WO2017090782A1 - Concentrated solar cell module using single optical system - Google Patents

Concentrated solar cell module using single optical system Download PDF

Info

Publication number
WO2017090782A1
WO2017090782A1 PCT/KR2015/012579 KR2015012579W WO2017090782A1 WO 2017090782 A1 WO2017090782 A1 WO 2017090782A1 KR 2015012579 W KR2015012579 W KR 2015012579W WO 2017090782 A1 WO2017090782 A1 WO 2017090782A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
optical system
single optical
sunlight
reflecting
Prior art date
Application number
PCT/KR2015/012579
Other languages
French (fr)
Korean (ko)
Inventor
박기성
박준희
이길동
김석태
신선명
박호산
Original Assignee
주식회사 지피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지피 filed Critical 주식회사 지피
Publication of WO2017090782A1 publication Critical patent/WO2017090782A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module, and more particularly, to a solar cell module for collecting and internally reflecting sunlight through a single optical system to deliver to the solar cell.
  • the condensing solar cell module may be classified into a refractive photovoltaic module and a reflective photovoltaic module according to a photovoltaic condensing method.
  • the former collects sunlight using a Fresnel lens, while the latter collects sunlight using a parabolic reflector.
  • the reflection loss of light occurs in the lens surface, and in order to reduce the light loss, the focal length needs to be increased, so that the thickness of the entire module has a limitation.
  • a thicker module increases the overall size and weight of the module, increasing transportation, installation and maintenance costs.
  • Embodiments of the present invention have a thickness thinner than the thickness of a conventional condensing type solar cell module, and to provide a condensing type solar cell module with a simplified structure compared to a condensing type solar cell module using two or more optical systems by using a single optical system. do.
  • a plurality of concentric circles are partitioned, the cross section is formed on the upper surface of each of the convex lens-shaped condensing unit for condensing sunlight and the condensing unit to face A reflecting portion formed on a lower surface of each region and reflecting the sunlight collected by the light collecting portion in a central portion direction; a groove portion formed on an upper portion of the central portion and having an inverted conical lower portion; A single optical system including a prism portion extending from the reflecting portion to have an inverted leg shape; A central convex lens coupled to a groove portion of the single optical system and having an upper portion formed in a convex lens shape in cross section; And a solar cell disposed on a lower surface of the prism unit of the single optical system.
  • the upper surface of each region is formed in a convex lens-shaped cross-section and condensing sunlight, and to face the condensing portion
  • a single optical system formed on a lower surface of each region and including a reflector configured to reflect the sunlight collected by the light collector in a direction of a central portion, and a groove formed in a polygon on the upper portion of the central portion; And a solar cell disposed on at least one surface of the groove portion such that the light receiving region is located outside the light collecting type solar cell module.
  • each of the area having a region partitioned in the horizontal direction, the upper surface of each of the area is formed in a convex lens-shaped cross-section and condensing sunlight, and each facing so as to face the condenser
  • a reflector formed on the lower surface of the region and reflecting the sunlight collected by the condenser in the direction of the center portion, a groove portion formed in a rod shape on the upper portion of the center portion and having a lower portion of an inverted triangular rod;
  • a single optical system including a prism portion formed below to extend from the reflecting portion to have an inverted leg shape;
  • a rod-shaped central convex lens coupled to the groove portion of the single optical system and having a top portion formed in a convex lens shape in cross section;
  • a light collecting solar cell module including a rod-shaped solar cell disposed on a lower surface of the prism unit of the single optical system.
  • each of the area having a region partitioned in the horizontal direction, the upper surface of each of the area is formed in a convex lens-shaped cross-section and condensing sunlight, and each facing so as to face the condenser
  • a single optical system formed on a lower surface of an area and including a reflector configured to reflect the sunlight collected by the light collector in one end direction; And a solar cell disposed on one side of the single optical system and receiving a solar light reflected from the reflector.
  • the light concentrating solar cell module according to the embodiments of the present invention implements an optical system for condensing and an optical system for reflection and guide of sunlight as a single optical system, thereby comparing the structure of the light concentrating solar cell module using two or more optical systems. Can be simplified. Therefore, it is possible to reduce the optical loss caused by the misalignment of the two optical systems that can occur when using two or more optical systems, and to reduce the manufacturing cost due to the process complexity.
  • the focus is adjusted according to the internal shape of the single optical system by the diameter difference of each region of the light condensing unit of the single optical system and the multi-stage shape of the reflecting unit corresponding thereto, thereby reducing the thickness of the entire light concentrating solar cell module.
  • FIG. 1 is a view showing a cross section and an appearance of a light collecting solar cell module according to an embodiment of the present invention.
  • FIG. 2 is a view illustrating the light collecting solar cell module of FIG. 1 in a downward direction.
  • FIG. 3 is a view conceptually showing how the central convex lens is coupled to a single optical system in the light collecting solar cell module of FIG. 1.
  • FIG. 4 is an enlarged view illustrating a prism unit in the light collecting solar cell module of FIG. 1.
  • FIG. 5 is an enlarged schematic view of portion A of FIG. 1.
  • FIG. 6 is a conceptual diagram illustrating a state in which a plurality of light collecting solar cell modules of FIG. 1 are arranged.
  • FIG. 7 is a view showing a cross section and an appearance of a light collecting solar cell module according to another embodiment of the present invention.
  • FIG. 8 is a view showing a cross section and an appearance of a light collecting solar cell module according to another embodiment of the present invention.
  • FIG. 9 is a view showing a cross section and an appearance of a light collecting solar cell module according to another embodiment of the present invention.
  • FIG. 1 is a view showing a cross-sectional view and appearance of a light collecting solar cell module 100 according to an embodiment of the present invention
  • Figure 2 is a view showing the light collecting solar cell module 100 of Figure 1 in the downward direction. to be.
  • the light collecting solar cell module 100 is coupled to a single optical system 110 for condensing, reflecting and guiding sunlight and a single optical system 110 to provide sunlight to the solar cell 130.
  • a central convex lens 120 to be incident to the light, and a solar cell 130 that absorbs the sunlight and converts it into electricity.
  • the single optical system 110 functions to collect, reflect, and guide sunlight.
  • an optical system for condensing and an optical system for reflection existed separately, but in the condensing solar cell module 100 according to the present embodiment, condensing, reflection, and guide of sunlight through a single optical system 110 is performed.
  • the difference is that it performs all the functions. Therefore, problems that may occur when two or more optical systems are provided, such as optical loss caused by misalignment of the two optical systems, condensation due to the air layer existing between the two optical systems, and process complexity occurring during the assembly of the two optical systems Problems do not occur.
  • the single optical system 110 may include a light collecting part 111, a reflecting part 112, a groove part 113, and a prism part 114.
  • the single optical system 110 may be formed of poly (methyl) methacrylate (PMMA) or glass. These materials have a refractive index larger than that of air, and correspond to a material that does not have large light attenuation inside the material.
  • PMMA poly (methyl) methacrylate
  • the condenser 111 is positioned on the single optical system 110 and has a plurality of concentric circularly partitioned regions, and a cross section may be formed in a convex lens shape on the upper surface of each region. That is, as illustrated in FIGS. 1 and 2, the light collecting part 111 may have a shape in which a plurality of donut-shaped members that are larger in size toward the outside are overlapped based on the same center point. In this case, the width of each region may vary, and specifically, the width of the region may increase as the width of the region increases. This is to maintain the same F number since the focal length changes according to the shape of the reflector 112, and a detailed description thereof will be described later.
  • a polygonal frame (not shown) forming an outer shape of the single optical system 110 may be formed at the outermost portion of the light collecting part 111.
  • the condenser 111 may function to condense sunlight through the upper surface of the convex lens type for each predetermined section as described above. That is, the sunlight may be incident on each partition area of the light collecting part 111 and collected at each focal point.
  • the upper surface of the light collecting portion 111 may be made of an anti-reflective coating to minimize the loss of sunlight.
  • the reflector 112 is formed on the lower surface of each region to face the light concentrator 111, and may function to reflect the sunlight collected by the light concentrator 112 toward the center portion.
  • the central portion direction refers to the central portion of the single optical system 110 and may correspond to the groove portion 113 direction to be described later.
  • the reflector 112 may be formed in a multi-stage having a predetermined step in the downward direction from the end to the central portion, for example, as shown in Figures 1 and 2 to have a stepped cross-sectional shape. Can be. That is, each surface of the reflector 112 may be sequentially positioned lower as the solar cell 130 gets closer. Therefore, sunlight reflected from each reflector 112 is not disturbed by other reflectors 112.
  • the stepped portion of the reflector 112 may be positioned to correspond to the focal position of the focused sunlight.
  • the stepped portion of the reflector 112 may have a reflective surface (denoted 112a in FIG. 2) inclined at approximately 45 ° near the focal length of the sunlight.
  • the reflective surface may have a parabolic shape and specifically, may have a convex reflective surface or a concave reflective surface. A detailed description of the reflective surface will be described later with reference to other drawings.
  • a reflective surface coating may be formed on the rear surface of the reflective surface to more effectively reflect incident sunlight.
  • the groove 113 is formed on the central portion of the single optical system 110 and corresponds to a space to which the central convex lens 120 to be described later is coupled.
  • the groove portion 113 may be formed in a cylindrical shape (or funnel type), and the lower part may be formed in an inverted cone shape (see FIGS. 1 and 2).
  • the central convex lens 120 is coupled to the single optical system 110.
  • the central convex lens 120 may be formed in a convex lens shape at an upper end surface thereof and may be formed in a planar shape at a lower end thereof.
  • the width of the central convex lens 120 is formed to correspond to the width of the groove 113 of the single optical system 110, the center convex lens 120 can be fixed by fitting to the groove 113. At this time, it may be used with an adhesive such as UV epoxy for the bonding.
  • the lower portion of the groove 113 may be an empty space as shown in FIGS. 1 and 2 (inverted conical space). Solar light transmitted from the reflecting unit 112 in the empty space may be totally reflected to the prism unit 114.
  • the prism portion 114 is formed below the central portion of the single optical system 110 and may be formed to have an inverted leg shape extending from the reflecting portion 112.
  • the lower area of the prism portion 114 may be the same as the area of the solar cell 130 to be described later.
  • 4 shows an enlarged view of the prism portion 114 of FIG. 1. Referring to FIG. 4, the top surface of the prism portion 114 is formed in a circular shape, but the bottom surface may be formed in a quadrangular shape for bonding with the solar cell 130 (which means that the solar cell 130 generally has a rectangular shape). Because you are drunk).
  • the upper surface of the prism portion 114 to form a shape to gradually change from circular to square toward the lower surface, or as shown in Figure 4 the upper surface of the prism portion 114 from each surface of the solar cell 130 It may be formed in the form of cutting so that the parabolic surface appears (to the incision surface in Figure 4 a).
  • the central convex lens 120 is coupled to the central portion of the single optical system 110, and specifically, may be coupled to the groove portion 113 of the single optical system 110.
  • the central convex lens 120 may function to condense sunlight incident on the central portion of the single optical system 110, and may perform the function of injecting the condensed sunlight into the prism portion 114 positioned below.
  • the central convex lens 120 may be formed in a convex lens-shaped cross section on its upper surface.
  • the lower portion (inverted conical space) of the groove portion 113 may be an empty space.
  • the solar cell 130 may be disposed on the lower surface of the prism portion 114 of the single optical system 110. As described above, the lower area of the solar cell 130 and the prism portion 114 may be the same.
  • the solar cell 130 may function to generate electrical energy by converting energy of sunlight incident through the single optical system 110 and the central convex lens 120 into electrical energy.
  • the solar cell 130 may be a III-V compound semiconductor solar cell. Although not shown in the drawings, the solar energy incident to the solar cell 130 is converted into electrical energy by the action of an anode and a cathode electrode formed in the solar cell 130, the electrical energy is It may be transferred to the outside by the hybrid IC substrate disposed under the solar cell 130. Since the structure and electrical energy conversion process of the solar cell 130 or the hybrid IC substrate is well known, a detailed description thereof will be omitted. Meanwhile, the hybrid IC substrate may be made of alumina.
  • FIG. 5 is an enlarged schematic view of a portion A of FIG. 1.
  • FIG. 5A shows a case where the stepped portion of the reflecting portion 112 has a convex reflecting surface 112a
  • FIG. 5B shows a case where the stepped portion of the reflecting portion 112 has a concave reflecting surface 112b. have.
  • the sunlight L may be collected through the light collecting unit 111 of the single optical system 110.
  • the light collecting part 111 has a predetermined partition area, and the sunlight L is incident on each of the partition areas and focused at each focal point (focus is indicated by P1 and P2 in FIG. 5).
  • the sunlight L passing through the condenser 111 may be reflected by the stepped portion of the reflector 112 and converted into parallel light.
  • the term “converted to parallel light form” means that the light L incident in the vertical direction with respect to the light concentrating solar cell module 100 is reflected by the reflector 112 and converted into the horizontal direction.
  • the sunlight L may be reflected by the reflector 112 and travel toward the center of the single optical system 110 in the form of parallel light.
  • the reflector 112 is formed in a multi-stage shape having a predetermined step in a downward direction from the end portion to the center portion, and the reflector 112 having different sunlight from each reflector 112 is different. Not disturbed by
  • the positions of the focal points (indicated by P1 and P2 in FIG. 5) for each preset partition area are Will be different. Specifically, the closer to the solar cell 130, the lower the position of the focal point. In relation to this, the position of the focal point can be adjusted through the F number.
  • the F number is defined as the inverse of the aperture ratio of the lens or reflector. That is, in the present embodiment, the F number corresponds to a value obtained by dividing the focal length by the diameter of the upper convex lens-shaped shape (denoted as f2 in FIG. 1) of the condenser 111.
  • the diameter of the upper convex lens-shaped shape of the condenser 111 must also be increased by the same ratio. Therefore, the light collecting part 111 may be formed such that its width (referred to f2 in FIG. 1) becomes larger as it approaches the central part. As such, the diameter difference of each region of the light condensing unit 111 and the corresponding reflecting unit 112 are formed in a multi-stage shape having a predetermined step in the downward direction toward the center portion, and according to the internal shape of the single optical system 110. As the focus is adjusted, the thickness of the entire condensing solar cell module may be reduced, as compared with a different focal length depending on the incident position of the sunlight L. FIG.
  • the sunlight L may be reflected by the reflector 112, and specifically, may be reflected by the stepped portion of the reflector 112.
  • the stepped portion may have a reflective surface (denoted 112a in FIG. 2) inclined at approximately 45 ° near the focal length of the sunlight, or may have a convex reflective surface 112a as in FIG. 5A.
  • FIG. 5B it may have a concave reflective surface 112b.
  • the reflective surface has a convex reflective surface 112a
  • the position of the reflective surface may be located higher than the focal position P1 of the collected sunlight L (see FIG.
  • the position of the reflecting surface may be located lower than the focus position P2 of the collected sunlight L (see FIG. 5B). Further, as the position of each reflecting surface moves away from the focus, the area of the reflecting surface becomes wider, and the closer to the focus, the narrower the reflecting surface area becomes.
  • the sunlight L reflected by the reflector 112 may travel to the groove 113 in the horizontal direction.
  • the sunlight L may cause total internal reflection at the interface with the space formed in the inverted cone shape below the groove portion 113, and may be transmitted to the prism portion 114.
  • the sunlight L may pass through the prism portion 114 to the solar cell 130 disposed under the prism portion 114.
  • the sunlight L incident through the central convex lens 120 is collected at the convex lens surface, and then the reverse conical shape of the lower end of the central convex lens 120 and the groove 113 of the single optical system 110 is lowered.
  • the light may be refracted while passing through the boundary, and finally transferred to the solar cell 130 via the prism portion 114.
  • the sunlight L is collected for each partition area of the light collecting part 111 and reflected by the reflecting part 112 to change the traveling direction, and then reflected in a space formed in an inverted cone shape below the groove part 113 to prism.
  • the unit 114 and the solar cell 130 may be transferred.
  • the solar cell 130 functions to convert the energy of the received sunlight (L) to electrical energy.
  • the condensing solar cell module 100 as described above implements an optical system for condensing and an optical system for reflection and guide of sunlight into a single optical system (single optical system), thereby condensing solar cell modules using two or more optical systems.
  • the structure can be simplified. Therefore, it is possible to reduce the optical loss caused by the misalignment of the two optical systems that can occur when using two or more optical systems, and to reduce the manufacturing cost due to the process complexity.
  • the focus is adjusted according to the internal shape of the single optical system by the difference in diameter of each region of the condenser 111 of the single optical system 110 and the multi-stage shape of the reflecting unit 112 corresponding thereto. The thickness of the solar cell module can be reduced.
  • the light collecting solar cell module 100 may be formed at the outermost part of the light collecting part 111 to form a polygonal frame (not shown) forming an external shape of the single optical system 110.
  • the photovoltaic module array may be configured by connecting the plurality of concentrating solar cell modules 100 in a honeycomb structure.
  • 6 is a conceptual diagram illustrating a state in which a plurality of light collecting solar cell modules 100 of FIG. 1 are arranged. In this case, there is an advantage that can be arranged more concentrating solar cell module 100 in the same space.
  • FIG. 7 is a view illustrating a cross section and an appearance of a light collecting solar cell module 200 according to another embodiment (second embodiment) of the present invention.
  • the light collecting solar cell module 200 may include a single optical system 210 for collecting, reflecting, and guiding sunlight, and a solar cell 230 for absorbing and converting sunlight into electricity. .
  • the single optical system 210 functions to collect, reflect, and guide sunlight.
  • an optical system for condensing and an optical system for reflection existed separately, but in the condensing solar cell module 200 according to the present embodiment, the condensing, reflection, and guide of sunlight through a single optical system 210 is provided.
  • the difference is that it performs all the functions. Therefore, problems that may occur when two or more optical systems are provided, such as optical loss caused by misalignment of the two optical systems, condensation due to the air layer existing between the two optical systems, and process complexity occurring during the assembly of the two optical systems Problems do not occur.
  • the single optical system 210 may include a light collecting unit 211, a reflecting unit 212, and a groove 213.
  • the single optical system 110 may be formed of poly (methyl) methacrylate (PMMA) or glass. These materials have a refractive index larger than that of air, and correspond to a material that does not have large light attenuation inside the material.
  • PMMA poly (methyl) methacrylate
  • the condenser 211 is positioned above the single optical system 210 and has a plurality of concentric circled regions, and a cross section may be formed in a convex lens shape on the upper surface of each region. That is, as shown in FIG. 7, the light collecting part 211 may have a shape in which a plurality of donut-shaped members that are larger in size toward the outside are overlapped with respect to the same center point. Meanwhile, a polygonal frame (not shown) may be formed at the outermost portion of the light collecting unit 211 to form an external shape of the single optical system 210.
  • the condenser 211 may function to condense the sunlight through the upper surface of the convex lens type for each predetermined section as described above. That is, the sunlight may be incident on each compartment of the light collecting unit 211 and collected at each focal point.
  • the top surface of the light collecting part 211 may be coated with an anti-reflective coating so as to minimize the loss of sunlight.
  • the reflecting unit 212 is formed on the lower surface of each region to face the light collecting unit 211, and may function to reflect the sun light collected by the light collecting unit 212 toward the center portion.
  • the central direction refers to the central portion of the single optical system 210 and may correspond to the direction of the groove 213 which will be described later.
  • the reflecting unit 212 may be formed in a multi-stage having a predetermined step in the downward direction from the end to the center portion, for example, may be formed so that the cross section has a stepped shape as shown in FIG.
  • each surface of the reflector 212 may be formed to be inclined at a predetermined angle toward the groove 213.
  • the stepped portion of the reflector 212 may be positioned to correspond to the focal position of the focused sunlight.
  • the stepped portion of the reflector 212 may have a reflective surface (denoted 212a in FIG. 7) inclined at approximately 45 ° near the focal length of the sunlight.
  • the reflective surface may have a parabolic shape and specifically, may have a convex reflective surface or a concave reflective surface. Reflecting surface coating may be formed on the rear surface of the reflecting surface to more effectively reflect incident sunlight.
  • the groove 213 is formed in the center of the single optical system 210 and may be formed in a polygonal shape (eg, a square pillar).
  • the solar cell 230 may be disposed on at least one surface of the groove portion 213 so that the light receiving region is located outside.
  • the solar cell 230 is disposed in the vertical direction.
  • two solar cells 230 are disposed on each side of the groove 213 one by one. Since the solar cell 230 is the same as or similar to the above-described embodiment, a redundant description thereof will be omitted.
  • the light L is through the light collecting part 211 of the single optical system 210.
  • the sunlight L passing through the light collecting unit 211 may be reflected by the stepped portion of the reflecting unit 212 so that the traveling direction may be changed, and specifically, the traveling direction may be converted so as to face the groove 213.
  • the reflected sunlight L may be transmitted to the solar cell 230 disposed on each side of the groove.
  • the solar cell 230 converts the energy of the received sunlight L into electrical energy.
  • the present embodiment may be configured such that the central convex lens or the prism part is omitted and the solar cell 230 is directly disposed in the groove part 213.
  • FIG. 8 is a view showing a cross section and an appearance of a light collecting solar cell module 300 according to another embodiment (third embodiment) of the present invention.
  • the light concentrating solar cell module 300 is coupled to a single optical system 310 for condensing, reflecting and guiding sunlight, and is incident on the solar cell 330 by being coupled to a single optical system 310.
  • the central convex lens 320 and a solar cell 330 that absorbs sunlight and converts it into electricity.
  • the single optical system 310 functions to collect, reflect, and guide sunlight.
  • an optical system for condensing and an optical system for reflection existed separately, but in the condensing solar cell module 300 according to the present embodiment, the condensing, reflection, and guide of sunlight through a single optical system 310 is provided.
  • the difference is that it performs all the functions. Therefore, problems that may occur when two or more optical systems are provided, such as optical loss caused by misalignment of the two optical systems, condensation due to the air layer existing between the two optical systems, and process complexity occurring during the assembly of the two optical systems Problems do not occur.
  • the single optical system 310 may include a light collecting part 311, a reflecting part 312, a groove part 313, and a prism part 314.
  • the single optical system 110 may be formed of poly (methyl) methacrylate (PMMA) or glass. These materials have a refractive index larger than that of air, and correspond to a material that does not have large light attenuation inside the material.
  • PMMA poly (methyl) methacrylate
  • the condenser 311 is positioned above the single optical system 110 and has a region partitioned in the horizontal direction, and a cross section may be formed in a convex lens shape on the upper surface of each region. That is, as shown in FIG. 8, the light collecting part 311 may have a shape in which a plurality of rod-shaped members having a convex shape on the top thereof are arranged in one direction. In this case, the width of each region may vary, and specifically, the width of the region may be increased from the outside to the center portion. Meanwhile, a polygonal frame (not shown) may be formed at the outermost portion of the light collecting part 311 to form an external shape of the single optical system 310.
  • the condenser 311 may function to condense the sunlight through the upper surface of the convex lens type for each predetermined section as described above. That is, the sunlight may be incident on each compartment of the light collecting unit 311 and collected at each focal point.
  • the top surface of the light collecting part 311 may be made of an anti-reflection coating so as to minimize the loss of sunlight.
  • the reflector 312 is formed on the lower surface of each region to face the light concentrator 311, and may function to reflect the sunlight collected by the light concentrator 312 toward the center portion.
  • the central direction refers to the central portion of the single optical system 310, and specifically, may correspond to the direction of the groove 313 to be described later.
  • the reflector 312 may be formed in a multi-stage shape having a predetermined step in a downward direction from the end portion to the center portion, for example, may be formed so that the cross section has a stepped shape as shown in FIG. 8. That is, each surface of the reflector 312 may be sequentially positioned lower as the solar cell 330 gets closer. Therefore, sunlight reflected from each reflector 312 is not disturbed by the other reflector 312.
  • the stepped portion of the reflector 312 may be positioned to correspond to the focal position of the focused sunlight.
  • the stepped portion of the reflector 312 may have a reflective surface (denoted 312a in FIG. 8) inclined at approximately 45 ° near the focal length of the sunlight.
  • the reflective surface may have a parabolic shape and specifically, may have a convex reflective surface or a concave reflective surface. This is the same as in the above-described embodiment (first embodiment) bar overlapping description will be omitted.
  • a reflective surface coating may be formed on the rear surface of the reflective surface to more effectively reflect incident sunlight.
  • the groove 313 is formed above the central portion of the single optical system 310 and corresponds to a space where the central convex lens 320 is coupled.
  • the groove portion 113 in the present embodiment may be formed in a long rod shape, the lower portion may be formed in an inverted triangle bar shape.
  • the prism portion 314 is formed below the central portion of the single optical system 310 and extends from the reflecting portion 312 and may be formed in a rod shape having an inverted leg cross section.
  • the lower area of the prism portion 314 may be equal to the area of the solar cell 330.
  • the central convex lens 320 is coupled to the central portion of the single optical system 310, and specifically, may be coupled to the groove 313 of the single optical system 310.
  • the central convex lens 320 may function to condense the sunlight incident on the central portion of the single optical system 310, and may allow the condensed sunlight to enter the prism portion 314 located below.
  • the central convex lens 320 may be formed in a convex lens-shaped cross section on its upper surface and may be formed in a bar shape as a whole.
  • the central convex lens 320 When the central convex lens 320 is coupled to the groove portion 313 of the single optical system 310 (by using an adhesive such as fitting bonding or UV epoxy), the lower portion of the groove portion 313 (cross-section is an inverted triangle space) is empty. Can be.
  • the solar cell 330 may be disposed on the lower surface of the prism portion 314 of the single optical system 310, and may be formed in a rod shape. Since the solar cell 330 is the same as or similar to the above-described embodiment, redundant description thereof will be omitted.
  • the sunlight L is collected through the light collecting part 311 of the single optical system 310.
  • the light collecting unit 311 has predetermined partition regions, and the sunlight L is incident on the partition regions and focused at each focal point.
  • the sunlight L passing through the light collecting unit 311 may be reflected by the stepped portion of the reflecting unit 312 to be converted into a parallel light form and proceed to the center portion of the single optical system 310.
  • the sunlight L reflected by the reflector 312 may proceed to the groove 313 in the horizontal direction.
  • the sunlight L may cause total internal reflection at an interface with a space formed in an inverted triangular bar shape below the groove part 313, and thus may be transmitted to the prism part 314. Subsequently, the sunlight L may be transmitted to the solar cell 330 disposed under the prism portion 314 after passing through the prism portion 314. Meanwhile, after the sunlight L incident through the central convex lens 320 is collected at the convex lens surface, the reverse triangular type of the lower end of the central convex lens 320 and the groove 313 of the single optical system 310 is lowered. The light may be refracted while passing through the boundary, and finally transferred to the solar cell 330 via the prism portion 314.
  • the sunlight L is collected for each partition area of the light collecting part 311, is reflected by the reflecting part 312, and the traveling direction is changed, and is reflected in a space formed in an inverted triangular shape below the groove part 313. It may be transferred to the prism portion 314 and the solar cell 330. In addition, the solar cell 330 converts the energy of the received sunlight L into electrical energy.
  • FIG. 9 is a view illustrating a cross section and an appearance of a light collecting solar cell module 400 according to another embodiment (fourth embodiment) of the present invention.
  • the light collecting solar cell module 400 is disposed on one side of a single optical system 410 for collecting, reflecting, and guiding sunlight, and absorbs sunlight and converts it into electricity. It may include a solar cell 430.
  • the single optical system 410 functions to collect, reflect, and guide sunlight.
  • an optical system for condensing and an optical system for reflection existed separately, but in the condensing solar cell module 400 according to the present embodiment, condensing, reflection, and guide of sunlight through a single optical system 410 is performed.
  • the difference is that it performs all the functions. Therefore, problems that may occur when two or more optical systems are provided, such as optical loss caused by misalignment of the two optical systems, condensation due to the air layer existing between the two optical systems, and process complexity occurring during the assembly of the two optical systems Problems do not occur.
  • the single optical system 410 may include a light collecting part 411 and a reflecting part 412.
  • the single optical system 410 may be formed of poly (methyl) methacrylate (PMMA) or glass. These materials have a refractive index larger than that of air, and correspond to a material that does not have large light attenuation inside the material.
  • PMMA poly (methyl) methacrylate
  • the condenser 411 is positioned above the single optical system 410 and has a region partitioned in the horizontal direction, and a cross section may be formed in a convex lens shape on the upper surface of each region. That is, as shown in FIG. 9, the light collecting part 411 may have a shape in which a plurality of rod-shaped members having a convex shape on the top thereof are arranged in one direction. In this case, the width of each region may vary, and specifically, the width of the region may be increased so as to come closer to the portion farther from the solar cell 410. Meanwhile, a polygonal frame (not shown) may be formed at the outermost portion of the light collecting part 411 to form an external shape of the single optical system 410.
  • the condenser 411 may function to condense sunlight through the upper surface of the convex lens type for each predetermined section as described above. That is, the sunlight may be incident on each partition area of the light collecting part 411 and collected at each focal point.
  • the upper surface of the light collecting portion 411 may be made of an anti-reflective coating to minimize the loss of sunlight.
  • the reflector 412 is formed on the lower surface of each region to face the light concentrator 411 and may function to reflect the sunlight collected by the light concentrator 412 toward the solar cell 430.
  • the reflector 412 may be formed in a multi-stage having a predetermined step in the downward direction as coming closer to the portion farther from the solar cell 410, for example, as shown in Figure 9 cross-section It may be formed to have. That is, each surface of the reflector 412 may be located further down sequentially as the solar cell 430 gets closer. Therefore, the sunlight reflected from each reflector 412 is not disturbed by the other reflector 412.
  • the stepped portion of the reflector 412 may be positioned to correspond to the focal position of the focused sunlight.
  • the stepped portion of the reflector 412 may have a reflective surface (denoted 412a in FIG. 9) inclined at approximately 45 ° near the focal length of the sunlight.
  • the reflective surface may have a parabolic shape and specifically, may have a convex reflective surface or a concave reflective surface. This is the same as in the above-described embodiment (the first embodiment, the third embodiment) bar overlapping description will be omitted.
  • a reflective surface coating may be formed on the rear surface of the reflective surface to more effectively reflect incident sunlight.
  • the solar cell 430 may be disposed on one side of the single optical system 410, and may be formed in a rod shape. Since the solar cell 430 is the same as or similar to that of the above-described embodiment, redundant description thereof will be omitted.
  • the light L is collected through the light collecting part 411 of the single optical system 410.
  • the light collecting part 411 has predetermined partitioned areas and sunlight L is incident on the partitioned areas and is focused at each focal point.
  • the sunlight L passing through the condenser 411 may be reflected by the stepped portion of the reflector 412, converted into parallel light, and transmitted to the solar cell 430.
  • the solar cell 430 converts the energy of the received sunlight L into electrical energy.

Abstract

A concentrated solar cell module using a single optical system is disclosed. The concentrated solar cell module according to one embodiment of the present invention comprises: a single optical system having regions divided into a plurality of concentrically circular shapes, and including a concentrating unit, which has a cross-sectional surface formed into a convex lens on the upper surface of each region and concentrates solar light, a reflection unit formed on the lower surface of each region so as to face the concentrating unit, thereby reflecting, in the direction of a center unit, the solar light concentrated by the concentrating unit, a groove unit formed at the upper part of the center unit and having an inverse conical-shaped lower part, and a prism unit formed at the lower part of the center unit so as to have an inverse trapezoidal shape by extending from the reflection unit; a central convex lens coupled to the groove unit of the single optical system, and including an upper part having a cross-sectional surface formed into a convex lens shape; and a solar cell disposed on the lower surface of the prism unit of the single optical system.

Description

단일 광학계를 이용한 집광형 태양전지모듈Condensing solar cell module using single optical system
본 발명은 태양전지모듈에 관한 것으로, 보다 상세하게는 태양광을 단일 광학계를 통해 집광 및 내부 반사시켜 태양전지로 전달시키는 태양전지모듈에 관한 것이다.The present invention relates to a solar cell module, and more particularly, to a solar cell module for collecting and internally reflecting sunlight through a single optical system to deliver to the solar cell.
기존 화석 연료를 대체하기 위한 신재생 에너지원 중에서 현재 가장 활발한 연구개발이 이루어지고 있는 분야는 태양광을 이용한 대체에너지원의 연구다. 특히 실리콘 반도체를 이용하여 p-n 접합 다이오드를 제작한 후(실리콘 계 태양전지 셀), 이를 평판형으로 배치하여 만든 평판형 태양전지모듈에 대한 연구가 그간 활발히 이루어져 왔다. 한편, 이러한 평판형 태양전지모듈과 더불어 최근에는 렌즈 또는 반사경과 같은 광학계를 사용하여 높은 배율로 태양광을 집광시킨 후, 평판형 실리콘 태양 전지 모듈에 비해 작은 면적을 갖는 고효율의 Ⅲ-Ⅴ족 화합물 반도체 태양전지 셀에 입사시켜 발전하는 집광형 태양전지모듈이 차세대 태양광 발전 모듈로 각광 받고 있다. 집광형 태양전지모듈은 기존의 평판형 태양전지모듈에 비해 높은 발전 효율과 낮은 제조원가를 구현할 수 있는 장점을 가지기 때문이다. Among the renewable energy sources to replace existing fossil fuels, the most active research and development is the research of alternative energy sources using solar light. In particular, after fabricating a p-n junction diode using a silicon semiconductor (silicon-based solar cell), research on a planar solar cell module made by arranging it in a planar manner has been actively conducted. On the other hand, in addition to such a flat panel solar cell module in recent years by using an optical system such as a lens or a reflector to focus the sunlight at a high magnification, high efficiency group III-V compound having a smaller area than the flat silicon solar cell module Condensing solar cell modules that generate power by entering a semiconductor solar cell are attracting attention as the next generation photovoltaic module. This is because the light concentrating solar cell module has advantages of realizing high power generation efficiency and low manufacturing cost compared to the conventional flat panel solar cell module.
집광형 태양전지모듈은 태양광 집광 방식에 따라 굴절식 태양광 모듈과 반사식 태양광 모듈로 구분될 수 있다. 전자는 프레넬 렌즈를 이용하여 태양광을 집광하며, 후자는 파라볼릭 반사경을 이용하여 태양광을 집광한다. The condensing solar cell module may be classified into a refractive photovoltaic module and a reflective photovoltaic module according to a photovoltaic condensing method. The former collects sunlight using a Fresnel lens, while the latter collects sunlight using a parabolic reflector.
그러나 이러한 집광형 태양전지모듈은 높은 발전 효율 및 낮은 제조원가와 같은 장점에도 불구하고, 몇가지 한계가 존재하였다. 첫째, 집광형 태양전지모듈은 집광용 광학계를 사용하므로 상기 집광용 광학계에 수직으로 입사되는 태양광만이 태양전지의 초점에 맺혀 흡수된다. 따라서 집광형 태양전지모듈은 항상 태양을 따라 움직이는 추적 장치의 상부에 설치되어야 하는 한계가 있다. 둘째, 구름, 안개, 공기 중의 수분, 먼지 등과 같은 이물질에 의해 태양광이 산란되는 경우에튼 태양전지에 초점이 맺히지 못하는 한계가 있다. 셋째, 집광용 광학계에서는 렌즈면에서 빛의 반사 손실이 일어나며 이러한 광손실을 줄이기 위해서는 초점 거리를 길게 만들어야 하므로 전체 모듈의 두께가 두꺼워지는 한계가 있었다. 모듈의 두께가 두꺼워지면 모듈의 전체 크기 및 무게가 함께 증가하므로 운송, 설치, 관리 비용 등이 증가하는 요인이 된다. However, these concentrating solar cell modules, despite the advantages such as high power generation efficiency and low manufacturing cost, there were some limitations. First, since the condensing solar cell module uses a condensing optical system, only solar light incident perpendicularly to the condensing optical system is absorbed at the focal point of the solar cell. Therefore, there is a limit that the condensing solar cell module should always be installed on top of the tracking device moving along the sun. Second, when the sunlight is scattered by foreign matters such as clouds, fog, moisture in the air, dust, etc., there is a limit in which the solar cell cannot be focused. Third, in the light collecting optical system, the reflection loss of light occurs in the lens surface, and in order to reduce the light loss, the focal length needs to be increased, so that the thickness of the entire module has a limitation. A thicker module increases the overall size and weight of the module, increasing transportation, installation and maintenance costs.
따라서 집광형 태양전지모듈의 이러한 한계를 극복하고자 하는 시도들이 있어왔으며, 특히 모듈의 두께를 줄이기 위한 연구들이 이루어지고 있다.Therefore, there have been attempts to overcome these limitations of the light concentrating solar cell module, and in particular, studies are being made to reduce the thickness of the module.
본 발명의 구현예들은 기존 집광형 태양전지모듈의 두께보다 얇은 두께를 가지며, 단일 광학계를 이용함으로써 2 이상의 광학계를 사용하는 집광형 태양전지모듈에 비해 구조를 단순화시킨 집광형 태양전지모듈을 제공하고자 한다.Embodiments of the present invention have a thickness thinner than the thickness of a conventional condensing type solar cell module, and to provide a condensing type solar cell module with a simplified structure compared to a condensing type solar cell module using two or more optical systems by using a single optical system. do.
본 발명의 일 측면에 따르면, 복수개의 동심원 형태로 구획화 된 영역을 갖는 것으로, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성되고 태양광을 집광하는 집광부와, 상기 집광부와 마주보도록 각 영역의 하부면에 형성되어 상기 집광부에 의해 집광된 상기 태양광을 중앙부 방향으로 반사시키는 반사부와, 상기 중앙부의 상부에 형성되고 역원뿔형의 하부를 갖는 홈부와, 상기 중앙부의 하부에 상기 반사부로부터 연장되어 역사다리형을 갖도록 형성되는 프리즘부를 포함하는 단일 광학계; 상기 단일 광학계의 홈부에 결합되는 것으로 단면이 볼록렌즈형으로 형성되는 상부를 구비하는 중앙 볼록렌즈; 및 상기 단일 광학계의 프리즘부 하부면에 배치되는 태양전지를 포함하는 집광형 태양전지모듈이 제공될 수 있다. According to an aspect of the present invention, a plurality of concentric circles are partitioned, the cross section is formed on the upper surface of each of the convex lens-shaped condensing unit for condensing sunlight and the condensing unit to face A reflecting portion formed on a lower surface of each region and reflecting the sunlight collected by the light collecting portion in a central portion direction; a groove portion formed on an upper portion of the central portion and having an inverted conical lower portion; A single optical system including a prism portion extending from the reflecting portion to have an inverted leg shape; A central convex lens coupled to a groove portion of the single optical system and having an upper portion formed in a convex lens shape in cross section; And a solar cell disposed on a lower surface of the prism unit of the single optical system.
본 발명의 다른 측면에 따르면, 복수개의 동심원 형태로 구획화 된 영역을 갖는 것으로, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성되고 태양광을 집광하는 집광부와, 상기 집광부와 마주보도록 각 영역의 하부면에 형성되어 상기 집광부에 의해 집광된 상기 태양광을 중앙부 방향으로 반사시키는 반사부와, 상기 중앙부의 상부에 다각형으로 형성되는 홈부를 포함하는 단일 광학계; 및 수광 영역이 외측에 위치되도록 상기 홈부의 적어도 1면 이상에 배치되는 태양전지를 포함하는 집광형 태양전지모듈이 제공될 수 있다. According to another aspect of the present invention, having a plurality of concentric circularly divided regions, the upper surface of each region is formed in a convex lens-shaped cross-section and condensing sunlight, and to face the condensing portion A single optical system formed on a lower surface of each region and including a reflector configured to reflect the sunlight collected by the light collector in a direction of a central portion, and a groove formed in a polygon on the upper portion of the central portion; And a solar cell disposed on at least one surface of the groove portion such that the light receiving region is located outside the light collecting type solar cell module.
본 발명의 또 다른 측면에 따르면, 수평 방향으로 구획화 된 영역을 갖는 것으로, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성되고 태양광을 집광하는 집광부와, 상기 집광부와 마주보도록 각 영역의 하부면에 형성되어 상기 집광부에 의해 집광된 상기 태양광을 중앙부 방향으로 반사시키는 반사부와, 상기 중앙부의 상부에 막대형으로 형성되되 역삼각막대형의 하부를 갖는 홈부와, 상기 중앙부의 하부에 상기 반사부로부터 연장되어 역사다리형을 갖도록 형성되는 프리즘부를 포함하는 단일 광학계; 상기 단일 광학계의 홈부에 결합되는 것으로 단면이 볼록렌즈형으로 형성되는 상부를 구비하는 막대형의 중앙 볼록렌즈; 및 상기 단일 광학계의 프리즘부 하부면에 배치되는 막대형의 태양전지를 포함하는 집광형 태양전지모듈이 제공될 수 있다. According to another aspect of the invention, having a region partitioned in the horizontal direction, the upper surface of each of the area is formed in a convex lens-shaped cross-section and condensing sunlight, and each facing so as to face the condenser A reflector formed on the lower surface of the region and reflecting the sunlight collected by the condenser in the direction of the center portion, a groove portion formed in a rod shape on the upper portion of the center portion and having a lower portion of an inverted triangular rod; A single optical system including a prism portion formed below to extend from the reflecting portion to have an inverted leg shape; A rod-shaped central convex lens coupled to the groove portion of the single optical system and having a top portion formed in a convex lens shape in cross section; And a light collecting solar cell module including a rod-shaped solar cell disposed on a lower surface of the prism unit of the single optical system.
본 발명의 또 다른 측면에 따르면, 수평 방향으로 구획화 된 영역을 갖는 것으로, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성되고 태양광을 집광하는 집광부와, 상기 집광부와 마주보도록 각 영역의 하부면에 형성되어 상기 집광부에 의해 집광된 상기 태양광을 일측 단부 방향으로 반사시키는 반사부를 포함하는 단일 광학계; 및 상기 단일 광학계의 일측면에 배치되어 상기 반사부로부터 반사된 태양광을 수광하는 태양전지를 포함하는 집광형 태양전지모듈이 제공될 수 있다.According to another aspect of the invention, having a region partitioned in the horizontal direction, the upper surface of each of the area is formed in a convex lens-shaped cross-section and condensing sunlight, and each facing so as to face the condenser A single optical system formed on a lower surface of an area and including a reflector configured to reflect the sunlight collected by the light collector in one end direction; And a solar cell disposed on one side of the single optical system and receiving a solar light reflected from the reflector.
본 발명의 구현예들에 따른 집광형 태양전지모듈은 집광을 위한 광학계와 태양광의 반사 및 가이드를 위한 광학계를 하나의 광학계로 구현함으로써, 2이상의 광학계를 사용하는 집광형 태양전지모듈에 비해 구조를 단순화시킬 수 있다. 따라서 2 이상의 광학계를 사용할 때 발생할 수 있는 두 광학계의 정렬 오차로 인해 발생하는 광손실을 줄일 수 있고, 공정 복잡성으로 인해 증가하는 제조 원가를 줄일 수 있다. The light concentrating solar cell module according to the embodiments of the present invention implements an optical system for condensing and an optical system for reflection and guide of sunlight as a single optical system, thereby comparing the structure of the light concentrating solar cell module using two or more optical systems. Can be simplified. Therefore, it is possible to reduce the optical loss caused by the misalignment of the two optical systems that can occur when using two or more optical systems, and to reduce the manufacturing cost due to the process complexity.
또한, 단일 광학계의 집광부의 각 영역별 직경차이와 이에 대응하는 반사부의 다단형 형태에 의해 상기 단일 광학계 내부 형태에 따라 초점을 조정하게 되는 바, 전체 집광형 태양전지모듈의 두께가 감소할 수 있다.In addition, the focus is adjusted according to the internal shape of the single optical system by the diameter difference of each region of the light condensing unit of the single optical system and the multi-stage shape of the reflecting unit corresponding thereto, thereby reducing the thickness of the entire light concentrating solar cell module. have.
도 1은 본 발명의 일 구현예에 따른 집광형 태양전지모듈의 단면 및 외관을 도시한 도면이다. 1 is a view showing a cross section and an appearance of a light collecting solar cell module according to an embodiment of the present invention.
도 2는 도 1의 집광형 태양전지모듈을 하방향에서 도시한 도면이다. FIG. 2 is a view illustrating the light collecting solar cell module of FIG. 1 in a downward direction.
도 3은 도 1의 집광형 태양전지모듈에서 중앙 볼록렌즈가 단일 광학계에 결합되는 모습을 개념적으로 도시한 도면이다. 3 is a view conceptually showing how the central convex lens is coupled to a single optical system in the light collecting solar cell module of FIG. 1.
도 4는 도 1의 집광형 태양전지모듈에서 프리즘부를 확대하여 도시한 도면이다. 4 is an enlarged view illustrating a prism unit in the light collecting solar cell module of FIG. 1.
도 5는 도 1의 A부분을 확대한 개략도이다. 5 is an enlarged schematic view of portion A of FIG. 1.
도 6은 도 1의 집광형 태양전지모듈을 복수개 배치한 모습을 도시한 개념도이다. 6 is a conceptual diagram illustrating a state in which a plurality of light collecting solar cell modules of FIG. 1 are arranged.
도 7은 본 발명의 다른 구현예에 따른 집광형 태양전지모듈의 단면 및 외관을 도시한 도면이다. 7 is a view showing a cross section and an appearance of a light collecting solar cell module according to another embodiment of the present invention.
도 8은 본 발명의 또 다른 구현예에 따른 집광형 태양전지모듈의 단면 및 외관을 도시한 도면이다. 8 is a view showing a cross section and an appearance of a light collecting solar cell module according to another embodiment of the present invention.
도 9는 본 발명의 또 다른 구현예에 따른 집광형 태양전지모듈의 단면 및 외관을 도시한 도면이다.9 is a view showing a cross section and an appearance of a light collecting solar cell module according to another embodiment of the present invention.
<부호의 설명><Description of the code>
100, 200, 300, 400: 집광형 태양전지모듈100, 200, 300, 400: condensing solar cell module
110, 210, 310, 410: 단일 광학계110, 210, 310, 410: single optical system
111, 211, 311, 411: 집광부111, 211, 311, 411: condenser
112, 212, 312, 412: 반사부112, 212, 312, 412: reflector
113, 313: 홈부113, 313: groove
114, 314: 프리즘부114, 314: prism section
120, 320: 중앙 볼록렌즈120, 320: center convex lens
130, 230, 330, 430: 태양전지130, 230, 330, 430: solar cell
이하, 첨부된 도면을 참조하여 본 발명을 구체적으로 설명한다. 하기의 설명은 본 발명을 구체적인 예시를 들어 기술하는 것으로 이해되어야 하며, 본 발명의 기술적 사상이 하기의 설명에 한정되는 것은 아니다. 그리고 첨부된 도면은 본 발명의 이해를 돕기 위해 제공되는 것으로, 본 발명의 기술적 사상이 첨부된 도면에 한정되는 것은 아니다. Hereinafter, with reference to the accompanying drawings will be described in detail the present invention. The following description should be understood to describe the present invention with specific examples, and the technical spirit of the present invention is not limited to the following description. And the accompanying drawings are provided to help understanding of the present invention, the technical spirit of the present invention is not limited to the accompanying drawings.
제1 구현예First embodiment
도 1은 본 발명의 일 구현예에 따른 집광형 태양전지모듈(100)의 단면 및 외관을 도시한 도면이고, 도 2는 도 1의 집광형 태양전지모듈(100)을 하방향에서 도시한 도면이다.1 is a view showing a cross-sectional view and appearance of a light collecting solar cell module 100 according to an embodiment of the present invention, Figure 2 is a view showing the light collecting solar cell module 100 of Figure 1 in the downward direction. to be.
도 1 및 도 2를 참조하면, 집광형 태양전지모듈(100)은 태양광을 집광, 반사 및 가이드하는 단일 광학계(110)와, 단일 광학계(110)에 결합되어 태양광을 태양전지(130)로 입사시키는 중앙 볼록렌즈(120)와, 태양광을 흡수하여 전기로 변환하는 태양전지(130)를 포함할 수 있다. 1 and 2, the light collecting solar cell module 100 is coupled to a single optical system 110 for condensing, reflecting and guiding sunlight and a single optical system 110 to provide sunlight to the solar cell 130. A central convex lens 120 to be incident to the light, and a solar cell 130 that absorbs the sunlight and converts it into electricity.
단일 광학계(110)는 태양광을 집광, 반사 및 가이드하는 기능을 한다. 기존의 집광형 태양전지모듈에서는 집광을 위한 광학계와 반사를 위한 광학계가 별도로 존재하였으나, 본 구현예에 따른 집광형 태양전지모듈(100)에서는 단일 광학계(110)를 통해 태양광의 집광, 반사 및 가이드 기능을 모두 수행한다는 차이가 있다. 따라서 2 이상의 광학계를 구비할 때에 발생 가능한 문제점들, 이를 테면 두 광학계의 정렬 오차에 의해 발생하는 광손실, 두 광학계 사이에 존재하는 공기층으로 인한 결로 현상, 두 광학계 조립과정에서 발생하는 공정 복잡화 등의 문제들이 발생하지 않는다. The single optical system 110 functions to collect, reflect, and guide sunlight. In the conventional condensing solar cell module, an optical system for condensing and an optical system for reflection existed separately, but in the condensing solar cell module 100 according to the present embodiment, condensing, reflection, and guide of sunlight through a single optical system 110 is performed. The difference is that it performs all the functions. Therefore, problems that may occur when two or more optical systems are provided, such as optical loss caused by misalignment of the two optical systems, condensation due to the air layer existing between the two optical systems, and process complexity occurring during the assembly of the two optical systems Problems do not occur.
단일 광학계(110)는 집광부(111), 반사부(112), 홈부(113) 및 프리즘부(114)를 포함할 수 있다. 단일 광학계(110)는 PMMA(Poly(methyl)methacrylate) 또는 유리로 형성될 수 있다. 이들 소재는 공기보다 큰 굴절율을 가지며, 재질 내부에서 광감쇄가 크지 않은 소재에 해당한다. The single optical system 110 may include a light collecting part 111, a reflecting part 112, a groove part 113, and a prism part 114. The single optical system 110 may be formed of poly (methyl) methacrylate (PMMA) or glass. These materials have a refractive index larger than that of air, and correspond to a material that does not have large light attenuation inside the material.
집광부(111)는 단일 광학계(110)의 상부에 위치하며 복수개의 동심원 형태로 구획화 된 영역을 가지며, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성될 수 있다. 즉, 도 1 및 도 2에 도시된 바와 같이 집광부(111)는 전체적으로 외곽으로 갈수록 크기가 커지는 도넛(Donut) 형태의 부재 복수개가 동일한 중심점을 기준으로 겹쳐진 형태를 가질 수 있다. 이 때, 각 영역의 폭은 달라질 수 있으며, 구체적으로 중앙부분으로 올수록 그 폭이 커지도록 형성될 수 있다. 이는 반사부(112)의 형태에 따라 초점거리가 변화하므로 동일한 F수를 유지하기 위한 것으로, 이와 관련된 구체적인 설명은 후술하기로 한다. 한편, 집광부(111)의 최외곽에는 단일 광학계(110)의 외형을 이루는 다각 프레임(미표기)이 형성될 수 있다. 집광부(111)는 상술한 것과 같이 기설정된 구획별로 볼록렌즈형의 상부면을 통해 태양광을 집광하는 기능을 할 수 있다. 즉 태양광은 집광부(111)의 각 구획 영역으로 입사하여 각각의 초점으로 집광될 수 있다. 또한 집광부(111)의 상부면은 태양광의 손실을 최소화할 수 있도록 무반사막 코팅이 이루어질 수 있다. The condenser 111 is positioned on the single optical system 110 and has a plurality of concentric circularly partitioned regions, and a cross section may be formed in a convex lens shape on the upper surface of each region. That is, as illustrated in FIGS. 1 and 2, the light collecting part 111 may have a shape in which a plurality of donut-shaped members that are larger in size toward the outside are overlapped based on the same center point. In this case, the width of each region may vary, and specifically, the width of the region may increase as the width of the region increases. This is to maintain the same F number since the focal length changes according to the shape of the reflector 112, and a detailed description thereof will be described later. Meanwhile, a polygonal frame (not shown) forming an outer shape of the single optical system 110 may be formed at the outermost portion of the light collecting part 111. The condenser 111 may function to condense sunlight through the upper surface of the convex lens type for each predetermined section as described above. That is, the sunlight may be incident on each partition area of the light collecting part 111 and collected at each focal point. In addition, the upper surface of the light collecting portion 111 may be made of an anti-reflective coating to minimize the loss of sunlight.
반사부(112)는 집광부(111)와 마주보도록 각 영역의 하부면에 형성되는 것으로, 집광부(112)에 의해 집광된 태양광을 중앙부 방향으로 반사시키는 기능을 할 수 있다. 여기에서 중앙부 방향이란 단일 광학계(110)의 중앙 부분을 가리키며, 구체적으로는 후술할 홈부(113) 방향에 해당할 수 있다. 이 때, 반사부(112)는 단부에서 중앙부로 갈수록 하방향으로 소정의 단차를 갖는 다단형으로 형성될 수 있으며, 예컨대 도 1 및 도 2에 도시된 것과 같이 단면이 계단형을 가지도록 형성될 수 있다. 즉, 반사부(112)의 각 면은 태양전지(130)에 가까워질수록 순차적으로 보다 아래쪽에 위치할 수 있다. 따라서 각 반사부(112)에서 반사되는 태양광이 다른 반사부(112)에 의해 방해 받지 않는다. The reflector 112 is formed on the lower surface of each region to face the light concentrator 111, and may function to reflect the sunlight collected by the light concentrator 112 toward the center portion. Herein, the central portion direction refers to the central portion of the single optical system 110 and may correspond to the groove portion 113 direction to be described later. At this time, the reflector 112 may be formed in a multi-stage having a predetermined step in the downward direction from the end to the central portion, for example, as shown in Figures 1 and 2 to have a stepped cross-sectional shape. Can be. That is, each surface of the reflector 112 may be sequentially positioned lower as the solar cell 130 gets closer. Therefore, sunlight reflected from each reflector 112 is not disturbed by other reflectors 112.
반사부(112)의 단차 부분은 집광된 상기 태양광의 초점 위치에 상응하도록 위치할 수 있다. 구체적으로 반사부(112)의 단차 부분은 상기 태양광의 초점 거리 부근에 대략 45°로 기울어진 반사면(도 2에서 112a로 표기됨)을 가질 수 있다. 이 때, 상기 반사면은 포물선 형태를 가질 수 있으며 구체적으로는 볼록 반사면 또는 오목 반사면을 가질 수 있다. 상기 반사면에 대한 구체적인 설명은 다른 도면을 참조하여 후술하기로 한다. 한편, 상기 반사면의 후면에는 입사된 태양광의 반사가 보다 효과적으로 일어날 수 있도록 반사면 코팅이 이루어질 수 있다. The stepped portion of the reflector 112 may be positioned to correspond to the focal position of the focused sunlight. Specifically, the stepped portion of the reflector 112 may have a reflective surface (denoted 112a in FIG. 2) inclined at approximately 45 ° near the focal length of the sunlight. In this case, the reflective surface may have a parabolic shape and specifically, may have a convex reflective surface or a concave reflective surface. A detailed description of the reflective surface will be described later with reference to other drawings. Meanwhile, a reflective surface coating may be formed on the rear surface of the reflective surface to more effectively reflect incident sunlight.
홈부(113)는 단일 광학계(110)의 중앙부의 상부에 형성되는 것으로 후술할 중앙 볼록렌즈(120)가 결합하는 공간에 해당한다. 홈부(113)는 원통형(내지 깔때기형)으로 형성될 수 있으며, 이 때 하부는 역원뿔형으로 형성될 수 있다(도 1 및 도 2 참고). 관련하여 도 3에서는 중앙 볼록렌즈(120)가 단일 광학계(110)에 결합되는 모습을 도시하고 있다. 도 3을 참조하면, 중앙 볼록렌즈(120)는 상부면 단면이 볼록렌즈형으로 형성되고, 하단은 평면형으로 형성될 수 있다. 이 때 중앙 볼록렌즈(120)의 폭은 단일 광학계(110)의 홈부(113)의 폭과 상응하도록 형성되는 바, 중앙 볼록렌즈(120)를 홈부(113)에 끼움 결합하여 고정시킬 수 있다. 이 때, 상기 결합을 위해 UV 에폭시 등과 같은 접착제과 이용될 수도 있다. 중앙 볼록렌즈(120)의 끼움 결합후에는, 도 1 및 도 2에 도시된 바와 같이 홈부(113) 하부는 빈 공간이 될 수 있다(역원뿔형 공간). 상기 빈 공간에서 반사부(112)로부터 전달된 태양광이 전반사되어 프리즘부(114)로 진행될 수 있다. The groove 113 is formed on the central portion of the single optical system 110 and corresponds to a space to which the central convex lens 120 to be described later is coupled. The groove portion 113 may be formed in a cylindrical shape (or funnel type), and the lower part may be formed in an inverted cone shape (see FIGS. 1 and 2). 3, the central convex lens 120 is coupled to the single optical system 110. Referring to FIG. 3, the central convex lens 120 may be formed in a convex lens shape at an upper end surface thereof and may be formed in a planar shape at a lower end thereof. At this time, the width of the central convex lens 120 is formed to correspond to the width of the groove 113 of the single optical system 110, the center convex lens 120 can be fixed by fitting to the groove 113. At this time, it may be used with an adhesive such as UV epoxy for the bonding. After fitting the center convex lens 120, the lower portion of the groove 113 may be an empty space as shown in FIGS. 1 and 2 (inverted conical space). Solar light transmitted from the reflecting unit 112 in the empty space may be totally reflected to the prism unit 114.
프리즘부(114)는 단일 광학계(110)의 중앙부의 하부에 형성되는 것으로 반사부(112)로부터 연장된 역사다리형을 갖도록 형성될 수 있다. 프리즘부(114)의 하부 면적은 후술할 태양전지(130)의 면적과 동일할 수 있다. 관련하여 도 4에서는 도 1의 프리즘부(114)를 확대하여 도시하고 있다. 도 4를 참조하면, 프리즘부(114)의 상부면은 원형으로 형성되지만, 하부면은 태양전지(130)와의 접합을 위해 사각형으로 형성될 수 있다(이는 태양전지(130)가 일반적으로 사각형을 취하고 있기 때문이다). 따라서 프리즘부(114)의 상부면에서 하부면으로 갈수록 원형에서 사각형으로 점차 변화하도록 형태를 형성하거나, 도 4에 도시된 바와 같이 태양전지(130)의 각 면으로부터 프리즘부(114)의 상부면까지 포물면이 나타나도록 절개하는 형태(도 4에서 절개면을 a로 표기함)로 형성할 수 있다. The prism portion 114 is formed below the central portion of the single optical system 110 and may be formed to have an inverted leg shape extending from the reflecting portion 112. The lower area of the prism portion 114 may be the same as the area of the solar cell 130 to be described later. 4 shows an enlarged view of the prism portion 114 of FIG. 1. Referring to FIG. 4, the top surface of the prism portion 114 is formed in a circular shape, but the bottom surface may be formed in a quadrangular shape for bonding with the solar cell 130 (which means that the solar cell 130 generally has a rectangular shape). Because you are drunk). Therefore, the upper surface of the prism portion 114 to form a shape to gradually change from circular to square toward the lower surface, or as shown in Figure 4 the upper surface of the prism portion 114 from each surface of the solar cell 130 It may be formed in the form of cutting so that the parabolic surface appears (to the incision surface in Figure 4 a).
다시 도 1 및 도 2를 참조하면, 중앙 볼록렌즈(120)는 단일 광학계(110)의 중앙 부분에 결합되는 것으로, 구체적으로는 단일 광학계(110)의 홈부(113)에 결합될 수 있다. 중앙 볼록렌즈(120)는 단일 광학계(110)의 중앙 부분에 입사되는 태양광을 집광시키는 기능과, 집광된 태양광을 하부에 위치한 프리즘부(114)로 입사시키는 기능을 할 수 있다. 이를 위해 중앙 볼록렌즈(120)는 상부면 단면이 볼록렌즈형으로 형성될 수 있다. 중앙 볼록렌즈(120)가 단일 광학계(110)의 홈부(113)에 결합되면, 홈부(113)의 하부(역원뿔형 공간)는 빈 공간이 될 수 있다. Referring back to FIGS. 1 and 2, the central convex lens 120 is coupled to the central portion of the single optical system 110, and specifically, may be coupled to the groove portion 113 of the single optical system 110. The central convex lens 120 may function to condense sunlight incident on the central portion of the single optical system 110, and may perform the function of injecting the condensed sunlight into the prism portion 114 positioned below. To this end, the central convex lens 120 may be formed in a convex lens-shaped cross section on its upper surface. When the central convex lens 120 is coupled to the groove portion 113 of the single optical system 110, the lower portion (inverted conical space) of the groove portion 113 may be an empty space.
태양전지(130)는 단일 광학계(110)의 프리즘부(114) 하부면에 배치될 수 있다. 관련하여상술하였듯이 태양전지(130)와 프리즘부(114)의 하부면적은 동일할 수 있다. 태양전지(130)는 단일 광학계(110) 및 중앙 볼록렌즈(120)를 통해 입사된 태양광의 에너지를 전기 에너지로 변환하여 전기 에너지를 생성하는 기능을 할 수 있다. 태양전지(130)는 Ⅲ-Ⅴ족 화합물 반도체 태양전지일 수 있다. 도면에 도시되지는 않았으나, 태양전지(130)로 입사된 태양광 에너지는 태양전지(130)에 형성된 애노드(anode) 및 캐소드(cathode) 전극의 작용에 의해 전기 에너지로 변환됙고, 상기 전기 에너지는 태양전지(130)의 하부에 배치되는 하이브리드 IC 기판에 의해 외부로 전달될 수 있다. 이와 같은 태양전지(130)의 구조 및 전기에너지 변환 과정이나, 하이브리드 IC기판은 공지된 내용이므로 구체적인 설명은 생략하도록 한다. 한편, 상기 하이브리드 IC 기판은 알루미나(alumina)로 이루어질 수 있다. The solar cell 130 may be disposed on the lower surface of the prism portion 114 of the single optical system 110. As described above, the lower area of the solar cell 130 and the prism portion 114 may be the same. The solar cell 130 may function to generate electrical energy by converting energy of sunlight incident through the single optical system 110 and the central convex lens 120 into electrical energy. The solar cell 130 may be a III-V compound semiconductor solar cell. Although not shown in the drawings, the solar energy incident to the solar cell 130 is converted into electrical energy by the action of an anode and a cathode electrode formed in the solar cell 130, the electrical energy is It may be transferred to the outside by the hybrid IC substrate disposed under the solar cell 130. Since the structure and electrical energy conversion process of the solar cell 130 or the hybrid IC substrate is well known, a detailed description thereof will be omitted. Meanwhile, the hybrid IC substrate may be made of alumina.
이하, 본 구현예에 따른 집광형 태양전지모듈(100)의 태양광 집광 및 반사과정에 대해 보다 구체적으로 설명한다. Hereinafter, a light collecting and reflecting process of the light collecting solar cell module 100 according to the present embodiment will be described in more detail.
도 5는 도 1의 A 부분을 확대한 개략도이다. 도 5a는 반사부(112)의 단차 부분이 볼록 반사면(112a)을 갖는 경우를 도시하고 있으며, 도 5b는 반사부(112)의 단차 부분이 오목 반사면(112b)을 갖는 경우를 도시하고 있다. 5 is an enlarged schematic view of a portion A of FIG. 1. FIG. 5A shows a case where the stepped portion of the reflecting portion 112 has a convex reflecting surface 112a, and FIG. 5B shows a case where the stepped portion of the reflecting portion 112 has a concave reflecting surface 112b. have.
도 1 내지 도 5를 참조하면, 태양광(L)은 단일 광학계(110)의 집광부(111)를 통해 집광될 수 있다. 집광부(111)는 설명하였듯, 기설정된 각 구획 영역을 가지며 태양광(L)은 상기 각 구획 영역으로 입사하여 각 초점으로 집광된다(초점은 도 5에서 P1, P2로 표기함). 집광부(111)를 통과한 태양광(L)은 반사부(112)의 단차 부분에 의해 반사되어 평행광 형태로 변환될 수 있다. 여기에서 평행광 형태로 변환된다는 말은 집광형 태양전지모듈(100)을 기준으로 수직 방향으로 입사된 태양광(L)이 반사부(112)에 의해 반사되면서 수평 방향으로 변환함을 의미한다. 태양광(L)은 반사부(112)에서 반사되어 평행광 형태로 단일 광학계(110)의 중앙부로 진행할 수 있다. 이 때, 상술하였듯 반사부(112)는 단부에서 중앙부로 갈수록 하방향으로 소정의 단차를 갖는 다단형으로 형성되는 바, 각 반사부(112)에서 반사되는 태양광이 다른 반사부(112)에 의해 방해 받지 않는다.1 to 5, the sunlight L may be collected through the light collecting unit 111 of the single optical system 110. As described above, the light collecting part 111 has a predetermined partition area, and the sunlight L is incident on each of the partition areas and focused at each focal point (focus is indicated by P1 and P2 in FIG. 5). The sunlight L passing through the condenser 111 may be reflected by the stepped portion of the reflector 112 and converted into parallel light. Herein, the term “converted to parallel light form” means that the light L incident in the vertical direction with respect to the light concentrating solar cell module 100 is reflected by the reflector 112 and converted into the horizontal direction. The sunlight L may be reflected by the reflector 112 and travel toward the center of the single optical system 110 in the form of parallel light. At this time, as described above, the reflector 112 is formed in a multi-stage shape having a predetermined step in a downward direction from the end portion to the center portion, and the reflector 112 having different sunlight from each reflector 112 is different. Not disturbed by
이때, 반사부(112)의 각 면이 태양전지(130)에 가까워질수록 순차적으로 보다 아래쪽에 위치하게 되므로, 기설정된 각 구획 영역별로 초점의 위치(도 5에서 P1, P2로 표기함)는 달라지게 된다. 구체적으로는 태양전지(130)에 가까워질수록 초점의 위치는 아래로 내려가게 된다. 관련하여 초점의 위치 조정은 F수(F number)를 통해 이루어질 수 있다. F수는 렌즈 또는 반사경의 구경비의 역수로 정의된다. 즉, 본 구현예에서 F수는 초점거리를 집광부(111)의 상부 볼록렌즈형 모양의 직경(도 1에서 f2로 표기됨)으로 나눈 값에 해당한다. 따라서 단일 광학계(110)에서 기설정된 각 영역별로 F수를 유지하기 위해서는 초점거리가 길어지는 만큼 집광부(111)의 상부 볼록렌즈형 모양의 직경 역시 동일 비율만큼 커져야 한다. 그러므로 집광부(111)는 중앙부에 가까워질수록 그 폭(도 1에서 f2로 표기됨)이 커지도록 형성될 수 있다. 이와 같이 집광부(111)의 각 영역별 직경 차이와 이에 대응하는 반사부(112)가 중앙부로 갈수록 하방향으로 소정의 단차를 갖는 다단형으로 형성됨으로써, 단일 광학계(110)의 내부 형태에 따라 초점을 조정하게 되는 바, 태양광(L)의 입사 위치에 따라 초점거리를 달리 설계하는 것에 비해 전체 집광형 태양전지모듈의 두께가 감소할 수 있다.At this time, as each surface of the reflector 112 is located closer to the solar cell 130 in order, the positions of the focal points (indicated by P1 and P2 in FIG. 5) for each preset partition area are Will be different. Specifically, the closer to the solar cell 130, the lower the position of the focal point. In relation to this, the position of the focal point can be adjusted through the F number. The F number is defined as the inverse of the aperture ratio of the lens or reflector. That is, in the present embodiment, the F number corresponds to a value obtained by dividing the focal length by the diameter of the upper convex lens-shaped shape (denoted as f2 in FIG. 1) of the condenser 111. Therefore, in order to maintain the F number for each predetermined region in the single optical system 110, as the focal length becomes longer, the diameter of the upper convex lens-shaped shape of the condenser 111 must also be increased by the same ratio. Therefore, the light collecting part 111 may be formed such that its width (referred to f2 in FIG. 1) becomes larger as it approaches the central part. As such, the diameter difference of each region of the light condensing unit 111 and the corresponding reflecting unit 112 are formed in a multi-stage shape having a predetermined step in the downward direction toward the center portion, and according to the internal shape of the single optical system 110. As the focus is adjusted, the thickness of the entire condensing solar cell module may be reduced, as compared with a different focal length depending on the incident position of the sunlight L. FIG.
상술하였듯 태양광(L)은 반사부(112)에서 반사되며, 구체적으로는 반사부(112)의 단차 부분에서 반사될 수 있다. 이 때, 상기 단차 부분은 상기 태양광의 초점 거리 부근에 대략 45°로 기울어진 반사면(도 2에서 112a로 표기됨)을 가질 수 있으며, 도 5a에서와 같이 볼록 반사면(112a)를 가지거나 도 5b에서와 같이 오목 반사면(112b)을 가질 수 있다. 이 때, 반사면이 볼록 반사면(112a)을 가지는 경우에는 집광된 태양광(L)의 초점 위치(P1)보다 상기 반사면의 위치가 보다 위쪽에 위치할 수 있으며(도 5a 참고), 반사면이 오목 반사면(112b)을 가지는 경우에는 집광된 태양광(L)의 초점 위치(P2)보다 상기 반사면의 위치가 보다 아래쪽에 위치할 수 있다(도 5b 참고). 또한, 각 반사면의 위치가 초점으로부터 멀어질수록 상기 반사면의 면적이 넓어지고, 초점에 가까울수록 상기 반사면의 면적이 좁아지도록 형성할 수 있다. As described above, the sunlight L may be reflected by the reflector 112, and specifically, may be reflected by the stepped portion of the reflector 112. In this case, the stepped portion may have a reflective surface (denoted 112a in FIG. 2) inclined at approximately 45 ° near the focal length of the sunlight, or may have a convex reflective surface 112a as in FIG. 5A. As shown in FIG. 5B, it may have a concave reflective surface 112b. At this time, when the reflective surface has a convex reflective surface 112a, the position of the reflective surface may be located higher than the focal position P1 of the collected sunlight L (see FIG. 5A), and When the slope has the concave reflecting surface 112b, the position of the reflecting surface may be located lower than the focus position P2 of the collected sunlight L (see FIG. 5B). Further, as the position of each reflecting surface moves away from the focus, the area of the reflecting surface becomes wider, and the closer to the focus, the narrower the reflecting surface area becomes.
다음으로 반사부(112)에서 반사된 태양광(L)은 수평 방향으로 홈부(113)로 진행할 수 있다. 이 때, 태양광(L)은 홈부(113) 하부의 역원뿔형으로 형성된 공간과의 경계면에서 내부 전반사를 일으키게 되는 바, 프리즘부(114)로 전달될 수 있다. 이어서 태양광(L)은 프리즘부(114)를 지나 프리즘부(114) 하부에 배치된 태양전지(130)로 전달될 수 있다. 한편, 중앙 볼록렌즈(120)를 통해 입사한 태양광(L)은 볼록렌즈면에서 집광된 후, 중앙 볼록렌즈(120)의 하단과 단일 광학계(110)의 홈부(113) 하부의 역원뿔형이 이루는 경계를 통과하면서 굴절되어 최종적으로 프리즘부(114)를 거쳐 태양전지(130)로 전달될 수 있다. Next, the sunlight L reflected by the reflector 112 may travel to the groove 113 in the horizontal direction. In this case, the sunlight L may cause total internal reflection at the interface with the space formed in the inverted cone shape below the groove portion 113, and may be transmitted to the prism portion 114. Subsequently, the sunlight L may pass through the prism portion 114 to the solar cell 130 disposed under the prism portion 114. Meanwhile, the sunlight L incident through the central convex lens 120 is collected at the convex lens surface, and then the reverse conical shape of the lower end of the central convex lens 120 and the groove 113 of the single optical system 110 is lowered. The light may be refracted while passing through the boundary, and finally transferred to the solar cell 130 via the prism portion 114.
정리하자면 태양광(L)은 집광부(111)의 각 구획 영역별로 집광되어 반사부(112)에서 반사되어 진행 방향이 변경되고, 다시 홈부(113) 하부의 역원뿔형으로 형성된 공간에서 반사되어 프리즘부(114) 및 태양전지(130)로 전달될 수 있다. 그리고 태양전지(130)에서는 전달받은 태양광(L)의 에너지를 전기에너지로 변환하는 기능을 한다. In summary, the sunlight L is collected for each partition area of the light collecting part 111 and reflected by the reflecting part 112 to change the traveling direction, and then reflected in a space formed in an inverted cone shape below the groove part 113 to prism. The unit 114 and the solar cell 130 may be transferred. And the solar cell 130 functions to convert the energy of the received sunlight (L) to electrical energy.
상술한 바와 같은 집광형 태양전지모듈(100)은 집광을 위한 광학계와 태양광의 반사 및 가이드를 위한 광학계를 하나의 광학계(단일 광학계)로 구현함으로써, 2이상의 광학계를 사용하는 집광형 태양전지모듈에 비해 구조를 단순화시킬 수 있다. 따라서 2 이상의 광학계를 사용할 때 발생할 수 있는 두 광학계의 정렬 오차로 인해 발생하는 광손실을 줄일 수 있고, 공정 복잡성으로 인해 증가하는 제조 원가를 줄일 수 있다. 또한, 단일 광학계(110)의 집광부(111)의 각 영역별 직경차이와 이에 대응하는 반사부(112)의 다단형 형태에 의해 상기 단일 광학계 내부 형태에 따라 초점을 조정하게 되는 바, 전체 집광형 태양전지모듈의 두께가 감소할 수 있다. The condensing solar cell module 100 as described above implements an optical system for condensing and an optical system for reflection and guide of sunlight into a single optical system (single optical system), thereby condensing solar cell modules using two or more optical systems. The structure can be simplified. Therefore, it is possible to reduce the optical loss caused by the misalignment of the two optical systems that can occur when using two or more optical systems, and to reduce the manufacturing cost due to the process complexity. In addition, the focus is adjusted according to the internal shape of the single optical system by the difference in diameter of each region of the condenser 111 of the single optical system 110 and the multi-stage shape of the reflecting unit 112 corresponding thereto. The thickness of the solar cell module can be reduced.
한편, 집광형 태양전지모듈(100)은 집광부(111)의 최외곽에 형성되어 단일 광학계(110)의 외형을 이루는 다각 프레임(미표기)이 형성될 수 있다. 이 때, 상기 다각 프레임을 6각형으로 구성하는 경우 복수개의 집광형 태양전지모듈(100)을 허니콤(honeycomb) 구조로 연결함으로써 태양광 모듈 어레이를 구성할 수 있다. 관련하여 도 6은 도 1의 집광형 태양전지모듈(100)을 복수개 배치한 모습을 도시한 개념도이다. 이 경우, 동일 공간에 보다 많은 집광형 태양전지모듈(100)을 어레이할 수 있는 장점이 있다. Meanwhile, the light collecting solar cell module 100 may be formed at the outermost part of the light collecting part 111 to form a polygonal frame (not shown) forming an external shape of the single optical system 110. In this case, when the polygonal frame is configured as a hexagon, the photovoltaic module array may be configured by connecting the plurality of concentrating solar cell modules 100 in a honeycomb structure. 6 is a conceptual diagram illustrating a state in which a plurality of light collecting solar cell modules 100 of FIG. 1 are arranged. In this case, there is an advantage that can be arranged more concentrating solar cell module 100 in the same space.
제2 구현예Second embodiment
이하, 본 발명의 제2 구현예에 대해 설명하도록 한다. 도 7은 본 발명의 다른 구현예(제2구현예)에 따른 집광형 태양전지모듈(200)의 단면 및 외관을 도시한 도면이다.Hereinafter, a second embodiment of the present invention will be described. 7 is a view illustrating a cross section and an appearance of a light collecting solar cell module 200 according to another embodiment (second embodiment) of the present invention.
도 7을 참조하면, 집광형 태양전지모듈(200)은 태양광을 집광, 반사 및 가이드하는 단일 광학계(210)와, 태양광을 흡수하여 전기로 변환하는 태양전지(230)를 포함할 수 있다. Referring to FIG. 7, the light collecting solar cell module 200 may include a single optical system 210 for collecting, reflecting, and guiding sunlight, and a solar cell 230 for absorbing and converting sunlight into electricity. .
단일 광학계(210)는 태양광을 집광, 반사 및 가이드하는 기능을 한다. 기존의 집광형 태양전지모듈에서는 집광을 위한 광학계와 반사를 위한 광학계가 별도로 존재하였으나, 본 구현예에 따른 집광형 태양전지모듈(200)에서는 단일 광학계(210)를 통해 태양광의 집광, 반사 및 가이드 기능을 모두 수행한다는 차이가 있다. 따라서 2 이상의 광학계를 구비할 때에 발생 가능한 문제점들, 이를 테면 두 광학계의 정렬 오차에 의해 발생하는 광손실, 두 광학계 사이에 존재하는 공기층으로 인한 결로 현상, 두 광학계 조립과정에서 발생하는 공정 복잡화 등의 문제들이 발생하지 않는다.The single optical system 210 functions to collect, reflect, and guide sunlight. In the conventional condensing solar cell module, an optical system for condensing and an optical system for reflection existed separately, but in the condensing solar cell module 200 according to the present embodiment, the condensing, reflection, and guide of sunlight through a single optical system 210 is provided. The difference is that it performs all the functions. Therefore, problems that may occur when two or more optical systems are provided, such as optical loss caused by misalignment of the two optical systems, condensation due to the air layer existing between the two optical systems, and process complexity occurring during the assembly of the two optical systems Problems do not occur.
단일 광학계(210)는 집광부(211), 반사부(212) 및 홈부(213)를 포함할 수 있다. 단일 광학계(110)는 PMMA(Poly(methyl)methacrylate) 또는 유리로 형성될 수 있다. 이들 소재는 공기보다 큰 굴절율을 가지며, 재질 내부에서 광감쇄가 크지 않은 소재에 해당한다.The single optical system 210 may include a light collecting unit 211, a reflecting unit 212, and a groove 213. The single optical system 110 may be formed of poly (methyl) methacrylate (PMMA) or glass. These materials have a refractive index larger than that of air, and correspond to a material that does not have large light attenuation inside the material.
집광부(211)는 단일 광학계(210)의 상부에 위치하며 복수개의 동심원 형태로 구획화 된 영역을 가지며, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성될 수 있다. 즉, 도 7에 도시된 바와 같이 집광부(211)는 전체적으로 외곽으로 갈수록 크기가 커지는 도넛(Donut) 형태의 부재 복수개가 동일한 중심점을 기준으로 겹쳐진 형태를 가질 수 있다. 한편 집광부(211)의 최외곽에는 단일 광학계(210)의 외형을 이루는 다각 프레임(미표기)이 형성될 수 있다. The condenser 211 is positioned above the single optical system 210 and has a plurality of concentric circled regions, and a cross section may be formed in a convex lens shape on the upper surface of each region. That is, as shown in FIG. 7, the light collecting part 211 may have a shape in which a plurality of donut-shaped members that are larger in size toward the outside are overlapped with respect to the same center point. Meanwhile, a polygonal frame (not shown) may be formed at the outermost portion of the light collecting unit 211 to form an external shape of the single optical system 210.
집광부(211)는 상술한 것과 같이 기설정된 구획별로 볼록렌즈형의 상부면을 통해 태양광을 집광하는 기능을 할 수 있다. 즉 태양광은 집광부(211)의 각 구획 영역으로 입사하여 각각의 초점으로 집광될 수 있다. 또한 집광부(211)의 상부면은 태양광의 손실을 최소화할 수 있도록 무반사막 코팅이 이루어질 수 있다.The condenser 211 may function to condense the sunlight through the upper surface of the convex lens type for each predetermined section as described above. That is, the sunlight may be incident on each compartment of the light collecting unit 211 and collected at each focal point. In addition, the top surface of the light collecting part 211 may be coated with an anti-reflective coating so as to minimize the loss of sunlight.
반사부(212)는 집광부(211)와 마주보도록 각 영역의 하부면에 형성되는 것으로, 집광부(212)에 의해 집광된 태양광을 중앙부 방향으로 반사시키는 기능을 할 수 있다. 여기에서 중앙부 방향이란 단일 광학계(210)의 중앙 부분을 가리키며, 구체적으로는 후술할 홈부(213) 방향에 해당할 수 있다. 이 때, 반사부(212)는 단부에서 중앙부로 갈수록 하방향으로 소정의 단차를 갖는 다단형으로 형성될 수 있으며, 예컨대 도 7에 도시된 것과 같이 단면이 계단형을 가지도록 형성될 수 있다. 또한, 반사부(212)의 각 면은 홈부(213)를 향해 소정 각도 기울어지도록 형성될 수 있다. The reflecting unit 212 is formed on the lower surface of each region to face the light collecting unit 211, and may function to reflect the sun light collected by the light collecting unit 212 toward the center portion. Herein, the central direction refers to the central portion of the single optical system 210 and may correspond to the direction of the groove 213 which will be described later. At this time, the reflecting unit 212 may be formed in a multi-stage having a predetermined step in the downward direction from the end to the center portion, for example, may be formed so that the cross section has a stepped shape as shown in FIG. In addition, each surface of the reflector 212 may be formed to be inclined at a predetermined angle toward the groove 213.
반사부(212)의 단차 부분은 집광된 상기 태양광의 초점 위치에 상응하도록 위치할 수 있다. 구체적으로 반사부(212)의 단차 부분은 상기 태양광의 초점 거리 부근에 대략 45°로 기울어진 반사면(도 7에서 212a로 표기됨)을 가질 수 있다. 이 때, 상기 반사면은 포물선 형태를 가질 수 있으며 구체적으로는 볼록 반사면 또는 오목 반사면을 가질 수 있다. 상기 반사면의 후면에는 입사된 태양광의 반사가 보다 효과적으로 일어날 수 있도록 반사면 코팅이 이루어질 수 있다.The stepped portion of the reflector 212 may be positioned to correspond to the focal position of the focused sunlight. Specifically, the stepped portion of the reflector 212 may have a reflective surface (denoted 212a in FIG. 7) inclined at approximately 45 ° near the focal length of the sunlight. In this case, the reflective surface may have a parabolic shape and specifically, may have a convex reflective surface or a concave reflective surface. Reflecting surface coating may be formed on the rear surface of the reflecting surface to more effectively reflect incident sunlight.
홈부(213)는 단일 광학계(210)의 중앙부에 형성되는 것으로 다각형(예컨대 사각기둥형)으로 형성될 수 있다. 이 때, 태양전지(230)는 수광 영역이 외측에 위치되도록 홈부(213)의 적어도 1면 이상에 배치될 수 있다. 즉 전술한 구현예와는 달리 태양전지(230)는 수직 방향으로 배치된다. 관련하여 도 7에서는 2개의 태양전지(230)가 홈부(213)의 양측면에 한 개씩 배치된 모습을 도시하고 있다. 태양전지(230)는 전술한 구현예에서와 동일 또는 유사하므로 중복 설명은 생략하도록 한다. The groove 213 is formed in the center of the single optical system 210 and may be formed in a polygonal shape (eg, a square pillar). At this time, the solar cell 230 may be disposed on at least one surface of the groove portion 213 so that the light receiving region is located outside. In other words, unlike the above-described embodiment, the solar cell 230 is disposed in the vertical direction. In relation to FIG. 7, two solar cells 230 are disposed on each side of the groove 213 one by one. Since the solar cell 230 is the same as or similar to the above-described embodiment, a redundant description thereof will be omitted.
상술한 것과 같은 본 구현예에 따른 집광형 태양전지모듈(200)에서의 태양광 집광 및 반사과정에 대해 설명하면, 우선 태양광(L)은 단일 광학계(210)의 집광부(211)를 통해 집광될 수 있다. 그리고 집광부(211)를 통과한 태양광(L)은 반사부(212)의 단차 부분에 의해 반사되어 진행 방향이 변환될 수 있으며, 구체적으로는 진행 방향이 홈부(213)를 향하도록 변환될 수 있다. 그리고 반사된 태양광(L)은 홈부의 각 면에 배치된 태양전지(230)로 전달될 수 있다. 태양전지(230)에서는 전달받은 태양광(L)의 에너지를 전기에너지로 변환하는 기능을 한다. 즉 본 구현예는 전술한 구현예와는 달리 중앙 볼록렌즈나 프리즘부가 생략되고 태양전지(230)를 홈부(213)에 직접 배치되는 형태로 구성될 수 있다. Referring to the solar light collecting and reflecting process in the light collecting solar cell module 200 according to the present embodiment as described above, first, the light L is through the light collecting part 211 of the single optical system 210. Can be condensed. The sunlight L passing through the light collecting unit 211 may be reflected by the stepped portion of the reflecting unit 212 so that the traveling direction may be changed, and specifically, the traveling direction may be converted so as to face the groove 213. Can be. The reflected sunlight L may be transmitted to the solar cell 230 disposed on each side of the groove. The solar cell 230 converts the energy of the received sunlight L into electrical energy. In other words, unlike the above-described embodiment, the present embodiment may be configured such that the central convex lens or the prism part is omitted and the solar cell 230 is directly disposed in the groove part 213.
제3 구현예Third embodiment
이하, 본 발명의 제3 구현예에 대해 설명하도록 한다. 도 8은 본 발명의 또 다른 구현예(제3 구현예)에 따른 집광형 태양전지모듈(300)의 단면 및 외관을 도시한 도면이다.Hereinafter, a third embodiment of the present invention will be described. 8 is a view showing a cross section and an appearance of a light collecting solar cell module 300 according to another embodiment (third embodiment) of the present invention.
도 8을 참조하면, 집광형 태양전지모듈(300)은 태양광을 집광, 반사 및 가이드하는 단일 광학계(310)와, 단일 광학계(310)에 결합되어 태양광을 태양전지(330)로 입사시키는 중앙 볼록렌즈(320)와, 태양광을 흡수하여 전기로 변환하는 태양전지(330)를 포함할 수 있다.Referring to FIG. 8, the light concentrating solar cell module 300 is coupled to a single optical system 310 for condensing, reflecting and guiding sunlight, and is incident on the solar cell 330 by being coupled to a single optical system 310. The central convex lens 320 and a solar cell 330 that absorbs sunlight and converts it into electricity.
단일 광학계(310)는 태양광을 집광, 반사 및 가이드하는 기능을 한다. 기존의 집광형 태양전지모듈에서는 집광을 위한 광학계와 반사를 위한 광학계가 별도로 존재하였으나, 본 구현예에 따른 집광형 태양전지모듈(300)에서는 단일 광학계(310)를 통해 태양광의 집광, 반사 및 가이드 기능을 모두 수행한다는 차이가 있다. 따라서 2 이상의 광학계를 구비할 때에 발생 가능한 문제점들, 이를 테면 두 광학계의 정렬 오차에 의해 발생하는 광손실, 두 광학계 사이에 존재하는 공기층으로 인한 결로 현상, 두 광학계 조립과정에서 발생하는 공정 복잡화 등의 문제들이 발생하지 않는다. The single optical system 310 functions to collect, reflect, and guide sunlight. In the conventional condensing solar cell module, an optical system for condensing and an optical system for reflection existed separately, but in the condensing solar cell module 300 according to the present embodiment, the condensing, reflection, and guide of sunlight through a single optical system 310 is provided. The difference is that it performs all the functions. Therefore, problems that may occur when two or more optical systems are provided, such as optical loss caused by misalignment of the two optical systems, condensation due to the air layer existing between the two optical systems, and process complexity occurring during the assembly of the two optical systems Problems do not occur.
단일 광학계(310)는 집광부(311), 반사부(312), 홈부(313) 및 프리즘부(314)를 포함할 수 있다. 단일 광학계(110)는 PMMA(Poly(methyl)methacrylate) 또는 유리로 형성될 수 있다. 이들 소재는 공기보다 큰 굴절율을 가지며, 재질 내부에서 광감쇄가 크지 않은 소재에 해당한다. The single optical system 310 may include a light collecting part 311, a reflecting part 312, a groove part 313, and a prism part 314. The single optical system 110 may be formed of poly (methyl) methacrylate (PMMA) or glass. These materials have a refractive index larger than that of air, and correspond to a material that does not have large light attenuation inside the material.
집광부(311)는 단일 광학계(110)의 상부에 위치하며 수평 방향으로 구획화 된 영역을 가지며, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성될 수 있다. 즉, 도 8에 도시된 바와 같이 집광부(311)는 전체적으로 윗면이 볼록한 형태를 갖는 복수개의 막대형 부재가 일방향으로 나열된 형태를 가질 수 있다. 이 때, 각 영역의 폭은 달라질 수 있으며, 구체적으로는 외측에서부터 중앙부분으로 올수록 그 폭이 커지도록 형성될 수 있다. 한편, 집광부(311)의 최외곽에는 단일 광학계(310)의 외형을 이루는 다각 프레임(미도시)이 형성될 수 있다. 집광부(311)는 상술한 것과 같이 기설정된 구획별로 볼록렌즈형의 상부면을 통해 태양광을 집광하는 기능을 할 수 있다. 즉 태양광은 집광부(311)의 각 구획 영역으로 입사하여 각각의 초점으로 집광될 수 있다. 또한 집광부(311)의 상부면은 태양광의 손실을 최소화할 수 있도록 무반사막 코팅이 이루어질 수 있다. The condenser 311 is positioned above the single optical system 110 and has a region partitioned in the horizontal direction, and a cross section may be formed in a convex lens shape on the upper surface of each region. That is, as shown in FIG. 8, the light collecting part 311 may have a shape in which a plurality of rod-shaped members having a convex shape on the top thereof are arranged in one direction. In this case, the width of each region may vary, and specifically, the width of the region may be increased from the outside to the center portion. Meanwhile, a polygonal frame (not shown) may be formed at the outermost portion of the light collecting part 311 to form an external shape of the single optical system 310. The condenser 311 may function to condense the sunlight through the upper surface of the convex lens type for each predetermined section as described above. That is, the sunlight may be incident on each compartment of the light collecting unit 311 and collected at each focal point. In addition, the top surface of the light collecting part 311 may be made of an anti-reflection coating so as to minimize the loss of sunlight.
반사부(312)는 집광부(311)와 마주보도록 각 영역의 하부면에 형성되는 것으로, 집광부(312)에 의해 집광된 태양광을 중앙부 방향으로 반사시키는 기능을 할 수 있다. 여기에서 중앙부 방향이란 단일 광학계(310)의 중앙 부분을 가리키며, 구체적으로는 후술할 홈부(313) 방향에 해당할 수 있다. 이 때, 반사부(312)는 단부에서 중앙부로 갈수록 하방향으로 소정의 단차를 갖는 다단형으로 형성될 수 있으며, 예컨대 도 8에 도시된 것과 같이 단면이 계단형을 가지도록 형성될 수 있다. 즉, 반사부(312)의 각 면은 태양전지(330)에 가까워질수록 순차적으로 보다 아래쪽에 위치할 수 있다. 따라서 각 반사부(312)에서 반사되는 태양광이 다른 반사부(312)에 의해 방해 받지 않는다. The reflector 312 is formed on the lower surface of each region to face the light concentrator 311, and may function to reflect the sunlight collected by the light concentrator 312 toward the center portion. Herein, the central direction refers to the central portion of the single optical system 310, and specifically, may correspond to the direction of the groove 313 to be described later. In this case, the reflector 312 may be formed in a multi-stage shape having a predetermined step in a downward direction from the end portion to the center portion, for example, may be formed so that the cross section has a stepped shape as shown in FIG. 8. That is, each surface of the reflector 312 may be sequentially positioned lower as the solar cell 330 gets closer. Therefore, sunlight reflected from each reflector 312 is not disturbed by the other reflector 312.
반사부(312)의 단차 부분은 집광된 상기 태양광의 초점 위치에 상응하도록 위치할 수 있다. 구체적으로 반사부(312)의 단차 부분은 상기 태양광의 초점 거리 부근에 대략 45°로 기울어진 반사면(도 8에서 312a로 표기됨)을 가질 수 있다. 이 때, 상기 반사면은 포물선 형태를 가질 수 있으며 구체적으로는 볼록 반사면 또는 오목 반사면을 가질 수 있다. 이는 전술한 구현예(제1 구현예)에서와 동일한 바 중복 설명은 생략하도록 한다. 한편 상기 반사면의 후면에는 입사된 태양광의 반사가 보다 효과적으로 일어날 수 있도록 반사면 코팅이 이루어질 수 있다. The stepped portion of the reflector 312 may be positioned to correspond to the focal position of the focused sunlight. Specifically, the stepped portion of the reflector 312 may have a reflective surface (denoted 312a in FIG. 8) inclined at approximately 45 ° near the focal length of the sunlight. In this case, the reflective surface may have a parabolic shape and specifically, may have a convex reflective surface or a concave reflective surface. This is the same as in the above-described embodiment (first embodiment) bar overlapping description will be omitted. Meanwhile, a reflective surface coating may be formed on the rear surface of the reflective surface to more effectively reflect incident sunlight.
홈부(313)는 단일 광학계(310)의 중앙부의 상부에 형성되는 것으로 중앙 볼록렌즈(320)가 결합하는 공간에 해당한다. 전술한 구현예(제1 구현예)와는 달리 본 구현예에서의 홈부(113)는 긴 막대형으로 형성될 수 있으며, 이 때 하부는 역삼각막대형으로 형성될 수 있다. The groove 313 is formed above the central portion of the single optical system 310 and corresponds to a space where the central convex lens 320 is coupled. Unlike the above-described embodiment (first embodiment), the groove portion 113 in the present embodiment may be formed in a long rod shape, the lower portion may be formed in an inverted triangle bar shape.
프리즘부(314)는 단일 광학계(310)의 중앙부의 하부에 형성되는 것으로 반사부(312)로부터 연장되며 단면이 역사다리형을 갖는 막대형으로 형성될 수 있다. 프리즘부(314)의 하부 면적은 태양전지(330)의 면적과 동일할 수 있다.The prism portion 314 is formed below the central portion of the single optical system 310 and extends from the reflecting portion 312 and may be formed in a rod shape having an inverted leg cross section. The lower area of the prism portion 314 may be equal to the area of the solar cell 330.
중앙 볼록렌즈(320)는 단일 광학계(310)의 중앙 부분에 결합되는 것으로, 구체적으로는 단일 광학계(310)의 홈부(313)에 결합될 수 있다. 중앙 볼록렌즈(320)는 단일 광학계(310)의 중앙 부분에 입사되는 태양광을 집광시키는 기능과, 집광된 태양광을 하부에 위치한 프리즘부(314)로 입사시키는 기능을 할 수 있다. 이를 위해 중앙 볼록렌즈(320)는 상부면 단면이 볼록렌즈형으로 형성되고 전체적으로는 막대형으로 형성될 수 있다. 중앙 볼록렌즈(320)가 단일 광학계(310)의 홈부(313)에 결합되면(끼움 결합 또는 UV 에폭시 등과 같은 접착제를 이용), 홈부(313)의 하부(단면이 역삼각형 공간)는 빈 공간이 될 수 있다.The central convex lens 320 is coupled to the central portion of the single optical system 310, and specifically, may be coupled to the groove 313 of the single optical system 310. The central convex lens 320 may function to condense the sunlight incident on the central portion of the single optical system 310, and may allow the condensed sunlight to enter the prism portion 314 located below. To this end, the central convex lens 320 may be formed in a convex lens-shaped cross section on its upper surface and may be formed in a bar shape as a whole. When the central convex lens 320 is coupled to the groove portion 313 of the single optical system 310 (by using an adhesive such as fitting bonding or UV epoxy), the lower portion of the groove portion 313 (cross-section is an inverted triangle space) is empty. Can be.
태양전지(330)는 단일 광학계(310)의 프리즘부(314) 하부면에 배치될 수 있으며, 막대형으로 형성될 수 있다. 태양전지(330)는 전술한 구현예에서와 동일 또는 유사하므로 중복 설명은 생략하도록 한다.The solar cell 330 may be disposed on the lower surface of the prism portion 314 of the single optical system 310, and may be formed in a rod shape. Since the solar cell 330 is the same as or similar to the above-described embodiment, redundant description thereof will be omitted.
상술한 것과 같은 본 구현예에 따른 집광형 태양전지모듈(300)에서의 태양광 집광 및 반사과정에 대해 설명하면, 우선 태양광(L)은 단일 광학계(310)의 집광부(311)를 통해 집광될 수 있다. 집광부(311)는 설명하였듯, 기설정된 각 구획 영역을 가지며 태양광(L)은 상기 각 구획 영역으로 입사하여 각 초점으로 집광된다. 집광부(311)를 통과한 태양광(L)은 반사부(312)의 단차 부분에 의해 반사되어 평행광 형태로 변환되어 단일 광학계(310)의 중앙부로 진행될 수 있다. 다음으로 반사부(312)에서 반사된 태양광(L)은 수평 방향으로 홈부(313)로 진행할 수 있다. 이 때, 태양광(L)은 홈부(313) 하부의 역삼각막대형으로 형성된 공간과의 경계면에서 내부 전반사를 일으키게 되는 바, 프리즘부(314)로 전달될 수 있다. 이어서 태양광(L)은 프리즘부(314)를 지나 프리즘부(314) 하부에 배치된 태양전지(330)로 전달될 수 있다. 한편, 중앙 볼록렌즈(320)를 통해 입사한 태양광(L)은 볼록렌즈면에서 집광된 후, 중앙 볼록렌즈(320)의 하단과 단일 광학계(310)의 홈부(313) 하부의 역삼각막대형이 이루는 경계를 통과하면서 굴절되어 최종적으로 프리즘부(314)를 거쳐 태양전지(330)로 전달될 수 있다. Referring to the solar light collecting and reflecting process in the light collecting solar cell module 300 according to the present embodiment as described above, first, the sunlight L is collected through the light collecting part 311 of the single optical system 310. Can be condensed. As described above, the light collecting unit 311 has predetermined partition regions, and the sunlight L is incident on the partition regions and focused at each focal point. The sunlight L passing through the light collecting unit 311 may be reflected by the stepped portion of the reflecting unit 312 to be converted into a parallel light form and proceed to the center portion of the single optical system 310. Next, the sunlight L reflected by the reflector 312 may proceed to the groove 313 in the horizontal direction. In this case, the sunlight L may cause total internal reflection at an interface with a space formed in an inverted triangular bar shape below the groove part 313, and thus may be transmitted to the prism part 314. Subsequently, the sunlight L may be transmitted to the solar cell 330 disposed under the prism portion 314 after passing through the prism portion 314. Meanwhile, after the sunlight L incident through the central convex lens 320 is collected at the convex lens surface, the reverse triangular type of the lower end of the central convex lens 320 and the groove 313 of the single optical system 310 is lowered. The light may be refracted while passing through the boundary, and finally transferred to the solar cell 330 via the prism portion 314.
정리하자면 태양광(L)은 집광부(311)의 각 구획 영역별로 집광되어 반사부(312)에서 반사되어 진행 방향이 변경되고, 다시 홈부(313) 하부의 역삼각막대형으로 형성된 공간에서 반사되어 프리즘부(314) 및 태양전지(330)로 전달될 수 있다. 그리고 태양전지(330)에서는 전달받은 태양광(L)의 에너지를 전기에너지로 변환하는 기능을 한다.In summary, the sunlight L is collected for each partition area of the light collecting part 311, is reflected by the reflecting part 312, and the traveling direction is changed, and is reflected in a space formed in an inverted triangular shape below the groove part 313. It may be transferred to the prism portion 314 and the solar cell 330. In addition, the solar cell 330 converts the energy of the received sunlight L into electrical energy.
제4 구현예Fourth embodiment
이하, 본 발명의 제4 구현예에 대해 설명하도록 한다. 도 9는 본 발명의 또 다른 구현예(제4 구현예)에 따른 집광형 태양전지모듈(400)의 단면 및 외관을 도시한 도면이다.Hereinafter, a fourth embodiment of the present invention will be described. 9 is a view illustrating a cross section and an appearance of a light collecting solar cell module 400 according to another embodiment (fourth embodiment) of the present invention.
도 9를 참조하면, 집광형 태양전지모듈(400)은 태양광을 집광, 반사 및 가이드하는 단일 광학계(410)와, 단일 광학계(410)에 일측면에 배치되어 태양광을 흡수하고 전기로 변환하는 태양전지(430)를 포함할 수 있다.Referring to FIG. 9, the light collecting solar cell module 400 is disposed on one side of a single optical system 410 for collecting, reflecting, and guiding sunlight, and absorbs sunlight and converts it into electricity. It may include a solar cell 430.
단일 광학계(410)는 태양광을 집광, 반사 및 가이드하는 기능을 한다. 기존의 집광형 태양전지모듈에서는 집광을 위한 광학계와 반사를 위한 광학계가 별도로 존재하였으나, 본 구현예에 따른 집광형 태양전지모듈(400)에서는 단일 광학계(410)를 통해 태양광의 집광, 반사 및 가이드 기능을 모두 수행한다는 차이가 있다. 따라서 2 이상의 광학계를 구비할 때에 발생 가능한 문제점들, 이를 테면 두 광학계의 정렬 오차에 의해 발생하는 광손실, 두 광학계 사이에 존재하는 공기층으로 인한 결로 현상, 두 광학계 조립과정에서 발생하는 공정 복잡화 등의 문제들이 발생하지 않는다.The single optical system 410 functions to collect, reflect, and guide sunlight. In the conventional condensing solar cell module, an optical system for condensing and an optical system for reflection existed separately, but in the condensing solar cell module 400 according to the present embodiment, condensing, reflection, and guide of sunlight through a single optical system 410 is performed. The difference is that it performs all the functions. Therefore, problems that may occur when two or more optical systems are provided, such as optical loss caused by misalignment of the two optical systems, condensation due to the air layer existing between the two optical systems, and process complexity occurring during the assembly of the two optical systems Problems do not occur.
단일 광학계(410)는 집광부(411) 및 반사부(412)를 포함할 수 있다. 단일 광학계(410)는 PMMA(Poly(methyl)methacrylate) 또는 유리로 형성될 수 있다. 이들 소재는 공기보다 큰 굴절율을 가지며, 재질 내부에서 광감쇄가 크지 않은 소재에 해당한다.The single optical system 410 may include a light collecting part 411 and a reflecting part 412. The single optical system 410 may be formed of poly (methyl) methacrylate (PMMA) or glass. These materials have a refractive index larger than that of air, and correspond to a material that does not have large light attenuation inside the material.
집광부(411)는 단일 광학계(410)의 상부에 위치하며 수평 방향으로 구획화 된 영역을 가지며, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성될 수 있다. 즉, 도 9에 도시된 바와 같이 집광부(411)는 전체적으로 윗면이 볼록한 형태를 갖는 복수개의 막대형 부재가 일방향으로 나열된 형태를 가질 수 있다. 이 때, 각 영역의 폭은 달라질 수 있으며, 구체적으로는 태양전지(410)로부터 먼 부분에서 가까운 부분으로 올수록 그 폭이 커지도록 형성될 수 있다. 한편, 집광부(411)의 최외곽에는 단일 광학계(410)의 외형을 이루는 다각 프레임(미도시)이 형성될 수 있다. 집광부(411)는 상술한 것과 같이 기설정된 구획별로 볼록렌즈형의 상부면을 통해 태양광을 집광하는 기능을 할 수 있다. 즉 태양광은 집광부(411)의 각 구획 영역으로 입사하여 각각의 초점으로 집광될 수 있다. 또한 집광부(411)의 상부면은 태양광의 손실을 최소화할 수 있도록 무반사막 코팅이 이루어질 수 있다. The condenser 411 is positioned above the single optical system 410 and has a region partitioned in the horizontal direction, and a cross section may be formed in a convex lens shape on the upper surface of each region. That is, as shown in FIG. 9, the light collecting part 411 may have a shape in which a plurality of rod-shaped members having a convex shape on the top thereof are arranged in one direction. In this case, the width of each region may vary, and specifically, the width of the region may be increased so as to come closer to the portion farther from the solar cell 410. Meanwhile, a polygonal frame (not shown) may be formed at the outermost portion of the light collecting part 411 to form an external shape of the single optical system 410. The condenser 411 may function to condense sunlight through the upper surface of the convex lens type for each predetermined section as described above. That is, the sunlight may be incident on each partition area of the light collecting part 411 and collected at each focal point. In addition, the upper surface of the light collecting portion 411 may be made of an anti-reflective coating to minimize the loss of sunlight.
반사부(412)는 집광부(411)와 마주보도록 각 영역의 하부면에 형성되는 것으로, 집광부(412)에 의해 집광된 태양광을 태양전지(430) 방향으로 반사시키는 기능을 할 수 있다. 이 때, 반사부(412)는 태양전지(410)로부터 먼 부분에서 가까운 부분으로 올수록 하방향으로 소정의 단차를 갖는 다단형으로 형성될 수 있으며, 예컨대 도 9에 도시된 것과 같이 단면이 계단형을 가지도록 형성될 수 있다. 즉, 반사부(412)의 각 면은 태양전지(430)에 가까워질수록 순차적으로 보다 아래쪽에 위치할 수 있다. 따라서 각 반사부(412)에서 반사되는 태양광이 다른 반사부(412)에 의해 방해 받지 않는다. The reflector 412 is formed on the lower surface of each region to face the light concentrator 411 and may function to reflect the sunlight collected by the light concentrator 412 toward the solar cell 430. . At this time, the reflector 412 may be formed in a multi-stage having a predetermined step in the downward direction as coming closer to the portion farther from the solar cell 410, for example, as shown in Figure 9 cross-section It may be formed to have. That is, each surface of the reflector 412 may be located further down sequentially as the solar cell 430 gets closer. Therefore, the sunlight reflected from each reflector 412 is not disturbed by the other reflector 412.
반사부(412)의 단차 부분은 집광된 상기 태양광의 초점 위치에 상응하도록 위치할 수 있다. 구체적으로 반사부(412)의 단차 부분은 상기 태양광의 초점 거리 부근에 대략 45°로 기울어진 반사면(도 9에서 412a로 표기됨)을 가질 수 있다. 이 때, 상기 반사면은 포물선 형태를 가질 수 있으며 구체적으로는 볼록 반사면 또는 오목 반사면을 가질 수 있다. 이는 전술한 구현예(제1 구현예, 제3 구현예)에서와 동일한 바 중복 설명은 생략하도록 한다. 한편 상기 반사면의 후면에는 입사된 태양광의 반사가 보다 효과적으로 일어날 수 있도록 반사면 코팅이 이루어질 수 있다.The stepped portion of the reflector 412 may be positioned to correspond to the focal position of the focused sunlight. Specifically, the stepped portion of the reflector 412 may have a reflective surface (denoted 412a in FIG. 9) inclined at approximately 45 ° near the focal length of the sunlight. In this case, the reflective surface may have a parabolic shape and specifically, may have a convex reflective surface or a concave reflective surface. This is the same as in the above-described embodiment (the first embodiment, the third embodiment) bar overlapping description will be omitted. Meanwhile, a reflective surface coating may be formed on the rear surface of the reflective surface to more effectively reflect incident sunlight.
태양전지(430)는 단일 광학계(410)의 일측면에 배치될 수 있으며, 막대형으로 형성될 수 있다. 태양전지(430)는 전술한 구현예에서와 동일 또는 유사하므로 중복 설명은 생략하도록 한다.The solar cell 430 may be disposed on one side of the single optical system 410, and may be formed in a rod shape. Since the solar cell 430 is the same as or similar to that of the above-described embodiment, redundant description thereof will be omitted.
상술한 것과 같은 본 구현예에 따른 집광형 태양전지모듈(400)에서의 태양광 집광 및 반사과정에 대해 설명하면, 우선 태양광(L)은 단일 광학계(410)의 집광부(411)를 통해 집광될 수 있다. 집광부(411)는 설명하였듯, 기설정된 각 구획 영역을 가지며 태양광(L)은 상기 각 구획 영역으로 입사하여 각 초점으로 집광된다. 집광부(411)를 통과한 태양광(L)은 반사부(412)의 단차 부분에 의해 반사되어 평행광 형태로 변환되어 태양전지(430)로 전달될 수 있다. 그리고 태양전지(430)에서는 전달받은 태양광(L)의 에너지를 전기에너지로 변환하는 기능을 한다. Referring to the solar light collecting and reflecting process in the light collecting solar cell module 400 according to the present embodiment as described above, first, the light L is collected through the light collecting part 411 of the single optical system 410. Can be condensed. As described above, the light collecting part 411 has predetermined partitioned areas and sunlight L is incident on the partitioned areas and is focused at each focal point. The sunlight L passing through the condenser 411 may be reflected by the stepped portion of the reflector 412, converted into parallel light, and transmitted to the solar cell 430. The solar cell 430 converts the energy of the received sunlight L into electrical energy.
이상, 본 발명을 구체적으로 설명하였다. 그러나 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 기술적 사상의 범위 내에서 기술의 구체적 적용에 따른 단순한 설계변경, 일부 구성요소의 생략, 단순한 용도의 변경 등 본 발명을 다양하게 변형할 수 있을 것이며, 이러한 변형 역시 본 발명의 권리범위 내에 포함됨은 자명하다.In the above, this invention was demonstrated concretely. However, those skilled in the art to which the present invention pertains, within the scope of the technical spirit of the present invention described in the claims, simple design changes, omission of some components, simple use changes, etc. It will be apparent that the present invention may be modified in various ways, and such modifications are also included within the scope of the present invention.

Claims (10)

  1. 복수개의 동심원 형태로 구획화 된 영역을 갖는 것으로, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성되고 태양광을 집광하는 집광부와, 상기 집광부와 마주보도록 각 영역의 하부면에 형성되어 상기 집광부에 의해 집광된 상기 태양광을 중앙부 방향으로 반사시키는 반사부와, 상기 중앙부의 상부에 형성되고 역원뿔형의 하부를 갖는 홈부와, 상기 중앙부의 하부에 상기 반사부로부터 연장되어 역사다리형을 갖도록 형성되는 프리즘부를 포함하는 단일 광학계; It has a plurality of concentric circularly divided regions, the upper surface of each of the regions are formed in a convex lens-shaped cross-section condensing sunlight and formed on the lower surface of each region to face the condensing portion A reflecting portion for reflecting the sunlight collected by the condensing portion toward a central portion, a groove portion formed at an upper portion of the central portion and having an inverted conical lower portion, and an inverted leg extending from the reflecting portion at the lower portion of the central portion; Single optical system including a prism portion formed to have a;
    상기 단일 광학계의 홈부에 결합되는 것으로 단면이 볼록렌즈형으로 형성되는 상부를 구비하는 중앙 볼록렌즈; 및A central convex lens coupled to a groove portion of the single optical system and having an upper portion formed in a convex lens shape in cross section; And
    상기 단일 광학계의 프리즘부 하부면에 배치되는 태양전지를 포함하는 집광형 태양전지모듈.Condensing solar cell module comprising a solar cell disposed on the lower surface of the prism portion of the single optical system.
  2. 복수개의 동심원 형태로 구획화 된 영역을 갖는 것으로, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성되고 태양광을 집광하는 집광부와, 상기 집광부와 마주보도록 각 영역의 하부면에 형성되어 상기 집광부에 의해 집광된 상기 태양광을 중앙부 방향으로 반사시키는 반사부와, 상기 중앙부의 상부에 다각형으로 형성되는 홈부를 포함하는 단일 광학계; 및It has a plurality of concentric circularly divided regions, the upper surface of each of the regions are formed in a convex lens-shaped cross-section condensing sunlight and formed on the lower surface of each region to face the condensing portion A single optical system including a reflection part reflecting the sunlight collected by the light collecting part toward a center part, and a groove part formed in a polygon on an upper part of the center part; And
    수광 영역이 외측에 위치되도록 상기 홈부의 적어도 1면 이상에 배치되는 태양전지를 포함하는 집광형 태양전지모듈.Condensing solar cell module comprising a solar cell disposed on at least one surface of the groove portion so that the light receiving area is located outside.
  3. 수평 방향으로 구획화 된 영역을 갖는 것으로, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성되고 태양광을 집광하는 집광부와, 상기 집광부와 마주보도록 각 영역의 하부면에 형성되어 상기 집광부에 의해 집광된 상기 태양광을 중앙부 방향으로 반사시키는 반사부와, 상기 중앙부의 상부에 막대형으로 형성되되 역삼각막대형의 하부를 갖는 홈부와, 상기 중앙부의 하부에 상기 반사부로부터 연장되어 역사다리형을 갖도록 형성되는 프리즘부를 포함하는 단일 광학계;A region partitioned in a horizontal direction, having a convex lens-shaped cross section at an upper surface of each region, and a light collecting portion for collecting solar light, and a lower surface of each region to face the light collecting portion; A reflecting portion for reflecting the sunlight collected by the mining portion toward the center portion, a groove portion formed in a rod shape on the upper portion of the central portion and having a lower portion of an inverted triangular rod, and extending from the reflecting portion on the lower portion of the central portion. A single optical system including a prism portion formed to have a leg shape;
    상기 단일 광학계의 홈부에 결합되는 것으로 단면이 볼록렌즈형으로 형성되는 상부를 구비하는 막대형의 중앙 볼록렌즈; 및A rod-shaped central convex lens coupled to the groove portion of the single optical system and having a top portion formed in a convex lens shape in cross section; And
    상기 단일 광학계의 프리즘부 하부면에 배치되는 막대형의 태양전지를 포함하는 집광형 태양전지모듈.Condensing solar cell module comprising a rod-shaped solar cell disposed on the lower surface of the prism portion of the single optical system.
  4. 수평 방향으로 구획화 된 영역을 갖는 것으로, 상기 각 영역의 상부면에 단면이 볼록렌즈형으로 형성되고 태양광을 집광하는 집광부와, 상기 집광부와 마주보도록 각 영역의 하부면에 형성되어 상기 집광부에 의해 집광된 상기 태양광을 일측 단부 방향으로 반사시키는 반사부를 포함하는 단일 광학계; 및A region partitioned in a horizontal direction, having a convex lens-shaped cross section at an upper surface of each region, and a light collecting portion for collecting solar light, and a lower surface of each region to face the light collecting portion; A single optical system including a reflector for reflecting the sunlight collected by the light unit in one end direction; And
    상기 단일 광학계의 일측면에 배치되어 상기 반사부로부터 반사된 태양광을 수광하는 태양전지를 포함하는 집광형 태양전지모듈.Condensing solar cell module comprising a solar cell disposed on one side of the single optical system for receiving the sunlight reflected from the reflecting portion.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서, The method according to any one of claims 1 to 4,
    상기 단일 광학계의 반사부는 단부에서 중앙부로 갈수록 하방향으로 소정의 단차를 갖는 다단형으로 형성되며, The reflecting unit of the single optical system is formed in a multi-stage type having a predetermined step in the downward direction from the end portion to the center portion,
    상기 단차 부분은 집광된 상기 태양광의 초점 위치에 상응하도록 위치하고, 상기 태양광을 반사시키는 볼록반사면 또는 오목반사면을 갖도록 형성되는 집광형 태양전지모듈.And the stepped portion is positioned to correspond to a focal position of the focused solar light and is formed to have a convex reflection surface or a concave reflection surface to reflect the sunlight.
  6. 청구항 5에 있어서, The method according to claim 5,
    상기 단차 부분의 하부면에는 반사막 코팅이 이루어진 집광형 태양전지모듈.Condensing solar cell module made of a reflective film coating on the lower surface of the stepped portion.
  7. 청구항 5에 있어서, The method according to claim 5,
    상기 단차 부분이 볼록반사면을 갖도록 형성되는 경우에 상기 단차 부분은 상기 태양광의 초점 위치보다 위쪽에 위치하고, 상기 단차 부분이 오목반사면을 갖도록 형성되는 경우에 상기 단차 부분은 상기 태양광의 초점 위치보다 아래쪽에 위치하는 집광형 태양전지모듈.When the stepped portion is formed to have a convex reflecting surface, the stepped portion is located above the focal position of the sunlight, and when the stepped portion is formed to have a concave reflective surface, the stepped portion is less than the focal position of the sunlight. Condensing solar cell module located at the bottom.
  8. 청구항 5에 있어서, The method according to claim 5,
    상기 단차 부분의 반사면은 상기 태양광의 초점 위치로부터 멀어질수록 면적이 넓어지고, 가까울수록 상기 면적이 좁아지도록 형성되는 집광형 태양전지모듈.The reflecting surface of the stepped portion is a condensing solar cell module is formed so that the area is wider the farther away from the focal position of the sunlight, the narrower the area is closer.
  9. 청구항 1 또는 청구항 3에 있어서, The method according to claim 1 or 3,
    상기 프리즘부는 상기 태양전지의 각 면으로부터 상기 프리즘부의 상부면까지 포물면이 나타나도록 절개된 형태를 갖는 집광형 태양전지모듈.The prism portion has a condensed solar cell module having a form cut so that the parabolic surface appears from each surface of the solar cell to the upper surface of the prism portion.
  10. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서, The method according to any one of claims 1 to 4,
    상기 단일 광학계는 PMMA(Poly(methyl)methacrylate) 또는 유리로 형성되는 집광형 태양전지모듈.The single optical system is a condensing solar cell module formed of PMMA (Poly (methyl) methacrylate) or glass.
PCT/KR2015/012579 2015-11-23 2015-12-01 Concentrated solar cell module using single optical system WO2017090782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0163900 2015-11-23
KR1020150163900A KR101851138B1 (en) 2015-11-23 2015-11-23 Concentrated solar cell module using single optical system

Publications (1)

Publication Number Publication Date
WO2017090782A1 true WO2017090782A1 (en) 2017-06-01

Family

ID=58763575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012579 WO2017090782A1 (en) 2015-11-23 2015-12-01 Concentrated solar cell module using single optical system

Country Status (2)

Country Link
KR (1) KR101851138B1 (en)
WO (1) WO2017090782A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110087615A (en) * 2010-01-26 2011-08-03 박기성 Concentrated solar cell module
KR101130765B1 (en) * 2010-01-18 2012-03-30 정재헌 Side solar concentrator
KR20120134745A (en) * 2011-06-03 2012-12-12 박기성 High-concentrated photovoltaic module
KR101295040B1 (en) * 2011-08-29 2013-08-09 (주)애니캐스팅 Light guide Concentrating Photovoltaic device
US20140126063A1 (en) * 2012-11-08 2014-05-08 National Taiwan University Of Science And Technology Laminated Optical Disk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130765B1 (en) * 2010-01-18 2012-03-30 정재헌 Side solar concentrator
KR20110087615A (en) * 2010-01-26 2011-08-03 박기성 Concentrated solar cell module
KR20120134745A (en) * 2011-06-03 2012-12-12 박기성 High-concentrated photovoltaic module
KR101295040B1 (en) * 2011-08-29 2013-08-09 (주)애니캐스팅 Light guide Concentrating Photovoltaic device
US20140126063A1 (en) * 2012-11-08 2014-05-08 National Taiwan University Of Science And Technology Laminated Optical Disk

Also Published As

Publication number Publication date
KR20170059674A (en) 2017-05-31
KR101851138B1 (en) 2018-04-23

Similar Documents

Publication Publication Date Title
US10020413B2 (en) Fabrication of a local concentrator system
WO2013002537A2 (en) Concentrating solar cell
CN102544172A (en) Focusing solar light guide module
US20130240037A1 (en) Solar cell module and solar generator
KR100933213B1 (en) Concentration lens for solar power generation
CN102280511A (en) Dense array concentrating solar energy photovoltaic device
JP2006332113A (en) Concentrating solar power generation module and solar power generator
WO2011093634A2 (en) Light collecting solar cell module
WO2013180499A1 (en) Concentrating solar cell module
CN102339875A (en) Multidirectional solar energy light collecting system
WO2017090782A1 (en) Concentrated solar cell module using single optical system
US20120000509A1 (en) Multi-directional solar energy collector system
KR101620406B1 (en) High efficient solar module with solar cells arranged perpendicularly with parallel structure
KR101213768B1 (en) solar power generation device
WO2011087194A1 (en) Solar light collecting device
CN111725342A (en) High-absorptivity photovoltaic module
WO2012165899A2 (en) High light concentration solar cell module
KR20200067554A (en) A solar cell array having a prsim lens for shading removal
WO2014137020A1 (en) Light-focusing solar cell module
WO2021095950A1 (en) Pv sunlight power generation module and apparatus using linear fresnel lens
CN201852991U (en) Quadruple parabolic cylinder optical collector
TWI704764B (en) Light-collecting lens, light-collecting module, solar cell device, and solar cell system
RU2436193C1 (en) Photovoltaic concentrator module
WO2015199322A1 (en) Light condensing lens and solar light power generation apparatus using same
KR101217247B1 (en) condensing type solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909331

Country of ref document: EP

Kind code of ref document: A1