WO2017092521A1 - 电池组电压均衡控制电路及电池管理设备 - Google Patents
电池组电压均衡控制电路及电池管理设备 Download PDFInfo
- Publication number
- WO2017092521A1 WO2017092521A1 PCT/CN2016/103292 CN2016103292W WO2017092521A1 WO 2017092521 A1 WO2017092521 A1 WO 2017092521A1 CN 2016103292 W CN2016103292 W CN 2016103292W WO 2017092521 A1 WO2017092521 A1 WO 2017092521A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- pole
- battery pack
- equalization
- voltage
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4207—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0018—Circuits for equalisation of charge between batteries using separate charge circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0019—Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the field of battery management technology, and more particularly to a battery pack voltage equalization control circuit and a battery management device.
- the inconsistency of the battery pack is mainly manifested in the difference in capacity between the individual battery cells.
- the difference in capacity between the batteries exceeds a certain range, the battery pack needs to be equalized; the inconsistency of the battery pack mainly manifests as the following three Situation: (1) One battery, one battery capacity, that is, the battery voltage is low, the other battery capacity is small, as shown in Figure 1 (a); (2) - one of the battery cells The battery capacity is higher, and the difference between other battery capacities is small, as shown in Figure 1 (b); (3) There is a difference between the battery capacity of each section, and the battery with the highest capacity has the largest difference between the battery with the lowest capacity. , as shown in Figure 1 (c).
- the principle of the energy-saving equalization strategy is to connect the battery in series with the resistor, discharge the battery with high capacity, and release the higher energy in the form of heat to reduce the inconsistency of the battery pack.
- the equalization strategy is simple and reliable, but it can only discharge the battery with high capacity, and the battery with low capacity cannot be charged and balanced.
- the principle of the energy transfer equalization strategy is to transfer the excess capacity of a high-capacity battery to a low-capacity battery through energy storage components such as inductors and capacitors.
- the equalization strategy can achieve equalization of high-capacity and low-capacity battery peers, but the scheme is complicated to control, and the loss is also large in the energy transfer process. technical problem
- the technical problem to be solved by the present invention is that the above-mentioned energy-consuming equalization strategy for the prior art can only balance the battery with high capacity, can not fully utilize the battery pack, and has complicated control of the energy transfer and equalization strategy, and has large energy loss. Defect, a battery pack voltage equalization control circuit and a battery management device are provided.
- the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a battery pack voltage equalization control circuit, the battery pack voltage equalization control circuit comprising a battery pack, a main controller, a battery voltage detecting circuit and a battery pack voltage equalization Circuit
- the battery voltage detecting circuit is connected to the positive and negative poles of each battery and the main controller, detecting the voltage of each battery and outputting the detected voltage signal to the main controller;
- the main controller compares each of the voltage signals, and outputs an equalization control signal to the battery voltage equalization circuit when a difference between two voltage signal values is greater than a preset reference value ;
- the battery voltage equalization circuit is respectively connected to the battery pack and the main controller, and performs charging equalization or discharge equalization on a battery in the battery pack that needs to be charged equalized or discharged equalized according to the equalization control signal.
- the battery voltage equalization circuit includes a charge equalization module, a discharge equalization module, and a relay switch group;
- the battery pack includes n batteries, the relay group includes n+1 single-pole single-throw relays, wherein n ⁇ 2;
- the n-1th battery positive pole is connected to the charging equalization module and the discharge equalization module through an n-1th single pole single throw relay; the nth battery positive pole and the n-1th battery
- the negative poles are connected to the charging equalization module and the discharge equalization module through an nth single-pole single-throw relay; the negative pole of the nth battery passes the n+1th single-pole single-throw relay and the charging equalization
- the module is connected to the discharge equalization module; [0015]
- the charging equalization module, the discharge equalization module, and the single-pole single-throw relays are selectively turned on or off according to the equalization control signal, and the charging equalization module passes through a single-pole single-throw relay and needs to be charged and balanced.
- the battery forms a closed loop, and the battery that needs to be charged and balanced is charged and equalized, or the discharge equalization module forms a closed loop through the single-pole single-throw relay and the battery that needs to be discharged, and discharges the battery that needs to be discharged and equalized.
- the charge equalization module includes a power supply unit, a first double pole single throw relay switch, and a double pole double throw relay switch;
- the double pole double throw relay switch includes a first knife contact, a second knife contact, a first stationary contact, a second stationary contact, a third stationary contact, and a fourth stationary contact;
- the first knife contact and the second knife contact are synchronously converted to the first knife contact and the third stationary contact, or synchronously converted to the second knife contact and the fourth stationary contact;
- the first blade contact is connected to a positive output end of the power supply unit by a first group of the first double-pole single-throw relay, and the second tool contact passes the a second set of switches of a double-pole single-throw relay is connected to a negative output end of the power supply unit;
- the first static contact and the fourth static contact are both connected to the positive pole of the n-1th battery through the n-1th single-pole single-throw relay, and both pass the n+1th
- the single pole single throw relay is connected to the negative pole of the nth battery
- the second stationary contact and the third stationary contact are both connected to the positive pole of the nth battery and the negative pole of the n-1th battery through the nth single pole single throw relay.
- the power supply unit includes a DC/DC power supply and a DC charger; the positive input terminal and the negative input terminal of the DC/DC power supply are respectively connected to the positive and negative terminals of the DC charger.
- the positive output end of the DC/DC power supply is connected to the first tool contact through a first set of switches of the first double-pole single-throw relay, and the negative output end of the DC/DC power supply passes The second set of switches of the first double pole single throw relay is connected to the second knife contact.
- the power supply unit includes a DC/DC power supply; a positive input terminal and a negative input terminal of the DC/DC power supply are respectively connected to a positive pole and a negative pole of the battery pack, and the DC/ A positive output of the DC power supply is coupled to the first tool contact by a first set of switches of the first double pole single throw relay, and a negative output of the DC/DC power supply passes the first pair The second group of knives and single throw relays Connected to the second knife contact.
- the discharge equalization module includes a discharge resistor and a second double pole single throw relay
- the first end of the discharge resistor is sequentially passed through the second double-pole single-throw relay, the first group of switches, the n-1th single-pole single-throw relay, and the n-1th battery
- the positive pole is connected, and the first group of switches and the n+1th single-pole single-throw relay of the second double-pole single-throw relay are sequentially connected to the negative pole of the nth battery;
- the second end of the discharge resistor is sequentially passed through the second double-pole single-throw relay, the second group of single-pole single-throw relays, and the n-th battery positive and the first The negative pole of the n-1 battery is connected.
- the present invention also provides a battery management device including the aforementioned battery pack voltage equalization control circuit.
- the battery management device is, but not limited to, a battery inspector or a battery management system.
- the battery management device performs data communication with a background communication device through a server.
- the beneficial effects of the present invention are that the battery voltage equalization control circuit and the battery management device provided by the present invention combine the charging equalization and the discharging equalization through the battery voltage equalization circuit to realize the discharge required in the battery pack.
- the battery is discharged and equalized, and the battery to be charged is charged and balanced to keep the battery pack consistent, which can improve the charging and discharging efficiency of the battery pack, and can prolong the service life of the battery pack.
- FIG. 1 is a schematic diagram of battery pack inconsistency
- FIG. 2 is a block diagram of a battery pack voltage equalization control circuit in some embodiments of the present invention.
- FIG. 3 is a circuit diagram showing a specific embodiment of the battery pack voltage equalization circuit of FIG. 2 connected to a battery pack. Intention
- FIG. 4 is a circuit diagram showing another embodiment of the battery pack voltage equalization circuit of FIG. 2 connected to a battery pack.
- the battery pack voltage equalization control circuit of the present invention can be applied to a battery pack power supply system in the power, communication, electric vehicle, etc., as shown in FIG. 2, the battery pack voltage equalization control circuit in some embodiments of the present invention includes Battery pack 10, main controller 20, battery voltage detecting circuit 30, and battery pack voltage equalization circuit 4
- the battery pack 10 is constructed by connecting at least two batteries in series.
- the detection input end of the battery voltage detecting circuit 30 is connected to the positive pole and the negative pole of each battery, and the detection output end of the battery voltage detecting circuit 30 is connected to the signal input end of the main controller 20,
- the control output of the controller 20 is coupled to the control input of the battery voltage equalization circuit 40.
- the battery voltage equalization circuit 40 is coupled to the positive and negative terminals of each battery in the battery pack 10 to form a charge closed loop or a discharge closure with the battery. Loop.
- the battery voltage detecting circuit 30 detects the voltage of each battery and outputs the detected voltage signal to the main controller 20, that is, the battery voltage detecting circuit 30 outputs the voltage signal of each battery to the main controller 20 .
- the main controller 20 compares the voltage signals output by the battery voltage detecting circuit 30, and when there is a difference between the two voltage signal values greater than a preset reference value, the battery voltage equalization circuit 40 Output equalization control signal.
- the preset reference value is a parameter for measuring the consistency of the battery pack 10. If the difference between the battery voltages in the battery pack 10 is less than or equal to a preset reference value, it is determined that the consistency of the battery pack 10 is good, that is, the If the difference between the battery voltages in the battery pack 10 is greater than the preset reference value, it is determined that the consistency of the battery pack 10 is poor, that is, the requirements are not met; the preset reference value may be set according to actual conditions, such as Industry standard settings, no restrictions here.
- the battery voltage equalization circuit 40 needs to be in the battery pack 10 according to the equalization control signal output by the controller. Charge equalization or discharge equalization is required for the battery with equalization or discharge equalization.
- the battery voltage equalization circuit 40 forms a charging closed loop with the battery containing the lowest battery voltage, and the battery with the lowest battery voltage is charged and equalized, so that the voltage of each battery in the battery pack 10 reaches the consistency requirement.
- the battery voltage equalization circuit 40 forms a discharge closed loop with the battery containing the highest battery voltage, and discharges the battery with the highest battery voltage to equalize the voltage of each battery in the battery pack 10.
- the battery voltage equalization circuit 40 first and the lower battery voltage are included.
- the battery forms a charging closed loop, and the battery with the lower battery voltage is charged and equalized, and then the battery with the higher battery voltage forms a charging closed loop, and the battery with the higher battery voltage is discharged and equalized.
- the battery is subjected to charge equalization and discharge equalization until the consistency of the battery pack 10 meets the requirements, thereby achieving consistency of the battery pack 10 by a combination of charge equalization and discharge equalization.
- the embodiment of the present invention merely exemplifies the manner in which the battery pack 10 in this case is first charged and equalized and then discharged, and of course, the method of performing discharge equalization and then performing equalization of charging is not limited.
- the battery pack voltage equalization control circuit of the present invention has a multi-section battery inconsistency problem in the battery pack 10 through the battery pack voltage equalization circuit 40, and combines charging equalization and discharge equalization.
- the battery to be charged in the battery pack 10 is charged and equalized, and the battery that needs to be discharged is subjected to discharge equalization, so that the battery pack 10 is kept consistent, the charge and discharge utilization efficiency of the battery pack 10 can be improved, and the service life of the battery pack 10 can be prolonged.
- the battery voltage equalization circuit 40 in the battery voltage equalization control circuit of the present invention includes a charge equalization module 41, a discharge equalization module 42, and a relay switch group 43.
- the battery pack 10 includes n batteries B1, B2, B3, ... B(n-1), B(n), and the relay group 43 includes n+. 1 single pole single throw relay ⁇ Kl, ⁇ 2, ⁇ 3... ⁇ ( ⁇ ), ⁇ ( ⁇ +1)
- the anode of the n-1th battery is connected to the charge equalization module 41 and the discharge equalization module 42 through the n-1th single pole single throw relay; the anode of the nth battery and the n-1th
- the negative pole of the battery is connected to the charging equalization module 41 and the discharge equalization module 42 through the nth single-pole single-throw relay; the negative pole of the n-th battery passes through the n+1th single-pole single-throw relay
- the charge equalization module 41 and the discharge equalization module 42 are connected.
- the charge equalization module 41, the discharge equalization module 42 and the single-pole single-throw relays are selectively turned on or off according to the equalization control signal output by the main controller 20, and the charge equalization module 41 passes the single-pole single-throw relay.
- the battery and the battery that needs to be charged and balanced form a closed loop, and the battery that needs to be charged and equalized is charged and equalized, or the discharge equalization module 42 forms a closed loop through the single-pole single-throw relay and the battery that needs to be discharged and equalized.
- the discharge balanced battery is discharged and equalized.
- the charge equalization module 41 when the charge equalization module 41 is turned on, the discharge equalization module 42 is turned off, and the single-pole single-throw relay connected to the positive and negative terminals of the battery that needs to be charged and balanced is closed, and the other single-pole single-throw relays are turned off.
- the charge equalization module 41 forms a charge closed loop with the single-pole single-throw relay connected to the positive and negative terminals of the battery that needs to be charged and equalized, and the charge equalization module 41 performs charge equalization on the battery that needs to be charged and balanced.
- the discharge equalization module 42 When the charge equalization module 41 is turned off, the discharge equalization module 42 is turned on, and the single-pole single-throw relay connected to the positive and negative terminals of the battery requiring discharge equalization is closed, and the other single-pole single-throw relays are turned off, and discharged.
- the equalization module 42 forms a discharge closed loop through the single-pole single-throw relay connected to the positive and negative terminals of the battery that needs to be discharged and equalized, and the discharge equalization module 42 performs discharge equalization on the battery that needs to be discharged and equalized.
- the charge equalization module 41 in the battery voltage equalization circuit 40 includes a power supply unit 410, a first double pole single throw relay switch M1, and a double pole double throw relay switch M3.
- the double pole double throw relay switch M3 includes a first knife contact, a second knife contact, a first stationary contact, a second stationary contact, a third stationary contact, and a fourth stationary contact; Wherein the first knife contact and the second knife contact are synchronously converted to the first knife contact and the third stationary contact, or synchronously converted to the second knife contact and Four static contacts.
- the first knife contact is connected to the positive output end of the power supply unit 410 through the first group of the first double-pole single-throw relay switch M1, and the second knife contact passes through the The second set of first double-pole single-throw relays M1 is connected to the negative output of the power supply unit 410.
- the first static contact and the fourth static contact are both connected to the positive pole of the n-1th battery through the n-1th single-pole single-throw relay, and both pass the n+1th
- the single pole single throw relay is connected to the negative pole of the nth battery
- the second static contact and the third stationary contact are both passed through the nth single pole single throw relay and the anode and the nth battery
- the negative pole of the n-1 battery is connected.
- connection relationship is used to clearly describe the connection relationship between the double-pole double-throw relay switch M3 and the battery pack 10 and the relay switch group 43, the first static contact, the first The second static contact, the third static contact and the fourth static contact only represent the four static contacts of the double-pole double-throw relay MM3, and do not limit the first static contact, the second static contact, The specific position of the three static contacts and the fourth stationary contact.
- the positive pole of the battery B1 is connected through the single-pole single-throw relay K1 It is a double-pole double-throw relay, a static contact and d static contact of M3.
- the static contact and d static contact are the first static contact and the fourth of the double-pole double-throw relay.
- the static contact; the negative pole of the battery B1 is connected to the single-pole single-throw relay K2, which is a double-pole double-throw relay, the b-static contact and the c-static contact of the M3, and the ⁇ b static contact and the c-static contact respectively It is a double-pole double-throw relay that closes the second stationary contact and the third stationary contact of M3.
- the connection relationship between the M3 and the battery B2, the single-pole single-throw relay, the K2 and the K3, the positive pole of the battery B2 is connected to the double-pole double-throw relay through the single-pole single-throw relay K2.
- the b static contact and the c static contact of the M3, the ⁇ b static contact and the c static contact are respectively the first static contact and the fourth static contact of the double pole double throw relay MM3; the battery B2
- the negative pole is connected to the single-pole single-throw relay K3.
- the double-pole double-throw relay turns off the m static contact and the d-static contact of the M3.
- the ⁇ a static contact and the d static contact are double-pole double-throw relays respectively.
- the power supply unit 410 in the charging equalization module 41 includes a DC/DC power source 411 and a DC charger 41 2; the positive input terminal and the negative input terminal of the DC/DC power source 411 and the DC charger respectively
- the positive pole and the negative pole of the 412 are correspondingly connected, and the positive output end of the DC/DC power source 411 is connected to the first knife contact through the first group of the first double-pole single-throw relay switch M1,
- the negative output terminal of the DC/DC power supply 411 is A second set of switches of the first double pole single throw relay switch M1 is coupled to the second knife contact.
- the discharge equalization module 42 includes a discharge resistor R and a second double pole single throw relay switch M2.
- the first end of the discharge resistor R sequentially passes through the second double-pole single-throw relay to switch the first group of the M2, the n-1th single-pole single-throw relay, and the n-1th section
- the positive poles of the battery are connected, and in turn, through the second double pole single throw relay, the first group of switches of the M2, the n+ l single pole single throw relays are connected to the negative pole of the nth battery.
- the second end of the discharge resistor R is sequentially passed through the second double-pole single-throw relay, the second group of the M2, the n-th single-pole single-throw relay, and the positive electrode of the nth battery Connect to the negative pole of the n-1th battery.
- connection relationship is used to clearly describe the connection relationship between the discharge resistor R and the second double-pole single-throw relay switch M2, the battery pack 10, and the relay switch group 43.
- the first end and the second end of the discharge resistor R represent only the two ends of the discharge resistor R, and the first pair of switches and the second group of the second double-pole single-throw relay switch M2 only represent the second double-knife.
- the single-throw relay switches off the two sets of M2, and does not limit the specific positions of the first end, the second end, the first set of switches, and the second set of switches.
- the first group of M2 is closed, the e end is the first end of the discharge resistor R; the negative pole of the battery B1 is connected to the K2 by the single pole single throw relay K2, and the second double pole single throw relay is connected to the H2 of the M2, and then The end of the discharge resistor R is connected by h ⁇ , which is the second group of the second double-pole single-throw relay switch M2, and the rope is the second end of the discharge resistor R.
- the rope is the first end of the discharge resistor R; the negative pole of the battery B2 is connected to the K3 by the single-pole single-throw relay K3, and the second double-pole single-throw relay is connected to the gate of the M2, and then the discharge resistor R is connected by g ⁇
- the e-end is the second set of the second double-pole single-throw relay switch M2, and the e-end is the second end of the discharge resistor R.
- the power supply unit 410 of FIG. 4 includes a DC/DC power supply 411; and the DC/DC power supply 411.
- the positive input terminal and the negative input terminal are respectively connected to the positive pole and the negative pole of the battery pack 10, and the positive output terminal of the DC/DC power source 411 passes through the first double pole single throw relay to switch the first group of the M1
- the first switch contact is connected to the first tool contact, and the negative output end of the DC/DC power supply 411 passes through the first double-pole single-throw relay to switch the second group of the M1 and the second tool contact connection.
- the battery voltage detecting circuit 30 detects the voltage of each of the batteries and outputs the detected voltage signal to the main controller 20.
- the main controller 20 compares the voltage signals output by the battery voltage detecting circuit 30, and when the difference between the two voltage signal values is greater than a preset reference value, it is detected that the battery pack 10 appears as shown in FIG. Inconsistency ⁇ , an equalization control signal is output to the battery pack voltage equalization circuit 40.
- the battery voltage equalization circuit 40 when the difference between the highest battery voltage and the lowest battery voltage in the battery pack 10 is greater than the preset reference value, and the other battery segments are in good agreement with the battery containing the highest battery voltage. As shown in Fig. 1 (a), for example, the voltage of the battery B1 is the lowest, and the voltages of the other batteries are better.
- the equalization control signal output by the main controller 20 controls the first double-pole single-throw relay. , single-pole single-throw relay, K1 and K2 are closed, and double-pole and double-throw relay is controlled. M 3 is turned to a static contact and c static contact, and the second double-pole single-throw relay is controlled by M2.
- the single-throw relay is turned off K3 ⁇ K(n+l), and the DC/DC power supply 411 forms a closed loop with the battery B1.
- the DC charger 412 supplies power to the DC/DC power supply 411, or as shown in FIG.
- the battery pack 10 shown in FIG. 4 supplies power to the DC/DC power supply 411, and the DC/DC power supply 411 performs voltage conversion to charge balance the battery B1, so that the battery sections in the battery pack 10 remain consistent.
- the equalization control signal outputted by the controller 20 controls the second double pole single throw relay switch M2, the single pole single throw relay switch K1 and K2 are closed, and the first double pole single throw relay switch M1, single pole single throw relay
- K3 ⁇ K(n+l) is turned off, the discharge resistor R forms a closed loop with the battery B1, and the battery B1 is charged and equalized by the discharge resistor R, so that the batteries in the battery pack 10 are kept consistent.
- the equalization control signal output by the main controller 20 first controls the first double-pole single-throw relay switch M1, the single-pole single-throw relay switch K3 and K4 are closed, and the double-double throw is controlled.
- the relay turns off M3 to a static contact and c static contact, and the second double-pole single-throw relay turns off M2, single-pole single-throw relay is off Kl, ⁇ 2, ⁇ 5 ⁇ ( ⁇ +1)
- the DC/DC power supply 411 and the battery B3 form a closed loop, and the DC/DC power supply 411 charges and equalizes the battery B3 until the voltage of the battery B3 and the battery B2 coincide.
- the equalization control signal output by the main controller 20 controls the second double-pole single-throw relay switch M2, the single-pole single-throw relay switch K1 and K2 are closed, and the first double-knife is controlled at the same time.
- the throwing relay closes Ml, the single pole single throw relay turns off K 3 ⁇ K(n+l), the discharge resistor R forms a closed loop with the battery B1, and the battery B1 is charged and balanced by the discharge resistor R until the battery B1 and The voltage of the battery pack 4 is the same.
- the equalization control signal outputted by the main controller 20 controls the first double-pole single-throw relay MM1, the single-pole single-throw relay ⁇ 2 and ⁇ 3 are closed, and the double-pole double-throw relay is controlled.
- the /DC power source 411 forms a closed loop with the battery pack 2, and the DC/DC power source 411 charges and equalizes the battery B2 until the battery B2 and the batteries B1 and B4 have the same voltage.
- the battery is switched to The first double pole single throw relay turns off Ml, the single pole single throw relay turns off K3 and K4, and the double pole double throw relay turns off M3 to a static contact and c static contact, the same second double knife Throwing relay switch M2, single-pole single-throw relay switch Kl, ⁇ 2, ⁇ 5 ⁇ ( ⁇ +1) break, this ⁇ DC/DC power supply 411 forms a closed loop with battery ⁇ 3, DC/DC power supply 411 pairs battery B3 Perform charge equalization until battery B3 and battery B1, B2, and B4 The pressure is consistent; the method of charging the battery B2 only before charging the battery B3 is of course not limited to the method of charging the battery B3 by first charging the battery B3.
- the battery is repeatedly charged and equalized and discharged until the consistency of the battery pack 10 meets the requirements, and the consistency of the battery pack 10 is maintained
- the present invention also provides a battery management device, which may be, but not limited to, a battery inspection device or a battery management system, the battery management device including the battery voltage equalization control circuit in the above embodiment,
- a battery management device including the battery voltage equalization control circuit in the above embodiment,
- the structure of the battery pack voltage equalization control circuit in the battery management device and the beneficial effects thereof are all referred to the above embodiments, and are not described herein again.
- the battery management device of the present invention can perform data communication with a background communication device (such as a PC) through a server, thereby facilitating remote management of the battery pack by the user.
- a background communication device such as a PC
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
一种电池组电压均衡控制电路及电池管理设备,其中该电池组电压均衡控制电路包括蓄电池组(10)、主控制器(20)、电池电压检测电路(30)和电池组电压均衡电路(40);电池电压检测电路(30)分别与每节蓄电池的正负极和主控制器(20)连接,检测每节蓄电池的电压并将检测到的电压信号输出至主控制器(20);主控制器(20)比较各电压信号,且当有两个电压信号值之间的差值大于预设参考值时,向电池组电压均衡电路(40)输出均衡控制信号;电池组电压均衡电路(40)分别与蓄电池组(10)和主控制器(20)连接,根据均衡控制信号对蓄电池组(10)中需要充电均衡或放电均衡的蓄电池进行充电均衡或放电均衡。由此能够使蓄电池组(10)保持一致性,提高蓄电池组(10)充放电利用效率,同时能延长蓄电池组(10)使用寿命。
Description
发明名称:电池组电压均衡控制电路及电池管理设备 技术领域
[0001] 本发明涉及电池管理技术领域, 更具体地说, 涉及一种电池组电压均衡控制电 路及电池管理设备。
背景技术
[0002] 由于单节电池的电压受电极材料的限制, 充放电过程中, 电池电压只会在一定 范围内变动, 所以在使用电池吋, 通常将多节电池进行串联使用, 如此可以提 高供电电压; 但由于蓄电池在制造过程中, 不可能保持完全相同, 会因为工艺 、 材质等因素的差异, 造成电池在电压、 内阻、 电荷量等参数上存在一定的差 另 |J, 这些差别即电池组件的不一致性, 在不进行管理的情况下, 在循环使用过 程中, 又会由于电池电解液、 自放电等因素不同, 电池的不一致性会随着电池 的循环使用而增大。
[0003] 电池组的不一致性主要表现在各单节电池之间的容量不同, 当电池之间容量差 异超过一定范围, 即需要对电池组进行均衡; 电池组的不一致性主要表现如以 下三种情况: (1) 一组电池中, 其中一节电池容量, 即电池电压较低, 其它电 池容量之间相差较小, 如图 1 (a) 所示; (2) —组电池中, 其中一节电池容量 较高, 其它电池容量之间相差较小, 如图 1 (b) 所示; (3) 各节电池容量之间 有差异, 容量最高的电池与容量最低的电池之间差异较大, 如图 1 (c) 所示。
[0004] 由于电池组的不一致性, 因此当电池组进行充电吋, 其中一节电池达到最高电 压吋停止充电, 其它电池未充满; 当电池组进行放电吋, 其中一节电池达到最 低电压吋停止放电, 其它电池中还有很多电量。 从而由于电池组的不一致性, 导致电池组不能满充满放, 没有充分利用电池组。 目前常用的均衡策略有能耗 型均衡策略和能量转移型均衡策略。
[0005] 能耗型均衡策略的原理是将电池与电阻串联, 将容量高的电池进行放电, 将高 出的能量以热能形式释放, 以减小电池组的不一致性。 该均衡策略简单、 可靠 , 但只能对容量高的电池进行放电均衡, 容量低的电池无法进行充电均衡。
[0006] 能量转移均衡策略的原理是通过电感、 电容等储能元器件, 将容量高的电池的 多余容量转移到容量低的电池。 该均衡策略能够实现对容量高和容量低的电池 同吋进行均衡, 但该方案控制复杂, 并在能量转移过程中, 损耗也比较大。 技术问题
[0007] 本发明要解决的技术问题在于, 针对现有技术的上述能耗型均衡策略只能对容 量高的电池进行均衡, 不能充分利用电池组, 能量转移均衡策略控制复杂, 能 量损耗大的缺陷, 提供一种电池组电压均衡控制电路及电池管理设备。
问题的解决方案
技术解决方案
[0008] 本发明解决其技术问题所采用的技术方案是: 构造一种电池组电压均衡控制电 路, 该电池组电压均衡控制电路包括蓄电池组、 主控制器、 电池电压检测电路 和电池组电压均衡电路;
[0009] 所述电池电压检测电路分别与每节蓄电池的正负极和所述主控制器连接, 检测 每节蓄电池的电压并将检测到的电压信号输出至所述主控制器;
[0010] 所述主控制器比较各所述电压信号, 且当有两个电压信号值之间的差值大于预 设参考值吋, 向所述电池组电压均衡电路输出均衡控制信号;
[0011] 所述电池组电压均衡电路分别与所述蓄电池组和所述主控制器连接, 根据所述 均衡控制信号对蓄电池组中需要充电均衡或放电均衡的蓄电池进行充电均衡或 放电均衡。
[0012] 在一些实施例中, 所述电池组电压均衡电路包括充电均衡模块、 放电均衡模块 和继电器幵关组;
[0013] 所述蓄电池组包括 n节蓄电池, 所述继电器幵关组包括 n+1个单刀单掷继电器幵 关, 其中, n≥2;
[0014] 第 n-1节蓄电池的正极通过第 n-1个单刀单掷继电器幵关与所述充电均衡模块和 所述放电均衡模块连接; 第 n节蓄电池的正极和第 n-1节蓄电池的负极均通过第 n 个单刀单掷继电器幵关与所述充电均衡模块和所述放电均衡模块连接; 第 n节蓄 电池的负极通过第 n+1个单刀单掷继电器幵关与所述充电均衡模块和所述放电均 衡模块连接;
[0015] 所述充电均衡模块、 放电均衡模块和各单刀单掷继电器幵关根据所述均衡控制 信号选择接通或断幵, 所述充电均衡模块通过单刀单掷继电器幵关与需要充电 均衡的蓄电池形成闭合回路, 对该需要充电均衡的蓄电池进行充电均衡, 或者 所述放电均衡模块通过单刀单掷继电器幵关与需要放电均衡的蓄电池形成闭合 回路, 对该需要放电均衡的蓄电池进行放电均衡。
[0016] 在一些实施例中, 所述充电均衡模块包括供电单元、 第一双刀单掷继电器幵关 和双刀双掷继电器幵关;
[0017] 所述双刀双掷继电器幵关包括第一刀触点、 第二刀触点、 第一静触点、 第二静 触点、 第三静触点和第四静触点; 其中, 所述第一刀触点和第二刀触点同步转 换至所述第一刀触点和第三静触点, 或者同步转换至所述第二刀触点和第四静 触点;
[0018] 所述第一刀触点通过所述第一双刀单掷继电器幵关的第一组幵关与所述供电单 元的正输出端连接, 所述第二刀触点通过所述第一双刀单掷继电器幵关的第二 组幵关与所述供电单元的负输出端连接;
[0019] 所述第一静触点和所述第四静触点均通过第 n-1个单刀单掷继电器幵关与第 n-1 节蓄电池的正极连接, 且均通过第 n+1个单刀单掷继电器幵关与第 n节蓄电池的 负极连接;
[0020] 所述第二静触点和所述第三静触点均通过第 n个单刀单掷继电器幵关与第 n节蓄 电池的正极和第 n-1节蓄电池的负极连接。
[0021] 在一些实施例中, 所述供电单元包括 DC/DC电源和直流充电机; 所述 DC/DC电 源的正输入端和负输入端分别与所述直流充电机的正极和负极对应连接, 所述 D C/DC电源的正输出端通过所述第一双刀单掷继电器幵关的第一组幵关与所述第 一刀触点连接, 所述 DC/DC电源的负输出端通过所述第一双刀单掷继电器幵关 的第二组幵关与所述第二刀触点连接。
[0022] 在一些实施例中, 所述供电单元包括 DC/DC电源; 所述 DC/DC电源的正输入端 和负输入端分别与所述蓄电池组的正极和负极对应连接, 所述 DC/DC电源的正 输出端通过所述第一双刀单掷继电器幵关的第一组幵关与所述第一刀触点连接 , 所述 DC/DC电源的负输出端通过所述第一双刀单掷继电器幵关的第二组幵关
与所述第二刀触点连接。
[0023] 在一些实施例中, 所述放电均衡模块包括放电电阻和第二双刀单掷继电器幵关
[0024] 所述放电电阻的第一端依次通过所述第二双刀单掷继电器幵关的第一组幵关、 第 n-1个单刀单掷继电器幵关与第 n-1节蓄电池的正极连接, 且依次通过所述第二 双刀单掷继电器幵关的第一组幵关、 第 n+1个单刀单掷继电器幵关与第 n节蓄电 池的负极连接;
[0025] 所述放电电阻的第二端依次通过所述第二双刀单掷继电器幵关的第二组幵关、 第 n个单刀单掷继电器幵关分别与第 n节蓄电池的正极和第 n-1节蓄电池的负极连 接。
[0026] 本发明还提供一种电池管理设备, 该电池管理设备包括前述的电池组电压均衡 控制电路。
[0027] 在一些实施例中, 所述电池管理设备为但不限于电池巡检仪或电池管理系统。
[0028] 在一些实施例中, 所述电池管理设备通过服务器与后台通信设备进行数据通信 发明的有益效果
有益效果
[0029] 本发明的有益效果是, 本发明所提供的电池组电压均衡控制电路及电池管理设 备通过电池组电压均衡电路采用充电均衡与放电均衡相结合的方式, 实现对蓄 电池组中需要放电的蓄电池进行放电均衡, 需要充电的蓄电池进行充电均衡, 使蓄电池组保持一致性, 能够提高蓄电池组充放电利用效率, 同吋能延长蓄电 池组使用寿命。
对附图的简要说明
附图说明
[0030] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0031] 图 1是蓄电池组不一致性的示意图;
[0032] 图 2是本发明一些实施例中电池组电压均衡控制电路的模块示意图;
[0033] 图 3是图 2中电池组电压均衡电路与蓄电池组连接的一具体实施例的电路结构示
意图;
[0034] 图 4是图 2中电池组电压均衡电路与蓄电池组连接的另一具体实施例的电路结构 示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0035] 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图详细说 明本发明的具体实施方式。
[0036] 本发明的电池组电压均衡控制电路可应用在电力、 通信、 电动汽车等行业的电 池组供电电源系统, 如图 2所示, 本发明一些实施例中的电池组电压均衡控制电 路包括蓄电池组 10、 主控制器 20、 电池电压检测电路 30和电池组电压均衡电路 4
0。
[0037] 本领域技术人员应当理解, 蓄电池组 10由至少两节蓄电池串联构成。
[0038] 在本发明实施例中, 电池电压检测电路 30的检测输入端与每节蓄电池的正极和 负极连接, 电池电压检测电路 30的检测输出端与主控制器 20的信号输入端连接 , 主控制器 20的控制输出端与电池组电压均衡电路 40的控制输入端连接, 电池 组电压均衡电路 40与蓄电池组 10中每节蓄电池的正极和负极连接, 以与蓄电池 形成充电闭合回路或放电闭合回路。
[0039] 电池电压检测电路 30检测每节蓄电池的电压并将检测到的电压信号输出至所述 主控制器 20, 即电池电压检测电路 30将每节蓄电池的电压信号输出给主控制器 2 0。
[0040] 所述主控制器 20比较电池电压检测电路 30输出的各电压信号, 且当有两个电压 信号值之间的差值大于预设参考值吋, 向所述电池组电压均衡电路 40输出均衡 控制信号。 其中, 预设参考值是衡量蓄电池组 10—致性的参数, 若蓄电池组 10 中各电池电压的差值小于或等于预设参考值, 则确定该蓄电池组 10的一致性较 好, 即符合要求; 若蓄电池组 10中各电池电压的差值大于预设参考值, 则确定 该蓄电池组 10的一致性较差, 即不合符要求; 上述预设参考值可根据实际情况 设定, 如根据行业标准设定, 此处不作限制。
[0041] 所述电池组电压均衡电路 40根据控制器输出的均衡控制信号对蓄电池组 10中需
要充电均衡或放电均衡的蓄电池进行充电均衡或放电均衡。
[0042] 具体当蓄电池组 10中存在最高电池电压与最低电池电压的差值大于上述预设参 考值, 且其它各节蓄电池与含最高电池电压的蓄电池一致性较好, 如图 1 (a) 所 示情况吋, 电池组电压均衡电路 40与含最低电池电压的蓄电池形成充电闭合回 路, 对该含最低电池电压的蓄电池进行充电均衡, 使得蓄电池组 10中各节蓄电 池的电压达到一致性要求。
[0043] 当蓄电池组 10中存在最高电池电压与最低电池电压的差值大于上述预设参考值 , 且其它各节蓄电池与含最低电池电压的蓄电池一致性较好吋, 如图 1 (b) 所 示情况吋, 电池组电压均衡电路 40与含最高电池电压的蓄电池形成放电闭合回 路, 对该含最高电池电压的蓄电池进行放电均衡, 使得蓄电池组 10中各节蓄电 池的电压达到一致性要求。
[0044] 当蓄电池组 10中存在多节蓄电池之间的电压差值均大于上述预设参考值, 如图 1 (c) 所示情况吋, 电池组电压均衡电路 40先与含较低电池电压的蓄电池形成充 电闭合回路, 对该含较低电池电压的蓄电池进行充电均衡, 再与含较高电池电 压的蓄电池形成充电闭合回路, 对该含较高电池电压的蓄电池进行放电均衡, 如此反复对蓄电池进行充电均衡和放电均衡, 直至蓄电池组 10的一致性符合要 求, 从而, 通过充电均衡和放电均衡相结合的方式实现蓄电池组 10的一致性。 应当说明的是, 本发明实施例仅仅举例对此种情况下的蓄电池组 10优选先进行 充电均衡再进行放电均衡的方式, 当然并不限制先进行放电均衡再进行充电均 衡的方式。
[0045] 相对于现有技术, 本发明的电池组电压均衡控制电路通过电池组电压均衡电路 40在蓄电池组 10中存在多节蓄电池不一致性问题吋, 通过充电均衡和放电均衡 相结合的方式对蓄电池组 10中需要充电的蓄电池进行充电均衡, 需要放电的蓄 电池进行放电均衡, 使蓄电池组 10保持一致性, 能够提高蓄电池组 10充放电利 用效率, 同吋能延长蓄电池组 10使用寿命。
[0046] 再结合参照图 3, 在一具体实施例中, 本发明电池组电压均衡控制电路中的电 池组电压均衡电路 40包括充电均衡模块 41、 放电均衡模块 42和继电器幵关组 43
[0047] 如图 3所示, 所述蓄电池组 10包括 n节蓄电池 Bl、 B2、 B3...... B(n-1)、 B(n)所述 继电器幵关组 43包括 n+1个单刀单掷继电器幵关 Kl、 Κ2、 Κ3...... Κ(η)、 Κ(η+1)
, 其中, η≥2。
[0048] 第 η-1节蓄电池的正极通过第 η-1个单刀单掷继电器幵关与所述充电均衡模块 41 和所述放电均衡模块 42连接; 第 η节蓄电池的正极和第 η-1节蓄电池的负极均通过 第 η个单刀单掷继电器幵关与所述充电均衡模块 41和所述放电均衡模块 42连接; 第 η节蓄电池的负极通过第 n+1个单刀单掷继电器幵关与所述充电均衡模块 41和 所述放电均衡模块 42连接。
[0049] 所述充电均衡模块 41、 放电均衡模块 42和各单刀单掷继电器幵关根据主控制器 20输出的均衡控制信号选择接通或断幵, 所述充电均衡模块 41通过单刀单掷继 电器幵关与需要充电均衡的蓄电池形成闭合回路, 对该需要充电均衡的蓄电池 进行充电均衡, 或者所述放电均衡模块 42通过单刀单掷继电器幵关与需要放电 均衡的蓄电池形成闭合回路, 对该需要放电均衡的蓄电池进行放电均衡。
[0050] 具体当充电均衡模块 41接通, 放电均衡模块 42断幵, 与需要充电均衡的蓄电池 正负极连接的单刀单掷继电器幵关闭合, 且其它单刀单掷继电器幵关断幵吋, 充电均衡模块 41通过与需要充电均衡的蓄电池正负极连接的单刀单掷继电器幵 关与该需要充电均衡的蓄电池形成充电闭合回路, 充电均衡模块 41对该需要充 电均衡的蓄电池进行充电均衡。
[0051] 当充电均衡模块 41断幵, 放电均衡模块 42接通, 与需要放电均衡的蓄电池正负 极连接的单刀单掷继电器幵关闭合, 且其它单刀单掷继电器幵关断幵吋, 放电 均衡模块 42通过与需要放电均衡的蓄电池正负极连接的单刀单掷继电器幵关与 该需要放电均衡的蓄电池形成放电闭合回路, 放电均衡模块 42对该需要放电均 衡的蓄电池进行放电均衡。
[0052] 具体地, 电池组电压均衡电路 40中的充电均衡模块 41包括供电单元 410、 第一 双刀单掷继电器幵关 Ml和双刀双掷继电器幵关 M3。
[0053] 所述双刀双掷继电器幵关 M3包括第一刀触点、 第二刀触点、 第一静触点、 第 二静触点、 第三静触点和第四静触点; 其中, 所述第一刀触点和第二刀触点同 步转换至所述第一刀触点和第三静触点, 或者同步转换至所述第二刀触点和第
四静触点。
[0054] 所述第一刀触点通过所述第一双刀单掷继电器幵关 Ml的第一组幵关与所述供 电单元 410的正输出端连接, 所述第二刀触点通过所述第一双刀单掷继电器幵关 Ml的第二组幵关与所述供电单元 410的负输出端连接。
[0055] 所述第一静触点和所述第四静触点均通过第 n-1个单刀单掷继电器幵关与第 n-1 节蓄电池的正极连接, 且均通过第 n+1个单刀单掷继电器幵关与第 n节蓄电池的 负极连接; 所述第二静触点和所述第三静触点均通过第 n个单刀单掷继电器幵关 与第 n节蓄电池的正极和第 n-1节蓄电池的负极连接。
[0056] 本领域技术人员应当理解的是, 上述连接关系是用于清楚描述双刀双掷继电器 幵关 M3与蓄电池组 10和继电器幵关组 43的连接关系, 上述第一静触点、 第二静 触点、 第三静触点和第四静触点仅表示双刀双掷继电器幵关 M3的四个静静触点 , 并不限定第一静触点、 第二静触点、 第三静触点和第四静触点的具体位置。
[0057] 例如, 如图 3中, 对于双刀双掷继电器幵关 M3与蓄电池 Bl、 单刀单掷继电器幵 关 K1和 K2的连接关系, 蓄电池 B1的正极通过单刀单掷继电器幵关 K1连接的是双 刀双掷继电器幵关 M3的 a静触点和 d静触点, 此吋 a静触点和 d静触点分别为双刀 双掷继电器幵关 M3的第一静触点和第四静触点; 蓄电池 B1的负极通过单刀单掷 继电器幵关 K2连接的是双刀双掷继电器幵关 M3的 b静触点和 c静触点, 此吋 b静 触点和 c静触点分别为双刀双掷继电器幵关 M3的第二静触点和第三静触点。
[0058] 而对于双刀双掷继电器幵关 M3与蓄电池 B2、 单刀单掷继电器幵关 K2和 K3的连 接关系, 蓄电池 B2的正极通过单刀单掷继电器幵关 K2连接的是双刀双掷继电器 幵关 M3的 b静触点和 c静触点, 此吋 b静触点和 c静触点分别为双刀双掷继电器幵 关 M3的第一静触点和第四静触点; 蓄电池 B2的负极通过单刀单掷继电器幵关 K3 连接的是双刀双掷继电器幵关 M3的 a静触点和 d静触点, 此吋 a静触点和 d静触点 分别为双刀双掷继电器幵关 M3的第二静触点和第三静触点。
[0059] 具体地, 充电均衡模块 41中的供电单元 410包括 DC/DC电源 411和直流充电机 41 2; 所述 DC/DC电源 411的正输入端和负输入端分别与所述直流充电机 412的正极 和负极对应连接, 所述 DC/DC电源 411的正输出端通过所述第一双刀单掷继电器 幵关 Ml的第一组幵关与所述第一刀触点连接, 所述 DC/DC电源 411的负输出端通
过所述第一双刀单掷继电器幵关 Ml的第二组幵关与所述第二刀触点连接。
[0060] 具体地, 所述放电均衡模块 42包括放电电阻 R和第二双刀单掷继电器幵关 M2。
[0061] 所述放电电阻 R的第一端依次通过所述第二双刀单掷继电器幵关 M2的第一组幵 关、 第 n-1个单刀单掷继电器幵关与第 n-1节蓄电池的正极连接, 且依次通过所述 第二双刀单掷继电器幵关 M2的第一组幵关、 第 n+l个单刀单掷继电器幵关与第 n 节蓄电池的负极连接。
[0062] 所述放电电阻 R的第二端依次通过所述第二双刀单掷继电器幵关 M2的第二组幵 关、 第 n个单刀单掷继电器幵关分别与第 n节蓄电池的正极和第 n-1节蓄电池的负 极连接。
[0063] 同理, 本领域技术人员应当理解的是, 上述连接关系是用于清楚描述放电电阻 R与第二双刀单掷继电器幵关 M2、 蓄电池组 10和继电器幵关组 43的连接关系, 上述放电电阻 R的第一端、 第二端仅表示放电电阻 R的两端, 第二双刀单掷继电 器幵关 M2的第一组幵关和第二组幵关仅表示第二双刀单掷继电器幵关 M2的两组 幵关, 并不限定该第一端、 第二端、 第一组幵关和第二组幵关的具体位置。
[0064] 例如, 如图 3中, 对于放电电阻 R与第二双刀单掷继电器幵关 M2、 蓄电池 Bl、 单刀单掷继电器幵关 K1和 K2的连接关系, 蓄电池 B1的正极通过单刀单掷继电器 幵关 K1连接的是第二双刀单掷继电器幵关 M2的 g幵关, 再通过 g幵关连接放电电 阻 R的 e端, 此吋 g幵关为第二双刀单掷继电器幵关 M2的第一组幵关, e端为放电 电阻 R的第一端; 蓄电池 B1的负极通过单刀单掷继电器幵关 K2连接的是第二双 刀单掷继电器幵关 M2的 h幵关, 再通过 h幵关连接放电电阻 R的端, 此吋 h幵关为 第二双刀单掷继电器幵关 M2的第二组幵关, 繩为放电电阻 R的第二端。
[0065] 而对于放电电阻 R与第二双刀单掷继电器幵关 M2、 蓄电池 B2、 单刀单掷继电器 幵关 K2和 K3的连接关系, 蓄电池 B2的正极通过单刀单掷继电器幵关 K2连接的是 第二双刀单掷继电器幵关 M2的 h幵关, 再通过 h幵关连接放电电阻 R的端, 此吋 h 幵关为第二双刀单掷继电器幵关 M2的第一组幵关, 繩为放电电阻 R的第一端; 蓄电池 B2的负极通过单刀单掷继电器幵关 K3连接的是第二双刀单掷继电器幵关 M2的 g幵关, 再通过 g幵关连接放电电阻 R的 e端, 此吋 g幵关为第二双刀单掷继 电器幵关 M2的第二组幵关, e端为放电电阻 R的第二端。
[0066] 结合参照图 4, 在本发明另一具体实施例中, 与图 3所示电路结构不同的是, 图 4中的供电单元 410包括 DC/DC电源 411; 所述 DC/DC电源 411的正输入端和负输 入端分别与所述蓄电池组 10的正极和负极对应连接, 所述 DC/DC电源 411的正输 出端通过所述第一双刀单掷继电器幵关 Ml的第一组幵关与所述第一刀触点连接 , 所述 DC/DC电源 411的负输出端通过所述第一双刀单掷继电器幵关 Ml的第二组 幵关与所述第二刀触点连接。
[0067] 如图 4所示实施例中, 在给电池电压低的蓄电池进行充电均衡吋, 由于整组蓄 电池组 10在给 DC/DC电源 411供电, 因此蓄电池组 10中电池电压高的蓄电池中的 电池电压也在降低, 从而加快了蓄电池组 10达到一致性的速度。
[0068] 下面对本发明电池组电压均衡控制电路的工作原理进行说明:
[0069] 在本发明的电池组电压均衡控制电路中, 电池电压检测电路 30检测每节蓄电池 的电压并将检测到的电压信号输出给主控制器 20。 所述主控制器 20比较电池电 压检测电路 30输出的各电压信号, 且当有两个电压信号值之间的差值大于预设 参考值, 即检测到蓄电池组 10出现如图 1所示的不一致性吋, 向所述电池组电压 均衡电路 40输出均衡控制信号。
[0070] 电池组电压均衡电路 40中, 当蓄电池组 10中存在最高电池电压与最低电池电压 的差值大于上述预设参考值, 且其它各节蓄电池与含最高电池电压的蓄电池一 致性较好, 如图 1 (a) 所示情况, 例如蓄电池 B1的电压最低, 其它各节蓄电池 的电压一致性较好吋, 主控制器 20输出的均衡控制信号控制第一双刀单掷继电 器幵关 Ml、 单刀单掷继电器幵关 K1和 K2闭合, 以及控制双刀双掷继电器幵关 M 3打向 a静触点和 c静触点, 同吋控制第二双刀单掷继电器幵关 M2、 单刀单掷继电 器幵关 K3~K(n+l)断幵, 此吋 DC/DC电源 411与蓄电池 B1形成闭合回路, 如图 3所 示直流充电机 412给 DC/DC电源 411供电, 或者如图 4所示蓄电池组 10给 DC/DC电 源 411供电, DC/DC电源 411进行电压转换后对蓄电池 B1进行充电均衡, 使得蓄 电池组 10中各节蓄电池保持一致性。
[0071] 当蓄电池组 10中存在最高电池电压与最低电池电压的差值大于上述预设参考值 , 且其它各节蓄电池与含最低电池电压的蓄电池一致性较好吋, 如图 1 (b) 所 示情况, 例如蓄电池 B1的电压最高, 其它各节蓄电池的电压一致性较好吋, 主
控制器 20输出的均衡控制信号控制第二双刀单掷继电器幵关 M2、 单刀单掷继电 器幵关 K1和 K2闭合, 同吋控制第一双刀单掷继电器幵关 Ml、 单刀单掷继电器幵 关 K3~K(n+l)断幵, 此吋放电电阻 R与蓄电池 B1形成闭合回路, 蓄电池 B1通过放 电电阻 R进行充电均衡, 使得蓄电池组 10中各节蓄电池保持一致性。
当蓄电池组 10中存在多节蓄电池之间的电压差值均大于上述预设参考值, 如图 1 (c) 所示情况, 例如蓄电池 B1的电压大于蓄电池 B4的电压, 蓄电池 B4的电压 大于, 蓄电池 B2的电压大于蓄电池 B3的电压吋, 主控制器 20输出的均衡控制信 号先控制第一双刀单掷继电器幵关 Ml、 单刀单掷继电器幵关 K3和 K4闭合, 以及 控制双刀双掷继电器幵关 M3打向 a静触点和 c静触点, 同吋控制第二双刀单掷继 电器幵关 M2、 单刀单掷继电器幵关 Kl、 Κ2、 Κ5~Κ(η+1)断幵, 此吋 DC/DC电源 411与蓄电池 B3形成闭合回路, DC/DC电源 411对蓄电池 B3进行充电均衡, 直至 蓄电池 B3与蓄电池 B2的电压一致。 蓄电池 B3与蓄电池 B2的电压一致后, 主控制 器 20输出的均衡控制信号控制第二双刀单掷继电器幵关 M2、 单刀单掷继电器幵 关 K1和 K2闭合, 同吋控制第一双刀单掷继电器幵关 Ml、 单刀单掷继电器幵关 K 3~K(n+l)断幵, 此吋放电电阻 R与蓄电池 B1形成闭合回路, 蓄电池 B1通过放电 电阻 R进行充电均衡, 直至蓄电池 B1与蓄电池 Β4的电压一致。 蓄电池 B1与蓄电 池 Β4的电压一致后, 主控制器 20输出的均衡控制信号控制第一双刀单掷继电器 幵关 Ml、 单刀单掷继电器幵关 Κ2和 Κ3闭合, 以及控制双刀双掷继电器幵关 Μ3 打向 b静触点和 d静触点, 同吋控制第二双刀单掷继电器幵关 M2、 单刀单掷继电 器幵关 Kl、 Κ4~Κ(η+1)断幵, 此吋 DC/DC电源 411与蓄电池 Β2形成闭合回路, D C/DC电源 411对蓄电池 B2进行充电均衡, 直至蓄电池 B2与蓄电池 B 1和 B4的电压 一致; 蓄电池 B2与蓄电池 B1和 B4的电压一致后, 切换为第一双刀单掷继电器幵 关 Ml、 单刀单掷继电器幵关 K3和 K4闭合, 以及双刀双掷继电器幵关 M3打向 a静 触点和 c静触点, 同吋第二双刀单掷继电器幵关 M2、 单刀单掷继电器幵关 Kl、 Κ 2、 Κ5~Κ(η+1)断幵, 此吋 DC/DC电源 411与蓄电池 Β3形成闭合回路, DC/DC电 源 411对蓄电池 B3进行充电均衡, 直至蓄电池 B3与蓄电池 Bl、 B2和 B4的电压一 致; 此处仅以先对蓄电池 B2充电, 再对蓄电池 B3充电的方式, 当然不限制于通 过先对蓄电池 B3充电, 再对蓄电池 B2充电的方式。 从而, 在出现多节蓄电池之
间不一致吋, 通过充电均衡和放电均衡相结合的方式, 反复对蓄电池进行充电 均衡和放电均衡, 直至蓄电池组 10的一致性符合要求, 保持蓄电池组 10的一致 性。
[0073] 本发明还提供了一种电池管理设备, 该电池管理设备可以是但不限于电池巡检 仪或电池管理系统, 该电池管理设备包括上述实施例中的电池组电压均衡控制 电路, 因而该电池管理设备中电池组电压均衡控制电路的结构以及所带来的有 益效果均参照上述实施例, 此处不再赘述。
[0074] 本发明的电池管理设备可通过服务器与后台通信设备 (如 PC机) 进行数据通信 , 从而便于用户对蓄电池组进行远程管理。
[0075] 以上所述仅是本发明的优选实施方式, 本发明的保护范围并不仅局限于上述实 施例, 凡属于本发明思路下的技术方案均属于本发明的保护范围。 应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理前提下的若干个改 进和润饰, 这些改进和润饰也应视为本发明的保护范围。
Claims
[权利要求 1] 一种电池组电压均衡控制电路, 其特征在于, 所述电池组电压均衡控 制电路包括蓄电池组 (10) 、 主控制器 (20) 、 电池电压检测电路 ( 30) 和电池组电压均衡电路 (40) ;
所述电池电压检测电路 (30) 分别与每节蓄电池的正负极和所述主控 制器 (20) 连接, 检测每节蓄电池的电压并将检测到的电压信号输出 至所述主控制器 (20) ;
所述主控制器 (20) 比较各所述电压信号, 且当有两个电压信号值之 间的差值大于预设参考值吋, 向所述电池组电压均衡电路 (40) 输出 均衡控制信号;
所述电池组电压均衡电路 (40) 分别与所述蓄电池组 (10) 和所述主 控制器 (20) 连接, 根据所述均衡控制信号对蓄电池组 (10) 中需要 充电均衡或放电均衡的蓄电池进行充电均衡或放电均衡。
[权利要求 2] 根据权利要求 1所述的电池组电压均衡控制电路, 其特征在于, 所述 电池组电压均衡电路 (40) 包括充电均衡模块 (41) 、 放电均衡模块
(42) 和继电器幵关组 (43) ;
所述蓄电池组 (10) 包括 n节蓄电池, 所述继电器幵关组 (43) 包括 n +1个单刀单掷继电器幵关, 其中, n≥2;
第 n-1节蓄电池的正极通过第 n-1个单刀单掷继电器幵关与所述充电均 衡模块 (41) 和所述放电均衡模块 (42) 连接; 第 n节蓄电池的正极 和第 n-1节蓄电池的负极均通过第 n个单刀单掷继电器幵关与所述充电 均衡模块 (41) 和所述放电均衡模块 (42) 连接; 第 n节蓄电池的负 极通过第 n+1个单刀单掷继电器幵关与所述充电均衡模块 (41) 和所 述放电均衡模块 (42) 连接;
所述充电均衡模块 (41) 、 放电均衡模块 (42) 和各单刀单掷继电器 幵关根据所述均衡控制信号选择接通或断幵, 所述充电均衡模块 (41 ) 通过单刀单掷继电器幵关与需要充电均衡的蓄电池形成闭合回路, 对该需要充电均衡的蓄电池进行充电均衡, 或者所述放电均衡模块 (
42) 通过单刀单掷继电器幵关与需要放电均衡的蓄电池形成闭合回路 , 对该需要放电均衡的蓄电池进行放电均衡。
[权利要求 3] 根据权利要求 2所述的电池组电压均衡控制电路, 其特征在于, 所述 充电均衡模块 (41) 包括供电单元 (410) 、 第一双刀单掷继电器幵 关 (Ml) 和双刀双掷继电器幵关 (M3) ;
所述双刀双掷继电器幵关 (M3) 包括第一刀触点、 第二刀触点、 第 一静触点、 第二静触点、 第三静触点和第四静触点; 其中, 所述第一 刀触点和第二刀触点同步转换至所述第一刀触点和第三静触点, 或者 同步转换至所述第二刀触点和第四静触点;
所述第一刀触点通过所述第一双刀单掷继电器幵关 (Ml) 的第一组 幵关与所述供电单元 (410) 的正输出端连接, 所述第二刀触点通过 所述第一双刀单掷继电器幵关 (Ml) 的第二组幵关与所述供电单元
(410) 的负输出端连接;
所述第一静触点和所述第四静触点均通过第 n-1个单刀单掷继电器幵 关与第 n-1节蓄电池的正极连接, 且均通过第 n+1个单刀单掷继电器幵 关与第 n节蓄电池的负极连接;
所述第二静触点和所述第三静触点均通过第 n个单刀单掷继电器幵关 与第 n节蓄电池的正极和第 n-1节蓄电池的负极连接。
[权利要求 4] 根据权利要求 3所述的电池组电压均衡控制电路, 其特征在于, 所述 供电单元 (410) 包括 DC/DC电源 (411) 和直流充电机 (412) ; 所 述 DC/DC电源 (411) 的正输入端和负输入端分别与所述直流充电机
(412) 的正极和负极对应连接, 所述 DC/DC电源 (411) 的正输出端 通过所述第一双刀单掷继电器幵关 (Ml) 的第一组幵关与所述第一 刀触点连接, 所述 DC/DC电源 (411) 的负输出端通过所述第一双刀 单掷继电器幵关 (Ml) 的第二组幵关与所述第二刀触点连接。
[权利要求 5] 根据权利要求 3所述的电池组电压均衡控制电路, 其特征在于, 所述 供电单元 (410) 包括 DC/DC电源 (411) ; 所述 DC/DC电源 (411) 的正输入端和负输入端分别与所述蓄电池组 (10) 的正极和负极对应
连接, 所述 DC/DC电源 (411) 的正输出端通过所述第一双刀单掷继 电器幵关 (Ml) 的第一组幵关与所述第一刀触点连接, 所述 DC/DC 电源 (411) 的负输出端通过所述第一双刀单掷继电器幵关 (Ml) 的 第二组幵关与所述第二刀触点连接。
根据权利要求 2至 5中任一项所述的电池组电压均衡控制电路, 其特征 在于, 所述放电均衡模块 (42) 包括放电电阻 (R) 和第二双刀单掷 继电器幵关 (M2) ;
所述放电电阻 (R) 的第一端依次通过所述第二双刀单掷继电器幵关 (M2) 的第一组幵关、 第 n-1个单刀单掷继电器幵关与第 n-1节蓄电池 的正极连接, 且依次通过所述第二双刀单掷继电器幵关 (M2) 的第 一组幵关、 第 n+1个单刀单掷继电器幵关与第 n节蓄电池的负极连接; 所述放电电阻 (R) 的第二端依次通过所述第二双刀单掷继电器幵关 (M2) 的第二组幵关、 第 n个单刀单掷继电器幵关分别与第 n节蓄电 池的正极和第 n-1节蓄电池的负极连接。
一种电池管理设备, 其特征在于, 所述电池管理设备包括权利要求 1 至 6中任一项所述的电池组电压均衡控制电路。
根据权利要求 7所述的电池管理设备, 其特征在于, 所述电池管理设 备为但不限于电池巡检仪或电池管理系统。
根据权利要求 7所述的电池管理设备, 其特征在于, 所述电池管理设 备通过服务器与后台通信设备进行数据通信。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510862673.2 | 2015-12-01 | ||
CN201510862673.2A CN105429212A (zh) | 2015-12-01 | 2015-12-01 | 电池组电压均衡控制电路及电池管理设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017092521A1 true WO2017092521A1 (zh) | 2017-06-08 |
Family
ID=55507225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/103292 WO2017092521A1 (zh) | 2015-12-01 | 2016-10-25 | 电池组电压均衡控制电路及电池管理设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105429212A (zh) |
WO (1) | WO2017092521A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072724A (zh) * | 2019-06-11 | 2020-12-11 | 艾普凌科有限公司 | 充放电控制电路以及具备该充放电控制电路的电池装置 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105429212A (zh) * | 2015-12-01 | 2016-03-23 | 深圳奥特迅电力设备股份有限公司 | 电池组电压均衡控制电路及电池管理设备 |
CN107290673A (zh) * | 2016-04-13 | 2017-10-24 | 北京连创驱动技术有限公司 | 一种电池管理测试系统的被动均衡电路及其测试方法 |
CN106451752B (zh) * | 2016-12-01 | 2023-10-03 | 佛山科学技术学院 | 一种适用于ups的电池均压电路 |
CN107425556A (zh) * | 2016-12-19 | 2017-12-01 | 上海蓝诺新能源技术有限公司 | 电池均衡装置及电池均衡方法 |
CN106970329B (zh) * | 2017-03-13 | 2020-01-31 | 深圳奥特迅电力设备股份有限公司 | 一种电池相对健康状况的判断方法及电池组供电系统 |
CN107516924A (zh) * | 2017-09-22 | 2017-12-26 | 中电科芜湖通用航空产业技术研究院有限公司 | 动力电池组非能耗式均衡管理系统及均衡管理方法 |
CN108008312A (zh) * | 2017-11-27 | 2018-05-08 | 广州市扬新技术研究有限责任公司 | 蓄电池组状态在线测量电路及方法 |
US10978884B2 (en) * | 2018-08-10 | 2021-04-13 | Powin Energy Corporation | Enhanced switched balancing network for battery pack |
US11063444B2 (en) | 2018-08-10 | 2021-07-13 | Powin, Llc | Enhanced battery management system for battery pack |
CN112673519A (zh) | 2018-09-11 | 2021-04-16 | 普威能源公司 | 模块化电池组及支持系统 |
CN109917302B (zh) * | 2019-04-11 | 2024-07-23 | 国网江苏省电力有限公司泰州供电分公司 | 新型蓄电池组核容测试设备及其测试方法 |
CN111071456A (zh) * | 2020-01-17 | 2020-04-28 | 北京瑞深航空科技有限公司 | 用于油电混动无人机的电池管理方法和油电混动无人机 |
CN111277023A (zh) * | 2020-03-27 | 2020-06-12 | 中国恩菲工程技术有限公司 | 电池均衡管理电路及其控制方法 |
CN112383104B (zh) * | 2020-11-02 | 2022-08-19 | 中国石油化工集团有限公司 | 一种蓄电池充电管理电路、装置及系统 |
CN112531810B (zh) * | 2020-11-13 | 2022-04-08 | 江苏博强新能源科技股份有限公司 | 均衡装置及含有该均衡装置的储能系统 |
CN113725977B (zh) * | 2021-09-06 | 2022-09-06 | 吴才荣 | 一种串联蓄电池组的充电和补充电电路 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201438493U (zh) * | 2009-05-31 | 2010-04-14 | 比亚迪股份有限公司 | 车载动力电池组的均衡装置 |
CN101917034A (zh) * | 2010-07-27 | 2010-12-15 | 合肥西玛科电子有限公司 | 一种基于继电器切换的锂电池组无损均衡装置 |
CN101969214A (zh) * | 2010-10-09 | 2011-02-09 | 华为技术有限公司 | 一种电池组及其控制方法 |
CN102231546A (zh) * | 2011-06-30 | 2011-11-02 | 武汉市菱电汽车电子有限责任公司 | 具有均衡充放电功能的电池管理系统及其控制方法 |
US20120139491A1 (en) * | 2010-12-07 | 2012-06-07 | Martin Eberhard | Balancing Voltage for a Multi-Cell Battery System |
CN102664433A (zh) * | 2012-03-23 | 2012-09-12 | 东莞新能德科技有限公司 | 基于双向dc/dc的电池均衡系统 |
CN103326439A (zh) * | 2013-06-28 | 2013-09-25 | 安科智慧城市技术(中国)有限公司 | 电池组的均衡电路及方法 |
CN203607876U (zh) * | 2013-10-28 | 2014-05-21 | 深圳安信卓科技有限公司 | 电池均衡管理装置 |
CN105429212A (zh) * | 2015-12-01 | 2016-03-23 | 深圳奥特迅电力设备股份有限公司 | 电池组电压均衡控制电路及电池管理设备 |
CN205231783U (zh) * | 2015-12-01 | 2016-05-11 | 深圳奥特迅电力设备股份有限公司 | 电池组电压均衡控制电路及电池管理设备 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101017986B (zh) * | 2006-12-29 | 2010-05-19 | 哈尔滨工业大学 | 动力电池组充放电过程中单体电池电压均衡器 |
CN101938152B (zh) * | 2010-09-01 | 2012-08-22 | 华南理工大学 | 一种动力电池组均衡电路及其均衡方法 |
CN102122836B (zh) * | 2011-04-01 | 2014-06-18 | 北京航空航天大学 | 一种锂离子动力电池组充放电主动均衡电路 |
CN203151186U (zh) * | 2013-04-12 | 2013-08-21 | 深圳市智仁科技有限公司 | 一种锂电池智能充放电系统及电脑 |
KR101462338B1 (ko) * | 2013-04-15 | 2014-11-20 | 숭실대학교산학협력단 | 교류 연계형 전력변환 장치 |
CN103227494B (zh) * | 2013-05-17 | 2015-05-13 | 北京华电天仁电力控制技术有限公司 | 一种储能电池管理系统 |
CN103501025B (zh) * | 2013-09-12 | 2016-03-30 | 中国科学院电工研究所 | 一种电池组主动均衡系统 |
CN203722259U (zh) * | 2013-11-06 | 2014-07-16 | 江苏华富储能新技术股份有限公司 | 一种电池组的均衡电路 |
CN103779938B (zh) * | 2014-02-11 | 2016-01-20 | 湖南江麓容大车辆传动股份有限公司 | 电池组用充电均衡电路、方法及放电均衡电路、方法 |
CN204205668U (zh) * | 2014-11-21 | 2015-03-11 | 南京国臣信息自动化技术有限公司 | 一种带主动均衡系统的电池管理系统 |
CN205231788U (zh) * | 2015-12-09 | 2016-05-11 | 深圳市博贝特科技发展有限公司 | 一种充电电路及含该电路的移动设备包 |
-
2015
- 2015-12-01 CN CN201510862673.2A patent/CN105429212A/zh active Pending
-
2016
- 2016-10-25 WO PCT/CN2016/103292 patent/WO2017092521A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201438493U (zh) * | 2009-05-31 | 2010-04-14 | 比亚迪股份有限公司 | 车载动力电池组的均衡装置 |
CN101917034A (zh) * | 2010-07-27 | 2010-12-15 | 合肥西玛科电子有限公司 | 一种基于继电器切换的锂电池组无损均衡装置 |
CN101969214A (zh) * | 2010-10-09 | 2011-02-09 | 华为技术有限公司 | 一种电池组及其控制方法 |
US20120139491A1 (en) * | 2010-12-07 | 2012-06-07 | Martin Eberhard | Balancing Voltage for a Multi-Cell Battery System |
CN102231546A (zh) * | 2011-06-30 | 2011-11-02 | 武汉市菱电汽车电子有限责任公司 | 具有均衡充放电功能的电池管理系统及其控制方法 |
CN102664433A (zh) * | 2012-03-23 | 2012-09-12 | 东莞新能德科技有限公司 | 基于双向dc/dc的电池均衡系统 |
CN103326439A (zh) * | 2013-06-28 | 2013-09-25 | 安科智慧城市技术(中国)有限公司 | 电池组的均衡电路及方法 |
CN203607876U (zh) * | 2013-10-28 | 2014-05-21 | 深圳安信卓科技有限公司 | 电池均衡管理装置 |
CN105429212A (zh) * | 2015-12-01 | 2016-03-23 | 深圳奥特迅电力设备股份有限公司 | 电池组电压均衡控制电路及电池管理设备 |
CN205231783U (zh) * | 2015-12-01 | 2016-05-11 | 深圳奥特迅电力设备股份有限公司 | 电池组电压均衡控制电路及电池管理设备 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072724A (zh) * | 2019-06-11 | 2020-12-11 | 艾普凌科有限公司 | 充放电控制电路以及具备该充放电控制电路的电池装置 |
CN112072724B (zh) * | 2019-06-11 | 2023-09-15 | 艾普凌科有限公司 | 充放电控制电路以及具备该充放电控制电路的电池装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105429212A (zh) | 2016-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017092521A1 (zh) | 电池组电压均衡控制电路及电池管理设备 | |
CN101752624B (zh) | 一种电池均衡充电方法及装置 | |
CN106532852B (zh) | 基于lc串联储能的电池组均衡电路 | |
CN106849288B (zh) | 一种电池模组连接电路和储能装置 | |
CN108336780B (zh) | 一种梯次利用电池包控制方法及系统 | |
CN105958570A (zh) | 一种锂电池电压均衡电路拓扑 | |
CN108667107B (zh) | 一种包含辅电池的蓄电池组均衡电路及控制方法 | |
CN107219467B (zh) | 一种具有去硫修复功能的变电站蓄电池核容装置及方法 | |
CN205160118U (zh) | 一种电池组均衡电路 | |
CN107134599B (zh) | 一种串联电池组的电压均衡电路及其工作方法 | |
WO2017054148A1 (zh) | 充放电平衡结构 | |
CN105471053A (zh) | 一种能完全释放电池组电量的电池串联冗余方法 | |
CN107658936A (zh) | 一种电池监测及均衡系统及其控制方法 | |
CN106253417A (zh) | 一种双回路冗余主动均衡电池管理系统及其控制方法 | |
CN105790339A (zh) | 动力电池组的均衡充放电系统及均衡充放电方法 | |
CN107681733A (zh) | 电池均衡模块及分布式电池储能均衡装置 | |
WO2018086267A1 (zh) | 串联电池组均衡充放电方法和电路 | |
CN110492555A (zh) | 一种大容量电池的均衡系统及其控制方法 | |
CN106655307A (zh) | 一种电池组均衡电路 | |
CN2922234Y (zh) | 动力锂离子电池的过放电保护电路 | |
CN108767940B (zh) | 一种串联充电电池并联充电主动均衡装置及主动均衡方法 | |
WO2020191931A1 (zh) | 一种电池化成电路及电池化成装置 | |
TWI548179B (zh) | 主動式放電平衡增程裝置及其控制方法 | |
CN2922233Y (zh) | 动力锂离子电池的过充电保护电路 | |
TWI655120B (zh) | 使用再生能源電力之主動式放電平衡增程裝置及其方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16869831 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16869831 Country of ref document: EP Kind code of ref document: A1 |