WO2017092207A1 - 一种高瓦斯突出煤层"钻-冲-割"耦合卸压增透方法 - Google Patents

一种高瓦斯突出煤层"钻-冲-割"耦合卸压增透方法 Download PDF

Info

Publication number
WO2017092207A1
WO2017092207A1 PCT/CN2016/077971 CN2016077971W WO2017092207A1 WO 2017092207 A1 WO2017092207 A1 WO 2017092207A1 CN 2016077971 W CN2016077971 W CN 2016077971W WO 2017092207 A1 WO2017092207 A1 WO 2017092207A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
drilling
coal
coal seam
seam
Prior art date
Application number
PCT/CN2016/077971
Other languages
English (en)
French (fr)
Inventor
林柏泉
刘统
高亚斌
杨威
李贺
黄展博
王瑞
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2016363855A priority Critical patent/AU2016363855B2/en
Priority to US15/548,060 priority patent/US10280686B2/en
Publication of WO2017092207A1 publication Critical patent/WO2017092207A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/01Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
    • E21B21/011Dust eliminating or dust removing while drilling
    • E21B21/013Dust eliminating or dust removing while drilling by liquids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C25/00Cutting machines, i.e. for making slits approximately parallel or perpendicular to the seam
    • E21C25/60Slitting by jets of water or other liquid
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose

Definitions

  • the invention relates to a "drill-crush-cut" coupling pressure relief and permeation method for a high gas outburst coal seam, and is particularly suitable for pressure relief and permeation when a gas is drilled through a layered borehole to pre-pump a high gas outburst coal seam.
  • the pre-extracted coal seam gas is the main gas control measure at present.
  • most coal seams in China have the characteristics of micro-porosity, high adsorption and low permeability. It is difficult to extract gas effectively, and measures must be taken to increase the permeability of coal seam.
  • domestic and foreign scholars have developed a variety of drilling pressure relief technology, through the transformation of coal reservoirs, reduce the effective stress of coal seams and gas flow resistance, thereby improving gas extraction
  • the effects include: loose blasting technology, gas injection and anti-reflection technology, hydraulic slitting technology, hydraulic punching technology.
  • the object of the present invention is to overcome the deficiencies in the prior art, and to provide a simple process, safe and reliable, and to solve the limitations of a single technology, can effectively extend the scope of application of the anti-reflection technology, and improve the gas extraction effect of the regional coal body.
  • the high-gas outburst coal seam "drill-crush-cut" coupling pressure relief and permeation method of the present invention adjusts the water jet water inlet pressure in stages according to the different positions of the drilling construction, and controls the water during drilling.
  • the jets are respectively subjected to low-pressure water flow drilling and medium-pressure water flow punching.
  • the high-pressure water flow slitting is performed, and the low, medium and high-pressure water flows are stepwisely relieved to realize the internal “drill-crush-cut” coupling of the through-hole drilling.
  • Pressure relief and transparency integration work the specific steps are as follows:
  • the low-pressure water jet of 3-5 MPa is used to assist drilling and slag discharging. Speed up the drilling speed while reducing dust;
  • the present invention is directed to the existing multi-drilling pressure relief and anti-reflection measures.
  • the direct construction of the original coal seam is easy to induce the nozzle hole, the high-energy medium is uncontrollable and safe, the process is cumbersome and complicated, the effective influence radius is small, and the area is enhanced.
  • the effect is not ideal, and the application conditions of a single technology are limited. It is difficult to meet the requirements of the anti-dipping requirements of coals with different conditions.
  • By combining the hydraulic punching and hydraulic slitting the drilling and punching-cutting special equipment is used to realize the drilling.
  • the coupling operation of the internal “low pressure drilling-medium pressure punching-high pressure cutting seam” causes the coal body in the pre-extraction area to be deformed and displaced to form a networked fracture, providing a channel for the gas desorption flow and expanding the influence range of the single hole pressure relief. Increase the permeability of the coal seam, make the gas easier to extract, and improve the gas drainage efficiency.
  • the coupling integration operation of “low-pressure drilling-medium-pressure punching-high-pressure slitting” is realized, which improves The influence range of the pressure relief borehole; after the “drill-crush-cut” coupling pressure relief, the coal body undergoes deformation and displacement, forming a networked fracture, providing a channel for the gas desorption flow, making the gas easier to extract; by controlling the water jet
  • the step-by-step pressure relief can gradually release the energy of the coal body, eliminate the power generated by the nozzle hole, and ensure the safety of the construction.
  • the method can expand the influence range of the single hole pressure relief, increase the permeability of the coal seam, and improve the gas drainage efficiency.
  • the number of pre-drilling holes is reduced, the pre-extraction time is shortened, the construction process is simple, the equipment is safe and reliable, and the coal seams with different occurrence states have good adaptability.
  • the invention can reduce the number of drilled holes by 32.5%, the length of the drilled hole by 42.9%, the effect of eliminating the protrusion in the coal roadway area is remarkable, the excavation speed is obviously improved, and the pressure relief effect is well improved, and the gas is high pressure coal seam. Extraction provides reliable technical support and has excellent promotional value.
  • Figure 1 is a schematic view of a through-hole drilling arrangement of the present invention.
  • Figure 2 (a) is a schematic structural view of the low pressure drilling of the present invention
  • Figure 2 (b) is a schematic structural view of the medium pressure punching of the present invention.
  • Fig. 2(c) is a schematic view showing the structure of the high pressure slit of the present invention.
  • the high-gas outburst coal seam "drill-crush-cut" coupling pressure relief and permeation method adjusts the water jet water inlet pressure in stages according to different positions of the drilling construction, and controls the water jet to perform low-pressure water flow separately during drilling. Drilling and medium-pressure water flow punching, when drilling, the high-pressure water flow slitting is carried out, and the pressure is gradually reduced according to the low, medium and high-pressure water flow to realize the internal “drill-crush-cut” coupling pressure relief and penetration enhancement of the through-hole drilling 3
  • the specific steps are as follows:
  • Example 1 as shown in Figure 1, the coal seam 2 is a high gas outburst coal seam, and the coal roadway 4 is faced with a great danger.
  • the pre-extracted coal road strip with coal seam gas the bottom plate in the lower part of the coal seam 2 Rock tunnel 1 inward to coal seam 2 construction up to the through hole drilling 3, pre-extracted coal seam 2 gas, cover coal roadway 4 excavation; from the floor rock tunnel 1 to the coal seam 2 pre-drainage area to arrange multiple through-hole drilling 3; using pressure control
  • the integrated drill bit 7 constructs a plurality of through-hole drilling holes 3 arranged in the pre-extraction area one by one. When the pressure-controlled integrated drill bit 7 is not drilled into the coal seam 2, as shown in Fig.
  • low-pressure water of 3-5 MPa is used.
  • the jet assists drilling and slag discharge, and accelerates the drilling speed while effectively reducing dust; when the pressure-controlled integrated drill bit 7 enters the coal seam 2 from the coal seam floor 5, as shown in Fig. 2(b), the water pressure is raised to 8-12 MPa.
  • the medium pressure water jet is used for punching. Since the pressure control integrated drill bit 7 is pressed in front, the side nozzle of the pressure control integrated drill bit 7 is pressed and closed, and the water jet flushes the front coal body only through the front nozzle, along with the broken coal body. Discharge, a pressure relief hole 9 is formed in the coal seam 2, and the coal body energy is initially released, so that the surrounding coal body is directed to the pressure relief zone.
  • preliminary pressure relief can be Avoiding the collapse of the borehole 3 and the closing of the pressure relief slot 10, ensuring that the pressure relief effect is effective for a long time; by observing the coal outflow condition of the drilled hole, the occurrence of the coal seam 2 is judged, and when the borehole 3 passes through After the coal seam 2 stops drilling; the drilling is carried out, the water pressure is further increased during the process of retreating, and the coal body is cut by the high pressure water jet of 15-25 MPa, because the pressure control integrated drill bit 7 is no longer pressed in front, the front nozzle The side nozzle is opened, the water jet is sprayed only from the side nozzle, and the slot 10 is formed in the coal seam 2. As shown in Fig. 2(c), the surrounding coal body is strongly disturbed in different directions, and the borehole 3 is uniformly relieved. Moreover, the influence range is increased, the gas permeability of the coal body is improved, and the gas is more easily
  • the through-hole drilling 3 adopts the “drill-crush-cut” coupling pressure relief technology, which can expand the single-hole pressure relief influence range, increase the gas permeability of the coal seam 2, improve the gas drainage efficiency, and thus reduce the number of pre-drilling holes.
  • the pre-extraction time is shortened, and the technology has good adaptability to the coal seams 2 in different occurrence states.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Earth Drilling (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

一种高瓦斯突出煤层"钻-冲-割"耦合卸压增透方法,尤其适用于穿层钻孔预抽高瓦斯突出煤层(2)煤巷(4)条带瓦斯时的卸压增透。在穿层钻孔(3)预抽煤层(2)瓦斯措施基础上,将水力冲孔和水力割缝有机结合,利用"钻-冲-割"专用装备,实现钻孔内部"低压钻进-中压冲孔-高压割缝"的耦合作业,使预抽区域煤体发生形变、位移,形成网络化裂隙,为瓦斯解吸流动提供通道,使瓦斯更易抽出。本方法可以扩大单孔卸压影响范围,增加煤层透气性,提高瓦斯抽采效率,减少预抽钻孔数量,缩短预抽时间,对不同赋存状态的煤层均具有良好的适应性。此方法可以使穿层钻孔数减少32.5%,穿层钻孔长度减少42.9%,煤巷区域消突效果显著,掘进速度明显提高。

Description

一种高瓦斯突出煤层“钻-冲-割”耦合卸压增透方法 技术领域
本发明涉及一种高瓦斯突出煤层“钻-冲-割”耦合卸压增透方法,尤其适用于穿层钻孔预抽高瓦斯突煤层煤巷条带瓦斯时的卸压增透。
背景技术
穿层钻孔预抽煤层瓦斯是目前主要的瓦斯治理措施之一,但我国多数煤层具有微孔隙、高吸附、低渗透的特点,瓦斯难以有效抽出,必须采取措施增加煤层的透气性。为此,对于高瓦斯突出煤层的卸压增透国内外学者研发了多种钻孔卸压增透技术,通过对煤储层进行改造,降低煤层有效应力和瓦斯流动阻力,进而提高瓦斯抽采效果,主要包括:松动爆破技术、注气增透技术、水力割缝技术、水力冲孔技术等。这些技术都表现出良好的卸压、增透、增流作用,但在现场规模化应用中受到诸多因素的制约,这里归纳为以下几点:①某些技术直接作用于强突出的原始煤层,形成剧烈扰动,极易诱发喷孔等动力现象;②某些技术采用的高能介质不可控,施工安全性难以保障;③工艺繁琐复杂,有效影响半径小,区域增透效果不理想;④单一技术适用条件有限,难以满足不同条件煤体的增透要求。因此,迫切需要研究新的卸压增透技术,在整合现有技术优势的基础上,破解单一技术的局限性,扩展增透技术的适用范围,提高区域煤体的瓦斯抽采效果。
发明内容
本发明的目的是克服现有技术中的不足之处,提供一种工艺简单、安全可靠,破解单一技术的局限性,能有效扩展增透技术的适用范围,提高区域煤体瓦斯抽采效果的高瓦斯突出煤层“钻-冲-割”耦合卸压增透方法。
为实现上述目的,本发明的高瓦斯突出煤层“钻-冲-割”耦合卸压增透方法,根据钻孔施工所处的不同位置分阶段调节水射流进水压力,钻进时,控制水射流分别进行低压水流钻进和中压水流冲孔,退钻时,进行高压水流割缝,按低、中、高压水流逐级卸压,实现穿层钻孔内部“钻-冲-割”耦合卸压增透一体化作业,具体步骤如下:
a.从底板岩巷向煤层预抽区域布置多个穿层钻孔;
b.采用压控一体化钻头逐一施工预抽区域布置的多个穿层钻孔,在压控一体化钻头未钻进至煤层时,采用3-5MPa的低压水射流辅助钻进、排渣,加快钻进速度的同时起到降尘作用;
c.当压控一体化钻头钻进达煤层底板进入煤层时,调高水射流压力至8-12MPa,采用中压水射流在煤层进行冲孔,由于压控一体化钻头在钻进过程中前方受压,压控一体化钻头侧 面的喷嘴受压关闭,水射流仅通过前部喷嘴冲刷前方煤体,随着破碎煤体的排出,煤层内形成卸压孔洞,初步释放煤体内能;
d.对钻孔口的出煤情况进行观察,判断煤层赋存情况,当钻孔穿过煤层后停止钻进;
e.进行退钻,在退钻的过程中,进一步增高水射流的水压,采用15-25MPa的高压水射流切割煤体,由于压控一体化钻头前方不再受压,前部喷嘴关闭,侧面喷嘴张开,水射流仅从侧面喷嘴喷出,在煤层内退钻的过程中,完成一个个水力割缝槽,从而实现煤体均匀卸压;
f.当煤层内水力割缝完成后,形成具有特殊形态的穿层抽采钻孔,停止向压控一体化钻头输送高压水,保持旋转的同时将压控一体化钻头和钻杆退出钻孔。
有益效果:本发明针对现存的多种钻孔卸压增透措施存在的强突出的原始煤层直接施工易诱发喷孔、高能介质不可控安全性差、工艺繁琐复杂、有效影响半径小、区域增透效果不理想以及单一技术适用条件有限,难以满足不同条件煤体的增透要求等问题,通过将水力冲孔和水力割缝的有机结合,利用“钻-冲-割”专用装备,实现钻孔内部“低压钻进-中压冲孔-高压割缝”的耦合作业,使预抽区域煤体发生形变、位移,形成网络化裂隙,为瓦斯解吸流动提供通道,扩大单孔卸压影响范围,增加煤层透气性,使瓦斯更易抽出,提高瓦斯抽采效率。在采用穿层钻孔预抽煤层瓦斯措施基础上,结合了水力冲孔与水力割缝的技术优势,实现了“低压钻进-中压冲孔-高压割缝”的耦合一体化作业,提高卸压钻孔的影响范围;“钻-冲-割”耦合卸压后预抽区域煤体发生形变、位移,形成网络化裂隙,为瓦斯解吸流动提供通道,使瓦斯更易抽出;通过控制水射流进行逐级卸压,可以逐渐释放煤体内能,消除喷孔发生的动力,保障施工的安全性;应用该方法可以扩大单孔卸压影响范围,增加煤层透气性,提高瓦斯抽采效率,进而减少预抽钻孔数量,缩短预抽时间,且施工工艺简单,装备安全可靠,对不同赋存状态的煤层均具有良好的适应性。本发明可以使穿层钻孔数减少32.5%,穿层钻孔长度减少42.9%,煤巷区域消突效果显著,掘进速度明显提高,起到了良好的卸压增透效果,为高突煤层瓦斯抽采提供了可靠的技术保障,具有极好的推广价值。
附图说明
图1是本发明的穿层钻孔布置示意图。
图2(a)是本发明的低压钻进时结构示意图;
图2(b)是本发明的中压冲孔时结构示意图;
图2(c)是本发明的高压割缝时结构示意图。
图中:1-底板岩巷,2-煤层,3-穿层钻孔,4-煤巷,5-煤层底板,6-煤层顶板,7-压控一体化钻头,8-钻杆,9-卸压孔洞,10-卸压缝槽,11-具有特殊形态的穿层抽采钻孔。
具体实施方式
下面结合附图中的实施例对本发明作进一步的描述:
本发明的高瓦斯突出煤层“钻-冲-割”耦合卸压增透方法,根据钻孔施工所处的不同位置分阶段调节水射流进水压力,钻进时,控制水射流分别进行低压水流钻进和中压水流冲孔,退钻时,进行高压水流割缝,按低、中、高压水流逐级卸压,实现穿层钻孔3内部“钻-冲-割”耦合卸压增透一体化作业,具体步骤如下:
a.从底板岩巷1向煤层2预抽区域布置多个穿层钻孔3;
b.采用压控一体化钻头7逐一施工预抽区域布置的多个穿层钻孔3,在压控一体化钻头7未钻进至煤层2时,采用3-5MPa的低压水射流辅助钻进、排渣,加快钻进速度的同时起到降尘作用;
c.当压控一体化钻头7钻进达煤层底板5进入煤层2时,调高水射流压力至8-12MPa,采用中压水射流在煤层2进行冲孔,由于压控一体化钻头7在钻进过程中前方受压,压控一体化钻头7侧面的喷嘴受压关闭,水射流仅通过前部喷嘴冲刷前方煤体,随着破碎煤体的排出,煤层2内形成卸压孔洞9,初步释放煤体内能;
d.对钻孔口的出煤情况进行观察,判断煤层2赋存情况,当钻孔3穿过煤层2后停止钻进;
e.进行退钻,在退钻的过程中,进一步增高水射流的水压,采用15-25MPa的高压水射流切割煤体,由于压控一体化钻头7前方不再受压,前部喷嘴关闭,侧面喷嘴张开,水射流仅从侧面喷嘴喷出,在煤层2内退钻的过程中,完成一个个水力割缝槽10,从而实现煤体均匀卸压;
f.当煤层2内水力割缝完成后,形成具有特殊形态的穿层抽采钻孔11,停止向压控一体化钻头7输送高压水,保持旋转的同时将压控一体化钻头7和钻杆8退出钻孔3。
实例1、如图1所示,煤层2为高瓦斯突出煤层,煤巷4掘进面临很大的突出危险性,为了消除突出危险性,预抽煤巷条带煤层瓦斯,在煤层2下部的底板岩巷1内向煤层2施工上向穿层钻孔3,预抽煤层2瓦斯,掩护煤巷4掘进;从底板岩巷1向煤层2预抽区域布置多个穿层钻孔3;采用压控一体化钻头7逐一施工预抽区域布置的多个穿层钻孔3,在压控一体化钻头7未钻进至煤层2时,如图2(a)所示,采用3-5MPa的低压水射流辅助钻进、排渣,加快钻进速度的同时有效降尘;在压控一体化钻头7由煤层底板5进入煤层2时,如图2(b)所示,升高水压至8-12MPa,采用中压水射流进行冲孔,由于压控一体化钻头7前方受压,压控一体化钻头7侧面喷嘴受压关闭,水射流仅通过前方喷嘴冲刷前方煤体,随着破碎煤体的排出,煤层2内形成卸压孔洞9,初步释放煤体内能,使周围煤体向卸压区域变形、运移,煤体弹性能和瓦斯内能初步释放。对于应力较大或煤质较软的煤层2,初步卸压可以 避免钻孔3的塌孔和卸压缝槽10的闭合,保证卸压效果长期有效;通过对钻孔口的出煤情况进行观察,以此判断煤层2赋存情况,当钻孔3穿过煤层2后停止钻进;进行退钻,在退钻的过程中进一步增高水压,采用15-25MPa的高压水射流切割煤体,由于压控一体化钻头7前方不再受压,前部喷嘴关闭侧面喷嘴张开,水射流仅从侧面喷嘴喷出,在煤层2内形成缝槽10,如图2(c)所示,周围煤体在不同方向均受到强烈扰动,钻孔3均匀卸压且影响范围增大,煤体透气性提高,瓦斯更易抽出。
对于存在硬分层或夹矸的煤层2,单一冲孔难以实现均匀出煤,卸压效果难以保障,而通过割缝再次卸压后,钻孔3影响区域增大,煤体卸压均匀,抽采效果更好;在煤层2内切割完成后,形成具有特殊形态的穿层抽采钻孔11,停止向压控一体化钻头7输送高压水,保持旋转的同时将压控一体化钻头7钻杆8退出钻孔3。
通过不同方向水射流叠加作用,使得钻孔3周围塑性区范围增大,大量次生裂隙发展、扩容、贯通,瓦斯流动通道迅速增加,煤体的透气性显著增大。可见,穿层钻孔3采用“钻-冲-割”耦合卸压技术后,可以扩大单孔卸压影响范围,增加煤层2透气性,提高瓦斯抽采效率,进而减少预抽钻孔3数量,缩短预抽时间,并且该技术对不同赋存状态的煤层2均具有良好的适应性。

Claims (1)

  1. 一种高瓦斯突出煤层“钻-冲-割”耦合卸压增透方法,其特征在于:根据钻孔施工所处的不同位置分阶段调节水射流进水压力,钻进时,控制水射流分别进行低压水流钻进和中压水流冲孔,退钻时,进行高压水流割缝,按低、中、高压水流逐级卸压,实现穿层钻孔(3)内部“钻-冲-割”耦合卸压增透一体化作业,具体步骤如下:
    a.从底板岩巷(1)向煤层(2)预抽区域布置多个穿层钻孔(3);
    b.采用压控一体化钻头(7)逐一施工预抽区域布置的多个穿层钻孔(3),在压控一体化钻头(7)未钻进至煤层(2)时,采用3-5MPa的低压水射流辅助钻进、排渣,加快钻进速度的同时起到降尘作用;
    c.当压控一体化钻头(7)钻进达煤层底板(5)进入煤层(2)时,调高水射流压力至8-12MPa,采用中压水射流在煤层(2)进行冲孔,由于压控一体化钻头(7)在钻进过程中前方受压,压控一体化钻头(7)侧面的喷嘴受压关闭,水射流仅通过前部喷嘴冲刷前方煤体,随着破碎煤体的排出,煤层(2)内形成卸压孔洞(9),初步释放煤体内能;
    d.对钻孔口的出煤情况进行观察,判断煤层(2)赋存情况,当钻孔(3)穿过煤层(2)后停止钻进;
    e.进行退钻,在退钻的过程中,进一步增高水射流的水压,采用15-25MPa的高压水射流切割煤体,由于压控一体化钻头(7)前方不再受压,前部喷嘴关闭,侧面喷嘴张开,水射流仅从侧面喷嘴喷出,在煤层(2)内退钻的过程中,完成一个个水力割缝槽(10),从而实现煤体均匀卸压;
    f.当煤层(2)内水力割缝完成后,形成具有特殊形态的穿层抽采钻孔(11),停止向压控一体化钻头(7)输送高压水,保持旋转的同时将压控一体化钻头(7)和钻杆(8)退出钻孔(3)。
PCT/CN2016/077971 2015-11-30 2016-03-31 一种高瓦斯突出煤层"钻-冲-割"耦合卸压增透方法 WO2017092207A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2016363855A AU2016363855B2 (en) 2015-11-30 2016-03-31 "drilling-flushing-slotting" coupled pressure relief and permeability increasing method for high gas outburst coal seam
US15/548,060 US10280686B2 (en) 2015-11-30 2016-03-31 Method of performing combined drilling, flushing, and cutting operations on coal seam having high gas content and prone to bursts to relieve pressure and increase permeability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510866018.4 2015-11-30
CN201510866018.4A CN105422069B (zh) 2015-11-30 2015-11-30 一种高瓦斯突出煤层“钻‑冲‑割”耦合卸压增透方法

Publications (1)

Publication Number Publication Date
WO2017092207A1 true WO2017092207A1 (zh) 2017-06-08

Family

ID=55500564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077971 WO2017092207A1 (zh) 2015-11-30 2016-03-31 一种高瓦斯突出煤层"钻-冲-割"耦合卸压增透方法

Country Status (4)

Country Link
US (1) US10280686B2 (zh)
CN (1) CN105422069B (zh)
AU (1) AU2016363855B2 (zh)
WO (1) WO2017092207A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108278936A (zh) * 2018-01-24 2018-07-13 西安科技大学 井下煤层液态二氧化碳致裂增渗系统及方法
CN113266348A (zh) * 2021-06-24 2021-08-17 中国铁建重工集团股份有限公司 一种集成水射流系统的掘锚一体机及施工方法
CN113586133A (zh) * 2021-09-08 2021-11-02 中煤科工集团重庆研究院有限公司 近距离薄煤层群上保护层开采邻近层卸压瓦斯抽采方法
CN113669004A (zh) * 2021-08-11 2021-11-19 中国煤炭地质总局水文地质局 一种煤层气防治方法
CN114396244A (zh) * 2021-12-21 2022-04-26 重庆大学 一种深部煤层群井上下联合增透瓦斯抽采方法
CN115467647A (zh) * 2022-10-19 2022-12-13 中煤科工集团重庆研究院有限公司 一种顺层定向平面缝槽的水射流切割方法
CN115492563A (zh) * 2022-09-27 2022-12-20 中煤科工集团重庆研究院有限公司 一种软煤层多钻孔贯通式压裂冲孔增渗泄压装置及方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105422069B (zh) 2015-11-30 2017-08-25 中国矿业大学 一种高瓦斯突出煤层“钻‑冲‑割”耦合卸压增透方法
CN105971663B (zh) * 2016-07-19 2018-01-16 淮南宏昌科技有限责任公司 一种煤层高压水力割缝压裂的钻孔布置结构及增透方法
CN106285599B (zh) * 2016-08-05 2018-06-29 河南能源化工集团研究院有限公司 一种水力错动卸压增透抽采煤层瓦斯方法
CN106368730A (zh) * 2016-11-08 2017-02-01 淮南矿业(集团)有限责任公司 一种煤层水力压冲增透系统及其施工方法
CN106894837B (zh) * 2017-03-20 2018-09-25 中国矿业大学 一种递进掩护式瓦斯卸压抽采方法
CN108590653B (zh) * 2018-03-02 2019-09-03 煤炭科学技术研究院有限公司 煤与瓦斯突出卸压消能与介质属性改造协同防控方法
CN108412537A (zh) * 2018-03-13 2018-08-17 河南铁福来装备制造股份有限公司 一种矿山煤岩用煤层卸压增透的工艺
CN108547604B (zh) * 2018-06-20 2023-04-11 河南理工大学 一种钻冲压一体化装置与方法
CN108756751B (zh) * 2018-06-22 2023-05-26 河南理工大学 一种防治瓦斯突出的钻冲自动切换装置及瓦斯防突方法
CN109209472B (zh) * 2018-07-27 2020-04-21 中国矿业大学 一种冲孔、爆破、注水相互耦合的煤层卸压防突方法
CN108979707A (zh) * 2018-08-15 2018-12-11 河南铁福来装备制造股份有限公司 一种适用于煤矿底抽巷定向钻进造穴瓦斯治理的方法
CN109113784B (zh) * 2018-09-20 2023-09-15 中国矿业大学 一种煤层瓦斯抽采-注水耦合装置及方法
CN109403948B (zh) * 2018-10-25 2024-02-23 河南理工大学 一种射流冲孔出煤量的计量方法以及集煤装置
CN109653788B (zh) * 2019-03-05 2023-08-29 安徽理工大学 一种适用于易塌落上行钻孔的瓦斯抽采管
CN110424949B (zh) * 2019-06-24 2021-06-22 中国矿业大学 煤层瓦斯参数随钻快速测试的反演计算方法
CN110700798A (zh) * 2019-10-09 2020-01-17 中国矿业大学 一种含夹矸煤层的瓦斯高效抽采方法
CN111119980B (zh) * 2019-12-18 2021-08-17 中煤科工集团重庆研究院有限公司 均匀自卸压增透钻孔方法
CN110863853B (zh) * 2019-12-24 2024-05-14 吕梁学院 一种煤层瓦斯抽采钻孔塌孔清煤装置
CN111088993B (zh) * 2020-02-11 2020-12-08 山东科技大学 一种深部低渗透高瓦斯煤层钻-割-封-压钻孔设备及方法
CN111287709B (zh) * 2020-03-12 2021-12-17 徐州工程学院 一种兼具松软煤层钻孔防护及提高瓦斯抽采效率的方法
CN111287710B (zh) * 2020-03-12 2022-01-28 徐州工程学院 一种用于松软煤层瓦斯抽采钻孔的防护用球
CN111472740A (zh) * 2020-04-22 2020-07-31 中煤科工集团重庆研究院有限公司 一种超高压水射流远程操控系统及方法
CN111350483A (zh) * 2020-04-24 2020-06-30 梁山县纳智集矿山工程科技有限公司 一种低成本的煤和气共采系统
CN112360543B (zh) * 2020-08-24 2024-03-19 中国石油大学(华东) 一种煤层注水消突方法
CN112412527A (zh) * 2020-11-20 2021-02-26 贵州盘江精煤股份有限公司 一种近距离煤层群中煤组集中瓦斯治理方法
CN112377243B (zh) * 2020-11-26 2022-12-02 中铁十九局集团第二工程有限公司 一种煤与瓦斯突出隧道防突施工方法
CN112539055B (zh) * 2020-12-04 2024-01-30 武汉理工大学 一种高效多元精准的钻孔群施工结果评价方法
CN112483060B (zh) * 2020-12-14 2024-04-12 兖矿能源集团股份有限公司 煤层水射流交替行走式割缝装置及行走式煤层钻孔割缝卸压方法
CN114763735B (zh) * 2021-01-14 2023-11-28 中国石油天然气股份有限公司 提高煤储层渗透率的方法及井网结构
CN112855123B (zh) * 2021-01-19 2023-04-11 兖州煤业股份有限公司 一种卸压钻孔深度的确定方法
CN112836273B (zh) * 2021-01-26 2023-04-07 河南理工大学 一种快速检验抽采钻孔控制范围覆盖强度的方法
CN113032956B (zh) * 2021-02-18 2022-09-02 重庆大学 一种水力割缝技术参数快速确定方法
CN113030429B (zh) * 2021-03-15 2022-07-05 中国矿业大学 一种多功能煤与瓦斯突出物理模拟装置
CN113033008B (zh) * 2021-03-31 2022-06-24 中煤科工集团重庆研究院有限公司 一种顺层钻孔水平切缝均匀卸压效果评价方法
CN113107578B (zh) * 2021-04-09 2022-05-20 河南理工大学 气动复碎排粉和化学悬浮排粉的煤层钻孔联合解堵方法
CN113236349A (zh) * 2021-06-30 2021-08-10 西南交通大学 一种煤系地层铁路瓦斯隧道防突旋喷围桩的施工方法
CN113803104B (zh) * 2021-09-29 2023-07-28 太原理工大学 上采区埋管与下向钻孔一体化布置及全周期瓦斯抽采方法
CN113775372A (zh) * 2021-09-30 2021-12-10 太原理工大学 一种煤矿定点压裂抽采煤层瓦斯的方法
CN114135288B (zh) * 2021-12-06 2022-09-13 中国矿业大学 一种冲击地压煤层巷道高压水射流割缝卸压参数优化方法
CN114165276A (zh) * 2021-12-08 2022-03-11 中煤科工集团重庆研究院有限公司 一种煤矿井下区域大面积煤层瓦斯预抽方法
CN114382468B (zh) * 2022-01-20 2023-08-11 平顶山天安煤业股份有限公司 一种煤层瓦斯储集条件的保压核磁监测方法
CN114607338B (zh) * 2022-03-21 2023-08-18 煤炭科学技术研究院有限公司 一种煤矿井下防控煤岩瓦斯复合动力灾害方法及装置
CN115079285B (zh) * 2022-07-25 2022-11-08 北京科技大学 一种煤层瓦斯突出危险性可视化区域动态预测方法
CN115559772B (zh) * 2022-10-24 2024-04-09 中煤科工集团重庆研究院有限公司 一种顺层钻孔定向水力切缝卸压增透方法
CN115992730B (zh) * 2023-02-11 2023-08-01 安徽牛山矿业股份有限公司 一种井下作业用安全防护装置
CN116608004B (zh) * 2023-05-26 2023-10-27 中国矿业大学 一种治理冲击地压及瓦斯抽采的卸-抽-掘协同防控方法
CN117418819B (zh) * 2023-12-19 2024-05-14 中煤科工集团沈阳研究院有限公司 一种抽采钻孔封孔工艺方法及配套使用的切缝装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024171A (en) * 1998-03-12 2000-02-15 Vastar Resources, Inc. Method for stimulating a wellbore penetrating a solid carbonaceous subterranean formation
CN101644166A (zh) * 2009-07-14 2010-02-10 中国矿业大学 高瓦斯低透气性煤层冲孔割缝卸压增透瓦斯抽采方法
CN104131832A (zh) * 2014-07-14 2014-11-05 中国矿业大学 一种高瓦斯煤层冲割压抽一体化的卸压增透瓦斯抽采方法
CN104563990A (zh) * 2015-01-06 2015-04-29 中国矿业大学 一种钻冲割一体化与注热协同强化煤层瓦斯抽采方法
CN105422069A (zh) * 2015-11-30 2016-03-23 中国矿业大学 一种高瓦斯突出煤层“钻-冲-割”耦合卸压增透方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1529522A (en) * 1976-06-28 1978-10-25 Shell Int Research Method and means for cavity mining minerals from a subsurface deposit
US4265570A (en) * 1979-06-01 1981-05-05 Conoco, Inc. Mine roof control
US5014788A (en) * 1990-04-20 1991-05-14 Amoco Corporation Method of increasing the permeability of a coal seam
US7264048B2 (en) * 2003-04-21 2007-09-04 Cdx Gas, Llc Slot cavity
RU2343275C2 (ru) * 2006-02-22 2009-01-10 Шлюмбергер Текнолоджи Б.В. Способ интенсификации добычи природного газа из угольных пластов
CN103362540B (zh) * 2013-08-07 2015-10-21 中国矿业大学 高瓦斯煤层卸压瓦斯抽采方法
CN203499569U (zh) * 2013-10-18 2014-03-26 永城煤电控股集团有限公司 水压控钻冲割一体高效钻头
CN104612746B (zh) * 2015-01-12 2016-08-24 中国矿业大学 一种钻孔内割-爆耦合式煤体增透方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024171A (en) * 1998-03-12 2000-02-15 Vastar Resources, Inc. Method for stimulating a wellbore penetrating a solid carbonaceous subterranean formation
CN101644166A (zh) * 2009-07-14 2010-02-10 中国矿业大学 高瓦斯低透气性煤层冲孔割缝卸压增透瓦斯抽采方法
CN104131832A (zh) * 2014-07-14 2014-11-05 中国矿业大学 一种高瓦斯煤层冲割压抽一体化的卸压增透瓦斯抽采方法
CN104563990A (zh) * 2015-01-06 2015-04-29 中国矿业大学 一种钻冲割一体化与注热协同强化煤层瓦斯抽采方法
CN105422069A (zh) * 2015-11-30 2016-03-23 中国矿业大学 一种高瓦斯突出煤层“钻-冲-割”耦合卸压增透方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108278936A (zh) * 2018-01-24 2018-07-13 西安科技大学 井下煤层液态二氧化碳致裂增渗系统及方法
CN108278936B (zh) * 2018-01-24 2023-06-06 西安科技大学 井下煤层液态二氧化碳致裂增渗系统及方法
CN113266348A (zh) * 2021-06-24 2021-08-17 中国铁建重工集团股份有限公司 一种集成水射流系统的掘锚一体机及施工方法
CN113669004A (zh) * 2021-08-11 2021-11-19 中国煤炭地质总局水文地质局 一种煤层气防治方法
CN113586133A (zh) * 2021-09-08 2021-11-02 中煤科工集团重庆研究院有限公司 近距离薄煤层群上保护层开采邻近层卸压瓦斯抽采方法
CN114396244A (zh) * 2021-12-21 2022-04-26 重庆大学 一种深部煤层群井上下联合增透瓦斯抽采方法
CN114396244B (zh) * 2021-12-21 2023-10-31 重庆大学 一种深部煤层群井上下联合增透瓦斯抽采方法
CN115492563A (zh) * 2022-09-27 2022-12-20 中煤科工集团重庆研究院有限公司 一种软煤层多钻孔贯通式压裂冲孔增渗泄压装置及方法
CN115467647A (zh) * 2022-10-19 2022-12-13 中煤科工集团重庆研究院有限公司 一种顺层定向平面缝槽的水射流切割方法
CN115467647B (zh) * 2022-10-19 2023-07-18 中煤科工集团重庆研究院有限公司 一种顺层定向平面缝槽的水射流切割方法

Also Published As

Publication number Publication date
AU2016363855A1 (en) 2017-10-26
US20170370156A1 (en) 2017-12-28
CN105422069B (zh) 2017-08-25
AU2016363855B2 (en) 2018-08-02
US10280686B2 (en) 2019-05-07
CN105422069A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2017092207A1 (zh) 一种高瓦斯突出煤层"钻-冲-割"耦合卸压增透方法
WO2016110183A1 (zh) 一种钻冲割一体化与注热协同强化煤层瓦斯抽采方法
WO2014059777A1 (zh) 一种高压气动爆破卸压增透方法
CN103362538B (zh) 煤层割缝致裂压抽交变抽采瓦斯方法
AU2014336858B2 (en) Method for enhanced fuel gas extraction by coal mine underground gas-liquid dual-phase alternating phase-driven fracturing of coal body
CN108547604B (zh) 一种钻冲压一体化装置与方法
CN102383828B (zh) 深孔水力致裂驱赶瓦斯浅孔抽采的增透与消突方法
CN101666241B (zh) 一种区域瓦斯治理钻爆压抽一体化防突方法
CN105971663B (zh) 一种煤层高压水力割缝压裂的钻孔布置结构及增透方法
CN103696800A (zh) 一种钻割压抽方法
CN101614133A (zh) 高压射流钻割一体化卸压防突方法
CN105888540B (zh) 一种钻孔的钻进方法
CN102966372A (zh) 一种复杂煤层割缝诱喷卸压增透方法
CN105041218B (zh) 一种防坍塌双向肋翼喷射注浆钻头及其使用方法
CN105804786B (zh) 一种松软煤层底板穿层钻孔压冲增透方法
CN212130537U (zh) 投球式高压水力钻割一体化增渗装置
CN108331609A (zh) 顺层钻孔割缝卸压增透方法
CN102748065A (zh) 一种针对大采长工作面空白带瓦斯抽采方法
CN208416512U (zh) 一种钻冲压一体化装置
CN114183114A (zh) 一种水力冲孔造穴协同蒸汽注入强化瓦斯抽采方法
CN114165197A (zh) 一种脉冲水力裂切煤层卸压增透装置及卸压增透方法
CN101975023B (zh) 一种顺层钻进松软煤层深长瓦斯抽采孔的方法及装置
CN205823322U (zh) 一种煤层高压水力割缝压裂的钻孔布置结构
CN203978409U (zh) 用于填砂分层压裂工艺的管柱
CN104912588A (zh) 一种用于井下煤层巷道快速掘进的胀裂增透方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15548060

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016363855

Country of ref document: AU

Date of ref document: 20160331

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869521

Country of ref document: EP

Kind code of ref document: A1