WO2017091993A1 - 一种多频通信天线以及基站 - Google Patents

一种多频通信天线以及基站 Download PDF

Info

Publication number
WO2017091993A1
WO2017091993A1 PCT/CN2015/096239 CN2015096239W WO2017091993A1 WO 2017091993 A1 WO2017091993 A1 WO 2017091993A1 CN 2015096239 W CN2015096239 W CN 2015096239W WO 2017091993 A1 WO2017091993 A1 WO 2017091993A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
communication antenna
electrically connected
frequency
frequency communication
Prior art date
Application number
PCT/CN2015/096239
Other languages
English (en)
French (fr)
Inventor
余彦民
宋健
道坚丁九
刘朋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/096239 priority Critical patent/WO2017091993A1/zh
Priority to EP15909510.8A priority patent/EP3373390B1/en
Priority to CN201580002401.3A priority patent/CN105960737B/zh
Publication of WO2017091993A1 publication Critical patent/WO2017091993A1/zh
Priority to US15/993,587 priority patent/US10483635B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • H01Q21/293Combinations of different interacting antenna units for giving a desired directional characteristic one unit or more being an array of identical aerial elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas

Definitions

  • the present invention relates to an antenna, and more particularly to a multi-frequency communication antenna and a base station.
  • a multi-frequency communication antenna means that the same antenna includes a plurality of antenna arrays that can operate in different frequency bands.
  • Antenna arrays arranged in a plurality of different frequency bands in a limited installation space tend to significantly reduce the electrical performance of each array, such as horizontal beam width, cross-polarization level, front-to-back ratio, etc., due to strong electromagnetic coupling.
  • the low-frequency radiation device disclosed in the patent application No. 201210319758.21 includes the first low-frequency radiation module and the second low-frequency radiation module. On the axial center side of the first low frequency radiation module and the second low frequency radiation module, open branch segments for suppressing transmission of high frequency electromagnetic waves in the low frequency radiation device are respectively disposed, and coupling currents of other frequencies are suppressed by the open circuit branches.
  • the disadvantages of the low-frequency radiation device shown in the prior art are: 1.
  • the open-circuit branch can only be realized on the balun by sheet metal processing or PCB processing, and the die-casting method is difficult to realize; 2. even if multiple open circuits of different lengths are used The bandwidth that can be suppressed is also narrow; 3.
  • the elimination of the mutual coupling effect is only related to the structural length of the designed open branch, and cannot solve the multi-frequency mutual coupling and the broadband mutual coupling; 4. Eliminate the structural damage of the mutual coupling open-circuit branches The working environment of the low frequency radiation device.
  • the invention provides a multi-frequency communication antenna and a base station, which can effectively suppress mutual frequency mutual coupling in the multi-frequency communication antenna.
  • a first aspect of the present invention provides a multi-frequency communication antenna, including: at least one low frequency array (101), at least one high frequency array (102), and at least one circuit corresponding to the high frequency array (102) a board (104) for feeding the high frequency array (102),
  • the multi-frequency communication antenna further includes a reflector (103) for fixing the low frequency array (101) and the high frequency array (102), wherein the circuit board (104) and the reflector ( 103) the opposite side is a signal ground layer (105), and the signal ground layer (105) of the circuit board (104) is coupled to the reflective plate (103);
  • a filter component (108) for decoupling filtering is disposed on the circuit board (104), and a first end of the filter component (108) is electrically connected to the high frequency array (102), and the filter component (108) The second end is electrically coupled to the signal ground plane (105) of the circuit board (104).
  • the filtering component (108) for decoupling filtering shown in this embodiment is disposed on the circuit board 104, and there is no need to provide components for filtering on the low frequency array (101) and the high frequency array (102). Therefore, the multi-frequency communication antenna provided by the embodiment of the present invention has little damage to the array radiation environment, and does not damage the working environment of the low frequency array (101) and the high frequency array (102).
  • the high-frequency array (102) After adding the filtering component (108), the high-frequency array (102) has a 10dB suppression band from 660MHz to 760MHz, covering the entire 700M transmission and reception frequency band, and has good broadband suppression characteristics.
  • the high frequency array (102) includes a radiating element (109) and a feed balun (110), the first end of the feed balun (110) being electrically connected to the radiating element (109), the feed A second end of the electrical balun (110) is electrically coupled to the signal ground (105) of the circuit board (104), and the second end of the feed balun (110) is further coupled to the filtering component ( 108) The first end is electrically connected.
  • the second end of the feeding balun (110) is provided with at least one first grounding point (112) and at least one second grounding point (113);
  • the first ground point (112) and the second ground point (113) are disposed through the circuit board (104), and the first ground point (112) and the second ground point (113) Soldering to a side of the circuit board (104) opposite the reflective plate (103), wherein the first ground point (112) is electrically connected to the signal ground layer (105) of the circuit board (104)
  • the second ground point (113) is electrically connected to the first end of the filtering component (108).
  • the filtering component (108) includes a first sub-assembly (114) disposed on a signal line layer (116) of the circuit board (104) and the signal ground layer (105) disposed on the circuit board (104) a second sub-assembly (115), and the first sub-assembly (114) is electrically connected to the signal ground layer (105) of the circuit board (104), the second sub-component (115)
  • the radiating element (109) is electrically connected.
  • a first metallization via (117) and a second metallization via (118) are disposed through the circuit board (104), and the first metallization via (117) and the feed balun ( 110) a distance less than a distance of the second metallization via (118) from the feed balun (110);
  • a first end of the second sub-assembly (115) is electrically connected to the second ground point (113) of the feed balun (110), and a second end of the second sub-assembly (115) passes
  • the first metallization via (117) is electrically connected to the first end of the first sub-assembly (114), and the second end of the first sub-assembly (114) passes the second metallization via (118) electrically coupled to the signal formation (105).
  • the signal ground layer (105) of the circuit board (104) is at least one metal layer.
  • the signal ground layer (105) of the circuit board (104) includes a first metal layer (120) and a second metal layer (121) insulated from each other;
  • the high frequency array (102) is electrically connected to the first metal layer (120), and the second end of the filtering component (108) is electrically connected to the second metal layer (121).
  • the structure of the first sub-assembly (114) may be any of the following:
  • Equal-width strip lines unequal-width strip lines, interdigital coupled lines, ground-coupled lines, compact microstrip resonant units, and mushroom-type ground coupling sheets.
  • the multi-frequency communication antenna according to any one of the first aspect of the present invention
  • the ratio of the center frequency of the high frequency array (102) to the center frequency of the low frequency array (101) is greater than or equal to 1.5 and less than or equal to four.
  • a second aspect of the embodiments of the present invention provides a base station, including the multi-frequency communication antenna according to any one of the first aspect of the present invention to the eighth implementation manner of the first aspect of the embodiments of the present invention.
  • the embodiment of the present invention provides a multi-frequency communication antenna and a base station, including: at least one low frequency array 101, at least one high frequency array 102, and at least one circuit board 104 and a reflection plate 103 corresponding to the high frequency array 102.
  • the circuit board 104 is provided with a filtering component 108 for decoupling filtering. The first end of the filtering component 108 is electrically connected to the high frequency array 102, and the second end of the filtering component 108 and the circuit The signal ground plane 105 of the board 104 is electrically connected.
  • the filtering component 108 for decoupling filtering shown in this embodiment is disposed on the circuit board 104, which has little damage to the radiation environment of the array, so that the multi-frequency communication antenna has good broadband suppression characteristics, and effectively suppresses multi-frequency.
  • Mutual coupling and broadband mutual coupling are mutual coupling and broadband mutual coupling.
  • FIG. 1 is a schematic structural diagram of an embodiment of a multi-frequency communication antenna according to an embodiment of the present invention
  • FIG. 2 is a partial top plan view showing an embodiment of a multi-frequency communication antenna according to an embodiment of the present invention
  • FIG. 3 is a partial bottom view of a multi-frequency communication antenna according to an embodiment of the present invention.
  • FIG. 4 is a schematic partial structural side view of an embodiment of a multi-frequency communication antenna according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a reflection coefficient of a multi-frequency communication antenna according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an embodiment of a circuit for decoupling filtering of a multi-frequency communication antenna according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of another embodiment of a circuit for decoupling filtering of a multi-frequency communication antenna according to an embodiment of the present disclosure
  • FIG. 8 is another circuit of a multi-frequency communication antenna for decoupling filtering according to an embodiment of the present invention A schematic structural view of an embodiment
  • FIG. 9 is a schematic structural diagram of an embodiment of a signal stratum of a multi-frequency communication antenna according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another embodiment of a signal stratum of a multi-frequency communication antenna according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another embodiment of a signal stratum of a multi-frequency communication antenna according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an embodiment of a first subcomponent of a multi-frequency communication antenna according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of another embodiment of a first sub-component of a multi-frequency communication antenna according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of another embodiment of a first sub-component of a multi-frequency communication antenna according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of another embodiment of a first sub-component of a multi-frequency communication antenna according to an embodiment of the present disclosure
  • FIG. 16 is a schematic structural diagram of another embodiment of a first sub-component of a multi-frequency communication antenna according to an embodiment of the present disclosure
  • FIG. 17 is a schematic structural diagram of another embodiment of a first sub-component of a multi-frequency communication antenna according to an embodiment of the present invention.
  • the multi-frequency communication antenna provided by the present invention generally refers to an independent antenna array having two or more different operating frequencies inside the antenna.
  • the multi-frequency communication antenna includes a low frequency array and a high frequency array.
  • the multi-frequency communication antenna It is easy to generate mutual frequency mutual coupling.
  • the preset condition is that a ratio of a center frequency of the high frequency array to a center frequency of the low frequency array is greater than or equal to 1.5 and less than or equal to 4, and the high frequency array and the low frequency array are horizontally arranged. The distance between the adjacent high frequency array and the low frequency array is relatively close.
  • the preset condition is exemplified in the embodiment of the present invention, and is not limited as long as the inter-frequency mutual coupling is generated in the multi-frequency communication antenna.
  • FIG. 1 The specific arrangement of the multi-frequency communication antenna provided by the embodiment of the present invention is exemplified in FIG. 1. It should be clarified that the structure of the multi-frequency communication antenna shown in FIG. 1 is only an example, and is not The method is defined as long as the low frequency array and the high frequency array satisfy the preset condition.
  • the low frequency array 101 shown in FIG. 1 operates at 698-960 MHz
  • the high frequency array 102 operates at 1710-2690 MHz
  • the center frequency of the high frequency array 102 and the center frequency of the low frequency array 101 The ratio is 2.65.
  • the multi-frequency communication antenna includes at least one low frequency array 101, at least one high frequency array 102, and a reflection plate 103 for fixing the low frequency array 101 and the high frequency array 102.
  • the main processes of the inter-frequency mutual coupling of the multi-frequency communication antenna are as follows:
  • one electromagnetic wave radiated by the low frequency array 101 propagates away from the reflecting plate 103, and the other electromagnetic wave radiated by the low frequency array 101 propagates toward the reflecting plate 103.
  • the electromagnetic waves propagating in the direction toward the reflecting plate 103 are reflected by the reflecting plate 103 and then radiated to the low-frequency array 101 in a direction away from the reflecting plate 103 to be radiated outward.
  • the electromagnetic wave propagating in the direction toward the reflecting plate 103 induces a corresponding induced current on the reflecting plate 103.
  • the induced current induced by the low frequency array 101 on the reflecting plate 103 flows into the high frequency array 102 and is radiated, so that the radiation of the low frequency array 101 is disturbed.
  • the multi-frequency communication antenna provided by the embodiment of the present invention can effectively suppress the interference of the radiation of the low-frequency array 101, and firstly, according to the embodiment of the present invention, as shown in FIG. 2 to FIG.
  • the specific structure of the frequency communication antenna is further described in detail:
  • the multi-frequency communication antenna further includes at least one circuit board 104;
  • the circuit board 104 is disposed corresponding to the high frequency array 102, that is, one of the high frequency arrays 102 is correspondingly provided with at least one of the circuit boards 104.
  • each of the high frequency arrays 102 may be provided with one of the circuit boards 104, or an adjacent plurality of the high frequency arrays 102 may share one of the circuit boards 104.
  • circuit board 104 disposed corresponding to the high frequency array 102 is used to feed the high frequency array 102.
  • circuit board 104 The structure of the circuit board 104 will be described below with reference to FIG. 4:
  • a side of the circuit board 104 opposite to the reflector 103 is a signal ground layer 105, and the signal ground layer 105 of the circuit board 104 is coupled to the reflector 103.
  • the signal ground layer 105 covers a metal layer disposed on opposite sides of the circuit board 104 and the reflective board 103.
  • the material of the dielectric layer 106 of the circuit board 104 is AD300.
  • a coupling layer 107 is disposed between the circuit board 104 and the reflective plate 103.
  • the coupling layer 107 is located between the reflective plate 103 and the signal ground layer 105.
  • the coupling layer 107 is composed of two parts: the green oil coated by the signal ground layer 105, and the non-conductive medium sheet placed between the signal ground layer 105 and the reflective plate 103, and the sum of the thicknesses of the two may be 0.25 mm.
  • the thickness of the coupling layer 107 in this embodiment is optional and is not limited.
  • the signal ground layer 105 is coupled to the reflection plate 103 by the coupling layer 107.
  • the description of the coupling layer 107 in this embodiment is an optional example, which is not limited, as long as the coupling layer 107 can realize the signal ground layer 105 and the reflection plate 103 are coupled and coupled.
  • the circuit board 104 is provided with a filtering component 108 for decoupling filtering.
  • a first end of the filtering component 108 is electrically coupled to the high frequency array 102, and a second end of the filtering component is electrically coupled to the signal ground layer 105 of the circuit board 104.
  • the filtering component 108 for decoupling filtering shown in this embodiment is disposed on the circuit board 104, and it is not necessary to provide components for filtering on the low frequency array (101) and the high frequency array (102). Therefore, the multi-frequency communication antenna provided by the embodiment of the present invention has little damage to the array radiation environment, and does not damage the working environment of the low-frequency array 101 and the high-frequency array 102, and as shown in FIG. 5, FIG. 5 is In the multi-frequency communication antenna provided by the embodiment, the reflection coefficient comparison before and after the adding of the filtering component 108 is added. It can be seen from FIG. 5 that the 10 dB suppression band of the high-frequency array 102 after adding the filtering component 108 is from 660 MHz to 760 MHz, which covers The entire 700M transceiver frequency band has good broadband suppression characteristics.
  • the high frequency array 102 includes a radiating unit 109 and a feed balun 110.
  • the first end of the feed balun 110 is electrically connected to the radiating unit 109, and the second end of the feed balun 110 is electrically connected to the signal ground layer 105 of the circuit board 104.
  • the second end of the feed balun 110 is also electrically coupled to the first end of the filter component 108.
  • FIG. 6 is a schematic diagram of a circuit for decoupling filtering of a multi-frequency communication antenna according to an embodiment of the present invention
  • the reflection plate 103, the decoupling filter circuit 111, the feed balun 110, and the radiation unit 109 are sequentially connected in series.
  • the induced current that may be radiated again on the reflecting plate 103 is suppressed by the decoupling filter circuit 111 having the filtering characteristic during the transmission of the radiating unit 109 to ensure the stability of the low frequency array 101 pattern.
  • the equivalent capacitance C1 in the decoupling filter circuit 111 shown in FIGS. 7 and 8 is realized by the RF coupling connection of the signal ground layer 105 of the circuit board 104 and the reflection plate 103.
  • the combination of capacitance C3 is achieved by the filtering component 108 disposed on the circuit board 104.
  • the filtering component 108 is implemented by a combination of strip lines of different lengths and different widths disposed on the circuit board 104.
  • the decoupling filter circuit 111 provided by the embodiment can effectively suppress the radiation of the low frequency array 101 from being interfered.
  • the second end of the feed balun 110 is provided with at least one first ground point 112 and at least one second ground point 113.
  • the circuit board 104 is provided with a plurality of through holes so that the first grounding point 112 and the second grounding point 113 can be disposed through the circuit board 104.
  • first grounding point 112 and the second grounding point 113 are soldered to the side of the circuit board 104 opposite the reflecting plate 103.
  • the first grounding point 112 is electrically connected to the signal ground layer 105 of the circuit board 104, and the second grounding point 113 is electrically connected to the first end of the filtering component 108.
  • the filtering component 108 includes a first sub-assembly 114 disposed on a signal line layer 116 of the circuit board 104.
  • the filtering component 108 further includes a second sub-component 115 disposed on the signal ground layer 105 of the circuit board 104.
  • the first sub-assembly 114 is electrically connected to the signal ground layer 105 of the circuit board 104, and the second sub-component 115 is electrically connected to the radiation unit 109.
  • a first metallization via 117 and a second metallization via 118 are disposed through the circuit board 104 .
  • the distance between the first metallization via 117 and the feed balun 110 is less than the distance of the second metallization via 118 from the feed balun 110.
  • the first end of the second sub-assembly 115 is electrically connected to the second ground point 113 of the feed balun 110, and the second end of the second sub-assembly 115 passes the first metallized via 117 is electrically connected to the first end of the first sub-assembly 114, and the second end of the first sub-assembly 114 passes the A second metallization via 118 is electrically coupled to the signal formation 105.
  • the signal ground layer 105 of the circuit board 104 is a metal layer 119.
  • the first grounding point 112 is electrically connected to the metal layer 119 during a specific electrical connection process
  • the number of the first grounding points 112 is exemplified in the embodiment, which is not limited.
  • the second grounding point 113 is electrically connected to the first end of the filtering component 108, and the second end of the filtering component 108 is also electrically connected to the metal layer 119.
  • the number of the second grounding points 113 is taken as an example for illustration and is not limited.
  • the signal ground layer 105 of the circuit board 104 includes a first metal layer 120 and a second metal layer 121 that are insulated from each other;
  • the high frequency array 102 is electrically connected to the first metal layer 120, that is, the first grounding point 112 is electrically connected to the first metal layer 120;
  • the number of the first grounding points 112 is exemplified in the embodiment, which is not limited.
  • the second grounding point 113 is electrically connected to the first end of the filtering component 108, and the second end of the filtering component 108 is electrically connected to the second metal layer 121.
  • the number of the second grounding points 113 is taken as an example for illustration and is not limited.
  • the signal ground layer 105 of the circuit board 104 includes a first metal layer 120 and a second metal layer 121 that are insulated from each other;
  • the second end of the feed balun 110 is provided with at least one third ground point 123;
  • the number of the third grounding points 123 is four, and is not limited.
  • the 120 are interconnected such that a plurality of the third ground points 123 are connected to the common node 122 through the first metal layer 120.
  • the common node 122 is electrically connected to the second metal layer 121, and the common node 122 is also electrically connected to the first end of the filtering component 108.
  • the structure of the first sub-assembly 114 may be an equal-width strip line (as shown in FIG. 12) or the structure of the first sub-assembly 114 may be an unequal width strip line (as shown in FIG. 13). ), that is, W1 is not equal to W2 as shown in FIG. 13 , or the structure of the first sub-component 114 may be an interdigital coupling line (as shown in FIG. 14 ), or the structure of the first sub-component 114 may be The grounding coupling line (as shown in FIG. 15), or the structure of the first sub-assembly 114 may be a compact microstrip resonant unit (as shown in FIG. 16), or the structure of the first sub-assembly 114 may be It is a mushroom type ground coupling piece (as shown in Figure 17).
  • the embodiment of the present invention further provides a base station.
  • the multi-frequency communication antenna included in the base station shown in this embodiment is as described above, and is not described in detail in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明实施例提供了一种多频通信天线以及基站,包括:至少一个低频阵列(101)、至少一个高频阵列(102)、与所述高频阵列(102)对应设置的至少一个电路板(104)以及一个反射板(103),所述电路板(104)上设置有用于去耦滤波的滤波部件(108),所述滤波部件(108)的第一端与所述高频阵列(102)电气连接,所述滤波部件(108)的第二端与所述电路板(104)的所述信号地层(105)电气连接。本实施例所示的用于去耦滤波的所述滤波部件(108)设置在电路板(104)上,对阵列辐射环境破坏小,使得多频通信天线具有良好的宽带抑制特性,而且有效的抑制了多频互耦和宽频互耦。

Description

一种多频通信天线以及基站 技术领域
本发明涉及天线,尤其涉及的是一种多频通信天线以及基站。
背景技术
由于智能手机的普及,用户对高速数据服务的需求不断增长,所以现代移动通信正向着多频多模方向发展,但是可用站点资源的获取却越来越难而且站点对周围环境的融入性要求不断提高,这也使得集成度更高的多频通信天线成为基站天线未来的发展方向。
多频通信天线是指同一个天线中包含多个可工作于不同频段的天线阵列。在有限的安装空间排布多个不同频段的天线阵列往往由于较强的电磁耦合使得各阵列的电气性能,如水平波束宽度、交叉极化电平、前后比等显著降低。
为了保证多频通信天线在高集成的情况下仍然有良好的辐射特性,现有技术中,如申请号201210319758.21专利申请文件所公开的低频辐射装置,包括第一低频辐射模块以及第二低频辐射模块,在第一低频辐射模块与第二低频辐射模块的轴向中心一侧,分别设置有抑制高频电磁波在低频辐射装置中传输的开路枝节,通过该开路枝节抑制其他频率的耦合电流。
但是现有技术所示的低频辐射装置的缺陷在于,1、只能用钣金加工或者PCB加工方式在巴伦上实现开路枝节,压铸方式很难实现;2、即使采用多个不同长度的开路枝节,能够抑制的带宽也比较窄;3、消除互耦效果仅和所设计的开路枝节的结构长度相关,无法解决多频互耦和宽频互耦;4、消除互耦的开路枝节的结构破坏了低频辐射装置的工作环境。
发明内容
本发明提供了一种多频通信天线以及基站,可有效的抑制所述多频通信天线内产生异频互耦。
本发明实施例第一方面提供了一种多频通信天线,包括:至少一个低频阵列(101)、至少一个高频阵列(102)、与所述高频阵列(102)对应设置有至少一个电路板(104),所述电路板(104)用于为所述高频阵列(102)馈电, 所述多频通信天线还包括一个用于固定所述低频阵列(101)和所述高频阵列(102)的反射板(103),其中,所述电路板(104)与所述反射板(103)相对的侧面为信号地层(105),且所述电路板(104)的所述信号地层(105)与所述反射板(103)耦合连接;
所述电路板(104)上设置有用于去耦滤波的滤波部件(108),所述滤波部件(108)的第一端与所述高频阵列(102)电气连接,所述滤波部件(108)的第二端与所述电路板(104)的所述信号地层(105)电气连接。
本实施例所示的用于去耦滤波的所述滤波部件(108)设置在电路板104上,无需在低频阵列(101)以及所述高频阵列(102)上设置用于滤波的部件,从而使得本发明实施例所提供的多频通信天线对阵列辐射环境破坏小,且不会破坏低频阵列(101)以及所述高频阵列(102)的工作环境。
加入所述滤波部件(108)后高频阵列(102)的10dB抑制带从660MHz-760MHz,涵盖了整个700M的收发频段,具有良好的宽带抑制特性。
结合本发明实施例第一方面,本发明实施例第一方面的第一种实现方式中,
所述高频阵列(102)包括辐射单元(109)以及馈电巴伦(110),所述馈电巴伦(110)的第一端与所述辐射单元(109)电气连接,所述馈电巴伦(110)的第二端与所述电路板(104)的所述信号地层(105)电气连接,且所述馈电巴伦(110)的第二端还与所述滤波部件(108)的第一端电气连接。
结合本发明实施例第一方面的第一种实现方式,本发明实施例第一方面的第二种实现方式中,
所述馈电巴伦(110)的第二端设置有至少一个第一接地点(112)以及至少一个第二接地点(113);
所述第一接地点(112)和所述第二接地点(113)穿过所述电路板(104)设置,且所述第一接地点(112)和所述第二接地点(113)焊接至所述电路板(104)与所述反射板(103)相对的侧面,其中,所述第一接地点(112)与所述电路板(104)的所述信号地层(105)电气连接,所述第二接地点(113)与所述滤波部件(108)的第一端电气连接。
结合本发明实施例第一方面的第二种实现方式,本发明实施例第一方面的 第三种实现方式中,
所述滤波部件(108)包括设置在所述电路板(104)的信号线层(116)上的第一子部件(114)以及设置在所述电路板(104)的所述信号地层(105)的第二子部件(115),且所述第一子部件(114)与所述电路板(104)的所述信号地层(105)电气连接,所述第二子部件(115)与所述辐射单元(109)电气连接。
结合本发明实施例第一方面的第三种实现方式,本发明实施例第一方面的第四种实现方式中,
贯穿所述电路板(104)设置有第一金属化过孔(117)以及第二金属化过孔(118),且所述第一金属化过孔(117)与所述馈电巴伦(110)的距离小于所述第二金属化过孔(118)与所述馈电巴伦(110)的距离;
所述第二子部件(115)的第一端与所述馈电巴伦(110)的所述第二接地点(113)电气连接,所述第二子部件(115)的第二端通过所述第一金属化过孔(117)与所述第一子部件(114)的第一端电气连接,所述第一子部件(114)的第二端通过所述第二金属化过孔(118)与所述信号地层(105)电气连接。
结合本发明实施例第一方面至本发明实施例第一方面的第四种实现方式任一项所述的多频通信天线,本发明实施例第一方面的第五种实现方式中,
所述电路板(104)的所述信号地层(105)为至少一个金属层。
结合本发明实施例第一方面的第五种实现方式,本发明实施例第一方面的第六种实现方式中,
所述电路板(104)的所述信号地层(105)包括相互绝缘的第一金属层(120)和第二金属层(121);
所述高频阵列(102)与所述第一金属层(120)电气连接,所述滤波部件(108)的第二端与所述第二金属层(121)电气连接。
结合本发明实施例第一方面的第三种实现方式或本发明实施例第一方面的第四种实现方式,本发明实施例第一方面的第七种实现方式中,
所述第一子部件(114)的结构可为以下所示的任一项:
等宽度带线、不等宽度带线、交指耦合线、接地耦合线、紧凑微带谐振单元以及蘑菇型接地耦合片。
结合本发明实施例第一方面至本发明实施例第一方面的第七种实现方式任一项所述的多频通信天线,本发明实施例第一方面的第八种实现方式中,
所述高频阵列(102)的中心频率与所述低频阵列(101)的中心频率的比值大于或等于1.5且小于或等于4。
本发明实施例第二方面提供了一种基站,包括本发明实施例第一方面至本发明实施例第一方面的第八种实现方式任一项所述的多频通信天线。
本发明实施例提供了一种多频通信天线以及基站,包括:至少一个低频阵列101、至少一个高频阵列102、与所述高频阵列102对应设置有至少一个电路板104以及一个反射板103,所述电路板104上设置有用于去耦滤波的滤波部件108,所述滤波部件108的第一端与所述高频阵列102电气连接,所述滤波部件108的第二端与所述电路板104的所述信号地层105电气连接。本实施例所示的用于去耦滤波的所述滤波部件108设置在电路板104上,对阵列辐射环境破坏小,使得多频通信天线具有良好的宽带抑制特性,而且有效的抑制了多频互耦和宽频互耦。
附图说明
图1为本发明实施例所提供的多频通信天线的一种实施例结构示意图;
图2为本发明实施例所提供的多频通信天线的一种实施例局部俯视结构示意图;
图3为本发明实施例所提供的多频通信天线的一种实施例局部仰视结构示意图;
图4为本发明实施例所提供的多频通信天线的一种实施例侧面局部结构示意图;
图5为本发明实施例所提供的多频通信天线的反射系数示意图;
图6为本发明实施例所提供的多频通信天线的用于去耦滤波的电路的一种实施例结构示意图;
图7为本发明实施例所提供的多频通信天线的用于去耦滤波的电路的另一种实施例结构示意图;
图8为本发明实施例所提供的多频通信天线的用于去耦滤波的电路的另 一种实施例结构示意图;
图9为本发明实施例所提供的多频通信天线的信号地层的一种实施例结构示意图;
图10为本发明实施例所提供的多频通信天线的信号地层的另一种实施例结构示意图;
图11为本发明实施例所提供的多频通信天线的信号地层的另一种实施例结构示意图;
图12为本发明实施例所提供的多频通信天线的第一子部件的一种实施例结构示意图;
图13为本发明实施例所提供的多频通信天线的第一子部件的另一种实施例结构示意图;
图14为本发明实施例所提供的多频通信天线的第一子部件的另一种实施例结构示意图;
图15为本发明实施例所提供的多频通信天线的第一子部件的另一种实施例结构示意图;
图16为本发明实施例所提供的多频通信天线的第一子部件的另一种实施例结构示意图;
图17为本发明实施例所提供的多频通信天线的第一子部件的另一种实施例结构示意图。
具体实施方式
下面详细讨论本申请的实施例的制造和使用。但是,应当理解的是,本发明提供了许多可以在各种具体背景下实施的可行的创新性概念。所讨论的具体实施例仅是说明制造和使用本发明的具体方式,并不限制本发明的范围。
首先对多频通信天线进行详细说明:
本发明所提供的多频通信天线通常是指天线内部含有2个以上不同工作频率的独立天线阵列。
本发明实施例中,所述多频通信天线包括有低频阵列以及高频阵列。
当所述低频阵列以及所述高频阵列满足预设条件时,所述多频通信天线内 则易产生异频互耦。
所述预设条件为所述高频阵列的中心频率与所述低频阵列的中心频率的比值大于或等于1.5且小于或等于4,且所述高频阵列与所述低频阵列呈水平排布,相邻的所述高频阵列与所述低频阵列之间距离较近。
本发明实施例对所述预设条件为举例说明,不做限定,只要所述多频通信天线内产生异频互耦即可。
本发明实施例所提供的所述多频通信天线的具体排布方式以图1所示为例,需明确的是,图1所示的多频通信天线的结构仅仅为一种示例,不做限定,只要所述低频阵列以及所述高频阵列满足所述预设条件即可。
其中,图1所示的所述低频阵列101工作于698-960MHz,所述高频阵列102工作于1710-2690MHz,且所述高频阵列102的中心频率与所述低频阵列101的中心频率的比值为2.65。
如图1所示可知,所述多频通信天线包括至少一个低频阵列101、至少一个高频阵列102、以及一个用于固定所述低频阵列101和所述高频阵列102的反射板103。
以下结合图1所示说明所述多频通信天线内是如何产生异频互耦的进行详细说明:
所述多频通信天线的异频互耦产生的主要过程如下:
当所述低频阵列101工作时,所述低频阵列101辐射的一路电磁波向远离所述反射板103的方向传播,所述低频阵列101辐射的另一路电磁波向朝向所述反射板103的方向传播。
朝向所述反射板103的方向传播的电磁波经过所述反射板103反射后与所述低频阵列101向远离所述反射板103的方向传播电磁波合成后向外辐射。
其中,朝向所述反射板103的方向传播的电磁波在所述反射板103上会感应出相应的感应电流。
所述低频阵列101在所述反射板103上感应出的所述感应电流会流入所述高频阵列102并辐射,从而使得所述低频阵列101的辐射被干扰。
本发明实施例所提供的所述多频通信天线能够有效的抑制所述低频阵列101的辐射被干扰,首先结合图2至图4所示对本发明实施例所提供的所述多 频通信天线的具体结构进行进一步的详细说明:
所述多频通信天线还包括至少一个电路板104;
其中,所述电路板104与所述高频阵列102对应设置,即一个所述高频阵列102对应设置有至少一个所述电路板104。
在具体应用中,可使得每个所述高频阵列102对应设置有一个所述电路板104,或者相邻的多个所述高频阵列102共用一个所述电路板104。
具体的,与所述高频阵列102对应设置的所述电路板104用于为所述高频阵列102馈电。
以下结合图4所示对所述电路板104的结构进行说明:
所述电路板104与所述反射板103相对的侧面为信号地层105,且所述电路板104的所述信号地层105与所述反射板103耦合连接。
具体的,所述信号地层105为覆盖设置在所述电路板104与所述反射板103相对侧面上的金属层,所述电路板104的介质层106所用材料是AD300。
更具体的,所述电路板104与所述反射板103之间设置有耦合层107。
如图4所示可知,所述耦合层107位于所述反射板103和所述信号地层105之间。
所述耦合层107由2部分组成:所述信号地层105所涂覆的绿油,所述信号地层105与反射板103间放置的非导电介质薄片,两者的厚度总和可为0.25mm。
需明确的是,本实施例对耦合层107的厚度为可选说明,不做限定。
可见,通过所述耦合层107实现了所述信号地层105与所述反射板103耦合连接。
需明确的是,本实施例对所述耦合层107的说明为可选的示例,不做限定,只要所述耦合层107能够实现所述信号地层105与所述反射板103耦合连接即可。
为了抑制所述低频阵列101的辐射被干扰,如图2所示,所述电路板104上设置有用于去耦滤波的滤波部件108。
所述滤波部件108的第一端与所述高频阵列102电气连接,所述滤波部件的第二端与所述电路板104的所述信号地层105电气连接。
可见,本实施例所示的用于去耦滤波的所述滤波部件108设置在电路板104上,无需在低频阵列(101)以及所述高频阵列(102)上设置用于滤波的部件,从而使得本发明实施例所提供的多频通信天线对阵列辐射环境破坏小,且不会破坏低频阵列101以及所述高频阵列102的工作环境,且结合图5所示可知,图5是本发明实施例所提供的多频通信天线中加入所述滤波部件108前后的反射系数比较,从图5中可以看到加入滤波部件108后高频阵列102的10dB抑制带从660MHz-760MHz,涵盖了整个700M的收发频段,具有良好的宽带抑制特性。
以下结合附图所示对本发明实施例所提供的所述多频通信天线的具体结构进行详细说明:
具体如图2至图4所示,所述高频阵列102包括辐射单元109以及馈电巴伦110。
其中,所述馈电巴伦110的第一端与所述辐射单元109电气连接,所述馈电巴伦110的第二端与所述电路板104的所述信号地层105电气连接。
所述馈电巴伦110的第二端还与所述滤波部件108的第一端电气连接。
以下对所述滤波部件108能够实现去耦滤波的原理进行说明:
首先请参见图6所示,图6为本发明实施例所提供的多频通信天线的用于去耦滤波的电路示意图;
由图6所示,所述反射板103、去耦滤波电路111、所述馈电巴伦110以及所述辐射单元109依次串联。
其中,所述反射板103上可能再次辐射的感应电流向辐射单元109传输过程中被具有滤波特性的所述去耦滤波电路111所抑制从而保证了低频阵列101方向图的稳定。
本实施例中,以下结合图7和图8所示对所述去耦滤波电路111的具体结构进行说明:
图7和图8所示的所述去耦滤波电路111中的等效电容C1是通过电路板104的所述信号地层105和所述反射板103的射频耦合连接来实现的。
如图7所示的所述去耦滤波电路111中的等效电容C2、等效电感L,以及如图8所示的去耦滤波电路111中的等效电容C2以及等效电感L和等效电 容C3的组合,是通过所述电路板104上所设置的所述滤波部件108实现的。
具体的,所述滤波部件108为设置在所述电路板104上的不同长度、不同宽度的带线组合来实现的。
通过本实施例所提供的所述去耦滤波电路111能够有效的抑制所述低频阵列101的辐射被干扰。
以下结合附图所示说明所述馈电巴伦110是如何实现与所述信号地层105以及所述滤波部件108电气连接的。
首先如图3所示,所述馈电巴伦110的第二端设置有至少一个第一接地点112以及至少一个第二接地点113。
具体的,所述电路板104贯穿设置有多个通孔,以使所述第一接地点112和所述第二接地点113能够穿过所述电路板104设置。
更具体的,所述第一接地点112和所述第二接地点113焊接至所述电路板104与所述反射板103相对的侧面。
其中,所述第一接地点112与所述电路板104的所述信号地层105电气连接,所述第二接地点113与所述滤波部件108的第一端电气连接。
以下对本实施例所提供的所述滤波部件108的具体结构进行详细说明:
如图2所示,所述滤波部件108包括设置在所述电路板104的信号线层116上的第一子部件114。
如图3所示,所述滤波部件108还包括设置在所述电路板104的所述信号地层105的第二子部件115。
具体的,所述第一子部件114与所述电路板104的所述信号地层105电气连接,所述第二子部件115与所述辐射单元109电气连接。
更具体的,结合图2至图4所示,贯穿所述电路板104设置有第一金属化过孔117以及第二金属化过孔118。
所述第一金属化过孔117与所述馈电巴伦110的距离小于所述第二金属化过孔118与所述馈电巴伦110的距离。
所述第二子部件115的第一端与所述馈电巴伦110的所述第二接地点113电气连接,所述第二子部件115的第二端通过所述第一金属化过孔117与所述第一子部件114的第一端电气连接,所述第一子部件114的第二端通过所述第 二金属化过孔118与所述信号地层105电气连接。
以下对所述信号地层105的可选设置方式进行举例说明:
可选的,如图9所示,所述电路板104的所述信号地层105为一个金属层119。
在具体的电气连接过程中,所述第一接地点112与所述金属层119电气连接;
其中,如图9所示,本实施例以所述第一接地点112的数目为3个为例进行示例说明,不做限定。
所述第二接地点113与所述滤波部件108的第一端电气连接,所述滤波部件108的第二端也与所述金属层119电气连接。
其中,如图9所示,本实施例以所述第二接地点113的数目为1个为例进行示例说明,不做限定。
可选的,如图10所示,所述电路板104的所述信号地层105包括相互绝缘的第一金属层120和第二金属层121;
在具体的电气连接过程中,所述高频阵列102与所述第一金属层120电气连接,即所述第一接地点112与所述第一金属层120电气连接;
其中,如图10所示,本实施例以所述第一接地点112的数目为3个为例进行示例说明,不做限定。
所述第二接地点113与所述滤波部件108的第一端电气连接,所述滤波部件108的第二端与所述第二金属层121电气连接。
其中,如图10所示,本实施例以所述第二接地点113的数目为1个为例进行示例说明,不做限定。
可选的,如图11所示,所述电路板104的所述信号地层105包括相互绝缘的第一金属层120和第二金属层121;
本种设置方式中,所述馈电巴伦110的第二端设置有至少一个第三接地点123;
本实施例如图11所示,所述第三接地点123的数目为4个为例进行示例说明,不做限定。
在具体的电气连接过程中,多个所述第三接地点123通过所述第一金属层 120相互连接,以使多个所述第三接地点123通过所述第一金属层120连接到公共节点122。
所述公共节点122与所述第二金属层121电气连接,且所述公共节点122还与所述滤波部件108的第一端电气连接。
以下结合附图所示对所述第一子部件114的结构进行详细说明:
可选的,所述第一子部件114的结构可为等宽度带线(如图12所示)或者,所述第一子部件114的结构可为不等宽度带线(如图13所示),即如图13所示W1不等于W2,或者,所述第一子部件114的结构可为交指耦合线(如图14所示)、或者,所述第一子部件114的结构可为接地耦合线(如图15所示)、或者,所述第一子部件114的结构可为紧凑微带谐振单元(如图16所示)、或者,所述第一子部件114的结构可为蘑菇型接地耦合片(如图17所示)。
进一步的,上述所示的等宽度带线、不等宽度带线、交指耦合线、接地耦合线、紧凑微带谐振单元以及蘑菇型接地耦合片的具体原理请参见现有技术所示,具体在本实施例中不做赘述。
本发明实施例还提供了一种基站,本实施例所示的基站所包括的多频通信天线请详见上述所示,具体在本实施例中不做赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种多频通信天线,其特征在于,包括:至少一个低频阵列(101)、至少一个高频阵列(102)、与所述高频阵列(102)对应设置有至少一个电路板(104),所述电路板(104)用于为所述高频阵列(102)馈电,所述多频通信天线还包括一个用于固定所述低频阵列(101)和所述高频阵列(102)的反射板(103),其中,所述电路板(104)与所述反射板(103)相对的侧面为信号地层(105),且所述电路板(104)的所述信号地层(105)与所述反射板(103)耦合连接;
    所述电路板(104)上设置有用于去耦滤波的滤波部件(108),所述滤波部件(108)的第一端与所述高频阵列(102)电气连接,所述滤波部件(108)的第二端与所述电路板(104)的所述信号地层(105)电气连接。
  2. 根据权利要求1所述的多频通信天线,其特征在于,所述高频阵列(102)包括辐射单元(109)以及馈电巴伦(110),所述馈电巴伦(110)的第一端与所述辐射单元(109)电气连接,所述馈电巴伦(110)的第二端与所述电路板(104)的所述信号地层(105)电气连接,且所述馈电巴伦(110)的第二端还与所述滤波部件(108)的第一端电气连接。
  3. 根据权利要求2所述的多频通信天线,其特征在于,所述馈电巴伦(110)的第二端设置有至少一个第一接地点(112)以及至少一个第二接地点(113);
    所述第一接地点(112)和所述第二接地点(113)穿过所述电路板(104)设置,且所述第一接地点(112)和所述第二接地点(113)焊接至所述电路板(104)与所述反射板(103)相对的侧面,其中,所述第一接地点(112)与所述电路板(104)的所述信号地层(105)电气连接,所述第二接地点(113)与所述滤波部件(108)的第一端电气连接。
  4. 根据权利要求3所述的多频通信天线,其特征在于,所述滤波部件(108)包括设置在所述电路板(104)的信号线层(116)上的第一子部件(114)以及设置在所述电路板(104)的所述信号地层(105)的第二子部件(115),且所述第一子部件(114)与所述电路板(104)的所述信号地层(105)电气连接,所述第二子部件(115)与所述辐射单元(109)电气连接。
  5. 根据权利要求4所述的多频通信天线,其特征在于,贯穿所述电路板 (104)设置有第一金属化过孔(117)以及第二金属化过孔(118),且所述第一金属化过孔(117)与所述馈电巴伦(110)的距离小于所述第二金属化过孔(118)与所述馈电巴伦(110)的距离;
    所述第二子部件(115)的第一端与所述馈电巴伦(110)的所述第二接地点(113)电气连接,所述第二子部件(115)的第二端通过所述第一金属化过孔(117)与所述第一子部件(114)的第一端电气连接,所述第一子部件(114)的第二端通过所述第二金属化过孔(118)与所述信号地层(105)电气连接。
  6. 根据权利要求1至5任一项所述的多频通信天线,其特征在于,所述电路板(104)的所述信号地层(105)为至少一个金属层。
  7. 根据权利要求6所述的多频通信天线,其特征在于,所述电路板(104)的所述信号地层(105)包括相互绝缘的第一金属层(120)和第二金属层(121);
    所述高频阵列(102)与所述第一金属层(120)电气连接,所述滤波部件(108)的第二端与所述第二金属层(121)电气连接。
  8. 根据权利要求4或5所述的多频通信天线,其特征在于,所述第一子部件(114)的结构可为以下所示的任一项:
    等宽度带线、不等宽度带线、交指耦合线、接地耦合线、紧凑微带谐振单元以及蘑菇型接地耦合片。
  9. 根据权利要求1至8任一项所述的多频通信天线,其特征在于,所述高频阵列(102)的中心频率与所述低频阵列(101)的中心频率的比值大于或等于1.5且小于或等于4。
  10. 一种基站,其特征在于,包括权利要求1至9任一项所述的多频通信天线。
PCT/CN2015/096239 2015-12-03 2015-12-03 一种多频通信天线以及基站 WO2017091993A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/096239 WO2017091993A1 (zh) 2015-12-03 2015-12-03 一种多频通信天线以及基站
EP15909510.8A EP3373390B1 (en) 2015-12-03 2015-12-03 Multi-frequency communication antenna and base station
CN201580002401.3A CN105960737B (zh) 2015-12-03 2015-12-03 一种多频通信天线以及基站
US15/993,587 US10483635B2 (en) 2015-12-03 2018-05-30 Multi-frequency communications antenna and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/096239 WO2017091993A1 (zh) 2015-12-03 2015-12-03 一种多频通信天线以及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/993,587 Continuation US10483635B2 (en) 2015-12-03 2018-05-30 Multi-frequency communications antenna and base station

Publications (1)

Publication Number Publication Date
WO2017091993A1 true WO2017091993A1 (zh) 2017-06-08

Family

ID=56917923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096239 WO2017091993A1 (zh) 2015-12-03 2015-12-03 一种多频通信天线以及基站

Country Status (4)

Country Link
US (1) US10483635B2 (zh)
EP (1) EP3373390B1 (zh)
CN (1) CN105960737B (zh)
WO (1) WO2017091993A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039570A (zh) * 2018-01-11 2018-05-15 江苏亨鑫科技有限公司 一种低剖面超宽频双极化辐射装置
CN108242596A (zh) * 2017-12-21 2018-07-03 摩比天线技术(深圳)有限公司 天线单元及基站天线
CN112736470A (zh) * 2020-12-01 2021-04-30 武汉虹信科技发展有限责任公司 多频阵列天线及基站

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2968566C (en) * 2016-05-27 2021-01-26 TrueRC Canada Inc. Compact polarized omnidirectional helical antenna
CN106410396A (zh) * 2016-10-26 2017-02-15 华南理工大学 一种高低频滤波阵子交织排列的紧凑型多波束天线阵列
HRP20220518T1 (hr) * 2016-12-27 2022-05-27 Tongyu Communication Inc. Zračeća integrirana antenska jedinica i višepoljna antena iz iste jedinice
KR101750336B1 (ko) * 2017-03-31 2017-06-23 주식회사 감마누 다중대역 기지국 안테나
WO2018205277A1 (en) 2017-05-12 2018-11-15 Tongyu Communication Inc. Integrated antenna unit, multi-array antenna, transmission method and receiving method of same
WO2018218515A1 (zh) * 2017-05-31 2018-12-06 华为技术有限公司 天线馈电结构和天线辐射系统
CN107359418B (zh) * 2017-05-31 2019-11-29 上海华为技术有限公司 一种多频天线系统及控制多频天线系统内异频干扰的方法
CN111403893B (zh) 2017-09-19 2021-11-19 上海华为技术有限公司 一种基站天线的馈电网络,基站天线及基站
CN109103592A (zh) * 2018-08-29 2018-12-28 江苏亨鑫科技有限公司 一种双极化辐射单元及带有该双极化辐射单元的阵列天线
CN109326872A (zh) * 2018-09-14 2019-02-12 京信通信系统(中国)有限公司 基站天线及其辐射单元
CN110931952B (zh) 2018-09-20 2021-12-24 上海华为技术有限公司 多频天线和通信设备
CN111384594B (zh) * 2018-12-29 2021-07-09 华为技术有限公司 高频辐射体、多频阵列天线和基站
CN112421229A (zh) * 2019-08-23 2021-02-26 中兴通讯股份有限公司 一种天线去耦装置、天线阵列及终端
CN110504556B (zh) * 2019-08-27 2020-12-18 中信科移动通信技术有限公司 多频天线阵列
CN113131194B (zh) * 2019-12-31 2022-12-13 华为技术有限公司 一种阵列天线及通信设备
CN113708048A (zh) * 2020-05-22 2021-11-26 京信通信技术(广州)有限公司 基站天线及其高频辐射单元
CN112467348B (zh) * 2020-11-13 2023-07-18 中信科移动通信技术股份有限公司 多频共面振子及基站天线
CN113471668B (zh) * 2021-06-30 2022-07-19 中信科移动通信技术股份有限公司 辐射单元及基站天线
CN115704979A (zh) * 2021-08-17 2023-02-17 Oppo广东移动通信有限公司 电致变色模组、盖板组件和电子设备
CN114361779B (zh) * 2021-12-30 2022-11-29 华南理工大学 天线装置与低频透波振子
CN114976613A (zh) * 2022-05-16 2022-08-30 摩比天线技术(深圳)有限公司 辐射单元及天线设备
CN117913547A (zh) * 2022-10-10 2024-04-19 康普技术有限责任公司 基站天线

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064867A (zh) * 2014-06-12 2014-09-24 京信通信技术(广州)有限公司 多频段辐射单元及移动通信天线

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19912465C2 (de) * 1999-03-19 2001-07-05 Kathrein Werke Kg Mehr-Bereichs-Antennenanlage
US6222488B1 (en) * 2000-03-01 2001-04-24 Smartant Telecomm Co., Ltd. Antenna structure for communication
WO2003081795A2 (en) * 2002-03-18 2003-10-02 Ems Technologies, Inc. Passive intermodulation interference control circuits
US7053852B2 (en) * 2004-05-12 2006-05-30 Andrew Corporation Crossed dipole antenna element
EP1908147B1 (en) * 2005-07-22 2015-08-19 Powerwave Technologies Sweden AB Antenna arrangement with interleaved antenna elements
CN1913226A (zh) 2005-08-10 2007-02-14 智邦科技股份有限公司 天线结构
JP4358886B2 (ja) * 2008-01-10 2009-11-04 パナソニック株式会社 無線通信装置
US20110175782A1 (en) * 2008-09-22 2011-07-21 Kmw Inc. Dual-band dual-polarized antenna of base station for mobile communication
WO2010063007A2 (en) * 2008-11-26 2010-06-03 Andrew Llc Dual band base station antenna
CN102868017B (zh) 2012-08-31 2015-05-13 广东通宇通讯股份有限公司 辐射装置及基于辐射装置的阵列天线
CN105122862B (zh) * 2013-02-22 2018-12-11 昆特尔科技有限公司 多阵列天线
DE102013012305A1 (de) 2013-07-24 2015-01-29 Kathrein-Werke Kg Breitband-Antennenarray
CN103779658B (zh) * 2013-11-22 2016-08-24 佛山市安捷信通讯设备有限公司 低剖面多频段双极化天线
CN103730728B (zh) 2013-12-31 2016-09-07 上海贝尔股份有限公司 多频天线
CN103682561B (zh) * 2013-12-31 2018-08-07 安弗施无线射频系统(上海)有限公司 天线系统中电偶极子的固定装置
WO2015142743A1 (en) * 2014-03-17 2015-09-24 Quintel Technology Limited Compact antenna array using virtual rotation of radiating vectors
DE202015009937U1 (de) * 2014-04-11 2021-10-28 Commscope Technologies Llc Mehrbandstrahler-Arrays mit eliminierten Resonanzen
CN104037497B (zh) * 2014-05-13 2016-08-17 安徽华东光电技术研究所 Ku波段收发共口径多层印制天线
CN104600439B (zh) 2014-12-31 2018-03-13 广东通宇通讯股份有限公司 多频双极化天线
CN204596981U (zh) * 2015-04-10 2015-08-26 电联工程技术股份有限公司 双频反射板结构及基站天线
CN104900987B (zh) * 2015-05-13 2019-01-29 武汉虹信通信技术有限责任公司 一种宽频辐射单元及天线阵列

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064867A (zh) * 2014-06-12 2014-09-24 京信通信技术(广州)有限公司 多频段辐射单元及移动通信天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373390A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242596A (zh) * 2017-12-21 2018-07-03 摩比天线技术(深圳)有限公司 天线单元及基站天线
CN108242596B (zh) * 2017-12-21 2024-04-16 摩比天线技术(深圳)有限公司 天线单元及基站天线
CN108039570A (zh) * 2018-01-11 2018-05-15 江苏亨鑫科技有限公司 一种低剖面超宽频双极化辐射装置
CN108039570B (zh) * 2018-01-11 2024-03-08 江苏亨鑫科技有限公司 一种低剖面超宽频双极化辐射装置
CN112736470A (zh) * 2020-12-01 2021-04-30 武汉虹信科技发展有限责任公司 多频阵列天线及基站
CN112736470B (zh) * 2020-12-01 2023-08-25 中信科移动通信技术股份有限公司 多频阵列天线及基站

Also Published As

Publication number Publication date
US10483635B2 (en) 2019-11-19
EP3373390A1 (en) 2018-09-12
CN105960737A (zh) 2016-09-21
US20180351246A1 (en) 2018-12-06
EP3373390A4 (en) 2018-12-12
CN105960737B (zh) 2019-08-20
EP3373390B1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2017091993A1 (zh) 一种多频通信天线以及基站
US10741929B2 (en) Antenna and wireless communication device
JP4821722B2 (ja) アンテナ装置
US9203154B2 (en) Multi-resonance antenna, antenna module, radio device and methods
CN109638460B (zh) 多频天线及抑制共模谐振的低频辐射单元
US7750861B2 (en) Hybrid antenna including spiral antenna and periodic array, and associated methods
US20080284670A1 (en) Wide-band slot antenna apparatus with stop band
CN106252872B (zh) 同极化微带双工天线阵列
US7642981B2 (en) Wide-band slot antenna apparatus with constant beam width
TWI594504B (zh) 無線通訊裝置
JP6723076B2 (ja) フィルタ
WO2019223318A1 (zh) 室内基站及其pifa天线
US20110156971A1 (en) Wide band antenna
US6946994B2 (en) Dielectric antenna
KR101496302B1 (ko) 마이크로스트립 라인과 도파관 사이 밀리미터파 천이 방법
WO2022133922A1 (zh) 一种多频天线及通信设备
US9054428B2 (en) Antenna and wireless communication unit
TWI533506B (zh) 通訊裝置及其寬頻低耦合雙天線元件
WO2019215970A1 (ja) フィルタ回路及び通信装置
WO2022042318A1 (zh) 一种人工表面等离激元传输线结构、电路板及电子设备
CN109103580B (zh) 磁极子滤波天线阵列
CN108054511A (zh) 一种微带传输线与微带天线间耦合消除结构
CN110994143B (zh) 一种天线结构
JP7243966B2 (ja) アンテナシステム及び端末デバイス
TWI403022B (zh) 小型化線狀天線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015909510

Country of ref document: EP