WO2017092270A1 - 随机接入方法及相关设备 - Google Patents

随机接入方法及相关设备 Download PDF

Info

Publication number
WO2017092270A1
WO2017092270A1 PCT/CN2016/084527 CN2016084527W WO2017092270A1 WO 2017092270 A1 WO2017092270 A1 WO 2017092270A1 CN 2016084527 W CN2016084527 W CN 2016084527W WO 2017092270 A1 WO2017092270 A1 WO 2017092270A1
Authority
WO
WIPO (PCT)
Prior art keywords
rssi
subchannel
sta
random access
stas
Prior art date
Application number
PCT/CN2016/084527
Other languages
English (en)
French (fr)
Inventor
陈晓
王勇
庞继勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017092270A1 publication Critical patent/WO2017092270A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • H04W74/085Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery

Definitions

  • the present invention relates to the field of wireless local area network technologies, and in particular, to a random access method and related equipment.
  • RA Random Access, based on uplink UL (Uplink Frequency Division Multiplexing Access) technology (OFDM) Random access
  • OFDMA Uplink Frequency Division Multiplexing Access
  • RA Random Access, based on uplink UL (Uplink Frequency Division Multiplexing Access) technology
  • OFDMA Uplink Frequency Division Multiplexing Access
  • the current methods or criteria are sometimes domain/frequency domain backoff, packet backoff, multiple rounds of backoff, and centralized access. The above various methods or criteria can be performed separately or in combination.
  • the RA behavior of the user is restricted in the access process, which mainly includes:
  • Step 1 When accessing, all STAs (Station, station. STA1 to STA4 in Figure 1) randomly select a count value between [1, CW (Contention Window)].
  • Step 2 When the STA receives a TF-R (Trigger Frame-Random Access) sent by an AP (Access Point, access point), the STA's count value (Counter) is decremented by 1.
  • TF-R Trigger Frame-Random Access
  • AP Access Point, access point
  • Step 3 When the count value is reduced to 0, after the next TF-R frame, the STA randomly selects a channel to send information.
  • Step 4 When two or more STAs select the same random access channel or resource at the same time, the collision occurs, and the STA doubles and decrements the CW by one, and returns to step one to randomly select a value, and repeats the above process.
  • the access process is not controlled by the AP, and the STA randomly selects the value, the uncertainty is increased, and in the case where the STA is densely distributed, the collision probability is correspondingly improved.
  • the access is extended.
  • the collision is limited to each group, so that there is no collision between the groups, but it is not given in the prior art.
  • a specific and suitable grouping strategy for grouping STAs therefore, the above problems cannot be solved reasonably.
  • the embodiment of the present application provides a random access method and related equipment, based on a specific grouping policy, to solve the problem that the STA access is not controlled, the collision probability, and the access delay.
  • a first aspect of the embodiment of the present application discloses a random access method, which is applied to an access point AP, and includes:
  • the acknowledgment information ACK or the uplink RA frame from the STA is successfully received on the RA subchannel, it is confirmed that the STA successfully accesses the RA subchannel.
  • the RA is confirmed.
  • the access fails on the subchannel, and it is determined whether the access is successful on the RA subchannel after setting the backoff time.
  • the sending, by the station STA, the indication signaling, indicating the received signal strength indication RSSI interval corresponding to each random access RA subchannel includes:
  • the indication signaling includes: a random access trigger frame TF-R or a beacon Beacon.
  • the STAs in the same RSSI interval initiate random access at any time, including:
  • the STAs located in the first RSSI interval initiate random access until the Sth time enables the STAs located in the Sth RSSI interval to initiate random access;
  • the STAs in any RSSI interval initiate random access until the Sth time enables the STAs in any RSSI interval to initiate random access;
  • S is a positive integer greater than or equal to 1.
  • the sending, by the STAs of each of the STAs, the indication signaling, indicating the received signal strength indication RSSI interval corresponding to each random access RA subchannel includes:
  • the RA subchannel in which the station STA is located is determined according to the RSSI interval to which the RSSI of each station STA belongs, and is divided into corresponding M packets.
  • each of the RA subchannels has K resource blocks RU;
  • the indication signaling includes: a random access trigger frame TF-R or a beacon Beacon, where M and K are positive integers greater than or equal to 1.
  • the method further includes:
  • the STA Receiving, by the STA, the RA frame sent by the resource block RU in the RA subchannel that is accessed by the STA, where the RA frame may carry the RSSI of the STA;
  • the STAs of the STAs that are successfully accessed are ranked from large to small;
  • the intermediate value of the N/2th RSSI value and the (N/2)+1 RSSI value is taken as an integer, as the lower bound of the M/2th RA subchannel, taking the first (( N/2)-(N/M)-1) RSSI values are upper bounds of the M/2th RA subchannel; the intermediate value is rounded down by 1 as the (M/2)+1th
  • the upper bound of the RA subchannel takes the (N/2)+(N/M) RSSI value as the lower bound of the (M/2)+1 RA subchannel;
  • the N/2th RSSI value is taken as the lower bound of the (M/2)th channel, and the ((N/2)-(N/M)-1) RSSI value is taken as the first The upper bound of the M/2 RA subchannels; the (N/2)+1 RSSI value is taken as the upper bound of the (M/2)+1 RA subchannel, taking the ((N/2)+( N/M)) RSSI values are used as the lower bound of the (M/2)+1th RA subchannel.
  • the second aspect of the embodiment of the present application further discloses an access point AP, including:
  • the sending module is configured to send, to the station STA, indication signaling, where the indication signaling is used to indicate a received signal strength indication RSSI interval corresponding to each random access RA subchannel;
  • the processing module is configured to confirm that the STA successfully accesses the RA subchannel if the ACK message from the STA or the uplink RA frame is successfully received on the RA subchannel.
  • the processing module may be further configured to:
  • the access failure on the RA subchannel is confirmed, and the retry is determined after setting the backoff time. Whether the access is successful on the RA subchannel.
  • the processing module is configured to: according to the received signal strength indication RSSI interval corresponding to each random access RA subchannel, The STAs of the RA subchannel are divided into n groups, and the time at which the broadcast indication signaling is determined according to the packet;
  • the indication signaling includes: a random access trigger frame TF-R Or beacon Beacon.
  • the sending module is configured to: send the indication signaling to the n groups of STAs at the determining moment, respectively, to enable the groups The station STA initiates random access on the corresponding RA subchannel at different times; or
  • the indication signaling is sent to each group of STAs at any one of the determined times, so that each group of station STAs initiates random access on the corresponding RA subchannels at the same time.
  • the processing module is configured to determine, according to the received signal strength indication RSSI interval corresponding to the M random access RA subchannels, the RA subchannel in which the station STA is located according to the RSSI interval to which the station STA's RSSI belongs, and divide the RA subchannel. a corresponding M packets, wherein each of the RA subchannels has K resource blocks RU;
  • the sending module is configured to broadcast indication signaling to all STAs in the M groups, so that the STAs located in the first group to the M group initiate random access in the respective channels, and compete for each other.
  • the indication signaling includes: a random access trigger frame TF-R or a beacon Beacon, where M and K are positive integers greater than or equal to 1.
  • the method further includes:
  • the receiving module is configured to receive an RA frame that is sent by the resource block RU in the RA subchannel that is accessed by the STA, where the RA frame may carry the STA's own RSSI;
  • the processing module is further configured to: count the number of accesses of the STAs that are successfully accessed;
  • the STAs of the STAs that are successfully accessed are ranked from large to small;
  • N/M the number of accesses N of the STAs for which the access is successful and the total number M of the RA subchannels, where M and N are positive integers greater than or equal to 1;
  • the smallest of the largest N/M RSSI values is taken as the lower bound of the first RA subchannel; for selecting the smallest The maximum of the N/M RSSI values is taken as the upper bound of the Mth RA subchannel; and when N is even, the middle of the N/2th RSSI value and the (N/2)+1 RSSI value
  • the value takes an integer down, as the lower bound of the M/2th RA subchannel, taking the ((N/2)-(N/M)-1) RSSI value as the number The upper bound of the M/2 RA subchannels; the intermediate value is rounded down by 1 as the upper bound of the (M/2)+1 RA subchannel, taking the ((N/2)+(N/M a) RSSI value as the lower bound of the (M/2)+1 RA subchannel; and when N is an odd number, the N/2th RSSI value is taken as the lower bound of the (M/2)th channel, Taking the (N/2)-(N/M
  • a third aspect of the embodiments of the present application further discloses a packet random access method, which is applied to a station STA, and includes:
  • the access confirmation information ACK of the access success or the uplink RA frame is sent back to the access point AP.
  • the selecting includes:
  • one resource block RU is randomly selected for access in the RA subchannel corresponding to the RSSI interval, or the number of RUs in the channel identifier of the STA of the station STA is used as the selected RU number, and the associated RSSI is selected.
  • the selecting includes:
  • the resource block RU in the RA subchannel corresponding to the RSSI interval is selected by using the number of RUs in the associated identifier AID modulo channel of the station STA, taking the remainder as the selected RU number.
  • the method further includes:
  • the RA subchannel corresponding to the adjacent RSSI interval is selected to initiate random access upward or downward.
  • the sending, by the access point AP, an uplink RA frame includes:
  • the uplink RA frame is sent to the AP by the resource block RU in the accessed RA subchannel, and the RA frame may carry the STA's own RSSI.
  • a fourth aspect of the embodiment of the present application further discloses a station STA, including:
  • the receiving module is configured to receive the indication signaling sent by the access point AP, and obtain the received signal strength indication RSSI interval corresponding to each random access RA subchannel indicated by the indication signaling;
  • the processing module is configured to select a corresponding RA subchannel to initiate random access according to the RSSI interval of the RSSI of the STA of the station;
  • the feedback module is configured to: if the corresponding RA subchannel is successfully accessed, the access point AP sends an acknowledgement information ACK for successful access or sends an uplink RA frame.
  • the processing module is further configured to:
  • one resource block RU is randomly selected for access in the RA subchannel corresponding to the RSSI section, or the number of RUs in the channel of the associated identifier AID is used as the selected RU number, and the corresponding RSSI interval is selected.
  • Resource block RU in the RA subchannel is randomly selected for access in the RA subchannel corresponding to the RSSI section, or the number of RUs in the channel of the associated identifier AID is used as the selected RU number, and the corresponding RSSI interval is selected.
  • the processing module is further configured to:
  • the resource block RU in the RA subchannel corresponding to the RSSI interval is selected by using the number of RUs in the associated identifier AID modulo channel of the station STA, taking the remainder as the selected RU number.
  • the processing module is further configured to:
  • the RA subchannel corresponding to the adjacent RSSI interval is selected to initiate random access upward or downward.
  • the sending module is configured to send an uplink RA frame to the AP by using a resource block RU in the accessed RA subchannel, where The RSSI of the STA may be carried in the RA frame.
  • the fifth aspect of the embodiments of the present application further discloses a random access system, including: the access point AP disclosed in the second aspect of the embodiment of the present application, and the foregoing disclosed in the fourth aspect of the embodiment of the present application.
  • Site STA Site STA.
  • a random access method and related device provided by the embodiment of the present application, the method sends an indication signaling to the station STA through the access point AP, indicating the received signal strength corresponding to each random access RA subchannel. Instructing the RSSI interval to enable the STA to initiate random access in the associated RSSI interval according to its own RSSI selection, and to successfully access the RA subchannel corresponding to the associated RSSI interval, and to provide feedback to the access point AP for successful access.
  • the information ACK or the uplink RA frame is transmitted, and the access point AP confirms that the access is successful after receiving the acknowledgement information ACK or the uplink RA frame.
  • the RSSI interval and the RSSI of the station STA are grouped, so that STAs of different RSSIs initiate random access on different RA subchannel resources, which not only increases the probability of access, but also reduces Collision, while also addressing the issue of STA access uncontrolled and access latency.
  • FIG. 1 is a schematic diagram of an access process disclosed in the prior art of the present application.
  • FIG. 3 is a flowchart of a random access method according to Embodiment 3 of the present application.
  • FIG. 4 is a schematic diagram of distribution of 20 STAs on the BSS and its own RSSI disclosed in Embodiment 4 of the present application;
  • FIG. 5 is a diagram showing an access procedure disclosed in an example 1 of Embodiment 4 of the present application.
  • Example 6 is a diagram showing an access procedure disclosed in Example 2 of Embodiment 4 of the present application.
  • FIG. 7 is a schematic structural diagram of an AP according to Embodiment 5 of the present application.
  • FIG. 8 is a structural diagram of an AP according to Embodiment 5 of the present application.
  • FIG. 9 is a schematic structural diagram of a STA according to Embodiment 5 of the present application.
  • FIG. 10 is a structural diagram of a STA according to Embodiment 5 of the present application.
  • WLAN Wireless Local Area Networks, wireless LAN
  • UL Up link, uplink connection
  • OFDMA Orthogonal Frequency Division Multiplexing Access, Orthogonal Frequency Division Multiple Access
  • RA Random Access, random access
  • STA Station, site
  • TF-R Trigger Frame-Random Access, random access trigger frame
  • Beacon beacon
  • CSI Channel State Information, channel state information
  • RU Resource Units, resource blocks
  • RSSI Received Signal Strength Indication, receiving signal strength indication
  • AP Access Point, access point
  • TPC Transmit Power Control, transmission power control
  • BSS Basic Service Set, basic service set.
  • the prior art proposes a grouping concept in which STAs are grouped to limit collisions in each group.
  • a specific and suitable grouping strategy for grouping STAs is not given, and the above problem cannot be solved.
  • the embodiment of the present application discloses a random The access method and the related device are grouped according to the RSSI interval corresponding to each RA subchannel and the RSSI of the STA, so that STAs of different RSSIs initiate random access on different RA subchannel resources, which not only increases the probability of access, but also reduces the probability of access. Collision, while solving the problem of STA access uncontrolled and access delay.
  • the reason for selecting the RSSI as the basis of the packet is as follows: First, the RSSI is one of the most easily available network parameters, and the STA may report the RSSI to the AP in the RA frame or the CSI feedback frame; Second, even the user who is initially accessing can select the access channel according to its own RSSI. Third, since the RSSI difference of users in the same interval is relatively small, it can avoid that the AP always locks the signal when simultaneously accessing.
  • RSSI can reflect the user's distribution within the BSS and interference, so combined with RSSI, the AP can indicate the TPC parameters on different access signals together in the TF-R, and The access channels corresponding to the same or similar RSSI intervals may be coordinated between adjacent BSSs. Therefore, in the embodiment of the present application, the RSSI is taken as an important factor in the grouping strategy, and the factors involved in other groups, such as the AID, the service category, and the like, can be given different grouping manners.
  • the specific architecture and implementation process are described in detail by the following specific embodiments.
  • FIG. 2 it is a flowchart of a random access method according to Embodiment 1 of the present application.
  • the packet random access method is applied to an AP, and the method mainly includes:
  • Step S101 The AP sends indication signaling to the STA, indicating an RSSI interval corresponding to each RA subchannel.
  • step S101 one or more STAs are distributed in each RA subchannel, and each STA has a respective RSSI value.
  • the indication signaling is used to indicate that each RA subchannel corresponds to The RSSI interval is selected by the STA to initiate random access within the associated RSSI interval according to its own RSSI value.
  • Step S102 If the AP successfully receives the acknowledgement information ACK or the uplink RA frame from the STA on the RA subchannel, it is confirmed that the STA successfully accesses the RA subchannel.
  • the acknowledgment information ACK is the acknowledgment information ACK sent by the STA after successfully accessing the RA subchannel corresponding to the RSSI section according to its own RSSI.
  • the first embodiment of the present application selects the RSSI as the grouping basis, performs random access according to the RSSI interval corresponding to each RA subchannel and the STA's own RSSI packet, and makes different RSSIs.
  • the STA initiates random access on different RA subchannel resources, which not only increases the probability of access, reduces collisions, but also solves the problem of uncontrolled access and access delay of STA access.
  • the STA in the process of receiving the acknowledgement information ACK or the uplink RA frame fed back by the STA, if the AP does not receive any of the RA subchannels within a preset time, If the STA confirms the information ACK or the uplink RA frame, it confirms that the access fails on the RA subchannel, and determines whether the access is successful on the RA subchannel after setting the backoff time.
  • the step 101 of the random access method disclosed in the foregoing embodiment of the present application sends the indication signaling to the station STA, indicating the received signal strength indication RSSI interval corresponding to each random access RA subchannel, and the specific execution process thereof include:
  • Step 201 According to the received signal strength indication RSSI interval corresponding to each random access RA subchannel, the STAs to be accessed by each of the RA subchannels are grouped;
  • each RA subchannel corresponds to one RSSI interval, and according to the RSSI interval, the station STAs are grouped according to their own RSSI selection, and are distributed according to their respective RSSI intervals to the corresponding RA subchannel. on. That is, the STA whose RSSI is located in the first RSSI interval is taken as the first group, the STA whose RSSI is located in the second RSS interval is taken as the second group, and so on. If there are S RSSI intervals, the corresponding Each STA is divided into S packets. By using the RSSI to group STAs, each STA can be instructed to initiate random access on different RA subchannels.
  • Step S202 Determine a time of the broadcast indication signaling according to the packet, and broadcast the indication signaling to all STAs at each time, and enable the STAs located in the same or different RSSI intervals to initiate random access at any time;
  • the indication signaling includes: a random access trigger frame TF-R or a beacon Beacon.
  • step S202 the AP determines the time of the broadcast indication signaling according to the packet based on the RSSI interval in step S201. If it is divided into S groups as described in step S201, it needs to be sent S times, and S is greater than or equal to 1. A positive integer. Therefore, in step S202, the indication signaling is broadcast to all the stations STAs in the S group at each time, and the station STAs located in the same or different RSSI intervals are initiated to randomly access at any time.
  • step S202 the STAs located in different RSSI intervals initiate random access at any time.
  • the first group and the third group of RSSI intervals are located in the first time.
  • One or more station STAs in the station initiate random access; in the second time, one or more station STAs located in the fifth group RSSI interval initiate random access; that is, different times can be made at any time Sites in the RSSI interval initiate random access.
  • step S202 the STAs located in the same RSSI interval initiate random access at any time, which specifically includes two modes.
  • the station STA located in the first RSSI interval initiates random access at the first moment until the station S in the Sth RSSI interval initiates random access at the time S;
  • the indication signaling is broadcast to all the STAs at the first moment, but the first moment at this time corresponds to the first group, and only the STAs located in the first group participate in the contending RA subchannel to initiate random connection. In, and so on, until the time S, the station STAs located in the Sth RSSI interval initiate random access.
  • the STAs in any RSSI interval initiate random access until the Sth time enables the STAs in any RSSI interval to initiate random access;
  • the indication signaling is broadcast to all STAs at the first moment, but the first moment does not necessarily or deliberately correspond to the first group of RSSI intervals, but corresponds to one RSSI interval of the S groups.
  • the STAs in the RSSI interval participate in the contending RA subchannel to initiate random access, and so on, until the Sth time, the station STAs located in any RSSI interval initiate random access.
  • the indication signaling is sent to the station STA, indicating the received signal strength indication RSSI interval corresponding to each random access RA subchannel, which is further The following methods can be used, including:
  • Step S301 determining, according to the received signal strength indication RSSI interval corresponding to the M random access RA subchannels, determining the RA subchannel in which the station STA is located according to the RSSI interval to which the RSSI of each station STA belongs, and dividing into the corresponding M. a packet, wherein each of the RA subchannels has K resource blocks RU;
  • Step S302 broadcasting indication signaling to all STAs in the M groups, so that the STAs located in the first group to the M group initiate random access in the respective channels, competing for RUs in the respective channels;
  • the indication signaling includes: a random access trigger frame TF-R or a beacon Beacon, where M and K are positive integers greater than or equal to 1.
  • step S301 there are K resource blocks RU in each RA subchannel, so when performing step S302, the indication signaling is broadcasted to all the stations in the M groups, so that the STAs located in the same group compete for the STA.
  • the RU on the RA subchannel where the group is located For example, the STAs located in the first group contend for the RU on the first RA subchannel, and so on, so that the STAs located in the Mth group contend for the RU on the Mth RA subchannel.
  • the AP may further receive an uplink RA frame sent by the resource block RU in the RA subchannel accessed by the STA, in the RA frame.
  • the STA may be configured to carry the STA's own RSSI; the AP may count the number of accesses of the STAs that are successfully accessed by the AP; the AP may be based on the statistics of the number of successful STA accesses and the STA's own RSSI in each RA subchannel. Adjust the range of RSSI intervals corresponding to each RA subchannel. The specific adjustment process is as follows:
  • Step S401 Sort the RSSIs of the STAs that are successfully accessed according to the size of the RSSI corresponding to the STAs included in each of the received RA frames.
  • Step S402 obtaining a ratio N/M of the number N of accesses of the STAs that are successfully accessed and the total number M of the RA subchannels, where M and N are positive integers greater than or equal to 1;
  • Step S403 selecting a minimum value of the largest N/M RSSI values as the lower bound of the first RA subchannel, based on the order of the STAs whose accesses are successfully accessed, from the largest to the smallest;
  • Step S404 selecting a maximum value of the minimum N/M RSSI values as an upper bound of the Mth RA subchannel
  • Step S405 when N is an even number, the intermediate value of the N/2th RSSI value and the (N/2)+1 RSSI value is taken as an integer, as the lower bound of the M/2th RA subchannel,
  • the ((N/2)-(N/M)-1) RSSI value is an upper bound of the M/2th RA subchannel;
  • the intermediate value is rounded down by 1 as the (M/2) +1 the upper boundary of the RA subchannel, taking the (N/2)+(N/M) RSSI value as the lower bound of the (M/2)+1 RA subchannel;
  • the N/2th RSSI value is taken as the lower bound of the (M/2)th channel, and the ((N/2)-(N/M)-1) RSSI value is taken as the first The upper bound of the M/2 RA subchannels; the (N/2)+1 RSSI value is taken as the upper bound of the (M/2)+1 RA subchannel, taking the ((N/2)+( N/M)) RSSI values are used as the lower bound of the (M/2)+1th RA subchannel.
  • the number of the accesses that are successfully accessed by the STAs is a more preferred adjustment scheme disclosed in the embodiment of the present application. It is not limited.
  • the second embodiment of the present application selects the RSSI as the grouping basis, performs random access according to the RSSI interval corresponding to each RA subchannel, and the STA's own RSSI packet, so that STAs of different RSSIs are in different RA subchannel resources. Initiating random access not only increases the probability of access, reduces collisions, but also solves the problem of STA access uncontrolled and access delay.
  • FIG. 3 it is a flowchart of a random access method according to Embodiment 3 of the present application.
  • the packet random access method is applied to an STA, and the method mainly includes:
  • Step S501 The STA receives the indication signaling sent by the access point AP, where the indication signaling is used to indicate the received signal strength indication RSSI interval corresponding to each random access RA subchannel.
  • the STA needs to restrict the access power of the access to the RA subchannel according to the TPC when performing the following access.
  • Step S502 The STA selects a corresponding random access RA subchannel to initiate random access according to the RSSI interval to which the RSSI belongs.
  • the STA may select a corresponding random access RA subchannel to initiate random access according to the subchannel or the RU selection scheme according to the RSSI interval of the STA's own RSSI.
  • the first type the STA determines whether its RSSI belongs to the RSSI interval currently allowed to access;
  • the STA randomly selects one resource block RU to access in the RA subchannel corresponding to the RSSI interval, or the STA selects the RSSI interval according to the number of RUs in the channel of its own associated identifier AID as the selected RU number.
  • the second type the STA determines the RSSI interval according to its own RSSI
  • the STA selects the resource block RU in the RA subchannel corresponding to the RSSI interval by taking the remainder as the selected RU number with its own associated identifier AID.
  • Each of the above STAs uses the number of RUs in the channel of its own associated identifier AID, and takes the remainder as the selected RU number, thereby reducing the probability of collision.
  • the RA subchannel corresponding to the adjacent RSSI interval is selected to initiate random access.
  • step S503 if the RA subchannel corresponding to the RSSI interval is successfully accessed, the access confirmation message ACK or the uplink RA frame is sent back to the access point AP.
  • the RA frame may carry the STA's own RSSI in the RA frame, so that the AP adjusts the RSSI interval range corresponding to the RA subchannel by using the STA's own RSSI.
  • the fourth embodiment of the present application passes the AP end and the STA.
  • the interaction process between segments gives a specific example to further explain the packet random access method:
  • FIG. 4 is a schematic diagram of distribution of 20 STAs on the BSS and its own RSSI;
  • the RSSI of 20 STAs ranges from -60 dBm to -83 dBm.
  • the 20 STAs are divided into four groups according to the RSSI range corresponding to the four RA subchannels.
  • FIG. 5 is a schematic diagram of performing the following access procedure at four times.
  • the specific access procedure includes:
  • Step S11 The AP broadcasts the TF-R frame to the STA, and informs the RAs that the 20 STAs can currently access.
  • the first time AP notifies all STAs, and the STA of the (G1) group 1 (with the RSSI between -60 dBm and -65 dBm) can initiate random access;
  • the AP notifies all STAs, at this time (G2) Group 2 (the RSSI is between -66dBm and -71dBm) STAs can initiate random access, and so on, and continue to broadcast TF-R frames at the next moment. Access is completed directly to all packets.
  • Each STA initiates random access according to a TF-R packet time corresponding to its own RSSI.
  • each STA that can initiate random access at the corresponding time according to the subchannel/RU selection scheme, each STA selects the RU in the RA subchannel corresponding to the RSSI interval.
  • each STA selects a channel by taking the remainder of the number of RUs in its own AID modulo channel, thereby reducing the collision probability.
  • the AIDs of STA12 and STA13 located in group 3 shown in FIG. 4 are different, so the same channel is not selected, thereby avoiding collision.
  • each STA feeds back an acknowledgement information ACK or sends an uplink RA frame to the AP, and informs the AP that the access is successful.
  • the STA does not successfully access, sets the backoff time, repeats S12, and confirms again after the backoff time. Received an ACK from the STA.
  • the AP adjusts the RA subchannel according to the number of STAs successfully accessed by each RA subchannel and the RSSI of each STA.
  • the adjustment process is as follows:
  • Step 21 Sort the acquired RSSs of the successfully accessed STAs from large to small.
  • RSSI The specific order of RSSI is: -60dBm, -61dBm, -62dBm, -62dBm, -63dB m, -64dBm, -67dBm, -68dBm, -70dBm, -72dBm, -73dBm, -74dBm, -76dBm, -78dBm, - 78dBm, -79dBm, -80dBm, -81dBm, -82dBm, -83dBm.
  • Step S23 Select the minimum value (-63 dB m) from the largest 5 (-60 dBm, -61 dBm, -62 dBm, -62 dBm, -63 dB m) as the first RA subchannel according to the above-mentioned order from largest to small.
  • Step S24 Select the maximum value (-79 dBm) from the smallest 5 (-79 dBm, -80 dBm, -81 dBm, -82 dBm, -83 dBm) as the fourth RA subchannel in the order from large to small. boundary;
  • Step S26 For the lower bound of the determined second RA subchannel, the number of bits in the large value direction is 4 bits, and the sixth RSSI (-64 dBm) is taken as the upper bound of the second RA subchannel; for the determined third RA The upper bound of the subchannel is 4 bits in the direction of the small value, and the 15th RSSI (-78 dBm) is taken as the lower bound of the 3rd RA subchannel.
  • the 20 STAs are divided into four groups according to the RSSI range corresponding to the four RA subchannels.
  • the STA with its own RSSI between -60dBm and -65dBm is group 1
  • the STA with its own RSSI between -66dBm and -71dBm is group 2
  • the STA with its own RSSI between -72dBm and -77dBm is group 3.
  • STAs whose self RSSI is between -78 dBm and -83 dBm are group 4.
  • FIG. 6 is a schematic diagram of performing the following access procedure, where the specific access procedure includes:
  • the AP broadcasts the TF-R frame to the STA, and informs the range of the RSSI of the RA subchannel that the 20 STAs can currently access.
  • the AP notifies all STAs, and the STA of (G1) group 1 (with RSSI between -60 dBm and -65 dBm) competes for RU on the first RA subchannel, ( G2) STAs of group 2 (with RSSI between -66dBm and -71dBm) compete for RU on the second RA subchannel, and STAs of (G3) group 3 (with RSSI between -72dBm and -77dBm) are in the third STAs competing for RUs on the RA subchannel, and STAs of (G4) group 4 (with RSSI between -78 dBm and -83 dBm) compete for RU on the 4th RA subchannel.
  • group 1 with RSSI between -60 dBm and -65 dBm
  • G2 STAs of group 2 (with RSSI between -66dBm and -71dBm) compete for RU on the second RA subchannel
  • Each STA initiates random access in the corresponding RA subchannel according to its own RSSI.
  • Each STA that initiates random access in the corresponding RA subchannel competes for the RU in the selected RA subchannel according to the RU selection scheme.
  • each STA uses the remainder of the number of RUs in its own AID modulo channel to select a channel, thereby reducing the collision probability.
  • the AIDs of STA12 and STA13 located in group 3 shown in FIG. 4 are different, so the same channel is not selected, thereby avoiding collision.
  • each STA After the STA is successfully accessed, each STA sends an acknowledgement information ACK to the AP or sends an uplink RA frame to notify the AP that the access is successful.
  • S34 If the AP does not receive the acknowledgement information ACK or the uplink RA frame fed back by the STA within the preset time, the STA does not successfully access, sets the backoff time, repeats S32, and confirms again after the backoff time. Received an ACK or an uplink RA frame fed back by the STA.
  • the AP can also adjust the RSSI interval of the RA subchannel according to the statistics of the number of STAs successfully accessed by each RA subchannel and the RSSI of each STA.
  • the execution process is the same as that of the first example, and will not be repeated here.
  • the corresponding fifth embodiment of the present application further corresponds to An AP, a STA, and a random access system including an AP and a STA are disclosed.
  • FIG. 7 is a schematic structural diagram of an AP, which mainly includes:
  • the sending module 101 is configured to send the indication signaling to the station STA, where the indication signaling is used to indicate a received signal strength indication RSSI interval corresponding to each random access RA subchannel;
  • the processing module 102 is configured to confirm that the STA successfully accesses the RA subchannel when the acknowledgment information ACK from the STA or the uplink RA frame is successfully received on the RA subchannel.
  • an execution process of the foregoing processing module 102 and the sending module 101 is:
  • the processing module 102 is configured to divide the station STAs to be accessed by each of the RA subchannels into n groups according to the received signal strength indication RSSI interval corresponding to each random access RA subchannel, and determine a broadcast indication according to the partition. The moment of signalling;
  • n is a natural number, and n ⁇ 1, and the indication signaling includes: a random access trigger frame TF-R or a beacon Beacon.
  • the sending module 101 is configured to send the indication signaling to the n groups of STAs at the time determined by the processing module 102, so that the group STAs initiate randomization on the corresponding RA subchannels at different times. Access; or
  • the indication signaling is sent to each group of STAs at any one of the determined times, so that each group of station STAs initiates random access on the corresponding RA subchannel at the same time.
  • the processing module is configured to determine, according to the received signal strength indication RSSI interval corresponding to the M random access RA subchannels, the RA subchannel in which each station STA is located according to the RSSI interval to which the RSSI of each station STA belongs. And is divided into corresponding M packets, wherein each RA subchannel has K resource blocks RU;
  • the sending module is configured to broadcast indication signaling to all STAs in the M groups, so that the STAs located in the first group to the M group initiate random access in the respective channels, and compete for each other.
  • the indication signaling includes: a random access trigger frame TF-R or a beacon Beacon, where M and K are positive integers greater than or equal to 1.
  • processing module 102 can also be used to:
  • the access failure on the RA subchannel is confirmed, and the retry is determined after setting the backoff time. Whether the access is successful on the RA subchannel.
  • the access point AP further includes:
  • a receiving module configured to receive an RA frame sent by the resource block RU in the RA subchannel that is accessed by the STA, where the RA frame may carry the STA's own RSSI;
  • the processing module 102 is further configured to: count the number of accesses of the STAs that are successfully accessed; and
  • the STAs of the STAs that are successfully accessed are ranked from large to small;
  • the STAs of the STAs are selected from the largest to the smallest, the smallest of the largest N/M RSSI values is selected as the lower bound of the first RA subchannel; and the smallest N/ is selected.
  • the maximum value of the M RSSI values is used as the upper bound of the Mth RA subchannel; and when N is even, the intermediate value of the N/2th RSSI value and the (N/2)+1 RSSI value is Taking an integer as the lower bound of the M/2th RA subchannel, taking the ((N/2)-(N/M)-1) RSSI value as the upper bound of the M/2th RA subchannel And subtracting the intermediate value by 1 as the upper bound of the (M/2)+1 RA subchannel, taking the ((N/2)+(N/M)) RSSI value as the first ( M/2) the lower bound of +1 RA subchannels; and when N is an odd number, the N/2th RSSI value is taken as the lower bound of the (M/2)th channel, taking the ((N/2)-( N/M)-1) RSSI values are upper bounds of the M/2th RA subchannel; and (N/2)+1 RSSI values are used as (M/2)+1 RA subchannels
  • the upper bound takes the (N
  • the AP in the above disclosed AP may be used.
  • the various modules are integrated into the entity, as shown in Figure 8, including the transmitter 1, the processor 2, and the receiver 3.
  • the sending module may be the transmitter 1
  • the receiving module may be the receiver 3
  • the processing module may be the processor 2.
  • the processor 2 performs corresponding operations
  • the processor may be a central The processor CPU, either a specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • FIG. 9 is a schematic structural diagram of a STA, which mainly includes:
  • the receiving module 201 is configured to receive the indication signaling sent by the access point AP, and obtain the received signal strength indication RSSI interval corresponding to each random access RA subchannel indicated by the indication signaling;
  • the processing module 202 is configured to select a corresponding RA subchannel to initiate random access according to the RSSI interval of the RSSI of the station STA itself.
  • the sending module 203 is configured to: if the RA subchannel corresponding to the RSSI interval belongs to be successfully accessed, send an acknowledgement information ACK or an uplink RA frame of the access success to the access point AP.
  • the foregoing processing module 202 is specifically configured to:
  • one resource block RU is randomly selected for access in the RA subchannel corresponding to the RSSI section, or the number of RUs in the channel of the associated identifier AID is used as the selected RU number, and the corresponding RSSI interval is selected.
  • Resource block RU in the RA subchannel is randomly selected for access in the RA subchannel corresponding to the RSSI section, or the number of RUs in the channel of the associated identifier AID is used as the selected RU number, and the corresponding RSSI interval is selected.
  • the foregoing processing module 202 is further configured to:
  • the resource block RU in the RA subchannel corresponding to the RSSI interval is selected by using the number of the RUs in the AID modulo channel of the STA of the station STA, taking the remainder as the selected RU number.
  • processing module 202 is further configured to:
  • the RA subchannel corresponding to the adjacent RSSI interval is selected to initiate random access.
  • the sending module 203 is further configured to:
  • the RA block is sent to the AP by the resource block RU in the RA subchannel, and the RA frame may carry the STA's own RSSI.
  • the various modules in the STA are integrated into the entity, as shown in FIG. 10, including the transmitter 4, the processor 5, and the receiver 6.
  • the foregoing sending module may be the transmitter 1, the receiving module may be the receiver 6, and the processing module may be the processor 5, and the processor 5 performs corresponding operations.
  • the processor may be a central processing unit CPU, or a specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • a random access system disclosed in the embodiment of the present application includes: the AP disclosed in FIG. 7 or FIG. 8 above, and the STA disclosed in FIG. 9 or FIG. 10, where the AP and the STA perform packet random access. The process is as described above and will not be described here.
  • the random access method and related device disclosed in the foregoing embodiments of the present application are grouped according to the RSSI interval corresponding to each RA subchannel and the STA's own RSSI, by limiting each RA subchannel.
  • the channel strength access threshold and interval range optimize the STA access distribution, so that STAs with different RSSIs initiate random access on different RA subchannel resources, which not only increases the probability of access, reduces collision, but also solves STA access. Control and access delay issues.

Abstract

本申请实施例公开了一种随机接入方法及相关设备,该方法通过AP向STA发送指示信令,指示各个随机接入RA子信道所对应的RSSI区间,使STA根据自身RSSI选择在所属RSSI区间内发起随机接入,并在成功接入所属RSSI区间所对应的RA子信道,向AP发送上行数据或者反馈接入成功的确认信息ACK。基于RSSI作为分组依据,根据各个RA子信道所对应的RSSI区间和STA的RSSI进行分组,通过限制各RA子信道上的信道强度接入门限和区间范围,优化STA接入分布,使不同RSSI的STA在不同的RA子信道资源上发起随机接入,不仅增加接入的概率,减少碰撞,同时解决STA接入不受控制和接入时延的问题。

Description

随机接入方法及相关设备
本发明要求于2015年11月30日提交中国专利局、申请号为201510851913.9、发明名称为“随机接入方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明涉及无线局域网技术领域,更具体地说,涉及一种随机接入方法及相关设备。
背景技术
随着当前WLAN(Wireless Local Area Networks,无线局域网)标准的快速发展,基于上行UL(Up link,上行连接)OFDMA(Orthogonal Frequency Division Multiplexing Access,正交频分多址)技术的RA(Random Access,随机接入),在OFDMA引入当前无线局域网通用技术标准11ax后已成为当前标准讨论的热点,在当前无线局域网通用技术标准11ax的密集部署场景下,随着用户数的增加,RA发生冲突碰撞的概率也随着用户数的增加而显著提高。因此,为了尽可能的降低冲突概率,提升接入效率,目前通过设置一定的准则来约束用户的RA行为。当前所采用的方式或准则有时域/频域退避,分组退避,多轮退避和中心化接入,上述多种方式或准则之间可以单独执行也可以进行融合。
基于上述现有技术中的方式或准则,如图1所示出的接入过程的示意图,在接入过程中约束用户的RA行为主要包括:
步骤一:在进行接入时,所有的STA(Station,站点。图1中包含STA1~STA4)在[1,CW(Contention Window,竞争窗口)]间随机选择一个计数值。
步骤二:当STA接收到一个AP(Access Point,接入点)发送的TF-R(Trigger Frame-Random Access,随机接入触发帧)时,STA的计数值(Counter)减1。
步骤三:当计数值减为0时,在下一个TF-R帧后,STA随机选择一个信道发送信息
步骤四:当两个或多个STA同时选择了一个相同的随机接入信道或资源时,碰撞发生,STA将CW加倍减1,返回步骤一随机选择一个值,重复上述过程。
采用上述现有技术的这种接入方式,由于接入过程不受AP的控制,且由STA随机选择数值,增加了不确定性,同时在STA密集分布的情况下,碰撞概率也相应的提高,同时使接入时延长。基于此,虽然在现有技术中提出为解决碰撞在上述过程中对STA进行分组,将碰撞限制在各个分组内,使分组间不再有碰撞的概念,但在现有技术中并未给出具体的、合适的对STA进行分组的分组策略,因此,仍然不能合理的解决上述问题。
发明内容
本申请实施例提供一种随机接入方法及相关设备,基于具体的分组策略,以解决STA接入不受控制、碰撞概率和接入时延的问题。
为实现上述目的,本申请实施例提供了如下技术方案:
本申请实施例第一方面,公开了一种随机接入方法,应用于接入点AP,包括:
向站点STA发送指示信令,指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间;
若在所述RA子信道上成功接收到来自于所述STA的确认信息ACK或者上行RA帧时,确认所述STA在所述RA子信道上接入成功。
在本申请实施例第一方面提供的第一种实现方式中,若在预设时间内未在所述RA子信道上接收到任一STA的确认信息ACK或者上行RA帧,则确认所述RA子信道上接入失败,在设定回退时间之后重新判定所述RA子信道上是否接入成功。
在本申请实施例第一方面提供的第二种实现方式中,所述向站点STA发送指示信令,指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,包括:
依据各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,对待接入各个所述RA子信道的站点STA进行分组;
按照分组确定广播指示信令的时刻,并在每一时刻内向所有站点STA广播所述指示信令,在任一时刻使位于相同或不同RSSI区间的站点STA发起随机接入;
其中,所述指示信令包括:随机接入触发帧TF-R或信标Beacon。
在本申请实施例第一方面提供的第三种实现方式中,所述在任一时刻使位于相同RSSI区间的站点STA发起随机接入,包括:
在第一时刻使位于第一RSSI区间内的站点STA发起随机接入,直至第S时刻使位于第S个RSSI区间内的站点STA发起随机接入;
或者,
在第一时刻使任一RSSI区间内的站点STA发起随机接入,直至第S时刻使任一RSSI区间内的站点STA发起随机接入;
其中,S为大于或者等于1的正整数。
在本申请实施例第一方面提供的第四种实现方式中,所述向各个站点STA发送指示信令,指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,包括:
依据M个随机接入RA子信道所对应的接收信号强度指示RSSI区间,按照各个站点STA的RSSI所属的RSSI区间确定所述站点STA所处的RA子信道,并划分为对应的M个分组,其中,每个RA子信道中具有K个资源块RU;
向M个分组中的所有站点STA广播指示信令,使位于第一组至第M组内的站点STA在各自所处信道中发起随机接入,竞争各自所处信道内的RU;
其中,所述指示信令包括:随机接入触发帧TF-R或信标Beacon,M和K为大于或者等于1的正整数。
在本申请实施例第一方面提供的第五种实现方式中,还包括:
接收通过所述STA通过接入的所述RA子信道中的资源块RU发送的RA帧,所述RA帧中可以携带所述STA的RSSI;
统计接入成功的所述STA的接入数量;
依据接收到的各个所述RA帧中包含的对应所述STA的RSSI大小,对接入成功的所述STA的自身RSSI从大至小进行排序;
获取接入成功的所述STA的接入数量N与所述RA子信道的总个数M的 比值N/M,其中,M和N为大于或者等于1的正整数;
基于所述接入成功的所述STA的RSSI从大至小的排序,选取最大的N/M个RSSI值中的最小值作为第一个RA子信道的下界;
选取最小的N/M个RSSI值中的最大值作为第M个RA子信道的上界;
当N为偶数时,将第N/2个RSSI值和第(N/2)+1个RSSI值的中间值向下取整数,作为第M/2个RA子信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第M/2个RA子信道的上界;将所述中间值取整减1作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界;
当N为奇数时,将第N/2个RSSI值作为第(M/2)个信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第M/2个RA子信道的上界;将第(N/2)+1个RSSI值作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界。
本申请实施例第二方面,还公开了一种接入点AP,包括:
发送模组用于,向站点STA发送指示信令,所述指示信令用于指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间;
处理模组用于,若在所述RA子信道上成功接收到来自于所述STA的确认信息ACK,或者上行RA帧时,确认所述STA在所述RA子信道上接入成功。
在本申请实施例第二方面提供的第一种实现方式中,所述处理模组还可以用于:
若在预设时间内未在所述RA子信道上接收到任一STA的确认信息ACK或者上行RA帧,则确认所述RA子信道上接入失败,在设定回退时间之后重新判定所述RA子信道上是否接入成功。
在本申请实施例第二方面提供的第二种实现方式中,所述处理模组用于:依据各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,将待接入各个所述RA子信道的站点STA分为n组,并按照分组确定广播指示信令的时刻;
其中,n为自然数,且n≥1,所述指示信令包括:随机接入触发帧TF-R 或信标Beacon。
在本申请实施例第二方面提供的第三种实现方式中,所述发送模组用于:在所述确定时刻分别向所述n组站点STA发送所述指示信令,使所述各组站点STA在不同的时刻在对应的RA子信道上发起随机接入;或
在所述确定的任一时刻向各组站点STA均发送所述指示信令,使各组站点STA在相同的时间上对应的RA子信道上发起随机接入。
在本申请实施例第二方面提供的第四种实现方式中,
所述处理模组用于,依据M个随机接入RA子信道所对应的接收信号强度指示RSSI区间,按照站点STA的RSSI所属的RSSI区间确定所述站点STA所处的RA子信道,并划分为对应的M个分组,其中,每个RA子信道中具有K个资源块RU;
所述发送模组用于,向M个分组中的所有站点STA广播指示信令,使位于第一组至第M组内的站点STA在各自所处信道中发起随机接入,竞争各自所处信道内的RU;
其中,所述指示信令包括:随机接入触发帧TF-R或信标Beacon,M和K为大于或者等于1的正整数。
在本申请实施例第二方面提供的第五种实现方式中,还包括:
接收模组用于,接收通过所述STA通过接入的所述RA子信道中的资源块RU发送的RA帧,所述RA帧中可以携带所述STA的自身RSSI;
所述处理模组还用于,统计接入成功的所述STA的接入数量;
用于依据接收到的各个所述RA帧中包含的对应所述STA的自身RSSI大小,对接入成功的所述STA的自身RSSI从大至小进行排序;
用于获取接入成功的所述STA的接入数量N与所述RA子信道的总个数M的比值N/M,其中,M和N为大于或者等于1的正整数;
用于基于所述接入成功的所述STA的自身RSSI从大至小的排序,选取最大的N/M个RSSI值中的最小值作为第一个RA子信道的下界;用于选取最小的N/M个RSSI值中的最大值作为第M个RA子信道的上界;及当N为偶数时,将第N/2个RSSI值和第(N/2)+1个RSSI值的中间值向下取整数,作为第M/2个RA子信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第 M/2个RA子信道的上界;将所述中间值取整减1作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界;及当N为奇数时,将第N/2个RSSI值作为第(M/2)个信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第M/2个RA子信道的上界;将第(N/2)+1个RSSI值作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界。
本申请实施例第三方面,还公开了一种分组随机接入方法,应用于站点STA,包括:
接收接入点AP发送的指示信令,所述指示信令用于指示的各个随机接入RA子信道对应的接收信号强度指示RSSI区间;
根据所述站点STA的RSSI所属RSSI区间选择对应的RA子信道发起随机接入;
若成功接入所述对应的RA子信道,则向所述接入点AP反馈接入成功的确认信息ACK或者发送上行RA帧。
在本申请实施例第三方面提供的第一种实现方式中,所述根据所述站点STA的RSSI所属RSSI区间选择对应的RA子信道发起随机接入,包括:
判断所述站点STA的RSSI是否属于当前允许接入的RSSI区间,若否,则等待下一时刻重新判断;
若是,则在所属RSSI区间对应的RA子信道中随机选择一个资源块RU进行接入,或以所述站点STA的关联标识符AID模信道中RU的数量值作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
在本申请实施例第三方面提供的第二种实现方式中,所述根据所述站点STA的RSSI所属RSSI区间选择对应的RA子信道发起随机接入,包括:
依据所述站点STA的RSSI确定所属RSSI区间;
以所述站点STA的关联标识符AID模信道中RU的数量值,取余数作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
在本申请实施例第三方面提供的第三种实现方式中,还包括:
若所述站点STA的RSSI不属于任何一个对应RA子信道的RSSI区间内,则向上或向下选择相邻的RSSI区间对应的RA子信道发起随机接入。
在本申请实施例第三方面提供的第四种实现方式中,所述向所述接入点AP发送上行RA帧,包括:
通过接入的所述RA子信道中的资源块RU向所述AP发送上行RA帧,所述RA帧中可以携带有所述STA的自身RSSI。
本申请实施例第四方面,还公开了一种站点STA,包括:
接收模块用于,接收接入点AP发送的指示信令,获取所述指示信令所指示的各个随机接入RA子信道对应的接收信号强度指示RSSI区间;
处理模块用于,依据所述站点STA的RSSI所属RSSI区间选择对应的RA子信道发起随机接入;
反馈模块,用于若成功接入所述对应的RA子信道,则述接入点AP发送接入成功的确认信息ACK或者发送上行RA帧。
在本申请实施例第四方面提供的第一种实现方式中,所述处理模块还用于:
判断自身RSSI是否属于当前允许接入的RSSI区间,若否,则等待下一时刻重新判断;
若是,则在所属RSSI区间对应的RA子信道中随机选择一个资源块RU进行接入,或以自身的关联标识符AID模信道中RU的数量值作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
在本申请实施例第四方面提供的第二种实现方式中,所述处理模块还用于:
依据自身RSSI确定所属RSSI区间;及
以所述站点STA的关联标识符AID模信道中RU的数量值,取余数作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
在本申请实施例第四方面提供的第三种实现方式中,所述处理模块还用于:
若所述站点STA的RSSI不属于任何一个对应RA子信道的RSSI区间内,则向上或向下选择相邻的RSSI区间对应的RA子信道发起随机接入。
在本申请实施例第四方面提供的第四种实现方式中,所述发送模块用于,通过接入的所述RA子信道中的资源块RU向所述AP发送上行RA帧,所述 RA帧中可以携带有所述STA的RSSI。
本申请实施例第五方面,还公开了一种随机接入系统,包括:上述本申请实施例第二方面公开的所述的接入点AP和上述本申请实施例第四方面公开的所述的站点STA。
通过以上方案可知,本申请实施例提供的一种随机接入方法及相关设备,该方法通过接入点AP向站点STA发送指示信令,指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,使所述STA根据自身RSSI选择在所属RSSI区间内发起随机接入,并在成功接入所属RSSI区间所对应的RA子信道,向所述接入点AP反馈接入成功的确认信息ACK或者发送上行RA帧,所述接入点AP在接收到所述确认信息ACK或者所述上行RA帧后确认接入成功。通过上述根据RA子信道所对应的接收信号强度指示RSSI区间和站点STA的RSSI进行分组,使不同RSSI的STA在不同的RA子信道资源上发起随机接入,不仅增加了接入的概率,减少碰撞,同时还解决STA接入不受控制和接入时延的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请现有技术中公开的接入过程示意图;
图2为本申请实施例一公开的一种随机接入方法的流程图;
图3为本申请实施例三公开的一种随机接入方法的流程图;
图4为本申请实施例四中公开的20个STA在该BSS上的分布以及其自身RSSI的示意图;
图5为本申请实施例四中示例一公开的接入流程的图示;
图6为本申请实施例四中示例二公开的接入流程的图示;
图7为本申请实施例五公开的一种AP的结构示意图;
图8为本申请实施例五公开的一种AP的组成图;
图9为本申请实施例五公开的一种STA的结构示意图;
图10为本申请实施例五公开的一种STA的组成图。
具体实施方式
以下为本申请实施例中所使用到的英文缩写的全称和中文解释:
WLAN:Wireless Local Area Networks,无线局域网;
UL:Up link,上行连接;
OFDMA:Orthogonal Frequency Division Multiplexing Access,正交频分多址
RA:Random Access,随机接入;
STA:Station,站点;
TF-R:Trigger Frame-Random Access,随机接入触发帧;
Beacon:信标;
CSI:Channel State Information,信道状态信息;
CW:Contention Window,竞争窗口;
RU:Resource Units,资源块;
RSSI:Received Signal Strength Indication,接收信号强度指示;
AP:Access Point,接入点;
AID:Association Identifier,关联标识符;
TPC:Transmit Power Control,传输功率控制;
ACK:Acknowledgment,确认;
BSS:Basic Service Set,基本服务集。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
由背景技术可知,在STA密集分布的情况下,为解决进行STA接入时碰撞概率高,接入时延长的问题,现有技术提出了对STA进行分组将碰撞限制在各个分组内的分组概念,但在现有技术中并未给出具体的、合适的对STA进行分组的分组策略,仍然无法解决上述问题。由此,本申请实施例公开了一种随机 接入方法及相关设备,根据各个RA子信道所对应的RSSI区间和STA的RSSI进行分组,使不同RSSI的STA在不同的RA子信道资源上发起随机接入,不仅增加接入的概率,减少碰撞,同时解决STA接入不受控制和接入时延的问题。
在以下本申请公开的具体实施例中选择RSSI作为分组依据的原因主要是:第一、RSSI是最易获得的网络参数之一,STA可在RA帧或CSI反馈帧中将RSSI汇报给AP;第二、即使是初始接入的用户,也可以根据自身RSSI来选择接入信道;第三、由于相同区间内的用户的RSSI差别相对较小,因此能够避免同时接入时AP总是锁定信号强的站点的不公平性问题;第四、RSSI可以反映用户在BSS内的分布情况以及干扰情况,因此结合RSSI,AP可以在TF-R中一并指示不同接入信号上的TPC参数,而且可以在相邻BSS间协调错开相同或相近RSSI区间所对应的接入信道。由此,本申请实施例中将RSSI作为分组策略中的一个重要因素,并综合其他分组涉及到的因素,如AID、业务类别等可给出不同权重的分组方式。具体架构以及实现过程,通过以下具体实施例进行详细说明。
实施例一
如图2所示,为本申请实施例一公开的一种随机接入方法的流程图,该分组随机接入方法应用于AP,主要包括:
步骤S101,所述AP向STA发送指示信令,指示各个RA子信道所对应的RSSI区间;
在步骤S101中,一个或多个STA分布在各个RA子信道中,每个STA具有各自的RSSI值,在AP向STA发送指示信令后,该指示信令用于指示各个RA子信道所对应的RSSI区间,由STA根据自身RSSI值选择在所属RSSI区间内发起随机接入。
步骤S102,若所述AP在所述RA子信道上成功接收来自于所述STA的确认信息ACK或者上行RA帧时,确认所述STA在所述RA子信道上接入成功。
在步骤S102中,该确认信息ACK为所述STA根据其自身RSSI成功接入所属RSSI区间所对应的RA子信道后发送的确认信息ACK。
本申请实施例一通过上述过程,选择RSSI作为分组依据,根据各个RA子信道所对应的RSSI区间和STA的自身RSSI分组进行随机接入,使不同RSSI的 STA在不同的RA子信道资源上发起随机接入,不仅增加接入的概率,减少碰撞,同时解决STA接入不受控制和接入时延的问题。
实施例二
基于上述本申请实施例一公开的一种随机接入方法,在AP接收STA反馈的确认信息ACK或者上行RA帧的过程中,若在预设时间内未在所述RA子信道上接收到任一STA的确认信息ACK或者上行RA帧,则确认所述RA子信道上接入失败,在设定回退时间之后重新判定所述RA子信道上是否接入成功。
基于上述本申请实施例一公开的一种随机接入方法中的步骤101,向站点STA发送指示信令,指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,其具体执行过程包括:
步骤201,依据各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,对待接入各个所述RA子信道的站点STA进行分组;
在步骤S201中,每一个RA子信道其对应一个RSSI区间,按照RSSI区间的划分,站点STA按照其自身的RSSI选择所属的RSSI区间进行分组,并按照各自所属RSSI区间分布于对应的RA子信道上。也就是说,将自身RSSI位于第一RSSI区间内的STA作为第一组,将自身RSSI位于第二RSS区间内的STA作为第二组,以此类推,若有S个RSSI区间,则对应将各个STA划分为S个分组。利用RSSI对STA进行分组,可以指示各个STA在不同的RA子信道上发起随机接入。
步骤S202,按照分组确定广播指示信令的时刻,并在每一时刻内向所有站点STA广播所述指示信令,在任一时刻使位于相同或不同RSSI区间的站点STA发起随机接入;
其中,所述指示信令包括:随机接入触发帧TF-R或信标Beacon。
在步骤S202中,AP按照步骤S201中基于RSSI区间的分组确定广播指示信令的时刻,如步骤S201中所述,若划分为S个组,则需要发送S次,S为大于或等于1的正整数。因此,在步骤S202中,在每一时刻内向S组内的所有站点STA广播指示信令,并在任一时刻使位于相同或不同RSSI区间的站点STA发起随机接入。
其中,在步骤S202中,任一时刻使位于不同RSSI区间的站点STA发起随机接入,其具体过程举例来说,在第一时刻内,使位于第一组和第三组RSSI区间 里的一个或多个站点STA发起随机接入;在第二时刻内,使位于第五组RSSI区间里的一个或多个站点STA发起随机接入;也就是说,任一时刻内可以使不同RSSI区间的站点发起随机接入。
在步骤S202中,在任一时刻使位于相同RSSI区间的站点STA发起随机接入,其具体包括两种方式
第一,在第一时刻使位于第一RSSI区间内的站点STA发起随机接入,直至第S时刻使位于第S个RSSI区间内的站点STA发起随机接入;
针对第一种方式,在第一时刻向所有的STA广播指示信令,但此时的第一时刻对应的为第一组,那么仅位于第一组内的STA参与竞争RA子信道发起随机接入,如此类推,直至第S时刻使位于第S个RSSI区间内的站点STA发起随机接入。
第二,在第一时刻使任一RSSI区间内的站点STA发起随机接入,直至第S时刻使任一RSSI区间内的站点STA发起随机接入;
针对第二种方式,在第一时刻向所有的STA广播指示信令,但此时第一时刻并不一定或刻意对应第一组RSSI区间,而是对应S个组中的一个RSSI区间即可,使该RSSI区间内的STA参与竞争RA子信道发起随机接入,如此类推,直至第S时刻使位于任一的RSSI区间内的站点STA发起随机接入。
另外,基于上述本申请实施例一公开的一种随机接入方法中的步骤101,向站点STA发送指示信令,指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,其还可以采用下述方式,具体包括:
步骤S301,依据M个随机接入RA子信道所对应的接收信号强度指示RSSI区间,按照各个站点STA的RSSI所属的RSSI区间确定所述站点STA所处的RA子信道,并划分为对应的M个分组,其中,每个RA子信道中具有K个资源块RU;
步骤S302,向M个分组中的所有站点STA广播指示信令,使位于第一组至第M组内的站点STA在各自所处信道中发起随机接入,竞争各自所处信道内的RU;
其中,所述指示信令包括:随机接入触发帧TF-R或信标Beacon,M和K为大于或者等于1的正整数。
由步骤S301可知,在每个RA子信道中具有K个资源块RU,因此在执行步骤S302时,采用向M个分组中的所有站点STA广播指示信令,使位于相同组内的STA竞争该组所在的RA子信道上的RU。如,使位于第一组内的STA在第一个RA子信道上竞争RU,以此类推,使位于第M组内的STA在第M个RA子信道上竞争RU。
基于上述本申请实施例一公开的一种随机接入方法,在AP还可以接收通过所述STA通过接入的所述RA子信道中的资源块RU发送的上行RA帧,所述RA帧中可以携带所述STA的自身RSSI;该AP统计接入成功的所述STA的接入数量;该AP可以根据统计到的各个RA子信道内STA接入成功的接入数量和STA的自身RSSI,调整各个RA子信道所对应的RSSI区间范围。具体调整过程如下:
步骤S401,依据接收到的各个所述RA帧中包含的对应所述STA的自身RSSI大小,对接入成功的所述STA的RSSI从大至小进行排序;
步骤S402,获取接入成功的所述STA的接入数量N与所述RA子信道的总个数M的比值N/M,其中,M和N为大于或者等于1的正整数;
步骤S403,基于所述接入成功的所述STA的自身RSSI从大至小的排序,选取最大的N/M个RSSI值中的最小值作为第一个RA子信道的下界;
步骤S404,选取最小的N/M个RSSI值中的最大值作为第M个RA子信道的上界;
需要说明的是,基于上述获取到的接入成功的STA的接入数量:
步骤S405,当N为偶数时,将第N/2个RSSI值和第(N/2)+1个RSSI值的中间值向下取整数,作为第M/2个RA子信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第M/2个RA子信道的上界;将所述中间值取整减1作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界;
当N为奇数时,将第N/2个RSSI值作为第(M/2)个信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第M/2个RA子信道的上界;将第(N/2)+1个RSSI值作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界。
基于上述调整方法对各个RA子信道所对应的RSSI区间范围的上界和下界进行调整,若分组较少时,如M取3时,则在执行步骤S403~步骤S405的过程中可能会对同一个RA子信道反复进行调整,此时,则按照步骤S403和步骤S405给出第一个RA子信道的下界和第三个RA子信道的上界以及第二个RA子信道的上下界。
需要说明的是,上述调整方案在STA接入成功的接入数量较多时为本申请实施例公开的较为优选的调整方案,本申请实施例还可以采用其他现有的调整方案,本申请实施例并不对其进行限定。
本申请实施例二通过上述具体的说明,选择RSSI作为分组依据,根据各个RA子信道所对应的RSSI区间和STA的自身RSSI分组进行随机接入,使不同RSSI的STA在不同的RA子信道资源上发起随机接入,不仅增加接入的概率,减少碰撞,同时解决STA接入不受控制和接入时延的问题。
实施例三
如图3所示,为本申请实施例三公开的一种随机接入方法的流程图,该分组随机接入方法应用于STA,主要包括:
步骤S501,STA接收接入点AP发送的指示信令,所述指示信令用于指示各个随机接入RA子信道对应的接收信号强度指示RSSI区间;
需要说明的是,若接收到AP发送的指示信令中携带了TPC参数,则在执行下述接入时,STA需要按照TPC约束其接入RA子信道的接入功率。
步骤S502,STA依据自身的RSSI所属RSSI区间选择对应的随机接入RA子信道发起随机接入;
在步骤S502中,STA可按照子信道或RU选择方案,依据STA的自身RSSI所属RSSI区间选择对应的随机接入RA子信道发起随机接入,具体为:
第一种:STA判断自身的RSSI是否属于当前允许接入的RSSI区间;
若否,则等待下一时刻重新判断;
若是,则STA在所属RSSI区间对应的RA子信道中随机选择一个资源块RU进行接入,或STA以自身的关联标识符AID模信道中RU的数量值作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
第二种:STA依据自身的RSSI确定所属RSSI区间;
STA以自身的关联标识符AID模信道中RU的数量值,取余数作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
上述各个STA以自身的关联标识符AID模信道中RU的数量值,取余数作为选择的RU编号,能够降低碰撞的概率。
需要说明的是,若STA自身的RSSI不属于任何一个对应RA子信道的RSSI区间内,则向上或向下选择相邻的RSSI区间对应的RA子信道发起随机接入。
步骤S503,若成功接入所属RSSI区间所对应的RA子信道,则向所述接入点AP反馈接入成功的确认信息ACK或者发送上行RA帧。
基于上述图3公开的应用于STA端的分组随机接入方法,在STA成功接入相应的RA子信道中后,可通过接入的所述RA子信道中的资源块RU向所述AP发送上行RA帧,所述RA帧中可以携带所述STA的自身RSSI,以便于AP通过所述STA的自身RSSI对RA子信道所对应的RSSI区间范围进行调整。
实施例四
基于上述本申请实施例一和实施例二公开的应用于AP端的分组随机接入方法和本申请实施例三公开的应用于STA端的分组随机接入方法,本申请实施例四通过AP端和STA段之间的交互过程,给出具体示例进一步对分组随机接入方法进行详细说明:
示例一
AP建立的一个BSS,其中有20个待接入的STA。AP分配4个20MHz的RA子信道(M=4),每个RA子信道里默认只包含一个RU,图4为20个STA在该BSS上的分布以及其自身RSSI的示意图;
在该示例一中,20个STA的RSSI的范围是-60dBm至-83dBm。按4个RA子信道所对应的RSSI范围将20个STA划分为四组。
其中,自身RSSI在-60dBm至-65dBm之间的STA为组1,自身RSSI在-66dBm至-71dBm之间的STA为组2,自身RSSI在-72dBm至-77dBm之间的STA为组3,自身RSSI在-78dBm至-83dBm之间的STA为组4。基于上述本申请实施例一至本申请实施例三中公开的分组随机接入方法,如图5为4个时刻执行下述接入流程的示意图,该示例一具体的接入流程包括:
步骤S11:AP通过向STA广播TF-R帧,告知20个STA当前可以接入的RA子 信道的RSSI的范围。
由图5示出的示意图可知,在本示例一中,第一个时刻AP通知所有STA,此时(G1)组1(RSSI在-60dBm至-65dBm之间)的STA可以发起随机接入;在第二个时刻AP通知所有STA,此时(G2)组2(RSSI在-66dBm至-71dBm之间)的STA可以发起随机接入,以此类推,下一个时刻继续广播TF-R帧,直达所有的分组都完成接入。
S12:各STA根据自己的RSSI所对应的TF-R分组时刻发起随机接入。
各个在对应时刻可以发起随机接入的STA按照子信道/RU选择方案,各STA去选择对应RSSI区间的RA子信道内的RU。在本示例中一个时刻只有一组去竞争信道。优选的,各STA以自己的AID模信道中RU的数量值,取余数来选择信道,从而降低碰撞概率。例如在第三个时刻,图4中示出的位于组3内的STA12和STA13的AID不同,所以不会选择同一信道,从而避免碰撞。
S13:各STA在接入成功后,向AP反馈确认信息ACK或者发送上行RA帧,告知AP已接入成功;
S14,若AP在预设时间内未接收到STA反馈的确认信息ACK或者上行RA帧,则说明该STA未成功接入,设定回退时间,重复执行S12,在回退时间之后再次确认是否收到该STA反馈的ACK。
基于上述实施例二中公开的调整RSSI范围上下界的方式,在本示例一种,AP根据统计的各个RA子信道成功接入的STA的接入数量和各个STA的自身RSSI,调整RA子信道的RSSI区间范围,在本示例一中有20个STA(N=20),4个RA子信道(M=4),调整过程如下:
步骤21:将获取到的成功接入的STA的自身RSSI从大至小进行排序。
RSSI的具体顺序为:-60dBm,-61dBm,-62dBm,-62dBm,-63dB m,-64dBm,-67dBm,-68dBm,-70dBm,-72dBm,-73dBm,-74dBm,-76dBm,-78dBm,-78dBm,-79dBm,-80dBm,-81dBm,-82dBm,-83dBm。
步骤S22:计算接入成功的所述STA的接入数量N与所述RA子信道的总个数M的比值N/M=20/4=5;
步骤S23:按照上述从大至小的顺序,从最大的5个(-60dBm,-61dBm,-62dBm,-62dBm,-63dB m)中选取最小值(-63dB m)作为第1个RA子信道 的下界;
步骤S24:按照上述从大至小的顺序,从最小的5个(-79dBm,-80dBm,-81dBm,-82dBm,-83dBm)中选取最大值(-79dBm)作为第4个RA子信道的上界;
步骤S25:N=20为偶数,将第10个RSSI(-72dBm)和第11个RSSI(-73dBm)的中间值,向上取整得到-72dBm作为第2个RA子信道的下界,将中间值取整减1得到-73dBm作为第3个RA子信道的上界。
步骤S26:针对确定的第2个RA子信道的下界,向大值方向数4位,取第6个RSSI(-64dBm)作为第2个RA子信道的上界;针对确定的第3个RA子信道的上界,向小值方向数4位,取第15个RSSI(-78dBm)作为第3个RA子信道的下界。
如下表1所示,为上述本申请示例一执行RA子信道RSSI调整的结果。
表1:
Figure PCTCN2016084527-appb-000001
示例二
基于附图4示出的AP建立的一个BSS,其中有20个待接入的STA。AP分配4个20MHz的RA子信道(M=4),20个STA的RSSI的范围是-60dBm至-83dBm。 按4个RA子信道所对应的RSSI范围将20个STA划分为四组。
其中,自身RSSI在-60dBm至-65dBm之间的STA为组1,自身RSSI在-66dBm至-71dBm之间的STA为组2,自身RSSI在-72dBm至-77dBm之间的STA为组3,自身RSSI在-78dBm至-83dBm之间的STA为组4。
与上述示例一不同的是,在该示例二中,一个RA子信道内划分出多个RU(每个RA子信道中有K个RU,K=9),因此,一次TF-R可以容纳的随机接入站点数据将大大增加。
基于上述本申请实施例一至本申请实施例三中公开的随机接入方法,如图6为执行下述接入流程的示意图,该示例二具体的接入流程包括:
S31:AP通过向STA广播TF-R帧,告知20个STA当前可以接入的RA子信道的RSSI的范围。
由图6示出的示意图可知,在本示例二中,AP通知所有STA,(G1)组1(RSSI在-60dBm至-65dBm之间)的STA在第1个RA子信道上竞争RU,(G2)组2(RSSI在-66dBm至-71dBm之间)的STA在第2个RA子信道上竞争RU,(G3)组3(RSSI在-72dBm至-77dBm之间)的STA在第3个RA子信道上竞争RU,(G4)组4(RSSI在-78dBm至-83dBm之间)的STA在第4个RA子信道上竞争RU。
S32:各STA根据自己的RSSI在对应的RA子信道中发起随机接入。
各个在对应RA子信道中发起随机接入的STA按照RU选择方案,各自去竞争选择的RA子信道内的RU。在本示例二中,各STA以自己的AID模信道中RU的数量值,取余数来选择信道,从而降低碰撞概率。例如在第三个时刻,图4中示出的位于组3内的STA12和STA13的AID不同,所以不会选择同一信道,从而避免碰撞。
S33:各STA在接入成功后,向AP反馈确认信息ACK或者发送上行RA帧,告知AP已接入成功;
S34,若AP在预设时间内未接收到STA反馈的确认信息ACK或者上行RA帧,则说明该STA未成功接入,设定回退时间,重复执行S32,在回退时间之后再次确认是否收到该STA反馈的ACK或者上行RA帧。
同上述示例一,在该示例二中AP同样可以根据统计的各个RA子信道成功接入的STA的接入数量和各个STA的自身RSSI,调整RA子信道的RSSI区间范 围,其执行过程与示例一一致,这里不再进行赘述。
实施例五
基于上述本申请实施例一至实施例三中分别公开的应用于AP端和STA段的随机接入方法,以及本申请实施例四中公开的两个示例,对应的本申请实施例五还分别对应公开了一种AP,一种STA,以及包含AP和STA的随机接入系统。
如图7所示出的一种AP的结构示意图,主要包括:
发送模组101,用于向站点STA发送指示信令,所述指示信令用于指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间;
处理模组102,用于在所述RA子信道上成功接收到来自于所述STA的确认信息ACK,或者上行RA帧时,则确认所述STA在所述RA子信道上接入成功。
在向站点STA发送指示信令的过程中,上述处理模组102和发送模组101的一种执行过程为:
该处理模组102,用于依据各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,将待接入各个所述RA子信道的站点STA分为n组,并按照分区确定广播指示信令的时刻;
其中,n为自然数,且n≥1,所述指示信令包括:随机接入触发帧TF-R或信标Beacon。
发送模组101,用于在处理模组102确定的时刻分别向所述n组站点STA发送所述指示信令,使所述各组站点STA在不同的时刻在对应的RA子信道上发起随机接入;或
在所述确定的任一时刻向各组站点STA均发送所述指示信令,使各组站点STA在相同的时间在对应的RA子信道上发起随机接入。
在向站点STA发送指示信令的过程中,上述处理模组102和发送模组101的另一种执行过程为:
所述处理模组,用于依据M个随机接入RA子信道所对应的接收信号强度指示RSSI区间,按照各个站点STA的RSSI所属的RSSI区间确定各个所述站点STA所处的RA子信道,并划分为对应的M个分组,其中,每个RA子信道中具有K个资源块RU;
所述发送模组,用于向M个分组中的所有站点STA广播指示信令,使位于第一组至第M组内的站点STA在各自所处信道中发起随机接入,竞争各自所处信道内的RU;
其中,所述指示信令包括:随机接入触发帧TF-R或信标Beacon,M和K为大于或者等于1的正整数。
进一步的,所述处理模组102还可以用于:
若在预设时间内未在所述RA子信道上接收到任一STA的确认信息ACK或者上行RA帧,则确认所述RA子信道上接入失败,在设定回退时间之后重新判定所述RA子信道上是否接入成功。
进一步的,所述接入点AP还包括::
接收模组,用于接收通过所述STA通过接入的所述RA子信道中的资源块RU发送的RA帧,所述RA帧中可以携带所述STA的自身RSSI;
所述处理模组102还用于,统计接入成功的所述STA的接入数量;及
依据接收到的各个所述RA帧中包含的对应所述STA的自身RSSI大小,对接入成功的所述STA的自身RSSI从大至小进行排序;及
获取接入成功的所述STA的接入数量N与所述RA子信道的总个数M的比值N/M,其中,M和N为大于或者等于1的正整数;及
基于所述接入成功的所述STA的自身RSSI从大至小的排序,选取最大的N/M个RSSI值中的最小值作为第一个RA子信道的下界;用于选取最小的N/M个RSSI值中的最大值作为第M个RA子信道的上界;及当N为偶数时,将第N/2个RSSI值和第(N/2)+1个RSSI值的中间值向下取整数,作为第M/2个RA子信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第M/2个RA子信道的上界;将所述中间值取整减1作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界;及当N为奇数时,将第N/2个RSSI值作为第(M/2)个信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第M/2个RA子信道的上界;将第(N/2)+1个RSSI值作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界。
基于上述本申请公开的一种AP,在实际应用中可以将上述公开的AP中的 各个模块集成至实体中,如图8所示,包括发送器1、处理器2和接收器3。具体的,上述发送模组可以是发送器1,上述接收模组可以是接收器3,上述处理模组可以是处理器2,由处理器2执行相应的操作,该处理器具体可以是一个中央处理器CPU,或者是特定集成电路ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路。
如图9所示的一种STA的结构示意图,主要包括:
接收模块201,用于接收接入点AP发送的指示信令,获取所述指示信令所指示的各个随机接入RA子信道对应的接收信号强度指示RSSI区间;
处理模块202,用于依据所述站点STA自身的RSSI所属RSSI区间选择对应的RA子信道发起随机接入;
发送模块203,用于若成功接入所属RSSI区间所对应的RA子信道,则向所述接入点AP发送接入成功的确认信息ACK或者上行RA帧。
上述处理模块202中具体用于:
判断自身RSSI是否属于当前允许接入的RSSI区间,若否,则等待下一时刻重新判断;
若是,则在所属RSSI区间对应的RA子信道中随机选择一个资源块RU进行接入,或以自身的关联标识符AID模信道中RU的数量值作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
上述处理模块202中具体还用于:
依据所述站点STA自身的RSSI确定所属RSSI区间;及
以所述站点STA自身的关联标识符AID模信道中RU的数量值,取余数作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
进一步的,上述处理模块202还用于:
若所述站点STA的自身RSSI不属于任何一个对应RA子信道的RSSI区间内,则向上或向下选择相邻的RSSI区间对应的RA子信道发起随机接入。
进一步的,上述发送模块203还用于:
通过接入的所述RA子信道中的资源块RU向所述AP发送RA帧,所述RA帧中可以携带有所述STA的自身RSSI。
基于上述本申请公开的一种STA,同样的,在实际应用中可以将上述公开 的STA中的各个模块集成至实体中,如图10所示,包括发送器4、处理器5和接收器6。具体的,将上述发送模块可以是发送器1,上述接收模块可以是接收器6,上述处理模块可以是处理器5,由处理器5执行相应的操作。同样的该处理器具体可以是一个中央处理器CPU,或者是特定集成电路ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路。
此外,本申请实施例公开的一种随机接入系统中包括:上述图7或图8公开的AP,以及图9或图10中公开的STA,该AP和STA的具体执行分组随机接入的过程如上所述,这里不再进行赘述。
综上所述,本申请上述实施例公开的随机接入方法及相关设备,基于RSSI作为分组依据,根据各个RA子信道所对应的RSSI区间和STA自身RSSI进行分组,通过限制各RA子信道上的信道强度接入门限和区间范围,优化STA接入分布,使不同RSSI的STA在不同的RA子信道资源上发起随机接入,不仅增加接入的概率,减少碰撞,同时解决STA接入不受控制和接入时延的问题。
本申请说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见。

Claims (23)

  1. 一种随机接入方法,其特征在于,应用于接入点AP,包括:
    向站点STA发送指示信令,指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间;
    若在所述RA子信道上成功接收到来自于所述STA的确认信息ACK或者上行RA帧时,确认所述STA在所述RA子信道上接入成功。
  2. 根据权利要求1所述的方法,其特征在于,若在预设时间内未在所述RA子信道上接收到任一STA的确认信息ACK或者上行RA帧,则确认所述RA子信道上接入失败,在设定回退时间之后重新判定所述RA子信道上是否接入成功。
  3. 根据权利要求1所述的方法,其特征在于,所述向站点STA发送指示信令,指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,包括:
    依据各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,对待接入各个所述RA子信道的站点STA进行分组;
    按照分组确定广播指示信令的时刻,并在每一时刻内向所有站点STA广播所述指示信令,在任一时刻使位于相同或不同RSSI区间的站点STA发起随机接入;
    其中,所述指示信令包括:随机接入触发帧TF-R或信标Beacon。
  4. 根据权利要求3所述的方法,其特征在于,所述在任一时刻使位于相同RSSI区间的站点STA发起随机接入,包括:
    在第一时刻使位于第一RSSI区间内的站点STA发起随机接入,直至第S时刻使位于第S个RSSI区间内的站点STA发起随机接入;
    或者,
    在第一时刻使任一RSSI区间内的站点STA发起随机接入,直至第S时刻使任一RSSI区间内的站点STA发起随机接入;
    其中,S为大于或者等于1的正整数。
  5. 根据权利要求1所述的方法,其特征在于,所述向站点STA发送指示信令,指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间, 包括:
    依据M个随机接入RA子信道所对应的接收信号强度指示RSSI区间,按照站点STA的RSSI所属的RSSI区间确定所述站点STA所处的RA子信道,并划分为对应的M个分组,其中,每个RA子信道中具有K个资源块RU;
    向M个分组中的所有站点STA广播指示信令,使位于第一组至第M组内的站点STA在各自所处信道中发起随机接入,竞争各自所处信道内的RU;
    其中,所述指示信令包括:随机接入触发帧TF-R或信标Beacon,M和K为大于或者等于1的正整数。
  6. 根据权利要求1~4中任意一项所述的方法,其特征在于,还包括:
    接收通过所述STA通过接入的所述RA子信道中的资源块RU发送的RA帧,所述RA帧中可以携带所述STA的RSSI;
    统计接入成功的所述STA的接入数量;
    依据接收到的各个所述RA帧中包含的对应所述STA的自身RSSI大小,对接入成功的所述STA的RSSI从大至小进行排序;
    获取接入成功的所述STA的接入数量N与所述RA子信道的总个数M的比值N/M,其中,M和N为大于或者等于1的正整数;
    基于所述接入成功的所述STA的RSSI从大至小的排序,选取最大的N/M个RSSI值中的最小值作为第一个RA子信道的下界;
    选取最小的N/M个RSSI值中的最大值作为第M个RA子信道的上界;
    当N为偶数时,将第N/2个RSSI值和第(N/2)+1个RSSI值的中间值向下取整数,作为第M/2个RA子信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第M/2个RA子信道的上界;将所述中间值取整减1作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界;
    当N为奇数时,将第N/2个RSSI值作为第(M/2)个信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第M/2个RA子信道的上界;将第(N/2)+1个RSSI值作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界。
  7. 一种接入点AP,其特征在于,包括:
    发送模组用于,向站点STA发送指示信令,所述指示信令用于指示各个随机接入RA子信道所对应的接收信号强度指示RSSI区间;
    处理模组用于,在所述RA子信道上成功接收到来自于所述STA的确认信息ACK或者上行RA帧时,确认所述STA在所述RA子信道上接入成功。
  8. 根据权利要求7所述的接入点AP,其特征在于,所述处理模组还可以用于:
    若在预设时间内未在所述RA子信道上接收到任一STA的确认信息ACK或者上行RA帧,则确认所述RA子信道上接入失败,在设定回退时间之后重新判定所述RA子信道上是否接入成功。
  9. 根据权利要求7所述的接入点AP,其特征在于,所述处理模组用于,依据各个随机接入RA子信道所对应的接收信号强度指示RSSI区间,将待接入各个所述RA子信道的站点STA分为n组,并按照分组确定广播指示信令的时刻;
    其中,n为自然数,且n≥1,所述指示信令包括:随机接入触发帧TF-R或信标Beacon。
  10. 根据权利要求9所述的接入点AP,其特征在于,所述发送模组用于:在所述确定的时刻分别向所述n组站点STA发送所述指示信令,使所述各组站点STA在不同的时刻在对应的RA子信道上发起随机接入;或
    在所述确定的任一时刻向各组站点STA均发送所述指示信令,使各组站点STA在相同的时间在对应的RA子信道上发起随机接入。
  11. 根据权利要求7所述的接入点AP,其特征在于,
    所述处理模组用于,依据M个随机接入RA子信道所对应的接收信号强度指示RSSI区间,按照站点STA的RSSI所属的RSSI区间确定所述站点STA所处的RA子信道,并划分为对应的M个分组,其中,每个RA子信道中具有K个资源块RU;
    所述发送模组用于,向M个分组中的所有站点STA广播指示信令,使位于第一组至第M组内的站点STA在各自所处信道中发起随机接入,竞争各自所处信道内的RU;
    其中,所述指示信令包括:随机接入触发帧TF-R或信标Beacon,M和K 为大于或者等于1的正整数。
  12. 根据权利要求7~11中任意一项所述的接入点AP,其特征在于,还包括:
    接收模组用于,接收通过所述STA通过接入的所述RA子信道中的资源块RU发送的RA帧,所述RA帧中可以携带所述STA的自身RSSI;
    所述处理模组还用于,统计接入成功的所述STA的接入数量;
    依据接收到的各个所述RA帧中包含的对应所述STA的自身RSSI大小,对接入成功的所述STA的自身RSSI从大至小进行排序;
    获取接入成功的所述STA的接入数量N与所述RA子信道的总个数M的比值N/M,其中,M和N为大于或者等于1的正整数;
    基于所述接入成功的所述STA的自身RSSI从大至小的排序,选取最大的N/M个RSSI值中的最小值作为第一个RA子信道的下界;用于选取最小的N/M个RSSI值中的最大值作为第M个RA子信道的上界;及当N为偶数时,将第N/2个RSSI值和第(N/2)+1个RSSI值的中间值向下取整数,作为第M/2个RA子信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第M/2个RA子信道的上界;将所述中间值取整减1作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界;及当N为奇数时,将第N/2个RSSI值作为第(M/2)个信道的下界,取第((N/2)-(N/M)-1)个RSSI值为所述第M/2个RA子信道的上界;将第(N/2)+1个RSSI值作为第(M/2)+1个RA子信道的上界,取第((N/2)+(N/M))个RSSI值作为所述第(M/2)+1个RA子信道的下界。
  13. 一种分组随机接入方法,其特征在于,应用于站点STA,包括:
    接收接入点AP发送的指示信令,所述指示信令用于指示各个随机接入RA子信道对应的接收信号强度指示RSSI区间;
    根据所述站点STA的RSSI所属RSSI区间选择对应的随机接入RA子信道发起随机接入;
    若成功接入所述对应的RA子信道,则向所述接入点AP反馈接入成功的确认信息ACK或者发送上行RA帧。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述站点STA 的RSSI所属RSSI区间选择对应的RA子信道发起随机接入,包括:
    判断所述站点STA的RSSI是否属于当前允许接入的RSSI区间,若否,则等待下一时刻重新判断;
    若是,则在所属RSSI区间对应的RA子信道中随机选择一个资源块RU进行接入,或以所述站点STA的关联标识符AID模信道中RU的数量值作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
  15. 根据权利要求13所述的方法,其特征在于,所述根据所述站点STA的RSSI所属RSSI区间选择对应的RA子信道发起随机接入,包括:
    依据所述站点STA的RSSI确定所属RSSI区间;
    以所述站点STA的关联标识符AID模信道中RU的数量值,取余数作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
  16. 根据权利要求13~15中任意一项所述的方法,其特征在于,还包括:
    若所述站点STA的RSSI不属于任何一个对应RA子信道的RSSI区间内,则向上或向下选择相邻的RSSI区间对应的RA子信道发起随机接入。
  17. 根据权利要求13~15中任意一项所述的方法,其特征在于,所述向所述接入点AP发送上行RA帧,包括:
    通过接入的所述RA子信道中的资源块RU向所述AP发送上行RA帧,所述RA帧中可以携带有所述STA的自身RSSI。
  18. 一种站点STA,其特征在于,包括:
    接收模块用于,接收接入点AP发送的指示信令,获取所述指示信令所指示的各个随机接入RA子信道对应的接收信号强度指示RSSI区间;
    处理模块用于,依据所述站点STA的RSSI所属RSSI区间选择对应的随机接入RA子信道发起随机接入;
    发送模块用于,若成功接入所属RSSI区间所对应的RA子信道,则向接入点AP发送接入成功的确认信息ACK或者发送上行RA帧。
  19. 根据权利18所述的站点STA,其特征在于,
    所述处理模块还用于:
    判断自身RSSI是否属于当前允许接入的RSSI区间,若否,则等待下一时刻重新判断;
    若是,则在所属RSSI区间对应的RA子信道中随机选择一个资源块RU进行接入,或以自身的关联标识符AID模信道中RU的数量值作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
  20. 根据权利要求18所述的站点STA,其特征在于,所述处理模块还用于:
    依据所述站点STA的RSSI确定所属RSSI区间;及
    以所述站点STA的关联标识符AID模信道中RU的数量值,取余数作为选择的RU编号,选择所属RSSI区间对应的RA子信道中的资源块RU。
  21. 根据权利要求18~20中任意一项所述的站点STA,其特征在于,所述处理模块还用于:
    若所述站点STA的RSSI不属于任何一个对应RA子信道的RSSI区间内,则向上或向下选择相邻的RSSI区间对应的RA子信道发起随机接入。
  22. 根据权利要求18~20中任意一项所述的站点STA,其特征在于,所述发送模块用于,通过接入的所述RA子信道中的资源块RU向所述AP发送上行RA帧,所述RA帧中可以携带有所述STA的RSSI。
  23. 一种随机接入系统,其特征在于,包括:权利要求7~12中任意一项所述的接入点AP和权利要求18~22中任意一项所述的站点STA。
PCT/CN2016/084527 2015-11-30 2016-06-02 随机接入方法及相关设备 WO2017092270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510851913.9 2015-11-30
CN201510851913.9A CN106817202B (zh) 2015-11-30 2015-11-30 随机接入方法及相关设备

Publications (1)

Publication Number Publication Date
WO2017092270A1 true WO2017092270A1 (zh) 2017-06-08

Family

ID=58796102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084527 WO2017092270A1 (zh) 2015-11-30 2016-06-02 随机接入方法及相关设备

Country Status (2)

Country Link
CN (1) CN106817202B (zh)
WO (1) WO2017092270A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110730515A (zh) * 2019-10-24 2020-01-24 普联技术有限公司 一种接入方法、装置、站点及存储介质
CN112689308B (zh) * 2020-12-17 2023-01-06 深圳创维数字技术有限公司 多用户无线数据传输方法、系统、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220788A (zh) * 2012-01-19 2013-07-24 华为技术有限公司 对节点进行分组的方法、节点和接入点
CN103875195A (zh) * 2011-07-21 2014-06-18 三星电子株式会社 用于在无线通信系统中发送和接收关于随机接入的信息的方法和装置
WO2014179713A1 (en) * 2013-05-03 2014-11-06 Interdigital Patent Holdings, Inc. Systems and methods for fractional carrier sense multiple access with collision avoidance (csma/ca) for wlans
CN104619025A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 随机接入信道资源分配方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718667B2 (en) * 2011-08-05 2014-05-06 Apple, Inc. Adaptive random access channel retransmission
CN104540172B (zh) * 2014-12-29 2017-08-29 江苏中兴微通信息科技有限公司 一种wlan系统中基于位置意识的单位面积负载均衡方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875195A (zh) * 2011-07-21 2014-06-18 三星电子株式会社 用于在无线通信系统中发送和接收关于随机接入的信息的方法和装置
CN103220788A (zh) * 2012-01-19 2013-07-24 华为技术有限公司 对节点进行分组的方法、节点和接入点
WO2014179713A1 (en) * 2013-05-03 2014-11-06 Interdigital Patent Holdings, Inc. Systems and methods for fractional carrier sense multiple access with collision avoidance (csma/ca) for wlans
CN104619025A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 随机接入信道资源分配方法和系统

Also Published As

Publication number Publication date
CN106817202A (zh) 2017-06-09
CN106817202B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
JP6857855B2 (ja) 基地局、通信方法及び集積回路
US11653346B2 (en) Beam selection and resource allocation for beam-formed random access procedure
EP3723432B1 (en) Random access for "supplementary uplink"
EP3395117B1 (en) Listen before talk channel access procedure for uplink laa
US10292182B2 (en) Listen before talk channel access procedure for uplink LAA
JP6526207B2 (ja) 上りリンク信号を送信する方法及び使用者器機、並びに上りリンク信号を受信する方法及び基地局
US20190268852A1 (en) Method and device for controlling transmission power of user equipment in beamforming system
US10051662B2 (en) Methods of listen-before-talk mechanism for opportunistic spectrum access
WO2016165654A1 (en) Methods of listen-before-talk mechanism for opportunistic spectrum access
WO2018171643A1 (zh) 信息传输方法、装置及系统
KR20160052420A (ko) 이동통신 시스템에서 비면허 대역을 이용한 통신 방법 및 장치
KR20170015251A (ko) 비면허 대역 채널에서 클리어 채널 평가에 근거한 신호 전송 방법 및 이동 통신 시스템
KR20190017136A (ko) 무선 통신 시스템에서 상향링크 전송 방법 및 장치
JP2019198015A (ja) 基地局装置、端末装置、通信方法、および、集積回路
EP3043486B1 (en) Methods and devices for joint transmission in wireless lan
WO2015021256A1 (en) System and method for resource allocation device-to-device for open discovery
RU2769960C2 (ru) Управление доступом к среде для полнодуплексной связи
EP3461198A1 (en) Communication method on unlicensed frequency band, terminal device, and network device
CN106851712A (zh) 一种消息处理的方法、基站及终端
CN105103637A (zh) 设备通信方法及装置
WO2018082610A1 (zh) 确定方法、接入、发送、处理方法及装置、基站及终端
US11109422B2 (en) Random access enhancements for uRLLC over 5G wireless networks
WO2017092270A1 (zh) 随机接入方法及相关设备
JP2023078485A (ja) 端末装置、および、通信方法
KR20220002512A (ko) 향상된 랜덤 액세스 절차의 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869583

Country of ref document: EP

Kind code of ref document: A1