • the position information of the UE 70 for example, an eNB ID indicating the identification information of the eNB 72 with which the UE 70 is communicating may be used.
  • a TAC Track Area Code
  • the position information of the UE 70 a TAC (Tracking Area Code) indicating the position registration area or paging area of the UE 70 may be used.
  • VNFM36 selects VNF44 and VNF46 which local GW71 arrange
  • the VNFM 36 instructs to activate the virtual SGW 78 in the selected VNF 44 and instructs to activate the virtual PGW 80 in the selected VNF 46.
  • the VNFM 36 may manage the eNB ID or TAC in association with the VNF 44 and the VNF 46. In this case, when the VNFM 36 receives the eNB ID or TAC, the VNFM 36 instructs the VNF 44 and the VNF 46 associated with the received eNB ID or TAC to start the virtual SGW 78 and the virtual PGW 80.
  • the virtual SGW 78 and the virtual PGW 80 are activated in the local GW 71 arranged in the vicinity of the UE 70, that is, in the vicinity of the eNB 72, so that the communication path between the UE 70 and the MEC server 82 can be minimized. That is, in the case where the virtual SGW 78 and the virtual PGW 80 are used, the transmission delay between the UE 70 and the MEC server 82 is shortened compared to the case where the UE 70 uses an arbitrary SGW and PGW to communicate with the MEC server 82. Can do.
  • the MME 90 is the same as the NE 22 described in FIG.
  • the NE 22 is a name used in the virtualized system
  • the MME 90 is a name used in the communication system defined in 3GPP.
  • MME90 and NE22 show the same apparatus.
  • the MME 90 has a location information management unit 92 and a communication unit 94.
  • the communication unit may be rephrased as a transmission and reception unit.
  • the location information management unit 92 and the communication unit 94 may be software or modules that operate when a processor executes a program stored in a memory.
  • the location information management unit 92 and the communication unit 94 may be hardware such as a circuit or a chip.
  • the location information management unit 92 manages information on a plurality of UEs located in the location registration area managed by the MME 90.
  • the communication unit 94 transmits a message including location information that associates the UE managed by the location information management unit 92 and the location registration area managed by the MME 90 to the MANO 32 via the OSS / BSS 61.
  • the communication unit 94 transmits a message requesting activation of the virtual SGW 78 and the virtual PGW 80 to the MANO 32 via the OSS / BSS 61.
  • the message including the position information and the message requesting activation of the virtual SGW 78 and the virtual PGW 80 may be the same message.
  • the communication unit 94 transmits a message to the DNS 100 in order to acquire address information of the virtual SGW 78 and the virtual PGW 80.
  • the DNS 100 may be rephrased as the DNS server 100.
  • the address information of the virtual SGW 78 and the virtual PGW 80 may be IP addresses, for example.
  • the UE 70 transmits an Attach request message to the MME 90 via the eNB 72 (S11).
  • the UE 70 transmits an Attach request message including an APN (Access Point name) related to the MEC service to the MME 90.
  • APN Access Point name
  • the MME 90 determines whether or not the APN included in the Attach request message is an APN related to the MEC service (S12).
  • the MME 90 determines the availability of the MEC service in the UE 70 using the APN.
  • the MME 90 may determine the availability of the MEC service in the UE 70 using the subscriber profile of the UE 70.
  • the MME 90 may perform the above determination using a subscriber profile held in an HSS (Home Subscriber Server: not shown).
  • the MME 90 uses whether the IMEI (International Mobile Subscription Identity) or IMSI (International Mobile Subscriber Identity) of the UE 70 is included in the IMEI range or the IMSI range indicating the IMEI group or IMSI group using the MEC service. Thus, the availability of the MEC service in the UE 70 may be determined. In step S12, the MME 90 determines that the UE 70 uses the MEC service.
  • IMEI International Mobile Subscription Identity
  • IMSI International Mobile Subscriber Identity
  • the MME 90 transmits an S / P-GW selection message to the DNS 100 in order to acquire address information regarding the virtual SGW 78 and the virtual PGW 80 for communicating with the MEC server 82 that provides the MEC service (S13).
  • the DNS 100 searches for the addresses of the virtual SGW 78 and the virtual PGW 80.
  • the DNS 100 transmits a response message including the address information of the virtual SGW 78 and the virtual PGW 80 to the MME 90 (S14).
  • the UE 70 can communicate using or utilizing the already activated virtual SGW 78 and virtual PGW 80.
  • MME90 performs the process which establishes the session between eNB72 and virtual SGW78, and also between virtual SGW78 and virtual PGW80 (S15).
  • a session between the eNB 72 and the virtual SGW 78 and between the virtual SGW 78 and the virtual PGW 80 may be referred to as a PDN (Packet Data Network) Connection or a communication bearer.
  • the MME 90 transmits an Attach accept message to the UE 70 via the eNB 72 as a response to the Attach request message in step S11 (S16).
  • the UE 70 can communicate with the MEC server 82 via the virtual SGW 78 and the virtual PGW 80 in the Attach process of the UE 70 by executing the process of FIG.
  • Steps S21 to S23 in FIG. 7 are the same as steps S11 to S13 in FIG.
  • step S24 when the DNS 100 does not manage the address information regarding the virtual SGW 78 and the virtual PGW 80 for communicating with the MEC server 82 that provides the MEC service, the DNS 100 responds without setting the address information of the virtual SGW 78 and the virtual PGW 80. Send message to MME90.
  • the MME 90 transmits an S / P-GW start request message in which position information related to the UE 70 is set to the MANO 32 (S25).
  • the MME 90 may also set information regarding the MEC service type of the MEC service received by the UE 70 and the quality required for the MEC service in the S / P-GW / start request message.
  • the MME 90 may set information on the position where the local GW 71 is installed in S / P-GW start request in addition to the location information on the UE 70 described above.
  • S / P-GW-start request may be replaced with an L-GW start request message.
  • S / P-GW instantiation is a process of starting the virtual SGW 78 and the virtual PGW 80 in the VNF of the local GW 71 arranged in the vicinity of the UE 70 using the position information regarding the UE 70 transmitted from the MME 90. Further, when starting the virtual LGW, the S / P-GW instantiation may be replaced with an L-GW instantiation message.
  • the MANO 32 transmits an S / P-GW start response message in which the address information of the activated virtual SGW 78 and virtual PGW 80 is set to the MME 90 (S27).
  • S / P-GW-start response may be replaced with an L-GW start response message.
  • the MANO 32 transmits a DNS update message in which the address information of the activated virtual SGW 78 and virtual PGW 80 is set to the DNS 100 (S28).
  • Steps S29 and S30 are the same as steps S15 and S16 in FIG.
  • the virtual SGW 78 and the virtual PGW 80 can be activated in the local GW 71 arranged in the vicinity of the UE 70 by using the communication system according to the second embodiment of the present disclosure. Furthermore, when the UE 70 communicates with the MEC server 82, user data is transmitted and received between the UE 70 and the MEC server 82 via the virtual SGW 78 and the virtual PGW 80. Thereby, compared with the case where SGW and PGW which exist in arbitrary places are used, the transmission delay of the user data transmitted / received between UE70 and MEC server 82 can be shortened. Accordingly, the MEC server 82 arranged near the UE 70 such as the vicinity of the eNB 72 can provide the UE 70 with a communication service that requires a short delay time.
  • Embodiment 3 Subsequently, the flow of the activation process of the virtual SGW 78 and the virtual PGW 80 according to the third embodiment of the present disclosure will be described with reference to FIG. Embodiment 3 has the following preconditions.
  • the NAPTR (Naming Authority Pointer) / SRV (Service) records of the virtual SGW 78 and the virtual PGW 80 for the MEC server 82 are registered in the DNS 100.
  • the A / AAAA record is not registered in the DNS 100.
  • the MANO 32 grasps the position information from the FQDN (Fully Qualified Domain Name) obtained from the registered record.
  • FQDN Frully Qualified Domain Name
  • the FQDN is “topon.s5-sgw.Node1.MecSite1.xxxx”, “MecSite1.xxxx” is used as the location information of the MEC server 82.
  • the name of the virtual SGW used when communicating with the MEC server 82 indicates that it is Node1. Therefore, the MME 90 requests activation of a virtual SGW named “Node1”.
  • the MME 90 uses the DNS 100 to search for a NAPTR record associated with the TAC or eNB ID related to the UE 70 (S41). Subsequently, the MME 90 determines whether or not the NAPTR record is hit (S42). When the MME 90 determines that the NAPTR record is hit, the MME 90 determines whether or not A flag is set in the NAPTR record (S43).
  • the MME 90 determines whether or not the SRV record is hit (S45).
  • the MME 90 searches for an A / AAAA record (S46).
  • the hit SRV may be indicated as “topon.s5-sgw.Node1.MecSite1.xxxx” using, for example, an FQDN.
  • Step S43 when the MME 90 determines that A flag is set in the NAPTR record, the MME 90 performs the process of Step S46 without performing the processes of Steps S44 and S45.
  • the MME 90 transmits a message regarding a VM (Virtual Machine) activation instruction to the MANO 32 (S48).
  • the VM corresponds to the local GW 71 described with reference to FIG. 2 and the NFVI 42, VNF 44, and VNF 46 described with reference to FIG.
  • the VM activation instruction is a message instructing to activate the virtual SGW 78 and the virtual PGW 80 in the VNF 44 and the VNF 46.
  • the message related to the VM activation instruction corresponds to, for example, the S / P-GW start request message in step S25 of FIG.
  • the MME 90 instructs activation of the virtual SGW 78 as Node 1 in the message related to the activation instruction. Furthermore, when the address of the virtual PGW 80 is indicated in the SRV record hit in step S45, the MME 90 also instructs the activation of the virtual PGW 80.
  • the MME 90 determines whether or not address information related to the activated virtual SGW 78 and virtual PGW 80 has been received (S49). When it is determined that the address information related to the activated virtual SGW 78 and virtual PGW 80 has not been received, the MME 90 determines that an error has occurred (S51). Further, when the MME 90 receives the address information regarding the activated virtual SGW 78 and virtual PGW 80, the MME 90 performs session establishment processing in the eNB 72, the virtual SGW 78, and the virtual PGW 80 (S50). The session establishment process corresponds to step S29 in FIG.
  • step S47 when the MME 90 determines that the A / AAAA record has been hit, the MME 90 executes a session establishment process in step S50. If it is determined in step S42 and step S45 that no hit occurs, it is determined in step S51 that an error has occurred.
  • the position information of the virtual SGW 78 and the virtual PGW 80 is used using the hierarchically named address information. Can be managed.
  • the MME 90 can request the MANO 32 to start the virtual SGW 78 and the virtual PGW 80 used when communicating with the MEC server 82 using the hierarchically named address information.
  • Steps S61 and S62 are the same as steps S11 and S12 of FIG.
  • the MME 90 transmits the address information of the MEC server 82 that provides the MEC service, and also the address information of the virtual SGW 78 and the virtual PGW 80 for communicating with the MEC server 82 that provides the MEC service, to the DNS 100.
  • a service selection message is transmitted (S63).
  • a response message is transmitted to the MME 90 without setting the address information (S64).
  • the MME 90 transmits an MEC service “start” request message in which position information related to the UE 70 is set to the MANO 32 (S65).
  • the MANO 32 executes S / P-GW and MEC server instantiation (S66). That is, the MANO 32 activates the MEC server 82 and activates the virtual SGW 78 and the virtual PGW 80 in the VNF included in the local GW 71 disposed in the vicinity of the UE 70.
  • TAC is used as the position information related to UE 70, but eNB ID may be used.
  • the TAC and the MEC server are associated one-to-one.
  • the MANO 32 acquires TAC: 0001 as the position information related to the UE 70
  • the MANO 32 activates the MEC server 82 that sets MEC001.
  • the MANO 32 transmits an MEC service “start” response message in which address information of the activated MEC server 82, virtual SGW 78, and virtual PGW 80 is set to the MME 90 (S67). Further, the MANO 32 transmits a DNSDUpdate message in which the address information of the activated MEC server 82, virtual SGW 78, and virtual PGW 80 is set to the DNS 100 (S68).
  • step S69 is the same as step S15 in FIG. 6, detailed description thereof is omitted.
  • the MME 90 transmits an Attach accept message in which the address information of the MEC server 82 acquired in step S67 is set to the UE 70 via the eNB 72 (S70).
  • the MME 90 may set the address information of the MEC server 82 in a PCO (Protocol Configuration Option) that is an information element used when information is directly exchanged with the UE 70.
  • PCO Protocol Configuration Option
  • the MME 90 also activates the MEC server 82 together with the activation of the virtual SGW 78 and the virtual PGW 80. It can also be requested. Further, the UE 70 can acquire the address information of the MEC server 82 in the Attach process procedure.
  • Steps S81 to S86 are the same as steps S61 to S66 of FIG.
  • step S86 when the MEC server 82, the virtual SGW 78, and the virtual PGW 80 are activated, the MANO 32 transmits an MEC service “start” response message in which the address information of the virtual SGW 78 and the virtual PGW 80 is set to the MME 90 (S87).
  • the MANO 32 transmits a DNS Update message in which the address information of the MEC server 82, the virtual SGW 78, and the virtual PGW 80 is set to the DNS 100 (S88).
  • the MME 90 transmits a Create Session Request message to the virtual SGW 78 and the virtual PGW 80, and establishes a session between the eNB 72, the virtual SGW 78, and the virtual PGW 80 (S89).
  • the MME 90 sets information requesting the address information of the MEC server 82 in the Create Session Request message.
  • the virtual PGW 80 acquires the address information of the MEC server 82 (S90).
  • S90 a method in which the virtual PGW 80 acquires the address information of the MEC server 82 will be described.
  • the VNFM 36 may transmit or input address information of the MEC server 82 as station data to the virtual PGW 80.
  • the virtual PGW 80 when the virtual PGW 80 is activated, the virtual PGW 80 transmits a DHCP request to the DHCP server that manages the IP address of the MEC server 82.
  • the virtual PGW 80 may acquire the IP address of the MEC server 82 in the response message to the DHCP request.
  • the virtual PGW 80 when the virtual PGW 80 is activated, the virtual PGW 80 transmits an inquiry message including the domain name of the MEC server 82 to the DNS server that manages the IP address of the MEC server 82.
  • the virtual PGW 80 may acquire the IP address of the MEC server 82 in the response message to the inquiry message.
  • the virtual PGW 80 When the virtual PGW 80 acquires the address information of the MEC server 82, the virtual PGW 80 transmits a Create Session Response message in which the acquired address information is set to the MME 90 (S91). Next, the MME 90 transmits an Attach accept message in which the address information of the MEC server 82 is set to the UE 70 via the eNB 72 (S92). In step S91, the virtual PGW 80 may set the address information of the MEC server 82 in PCO (Protocol Configuration Option) that is an information element used when information is directly exchanged with the UE 70.
  • PCO Protocol Configuration Option
  • the MME 90 may set the address information of the MEC server 82 in PCO (Protocol Configuration Option) which is an information element used when information is directly exchanged with the UE 70.
  • PCO Protocol Configuration Option
  • the MME 90 also activates the MEC server 82 together with the activation of the virtual SGW 78 and the virtual PGW 80. It can also be requested. Furthermore, the virtual PGW 80 acquires the address information of the MEC server 82, and the virtual PGW 80 can transmit the address information of the MEC server 82 to the UE 70 in the procedure of the Attach process regarding the UE 70.
  • Steps S101 to S106 are the same as steps S61 to S66 of FIG.
  • Steps S108 to S110 are the same as steps S67 to S69 of FIG.
  • the MME 90 transmits an Attach ⁇ accept message to the UE 70 via the eNB 72 in step S111.
  • the MME 90 does not set the address information of the MEC server 82 in the Attach accept message.
  • the MEC service initialization process is executed.
  • the UE 70 transmits a DHCP request message to the DHCP server 120 in order to acquire the address information of the MEC server 82 (S112).
  • the DHCP server 120 transmits a DHCP response message in which the address information of the MEC server 82 is set to the UE 70 (S113).
  • the MME 90 also activates the MEC server 82 along with the activation of the virtual SGW 78 and the virtual PGW 80. It can also be requested. Further, since the MANO 32 registers the address information of the MEC server 82 in the DHCP server 120, the UE 70 can acquire the address information of the MEC server 82 by receiving the DHCP response message.
  • NE22 corresponds to MME.
  • a VNF (S / P-GW) 104 indicates that the SNF function and the PGW function are activated by the VNFM 36.
  • the MME indicates that it is a physical node. However, like the VNF (S / P-GW) 104, the MME may be activated as software in the VNF.
  • VNF (MME) 102 indicates that the VNFM 36 is a VNF whose MME function is activated.
  • a VNF (S / P-GW) 104 indicates that the SNF function and the PGW function are activated by the VNFM 36.
  • FIG. 14 differs from FIG. 13 in that the MME is activated as software in the VNF instead of a physical node.
  • the VNF (MME) 102 and the VNF (S / P-GW) 104 are controlled by a VNFM 36 that is a common VNFM. Further, as shown in FIG.
  • the NFVI 42 may be a physical resource common to the VNF (MME) 102 and the VNF (S / P-GW) 104, and the VNF (MME) 102 and the VNF (S / P-- GW) 104 may use different NFVIs. Also in FIG. 15 and subsequent figures, the NFVI 42 is shown as a physical resource common to a plurality of VNFs, but a different NFVI may be used for each VNF.
  • VNFM for MME 112 is a VNFM that controls the VNF (MME) 102
  • VNFM for S / P-GW 114 is a VNFM that controls the VNF (S / P-GW) 104.
  • FIG. 15 differs from FIG. 14 in that the VNFMs that control the VNF (MME) 102 and the VNF (S / P-GW) 104 are different.
  • VNF / VNFM (MME) 116 indicates that VNF and VNFM are realized by one software resource, and the MME function is further activated.
  • FIG. 16 differs from FIGS. 14 and 15 in that the VNF that activates the MME function and the VNFM that controls the VNF are realized by the same software resource.
  • the MME can operate as an MME function not only as a physical node but also in a VNF on NFVI. Further, as shown in FIGS. 14 to 16, there are various connection forms between the VNF and the MANO that activated the MME function, and between the VNF and the MANO that activated the SGW function and the PGW function, A network can be constructed flexibly.
  • the VIM 38 selects the NFVI 42 to be activated using the location information of the UE 70. For example, the VIM 38 selects the NFVI 42 in the data center located in the vicinity of the eNB 72 that is in radio communication with the UE 70.
  • FIG. 18 shows that a VIM 130 exists for each NFVI 42 deployed in the data center.
  • the VIM 130_1 and the NFVI 42_1 exist in the data center A
  • the VIM 130_2 and the NFVI 42_2 exist in the data center B.
  • VIM130 is a generic name for VIM130_1, VIM130_2, and VIM130_n (n is an integer of 1 or more)
  • NFVI42 is a generic name of NFVI42_1, NFVI42_2, and NFVI42_n (n is an integer of 1 or more).
  • VIM 38 and VIM 130 indicate that the VIM is hierarchized.
  • the VIM 38 is a VIM located above the VIM 130.
  • the VIM 130 may be referred to as a child VIM for the VIM 38, for example.
  • the VIM 38 may be referred to as a parent VIM for the VIM 130, for example.
  • the VIM 38 selects the VIM 130 in the data center located in the vicinity of the UE 70 using the position information of the UE 70. For example, when the data center A exists in the vicinity of the eNB 72 that wirelessly communicates with the UE 70, the VIM 38 selects the VIM 130_1 deployed in the data center A. The VIM 130_1 activates the NFVI 42_1.
  • FIG. 19 shows that a VIM 38 exists for each data center.
  • the NFVO 34 uses the location information of the UE 70 to select a VIM 38 in the data center located in the vicinity of the UE 70.
  • FIG. 20 shows that a VIM 38 and a VIM 130 exist for each NFVI 42 deployed in the data center.
  • the VIM 130_1 and the NFVI 42_1 exist in the data center A.
  • VIM38_1 exists as a host device of VIM130_1.
  • the VIM 38_1 may exist at a position different from the data center A, and may be arranged in the data center A.
  • a VIM 130_2 and an NFVI 42_2 exist in the data center B.
  • a VIM 130_3 and an NFVI 42_3 exist in the data center C.
  • VIM38_2 exists as a host device of VIM130_2 and VIM130_3.
  • the VIM 38_2 may exist in a position different from the data center B and the data center C, and may be arranged in the data center B or the data center C.
  • the NFVO 34 selects the VIM 38_2. Further, the VIM 38_2 selects the VIM 130_3 deployed in the data center C. The VIM 130_3 activates the NFVI 42_3.
  • either the NFVO 34 or the VIM 38 may select the NFVI to be activated based on the location information of the UE 70. Further, the processing load of VIM may be distributed by hierarchizing VIM. In this way, the arrangement of the VIM 38 constituting the MANO 32 can be determined flexibly.
  • FIG. 21 associates the VIM deployment pattern, the NFVO / VFNM operation, the VIM operation, and the reference point through which the position information flows shown in FIGS.
  • the NFVO 34 and the VNFM 36 do not perform the process using the position information transmitted from the MME 90 and outputs the position information transmitted from the MME 90 to the VIM 38.
  • the VIM 38 selects the NFVI 42 using the received position information.
  • the VIM deployment pattern is FIG. 17 and the connection form between the MME and MANO is FIG. 13
  • the VIM 38 acquires location information via Os-Ma-nfvo and Or-Vi.
  • the VIM 38 acquires the location information via Ve-Vnfm and Vi-Vnfm.
  • the VIM 38 acquires location information via Or-Vnfm and Or-Vi.
  • the NFVO 34 and the VNFM 36 do not perform the process using the position information transmitted from the MME 90 and outputs the position information transmitted from the MME 90 to the VIM 38.
  • the VIM 38 selects the NFVI 42 and the VIM 130 using the received position information.
  • the VIM 38 acquires the location information via Os-Ma-nfvo and Or-Vi.
  • the VIM deployment pattern is FIG. 18 and the connection form between the MME and MANO is FIG. 14 or FIG. 15
  • the VIM 38 acquires position information via Ve-Vnfm and Vi-Vnfm.
  • the VIM 38 acquires location information via Or-Vnfm and Or-Vi.
  • the NFVO 34 and the VNFM 36 select the VIM 38 using the position information transmitted from the MME 90.
  • the NFVO 34 and VNFM 36 do not send location information to the VIM 38. That is, the VIM 38 does not receive position information from the NFVO 34 and the VNFM 36.
  • NFVO34 acquires positional information via Os-Ma-nfvo.
  • the VNFM 36 acquires location information via Ve-Vnfm.
  • the NFVO 34 acquires location information via the Or-Vnfm.
  • the NFVO 34 and the VNFM 36 select the VIM 38 using the position information transmitted from the MME 90. Further, the NFVO 34 and the VNFM 36 transmit the position information to the VIM 38.
  • the VIM 38 selects the VIM 130 using the received position information or a part of the received position information. The selection of this VIM may be determined hierarchically using position information. For example, the NFVO 34 may select the VIM 38_2 located in the Kanto region using the location information, and the VIM 38_2 may further select the VIM 130_2 located in Tokyo. Further, the NFVO 34 and the VNFM 36 may transmit a part of the position information transmitted from the MME 90 to the VIM 38.
  • the VIM 38 acquires location information via Os-Ma-nfvo and Or-Vi.
  • the VIM deployment pattern is FIG. 20 and the connection form between the MME and the MANO is FIG. 14 or FIG. 15 or FIG. 15
  • the VIM 38 acquires position information via Ve-Vnfm and Vi-Vnfm.
  • the deployment pattern of the VIM is FIG. 20 and the connection form between the MME and the MANO is FIG. 16
  • the VIM 38 acquires position information via Or-Vnfm and Or-Vi.
  • an interface is defined at each reference point. Further, position information is transmitted in a function provided in the interface.
  • Os-Ma-nfvo defines Network service lifecycle management interface and VNF Lifecycle Management interface.
  • the Network service lifecycle management interface has functions of instantiating network service and updating network service.
  • VNF Lifecycle Management interface has the function of instantiating VNF.
  • location information is transmitted in at least one function of instantiating a Network Service, updating a Network Service, and instantiating VNF.
  • VNFnLifecycle Management interface is defined in Ve-Vnfm and Or-Vnfm.
  • location information is transmitted in a function provided in VNF Lifecycle Management interface.
  • Virtualized Resources Management is defined as an interface for Or-Vi and Vi-Vnfm. Further, Virtualized Resource Management includes a function of requesting the the instantiation resource of virtualized resources, updating resource, virtualized resources, and resource reservations. In Or-Vi and Vi-Vnfm, location information is transmitted in at least one function of requesting-the instantiation-of-virtualized-resources, updating-instantiated-virtualized resources, and resource reservations.
  • each function provided in the interface may be used as a signal name transmitted at the reference point.
  • node devices such as NE22, NE24, MANO32, MEC83, and MME90 described in the above-described embodiments will be described below.
  • FIG. 22 is a block diagram illustrating a configuration example of each node device.
  • the node device includes a network interface 1201, a processor 1202, and a memory 1203.
  • the network interface 1201 is used to communicate with a network node (e.g., eNodeB 130, MME, P-GW).
  • the network interface 1201 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 1202 reads out and executes software (computer program) from the memory 1203, thereby performing processing of each node device described with reference to the sequence diagram and the flowchart in the above-described embodiment.
  • the processor 1202 may be, for example, a microprocessor, MPU, or CPU.
  • the processor 1202 may include a plurality of processors.
  • the memory 1203 is configured by a combination of a volatile memory and a nonvolatile memory.
  • Memory 1203 may include storage located remotely from processor 1202. In this case, the processor 1202 may access the memory 1203 via an I / O interface not shown.
  • the memory 1203 is used for storing software module groups.
  • the processor 1202 can perform the processing of the node device described in the above-described embodiment by reading these software module groups from the memory 1203 and executing them.
  • each of the processors included in each node device in the above-described embodiment has one or more programs including a group of instructions for causing a computer to execute the algorithm described with reference to the drawings. Execute.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • a part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
  • (Appendix 1) A communication terminal; A base station to which the communication terminal is connected; A management device for managing location information of the communication terminal; A server for providing a communication service to the communication terminal; A communication device connecting the base station and the server; A control device for controlling the start or stop of the communication function of the communication device, The server is located in the vicinity of the base station; The management device transmits position information of the communication terminal to the control device, The control device controls activation or stop of a communication function of the communication device based on the position information, The said control apparatus is a communication system which notifies the said communication terminal of starting or a stop of the said communication function via the said management apparatus.
  • (Appendix 2) The communication system according to appendix 1, wherein the communication device includes a virtualization device.
  • Appendix 3) The communication system according to appendix 1 or 2, wherein the communication function is a gateway function that connects the communication terminal and the server.
  • the management device The communication system according to any one of appendices 1 to 3, which manages a location registration area of the communication terminal or base station identification information of the base station as the location information of the communication terminal.
  • (Appendix 5) The management device The communication system according to any one of appendices 1 to 4, wherein address information assigned to the communication device is received from the control device.
  • Appendix 6) The management device The communication system according to attachment 5, further receiving address information of the server from the control device.
  • (Appendix 7) The management device 6.
  • (Appendix 8) The management device The communication system according to appendix 3, wherein the communication device transmits position information of the communication terminal to the control device when the gateway function is not activated in the communication device.
  • (Appendix 9) A DNS for managing address information of the communication device;
  • the management device The communication system according to appendix 3 or 8, wherein when the address information assigned to the communication device does not exist in the DNS, the gateway function is determined not to be activated in the communication device.
  • the DNS is The communication system according to appendix 9, wherein address information assigned to the communication device is received from the control device.
  • Appendix 11 A location information management unit that manages location information of communication terminals connected to the base station; Transmits the location information of the communication terminal to a control device that controls the start or stop of the communication function of the communication device that connects the base station and a server that provides a communication service to the communication terminal based on the location information.
  • the server is arranged in the vicinity of the base station, and the control device notifies the communication terminal of activation or stop of the communication function via the control device.
  • the communication unit is The management apparatus according to appendix 11, wherein location information of the communication terminal or base station identification information of the base station is transmitted as the location information of the communication terminal.
  • the communication unit is 13.
  • the communication unit is The management apparatus according to attachment 13, further receiving address information of the server from the control apparatus.
  • the communication unit is 14.
  • the management apparatus according to appendix 13 wherein a message requesting acquisition of the server address information is transmitted to the communication apparatus according to the address information, and the server address information is received from the communication apparatus.
  • the communication unit is Any one of appendices 11 to 15, wherein when the gateway function is not activated in the communication device, the communication device transmits position information of the communication terminal to the control device, and the gateway function connects the communication terminal and the server.
  • the management device according to claim 1. (Appendix 17)
  • the communication unit is 18. The management device according to appendix 16, wherein when the address information assigned to the communication device does not exist in the DNS that manages the address information of the communication device, it is determined that the gateway function is not activated in the communication device.
  • (Appendix 18) Manage location information of communication terminals connected to the base station, Transmitting the location information of the communication terminal to a control device that controls activation or stop of a communication function of a communication device that connects the base station and a server that provides a communication service to the communication terminal based on the location information.
  • the communication method wherein the server is arranged in the vicinity of the base station, and the control device notifies the communication terminal of activation or stop of the communication function via the control device.
  • (Appendix 19) Manage location information of communication terminals connected to the base station, Transmits the location information of the communication terminal to a control device that controls the start or stop of the communication function of the communication device that connects the base station and a server that provides a communication service to the communication terminal based on the location information. Let the computer do The server is arranged in the vicinity of the base station, and the control device notifies the communication terminal of activation or stop of the communication function via the control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本開示にかかる通信システムは、通信端末(10)と、通信端末(10)を接続する基地局(20)と、通信端末(10)の位置情報を管理する管理装置(30)と、通信端末(10)に通信サービスを提供するサーバ(50)と、基地局(20)とサーバ(50)を接続する通信装置(40)と、通信装置(40)が有する通信機能の起動または停止を制御する制御装置(60)と、を備える。サーバ(50)は、基地局(20)の近傍に配置されており、管理装置(30)は、制御装置(60)へ通信端末(10)の位置情報を送信し、制御装置(60)は、位置情報に基づいて、通信装置(40)が有する通信機能の起動または停止を制御し、制御装置(60)は、通信装置(40)が有する通信機能の起動または停止を管理装置(30)を介して、通信端末(10)に通知する。

Description

通信システム、管理装置、制御装置、及び通信方法
 本発明は通信システム、管理装置、通信方法、及びプログラムに関し、特に通信装置を制御する通信システム、管理装置、通信方法、及びプログラムに関する。
 データ通信を行うための将来のネットワークに対して、V2X(車車間通信および路車間通信)などへの適応を目的として低遅延なサービスの実現、さらにM2M(Machine to Machine)やIoT(Internet of Things)の普及による大量のデータ伝送などへの対応を目的としてコアネットワークの負荷低減などが求められている。そこで、これらの将来のネットワークに対する要求条件を満たすための技術として、MEC(Mobile Edge Computing)に関する技術が注目されている。非特許文献1には、MECを用いたネットワーク構成等が記載されている。
 具体的に、MECにおいては、サービスを提供するサーバが、ユーザが保持する端末の近くに配置されることが望まれている。そのため、移動通信システム内の基地局の近傍にサーバを配置することが検討されている。サーバを端末が接続する無線基地局の近傍に配置することによって、端末とサーバとの間の伝送時間を短くする(伝送遅延を減らす)ことが期待されている。また、サーバを基地局の近傍に配置することによって、基地局からコアネットワークを介さず、サーバに直接データを伝送する(オフロードする)ことが可能となる。または、そのサーバからコアネットワークを介さず、基地局に直接データを伝送することが可能となる。これより、コアネットワークへ流入するトラヒックを減少させることができるため、コアネットワークの負荷を低減することが期待されている。
Mobile-Edge Computing-Introductory Technical White Paper September 2014
 しかし、サービスの提供を行うサーバが基地局の近傍に配置されていたとしても、そのサービスの提供を望む端末とサーバとの間のルートが効率的に設定されなければ、端末は、サーバから必ずしも低遅延なサービスを受けることができないという問題がある。
 本発明の目的は、サーバが通信端末に低遅延なサービスを提供することができる通信システム、管理装置、通信方法、及びプログラムを提供することにある。
 本発明の第1の態様にかかる通信システムは、通信端末と、前記通信端末を接続する基地局と、前記通信端末の位置情報を管理する管理装置と、前記通信端末に通信サービスを提供するサーバと、前記基地局と前記サーバとを接続する通信装置と、前記通信装置が有する通信機能の起動または停止を制御する制御装置と、を備え、前記サーバは、前記基地局の近傍に配置されており、前記管理装置は、前記制御装置へ前記通信端末の位置情報を送信し、前記制御装置は、前記位置情報に基づいて、前記通信装置が有する通信機能の起動または停止を制御し、前記制御装置は、前記通信機能の起動または停止を前記管理装置を介して、前記通信端末に通知するものである。
 本発明の第2の態様にかかる管理装置は、基地局と接続する通信端末の位置情報を管理する位置情報管理部と、前記基地局と前記通信端末に通信サービスを提供するサーバとを接続する通信装置が有する通信機能の起動又は停止を前記位置情報に基づいて制御する制御装置へ、前記通信端末の位置情報を送信する通信部を備え、前記サーバは、前記基地局の近傍に配置されており、前記制御装置は、前記通信機能の起動または停止を前記管理装置を介して、前記通信端末に通知するものである。
 本発明の第3の態様にかかる通信方法は、基地局と接続する通信端末の位置情報を管理し、前記基地局と前記通信端末に通信サービスを提供するサーバとを接続する通信装置が有する通信機能の起動又は停止を前記位置情報に基づいて制御する制御装置へ、前記通信端末の位置情報を送信し、前記サーバは、前記基地局の近傍に配置されており、前記制御装置は、前記通信機能の起動または停止を前記管理装置を介して、前記通信端末に通知するものである。
 本発明の第4の態様にかかるプログラムは、基地局と接続する通信端末の位置情報を管理し、前記基地局と前記通信端末に通信サービスを提供するサーバとを接続する通信装置が有する通信機能の起動又は停止を前記位置情報に基づいて制御する制御装置へ、前記通信端末の位置情報を送信することをコンピュータに実行させ、前記サーバは、前記基地局の近傍に配置されており、前記制御装置は、前記通信機能の起動または停止を前記管理装置を介して、前記通信端末に通知するものである。
 本発明により、サーバが通信端末に低遅延なサービスを提供することができる通信システム、管理装置、通信方法、及びプログラムを提供することができる。
実施の形態1にかかる通信システムの構成図である。 実施の形態1にかかる通信システムにおいてユーザデータの流れを示す図である。 実施の形態2にかかる通信システムの構成図である。 実施の形態2にかかる仮想化システムの構成図である。 実施の形態2にかかるMMEの構成図である。 実施の形態2にかかるUEに関するAttach処理の流れの一例を示す図である。 実施の形態2にかかるUEに関するAttach処理の流れの他の例を示す図である。 実施の形態3にかかる仮想SGW及び仮想PGWの流れを示す図である。 実施の形態4にかかるUEに関するAttach処理の流れを示す図である。 実施の形態4にかかるMANOが保持する、UEに関する位置情報とMECサーバとを関連付けた情報を示す図である。 実施の形態5にかかるUEに関するAttach処理の流れを示す図である。 実施の形態6にかかるUEに関するAttach処理の流れを示す図である。 実施の形態7にかかるMMEとMANOとの間の接続形態を示す図である。 実施の形態7にかかるMMEとMANOとの間の接続形態の変形例1を示す図である。 実施の形態7にかかるMMEとMANOとの間の接続形態の変形例2を示す図である。 実施の形態7にかかるMMEとMANOとの間の接続形態の変形例3を示す図である。 実施の形態8にかかるMANOを構成するVIMの配備パターンを示す図である。 実施の形態8にかかるMANOを構成するVIMの配備パターンの変形例1を示す図である。 実施の形態8にかかるMANOを構成するVIMの配備パターンの変形例2を示す図である。 実施の形態8にかかるMANOを構成するVIMの配備パターンの変形例3を示す図である。 実施の形態8にかかるUEに関する位置情報が流れるリファレンスポイントを説明する図である。 各実施の形態にかかるノード装置の構成図である。
 (実施の形態1)
 以下、図面を参照して本開示の実施の形態について説明する。図1を用いて本開示の実施の形態1にかかる通信システムの構成例について説明する。図1の通信システムは、通信端末10、基地局20、管理装置30、通信装置40、サーバ50、及び制御装置60を有している。通信端末10、基地局20、管理装置30、通信装置40、サーバ50、及び制御装置60は、プロセッサがメモリに格納されたプログラムを実施することによって動作するコンピュータ装置であってもよい。
 通信端末10は、携帯電話端末、スマートフォン端末、もしくはタブレット端末等であってもよい。また、通信端末10は、M2M端末、もしくはMTC(Machine Type Communication)端末、IoT端末等であってもよい。
 サーバ50は、通信サービスを通信端末10へ提供する。例えば、通信サービスは、伝送遅延として、所定の遅延時間よりも短い遅延時間を要求するサービスであってもよい。例えば、通信サービスは、遠隔運転制御もしくは遠隔手術等のリアルタイムの制御を必要とするサービスであってもよい。また、通信サービスは、例えば、動画配信サービス、もしくは音声通話サービス等のパケットデータ伝送に関するサービスであってもよい。サーバ50は、例えば、通信端末10が接続する基地局20の近傍にまたは近接して配置されてもよい。基地局20は、通信端末10と無線で、もしくは有線で接続してもよい。基地局20の近傍とは、基地局20とサーバ50との間の距離が、予め定められた距離よりも短い距離であってもよい。もしくは、基地局20の近傍とは、基地局20に隣接する位置であってもよい。基地局20に隣接する位置とは、例えば、基地局20が存在する建物(もしくは局舎)と同一の建物の位置であってもよく、基地局20が存在する建物の周囲に存在する建物の位置であってもよい。また、基地局20の近傍とは、物理的な距離の近さ(physically, geographically close)に限らず、時間的な近さ(temporally close)、もしくはトポロジー的な近さ(topologically close)も含む。
 管理装置30は、通信端末10の位置情報を検出し、管理する。位置情報は、例えば、通信端末10が通信を行う基地局20を識別する情報であってもよく、通信端末10の呼び出しエリア(ページングエリア)もしくは通信端末10の位置登録エリアであってもよい。管理装置30は、制御装置60へ通信端末10の位置情報を送信する。
 通信装置40は、通信機能を有する。
 制御装置60は、通信装置40へ、通信装置40が有する通信機能の起動を指示する。または、制御装置60は、通信装置40自体の起動を指示してもよい。なお、通信機能は、ネットワーク機能と称されてもよい。制御装置60は、管理装置30から送信された通信端末10の位置情報を受信する。制御装置60は、受信した位置情報に基づいて、通信装置40が有する通信機能の起動及び停止を制御する。または、制御装置60は、その位置情報に基づいて、通信装置40自体の起動及び停止を制御してもよい。なお、通信装置40が有する通信機能が既に起動されている場合は、起動されている通信装置40を流用もしくは利用してもよい。制御装置60は、通信端末10の位置情報を受信すると、その位置情報に基づいて、通信端末10が接続する基地局20の近傍にまたは近接して配置されている通信装置40において、通信端末10とサーバ50との間のデータ伝送を行うための通信機能を起動させる。その際に、通信端末10の位置を示す位置情報に基づいて、通信端末10に最も近い位置に配置されている通信装置40の通信機能を起動させてもよい。もしくは、通信端末10の近傍に配置されている通信装置40は、通信端末10とサーバ50との間のデータ伝送において、通信サービスが要求する遅延時間を満たすことができる位置にある通信装置40であってもよい。例えば、通信端末10の近傍に配置されている通信装置40は、通信端末10が通信を行っている基地局20に隣接する位置にある通信装置40であってもよい。基地局20に隣接する位置とは、例えば、基地局20が存在する建物と同一の建物の位置であってもよく、基地局20が存在する建物の周囲に存在する建物の位置であってもよい。また、制御装置60は、サーバ50又は通信装置40を利用している通信端末10が存在しなくなった場合、サーバ50又は通信装置40を利用している通信端末10が存在しなくなって所定の時間が経過した場合、もしくは利用している通信端末10の数が閾値を下回った場合等に、通信装置40を停止してもよい。
 上記の通信機能は、通信端末10とサービスを提供するサーバ50との間において送受信(送信または受信)されるデータを中継するゲートウェイ機能を含む。
 以上説明したように、図1の通信システムにおいては、制御装置60は、通信端末10の位置情報に基づいて、通信端末10または通信端末10が接続する基地局20の近傍に配置されている通信装置40の通信機能を起動することができる。通信端末10は、起動された通信装置40を介して、基地局20の近傍に配置されたサーバ50からサービスの提供を受けることができる。これより、通信端末10とサーバ50との間の伝送ルートもしくは伝送パスを最適化もしくは効率化することができる。さらに、任意の位置に配置されている他の通信装置を用いる場合と比較して、通信端末10とサーバ50との間のデータ伝送における伝送時間を、短くするもしくは減らすことができる。伝送時間が短い通信システムは、V2Xなどの低遅延を要求するサービスに対して有効である。
 続いて、図2の通信システムを用いてユーザデータの流れについて説明する。図2の通信システムは、通信端末10、基地局20、管理装置30、制御装置60、ローカルGW71、ローカルサーバ73、SGW74、PGW76、外部NW84、及びサーバ86を有している。図1の同様の装置には同一の符号を付し、詳細な説明を省略する。
 ローカルGW71は、図1の通信装置40に相当する。ローカルサーバ73は、図1のサーバ50に相当する。ローカルGW71は、ローカルサーバ73と同じ装置内に設置されていてもよく、ローカルGW71は、ローカルサーバ73と異なる装置で構成されていてもよい。
 ユーザデータは、U(User)-Planeデータと称されてもよい。また、ユーザデータの通信経路の構築等に用いられるデータとして、制御データがある。制御データは、C(Control)-Planeデータと称されてもよい。
 SGW74及びPGW76は、ユーザデータを中継するゲートウェイ装置である。SGW74及びPGW76は、コアネットワークを構成する。SGW74及びPGW76は、物理ノードである。外部NW(外部ネットワーク)84は、基地局20、SGW74、及びPGW76によって構成されるモバイルネットワークとは異なるネットワークである。外部NW84は、PDN(Packet Data Network)や、いわゆるインターネットであってもよい。サーバ86は、外部NW84上に存在し、様々なサービスを提供するサーバである。また、サーバ86の一部機能は、予めローカルサーバ73へ移設されていてもよい。
 制御装置60は、管理装置30から送信された通信端末10の位置情報を用いてローカルGW71の起動もしくは停止を制御する。また、制御装置60は、ローカルGW71が有するゲートウェイ機能の起動もしくは停止を制御してもよい。なお、以下の記載では、起動または停止には、その装置自体の起動または停止だけでなく、その装置が有する機能の起動または停止を含む。例えば、制御装置60は、基地局20の近傍に位置するローカルGW71もしくは基地局20に近接するローカルGW71を特定し、特定したローカルGW71の起動もしくは停止を制御する。また、制御装置60は、管理装置30から送信された位置情報を用いて、ローカルGW71だけでなく、ローカルサーバ73の起動もしくは停止を制御してもよい。
 なお、制御装置60は、通信端末10の位置情報に加えて、通信端末10の種別、要求されたサービスの種別、もしくはサービスが要求する遅延時間等に基づいて、ローカルGW71及びローカルサーバ73の少なくとも一方の起動もしくは停止を制御してもよい。
 図2の通信システムにおいては、通信端末10とローカルサーバ73との間において伝送されるユーザデータは、基地局20及びローカルGW71を経由する。つまり、通信端末10は、コアネットワーク側のSGW74及びPGW76を介さず、起動されたローカルGW71を介して、基地局20の近傍に配置されたローカルサーバ73からサービスの提供を受けることができる。
 図2の通信システムを用いることによって、上述した図1の通信システムにおける効果に加えて、通信端末10とローカルサーバ73との間において伝送されるユーザデータがコアネットワークを介さないため、コアネットワークに流入するトラヒックの量を減少させることができる。特に、M2MもしくはIoT等の大量データ伝送に対して有効となる。
 さらに、通信端末10は、基地局20の近傍に位置するローカルサーバ73から、地域情報の提供等のローカルなサービスを受けることもできる。
 さらに、制御装置60が、位置情報を用いてローカルGW71及びローカルサーバ73の起動及び停止を行うことによって、ローカルGW71及びローカルサーバ73を配置する局舎の省電力化を図ることができる。
 さらに、通信端末10の種別、要求されたサービスの種別、もしくはサービスが要求する遅延時間等に基づいて、ローカルGW71及びローカルサーバ73を起動する場合、低遅延を要求するサービスのトラヒックについてはローカルGW71を介し、低遅延を要求しないサービスについてはコアネットワークを介することによって、トラヒックの負荷分散を図ることができる。
 (実施の形態2)
 続いて、図3を用いて本開示の実施の形態2にかかる通信システムの構成例について説明する。図3の通信システムは、UE(User Equipment)70、eNB(evolved Node B)72、MEC83、MME90、DNS(Domain Name System)100、MANO(Management And Network Orchestration)32を有している。図3の実線は、ユーザデータの伝送経路を示し、一点鎖線は、3GPPにおいて規定される制御データ(制御プレーン)の伝送経路を示し、点線は、3GPPにおいて規定される制御データ以外の制御データの伝送経路を示している。
 UE70は、3GPPにおける通信端末の総称であり、図2の通信端末10に相当する。eNB72は、無線方式としてLTEをサポートする基地局であり、図2の基地局20に相当する。MME90は、3GPPにおいて規定されているノード装置であり、図2の管理装置30に相当する。MANO32は、仮想化システムを制御する装置であり、図2の制御装置60に相当する。
 MEC83は、低遅延サービスもしくはローカルサービス等を提供するシステムであり、MECシステム等と称されてもよい。MEC83は、仮想SGW78、仮想PGW80、MECサーバ82、及びDHCP(Dynamic Host Configuration Protocol)120を有している。DHCP120は、DHCPサーバもしくはDHCPエンティティ等と称されてもよい。MECサーバ82は、図2のサーバ50に相当する。仮想SGW78及び仮想PGW80は、図2のローカルGW71に相当する。
 MECサーバ82は、UE70へ通信サービスを提供するサーバである。MECサーバ82が提供する通信サービスは、例えば、リアルタイム通信を実現するために極めて短い遅延時間が要求されるサービスであってもよい。MECサーバ82は、極めて短い遅延時間を満たすために、eNB72と同じ建物、もしくはeNB72が配置されている建物に隣接する建物等、eNB72の近傍に配置されてもよい。このように配置されることによって、MECサーバ82は、UE70と物理的に近い位置に配置されるため、MECサーバ82とUE70との間において送受信されるデータの伝送遅延を短くすることができる。
 仮想SGW78及び仮想PGW80は、ローカルGW71において、MANO32によって起動されたSGW機能及びPGW機能である。また、MANO32は、ローカルGW71において、仮想LGW(Local Gateway)機能を起動してもよい。
 ローカルGW71は、物理リソースとソフトウェアリソースとを有する。例えば、ローカルGW71は、ソフトウェアリソースを用いて、様々なネットワーク機能を起動することによって、仮想的なネットワーク装置として動作してもよい。ネットワーク機能は、例えば、3GPP(3rd Generation Partnership Project)において規定されているMME(Mobility Management Entity)、SGW、もしくはPGW等において実行される機能であってもよい。また、SGW及びPGWにおいて実行される機能は、ゲートウェイ機能と称されてもよい。例えば、ローカルGW71において、ネットワーク機能として、MMEの機能を起動することによって、ローカルGW71は、MMEとして動作することができる。
 DNS100は、仮想SGW78及び仮想PGW80のドメイン名及びIPアドレスを対応付けて管理している。また、DHCP120は、MECサーバ82のIPアドレスを管理している。
 続いて、図4を用いて本開示の実施の形態2にかかる仮想化システムの構成例について説明する。図4は、主に図3のMANO32、仮想SGW78、仮想PGW80、及びMME90の構成を示している。図4の仮想化システムは、主にETSI(European Telecommunications Standards Institute)が提案するNFV(Network Function Virtualization)を実現するためのシステム構成を示している。図4の仮想化システムは、NE(Network Element)22、NE24、MANO(Management And Network Orchestration)32、NFVI(NFV Infrastructure)42、VNF(Virtualized Network Function)44、VNF46、DM(Domain Manager)64、DM66、及びOSS(Operation Support System)/BSS(Business Support System)61を有している。
 NE22、DM64、DM66は、それぞれEMS(Element Management System)23、EMS65、及びEMS67を有している。MANO32は、NFVO(NFV Orchestrator)34、VNFM(VNF Manager)36、及びVIM(Virtualized Infrastructure Manager)38を有している。OSS/BSS61は、NMS(Network Management System)62を有している。
 NE22及びNE24は、例えば、モバイルネットワークに配置されるノード装置である。例えば、NE22は、3GPPにおいて規定されているMMEであってもよい。NE24は、3GPPにおいて規定されているSGW、もしくはPGW等であってもよい。MMEであるNEは、図2の管理装置30に相当する。また、NE22及びNE24は、物理ノードである。
 VNF44及びVNF46は、モバイルネットワークにおいて用いられるネットワーク機能を起動、もしくは提供するためのソフトウェアリソースである。NFVI42は、VNFを実行するための物理リソースである。NFVI42、VNF44、及びVNF46によって構成される装置は、図2のローカルGW71に相当し、図3のS/P-GW(LGW)78/80に相当する。こららは、VM(Virtual Machine)と称されてもよい。
 OSS/BSS61は、NMS62を用いて仮想化システム全体を管理するシステムである。DM64及びDM66は、ドメインごとに配置されており、ドメインを構成する装置を管理する。
 EMS23は、NE22を管理する機能である。同様に、EMS65は、DM64を管理する機能であり、EMS67は、DM66を管理する機能である。
 MANO32は、NFVO34、VNFM36、及びVIM38を用いて仮想化システムを制御する。MANO32は、複数のサーバを有する装置群であってもよく、1台のサーバ装置であってもよい。MANO32は、図2の制御装置60に相当する。NFVO34は、NMS62と接続し、仮想化システム全体のリソースもしくは動作を制御する。
 VNFM36は、DM66、VNF44及びVNF46と接続し、主にVNF44及びVNF46におけるネットワーク機能の起動制御を行う。例えば、VNFM36は、VNF44及びVNF46において起動するネットワーク機能を選択する。さらに、VNFM36は、VNF44及びVNF46へ、選択したネットワーク機能の起動を指示するメッセージを送信する。VIM38は、NFVI42を制御する。
 ここで、図4における仮想化システムを構成する各構成要素間のリファレンスポイントについて説明する。EMS23とNMS62との間のリファレンスポイントは、Itf-Nと規定されている。DM64及びDM66と、NMS62との間のリファレンスポイントは、Itf-Nと規定されている。VNF44とNFVI42との間のリファレンスポイントは、Vn-Nfと規定されている。NMS62とNFVO34との間のリファレンスポイントは、Os-Ma-nfvoと規定されている。EMS67とVNFM36との間のリファレンスポイントは、Ve-Vnfm-emと規定されている。VNF46とVNFM36との間のリファレンスポイントは、Ve-Vnfm-vnと規定されている。NFVI42とVIM38との間のリファレンスポイントは、Nf-Viと規定されている。NFVO34とVNFM36との間のリファレンスポイントは、Or-Vnfmと規定されている。VNFM36とVIM38との間のリファレンスポイントは、Vi-Vnfmと規定されている。NFVO34とVIM38との間のリファレンスポイントは、Or-Viと規定されている。
 NFVO34は、NMS62を介して、MMEとして動作するNE22から、UE70の位置情報を受信する。NFVO34は、VNFM36へUE70の位置情報を出力する。
 UE70の位置情報は、例えば、UE70が通信しているeNB72の識別情報を示すeNB IDが用いられてもよい。もしくは、UE70の位置情報は、UE70の位置登録エリアもしくはページングエリアを示すTAC(Tracking Area Code)が用いられてもよい。
 VNFM36は、eNB IDもしくはTACを用いて、UE70の近傍に配置されているローカルGW71が有するVNF44及びVNF46を選択する。VNFM36は、選択したVNF44において仮想SGW78を起動することを指示し、選択したVNF46において仮想PGW80を起動することを指示する。
 例えば、VNFM36は、eNB IDもしくはTACと、VNF44及びVNF46とを関連づけて管理していてもよい。この場合、VNFM36は、eNB IDもしくはTACを受け取った場合に、受け取ったeNB IDもしくはTACと関連づけられているVNF44及びVNF46へ、仮想SGW78及び仮想PGW80の起動を指示する。
 仮想SGW78及び仮想PGW80が、UE70の近傍、つまり、eNB72の近傍に配置されているローカルGW71において起動されることによって、UE70とMECサーバ82との間の通信経路を最小化することができる。つまり、UE70がMECサーバ82と通信するために任意のSGW及びPGWを用いる場合と比較して、仮想SGW78及び仮想PGW80を用いる場合は、UE70とMECサーバ82との間の伝送遅延を短くすることができる。
 続いて、図5を用いて、MME90の構成例について説明する。MME90は、図4において説明したNE22と同一である。NE22は、仮想化システムにおいて用いられる呼称であり、MME90は、3GPPにおいて規定された通信システムにおいて用いられる呼称である。ここでは、MME90とNE22とは、同一の装置を示す。
 MME90は、位置情報管理部92及び通信部94を有している。通信部は送信及び受信部と言い換えてもよい。位置情報管理部92及び通信部94は、プロセッサがメモリに格納されたプログラムを実行することによって動作するソフトウェアもしくはモジュールであってもよい。または、位置情報管理部92及び通信部94は、回路もしくはチップ等のハードウェアであってもよい。
 位置情報管理部92は、MME90が管理する位置登録エリアに位置する複数のUEの情報を管理する。通信部94は、位置情報管理部92において管理されているUEとMME90が管理する位置登録エリアとを関連づけた位置情報を含むメッセージをOSS/BSS61を介して、MANO32へ送信する。
 さらに、通信部94は、OSS/BSS61を介してMANO32へ、仮想SGW78及び仮想PGW80の起動を要求するメッセージを送信する。位置情報を含むメッセージと、仮想SGW78及び仮想PGW80の起動を要求するメッセージとは同一のメッセージであってもよい。また、通信部94は、仮想SGW78及び仮想PGW80のアドレス情報を取得するために、DNS100へメッセージを送信する。DNS100は、DNSサーバ100と言い換えられてもよい。仮想SGW78及び仮想PGW80のアドレス情報は、例えば、IPアドレスであってもよい。
 続いて、図6を用いて、UE70に関するAttach処理の流れについて説明する。はじめに、UE70は、eNB72を介してMME90へAttach requestメッセージを送信する(S11)。UE70は、MECサービスに関するAPN(Access Point Name)を含むAttach requestメッセージをMME90へ送信する。
 次に、MME90は、Attach requestメッセージに含まれるAPNが、MECサービスに関するAPNであるか否かを判定する(S12)。ステップS12においては、MME90は、APNを用いてUE70におけるMECサービスの利用可否を判定しているが、例えば、UE70の加入者プロファイルを用いてUE70におけるMECサービスの利用可否を判定してもよい。MME90は、例えば、HSS(Home Subscriber Server:不図示)に保持されている加入者プロファイルを用いて上記の判定を行ってもよい。または、MME90は、UE70のIMEI(International Mobile Equipment identity)もしくはIMSI(International Mobile Subscriber Identity)が、MECサービスを利用するIMEI群もしくはIMSI群を示すIMEIレンジもしくはIMSIレンジに含まれているか否かを用いて、UE70におけるMECサービスの利用可否を判定してもよい。MME90は、ステップS12においては、UE70が、MECサービスを利用すると判定する。
 次に、MME90は、MECサービスを提供するMECサーバ82と通信するための仮想SGW78及び仮想PGW80に関するアドレス情報を取得するために、DNS100へS/P-GW Selectionメッセージを送信する(S13)。
 次に、DNS100は、仮想SGW78及び仮想PGW80のアドレスを検索する。DNS100は、仮想SGW78及び仮想PGW80のアドレスが存在した場合に、仮想SGW78及び仮想PGW80のアドレス情報を含む応答メッセージをMME90へ送信する(S14)。これより、UE70は、既に起動されている仮想SGW78及び仮想PGW80を流用又は利用して通信することができる。次に、MME90は、eNB72と仮想SGW78との間、さらに、仮想SGW78と仮想PGW80との間におけるセッションを確立する処理を実行する(S15)。eNB72と仮想SGW78との間、さらに、仮想SGW78と仮想PGW80との間におけるセッションは、PDN(Packet Data Network) Connectionもしくは通信ベアラと称されてもよい。次に、MME90は、ステップS11におけるAttach requestメッセージへの応答として、Attach acceptメッセージを、eNB72を介してUE70へ送信する(S16)。
 図6の処理を実行することによって、UE70のAttach処理において、UE70は、仮想SGW78及び仮想PGW80を介してMECサーバ82と通信を行うことができる。
 続いて、図7を用いて、図6とは異なるUE70に関するAttach処理の流れについて説明する。図6においては、DNS100が仮想SGW78及び仮想PGW80のアドレス情報を管理していたことを前提としているが、図7においては、DNS100が仮想SGW78及び仮想PGW80のアドレス情報を管理していないことを前提とする。図7のステップS21~S23は、図6のステップS11~S13と同様であるため説明を省略する。
 ステップS24において、DNS100は、MECサービスを提供するMECサーバ82と通信するための仮想SGW78及び仮想PGW80に関するアドレス情報を管理していない場合、仮想SGW78及び仮想PGW80のアドレス情報を設定せずに、応答メッセージをMME90へ送信する。
 次に、MME90は、UE70に関する位置情報を設定したS/P-GW start requestメッセージをMANO32へ送信する(S25)。また、MME90は、UE70に関する位置情報の他に、UE70が受けるMECサービスのMECサービス種別及びMECサービスに要求する品質等に関する情報もS/P-GW start requestメッセージに設定してもよい。さらに、MME90は、上記のUE70に関する位置情報に加えて、ローカルGW71が設置されている位置に関する情報をS/P-GW start requestに設定してもよい。また、仮想LGWを起動する場合、S/P-GW start requestは、L-GW start requestメッセージに置き換えられてもよい。
 次に、MANO32は、S/P-GW instantiationを実行する(S26)。S/P-GW instantiationは、MME90から送信されたUE70に関する位置情報を用いて、UE70の近傍に配置されたローカルGW71が有するVNFにおいて、仮想SGW78及び仮想PGW80を起動させる処理である。また、仮想LGWを起動する場合、S/P-GW instantiationは、L-GW instantiationメッセージに置き換えられてもよい。
 次に、MANO32は、起動した仮想SGW78及び仮想PGW80のアドレス情報を設定したS/P-GW start responseメッセージをMME90へ送信する(S27)。また、仮想LGWを起動する場合、S/P-GW start responseは、L-GW start responseメッセージに置き換えられてもよい。さらに、MANO32は、起動した仮想SGW78及び仮想PGW80のアドレス情報を設定したDNS UpdateメッセージをDNS100へ送信する(S28)。
 ステップS29及びS30は、図6のステップS15及びS16と同様であるため、詳細な説明を省略する。
 以上説明したように、本開示の実施の形態2にかかる通信システムを用いることによって、UE70の近傍に配置されているローカルGW71において、仮想SGW78及び仮想PGW80を起動することができる。さらに、UE70がMECサーバ82と通信を行う際に、ユーザデータは、仮想SGW78及び仮想PGW80を介して、UE70とMECサーバ82との間において送受信される。これより、任意の場所に存在するSGW及びPGWを用いる場合と比較して、UE70とMECサーバ82との間において送受信されるユーザデータの伝送遅延を短くすることができる。これより、eNB72の近傍等、UE70に近い位置に配置されているMECサーバ82は、UE70に対して、短い遅延時間を要求する通信サービスを提供することができる。
 (実施の形態3)
 続いて、図8を用いて本開示の実施の形態3にかかる仮想SGW78及び仮想PGW80の起動処理の流れについて説明する。実施の形態3は、以下の前提条件を有する。
(1)MECサーバ82用の仮想SGW78及び仮想PGW80のNAPTR(Naming Authority Pointer)/SRV(Service)レコードは、DNS100に登録されている。
(2)A/AAAAレコードは、DNS100に登録されていない。
(3)MANO32は、登録済みのレコードから得られるFQDN(Fully Qualified Domain Name)から位置情報を把握する。
 前提条件(3)について、例えば、FQDNが”topon.s5-sgw.Node1.MecSite1.xxxx”であれば、”MecSite1.xxxx”をMECサーバ82の位置情報とする。さらに、MECサーバ82と通信する際に用いられる仮想SGWの名称は、Node1であることを示している。そのため、MME90は、Node1とする名称の仮想SGWの起動を要求する。
 以降の記載において、図8に示す処理の流れについて説明する。はじめに、MME90は、DNS100を用いて、UE70に関するTACもしくはeNB IDに関連づけられているNAPTRレコードを検索する(S41)。続いて、MME90は、NAPTRレコードがヒットしたか否かを判定する(S42)。MME90は、NAPTRレコードがヒットしたと判定すると、NAPTRレコードにA flagが設定されているか否かを判定する(S43)。
 MME90は、NAPTRレコードにA flagが設定されておらず、例えば、S flagが設定されていると判定した場合、SRVレコードを検索する(S44)。次に、MME90は、SRVレコードがヒットしたか否かを判定する(S45)。MME90は、SRVレコードがヒットしたと判定すると、A/AAAAレコードを検索する(S46)。ヒットしたSRVは、例えば、FQDNを用いて”topon.s5-sgw.Node1.MecSite1.xxxx”と示されてもよい。
 ここで、ステップS43において、MME90は、NAPTRレコードにA flagが設定されていると判定した場合、ステップS44及びS45の処理を行わず、ステップS46の処理を実行する。
 次に、MME90は、A/AAAAレコードがヒットしないと判定した場合(S47)、VM(Virtual Machine)起動指示に関するメッセージをMANO32へ送信する(S48)。VMは、図2において説明したローカルGW71、さらに、図4において説明したNFVI42、VNF44及びVNF46に相当する。VM起動指示は、VNF44及びVNF46において、仮想SGW78及び仮想PGW80を起動することを指示するメッセージである。VM起動指示に関するメッセージは、例えば、図7のステップS25におけるS/P-GW start requestメッセージに相当する。MME90は、起動指示に関するメッセージにおいて、Node1とする仮想SGW78の起動を指示する。さらに、ステップS45においてヒットしたSRVレコードに仮想PGW80のアドレスが示されている場合、MME90は、仮想PGW80の起動も併せて指示する。
 次に、MME90は、起動された仮想SGW78及び仮想PGW80に関するアドレス情報を受信したか否かを判定する(S49)。MME90は、起動された仮想SGW78及び仮想PGW80に関するアドレス情報を受信していないと判定した場合、エラーが発生したと判定する(S51)。また、MME90は、起動された仮想SGW78及び仮想PGW80に関するアドレス情報を受信した場合、eNB72、仮想SGW78、及び仮想PGW80においてセッション確立処理を実行する(S50)。セッション確立処理は、図7のステップS29に相当する。
 ステップS47において、MME90は、A/AAAAレコードがヒットしたと判定した場合、ステップS50においてセッション確立処理を実行する。また、ステップS42、及びステップS45においてヒットしないと判定した場合、ステップS51においてエラーが発生したと判定する。
 以上説明したように、本開示の実施の形態3にかかる仮想SGW78及び仮想PGW80の起動処理の流れを用いた場合、階層的に命名されたアドレス情報を用いて、仮想SGW78及び仮想PGW80の位置情報を管理することができる。MME90は、階層的に命名されたアドレス情報を用いて、MANO32へ、MECサーバ82と通信する際に用いる仮想SGW78及び仮想PGW80の起動を要求することができる。
 (実施の形態4)
 続いて、図9を用いて本開示の実施の形態4にかかるUE70に関するAttach処理の流れについて説明する。ステップS61及びS62は、図6のステップS11及びS12と同一であるため詳細な説明を省略する。次に、MME90は、MECサービスを提供するMECサーバ82のアドレス情報、さらに、MECサービスを提供するMECサーバ82と通信するための仮想SGW78及び仮想PGW80のアドレス情報を取得するために、DNS100へMECサービスSelectionメッセージを送信する(S63)。
 次に、DNS100は、MECサービスを提供するMECサーバ82のアドレス情報、さらに、MECサービスを提供するMECサーバ82と通信するための仮想SGW78及び仮想PGW80のアドレス情報を管理していない場合、それぞれのアドレス情報を設定せずに、応答メッセージをMME90へ送信する(S64)。
 次に、MME90は、UE70に関する位置情報を設定したMECサービス start requestメッセージをMANO32へ送信する(S65)。次に、MANO32は、S/P-GW及びMECサーバ instantiationを実行する(S66)。つまり、MANO32は、MECサーバ82を起動させるとともに、UE70の近傍に配置されたローカルGW71が有するVNFにおいて、仮想SGW78及び仮想PGW80を起動させる。
 ここで、図10を用いて、MANO32が保持する、UE70に関する位置情報とMECサーバとを関連づけた情報について説明する。図10においては、UE70に関する位置情報として、TACを用いているが、eNB IDを用いてもよい。
 図10においては、TACとMECサーバとを1対1に対応づけている。例えば、MANO32は、UE70に関する位置情報として、TAC:0001を取得した場合、MEC001とするMECサーバ82を起動させる。
 図9に戻り、次に、MANO32は、起動したMECサーバ82、仮想SGW78、及び仮想PGW80のアドレス情報を設定したMECサービス start responseメッセージをMME90へ送信する(S67)。さらに、MANO32は、起動したMECサーバ82、仮想SGW78、及び仮想PGW80のアドレス情報を設定したDNS UpdateメッセージをDNS100へ送信する(S68)。
 ステップS69は、図6のステップS15と同様であるため、詳細な説明を省略する。次に、MME90は、ステップS67において取得したMECサーバ82のアドレス情報を設定したAttach acceptメッセージをeNB72を介してUE70へ送信する(S70)。MME90は、UE70との間において情報を直接交換する際に用いる情報要素であるPCO(Protocol Configuration Option)にMECサーバ82のアドレス情報を設定してもよい。UE70へAttach acceptメッセージが送信された後に、MECサービス初期化処理が実行される。
 以上説明したように、本開示の実施の形態4にかかる仮想SGW78及び仮想PGW80の起動に関する処理の流れを実行することによって、MME90は、仮想SGW78及び仮想PGW80の起動とともに、MECサーバ82の起動も併せて要求することができる。さらに、UE70は、Attach処理の手続において、MECサーバ82のアドレス情報を取得することができる。
 (実施の形態5)
 続いて、図11を用いて、本開示の実施の形態5にかかるUE70に関するAttach処理の流れについて説明する。ステップS81~S86は、図9のステップS61~S66と同様であるため詳細な説明を省略する。
 ステップS86において、MECサーバ82、仮想SGW78、及び仮想PGW80が起動された場合、MANO32は、仮想SGW78及び仮想PGW80のアドレス情報を設定したMECサービス start responseメッセージをMME90へ送信する(S87)。次に、MANO32は、MECサーバ82、仮想SGW78、及び仮想PGW80のアドレス情報を設定したDNS UpdateメッセージをDNS100へ送信する(S88)。
 次に、MME90は、仮想SGW78及び仮想PGW80へCreate Session Requestメッセージを送信し、eNB72、仮想SGW78、及び仮想PGW80の間にセッションを確立する(S89)。ここで、MME90は、MECサーバ82のアドレス情報を要求する情報をCreate Session Requestメッセージに設定する。
 次に、仮想PGW80は、MECサーバ82のアドレス情報を取得する(S90)。ここで、仮想PGW80が、MECサーバ82のアドレス情報を取得する方法について説明する。例えば、仮想PGW80が起動すると、VNFM36は、局データとしてMECサーバ82のアドレス情報を仮想PGW80へ送信、もしくは投入してもよい。
 もしくは、仮想PGW80が起動すると、仮想PGW80は、MECサーバ82のIPアドレスを管理するDHCPサーバへ、DHCPリクエストを送信する。仮想PGW80は、DHCPリクエストに対する応答メッセージにおいて、MECサーバ82のIPアドレスを取得してもよい。
 もしくは、仮想PGW80が起動すると、仮想PGW80は、MECサーバ82のIPアドレスを管理するDNSサーバへ、MECサーバ82のドメイン名を含む問合せメッセージを送信する。仮想PGW80は、問合せメッセージに対する応答メッセージにおいて、MECサーバ82のIPアドレスを取得してもよい。
 仮想PGW80は、MECサーバ82のアドレス情報を取得すると、取得したアドレス情報を設定したCreate Session ResponseメッセージをMME90へ送信する(S91)。次に、MME90は、eNB72を介してUE70へ、MECサーバ82のアドレス情報を設定したAttach acceptメッセージを送信する(S92)。ステップS91において、仮想PGW80は、UE70との間において情報を直接交換する際に用いる情報要素であるPCO(Protocol Configuration Option)にMECサーバ82のアドレス情報を設定してもよい。さらに、ステップS92において、MME90は、UE70との間において情報を直接交換する際に用いる情報要素であるPCO(Protocol Configuration Option)にMECサーバ82のアドレス情報を設定してもよい。UE70へAttach acceptメッセージが送信された後に、MECサービス初期化処理が実行される。
 以上説明したように、本開示の実施の形態5にかかる仮想SGW78及び仮想PGW80の起動に関する処理の流れを実行することによって、MME90は、仮想SGW78及び仮想PGW80の起動とともに、MECサーバ82の起動も併せて要求することができる。さらに、仮想PGW80が、MECサーバ82のアドレス情報を取得し、仮想PGW80は、UE70に関するAttach処理の手続において、MECサーバ82のアドレス情報をUE70へ送信することができる。
 (実施の形態6)
 続いて、図12を用いて、本開示の実施の形態6にかかるUE70に関するAttach処理の流れについて説明する。ステップS101~S106は、図9のステップS61~S66と同様であるため詳細な説明を省略する。
 MANO32は、DHCPサーバ120に対してMECサーバ82のアドレス情報の登録を要求するメッセージを送信する(S107)。ステップS108~S110は、図9のステップS67~S69と同様であるため詳細な説明を省略する。
 MME90は、ステップS111において、eNB72を介してUE70へAttach acceptメッセージを送信する。ここで、MME90は、Attach acceptメッセージに、MECサーバ82のアドレス情報を設定していない。UE70へAttach acceptメッセージが送信された後に、MECサービス初期化処理が実行される。
 次に、UE70は、DHCPサーバ120へ、MECサーバ82のアドレス情報を取得するために、DHCP requestメッセージを送信する(S112)。DHCPサーバ120は、MECサーバ82のアドレス情報を設定したDHCP応答メッセージをUE70へ送信する(S113)。
 以上説明したように、本開示の実施の形態6にかかる仮想SGW78及び仮想PGW80の起動に関する処理の流れを実行することによって、MME90は、仮想SGW78及び仮想PGW80の起動とともに、MECサーバ82の起動も併せて要求することができる。さらに、MANO32が、MECサーバ82のアドレス情報をDHCPサーバ120へ登録しているため、UE70は、DHCP応答メッセージを受信することによって、MECサーバ82のアドレス情報を取得することができる。
 (実施の形態7)
 続いて、MMEとMANOの間の接続形態の変形例を説明するにあたり、図13を用いて、図4を簡略化した仮想化システムの構成例について説明する。図13において、NE22は、MMEに該当している。また、VNF(S/P-GW)104は、VNFM36によってSGW機能及びPGW機能が起動されたVNFであることを示している。
 また、図13においては、MMEは、物理ノードであることを示しているが、VNF(S/P-GW)104と同様に、VNFにおいてソフトウェアとして起動されてもよい。
 続いて、図14を用いて、図13の変形例として、図13とは異なるMMEとMANO間の接続形態について説明する。
 図14において、VNF(MME)102は、VNFM36によってMME機能が起動されたVNFであることを示している。また、VNF(S/P-GW)104は、VNFM36によってSGW機能及びPGW機能が起動されたVNFであることを示している。図14は、MMEが物理ノードではなく、VNFにおいてソフトウェアとして起動されている点において、図13とは異なる。また、VNF(MME)102及びVNF(S/P-GW)104は、共通のVNFMであるVNFM36によって制御される。また、NFVI42は、図14に示すように、VNF(MME)102及びVNF(S/P-GW)104に共通する物理リソースであってもよく、VNF(MME)102及びVNF(S/P-GW)104は、それぞれ異なるNFVIを使用してもよい。図15以降についてもNFVI42は、複数のVNFに共通する物理リソースとして示しているが、それぞれのVNF毎に異なるNFVIが用いられてもよい。
 続いて、図15を用いて、図13及び図14とは異なる接続形態について説明する。図15において、VNFM for MME112は、VNF(MME)102を制御するVNFMであり、VNFM for S/P-GW114は、VNF(S/P-GW)104を制御するVNFMである。
 図15は、VNF(MME)102及びVNF(S/P-GW)104を制御するVNFMがそれぞれ異なる点において、図14と異なる。
 続いて、図16を用いて、図13乃至図15とは異なる接続形態について説明する。図16において、VNF/VNFM(MME)116は、VNFとVNFMとが一つのソフトウェアリソースによって実現されて、さらにMME機能が起動されたことを示している。
 図16は、MME機能を起動するVNFと、そのVNFを制御するVNFMとが同一のソフトウェアリソースによって実現されている点において、図14及び図15と異なる。
 図14~図16に示すように、MMEは、物理ノードとしてではなく、NFVI上のVNFにおいてもMME機能として動作することができる。また、図14~図16に示すように、MME機能を起動したVNFとMANOとの間、さらに、SGW機能及びPGW機能を起動したVNFとMANOとの間には、様々な接続形態があり、柔軟にネットワークを構築することができる。
 (実施の形態8)
 続いて、図17~図20を用いて図4において説明したMANO32を構成するVIM38の配備パターンについて説明する。図18~図20は、図17の変形例として説明する。図17~図20は、NFVI42が、データセンターに配備されていることを示している。データセンターは、例えば、ビルもしくは局舎等に置き換えられてもよい。
 図17においては、VIM38が、UE70の位置情報を用いて、起動するNFVI42を選択する。例えば、VIM38は、UE70と無線通信しているeNB72の近傍に位置するデータセンター内のNFVI42を選択する。
 図18は、データセンターに配備されているNFVI42毎に、VIM130が存在することを示している。具体的には、データセンターAに、VIM130_1及びNFVI42_1が存在し、データセンターBに、VIM130_2及びNFVI42_2が存在する。VIM130は、VIM130_1、VIM130_2、及びVIM130_n(nは1以上の整数)の総称であり、NFVI42は、NFVI42_1、NFVI42_2、及びNFVI42_n(nは1以上の整数)の総称とする。VIM38及びVIM130は、VIMが階層化されていることを示している。VIM38は、VIM130の上位に位置するVIMである。VIM130は、例えば、VIM38に対する子VIM等と称されてもよい。VIM38は、例えば、VIM130に対する親VIM等と称されてもよい。
 図18においては、VIM38が、UE70の位置情報を用いて、UE70の近傍に位置するデータセンター内のVIM130を選択する。例えば、VIM38は、UE70と無線通信するeNB72の近傍にデータセンターAが存在する場合、データセンターAに配備されているVIM130_1を選択する。VIM130_1は、NFVI42_1を起動する。
 図19は、データセンター毎にVIM38が存在することを示している。図19においては、NFVO34が、UE70の位置情報を用いて、UE70の近傍に位置するデータセンター内のVIM38を選択する。
 図20は、データセンターに配備されているNFVI42毎に、VIM38及びVIM130が存在することを示している。具体的には、データセンターAに、VIM130_1及びNFVI42_1が存在する。さらに、VIM130_1の上位装置として、VIM38_1が存在する。VIM38_1は、データセンターAとは異なる位置に存在してもよく、データセンターA内に配置されてもよい。データセンターBに、VIM130_2及びNFVI42_2が存在する。データセンターCに、VIM130_3及びNFVI42_3が存在する。さらに、VIM130_2及びVIM130_3の上位装置としてVIM38_2が存在する。VIM38_2は、データセンターB及びデータセンターCとは異なる位置に存在してもよく、データセンターBもしくはデータセンターC内に配置されてもよい。
 例えば、UE70と無線通信するeNB72の近傍にデータセンターCが存在する場合、NFVO34は、VIM38_2を選択する。さらに、VIM38_2は、データセンターCに配備されているVIM130_3を選択する。VIM130_3は、NFVI42_3を起動する。
 図17~図20に示すように、NFVO34及びVIM38のいずれかが、UE70の位置情報に基づいて、起動するNFVIを選択してもよい。また、VIMを階層化することによって、VIMの処理負荷を分散させてもよい。このようにして、MANO32を構成するVIM38の配置を柔軟に決定することができる。
 続いて、図21を用いて、仮想化システムの構成に応じて変化する、UE70に関する位置情報が流れるリファレンスポイントについて説明する。図21は、図17~図20に示すVIM配備パターン、NFVO/VFNMの動作、VIMの動作、及び位置情報が流れるリファレンスポイントを対応付けている。
 図17のようにVIMが配備される場合、NFVO34及びVNFM36は、MME90から送信された位置情報を用いた処理は行わず、MME90から送信された位置情報をVIM38へ出力する。VIM38は、受け取った位置情報を用いて、NFVI42を選択する。さらに、VIMの配備パターンが図17であり、MMEとMANOとの間の接続形態が図13である場合、VIM38は、Os-Ma-nfvo及びOr-Viを介して位置情報を取得する。VIMの配備パターンが図17であり、MMEとMANOとの間の接続形態が図14もしくは図15である場合、VIM38は、Ve-Vnfm及びVi-Vnfmを介して位置情報を取得する。VIMの配備パターンが図17であり、MMEとMANOとの間の接続形態が図16である場合、VIM38は、Or-Vnfm及びOr-Viを介して位置情報を取得する。
 図18のようにVIMが配備される場合、NFVO34及びVNFM36は、MME90から送信された位置情報を用いた処理は行わず、MME90から送信された位置情報をVIM38へ出力する。VIM38は、受け取った位置情報を用いて、NFVI42及びVIM130を選択する。さらに、VIMの配備パターンが図18であり、MMEとMANOとの間の接続形態が図13である場合、VIM38は、Os-Ma-nfvo及びOr-Viを介して位置情報を取得する。VIMの配備パターンが図18であり、MMEとMANOとの間の接続形態が図14もしくは図15である場合、VIM38は、Ve-Vnfm及びVi-Vnfmを介して位置情報を取得する。VIMの配備パターンが図18であり、MMEとMANOとの間の接続形態が図16である場合、VIM38は、Or-Vnfm及びOr-Viを介して位置情報を取得する。
 図19のようにVIMが配備される場合、NFVO34及びVNFM36は、MME90から送信された位置情報を用いて、VIM38を選択する。NFVO34及びVNFM36は、位置情報をVIM38へ送信しない。つまり、VIM38は、NFVO34及びVNFM36から位置情報を受信しない。さらに、VIMの配備パターンが図19であり、MMEとMANOとの間の接続形態が図13である場合、NFVO34は、Os-Ma-nfvoを介して位置情報を取得する。VIMの配備パターンが図19であり、MMEとMANOとの間の接続形態が図14もしくは図15である場合、VNFM36は、Ve-Vnfmを介して位置情報を取得する。VIMの配備パターンが図19であり、MMEとMANOとの間の接続形態が図16である場合、NFVO34は、Or-Vnfmを介して位置情報を取得する。
 図20のようにVIMが配備される場合、NFVO34及びVNFM36は、MME90から送信された位置情報を用いて、VIM38を選択する。さらに、NFVO34及びVNFM36は、位置情報をVIM38へ送信する。VIM38は、受信した位置情報、もしくは、受信した位置情報の一部を用いて、VIM130を選択する。このVIMの選択は、位置情報を用いて階層的に決定してもよい。例えば、NFVO34は、位置情報を用いて関東地方に位置するVIM38_2を選択し、さらに、VIM38_2が、東京に位置するVIM130_2を選択してもよい。また、NFVO34及びVNFM36は、MME90から送信された位置情報の一部をVIM38へ送信してもよい。さらに、VIMの配備パターンが図20であり、MMEとMANOとの間の接続形態が図13である場合、VIM38は、Os-Ma-nfvo及びOr-Viを介して位置情報を取得する。VIMの配備パターンが図20であり、MMEとMANOとの間の接続形態が図14もしくは図15である場合、VIM38は、Ve-Vnfm及びVi-Vnfmを介して位置情報を取得する。VIMの配備パターンが図20であり、MMEとMANOとの間の接続形態が図16である場合、VIM38は、Or-Vnfm及びOr-Viを介して位置情報を取得する。
 また、各リファレンスポイントにおいては、インタフェースが規定されている。さらに、インタフェースが備える機能において位置情報が送信される。例えば、Os-Ma-nfvoには、Network service lifecycle management interface及びVNF Lifecycle Management interfaceが規定されている。さらに、Network service lifecycle management interfaceは、instantiating a Network Service及びupdating a Network Serviceとする機能を備えている。さらに、VNF Lifecycle Management interfaceは、instantiating VNFとする機能を備えている。Os-Ma-nfvoにおいて、位置情報は、instantiating a Network Service、updating a Network Service、及びinstantiating VNFの少なくとも1つの機能において送信される。
 また、Ve-Vnfm及びOr-Vnfmには、VNF Lifecycle Management interfaceが規定されている。Ve-Vnfm及びOr-Vnfmにおいて、位置情報は、VNF Lifecycle Management interfaceが備える機能において送信される。
 また、Or-Vi及びVi-Vnfmは、インタフェースとしてVirtualised Resources Managementが規定されている。さらに、Virtualised Resources Managementは、requesting the instantiation of virtualized resources、updating instantiated virtualized resources、及びresource reservationsとする機能を備えている。Or-Vi及びVi-Vnfmにおいて、位置情報は、requesting the instantiation of virtualized resources、updating instantiated virtualized resources、及びresource reservationsの少なくとも1つの機能において送信される。
 また、インタフェースが備える各機能は、リファレンスポイントにおいて伝送される信号名として用いられてもよい。
 続いて以下では、上述の複数の実施形態で説明された、NE22、NE24、MANO32、MEC83及びMME90等のノード装置の構成例について説明する。
 図22は、各ノード装置の構成例を示すブロック図である。図22を参照すると、ノード装置は、ネットワークインターフェース1201、プロセッサ1202、及びメモリ1203を含む。ネットワークインターフェース1201は、ネットワークノード(e.g., eNodeB130、MME、P-GW、)と通信するために使用される。ネットワークインターフェース1201は、例えば、IEEE 802.3 seriesに準拠したネットワークインタフェースカード(NIC)を含んでもよい。
 プロセッサ1202は、メモリ1203からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態においてシーケンス図及びフローチャートを用いて説明されたそれぞれのノード装置の処理を行う。プロセッサ1202は、例えば、マイクロプロセッサ、MPU、又はCPUであってもよい。プロセッサ1202は、複数のプロセッサを含んでもよい。
 メモリ1203は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ1203は、プロセッサ1202から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1202は、図示されていないI/Oインタフェースを介してメモリ1203にアクセスしてもよい。
 図22の例では、メモリ1203は、ソフトウェアモジュール群を格納するために使用される。プロセッサ1202は、これらのソフトウェアモジュール群をメモリ1203から読み出して実行することで、上述の実施形態において説明されたノード装置の処理を行うことができる。
 図22を用いて説明したように、上述の実施形態における各ノード装置が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。また、本発明は、それぞれの実施の形態を適宜組み合わせて実施されてもよい。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2015年12月1日に出願された日本出願特願2015-234664を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 通信端末と、
 前記通信端末を接続する基地局と、
 前記通信端末の位置情報を管理する管理装置と、
 前記通信端末に通信サービスを提供するサーバと、
 前記基地局と前記サーバとを接続する通信装置と、
 前記通信装置が有する通信機能の起動または停止を制御する制御装置と、を備え、
 前記サーバは、前記基地局の近傍に配置されており、
 前記管理装置は、前記制御装置へ前記通信端末の位置情報を送信し、
 前記制御装置は、前記位置情報に基づいて、前記通信装置が有する通信機能の起動または停止を制御し、
 前記制御装置は、前記通信機能の起動または停止を前記管理装置を介して、前記通信端末に通知する、通信システム。
 (付記2)
 前記通信装置は、仮想化装置を含む、付記1に記載の通信システム。
 (付記3)
 前記通信機能は、前記通信端末と前記サーバとを接続するゲートウェイ機能である、付記1又は2に記載の通信システム。
 (付記4)
 前記管理装置は、
 前記通信端末の位置情報として、前記通信端末の位置登録エリア又は前記基地局の基地局識別情報を管理する、付記1乃至3のいずれか1項に記載の通信システム。
 (付記5)
 前記管理装置は、
 前記制御装置から、前記通信装置に割り当てられたアドレス情報を受信する、付記1乃至4のいずれか1項に記載の通信システム。
 (付記6)
 前記管理装置は、
 前記制御装置から、前記サーバのアドレス情報をさらに受信する付記5に記載の通信システム。
 (付記7)
 前記管理装置は、
 前記アドレス情報に従って前記通信装置へ前記サーバのアドレス情報の取得を要求するメッセージを送信し、前記通信装置から前記サーバのアドレス情報を受信する、付記5に記載の通信システム。
 (付記8)
 前記管理装置は、
 前記通信装置において前記ゲートウェイ機能が起動されていない場合に、前記制御装置へ前記通信端末の位置情報を送信する、付記3に記載の通信システム。
 (付記9)
 前記通信装置のアドレス情報を管理するDNSをさらに備え、
 前記管理装置は、
 前記DNSに前記通信装置に割り当てられたアドレス情報が存在しない場合に、前記通信装置において前記ゲートウェイ機能が起動されていないと判定する、付記3又は8に記載の通信システム。
 (付記10)
 前記DNSは、
 前記制御装置から、前記通信装置に割り当てられたアドレス情報を受信する、付記9に記載の通信システム。
 (付記11)
 基地局と接続する通信端末の位置情報を管理する位置情報管理部と、
 前記基地局と前記通信端末に通信サービスを提供するサーバとを接続する通信装置が有する通信機能の起動又は停止を前記位置情報に基づいて制御する制御装置へ、前記通信端末の位置情報を送信する通信部を備え、
 前記サーバは、前記基地局の近傍に配置されており、前記制御装置は、前記通信機能の起動または停止を前記制御装置を介して、前記通信端末に通知する、管理装置。
 (付記12)
 前記通信部は、
 前記通信端末の位置情報として、前記通信端末の位置登録エリア又は前記基地局の基地局識別情報を送信する、付記11に記載の管理装置。
 (付記13)
 前記通信部は、
 前記制御装置から、前記通信装置に割り当てられたアドレス情報を受信する、付記11又は12に記載の管理装置。
 (付記14)
 前記通信部は、
 前記制御装置から、前記サーバのアドレス情報をさらに受信する付記13に記載の管理装置。
 (付記15)
 前記通信部は、
 前記アドレス情報に従って前記通信装置へ前記サーバのアドレス情報の取得を要求するメッセージを送信し、前記通信装置から前記サーバのアドレス情報を受信する、付記13に記載の管理装置。
 (付記16)
 前記通信部は、
 前記通信装置においてゲートウェイ機能が起動されていない場合に、前記制御装置へ前記通信端末の位置情報を送信し、前記ゲートウェイ機能は、前記通信端末と前記サーバとを接続する、付記11乃至15のいずれか1項に記載の管理装置。
 (付記17)
 前記通信部は、
 前記通信装置のアドレス情報を管理するDNSに前記通信装置に割り当てられたアドレス情報が存在しない場合に、前記通信装置において前記ゲートウェイ機能が起動されていないと判定する、付記16に記載の管理装置。
 (付記18)
 基地局と接続する通信端末の位置情報を管理し、
 前記基地局と前記通信端末に通信サービスを提供するサーバとを接続する通信装置が有する通信機能の起動又は停止を前記位置情報に基づいて制御する制御装置へ、前記通信端末の位置情報を送信し、
 前記サーバは、前記基地局の近傍に配置されており、前記制御装置は、前記通信機能の起動または停止を前記制御装置を介して、前記通信端末に通知する、通信方法。
 (付記19)
 基地局と接続する通信端末の位置情報を管理し、
 前記基地局と前記通信端末に通信サービスを提供するサーバとを接続する通信装置が有する通信機能の起動又は停止を前記位置情報に基づいて制御する制御装置へ、前記通信端末の位置情報を送信することをコンピュータに実行させ、
 前記サーバは、前記基地局の近傍に配置されており、前記制御装置は、前記通信機能の起動または停止を前記制御装置を介して、前記通信端末に通知する、プログラム。



 10 通信端末
 20 基地局
 22 NE
 23 EMS
 24 NE
 30 管理装置
 32 MANO
 34 NFVO
 36 VNFM
 38 VIM
 40 通信装置
 42 NFVI
 44 VNF
 46 VNF
 47 EMS
 50 サーバ
 60 制御装置
 61 OSS/BSS
 62 NMS
 64 DM
 65 EMS
 66 DM
 67 EMS
 70 UE
 71 ローカルGW
 72 eNB
 73 ローカルサーバ
 74 SGW
 76 PGW
 78 仮想SGW
 80 仮想PGW
 82 MECサーバ
 83 MEC
 84 外部NW
 86 サーバ
 90 MME
 92 位置情報管理部
 94 通信部
 100 DNS
 102 VNF(MME)
 104 VNF(S/P-GW)
 112 VNFM for MME
 114 VNFM for S/P-GW
 116 VNF/VNFM(MME)
 120 DHCP
 130 VIM

Claims (20)

  1.  通信端末と、
     前記通信端末を接続する基地局と、
     前記通信端末の位置情報を管理する管理装置と、
     前記通信端末に通信サービスを提供するサーバと、
     前記基地局と前記サーバとを接続する通信装置と、
     前記通信装置が有する通信機能の起動または停止を制御する制御装置と、を備え、
     前記サーバは、前記基地局の近傍に配置されており、
     前記管理装置は、前記制御装置へ前記通信端末の位置情報を送信し、
     前記制御装置は、前記位置情報に基づいて、前記通信装置が有する通信機能の起動または停止を制御し、
     前記通信端末は、前記通信機能が起動された前記通信装置を介して、前記サーバから前記通信サービスを受ける、通信システム。
  2.  前記制御装置は、前記通信端末の位置情報に加えて、該通信端末の種別、要求されたサービスの種別、サービスが要求する遅延時間のうち少なくとも1つに基づいて、前記通信装置の起動または停止を制御する、請求項1に記載の通信システム。
  3.  前記制御装置は、前記通信装置の前記通信機能の起動または停止を、前記通信端末に通知する、請求項1または2に記載の通信システム。
  4.  前記通信装置は、仮想化装置を含む、請求項1乃至3のいずれか1項に記載の通信システム。
  5.  前記通信機能は、前記通信端末と前記サーバとを接続するゲートウェイ機能である、請求項1乃至4のいずれか1項に記載の通信システム。
  6.  前記管理装置は、
     前記通信端末の位置情報として、前記通信端末の位置登録エリア又は前記基地局の基地局識別情報を管理する、請求項1乃至5のいずれか1項に記載の通信システム。
  7.  前記管理装置は、
     前記制御装置から、前記通信装置に割り当てられたアドレス情報を受信する、請求項1乃至6のいずれか1項に記載の通信システム。
  8.  前記管理装置は、
     前記制御装置から、前記サーバのアドレス情報を受信する、請求項1乃至7のいずれか1項に記載の通信システム。
  9.  前記通信装置のアドレス情報を管理するDNSをさらに備え、
     前記管理装置は、
     前記DNSに前記通信装置に割り当てられたアドレス情報が存在しない場合に、前記通信装置において前記ゲートウェイ機能が起動されていないと判定する、請求項5に記載の通信システム。
  10.  前記DNSは、
     前記制御装置から、前記通信装置に割り当てられたアドレス情報を受信する、請求項9に記載の通信システム。
  11.  基地局と接続する通信端末の位置情報を管理する位置情報管理手段と、
     前記基地局と該基地局の近傍に配置されたサーバとを接続する通信装置が有する通信機能の起動又は停止を制御する制御装置へ、前記通信端末の位置情報を送信する通信手段とを備える、管理装置。
  12.  前記通信手段は、
     前記通信端末の位置情報として、前記通信端末の位置登録エリア又は前記基地局の基地局識別情報を送信する、請求項11に記載の管理装置。
  13.  前記通信手段は、
     前記制御装置から、前記通信装置に割り当てられたアドレス情報を受信する、請求項11又は12に記載の管理装置。
  14.  前記通信手段は、
     前記制御装置から、前記サーバのアドレス情報を受信する請求項11乃至13のいずれか1項に記載の管理装置。
  15.  前記通信手段は、
     前記通信装置のアドレス情報を管理するDNSに前記通信装置に割り当てられたアドレス情報が存在しない場合に、前記通信装置において前記通信端末と前記サーバとを接続するゲートウェイ機能が起動されていないと判定し、前記制御装置へ前記通信端末の位置情報を送信する、請求項11乃至14のいずれか1項に記載の管理装置。
  16.  通信端末の位置情報を管理する管理装置から、前記通信端末の位置情報を受信する受信手段と、
     前記通信端末を接続する基地局と該基地局の近傍に配置されたサーバとを接続する通信装置が有する通信機能の起動または停止を制御する制御手段とを備え、
     前記制御手段は、
     前記位置情報に基づいて、前記通信機能の起動または停止を制御する、制御装置。
  17.  前記制御手段は、
     前記通信端末の位置情報に加えて、該通信端末の種別、要求されたサービスの種別、サービスが要求する遅延時間のうち少なくとも1つに基づいて、前記通信装置の起動または停止を制御する、請求項16に記載の制御装置。
  18.  通信端末の位置情報を管理する管理装置が、前記通信端末の位置情報を制御装置へ送信し、
     前記制御装置は、前記位置情報に基づいて、前記通信端末が接続する基地局と該基地局の近傍に配置されたサーバとを接続する通信装置が有する通信機能の起動または停止を制御し、
     前記通信端末は、前記通信機能が起動された前記通信装置を介して、前記サーバから通信サービスを受ける、通信方法。
  19.  前記制御装置は、前記通信端末の位置情報に加えて、該通信端末の種別、要求されたサービスの種別、サービスが要求する遅延時間のうち少なくとも1つに基づいて、前記通信装置の起動または停止を制御する、請求項18に記載の通信方法。
  20.  前記制御装置は、前記通信装置の前記通信機能の起動または停止を、前記通信端末に通知する、請求項18または19に記載の通信方法。
PCT/JP2016/004973 2015-12-01 2016-11-28 通信システム、管理装置、制御装置、及び通信方法 WO2017094246A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16870187.8A EP3386264B1 (en) 2015-12-01 2016-11-28 Communication system and communication method
US15/780,265 US10671441B2 (en) 2015-12-01 2016-11-28 Communication system, management apparatus, control apparatus, and communication method
JP2017553620A JP6784263B2 (ja) 2015-12-01 2016-11-28 通信システム、管理装置、及び通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015234664 2015-12-01
JP2015-234664 2015-12-01

Publications (1)

Publication Number Publication Date
WO2017094246A1 true WO2017094246A1 (ja) 2017-06-08

Family

ID=58796773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004973 WO2017094246A1 (ja) 2015-12-01 2016-11-28 通信システム、管理装置、制御装置、及び通信方法

Country Status (4)

Country Link
US (1) US10671441B2 (ja)
EP (1) EP3386264B1 (ja)
JP (1) JP6784263B2 (ja)
WO (1) WO2017094246A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019041266A (ja) * 2017-08-25 2019-03-14 日本電信電話株式会社 通信システム及び方法
JP2019519180A (ja) * 2016-06-27 2019-07-04 華為技術有限公司Huawei Technologies Co.,Ltd. ネットワーク・エッジ・コンピューティングを使って仮想化ネットワーク機能を展開するための方法、装置およびシステム
JP2019121975A (ja) * 2018-01-10 2019-07-22 株式会社国際電気通信基礎技術研究所 通信方法、通信システム、mecサーバ、dnsサーバ、および、トラフィック誘導ルータ
JP2019213078A (ja) * 2018-06-06 2019-12-12 Hapsモバイル株式会社 Hapsのフィーダリンクに用いる電波資源の有効活用及びhapsのセル最適化
JP2020053785A (ja) * 2018-09-26 2020-04-02 ソフトバンク株式会社 制御プレーン機器、プログラム、システム及び情報処理装置
CN111328080A (zh) * 2018-12-17 2020-06-23 华为技术有限公司 资源分配的方法和通信装置
EP3665877A4 (en) * 2017-10-25 2020-08-19 Huawei Technologies Co., Ltd. PRIVATE MOBILE EDGE COMPUTING DATA CENTER IN A TELECOMMUNICATIONS NETWORK
JPWO2020090389A1 (ja) * 2018-11-01 2021-05-13 日本電信電話株式会社 通信範囲制御装置、方法及びプログラム
JP2022548649A (ja) * 2019-09-18 2022-11-21 テレフオンアクチーボラゲット エルエム エリクソン(パブル) モバイルエッジコンピューティングにおけるローカルアプリケーションサーバディスカバリのための方法および装置
WO2023105640A1 (ja) * 2021-12-07 2023-06-15 日本電気株式会社 通信装置、通信方法、及び非一時的なコンピュータ可読媒体

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9838991B1 (en) 2016-08-15 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for managing mobile subscriber identification information according to registration requests
US9814010B1 (en) 2016-09-14 2017-11-07 At&T Intellectual Property I, L.P. Method and apparatus for utilizing mobile subscriber identification information with multiple devices based on registration requests
US9924347B1 (en) * 2016-09-14 2018-03-20 At&T Intellectual Property I, L.P. Method and apparatus for reassigning mobile subscriber identification information
US9906943B1 (en) 2016-09-29 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for provisioning mobile subscriber identification information to multiple devices and provisioning network elements
US10070303B2 (en) 2016-11-11 2018-09-04 At&T Intellectual Property I, L.P. Method and apparatus for provisioning of multiple devices with mobile subscriber identification information
US10341842B2 (en) 2016-12-01 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for using temporary mobile subscriber identification information in a device to provide services for a limited time period
US10136305B2 (en) 2016-12-01 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for using mobile subscriber identification information for multiple device profiles for a device
US10070407B2 (en) 2016-12-01 2018-09-04 At&T Intellectual Property I, L.P. Method and apparatus for using active and inactive mobile subscriber identification information in a device to provide services for a limited time period
US10231204B2 (en) 2016-12-05 2019-03-12 At&T Intellectual Property I, L.P. Methods, systems, and devices for registering a communication device utilizing a virtual network
EP3689090A4 (en) * 2017-09-28 2021-05-19 ZTE Corporation MOBILE NETWORK INTERACTION OFFICER
US10869184B2 (en) * 2018-10-05 2020-12-15 Samsung Electronics Co., Ltd Method and system for detecting EDGE server in mobile telecommunication network
US10708716B2 (en) * 2018-10-16 2020-07-07 Cisco Technology, Inc. Methods and apparatus for selecting network resources for UE sessions based on locations of multi-access edge computing (MEC) resources and applications
US11224078B2 (en) * 2020-02-03 2022-01-11 Verizon Patent And Licensing Inc. Multi-operator MEC sharing based on user equipment location
CN114374978A (zh) * 2020-10-15 2022-04-19 中国移动通信有限公司研究院 一种发现mec服务器的方法、装置和计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179673A (ja) * 2013-03-13 2014-09-25 Toshiba Corp 無線通信システム、無線基地局制御装置、無線基地局装置、及び消費電力制御方法
JP2014239334A (ja) * 2013-06-07 2014-12-18 日本電信電話株式会社 無線通信システム、制御装置および制御方法
WO2015178031A1 (ja) * 2014-05-23 2015-11-26 日本電気株式会社 通信装置、通信方法、通信システムおよびプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029700B2 (ja) * 2007-12-13 2012-09-19 富士通株式会社 パケット通信システム及びパケット通信方法並びにノード及びユーザ端末
US8724509B2 (en) * 2009-04-03 2014-05-13 Panasonic Corporation Mobile communication method, mobile communication system, and corresponding apparatus
US9480092B2 (en) * 2009-04-23 2016-10-25 Qualcomm Incorporated Establishing packet data network connectivity for local internet protocol access traffic
EP2622905B1 (en) * 2010-09-28 2019-06-19 BlackBerry Limited Residential/enterprise network connection management and handover scenarios
CN102843739B (zh) * 2011-06-24 2014-09-17 华为终端有限公司 在家庭基站之间进行切换的方法、装置及系统
WO2017002735A1 (ja) * 2015-06-29 2017-01-05 株式会社Nttドコモ 通信制御方法、通信制御装置、及び通信システム
US10645528B2 (en) * 2015-09-18 2020-05-05 Huawei Technologies Co., Ltd. System and methods for reliable communication with mobility along a predictable route

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179673A (ja) * 2013-03-13 2014-09-25 Toshiba Corp 無線通信システム、無線基地局制御装置、無線基地局装置、及び消費電力制御方法
JP2014239334A (ja) * 2013-06-07 2014-12-18 日本電信電話株式会社 無線通信システム、制御装置および制御方法
WO2015178031A1 (ja) * 2014-05-23 2015-11-26 日本電気株式会社 通信装置、通信方法、通信システムおよびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROMI HIRAI ET AL.: "A study on Gateway Selection Method for Ultra-low Latency Services in IoT Era", IEICE TECHNICAL REPORT, vol. 115, no. 25, 8 October 2015 (2015-10-08), XP009507507 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019519180A (ja) * 2016-06-27 2019-07-04 華為技術有限公司Huawei Technologies Co.,Ltd. ネットワーク・エッジ・コンピューティングを使って仮想化ネットワーク機能を展開するための方法、装置およびシステム
US11036536B2 (en) 2016-06-27 2021-06-15 Huawei Technologies Co., Ltd. Method, apparatus, and system for deploying virtualized network function using network edge computing
JP2019041266A (ja) * 2017-08-25 2019-03-14 日本電信電話株式会社 通信システム及び方法
EP3665877A4 (en) * 2017-10-25 2020-08-19 Huawei Technologies Co., Ltd. PRIVATE MOBILE EDGE COMPUTING DATA CENTER IN A TELECOMMUNICATIONS NETWORK
JP2019121975A (ja) * 2018-01-10 2019-07-22 株式会社国際電気通信基礎技術研究所 通信方法、通信システム、mecサーバ、dnsサーバ、および、トラフィック誘導ルータ
JP6999931B2 (ja) 2018-01-10 2022-01-19 株式会社国際電気通信基礎技術研究所 通信方法、通信システム、mecサーバ、dnsサーバ、および、トラフィック誘導ルータ
JP2019213078A (ja) * 2018-06-06 2019-12-12 Hapsモバイル株式会社 Hapsのフィーダリンクに用いる電波資源の有効活用及びhapsのセル最適化
WO2019235324A1 (ja) * 2018-06-06 2019-12-12 Hapsモバイル株式会社 Hapsのフィーダリンクに用いる電波資源の有効活用及びhapsのセル最適化
JP2020053785A (ja) * 2018-09-26 2020-04-02 ソフトバンク株式会社 制御プレーン機器、プログラム、システム及び情報処理装置
JPWO2020067361A1 (ja) * 2018-09-26 2021-09-02 ソフトバンク株式会社 システム、制御プレーン機器、ユーザプレーン機器、及びプログラム
WO2020066056A1 (ja) * 2018-09-26 2020-04-02 ソフトバンク株式会社 制御プレーン機器、プログラム、システム及び情報処理装置
JP7254093B2 (ja) 2018-09-26 2023-04-07 ソフトバンク株式会社 システム、制御プレーン機器、ユーザプレーン機器、及びプログラム
JPWO2020090389A1 (ja) * 2018-11-01 2021-05-13 日本電信電話株式会社 通信範囲制御装置、方法及びプログラム
JP7160107B2 (ja) 2018-11-01 2022-10-25 日本電信電話株式会社 通信範囲制御装置、方法及びプログラム
US11818587B2 (en) 2018-11-01 2023-11-14 Nippon Telegraph And Telephone Corporation Communication range control device, method, and program
CN111328080A (zh) * 2018-12-17 2020-06-23 华为技术有限公司 资源分配的方法和通信装置
CN111328080B (zh) * 2018-12-17 2023-03-21 华为技术有限公司 资源分配的方法和通信装置
JP2022548649A (ja) * 2019-09-18 2022-11-21 テレフオンアクチーボラゲット エルエム エリクソン(パブル) モバイルエッジコンピューティングにおけるローカルアプリケーションサーバディスカバリのための方法および装置
JP7391194B2 (ja) 2019-09-18 2023-12-04 テレフオンアクチーボラゲット エルエム エリクソン(パブル) モバイルエッジコンピューティングにおけるローカルアプリケーションサーバディスカバリのための方法および装置
US11979367B2 (en) 2019-09-18 2024-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for local application server discovery in mobile edge computing
WO2023105640A1 (ja) * 2021-12-07 2023-06-15 日本電気株式会社 通信装置、通信方法、及び非一時的なコンピュータ可読媒体

Also Published As

Publication number Publication date
JPWO2017094246A1 (ja) 2018-09-20
US20180349203A1 (en) 2018-12-06
EP3386264A1 (en) 2018-10-10
EP3386264A4 (en) 2018-12-12
JP6784263B2 (ja) 2020-11-11
EP3386264B1 (en) 2021-02-17
US10671441B2 (en) 2020-06-02

Similar Documents

Publication Publication Date Title
JP6784263B2 (ja) 通信システム、管理装置、及び通信方法
JP6245327B2 (ja) 通信システム、通信方法、及び無線アクセスネットワークノード
US11381956B2 (en) Obtaining of UE policy
US11297685B2 (en) System and method for session relocation at edge networks
US10880792B2 (en) Nodes and method for determining target PLMN ID and target cell ID
JP2023120188A (ja) 5gネットワークでのローカルエリアデータネットワーク(ladn)への接続を管理する方法
WO2016152097A1 (ja) 車両通信システム、基地局、サーバ装置、メッセージ送信方法、車両関連サービス提供方法及び可読媒体
CN111615844B (zh) 用于选择服务无线通信设备的会话管理实体的方法和装置
JP6384486B2 (ja) 通信システム、中継装置、通信方法及びプログラム
WO2019091639A1 (en) Nodes and method for determining target plmn id and target cell id
JP6649493B2 (ja) 通信ネットワークを介して通信端末の通信接続を確立する方法
WO2016125213A1 (ja) 近接サービス通信のための装置及び方法
US11855856B1 (en) Manager for edge application server discovery function
US10506508B2 (en) Highly available network architecture for a LTE based communication network
KR102367331B1 (ko) 코어망을 선택하는 방법, 이를 수행하는 이동성 관리 장치 및 경로 관리 장치
US11895537B2 (en) Systems and methods for supporting multi-access edge computing using application-based quality of service flows
US9877204B1 (en) Systems and methods for a multi-layer tracking area code assignment
CN116868603A (zh) 针对af会话的外部参数提供的新方法
WO2021137180A1 (en) Using dnai to identify a smf supporting connection to a local dn
CN116887259A (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016870187

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016870187

Country of ref document: EP

Effective date: 20180702