WO2017092653A1 - 一种发送信号、接收信号的方法及装置 - Google Patents

一种发送信号、接收信号的方法及装置 Download PDF

Info

Publication number
WO2017092653A1
WO2017092653A1 PCT/CN2016/107740 CN2016107740W WO2017092653A1 WO 2017092653 A1 WO2017092653 A1 WO 2017092653A1 CN 2016107740 W CN2016107740 W CN 2016107740W WO 2017092653 A1 WO2017092653 A1 WO 2017092653A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmitted
path
signals
superimposed
Prior art date
Application number
PCT/CN2016/107740
Other languages
English (en)
French (fr)
Inventor
陈磊
张希
邱晶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017092653A1 publication Critical patent/WO2017092653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for transmitting a signal and receiving a signal.
  • Time Division Duplexing In current communication systems, Time Division Duplexing (TDD) is a mainstream and widely used multi-carrier modulation technique. In TDD mode, multiple signals can be multiplexed and transmitted in the same period of time resources.
  • the transmitter filters each signal before transmission, which reduces the frequency-domain out-of-band leakage of the signal.
  • a filter tailing signal is added before and after each signal, so that the time length of each signal after filtering is different, and how to transmit each signal with different time lengths at present is an urgent problem to be solved.
  • embodiments of the present invention provide a method and an apparatus for transmitting a signal and receiving a signal.
  • the technical solution is as follows:
  • a method of transmitting a signal comprising:
  • each to-be-sent data in the m-channel to be transmitted data respectively, to obtain an m-channel to-be-transmitted signal, where m is an integer greater than one; each of the m-to-be-transmitted signals occupies a signal for a continuous period of time a resource and a frequency resource; the time resources occupied by the signals to be sent are overlapped and not identical; each of the signals to be transmitted occupies a frequency resource continuously and does not overlap;
  • the problem of how to transmit the respective signals of different time lengths is solved.
  • the performing signal superimposition on the m-channel to-be-transmitted signals to form a superimposed signal includes:
  • the truncated signals to be transmitted are superimposed to form a superimposed signal.
  • the filtered tailing signal included in each filtered signal to be transmitted is completely or partially truncated, and the full tailing can remove the filtering tailing signal, and the partial truncation can reduce filtering.
  • the length of the trailing signal thereby reducing the overhead of filtering the trailing signal to time resources.
  • the filtering according to the filtered frequency resource occupied by each of the to-be-transmitted signals, respectively
  • the filter tail signal included in each of the to-be-transmitted signals is completely or partially truncated, including:
  • the filtered tailing signal included in the filtered n-th to-be-transmitted signal is partially truncated.
  • the bandwidth of the frequency resource occupied by the filtered n-th to-be-transmitted signal is greater than or equal to a preset threshold, completely cutting the filtered tail signal can completely eliminate the filtering.
  • the time resource overhead caused by the trailing signal because the bandwidth of the frequency resource occupied by the filtered n-th to-be-sent signal is less than a preset threshold, the partial truncation of the filtering tail signal can reduce the time interval under the condition that the system performance is less affected. Domain resource overhead.
  • the length of the time resource occupied by each of the signals to be transmitted is less than or equal to the length of the superimposed signal.
  • the time resource between the end positions of the signals is used to accommodate the residual filtered tailing signal produced after partial truncation.
  • the residual filter tail signal is received before and after the nth to-be-transmitted signal, so that the impact on system performance can be reduced.
  • the at least one of the m-to-be-transmitted signals includes a synchronization signal.
  • the receiver is enabled to acquire the synchronization timing of the demodulation superimposed signal according to the synchronization signal.
  • a synchronization signal is included in a to-be-transmitted signal in which the occupied frequency resource is greater than or equal to a preset threshold in the m-channel to-be-transmitted signal.
  • the synchronization signal is included in the to-be-transmitted signal whose occupied frequency resource is greater than or equal to the preset threshold, so that the impact on the synchronization signal is reduced during transmission, and the receiver can be accurately detected.
  • the sync signal is output.
  • the signal to be transmitted in the m-channel to-be-transmitted signal includes a synchronization signal and time information, and the time information is used by the receiver to acquire the one-to-be-transmitted signal and each of the other m-1 roads to be sent.
  • the time offset between the starting positions of the valid data of the signal includes a synchronization signal and time information, and the time information is used by the receiver to acquire the one-to-be-transmitted signal and each of the other m-1 roads to be sent.
  • the receiver is guaranteed The synchronization timing for demodulating the superimposed signal is acquired based on the time information.
  • a method of receiving a signal comprising:
  • the superimposed signal comprises an m-channel signal, m is an integer greater than 1, at least one of the signals in the superimposed signal has a starting position later than a starting position of the superimposed signal and/or at least An end position of a signal in the superimposed signal is earlier than an end position of the superimposed signal;
  • Effective data is extracted from the superimposed signal.
  • the received superimposed signal is formed by superimposing a plurality of signals to be transmitted occupying resources of different lengths, the problem of how to transmit the signals of different lengths of time is solved.
  • the length of the time resource occupied by each of the signals is less than or equal to the length of the superimposed signal.
  • the nth signal includes a partial filtering tail signal.
  • the filtering tail signal since the bandwidth of the frequency resource occupied by the nth channel signal is greater than or equal to a preset threshold, the filtering tail signal is not included in the path signal, and the filtering tailing can be completely eliminated.
  • the time resource overhead brought by the signal since the bandwidth of the frequency resource occupied by the nth signal is less than a preset threshold, a partial filtering tailing signal may be included, and the time domain resource overhead of the time interval may be reduced under the condition that the impact on the system performance is small.
  • a time resource between the start position of the superimposed signal and a start position of the nth path to be transmitted signal including the partial filter smear signal or an end position of the superimposed signal and the partial filtered smear signal including the partial filter smear signal or an end position of the superimposed signal and the partial filtered smear signal
  • the time resource between the end positions of the nth way to be transmitted signal is used to accommodate the residual filtered tailing signal generated after the partial truncation.
  • accommodating the residual filter smear signal before and after the nth signal can reduce the impact on system performance.
  • the extracting the valid data from the superimposed signal includes:
  • the first path signal is a signal including the synchronization signal in the m channel signal
  • the signal is one of the m road signals except the first road signal
  • the synchronization timing between the first path signal and the effective data start position of the first path signal and the second path signal is acquired, the synchronization timing of the second path signal is acquired, and the second acquisition is improved.
  • the accuracy of the synchronization timing of the road signal is improved.
  • the first path signal includes a synchronization signal
  • the acquiring the synchronization timing of the first path signal includes:
  • the accuracy of acquiring the synchronization timing of the first path signal is improved according to the synchronization signal.
  • the method before the acquiring the synchronization timing of the second path signal, the method further includes:
  • the preset time offset can be obtained by extracting the time signal from the first path signal, the accuracy of the acquisition time deviation can be improved, thereby improving the acquisition according to the time deviation.
  • the accuracy of the synchronization timing of the two signals since the preset time offset can be obtained by extracting the time signal from the first path signal, the accuracy of the acquisition time deviation can be improved, thereby improving the acquisition according to the time deviation. The accuracy of the synchronization timing of the two signals.
  • an apparatus for transmitting a signal comprising: a processing unit and a transmitting unit;
  • the processing unit is configured to separately modulate each to-be-sent data in the m-channel to be transmitted data to obtain an m-channel to-be-transmitted signal, where m is an integer greater than 1, and each of the m-channel to-be-transmitted signals is to be sent.
  • the transmission signal occupies a continuous time resource and a frequency resource; the time resources occupied by each of the to-be-transmitted signals overlap and are not identical; each of the to-be-sent signals occupying frequency resources continuously and do not overlap;
  • the processing unit is further configured to perform signal superposition on the m-channel to-be-transmitted signal to form a superposition signal, wherein at least one of the to-be-transmitted signals has a starting position in the superimposed signal that is later than a start of the superimposed signal. Position and/or at least one end of the to-be-transmitted signal in the superimposed signal is earlier than an end position of the superimposed signal;
  • the sending unit is configured to send the superposition signal.
  • the multi-path to-be-sent signals occupying different lengths of time resources are superimposed into one superimposed signal, and then the superimposed signals are transmitted, the problem of how to transmit the signals of different time lengths is solved.
  • the processing unit is configured to filter each of the to-be-transmitted signals in the m-channel to-be-transmitted signal, and the filtered each of the to-be-transmitted signals includes a filter tailing signal; according to the filtered each channel
  • the frequency resource occupied by the signal to be transmitted is completely or partially cut off for the filtered tail signal included before and after the filtered signal to be transmitted, and the time resource occupied by each signal to be transmitted after the truncation is the same
  • the filtered tailing signal included in each filtered signal to be transmitted is completely or partially cut off, and the full tailing can remove the filtering tailing signal, and the partial truncation can reduce filtering.
  • the length of the trailing signal thereby reducing the overhead of filtering the trailing signal to time resources.
  • the possible implementation manner of any one of the third to seventh aspects of the first aspect may also be included.
  • a fourth aspect provides an apparatus for receiving a signal, the apparatus comprising: a receiving unit and a processing unit;
  • the receiving unit is configured to receive a superimposed signal, wherein the superimposed signal comprises an m-channel signal, and m is an integer greater than 1, at least one of the starting signals in the superimposed signal is later than the superimposed signal a start position and/or at least one end signal in an end position of the superimposed signal is earlier than an end position of the superimposed signal;
  • the processing unit is configured to extract valid data from the superimposed signal.
  • the received superimposed signal is formed by superimposing a plurality of signals to be transmitted occupying resources of different lengths of time, the problem of how to transmit the signals of different lengths of time is solved.
  • the possible implementation manner of any one of the first to third aspects of the second aspect may also be included.
  • the processing unit is configured to acquire a synchronization timing of the first road signal, where the first road signal is a signal including a synchronization signal in the m road signal; according to the synchronization timing of the first road signal and the first Obtaining a synchronization time between the start signal of the effective signal of the one channel signal and the second channel signal, the second channel signal is the first road signal except the first road signal a signal other than the signal; acquiring valid data in the second path signal according to the synchronization timing of the second path signal.
  • the second path signal is acquired according to the synchronization timing of the first path signal and the time deviation between the start positions of the valid data of the first path signal and the second path signal
  • the synchronization timing improves the accuracy of acquiring the synchronization timing of the second signal.
  • the first path signal includes a synchronization signal
  • the processing unit is configured to detect a time position of the synchronization signal included in the first path signal, and determine a synchronization timing of the first path signal according to the time position.
  • the accuracy of acquiring the synchronization timing of the first path signal is improved according to the synchronization signal.
  • the processing unit is further configured to extract time information from the first path signal, and obtain a time deviation between the first path signal and a valid data start position of the second path signal according to the time information. Or obtaining a time offset between the preset first path signal and the effective data start position of the second path signal.
  • the preset time offset can be obtained by extracting the time signal from the first path signal, the accuracy of the acquisition time deviation can be improved, thereby improving the acquisition according to the time deviation.
  • the accuracy of the synchronization timing of the two signals since the preset time offset can be obtained by extracting the time signal from the first path signal, the accuracy of the acquisition time deviation can be improved, thereby improving the acquisition according to the time deviation. The accuracy of the synchronization timing of the two signals.
  • an apparatus for transmitting a signal comprising: a processor and a transmitter;
  • the processor is configured to separately modulate each to-be-sent data in the m-channel to be transmitted data, to obtain an m-channel to-be-transmitted signal, where m is an integer greater than 1, and each of the m-channel to-be-transmitted signals is to be sent.
  • the transmission signal occupies a continuous time resource and a frequency resource; the time resources occupied by each of the to-be-transmitted signals overlap and are not identical; each of the to-be-sent signals occupying frequency resources continuously and do not overlap;
  • the processor is further configured to perform signal superposition on the m-channel to-be-transmitted signal to form a superimposed signal, where at least one of the to-be-transmitted signals has a starting position in the superimposed signal that is later than a start of the superimposed signal. Position and/or at least one end of the to-be-transmitted signal in the superimposed signal is earlier than an end position of the superimposed signal;
  • the transmitter is configured to send the superposition signal.
  • the problem of how to transmit the signals of different time lengths is solved.
  • the processor is configured to filter each of the to-be-transmitted signals in the m-channel to-be-transmitted signal, And the filtered each of the to-be-transmitted signals includes a filter smear signal; and according to the filtered frequency resources occupied by each of the to-be-sent signals, respectively filtering the filtering of each of the filtered signals to be sent before and after
  • the trailing signal is completely or partially truncated, and the time resources occupied by each of the to-be-transmitted signals after the truncation are the same; the truncated signals to be transmitted are superimposed to form a superimposed signal.
  • the filter tailing signal included in the filter before and after each of the filtered signals to be transmitted is completely or partially cut off, and the filter tailing signal may be completely cut off, and the partial truncation may be performed. Reduce the length of the filter tail signal, thereby reducing the overhead of filtering the trailing signal to time resources.
  • the possible implementation manner of any one of the third to seventh aspects of the first aspect may also be included.
  • an apparatus for receiving a signal comprising: a receiver and a processor;
  • the receiver is configured to receive a superimposed signal, wherein the superimposed signal comprises an m-channel signal, and m is an integer greater than 1, at least one of the starting signals in the superimposed signal is later than the superimposed signal a start position and/or at least one end signal in an end position of the superimposed signal is earlier than an end position of the superimposed signal;
  • the processor is configured to extract valid data from the superimposed signal.
  • the processor is configured to acquire a synchronization timing of the first path signal, where the first path signal is a path signal including a synchronization signal in the m channel signal; according to the synchronization timing of the first path signal and the first Obtaining a synchronization time between the start signal of the effective signal of the one channel signal and the second channel signal, the second channel signal is the first road signal except the first road signal a signal other than the signal; acquiring valid data in the second path signal according to the synchronization timing of the second path signal.
  • the second path signal is acquired according to a synchronization timing between the first path signal and a start position of the effective data of the first path signal and the second path signal.
  • the synchronization timing improves the accuracy of acquiring the synchronization timing of the second signal.
  • the first path signal includes a synchronization signal
  • the first path signal includes a synchronization signal
  • the processor is configured to detect a time position of a synchronization signal included in the first path signal, and determine a synchronization timing of the first path signal according to the time position.
  • the accuracy of acquiring the synchronization timing of the first path signal is improved according to the synchronization signal.
  • the processor is further configured to extract time information from the first path signal, and obtain a time deviation between the first path signal and a valid data start position of the second path signal according to the time information. Or obtaining a time offset between the preset first path signal and the effective data start position of the second path signal.
  • the preset time offset can be obtained by extracting the time signal from the first path signal, the accuracy of the acquisition time deviation can be improved, thereby improving the acquisition according to the time deviation.
  • the accuracy of the synchronization timing of the two signals since the preset time offset can be obtained by extracting the time signal from the first path signal, the accuracy of the acquisition time deviation can be improved, thereby improving the acquisition according to the time deviation. The accuracy of the synchronization timing of the two signals.
  • 1-1 is a schematic diagram of a process of processing a transmitter of an f-OFDM according to an embodiment of the present invention
  • 1-2 is a schematic diagram of a network architecture according to an embodiment of the present invention.
  • 2-1 is a schematic structural diagram of a transmitter according to an embodiment of the present invention.
  • FIG. 2-2 is a schematic structural diagram of a receiver according to an embodiment of the present invention.
  • 3-1 is a flowchart of a method for transmitting a signal according to an embodiment of the present invention
  • 3-2 is a schematic diagram of a filtering process according to an embodiment of the present invention.
  • 3-3 is a waveform diagram of a filter time domain impulse response according to an embodiment of the present invention.
  • 3-4 are schematic diagrams of mutual uplink and downlink switching according to an embodiment of the present invention.
  • 3-5 are schematic structural diagrams of a superposition signal according to an embodiment of the present invention.
  • 3-6 are schematic diagrams of including a synchronization signal in a signal according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for receiving a signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an apparatus for transmitting a signal according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for receiving a signal according to an embodiment of the present invention.
  • F-OFDM Filtered Orthogonal Frequency Division Multiplex
  • the basic principle is to divide a carrier into frequency resources of different segments.
  • the frequency resource may be a sub-band. Taking a sub-band as an example, each sub-band is filtered, and a certain guard band is reserved at the edge of the sub-band, so that the sub-band and the sub-band are irrelevant, and the sub-band and the sub-band are The bands do not affect each other.
  • the bandwidth of each sub-band may be different, and the bandwidth of the sub-band is determined according to service requirements.
  • Figure 1-1 is a simplified block diagram of the F-OFDM processing.
  • a carrier is divided into N subbands, each subband occupies a certain bandwidth, the data of each subband is processed independently, and the configuration information of each subband can be different. Finally, each subband is separately filtered and superimposed. Together, launch in the air.
  • the physical layer numerology of different subbands may be the same or different.
  • the physical layer basic parameters of the subband include at least one of a subcarrier bandwidth, a Transmission Time Interval (TTI) length, a symbol length, a symbol number, and a Cyclic Prefix (CP) length.
  • TTI Transmission Time Interval
  • CP Cyclic Prefix
  • the basic parameters of the physical layer of the subband can be pre-configured or negative according to the service. Flexible adaptation of the situation.
  • subbands configured with basic parameters of different physical layers are suitable for different service types, that is, basic parameters of physical layers suitable for subbands of different service types are different.
  • different physical layer basic parameters of different sub-bands may be different in a sub-carrier bandwidth, a transmission time interval length, a symbol length, a symbol number, and a cyclic prefix length, and may have different ones, for example, different.
  • the sub-band has a different TTI.
  • F-OFDM technology divides the spectrum into multiple sub-bands.
  • a subband in F-OFDM may be a certain bandwidth of a numerology having the same subband, or a set of subcarriers having parameters of the same subband.
  • Each subband may contain multiple subcarriers.
  • the numerology of different subbands may be the same or different.
  • the parameters of the subband include at least one of a subcarrier bandwidth, a transmission time interval length, a symbol length, a symbol number, and a cyclic prefix length.
  • the parameters of the subbands can be pre-configured or flexibly adapted according to the traffic load. Different types of business types can use different sub-bands.
  • FIG. 1-2 is a network architecture diagram of an application according to an embodiment of the present invention.
  • the network architecture includes a transmitter 100 and a receiver 200, and the transmitter can encapsulate multiple data to be sent into a superimposed signal, and The superimposed signal is sent to the receiver; the receiver can receive the superimposed signal, and demodulate one or more valid data from the superimposed signal, and the detailed implementation process is shown in the following embodiment, which is not described in detail herein.
  • FIG. 2-1 is a structural block diagram of the foregoing transmitter 100.
  • the transmitter 100 may generate a large difference due to different configurations or performances, and may include one or more processors 101 and transmitters 102.
  • the processor 101 can be configured to perform the above-described operation of packaging the multiplexed data to be transmitted into one superimposed signal.
  • the transmitter 102 can be configured to perform the operations of transmitting the superimposed signal to a receiver as described above.
  • the transmitter 100 may include other components in addition to the processor 101 and the transmitter 102 described above.
  • memory 103 one or more storage media 106 storing application 104 or data 105 (eg, one or one storage device in Shanghai) may also be included.
  • the memory 103 and the storage medium 106 may be short-term storage or persistent storage.
  • the program stored on the storage medium 106 may include one or more modules (not shown), each of which may include a transmitter A series of instruction operations in 100.
  • the processor 101 can be arranged to communicate with the storage medium 106 to perform a series of instruction operations in the storage medium 106 on the transmitter 100.
  • Transmitter 100 may also include one or more power sources 107, one or more wired or wireless network interfaces 108, one or more input and output interfaces 109, one or more keyboards 110, and/or one or more operating systems. 111, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, etc.
  • the processor 101 and the transmitter 102 of the transmitter 100 may also have the following functions in the present invention:
  • the processor 101 is configured to separately modulate each to-be-sent data in the m-channel to be transmitted data to obtain an m-channel to-be-transmitted signal, where m is an integer greater than one; each of the m-channel to-be-transmitted signals
  • the to-be-transmitted signal occupies a continuous time resource and a frequency resource; the time resources occupied by each of the to-be-transmitted signals overlap and are not completely the same; and each of the to-be-transmitted signals occupies a frequency resource continuously and does not overlap;
  • the processor 101 is further configured to perform signal superposition on the m-channel to-be-transmitted signal to form a superimposed signal, where at least one of the to-be-transmitted signals has a starting position in the superimposed signal that is later than the superimposed signal. a start position and/or at least one end of the to-be-transmitted signal in the superimposed signal is earlier than an end position of the superimposed signal;
  • the transmitter 102 is configured to send the superposition signal.
  • the processor 101 is configured to filter each of the to-be-transmitted signals in the m-channel to-be-transmitted signal, and the filtered each of the to-be-transmitted signals includes a filter tailing signal;
  • the frequency resource occupied by each of the to-be-transmitted signals is completely or partially truncated to the filtered trailing signal included before and after the filtered signal to be transmitted, and each of the to-be-transmitted signals after the truncation is performed.
  • the occupied time resources are the same; the truncated signals to be transmitted are superimposed to form a superimposed signal.
  • the length of the time resource occupied by each of the to-be-transmitted signals is less than or equal to the length of the superposed signal.
  • the starting position of the superimposed signal a time resource between a time resource between the start position of the nth path to be transmitted signal and an end position of the superimposed signal and an end position of the nth path to be transmitted signal for accommodating after partial truncation
  • the resulting residual filter tailing signal is
  • At least one of the to-be-transmitted signals in the m-channel to-be-transmitted signal includes a synchronization signal.
  • a synchronization signal is included in a to-be-transmitted signal in which the occupied frequency resource is greater than or equal to a preset threshold in the m-channel to-be-transmitted signal.
  • the one path to be sent in the m-channel to-be-transmitted signal includes a synchronization signal and time information, and the time information is used by the receiver to acquire the one-way to-be-transmitted signal and the other m-1 roads respectively.
  • the time offset between the starting positions of the valid data of each signal to be transmitted includes a synchronization signal and time information, and the time information is used by the receiver to acquire the one-way to-be-transmitted signal and the other m-1 roads respectively.
  • the problem of how to transmit the signals of different lengths of time is solved; Fully or partially truncating the filtered tailing signal included before and after the filtered signal to be transmitted, the complete truncation can remove the filtering tailing signal, and partial truncation can reduce the length of the filtering tailing signal, thereby reducing the filtering tailing signal pair.
  • the overhead of time resources since the multi-path to-be-sent signals occupying the resources of different lengths are superimposed into one superimposed signal, and then the superimposed signals are transmitted, the problem of how to transmit the signals of different lengths of time is solved; Fully or partially truncating the filtered tailing signal included before and after the filtered signal to be transmitted, the complete truncation can remove the filtering tailing signal, and partial truncation can reduce the length of the filtering tailing signal, thereby reducing the filtering tailing signal pair.
  • the overhead of time resources since the multi-path to-be-sent signals occupying the resources of different lengths are super
  • FIG. 2-2 is a structural block diagram of the receiver 200.
  • the receiver 200 may generate a large difference due to different configurations or performances, and may include a receiver 201 and one or more processors 202.
  • the receiver 201 is configured to receive the operation of the superimposed signal
  • the processor 202 is configured to perform the operation of demodulating one or more valid data from the superimposed signal.
  • the receiver 200 may include other components in addition to the receiver 201 and the processor 202 described above.
  • memory 203 one or more storage media 206 storing application 204 or data 205 (e.g., one or one storage device in Shanghai) may also be included.
  • the memory 203 and the storage medium 206 may be short-term storage or persistent storage.
  • the program stored on storage medium 206 may include one or more modules (not shown), each of which may include a series of instruction operations in receiver 200.
  • the processor 202 can be configured to communicate with the storage medium 206 to perform a series of instruction operations in the storage medium 206 on the receiver 200.
  • Receiver 200 can also include one or more power sources 207, one or more wired or wireless network interfaces 208, one or more input and output interfaces 209, one or more keyboards 210, and/or one or more operating systems. 211, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the receiver 201 and the processor 202 of the receiver 200 in the present invention may also have the following functions:
  • the receiver 201 is configured to receive a superimposed signal, where the superimposed signal includes an m-channel signal, where m is an integer greater than 1, at least one of the starting signals in the superimposed signal is later than the superimposed signal a starting position and/or at least one end signal in an end position of the superimposed signal is earlier than an end position of the superimposed signal;
  • the processor 202 is configured to extract valid data from the superimposed signal.
  • the length of the time resource occupied by each of the signals is less than or equal to the length of the superposed signal.
  • the nth signal includes a partial filtering tail signal.
  • a time resource between the start position of the superimposed signal and a start position of the nth path to be transmitted signal including the partial filter tail signal or an end position of the superimposed signal and the included portion is used to accommodate the residual filtered tailing signal generated after the partial truncation.
  • the processor 202 is configured to acquire synchronization timing of the first path signal, where the first path signal is a path signal including the synchronization signal in the m channel signal; and the synchronization according to the first path signal Timing and a time offset between the start position of the valid data of the first path signal and the second path signal, acquiring synchronization timing of the second path signal, wherein the second path signal is in addition to the m path signal a signal other than the first path signal; and acquiring valid data in the second path signal according to a synchronization timing of the second path signal.
  • the first path signal includes a synchronization signal
  • the processor 202 is configured to detect a time position of a synchronization signal included in the first path signal, and determine a synchronization timing of the first path signal according to the time position.
  • the processor 202 is further configured to extract time information from the first path signal, and obtain a valid data start position of the first path signal and the second path signal according to the time information. A time offset between the two, or a time offset between the preset first path signal and the effective data start position of the second path signal.
  • the synchronization timing of the first path signal and the first path signal and the The time deviation between the start positions of the effective data of the two-way signal acquires the synchronization timing of the second signal, and improves the accuracy of acquiring the synchronization timing of the second signal.
  • an embodiment of the present invention provides a method for sending a signal, including:
  • Step 301 The transmitter separately modulates each data to be transmitted in the m-channel to be transmitted data to obtain an m-channel to-be-transmitted signal, where m is an integer greater than 1.
  • Each of the m-to-be-transmitted signals occupies a continuous time resource and a frequency resource, and the time resources occupied by each of the to-be-transmitted signals overlap and are not completely the same, and each channel to be transmitted occupies a frequency resource continuously and Do not overlap.
  • the frequency resource occupied by the signal to be transmitted may be a sub-band, and the sub-band is a continuous frequency resource.
  • a frequency resource with a bandwidth of 30 Hz to 100 Hz may form a sub-band, and the sub-band corresponds to One or more subcarriers.
  • the step may be: the transmitter maps the m-way to-be-transmitted data to one or more sub-carriers corresponding to the m frequency resources respectively; and performs the inverse fast Fourier transform on the mapped m-way to-be-sent data respectively (Inverse Fast Fourier) Transformation, IFFT) operation; adding a Cyclic Prefix (CP) to the transformed m-channel to be transmitted data to form an m-channel OFDM symbol sequence, where the m-channel OFDM symbol sequence is the m-channel to be transmitted signal, and Each OFDM symbol sequence includes at least one OFDM symbol.
  • IFFT Inverse Fast Fourier Transformation
  • the transmitter maps the data to be transmitted 1, the data to be transmitted 2, and the data to be transmitted 3 to the subcarrier 1 corresponding to the frequency resource 1, the subcarrier 2 corresponding to the frequency resource 2, and the subcarrier 3 corresponding to the frequency resource 3, respectively.
  • the mapped data 1, data 2, and data 3 perform an IFFT operation, and then CP1 is added to the transformed data 1 to obtain an OFDM symbol sequence 1, and CP2 is added to the transformed data 2 to obtain an OFDM symbol sequence 2, and the transformed data 3 is obtained.
  • the CP3 is added to obtain the OFDM symbol sequence 3, that is, three signals to be transmitted are obtained, which are signals 1, 2 and 3 to be transmitted, respectively.
  • each of the to-be-transmitted signals obtained by mapping in this step has a higher frequency domain out-of-band leakage.
  • each of the signals to be transmitted is filtered by the following step 302.
  • Step 302 The transmitter filters, filters, and filters each signal to be sent in the m-channel to be transmitted signal.
  • the filter trailing signal is included before and after each signal to be transmitted.
  • the step may be: the transmitter selects a filter corresponding to each signal to be transmitted according to the bandwidth of the frequency resource occupied by each signal to be transmitted, and filters each signal to be transmitted by using a filter corresponding to each signal to be transmitted.
  • the filter corresponding to the to-be-transmitted signal forms a filtering tail signal before and after the signal to be transmitted when filtering the signal to be transmitted.
  • Figure (a) in Figure 3-2 is a signal to be transmitted.
  • a filter smear signal is formed before and after the signal to be transmitted.
  • the length of the pre-filtering trailing signal formed before the signal to be transmitted is the same as the length of the post-filtering trailing signal formed after the signal to be transmitted.
  • the strategy for selecting a corresponding filter for each signal to be transmitted by the transmitter is: if the bandwidth of the frequency resource occupied by the signal to be transmitted is large, the passband width of the filter selected for the signal to be transmitted is correspondingly If the bandwidth of the frequency resource occupied by the signal to be transmitted is small, the passband width of the filter selected for the signal to be transmitted is correspondingly small.
  • a filter with a wide passband width filters the time domain energy spread of the filter when filtering the signal to be transmitted.
  • the pre-filter tailing signal added by the filter before the signal to be transmitted and the non-negligible portion of the energy in the post-filtering tailing signal added after the signal to be transmitted are shorter. Therefore, the larger the bandwidth of the frequency resource occupied by the signal to be transmitted, the shorter the length of the filtered trailing signal included in the filtered signal to be transmitted.
  • the filter with a narrow passband width has a large time-domain energy spread.
  • the non-negligible portion of the energy in the post-filtering trailing signal added after the signal is longer. Therefore, the smaller the bandwidth of the frequency resource occupied by the signal to be transmitted, the longer the length of the filtered trailing signal included in the filtered signal to be transmitted.
  • Figure (a) filters a signal to be transmitted using a filter with a passband width of 18 MHz.
  • the filter has a large passband width and a small energy spread.
  • the filtered tailing signal formed in the filtered signal to be transmitted includes several sampling points such as 1541, 1542, 1543, 1544, and 1545, and the non-negligible portion of the filtered tailing signal is shorter;
  • Figure (b) uses A filter with a passband width of 720 kHz filters the signal to be transmitted, and the filter has a small passband width and a large energy spread.
  • the filtered smear signal formed in the filtered signal to be transmitted includes sampling points of 1500 to 1600, and the non-negligible portion of the energy of the filtering smear signal is longer.
  • the transmitter selects the filter 1 according to the bandwidth of the frequency resource 1 occupied by the signal 1 to be transmitted, filters the signal 1 to be transmitted through the filter 1, and obtains the filtered signal 1 to be transmitted;
  • the bandwidth selection filter 2 of the frequency resource 2 filters the signal 2 to be transmitted through the filter 2 to obtain the filtered signal 2 to be transmitted;
  • the filter 3 is selected according to the bandwidth of the frequency resource 3 occupied by the signal 3 to be transmitted, and the filter is passed through the filter.
  • the signal to be transmitted 3 is filtered to obtain a filtered signal 3 to be transmitted.
  • the length of time of the filtered signal to be transmitted is greater than the path to be transmitted before filtering.
  • the length of time of the signal in addition, in the Time-division Duplex (TDD) mode of the Long Term Evolution (CB), in order to avoid the uplink transmission of the user equipment (UE) to the remote end The downlink reception of the UE generates interference, and the system reserves a certain guard interval (GP) for the downlink (Downlink, DL) to uplink (UL) switching time in the frame structure.
  • TDD Time-division Duplex
  • GP guard interval
  • the filtered tailing signal produced by the filter is completely included in the frame structure and sent out, as shown in Figures 3-4, such a frame structure will include a large number of filtered tailing signals.
  • the bandwidth of the frequency resource occupied by the filtered signal to be transmitted is small, the filtered trailing signal included in the filtered signal to be transmitted has a long duration, which brings a large time resource overhead and cannot be Accepted by the system.
  • the following operations may be performed on the filtered signal to be transmitted.
  • Step 303 The transmitter completely or partially cuts off the filtered tailing signals included before and after each filtered signal to be sent according to the filtered frequency resources occupied by each signal to be transmitted, and each channel after the truncation is to be sent.
  • the signal takes up the same time resources.
  • the truncation of the filter tail signal can be softly truncated using a descending window function, or can be hard truncated using a steep drop window function.
  • the header of the truncated nth to be transmitted signal may or may not include the time interval.
  • the time interval is for accommodating the pre-filtering tailing signal remaining in the nth to-be-transmitted signal after the truncation.
  • the tail of the truncated nth to-be-transmitted signal includes a time interval for accommodating the post-filtering tailing signal remaining in the truncated nth to-be-transmitted signal.
  • the transmitter may drag the prefiltered signal of the filtered nth road to be sent when the filtered nth road to be transmitted signal is partially cut off.
  • the tail signal is completely cut off, and the filtered post-filtering tail signal portion of the filtered n-th signal to be transmitted is partially cut off.
  • the truncated head of the n-th signal to be transmitted does not include the time interval.
  • the head of the signal to be transmitted of the nth path includes control information, the robustness of the signal is good, and the pre-filtering tailing signal in the filtered nth to-be-transmitted signal is completely cut off. Less impact on system performance. Therefore, the pre-filtering tailing signal can be completely truncated to reduce the time domain resource overhead.
  • the transmitter performs a partial truncation operation on the filtered tailing signal included before and after the filtered nth to-be-transmitted signal, which may be:
  • the transmitter determines a bandwidth range in which the bandwidth of the frequency resource occupied by the filtered nth to-be-transmitted signal is located, and obtains a corresponding time interval according to the bandwidth range, according to the corresponding relationship between the preset bandwidth range and the time interval, according to the time interval.
  • the interval partially cuts off the filtered tail signal included before and after the filtered nth to-be-transmitted signal.
  • the transmitter performs, according to the time domain energy diffusion characteristic information of the filtered tail signal included in the filtered nth road to be transmitted signal and the preset system requirement information, the filtered tailing signal included in the filtered nth road to be transmitted signal. Partial or complete truncation.
  • the time domain energy diffusion characteristic information may be the length of the filtered front and rear filter tail signals in the filtered nth road to be transmitted signal, and the preset system requirement information may be the length of the preset maximum time interval.
  • the process of partially or completely truncating the filtered tailing signal of the filtered nth to-be-transmitted signal according to the two information may be:
  • the filtered trailing signal length of the filtered nth to-be-transmitted signal is less than or equal to the length of the maximum time interval, further determining the bandwidth of the frequency resource occupied by the filtered n-th to-be-sent signal, if the bandwidth is larger For example, if it is greater than the preset threshold, the filtered tailing signal of the filtered nth to-be-transmitted signal is completely completely cut off; if the bandwidth is small, for example, less than or equal to a preset threshold, then The filtered tailing signal of the filtered nth to-be-transmitted signal is truncated; if the filtered trailing signal length of the nth to-be-sent signal after filtering is greater than the length of the maximum time interval, according to the length of the maximum time interval, The filter tailing signal of the nth to be transmitted signal is partially cut off.
  • the complete truncation of the filtered tail signal in the filtered n-th to-be-transmitted signal may bring about a certain system performance loss.
  • the shorter the filtered tailing signal in the filtered nth to-be-sent signal the smaller the system performance loss caused by the filtering tailing signal in the completely truncated filtered nth to-be-sent signal.
  • the longer the filtered tailing signal in the filtered nth to-be-transmitted signal the greater the system performance loss caused by the filtered tailing signal in the completely truncated filtered nth to-be-sent signal. Therefore, when conditions permit, the tailing part can be truncated to reduce the impact on system performance.
  • the shorter filter tail signal can be completely cut off or the longer filter tail signal portion can be cut off, thereby reducing the time domain resource overhead of the time interval under the condition that the impact on the system performance is small.
  • the filter tail signal may be partially or completely truncated as follows:
  • the transmitter completely cuts off the filtered tailing signal in the filtered n-th to-be-transmitted signal; if the filtered n-th to be transmitted
  • the frequency resource occupied by the signal is a sub-band, and the transmitter partially intercepts the filtered tail signal in the filtered n-th to-be-transmitted signal, so that the residual filtering tail signal in the truncated n-th to-be-transmitted signal is cut off.
  • the length of time is the same as the length of time interval.
  • the frequency resource occupied by the to-be-transmitted signal may be a sub-band, and the sub-band is divided into a primary sub-band and a sub-band, and the bandwidth of the primary sub-band is greater than the bandwidth of the sub-band.
  • a subband having a bandwidth greater than a preset threshold may be defined as a primary subband or a subband having the largest bandwidth in a subband occupied by each of the m to be transmitted signals is determined as a primary subband.
  • the operation of the transmitter to partially cut off the filter tail signal may be:
  • the transmitter determines the bandwidth of the bandwidth of the sub-band, and obtains the time interval corresponding to the time range of the stored sub-band bandwidth and the time interval according to the bandwidth of the sub-band bandwidth. Length, or the length of time that the transmitter directly obtains the preset maximum time interval. And partially clipping the filtered tailing signal included in the filtered nth to-be-transmitted signal according to the length of the acquired time interval, so that the time of the residual filtering tailing signal in the nth to-be-transmitted signal after the truncation is performed The length is the same as the length of the acquired interval.
  • the time interval may include a pre-interval and a post-interval, and the pre-interval and the post-interval may be equal or unequal.
  • the length of the residual pre-filtering tailing signal and the length of the residual post-filtering trailing signal in the truncated nth to-be-transmitted signal are the same as the lengths of the corresponding pre- and post-time intervals.
  • the bandwidth of the frequency resource 1 is greater than the bandwidth of the frequency resources 2 and 3, and the bandwidth of the frequency resource 1 is greater than the preset. Threshold, the bandwidth of frequency resources 2 and 3 is less than a preset threshold.
  • the transmitter completely cuts off the pre-filtering tailing signal and the post-filtering tailing signal included in the filtered signal to be transmitted 1, and determines whether the header of the filtered signal to be transmitted 2 includes control information, and the result of the judgment does not include Control information, the transmitter determines the length of the pre- and post-time interval GI, and according to the length of the pre- and post-time interval GI, the pre-filtering tailing signal and the post-filtering tailing signal part of the filtered signal to be transmitted 2 are truncated, so that The length of time of the pre-filtering trailing signal remaining in the signal 2 to be transmitted after partial truncation and the length of time of the residual post-filtering trailing signal are equal to the length of time of the previous time interval GI and the length of time of the post-time interval GI, respectively.
  • the transmitter determines whether the header of the filtered signal to be transmitted 3 includes control information, and when the result of the determination includes the control information, the pre-filtering tail signal of the filtered signal to be transmitted 3 is completely cut off, and the time interval after the transmitter determines
  • the length of the GI is truncated according to the length of the post-interval GI, and the post-filtering tail signal portion of the filtered signal to be transmitted 3 is truncated, so that the length of the post-filtering tail signal remaining in the signal to be transmitted 3 after partial truncation is
  • the time interval GI is equal in length.
  • Step 304 The transmitter superimposes each of the to-be-transmitted signals after partial truncation or complete truncation to form a superimposed signal, and transmits the superimposed signal.
  • At least one of the to-be-transmitted signals includes a synchronization signal.
  • a synchronization signal may be included in the synchronization channel in the signal to be transmitted.
  • the synchronization signal may be a preset synchronization signal or a synchronization signal pre-agreed by the transmitter and the receiver.
  • the synchronization signal is used by the receiver to demodulate valid data in the signal to be transmitted.
  • the to-be-transmitted signal may be a certain to-be-transmitted signal whose bandwidth of the occupied frequency resource is greater than or equal to a preset threshold or a signal to be transmitted that is pre-agreed by the transmitter and the receiver.
  • the bandwidth of the frequency resource 1 occupied by the to-be-sent signal 1 is greater than or equal to a preset threshold, so the synchronization signal may be included in the synchronization channel in the signal to be transmitted 1.
  • the to-be-transmitted signal may further include time information, where the time information is used by the receiver to obtain a time between a valid data start position between the to-be-transmitted signal and the other m-1 way to be sent. deviation.
  • the time control signal may be included in a common control channel in the to-be-transmitted signal. interest.
  • the transmitter and the receiver can agree in advance on the time deviation, such that the time deviation is agreed in the receiver, so the signal to be transmitted may not include the time information.
  • the other m-1 way to be transmitted signal may include a synchronization signal or may not include a synchronization signal.
  • the time resource overhead caused by filtering the trailing signal can be reduced.
  • Embodiments of the present invention provide a method of receiving a signal.
  • the method is used for receiving a superimposed signal sent by the transmitter through Embodiment 3.
  • the method includes:
  • Step 401 The receiver receives the superimposed signal, wherein the superimposed signal includes an m-channel signal, and m is an integer greater than one.
  • Step 402 The receiver detects a time position of the synchronization signal included in the first path signal, and acquires a synchronization timing of the first path signal according to the time position, where the first path signal is one of the m road signals.
  • the first path signal may be a signal located on the primary sub-band, the signal occupying the frequency resource having a bandwidth greater than or equal to a preset threshold, or a signal pre-agreed by the receiver and the transmitter, and the receiver may determine from the m-channel signal.
  • the first signal for example, identifies a first path signal previously agreed with the transmitter from the m-channel signal.
  • the synchronization timing of the first signal is separated from the time position of the synchronization signal by a predetermined time interval, so the receiver can calculate the synchronization timing of the first signal according to the time position of the synchronization signal and the preset time interval.
  • the synchronization timing of the first path signal is used by the receiver to parse the valid data included in the first path signal from the first path signal.
  • Step 403 The receiver acquires a time deviation between the start position of the valid data between the first path signal and the second path signal, and the second path signal is one of the m road signals except the first path signal.
  • the receiver may extract the time and time information from the first path signal.
  • the receiver may extract the time in the common control channel in the first path signal. The time information is then obtained based on the time information to obtain a time offset between the start position of the valid data between the first path signal and the second path signal.
  • the receiver directly acquires the time offset set in advance.
  • Step 404 The receiver acquires the synchronization timing of the second path signal according to the time deviation and the synchronization timing of the first path signal.
  • This step may be: the synchronization timing of the second signal is used by the receiver to parse the valid data included in the second signal from the second signal.
  • Step 405 The receiver demodulates the second signal according to the synchronization timing of the second path signal, and obtains valid data in the second path signal.
  • the receiver parses the OFDM symbol sequence in the second channel signal from the second channel signal according to the synchronization timing of the second channel signal, removes the CP in the OFDM symbol sequence, and performs the OFDM symbol sequence for removing the CP.
  • the Fourier transform operation obtains a subcarrier corresponding to the frequency resource occupied by the second path signal, and extracts valid data at the predetermined subcarrier position from the subcarrier.
  • the receiver may further demodulate the first path signal according to the synchronization timing of the first path signal, which may be:
  • the receiver parses the OFDM symbol sequence in the first path signal from the first path signal according to the synchronization timing of the first path signal, removes the CP in the OFDM symbol sequence, and performs Fourier on the OFDM symbol sequence from which the CP is removed.
  • the transform operation obtains a subcarrier corresponding to the frequency resource occupied by the first path signal, and extracts valid data at the predetermined subcarrier position from the subcarrier.
  • the time deviation between the start positions of the valid data between the first path signal and the second path signal is obtained, and the second path signal is obtained according to the time deviation and the synchronization timing of the first path signal.
  • Synchronization timing since the time offset is introduced at the synchronization timing of acquiring the second path signal, provides the accuracy of acquiring the synchronization timing of the second path signal.
  • an embodiment of the present invention provides a device 500 for transmitting a signal, where the device 500 includes: a processing unit 501 and a sending unit 502;
  • the processing unit 501 is configured to separately modulate each to-be-sent data in the m-channel to be transmitted data to obtain an m-channel to-be-transmitted signal, where m is an integer greater than 1, and each of the m-channel to-be-transmitted signals
  • the to-be-transmitted signal occupies a continuous time resource and a frequency resource; the time resources occupied by each of the to-be-transmitted signals overlap and are not completely the same; and each of the to-be-transmitted signals occupies a frequency resource continuously and does not overlap;
  • the processing unit 501 is further configured to perform signal superposition on the m-channel to be transmitted to form a path a superimposed signal, wherein at least one of the to-be-transmitted signals has a starting position in the superimposed signal that is later than a starting position of the superimposed signal and/or at least one of the to-be-transmitted signals ends in the superimposed signal earlier than End position of the superimposed signal;
  • the sending unit 502 is configured to send the superposition signal.
  • the processing unit 502 is configured to filter each of the to-be-transmitted signals in the m-channel to-be-transmitted signal, and the filtered each of the to-be-transmitted signals includes a filter tailing signal;
  • the frequency resource occupied by each of the to-be-transmitted signals is completely or partially truncated to the filtered trailing signal included before and after the filtered signal to be transmitted, and each of the to-be-transmitted signals after the truncation is performed.
  • the occupied time resources are the same; the truncated signals to be transmitted are superimposed to form a superimposed signal.
  • the length of the time resource occupied by each of the to-be-transmitted signals is less than or equal to the length of the superposed signal.
  • a time resource between the start position of the superimposed signal and a start position of the n-th to-be-transmitted signal that is partially truncated, and an end position of the superimposed signal and the partial truncation is used to accommodate the residual filter tailing signal generated after the partial truncation.
  • At least one of the to-be-transmitted signals in the m-channel to-be-transmitted signal includes a synchronization signal.
  • a synchronization signal is included in a to-be-transmitted signal in which the occupied frequency resource is greater than or equal to a preset threshold in the m-channel to-be-transmitted signal.
  • the one to be sent signal that is included in the m-channel to-be-transmitted signal includes a synchronization signal and time information, and the time information is used by the receiver to acquire the one-way to-be-transmitted signal and other m-1 roads respectively.
  • the time offset between the starting positions of the valid data of each signal to be transmitted includes a synchronization signal and time information, and the time information is used by the receiver to acquire the one-way to-be-transmitted signal and other m-1 roads respectively.
  • the filter tail signal included before and after the filtered signal to be transmitted is completely or partially cut off, and the filter tail signal can be completely cut off, and the partial truncation can reduce the length of the filter tail signal. , thereby reducing the overhead of filtering the trailing signal to time resources.
  • an embodiment of the present invention provides a device 600 for receiving a signal, where the device 600 includes: a receiving unit 601 and a processing unit 602;
  • the receiving unit 601 is configured to receive a superimposed signal, where the superimposed signal includes an m-channel signal, where m is an integer greater than 1, at least one of the starting signals in the superimposed signal is later than the superimposed signal a starting position and/or at least one end signal in an end position of the superimposed signal is earlier than an end position of the superimposed signal;
  • the processing unit 602 is configured to extract valid data from the superimposed signal.
  • the length of the time resource occupied by each of the signals is less than or equal to the length of the superposed signal.
  • the nth signal includes a partial filtering tail signal.
  • a time resource between the start position of the superimposed signal and a start position of the nth path to be transmitted signal including the partial filter tail signal or an end position of the superimposed signal and the included portion is used to accommodate the residual filtered tailing signal generated after the partial truncation.
  • the processing unit 602 is configured to acquire synchronization timing of the first path signal, where the first path signal is a path signal including the synchronization signal in the m path signal; and the synchronization according to the first path signal Timing and a time offset between the start position of the valid data of the first path signal and the second path signal, acquiring synchronization timing of the second path signal, wherein the second path signal is in addition to the m path signal a signal other than the first path signal; and acquiring valid data in the second path signal according to a synchronization timing of the second path signal.
  • the first path signal includes a synchronization signal
  • the processing unit 602 is configured to detect a time position of the synchronization signal included in the first path signal, and determine a synchronization timing of the first path signal according to the time position.
  • the processing unit 602 is further configured to extract time information from the first path signal, and obtain a valid data start position of the first path signal and the second path signal according to the time information. A time offset between the two, or a time offset between the preset first path signal and the effective data start position of the second path signal.
  • the synchronization timing of the second path signal is acquired according to the synchronization timing of the first path signal and the time deviation between the start positions of the effective data of the first path signal and the second path signal, thereby improving the acquisition timing.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种发送信号、接收信号的方法及装置,属于通信领域。所述发送信号的方法包括:对m路待发送数据中的每路待发送数据分别进行调制,得到m路待发送信号;所述m路待发送信号中的每路待发送信号占用一段连续的时间资源和频率资源;所述每路待发送信号占用的时间资源交叠且不完全相同;所述每路待发送信号占用频率资源连续且均不交叠;对所述m路待发送信号进行信号叠加形成一路叠加信号,其中至少存在一路待发送信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路待发送信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;发送所述叠加信号。本发明能够发送时间长度不同的各路信号。

Description

一种发送信号、接收信号的方法及装置
本申请要求于2015年11月30日提交中国专利局、申请号为201510853905.8、发明名称为“一种发送信号、接收信号的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,特别涉及一种发送信号、接收信号的方法及装置。
背景技术
在目前的通信系统中,时分双工(Time Division Duplexing,TDD)是一种主流并获得广泛应用的多载波调制技术。在TDD模式下,多路信号可以复用在同一段时间资源内发送。
在TDD模式下,复用相同时间资源的多路信号的频域带外泄漏较高。为了解决这个问题,发射机在发送之前对每路信号进行滤波,滤波可以降低信号的频域带外泄漏。然而在滤波的过程中会在每路信号的前后添加滤波拖尾信号,这样使得滤波后的每路信号的时间长度不同,在目前如何发送时间长度不同的各路信号是急需解决的问题。
发明内容
为了解决现有技术的问题,本发明实施例提供了一种发送信号、接收信号的方法及装置。所述技术方案如下:
第一方面,提供了一种发送信号的方法,所述方法包括:
对m路待发送数据中的每路待发送数据分别进行调制,得到m路待发送信号,m为大于1的整数;所述m路待发送信号中的每路待发送信号占用一段连续的时间资源和频率资源;所述每路待发送信号占用的时间资源交叠且不完全相同;所述每路待发送信号占用频率资源连续且均不交叠;
对所述m路待发送信号进行信号叠加形成一路叠加信号,其中至少存在一路待发送信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路待发送信号在所述叠加信号中的结束位置早于所述叠加信号 的结束位置;
发送所述叠加信号。
在第一方面中,由于将占用不同长度时间资源的多路待发送信号叠加成一路叠加信号,再发送该叠加信号,从而解决了如何发送时间长度不同的各路信号的问题。
结合第一方面,在第一方面的第一种可能的实现方式中,所述对所述m路待发送信号进行信号叠加形成一路叠加信号,包括:
对所述m路待发送信号中的每路待发送信号进行滤波,且滤波后的所述每路待发送信号的前后包括滤波拖尾信号;
根据滤波后的所述每路待发送信号占用的频率资源,分别对滤波后的所述每路待发送信号包括的滤波拖尾信号进行完全或部分截断,且截断后的所述每路待发送信号占用的时间资源相同;
将截断后的所述每路待发送信号叠加在一起,形成一路叠加信号。
在第一方面的第一种可能的实现方式中,通过对滤波后的每路待发送信号包括的滤波拖尾信号进行完全或部分截断,完全截断可以去除滤波拖尾信号,部分截断可以减少滤波拖尾信号的长度,从而减少滤波拖尾信号对时间资源的开销。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述根据滤波后的所述每路待发送信号占用的频率资源,分别对滤波后的所述每路待发送信号包括的滤波拖尾信号进行完全或部分截断,包括:
如果滤波后的第n路待发送信号占用的频率资源的带宽大于或等于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行完全截断,n=1、2……m;
如果滤波后的第n路待发送信号占用的频率资源的带宽小于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行部分截断。
在第一方面的第二种可能的实现方式中,由于滤波后的第n路待发送信号占用的频率资源的带宽大于或等于预设阈值,所以对滤波拖尾信号进行完全截断可以完全消除滤波拖尾信号带来的时间资源开销。或者,由于滤波后的第n路待发送信号占用的频率资源的带宽小于预设阈值,所以对滤波拖尾信号进行部分截断,可以在保证对系统性能影响较小的条件下减少时间间隔的时域资源开销。
结合第一方面、第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,
所述每路待发送信号占用的时间资源的长度小于或等于所述叠加信号的长度。
在第一方面的第三种可能的实现方式中,由于每路待发送信号占用的时间资源的长度小于或等于叠加信号的长度,保证在叠加过程中避免有效数据丢失。
结合第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,
所述叠加信号的起始位置与所述进行部分截断的第n路待发送信号的起始位置之间的时间资源和所述叠加信号的结束位置与所述进行部分截断的第n路待发送信号的结束位置之间的时间资源用于容纳经部分截断后产生的残留滤波拖尾信号。
在第一方面的第四种可能的实现方式中,在第n路待发送信号的前后容纳残留滤波拖尾信号,可以减少对系统性能的影响。
结合第一方面,在第一方面的第五种可能的实现方式中,所述m路待发送信号中至少存在一路待发送信号中包括同步信号。
在第一方面的第五种可能的实现方式中,通过包括同步信号,让接收机能够根据该同步信号获取到解调叠加信号的同步定时。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,
所述m路待发送信号中存在占用频率资源大于或等于预设阈值的一路待发送信号中包括同步信号。
在第一方面的第六种可能的实现方式中,在占用频率资源大于或等于预设阈值的待发送信号中包括同步信号,这样在传输时减少对同步信号的影响,保证接收机能够准确检测出同步信号。
结合第一方面,在第一方面的第七种可能的实现方式中,
所述m路待发送信号中存在一路待发送信号中同时包括同步信号和时间信息,所述时间信息用于接收机获取所述一路待发送信号分别与其他m-1路中的每路待发送信号的有效数据起始位置之间的时间偏差。
在第一方面的第七种可能的实现方式中,由包括时间信息,保证接收机可 以根据该时间信息获取到用于解调叠加信号的同步定时。
第二方面,提供了一种接收信号的方法,所述方法包括:
接收叠加信号,其中所述叠加信号包括m路信号,m为大于1的整数,至少存在一路信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
从所述叠加信号中提取有效数据。
在第二方面中,由于接收的叠加信号将占用不同长度时间资源的多路待发送信号叠加形成的,从而解决了如何发送时间长度不同的各路信号的问题。
结合第二方面,在第二方面的第一种可能的实现方式中,所述每路信号占用的时间资源的长度小于或等于所述叠加信号的长度。
在第二方面的第一种可能的实现方式中,由于每路信号占用的时间资源的长度小于或等于叠加信号的长度,保证在叠加过程中避免有效数据丢失。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,
如果第n路信号占用的频率资源的带宽大于或等于预设阈值,所述第n路信号不包括滤波拖尾信号,n=1、2……m;
如果第n路信号占用的频率资源的带宽小于预设阈值,所述第n路信号包括部分滤波拖尾信号。
在第二方面的第二种可能的实现方式中,由于第n路信号占用的频率资源的带宽大于或等于预设阈值,所以对该路信号不包括滤波拖尾信号,可以完全消除滤波拖尾信号带来的时间资源开销。或者,由于第n路信号占用的频率资源的带宽小于预设阈值,所以可以包括部分滤波拖尾信号,可以在保证对系统性能影响较小的条件下减少时间间隔的时域资源开销。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,
所述叠加信号的起始位置与所述包括部分滤波拖尾信号的第n路待发送信号的起始位置之间的时间资源或所述叠加信号的结束位置与所述包括部分滤波拖尾信号的第n路待发送信号的结束位置之间的时间资源用于容纳经部分截断后产生的残留滤波拖尾信号。
在第二方面的第三种可能的实现方式中,在第n路信号的前后容纳残留滤波拖尾信号,可以减少对系统性能的影响。
结合第二方面,在第二方面的第四种可能的实现方式中,所述从所述叠加信号中提取有效数据,包括:
获取第一路信号的同步定时,所述第一路信号是所述m路信号中包括同步信号的一路信号;
根据所述第一路信号的同步定时以及所述第一路信号和第二路信号的有效数据起始位置之间的时间偏差,获取所述第二路信号的同步定时,所述第二路信号为所述m路信号中除所述第一路信号以外的其它一路信号;
根据所述第二路信号的同步定时,获取所述第二路信号中的有效数据。
在第二方面中,由于根据第一路信号的同步定时以及第一路信号和第二路信号的有效数据起始位置之间的时间偏差,获取第二路信号的同步定时,提高获取第二路信号的同步定时的精度。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述第一路信号中包括同步信号;
所述获取第一路信号的同步定时,包括:
检测所述第一路信号中包括的同步信号的时间位置,根据所述时间位置确定所述第一路信号的同步定时。
在第二方面的第五种可能的实现方式中,由于第一路信号中包括同步信号,从而根据同步信号提高获取第一路信号的同步定时的精度。
结合第二方面的第四种可能的实现方式,在第二方面的第六种可能的实现方式中,所述获取所述第二路信号的同步定时之前,还包括:
从所述第一路信号中提取时间信息,根据所述时间信息获取所述第一路信号与所述第二路信号的有效数据起始位置之间的时间偏差,或获取预设的所述第一路信号和所述第二路信号的有效数据起始位置之间的时间偏差。
在第二方面的第六种可能的实现方式中,由于从第一路信号中提取时间信号可获取预设的时间偏差,能提高获取时间偏差的准确性,从而根据该时间偏差,提高获取第二路信号的同步定时的精度。
第三方面,提供了一种发送信号的装置,所述装置包括:处理单元和发送单元;
所述处理单元,用于对m路待发送数据中的每路待发送数据分别进行调制,得到m路待发送信号,m为大于1的整数;所述m路待发送信号中的每路待发送信号占用一段连续的时间资源和频率资源;所述每路待发送信号占用的时间资源交叠且不完全相同;所述每路待发送信号占用频率资源连续且均不交叠;
所述处理单元,还用于对所述m路待发送信号进行信号叠加形成一路叠加信号,其中至少存在一路待发送信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路待发送信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
所述发送单元,用于发送所述叠加信号。
在第三方面中,由于将占用不同长度时间资源的多路待发送信号叠加成一路叠加信号,再发送该叠加信号,从而解决了如何发送时间长度不同的各路信号的问题。
结合第三方面,在第三方面的第一种可能的实现方式中,
所述处理单元,用于对所述m路待发送信号中的每路待发送信号进行滤波,且滤波后的所述每路待发送信号包括滤波拖尾信号;根据滤波后的所述每路待发送信号占用的频率资源,分别对滤波后的所述每路待发送信号的前后包括的滤波拖尾信号进行完全或部分截断,且截断后的所述每路待发送信号占用的时间资源相同;将截断后的所述每路待发送信号叠加在一起,形成一路叠加信号。
在第三方面的第一种可能的实现方式中,通过对滤波后的每路待发送信号包括的滤波拖尾信号进行完全或部分截断,完全截断可以去除滤波拖尾信号,部分截断可以减少滤波拖尾信号的长度,从而减少滤波拖尾信号对时间资源的开销。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,
所述处理单元,用于如果滤波后的第n路待发送信号占用的频率资源的带宽大于或等于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行完全截断,n=1、2……m;如果滤波后的第n路待发送信号占用的频率资源的带宽小于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行部分截断。
在第三方面的第二种可能的实现方式中,由于滤波后的第n路待发送信号占用的频率资源的带宽大于或等于预设阈值,所以对滤波拖尾信号进行完全截断可以完全消除滤波拖尾信号带来的时间资源开销。或者,由于滤波后的第n路待发送信号占用的频率资源的带宽小于预设阈值,所以对滤波拖尾信号进行部分截断,可以在保证对系统性能影响较小的条件下减少时间间隔的时域资源开销。
可选的,在第三方面中,还可以包括第一方面的第三种至第七种中的任一种可能的实现方式。
第四方面,提供了一种接收信号的装置,所述装置包括:接收单元和处理单元;
所述接收单元,用于接收叠加信号,其中所述叠加信号包括m路信号,m为大于1的整数,至少存在一路信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
所述处理单元,用于从所述叠加信号中提取有效数据。
在第四方面中,由于接收的叠加信号将占用不同长度时间资源的多路待发送信号叠加形成的,从而解决了如何发送时间长度不同的各路信号的问题。
可选的,在第四方面中,还可以包括第二方面的第一种至第三种中的任一种可能的实现方式。
结合第四方面,在第四方面的第四种可能的实现方式中,
所述处理单元,用于获取第一路信号的同步定时,所述第一路信号是所述m路信号中包括同步信号的一路信号;根据所述第一路信号的同步定时以及所述第一路信号和第二路信号的有效数据起始位置之间的时间偏差,获取所述第二路信号的同步定时,所述第二路信号为所述m路信号中除所述第一路信号以外的其它一路信号;根据所述第二路信号的同步定时,获取所述第二路信号中的有效数据。
在第四方面的第四种可能的实现方式中,由于根据第一路信号的同步定时以及第一路信号和第二路信号的有效数据起始位置之间的时间偏差,获取第二路信号的同步定时,提高获取第二路信号的同步定时的精度。
结合第四方面的第四种可能的实现方式,在第四方面的第五种可能的实现 方式中,所述第一路信号中包括同步信号;
所述处理单元,用于检测所述第一路信号中包括的同步信号的时间位置,根据所述时间位置确定所述第一路信号的同步定时。
在第四方面的第五种可能的实现方式中,由于第一路信号中包括同步信号,从而根据同步信号提高获取第一路信号的同步定时的精度。
结合第四方面的第四种可能的实现方式,在第四方面的第六种可能的实现方式中,
所述处理单元,还用于从所述第一路信号中提取时间信息,根据所述时间信息获取所述第一路信号与所述第二路信号的有效数据起始位置之间的时间偏差,或获取预设的所述第一路信号和所述第二路信号的有效数据起始位置之间的时间偏差。
在第四方面的第六种可能的实现方式中,由于从第一路信号中提取时间信号可获取预设的时间偏差,能提高获取时间偏差的准确性,从而根据该时间偏差,提高获取第二路信号的同步定时的精度。
第五方面,提供了一种发送信号的装置,所述装置包括:处理器和发送器;
所述处理器,用于对m路待发送数据中的每路待发送数据分别进行调制,得到m路待发送信号,m为大于1的整数;所述m路待发送信号中的每路待发送信号占用一段连续的时间资源和频率资源;所述每路待发送信号占用的时间资源交叠且不完全相同;所述每路待发送信号占用频率资源连续且均不交叠;
所述处理器,还用于对所述m路待发送信号进行信号叠加形成一路叠加信号,其中至少存在一路待发送信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路待发送信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
所述发送器,用于发送所述叠加信号。
在第五方面中,由于将占用不同长度时间资源的多路待发送信号叠加成一路叠加信号,再发送该叠加信号,从而解决了如何发送时间长度不同的各路信号的问题。
结合第五方面,在第五方面的第一种可能的实现方式中,
所述处理器,用于对所述m路待发送信号中的每路待发送信号进行滤波, 且滤波后的所述每路待发送信号包括滤波拖尾信号;根据滤波后的所述每路待发送信号占用的频率资源,分别对滤波后的所述每路待发送信号的前后包括的滤波拖尾信号进行完全或部分截断,且截断后的所述每路待发送信号占用的时间资源相同;将截断后的所述每路待发送信号叠加在一起,形成一路叠加信号。
在第五方面的第一种可能的实现方式中,通过对滤波后的每路待发送信号的前后包括的滤波拖尾信号进行完全或部分截断,完全截断可以去除滤波拖尾信号,部分截断可以减少滤波拖尾信号的长度,从而减少滤波拖尾信号对时间资源的开销。
结合第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,
所述处理器,用于如果滤波后的第n路待发送信号占用的频率资源的带宽大于或等于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行完全截断,n=1、2……m;如果滤波后的第n路待发送信号占用的频率资源的带宽小于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行部分截断。
在第五方面的第二种可能的实现方式中,由于滤波后的第n路待发送信号占用的频率资源的带宽大于或等于预设阈值,所以对滤波拖尾信号进行完全截断可以完全消除滤波拖尾信号带来的时间资源开销。或者,由于滤波后的第n路待发送信号占用的频率资源的带宽小于预设阈值,所以对滤波拖尾信号进行部分截断,可以在保证对系统性能影响较小的条件下减少时间间隔的时域资源开销。
可选的,在第五方面中,还可以包括第一方面的第三种至第七种中的任一种可能的实现方式。
第六方面,提供了一种接收信号的装置,所述装置包括:接收器和处理器;
所述接收器,用于接收叠加信号,其中所述叠加信号包括m路信号,m为大于1的整数,至少存在一路信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
所述处理器,用于从所述叠加信号中提取有效数据。
结合第六方面,在第六方面的第一种种可能的实现方式中,
所述处理器,用于获取第一路信号的同步定时,所述第一路信号是所述m路信号中包括同步信号的一路信号;根据所述第一路信号的同步定时以及所述第一路信号和第二路信号的有效数据起始位置之间的时间偏差,获取所述第二路信号的同步定时,所述第二路信号为所述m路信号中除所述第一路信号以外的其它一路信号;根据所述第二路信号的同步定时,获取所述第二路信号中的有效数据。
在第六方面的第一种可能的实现方式中,由于根据第一路信号的同步定时以及第一路信号和第二路信号的有效数据起始位置之间的时间偏差,获取第二路信号的同步定时,提高获取第二路信号的同步定时的精度。
结合第六方面的第一种可能的实现方式,在第六方面的第二可能的实现方式中,所述第一路信号中包括同步信号;
所述第一路信号中包括同步信号;
所述处理器,用于检测所述第一路信号中包括的同步信号的时间位置,根据所述时间位置确定所述第一路信号的同步定时。
在第六方面的第二种可能的实现方式中,由于第一路信号中包括同步信号,从而根据同步信号提高获取第一路信号的同步定时的精度。
结合第六方面的第一种可能的实现方式,在第六方面的第三种可能的实现方式中,
所述处理器,还用于从所述第一路信号中提取时间信息,根据所述时间信息获取所述第一路信号与所述第二路信号的有效数据起始位置之间的时间偏差,或获取预设的所述第一路信号和所述第二路信号的有效数据起始位置之间的时间偏差。
在第六方面的第三种可能的实现方式中,由于从第一路信号中提取时间信号可获取预设的时间偏差,能提高获取时间偏差的准确性,从而根据该时间偏差,提高获取第二路信号的同步定时的精度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-1是本发明实施例提供的f-OFDM的发射机处理过程示意图;
图1-2是本发明实施例提供的一种网络架构示意图;
图2-1是本发明实施例提供的一种发射机的结构示意图;
图2-2是本发明实施例提供的一种接收机的结构示意图;
图3-1是本发明实施例提供的一种发送信号的方法流程图;
图3-2是本发明实施例提供的一种滤波过程示意图;
图3-3是本发明实施例提供的一种滤波器时域冲击响应波形图;
图3-4是本发明实施例提供的上行与下行相互切换示意图;
图3-5是本发明实施例提供的一种叠加信号的结构示意图;
图3-6是本发明实施例提供的一种在信号中包括同步信号的示意图;
图4是本发明实施例提供的一种接收信号的方法流程图;
图5是本发明实施例提供的一种发送信号的装置结构示意图;
图6是本发明实施例提供的一种接收信号的装置结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
滤波的正交频分复用(Filtered Orthogonal Frequency Division Multiplex,F-OFDM)是一种改进的正交频分复用技术,其基本原理是,通过把一个载波,划分成不同段的频率资源,该频率资源可以为子带,以子带为例,对每个子带进行滤波,并在子带边缘预留一定的保护带,从而使得子带和子带之间是不相关的,子带与子带之间互不影响。各子带的带宽可以不相同,子带的带宽根据业务需求来确定。
图1-1为F-OFDM处理过程的简略框图。如图1所示,一个载波被划分为N个子带,每个子带占用一定的带宽,每个子带的数据独立处理,每个子带的配置信息可以不同,最后对每个子带单独滤波后,叠加在一起,在空口发射。不同子带的物理层基本参数(numerology)可以相同,也可以不同。子带的物理层基本参数包括子载波带宽、传输时间间隔(Transmission Time Interval,TTI)长度、符号长度、符号数,以及循环前缀(Cyclic Prefix,CP)长度等参数中的至少一个。子带的物理层基本参数可以是预先配置好的,也可以根据业务负 载等情况灵活的适配。通常不同物理层基本参数配置的子带适合于不同的业务类型,也就是说:适合于不同业务类型的子带的物理层基本参数不同。本发明实施例中不同子带的物理层基本参数不同可以是子载波带宽、传输时间间隔长度、符号长度、符号数,以及循环前缀长度等参数中有一个不同或者有多个不同,例如:不同子带的TTI不同。
F-OFDM技术将频谱分成多个子带。F-OFDM中的子带可以是具有相同子带的参数(numerology)的某个带宽,或者具有相同子带的参数的子载波集合。每个子带可以包含多个子载波。不同子带的参数(numerology)可以相同,也可以不同。子带的参数包括子载波带宽、传输时间间隔长度、符号长度、符号数,以及循环前缀长度等参数中的至少一种。子带的参数可以是预先配置的,也可以根据业务负载的情况灵活的适配。不同类型的业务类型可以使用不同的子带。
参见图1-2,图1-2是本发明实施例应用的网络架构图,该网络架构包括发射机100和接收机200,发射机可以将需要发送的多路数据封装成一路叠加信号,并向接收机发送该叠加信号;接收机可以接收该叠加信号,从该叠加信号解调出一路或多路有效数据,详细实现过程,参见图后续实施例,在此不详细说明。
参见图2-1,图2-1是上述发射机100的结构框图,发射机100可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器101、发送器102;
该处理器101可以用于执行上述将需要发送的多路数据封装成一路叠加信号的操作。
该发送器102可以用于执行上述向接收机发送该叠加信号的操作。
可选的,发送机100除了包括上述处理器101和发送器102外,还可以包括其他部件。例如,还可以包括存储器103,一个或一个以上存储应用程序104或数据105的存储介质106(例如一个或一个以上海量存储设备)。其中,存储器103和存储介质106可以是短暂存储或持久存储。存储在存储介质106的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对发射机 100中的一系列指令操作。更进一步地,处理器101可以设置为与存储介质106通信,在发射机100上执行存储介质106中的一系列指令操作。
发射机100还可以包括一个或一个以上电源107,一个或一个以上有线或无线网络接口108,一个或一个以上输入输出接口109,一个或一个以上键盘110,和/或,一个或一个以上操作系统111,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
在本发明中发射机100的处理器101和发送器102还可以具有以下功能:
所述处理器101,用于对m路待发送数据中的每路待发送数据分别进行调制,得到m路待发送信号,m为大于1的整数;所述m路待发送信号中的每路待发送信号占用一段连续的时间资源和频率资源;所述每路待发送信号占用的时间资源交叠且不完全相同;所述每路待发送信号占用频率资源连续且均不交叠;
所述处理器101,还用于对所述m路待发送信号进行信号叠加形成一路叠加信号,其中至少存在一路待发送信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路待发送信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
所述发送器102,用于发送所述叠加信号。
可选的,所述处理器101,用于对所述m路待发送信号中的每路待发送信号进行滤波,且滤波后的所述每路待发送信号包括滤波拖尾信号;根据滤波后的所述每路待发送信号占用的频率资源,分别对滤波后的所述每路待发送信号的前后包括的滤波拖尾信号进行完全或部分截断,且截断后的所述每路待发送信号占用的时间资源相同;将截断后的所述每路待发送信号叠加在一起,形成一路叠加信号。
可选的,所述处理器101,用于如果滤波后的第n路待发送信号占用的频率资源的带宽大于或等于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行完全截断,n=1、2……m;如果滤波后的第n路待发送信号占用的频率资源的带宽小于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行部分截断。
可选的,所述每路待发送信号占用的时间资源的长度小于或等于所述叠加信号的长度。
可选的,在部分截断后的第n路待发送信号中,所述叠加信号的起始位置 与所述第n路待发送信号的起始位置之间的时间资源和所述叠加信号的结束位置与所述第n路待发送信号的结束位置之间的时间资源用于容纳经部分截断后产生的残留滤波拖尾信号。
可选的,所述m路待发送信号中至少存在一路待发送信号中包括同步信号。
可选的,所述m路待发送信号中存在占用频率资源大于或等于预设阈值的一路待发送信号中包括同步信号。
可选的,所述m路待发送信号中存在一路待发送信号中同时包括同步信号和时间信息,所述时间信息用于接收机获取所述一路待发送信号分别与其他m-1路中的每路待发送信号的有效数据起始位置之间的时间偏差。
在本发明实施例中,由于将占用不同长度时间资源的多路待发送信号叠加成一路叠加信号,再发送该叠加信号,从而解决了如何发送时间长度不同的各路信号的问题;另外,通过对滤波后的每路待发送信号的前后包括的滤波拖尾信号进行完全或部分截断,完全截断可以去除滤波拖尾信号,部分截断可以减少滤波拖尾信号的长度,从而减少滤波拖尾信号对时间资源的开销。
参见图2-2,图2-2是上述接收机200的结构框图,接收机200可因配置或性能不同而产生比较大的差异,可以包括接收器201和一个或一个以上处理器202;
该接收器201,用于上述接收该叠加信号的操作;
该处理器202,用于上述从该叠加信号解调出一路或多路有效数据的操作。
可选的,接收机200除了包括上述接收器201和处理器202外,还可以包括其他部件。例如,还可以包括存储器203,一个或一个以上存储应用程序204或数据205的存储介质206(例如一个或一个以上海量存储设备)。其中,存储器203和存储介质206可以是短暂存储或持久存储。存储在存储介质206的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对接收机200中的一系列指令操作。更进一步地,处理器202可以设置为与存储介质206通信,在接收机200上执行存储介质206中的一系列指令操作。
接收机200还可以包括一个或一个以上电源207,一个或一个以上有线或无线网络接口208,一个或一个以上输入输出接口209,一个或一个以上键盘210,和/或,一个或一个以上操作系统211,例如Windows ServerTM,Mac OS  XTM,UnixTM,LinuxTM,FreeBSDTM等等。
在本发明中接收机200的接收器201和处理器202还可以具有以下功能:
所述接收器201,用于接收叠加信号,其中所述叠加信号包括m路信号,m为大于1的整数,至少存在一路信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
所述处理器202,用于从所述叠加信号中提取有效数据。
可选的,所述每路信号占用的时间资源的长度小于或等于所述叠加信号的长度。
可选的,如果第n路信号占用的频率资源的带宽大于或等于预设阈值,所述第n路信号不包括滤波拖尾信号,n=1、2……m;
如果第n路信号占用的频率资源的带宽小于预设阈值,所述第n路信号包括部分滤波拖尾信号。
可选的,所述叠加信号的起始位置与所述包括部分滤波拖尾信号的第n路待发送信号的起始位置之间的时间资源或所述叠加信号的结束位置与所述包括部分滤波拖尾信号的第n路待发送信号的结束位置之间的时间资源用于容纳经部分截断后产生的残留滤波拖尾信号。
可选的,所述处理器202,用于获取第一路信号的同步定时,所述第一路信号是所述m路信号中包括同步信号的一路信号;根据所述第一路信号的同步定时以及所述第一路信号和第二路信号的有效数据起始位置之间的时间偏差,获取所述第二路信号的同步定时,所述第二路信号为所述m路信号中除所述第一路信号以外的其它一路信号;根据所述第二路信号的同步定时,获取所述第二路信号中的有效数据。
可选的,所述第一路信号中包括同步信号;
所述处理器202,用于检测所述第一路信号中包括的同步信号的时间位置,根据所述时间位置确定所述第一路信号的同步定时。
可选的,所述处理器202,还用于从所述第一路信号中提取时间信息,根据所述时间信息获取所述第一路信号与所述第二路信号的有效数据起始位置之间的时间偏差,或获取预设的所述第一路信号和所述第二路信号的有效数据起始位置之间的时间偏差。
在本发明实施例中,由于根据第一路信号的同步定时以及第一路信号和第 二路信号的有效数据起始位置之间的时间偏差,获取第二路信号的同步定时,提高获取第二路信号的同步定时的精度。
实施例3
参见图3-1,本发明实施例提供了一种发送信号的方法,包括:
步骤301:发射机对m路待发送数据中的每路待发送数据分别进行调制,得到m路待发送信号,m为大于1的整数。
其中,m路待发送信号中的每路待发送信号占用一段连续的时间资源和频率资源,每路待发送信号占用的时间资源交叠且不完全相同,每路待发送信号占用频率资源连续且均不交叠。
其中,在本实施例中,待发送信号占用的一段频率资源可以为子带,子带即为一段连续的频率资源,如带宽为30Hz至100Hz的频率资源可以组成一个子带,子带对应有一个或多个子载波。
本步骤可以为:发射机将m路待发送数据分别映射到m个频率资源对应的一个或多个子载波上;将映射后的m路待发送数据分别进行反快速傅里叶变换(Inverse Fast Fourier Transformation,IFFT)操作;分别在变换后的m路待发送数据上添加循环前缀(Cyclic Prefix,CP),形成m路OFDM符号序列,该m路OFDM符号序列即为m路待发送的信号,且每路OFDM符号序列包括至少一个OFDM符号。
例如,参见图1-1,假设存在三个频率资源,分别为频率资源1、频率资源2和频率资源3,频率资源1、频率资源2和频率资源3连续且均不交叠。发射机将待发送数据1、待发送数据2和待发送数据3分别映射到频率资源1对应的子载波1、频率资源2对应的子载波2和频率资源3对应的子载波3上,分别对映射后的数据1、数据2和数据3进行IFFT操作,再向变换后的数据1添加CP1得到OFDM符号序列1,向变换后的数据2添加CP2得到OFDM符号序列2,向变换后的数据3添加CP3得到OFDM符号序列3,即得到3路待发送信号,分别为待发送信号1、2和3。
其中,需要说明的是:在本步骤中映射得到的每路待发送信号具有较高的频域带外泄露。为了降低每路待发送信号的频域带外泄露,通过如下的步骤302对每路待发送信号进行滤波。
步骤302:发射机对m路待发送信号中的每路待发送信号进行滤波,滤波 后的每路待发送信号的前后包括滤波拖尾信号。
本步骤可以为:发射机根据每路待发送信号占用的频率资源的带宽,选择每路待发送信号对应的滤波器,使用每路待发送信号对应的滤波器分别对每路待发送信号进行滤波;其中,对于每路待发送信号,该待发送信号对应的滤波器在对该待发送信号进行滤波时,会在该待发送信号的前后形成滤波拖尾信号。
例如,图3-2中的图(a)是某一路待发送信号。参见图3-2中的图(b),发射机使用滤波器对该路待发送信号进行滤波后,在该路待发送信号的前后形成了滤波拖尾信号。在此例中,在该路待发送信号之前形成的前滤波拖尾信号的长度和在该路待发送信号之后形成的后滤波拖尾信号的长度一致。
其中,发射机为各路待发送信号选择对应滤波器的策略为:如果该路待发送信号占用的频率资源的带宽较大,为该路待发送信号选择的滤波器的通带宽度相应的较大;如果该路待发送信号占用的频率资源的带宽较小,为该路待发送信号选择的滤波器的通带宽度相应的较小。
通带宽度较宽的滤波器在对该路待发送信号滤波时,滤波器的时域能量扩散较小。在此情况下,滤波器在该路待发送信号之前添加的前滤波拖尾信号和在该路待发送信号之后添加的后滤波拖尾信号中的能量不可忽略的部分都较短。所以,该路待发送信号占用的频率资源的带宽越大,滤波后的该路待发送信号中包括的前后滤波拖尾信号的长度就越短。通带宽度较窄的滤波器的时域能量扩散较大,在对该路待发送信号滤波时,此类滤波器在该路待发送信号之前添加的前滤波拖尾信号和在该路待发送信号之后添加的后滤波拖尾信号中的能量不可忽略的部分都较长。所以,该路待发送信号占用的频率资源的带宽越小,滤波后的该路待发送信号中包括的前后滤波拖尾信号的长度就越长。
例如,参见图3-3的图(a),图(a)使用通带宽度为18MHz的滤波器对一路待发送信号进行滤波。该滤波器的通带宽度较大,能量扩散较小。在被滤波的该路待发送信号中形成的滤波拖尾信号包括1541、1542、1543、1544和1545等几个采样点,滤波拖尾信号的能量不可忽略的部分较短;图(b)使用通带宽度为720kHz的滤波器对该路待发送信号进行滤波,该滤波器的通带宽度较小,能量扩散较大。在被滤波的该路待发送信号中形成的滤波拖尾信号包括1500至1600等采样点,滤波拖尾信号的能量不可忽略的部分较长。
接下来再以上述图1-1中的待发送信号1、2和3对本步骤进行详细说明, 如下所示:发射机根据待发送信号1占用的频率资源1的带宽选择滤波器1,通过滤波器1对待发送信号1进行滤波,得到滤波后的待发送信号1;根据待发送信号2占用的频率资源2的带宽选择滤波器2,通过滤波器2对待发送信号2进行滤波,得到滤波后的待发送信号2;根据待发送信号3占用的频率资源3的带宽选择滤波器3,通过滤波器3对待发送信号3进行滤波,得到滤波后的待发送信号3。
对于上述得到的每路滤波后的待发送信号,由于滤波后的该路待发送信号的前后包括滤波拖尾信号,导致滤波后的该路待发送信号的时间长度大于滤波前的该路待发送信号的时间长度。另外,在长期演进蜂窝通信系统(Long-term Evolution,4G LTE)的时分双工(Time-division Duplex,TDD)模式下,为了避免近端用户设备(User Equipment,UE)的上行传输对远端UE的下行接收产生干扰,系统在帧结构中的下行(Downlink,DL)到上行(Uplink,UL)的切换时间预留一定的保护间隙(Guard Period,GP)。如果将滤波器产生的滤波拖尾信号完整的包括在帧结构中并且发送出来,如图3-4所示,这样的帧结构将包括大量的滤波拖尾信号。在此方案下,如果滤波后的待发送信号占用的频率资源的带宽较小,该滤波后的待发送信号包括的滤波拖尾信号的持续时间较长,带来的时间资源开销巨大,不能被系统所接受。
为了减少发送滤波拖尾信号所带来的时间资源开销,可以对滤波后的待发送信号执行如下操作。
步骤303:发射机根据滤波后的每路待发送信号占用的频率资源,分别对滤波后的每路待发送信号的前后包括的滤波拖尾信号进行完全或部分截断,截断后的每路待发送信号占用的时间资源相同。
其中,对滤波拖尾信号的截断可以使用缓降的窗函数进行软截断,也可以使用陡降的窗函数进行硬截断。
本步骤可以为:获取滤波后的第n路待发送信号占用的频率资源的带宽,如果获取的带宽大于或等于预设阈值,则对滤波后的第n路待发送信号的前后包括的滤波拖尾信号进行完全截断,n=1、2……m;如果获取的带宽小于预设阈值,则对滤波后的第n路待发送信号的前后包括的滤波拖尾信号进行部分截断。
对于经过部分截断的第n路待发送的信号,截断后的第n路待发送信号的头部可能包括一个时间间隔,也可能不包括该时间间隔。当包括该时间间隔时, 该时间间隔用于容纳截断后的第n路待发送信号中残留的前滤波拖尾信号。该截断后的第n路待发送信号的尾部包括一时间间隔,该时间间隔用于容纳截断后的第n路待发送信号中残留的后滤波拖尾信号。
其中,如果第n路待发送信号的头部包括控制信息,则发射机在对滤波后的第n路待发送信号进行部分截断时,可以将滤波后的第n路待发送信号的前滤波拖尾信号完全截断,将滤波后的第n路待发送信号的后滤波拖尾信号部分截断,在此种情况下,截断后的第n路待发送信号的头部就不包括该时间间隔。
其中,需要说明的是:如果第n路待发送信号的头部包括控制信息,则信号的鲁棒性较好,将滤波后的第n路待发送信号中的前滤波拖尾信号完全截断,对系统性能影响较小。因此,可以完全截断该前滤波拖尾信号来减少时域资源开销。
可选的,发射机对滤波后的第n路待发送信号的前后包括的滤波拖尾信号进行部分截断的操作,可以为:
发射机确定滤波后的第n路待发送信号占用的频率资源的带宽所在的带宽范围,根据该带宽范围,从预设的带宽范围与时间间隔的对应关系中获取对应的时间间隔,根据该时间间隔对滤波后的第n路待发送信号的前后包括的滤波拖尾信号进行部分截断。
可选的,除了通过上述介绍的方式对滤波拖尾信号进行部分或全部截断外,还可以采用其他方式,例如,如下介绍的方式:
发射机根据滤波后的第n路待发送信号包括的滤波拖尾信号的时域能量扩散特性信息和预设的系统需求信息,对滤波后的第n路待发送信号包括的滤波拖尾信号进行部分或完全截断。
其中,该时域能量扩散特性信息可以为滤波后的第n路待发送信号中的前后滤波拖尾信号的长度,预设的系统需求信息可以为预设的最大时间间隔的长度。
相应的,根据该两个信息对滤波后的第n路待发送信号的滤波拖尾信号进行部分或完全截断的过程可以为:
如果滤波后的第n路待发送信号的滤波拖尾信号长度小于或等于该最大时间间隔的长度,则进一步判断滤波后的第n路待发送信号占用的频率资源的带宽,如果该带宽较大,例如大于预设阈值,则直接完全截断滤波后的第n路待发送信号的滤波拖尾信号;如果该带宽较小,例如小于或等于预设阈值,则不 对滤波后的第n路待发送信号的滤波拖尾信号进行截断;如果滤波后第n路待发送信号的滤波拖尾信号长度大于该最大时间间隔的长度,则根据该最大时间间隔的长度,对第n路待发送信号的滤波拖尾信号进行部分截断。
其中,需要说明的是:将滤波后的第n路待发送信号中的滤波拖尾信号完全截断可能会带来一定的系统性能损失。滤波后的第n路待发送信号中的滤波拖尾信号越短,完全截断滤波后的第n路待发送信号中的滤波拖尾信号带来的系统性能损失越小。滤波后的第n路待发送信号中的滤波拖尾信号越长,完全截断滤波后的第n路待发送信号中的滤波拖尾信号带来的系统性能损失越大。所以,在条件允许的情况下,可以采取拖尾部分截断,降低对系统性能的影响。在本实施例中,可以将较短的滤波拖尾信号完全截断或者将较长的滤波拖尾信号部分截断,从而在保证对系统性能影响较小的条件下减少时间间隔的时域资源开销。
再如,还可以通过如下方式对滤波拖尾信号进行部分或全部截断,具体如下:
如果滤波后的第n路待发送信号占用的频率资源是一个主子带,则发射机将滤波后的第n路待发送信号中的滤波拖尾信号完全截断;如果滤波后的第n路待发送信号占用的频率资源是一个从子带,则发射机将滤波后的第n路待发送信号中的滤波拖尾信号部分截断,使得截断后的第n路待发送信号中的残留滤波拖尾信号的时间长度与时间间隔的时间长度相同。
其中,在本发明实施例中,待发送信号占用的频率资源可以为一个子带,该子带分为主子带和从子带,主子带的带宽大于从子带的带宽。可以将带宽大于预设阈值的子带定义为主子带或者将该m路待发送信号中的每路待发送信号占用的子带中带宽最大的子带确定为主子带。
可选的,如果滤波后的第n路待发送信号占用的频率资源是一个从子带,发射机对滤波拖尾信号部分截断的操作,可以为:
发射机确定该子带的带宽所在的带宽范围,根据该子带的带宽所在的带宽范围,从已存储的子带的带宽范围与时间间隔的时间长度的对应关系中获取对应的时间间隔的时间长度,或者发射机直接获取预设的最大时间间隔的时间长度。根据所获取的时间间隔的时间长度,对滤波后的第n路待发送信号中包括的滤波拖尾信号进行部分截断,使得截断后的第n路待发送信号中的残留滤波拖尾信号的时间长度与获取的时间间隔的时间长度相同。
其中,该时间间隔可以包括前时间间隔和后时间间隔,该前时间间隔与后时间间隔可以相等或不等。截断后的第n路待发送信号中的残留前滤波拖尾信号的时间长度和残留后滤波拖尾信号的时间长度与对应的前、后时间间隔的时间长度相同。
例如,对于在步骤302中得到的滤波后的待发送信号1、2和3,参见图3-5,频率资源1的带宽大于频率资源2和3的带宽,且频率资源1的带宽大于预设阈值,频率资源2和3的带宽小于预设阈值。所以,发射机将滤波后的待发送信号1中包括的前滤波拖尾信号和后滤波拖尾信号完全截断,判断滤波后的待发送信号2的头部是否包括控制信息,判断的结果不包括控制信息,发射机确定前、后时间间隔GI的长度,则根据前、后时间间隔GI的长度,将滤波后的待发送信号2的前滤波拖尾信号和后滤波拖尾信号部分截断,使得部分截断后待发送信号2中残留的前滤波拖尾信号的时间长度和残留的后滤波拖尾信号的时间长度分别与前时间间隔GI的时间长度和后时间间隔GI的时间长度相等。发射机判断滤波后的待发送信号3的头部是否包括控制信息,当判断的结果包括控制信息,则将滤波后的待发送信号3的前滤波拖尾信号完全截断,发射机确定后时间间隔GI的长度,根据后时间间隔GI的长度,将滤波后的待发送信号3的后滤波拖尾信号部分截断,使得部分截断后待发送信号3中残留的后滤波拖尾信号的时间长度与后时间间隔GI的时间长度相等。
步骤304:发射机将经过部分截断或完全截断后的每路待发送信号叠加在一起形成叠加信号,并发送该叠加信号。
其中,需要说明的是:在步骤301中得到的m路待发送信号中至少存在一路待发送信号中包括同步信号。可以在该路待发送信号中的同步信道中包括同步信号。该同步信号可以为预设的同步信号或发射机与接收机预先约定的同步信号。该同步信号用于接收机解调该路待发送信号中的有效数据。
可选的,该待发送信号可以为占用的频率资源的带宽大于或等于预设阈值的某路待发送信号或者为发射机与接收机预先约定的待发送信号。
可选的,参见图3-6,待发送信号1占用的频率资源1的带宽大于或等于预设阈值,所以可以在待发送信号1中的同步信道中包括该同步信号。
可选的,该路待发送信号还可以包括时间信息,该时间信息用于接收机获取该路待发送信号分别与其他m-1路待发送信号之间的有效数据起始位置之间的时间偏差。可选的,该待发送信号中的公共控制信道中可以包括该时间信 息。
其中,发射机和接收机可以事先约定该时间偏差,这样接收机中约定的该时间偏差,所以该待发送信号也可以不包括该时间信息。
另外,其他m-1路待发送信号中可以包括同步信号,也可以不包括同步信号。
在本发明实施例中,通过对滤波后的待发送信号中的滤波拖尾信号进行全部或部分截断,可以减少滤波拖尾信号带来的时间资源的开销。
实施例4
本发明实施例提供了一种接收信号的方法。其中,该方法用于接收发射机通过实施例3发送的叠加信号,参见图4,该方法包括:
步骤401:接收机接收叠加信号,其中该叠加信号包括m路信号,m为大于1的整数。
步骤402:接收机检测第一路信号中包括的同步信号的时间位置,根据该时间位置获取第一路信号的同步定时,第一路信号为该m路信号中的一路信号。
其中,第一路信号可以为位于主子带上的信号,占用频率资源的带宽大于或等于预设阈值的信号或者为接收机与发射机预先约定的信号,接收机可以从该m路信号中确定第一路信号,例如,从该m路信号中识别出预先与发射机约定的第一路信号。
第一路信号的同步定时与该同步信号的时间位置相隔预设的时间间隔,所以接收机可以根据该同步信号的时间位置和该预设的时间间隔,计算出第一路信号的同步定时,第一路信号的同步定时用于接收机从第一路信号中解析出第一路信号中包括的有效数据。
步骤403:接收机获取第一路信号和第二路信号之间的有效数据起始位置之间的时间偏差,第二路信号是该m路信号中除第一路信号以外的其它一路信号。
可选的,如果第一路信号中包括时间信息,则接收机可以从第一路信号中提取该时间时间信息,可选的,接收机可以在第一路信号中的公共控制信道中提取该时间信息,然后根据该时间信息,获取第一路信号和第二路信号之间的有效数据起始位置之间的时间偏差。
可选的,如果接收机中预先设置了第一路信号和第二路信号之间的有效数据起始位置之间的时间偏差,则接收机直接获取预先设置的该时间偏差。
步骤404:接收机根据该时间偏差和第一路信号的同步定时获取第二路信号的同步定时。
本步骤可以为:第二路信号的同步定时用于接收机从第二路信号中解析出第二路信号包括的有效数据。
步骤405:接收机根据第二路信号的同步定时,对第二信号进行解调,获得第二路信号中的有效数据。
具体地,接收机根据第二路信号的同步定时,从第二路信号中解析出第二路信号中的OFDM符号序列,去除该OFDM符号序列中的CP,对去除CP的该OFDM符号序列进行傅里叶变换操作,得到第二路信号占用的频率资源对应的子载波,从该子载波中提取预定子载波位置上的有效数据。
进一步地,接收机还可以根据第一路信号的同步定时,对第一路信号进行解调,具体可以为:
接收机根据第一路信号的同步定时,从第一路信号中解析出第一路信号中的OFDM符号序列,去除该OFDM符号序列中的CP,对去除CP的该OFDM符号序列进行傅里叶变换操作,得到第一路信号占用的频率资源对应的子载波,从该子载波中提取预定子载波位置上的有效数据。
在本发明实施例中,获取第一路信号和第二路信号之间的有效数据起始位置之间的时间偏差,根据据该时间偏差和第一路信号的同步定时获取第二路信号的同步定时,由于在获取第二路信号的同步定时引入该时间偏差,从而提供了获取第二路信号的同步定时的精度。
参见图5,本发明实施例提供一种发送信号的装置500,所述装置500包括:处理单元501和发送单元502;
所述处理单元501,用于对m路待发送数据中的每路待发送数据分别进行调制,得到m路待发送信号,m为大于1的整数;所述m路待发送信号中的每路待发送信号占用一段连续的时间资源和频率资源;所述每路待发送信号占用的时间资源交叠且不完全相同;所述每路待发送信号占用频率资源连续且均不交叠;
所述处理单元501,还用于对所述m路待发送信号进行信号叠加形成一路 叠加信号,其中至少存在一路待发送信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路待发送信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
所述发送单元502,用于发送所述叠加信号。
可选的,所述处理单元502,用于对所述m路待发送信号中的每路待发送信号进行滤波,且滤波后的所述每路待发送信号包括滤波拖尾信号;根据滤波后的所述每路待发送信号占用的频率资源,分别对滤波后的所述每路待发送信号的前后包括的滤波拖尾信号进行完全或部分截断,且截断后的所述每路待发送信号占用的时间资源相同;将截断后的所述每路待发送信号叠加在一起,形成一路叠加信号。
可选的,所述处理单元502,用于如果滤波后的第n路待发送信号占用的频率资源的带宽大于或等于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行完全截断,n=1、2……m;如果滤波后的第n路待发送信号占用的频率资源的带宽小于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行部分截断。
可选的,所述每路待发送信号占用的时间资源的长度小于或等于所述叠加信号的长度。
可选的,所述叠加信号的起始位置与所述进行部分截断的第n路待发送信号的起始位置之间的时间资源和所述叠加信号的结束位置与所述进行部分截断的第n路待发送信号的结束位置之间的时间资源用于容纳经部分截断后产生的残留滤波拖尾信号。
可选的,所述m路待发送信号中至少存在一路待发送信号中包括同步信号。
可选的,所述m路待发送信号中存在占用频率资源大于或等于预设阈值的一路待发送信号中包括同步信号。
可选的,所述m路待发送信号中存在的一路待发送信号中同时包括同步信号和时间信息,所述时间信息用于接收机获取所述一路待发送信号分别与其他m-1路中的每路待发送信号的有效数据起始位置之间的时间偏差。
在本发明实施例中,通过对滤波后的每路待发送信号的前后包括的滤波拖尾信号进行完全或部分截断,完全截断可以去除滤波拖尾信号,部分截断可以减少滤波拖尾信号的长度,从而减少滤波拖尾信号对时间资源的开销。
参见图6,本发明实施例提供了一种接收信号的装置600,所述装置600包括:接收单元601和处理单元602;
所述接收单元601,用于接收叠加信号,其中所述叠加信号包括m路信号,m为大于1的整数,至少存在一路信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
所述处理单元602,用于从所述叠加信号中提取有效数据。
可选的,所述每路信号占用的时间资源的长度小于或等于所述叠加信号的长度。
可选的,如果第n路信号占用的频率资源的带宽大于或等于预设阈值,所述第n路信号不包括滤波拖尾信号,n=1、2……m;
如果第n路信号占用的频率资源的带宽小于预设阈值,所述第n路信号包括部分滤波拖尾信号。
可选的,所述叠加信号的起始位置与所述包括部分滤波拖尾信号的第n路待发送信号的起始位置之间的时间资源或所述叠加信号的结束位置与所述包括部分滤波拖尾信号的第n路待发送信号的结束位置之间的时间资源用于容纳经部分截断后产生的残留滤波拖尾信号。
可选的,所述处理单元602,用于获取第一路信号的同步定时,所述第一路信号是所述m路信号中包括同步信号的一路信号;根据所述第一路信号的同步定时以及所述第一路信号和第二路信号的有效数据起始位置之间的时间偏差,获取所述第二路信号的同步定时,所述第二路信号为所述m路信号中除所述第一路信号以外的其它一路信号;根据所述第二路信号的同步定时,获取所述第二路信号中的有效数据。
可选的,所述第一路信号中包括同步信号;
所述处理单元602,用于检测所述第一路信号中包括的同步信号的时间位置,根据所述时间位置确定所述第一路信号的同步定时。
可选的,所述处理单元602,还用于从所述第一路信号中提取时间信息,根据所述时间信息获取所述第一路信号与所述第二路信号的有效数据起始位置之间的时间偏差,或获取预设的所述第一路信号和所述第二路信号的有效数据起始位置之间的时间偏差。
在本发明实施例中,由于根据第一路信号的同步定时以及第一路信号和第二路信号的有效数据起始位置之间的时间偏差,获取第二路信号的同步定时,提高获取第二路信号的同步定时的精度。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (30)

  1. 一种发送信号的方法,其特征在于,所述方法包括:
    对m路待发送数据中的每路待发送数据分别进行调制,得到m路待发送信号,m为大于1的整数;所述m路待发送信号中的每路待发送信号占用一段连续的时间资源和频率资源;所述每路待发送信号占用的时间资源交叠且不完全相同;所述每路待发送信号占用频率资源连续且均不交叠;
    对所述m路待发送信号进行信号叠加形成一路叠加信号,其中至少存在一路待发送信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路待发送信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
    发送所述叠加信号。
  2. 如权利要求1所述的方法,其特征在于,所述对所述m路待发送信号进行信号叠加形成一路叠加信号,包括:
    对所述m路待发送信号中的每路待发送信号进行滤波,且滤波后的所述每路待发送信号的前后包括滤波拖尾信号;
    根据滤波后的所述每路待发送信号占用的频率资源,分别对滤波后的所述每路待发送信号包括的滤波拖尾信号进行完全或部分截断,且截断后的所述每路待发送信号占用的时间资源相同;
    将截断后的所述每路待发送信号叠加在一起,形成一路叠加信号。
  3. 如权利要求2所述的方法,其特征在于,所述根据滤波后的所述每路待发送信号占用的频率资源,分别对滤波后的所述每路待发送信号的前后包括的滤波拖尾信号进行完全或部分截断,包括:
    如果滤波后的第n路待发送信号占用的频率资源的带宽大于或等于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行完全截断,n=1、2……m;
    如果滤波后的第n路待发送信号占用的频率资源的带宽小于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行部分截断。
  4. 如权利要求1至3任一项权利要求所述的方法,其特征在于,所述每路待发送信号占用的时间资源的长度小于或等于所述叠加信号的长度。
  5. 如权利要求3所述的方法,其特征在于,
    所述叠加信号的起始位置与所述进行部分截断的第n路待发送信号的起始位置之间的时间资源或所述叠加信号的结束位置与所述进行部分截断的第n路待发送信号的结束位置之间的时间资源用于容纳经部分截断后产生的残留滤波拖尾信号。
  6. 如权利要求1所述的方法,其特征在于,
    所述m路待发送信号中至少存在一路待发送信号中包括同步信号。
  7. 如权利要求6所述的方法,其特征在于,
    所述m路待发送信号中存在占用频率资源大于或等于预设阈值的一路待发送信号中包括同步信号。
  8. 如权利要求1所述的方法,其特征在于,
    所述m路待发送信号中存在一路待发送信号中同时包括同步信号和时间信息,所述时间信息用于接收机获取所述一路待发送信号分别与其他m-1路中的每路待发送信号的有效数据起始位置之间的时间偏差。
  9. 一种接收信号的方法,其特征在于,所述方法包括:
    接收叠加信号,其中所述叠加信号包括m路信号,m为大于1的整数,至少存在一路信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
    从所述叠加信号中提取有效数据。
  10. 如权利要求9所述的方法,其特征在于,所述每路信号占用的时间资源的长度小于或等于所述叠加信号的长度。
  11. 如权利要求9或10所述的方法,其特征在于,
    如果第n路信号占用的频率资源的带宽大于或等于预设阈值,所述第n路信号不包括滤波拖尾信号,n=1、2……m;
    如果第n路信号占用的频率资源的带宽小于预设阈值,所述第n路信号包括部分滤波拖尾信号。
  12. 如权利要求11所述的方法,其特征在于,所述叠加信号的起始位置与所述包括部分滤波拖尾信号的第n路待发送信号的起始位置之间的时间资源或所述叠加信号的结束位置与所述包括部分滤波拖尾信号的第n路待发送信号的结束位置之间的时间资源用于容纳经部分截断后产生的残留滤波拖尾信号。
  13. 如权利要求9所述的方法,其特征在于,所述从所述叠加信号中提取有效数据,包括:
    获取第一路信号的同步定时,所述第一路信号是所述m路信号中包括同步信号的一路信号;
    根据所述第一路信号的同步定时以及所述第一路信号和第二路信号的有效数据起始位置之间的时间偏差,获取所述第二路信号的同步定时,所述第二路信号为所述m路信号中除所述第一路信号以外的其它一路信号;
    根据所述第二路信号的同步定时,获取所述第二路信号中的有效数据。
  14. 如权利要求13中所述的方法,其特征在于,所述获取第一路信号的同步定时,包括:
    检测所述第一路信号中包括的同步信号的时间位置,根据所述时间位置确定所述第一路信号的同步定时。
  15. 根据权利要求13中所述的方法,其特征在于,所述获取所述第二路信号的同步定时之前,还包括:
    从所述第一路信号中提取时间信息,根据所述时间信息获取所述第一路信号与所述第二路信号的有效数据起始位置之间的时间偏差,或获取预设的所述第一路信号和所述第二路信号的有效数据起始位置之间的时间偏差。
  16. 一种发送信号的装置,其特征在于,所述装置包括:处理单元和发送单元;
    所述处理单元,用于对m路待发送数据中的每路待发送数据分别进行调制,得到m路待发送信号,m为大于1的整数;所述m路待发送信号中的每路待发送信号占用一段连续的时间资源和频率资源;所述每路待发送信号占用的时间资源交叠且不完全相同;所述每路待发送信号占用频率资源连续且均不交叠;
    所述处理单元,还用于对所述m路待发送信号进行信号叠加形成一路叠加信号,其中至少存在一路待发送信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路待发送信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
    所述发送单元,用于发送所述叠加信号。
  17. 如权利要求16所述的装置,其特征在于,
    所述处理单元,用于对所述m路待发送信号中的每路待发送信号进行滤波,且滤波后的所述每路待发送信号的前后包括滤波拖尾信号;根据滤波后的所述每路待发送信号占用的频率资源,分别对滤波后的所述每路待发送信号的前后包括的滤波拖尾信号进行完全或部分截断,且截断后的所述每路待发送信号占用的时间资源相同;将截断后的所述每路待发送信号叠加在一起,形成一路叠加信号。
  18. 如权利要求16所述的装置,其特征在于,
    所述处理单元,用于如果滤波后的第n路待发送信号占用的频率资源的带宽大于或等于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行完全截断,n=1、2……m;如果滤波后的第n路待发送信号占用的频率资源的带宽小于预设阈值,则对滤波后的第n路待发送信号包括的滤波拖尾信号进行部分截断。
  19. 如权利要求16至18任一项权利要求所述的装置,其特征在于,所述每路待发送信号占用的时间资源的长度小于或等于所述叠加信号的长度。
  20. 如权利要求18所述的装置,其特征在于,
    所述叠加信号的起始位置与所述进行部分截断的第n路待发送信号的起始位置之间的时间资源和所述叠加信号的结束位置与所述进行部分截断的第n路待发送信号的结束位置之间的时间资源用于容纳经部分截断后产生的残留滤波拖尾信号。
  21. 如权利要求16所述的装置,其特征在于,
    所述m路待发送信号中至少存在一路待发送信号中包括同步信号。
  22. 如权利要求21所述的装置,其特征在于,
    所述m路待发送信号中存在占用频率资源大于或等于预设阈值的一路待发送信号中包括同步信号。
  23. 如权利要求16所述的装置,其特征在于,
    所述m路待发送信号中存在一路待发送信号中同时包括同步信号和时间信息,所述时间信息用于接收机获取所述一路待发送信号分别与其他m-1路中的每路待发送信号的有效数据起始位置之间的时间偏差。
  24. 一种接收信号的装置,其特征在于,所述装置包括:接收单元和处理单元;
    所述接收单元,用于接收叠加信号,其中所述叠加信号包括m路信号,m为大于1的整数,至少存在一路信号在所述叠加信号中的起始位置晚于所述叠加信号的起始位置和/或至少存在一路信号在所述叠加信号中的结束位置早于所述叠加信号的结束位置;
    所述处理单元,用于从所述叠加信号中提取有效数据。
  25. 如权利要求24所述的装置,其特征在于,所述每路信号占用的时间资源的长度小于或等于所述叠加信号的长度。
  26. 如权利要求24或25所述的装置,其特征在于,
    如果第n路信号占用的频率资源的带宽大于或等于预设阈值,所述第n路信号不包括滤波拖尾信号,n=1、2……m;
    如果第n路信号占用的频率资源的带宽小于预设阈值,所述第n路信号包括部分滤波拖尾信号。
  27. 如权利要求26所述的装置,其特征在于,所述叠加信号的起始位置与所述包括部分滤波拖尾信号的第n路待发送信号的起始位置之间的时间资源或所述叠加信号的结束位置与所述包括部分滤波拖尾信号的第n路待发送信号的结束位置之间的时间资源用于容纳经部分截断后产生的残留滤波拖尾信号。
  28. 如权利要求24所述的装置,其特征在于,
    所述处理单元,用于获取第一路信号的同步定时,所述第一路信号是所述m路信号中包括同步信号的一路信号;根据所述第一路信号的同步定时以及所述第一路信号和第二路信号的有效数据起始位置之间的时间偏差,获取所述第二路信号的同步定时,所述第二路信号为所述m路信号中除所述第一路信号以外的其它一路信号;根据所述第二路信号的同步定时,获取所述第二路信号中的有效数据。
  29. 如权利要求28中所述的装置,其特征在于,
    所述处理单元,用于检测所述第一路信号中包括的同步信号的时间位置,根据所述时间位置确定所述第一路信号的同步定时。
  30. 根据权利要求28中所述的装置,其特征在于,
    所述处理单元,还用于从所述第一路信号中提取时间信息,根据所述时间信息获取所述第一路信号与所述第二路信号的有效数据起始位置之间的时间偏差,或获取预设的所述第一路信号和所述第二路信号的有效数据起始位置之间的时间偏差。
PCT/CN2016/107740 2015-11-30 2016-11-29 一种发送信号、接收信号的方法及装置 WO2017092653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510853905.8A CN106817211B (zh) 2015-11-30 2015-11-30 一种发送信号、接收信号的方法及装置
CN201510853905.8 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017092653A1 true WO2017092653A1 (zh) 2017-06-08

Family

ID=58796306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107740 WO2017092653A1 (zh) 2015-11-30 2016-11-29 一种发送信号、接收信号的方法及装置

Country Status (2)

Country Link
CN (1) CN106817211B (zh)
WO (1) WO2017092653A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460405B (zh) * 2018-05-07 2021-04-09 华为技术有限公司 业务信号传输方法及装置
CN110912625B (zh) * 2018-09-15 2022-05-31 华为技术有限公司 传输信号的方法和通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335735A (zh) * 2008-07-25 2008-12-31 华中科技大学 减少正交频分复用信号频谱泄漏的方法
CN104081738A (zh) * 2012-01-13 2014-10-01 奥兰治 用于递送ofdm/oqam符号的调制和解调的方法、装置和计算机程序产品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0024038D0 (en) * 2000-10-02 2000-11-15 Roke Manor Research Scheme for late entry into syncronisation of radios in utra tdd
CN104348603B (zh) * 2013-07-30 2020-06-12 北京三星通信技术研究有限公司 配置上行传输定时的方法和设备
CN104601517B (zh) * 2015-02-28 2018-03-23 大连海事大学 一种时延多载波调制解调方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335735A (zh) * 2008-07-25 2008-12-31 华中科技大学 减少正交频分复用信号频谱泄漏的方法
CN104081738A (zh) * 2012-01-13 2014-10-01 奥兰治 用于递送ofdm/oqam符号的调制和解调的方法、装置和计算机程序产品

Also Published As

Publication number Publication date
CN106817211B (zh) 2020-06-26
CN106817211A (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
US20210007154A1 (en) Initial Access Channel for Scalable Wireless Mobile Communication Networks
CN109348739B (zh) 用于无线通信的参考信号封装
US10616026B2 (en) Internet of things communication method, network side device, and internet of things terminal
EP3251234B1 (en) Apparatus and method for transmitting data with conditional zero padding
EP2764745B1 (en) Method and apparatus for operating multi-band and multi-cell
CN102612162B (zh) 传输随机接入前导信号的设备和方法
TWI613898B (zh) 用於混合模式多載波調變之時序控制
JP5296212B2 (ja) 無線通信システムにおいてデータ及び基準信号を多重化するための方法及び装置
EP1850548A1 (en) Method and apparatus for the detection of common control channel in an OFDMA cellular communication system
WO2016045472A1 (zh) 一种在非授权频段上的数据传输方法及装置
AU2015360989A1 (en) Training field tone plans for mixed-rate wireless communication networks
EP3576306A1 (en) Mobile terminal apparatus, base station apparatus and method for transmitting shared channel signal
RU2011105438A (ru) Способ передачи зондирующего опорного сигнала восходящей линии связи для системы lte
CN109617846A (zh) 发射机、接收机、前导符号的生成方法及接收方法
CN108713312B (zh) 用于传输与业务相对应的数据的方法和设备
KR20130075930A (ko) 방송 통신 시스템에서 파일럿 시퀀스 송/수신 방법 및 장치
WO2021098426A1 (en) Flexible frame structure for wireless communication
WO2017092653A1 (zh) 一种发送信号、接收信号的方法及装置
US10826662B2 (en) Transmitter and method for formatting transmit data into a frame structure
US10523486B2 (en) Data modulation and demodulation method and data transmission method and node for multi-carrier system
CN107302513B (zh) 适用于tdd sc-fde的宽带无线传输系统的物理层帧结构
WO2012109928A1 (zh) 信号处理方法、装置及系统
WO2014153726A1 (zh) 上行导频序列同步的方法、设备及系统
WO2014110809A1 (zh) 导频信号发送方法、导频信号接收方法、基站和用户设备
KR101085703B1 (ko) 직교주파수분할 다중화 시스템에서 제어 정보 및 데이터를전송하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869963

Country of ref document: EP

Kind code of ref document: A1