WO2017090691A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
WO2017090691A1
WO2017090691A1 PCT/JP2016/084841 JP2016084841W WO2017090691A1 WO 2017090691 A1 WO2017090691 A1 WO 2017090691A1 JP 2016084841 W JP2016084841 W JP 2016084841W WO 2017090691 A1 WO2017090691 A1 WO 2017090691A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
group
aligning agent
component
Prior art date
Application number
PCT/JP2016/084841
Other languages
French (fr)
Japanese (ja)
Inventor
石川 和典
夏樹 佐藤
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020187017922A priority Critical patent/KR20180085003A/en
Priority to JP2017552704A priority patent/JP6747452B2/en
Priority to CN201680080101.1A priority patent/CN108604027A/en
Publication of WO2017090691A1 publication Critical patent/WO2017090691A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal alignment agent used for preparing a liquid crystal alignment film, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film.
  • liquid crystal display elements are widely used in image display portions of many devices such as digital cameras, personal computers, portable terminals, and televisions.
  • a liquid crystal display element has a structure in which a liquid crystal composition having fluidity is sandwiched and sealed between two support substrates, and a liquid crystal alignment for aligning liquid crystal molecules on the surface of the substrate in contact with the liquid crystal.
  • a membrane is provided.
  • the liquid crystal alignment film is generally produced through a step of applying a liquid crystal aligning agent on the substrate.
  • a rubbing treatment, a photo-alignment treatment, or the like is performed on the film obtained from the liquid crystal aligning agent.
  • Patent Document 1 discloses a liquid crystal aligning agent for the purpose of providing a liquid crystal alignment film that is less likely to be scraped or scratched by rubbing.
  • Patent Document 2 can suppress a deviation between the rubbing direction and the alignment direction of the liquid crystal, has a high voltage holding ratio when used as a liquid crystal display element, and quickly relieves accumulated charges.
  • a liquid crystal aligning agent for the purpose of providing a liquid crystal aligning film that can be produced is disclosed.
  • liquid crystal alignment films are required to realize various characteristics at a higher level than before. For example, as the liquid crystal display element has been made higher in definition, smaller rubbing and scratches have become a problem with respect to rubbing resistance. In addition, it is also required to simultaneously realize other characteristics.
  • the present invention is excellent in rubbing resistance and stability of liquid crystal alignment, a liquid crystal alignment film in which the accumulated charge of the liquid crystal display element is quickly relaxed, and flicker immediately after driving the liquid crystal display element (flicker level) It is an object of the present invention to provide a liquid crystal aligning agent that can obtain a liquid crystal aligning film having a small size and is excellent in storage stability.
  • the liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
  • (A) Component Polyamic acid ester containing a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2).
  • a plurality of R 1 are each independently an alkyl group having 1 to 6 carbon atoms, and a plurality of R 2 are each independently a hydrogen atom or a carbon number
  • Y 1 is a divalent organic group represented by the following formula (Y1-1)
  • Y 2 is a divalent organic group represented by the following formula (Y2-1).
  • two R 3 are each independently a single bond, —O—, —S—, —OCO—, or —COO—
  • the two R 4 are each independently An alkylene group having 1 to 3 carbon atoms
  • R 5 is an oxygen atom or a sulfur atom.
  • a 1 and A 5 are each independently a single bond, methylene, alkylene having 2 to 5 carbon atoms, azetidine diyl, pyrrolidine diyl, or piperidine diyl
  • B 1 and B 2 are each independently single bond, -O and -, - COO -, - OCO -, - CONH -, - NHCO -, - CONCH 3 -, or -NCH 3 is CO-
  • a 2 and a 4 each independently represent a single A bond, methylene, or alkylene having 2 to 5 carbon atoms
  • a 3 is methylene or alkylene having 2 to 6 carbon atoms
  • a is 0 or 1
  • R is a hydrogen atom or a methyl group
  • X is a tetravalent organic group
  • Y is a divalent organic group
  • R 6 is a hydrogen atom or an al
  • a liquid crystal alignment film that has excellent rubbing resistance and stability of liquid crystal alignment and has a fast relaxation of stored charge of the liquid crystal display element, and further a liquid crystal with a small flicker (flicker level) immediately after the liquid crystal display element is driven.
  • An alignment film can be obtained, and a liquid crystal alignment agent having excellent storage stability, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a high-performance liquid crystal display device including the liquid crystal alignment film can be provided. .
  • the polyamic acid ester as the component (A) is a polyamic acid ester containing a repeating unit represented by the above formula (1) and a repeating unit represented by the following formula (2).
  • a plurality of R 1 are each independently an alkyl group having 1 to 6 carbon atoms, preferably a methyl group or an ethyl group.
  • a plurality of R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group.
  • Y 1 is a divalent organic group represented by the following formula (Y1-1).
  • R 3 , R 4 , and R 5 are as defined above. Among them, R 3 is preferably a single bond, —O—, and R 4 is preferably a methylene group, R 5 is preferably an oxygen atom.
  • the (containing) ratio of the repeating unit represented by the formula (1) is preferably 1 to 70 mol% of all repeating units contained in the polyamic acid ester as the component (A), more preferably. Is 5 to 50 mol%.
  • Y 2 is a divalent organic group represented by the following formula (Y2-1).
  • a 1 and A 5 are B 1 , B 2 , A 2 , A 3 , A 4 , R, and a are as defined above. Among these, A 1 and A 5 are preferably a single bond, a methylene group, an ethylene group or a propylene group.
  • a 1 or A 5 is an aliphatic heterocycle such as azetidinediyl, pyrrolidinediyl, piperidinediyl, etc., azetidine-1,3-diyl, pyrrolidine-1,3-diyl, or piperidine-1,4-diyl It is preferable that the nitrogen atom in the ring is bonded to the adjacent benzene ring.
  • B 1 and B 2 are preferably a single bond or —O—.
  • a 2 and A 4 are preferably a single bond, a methylene group, an ethylene group, or a propylene group.
  • a 3 is preferably an ethylene group.
  • a is preferably 0.
  • R is preferably a hydrogen atom.
  • D is a protecting group that is replaced with a hydrogen atom by heat, and is not detached at room temperature from the viewpoint of the storage stability of the liquid crystal aligning agent, and is detached by heating in the manufacturing process of the liquid crystal alignment film.
  • a group that replaces a hydrogen atom is preferred.
  • a preferable desorption temperature is 80 to 200 ° C, more preferably 100 to 200 ° C, and particularly preferably 150 to 200 ° C.
  • Specific examples of such groups include 1,1-dimethyl-2-chloroethoxycarbonyl group, 1,1-dimethyl-2-cyanoethoxycarbonyl group, tert-butoxycarbonyl group, or 9-fluorenylmethoxycarbonyl group.
  • Preferred are a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl V group, and particularly preferred is a tert-butoxycarbonyl group.
  • preferable combinations of A 1 to A 5 , B 1 , B 2 and a include the combinations of types 1 to 3 shown below. More preferably, type 1 or type 2 is preferable, and type 1 is particularly preferable.
  • Type 1 A 1 and A 5 are independently a single bond, methylene, alkylene having 2 to 5 carbon atoms, and B 1 and B 2 are independently a single bond, —O—, —COO—, —OCO. -, - CONH -, - NHCO -, - CONCH 3 -, or -NCH 3 is CO-, a 2 and a 4 are independently methylene or alkylene having a carbon number of 2 ⁇ 5, a 3 is methylene Or alkylene having 2 to 6 carbon atoms, and a is 0 or 1.
  • a 1 and A 5 are both a single bond
  • B 1 and B 2 are independently a single bond or —O—
  • a 2 and A 4 are independently methylene, or a group having 2 to 5 is alkylene
  • a 3 is methylene or alkylene having 2 to 6 carbon atoms
  • a is 0 or 1.
  • Type 2 A 1 and A 5 are independently a single bond, azetidinediyl, pyrrolidinediyl, or piperidinediyl, B 1 and B 2 are both single bonds, and A 2 and A 4 are independently methylene, or An alkylene having 2 to 5 carbon atoms and a is 0; More preferably, A 1 is Azechijinjiiru a pyrrolidinediyl or piperidine-diyl, A 2 is an alkylene methylene, or C 2 ⁇ 5, A 4, A 5, B 1 and B 2 is a single bond , A is 0.
  • Type 3 A 1 , A 2 , A 4 , A 5 , B 1 , B 2 are single bonds, A 3 is methylene or alkylene having 2 to 6 carbon atoms, and a is 1.
  • Y 2 Specific examples of Y 2 are given below, but the present invention is not limited to these.
  • D has the same definition as in formula (Y2-1).
  • the (containing) ratio of the repeating unit represented by the formula (2) is preferably 1 to 70 mol%, more preferably 5 to 50 mol of all repeating units contained in the polyamic acid ester as the component (A). %.
  • a preferred ratio of the repeating unit represented by the formula (1) to the repeating unit represented by the formula (2) is 1:10 to 10: 1 in molar ratio. More preferably, it is 1: 6 to 6: 1.
  • the total of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) is 15 mol% or more. More preferably, it is 30 mol% or more.
  • the polyamic acid ester as the component (A) may have a repeating unit other than the formula (1) and the formula (2).
  • the structure of the repeating unit other than those represented by formula (1) and formula (2) is not particularly limited, but if a specific example is given, the repeating unit represented by the following formula (4) is preferable.
  • R 1 and R 2 have the same definition as in formula (1), and Y 3 represents a divalent organic group other than formula (Y1-1) and formula (Y2-1).
  • Y 3 in the formula (4) is not particularly limited as long as it is a divalent organic group other than the formulas (Y1-1) and (Y2-1). Although the specific example of a preferable structure is shown below, this invention is not limited to these.
  • the polyamic acid ester as the component (A) can be obtained by a known synthesis method.
  • a method of polycondensing a tetracarboxylic acid derivative component containing a compound represented by the following formula (1a) and a diamine component containing a compound represented by the following formulas (1b) and (2b), or A polyamic acid was obtained by addition polymerization of a tetracarboxylic dianhydride component containing a compound represented by the following formula (1a ′) and a diamine component containing a compound represented by the following formulas (1b) and (2b).
  • the method of esterifying a carboxyl group later can be mentioned.
  • the molecular weight of the polyamic acid ester as the component (A) is not particularly limited, but is preferably 2,000 to 500,000 in weight average molecular weight, more preferably 5,000 to 300,000. More preferably, it is 10,000 to 100,000.
  • Polyamic acid (B) The polyamic acid as the component (B) has a repeating unit represented by the following formula (3).
  • the structure of Formula (3) contained in this polyamic acid may be one type or two or more types.
  • X is a tetravalent organic group
  • Y is a divalent organic group
  • R 6 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the polyamic acid having a repeating unit represented by the above formula (3) includes, for example, at least one compound represented by the following formula (3a) and at least one compound represented by the following formula (3b): Can be obtained by condensation polymerization. Therefore, X in the formula (3) can include structures corresponding to all the compounds represented by the formula (3a). Similarly, Y and R 6 in formula (3) can include structures corresponding to all the compounds represented by formula (3b).
  • X, Y, and R 6 in Formula (3a) and Formula (3b) have the same definitions as in Formula (3).
  • Specific examples of preferred structures of X in formula (3) are shown below, but the present invention is not limited to these.
  • R 7 ⁇ R 10 are each independently hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • X in the formula (3) is preferably at least one selected from the group consisting of the above (X-1) to (X-14), and particularly preferably in the above (X-1), R 7 to Structures in which R 10 is all hydrogen atoms, (X-2), (X-3), (X-5), (X-6), (X-7), (X-8), (X-10) ), (X-11), and (X-14).
  • Y in formula (3) is not particularly limited as long as it is a divalent organic group.
  • Y is It is preferable that the repeating unit of formula (Y1-1) or formula (Y2-1) is not included. More specifically, Y is preferably a divalent organic group selected from the group consisting of (i) to (iii) below.
  • (I) A structure represented by the following (c-1) or (c-2).
  • (Ii) A combination of structures selected from the following (c-1) to (c-4).
  • (Iii) A linking group selected from the following (d-1) to (d-3) is included in the middle of a combination of structures selected from the following (c-1) to (c-4).
  • R represents a hydrogen atom, a methyl group, or a carboxyl group.
  • the combination of structures selected from the group consisting of (c-1) to (c-4) may be a combination using a plurality of the same structures.
  • bonding groups selected from the group consisting of (d-1) to (d-3) are not adjacent to each other.
  • the molecular weight of the divalent organic group selected from the group consisting of (i) to (iii) is more preferably 1000 or less.
  • Specific examples of Y include (Y-1) to (Y-34), but the present invention is not limited to these. Among them, (Y-5), (Y-8), (Y-9), (Y-12), (Y-17), (Y-18) to (Y-20), or (Y-29) ) Particularly preferred.
  • the molecular weight of the polyamic acid as the component (B) is preferably 2,000 to 500,000, more preferably 5,000 to 300,000 in weight average molecular weight, and still more preferably. 10,000 to 100,000.
  • the mass (containing) ratio (polyamic acid ester / polyamic acid) of the polyamic acid ester (A) and the polyamic acid (B) contained in the liquid crystal aligning agent of the present invention is preferably 1/9 to 9/1, more preferably It is preferably 2/8 to 8/2.
  • the liquid crystal aligning agent of the present invention is preferably in the form of a solution containing a polyamic acid ester (A) and a polyamic acid (B). In this case, the total content of the polyamic acid ester (A) and the polyamic acid (B) can be appropriately changed by setting the thickness of the liquid crystal alignment film to be formed.
  • 0.5 mass% or more of the whole liquid crystal aligning agent is preferable, and 15 mass% or less is preferable from the point of the storage stability of a solution.
  • 0.5 to 10% by mass is more preferable, and 1 to 10% by mass is particularly preferable.
  • the organic solvent contained in the liquid crystal aligning agent of this invention will not be specifically limited if the polymer component of a polyamic acid ester (A) and a polyamic acid (B) melt
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, And 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like.
  • the N-methyl-2-pyrrolidone content ratio is It is preferably 30 to 80% by mass with respect to the weight. Moreover, even if it is a solvent which cannot melt
  • the liquid crystal aligning agent of the present invention may contain, in addition to the organic solvent, a solvent for improving the coating film uniformity when the liquid crystal aligning agent is applied to the substrate.
  • a solvent for improving the coating film uniformity when the liquid crystal aligning agent is applied to the substrate.
  • a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of
  • the liquid crystal aligning agent of this invention may contain various additives, such as a silane coupling agent, a crosslinking agent, and an imidation promoter.
  • the silane coupling agent can be added for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate.
  • the silane coupling agent may be one kind or a combination of two or more kinds.
  • the content of the silane coupling agent is preferably 0.01 to 5.0 parts by mass, more preferably 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the polymer component.
  • silane coupling agent examples include 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-phenylaminopropyltri Amine-based silane coupling agents such as methoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-aminopropyldiethoxymethylsilane; vinyltrimethoxysilane, vinyltriethoxysilane, Vinyl-based silane coupling agents such as vinyltris (2-methoxyethoxy) silane, vinylmethyldimethoxysilane, vinyltriacetoxysilane, vinyltriisopropoxysilane, allyltrimethoxysilane, p
  • the crosslinking agent can be used for the purpose of increasing the film strength of the liquid crystal alignment film. Moreover, one type of crosslinking agent may be sufficient and it may combine two or more types.
  • the amount of the crosslinking agent used is preferably 0.1 to 50 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymer component.
  • the crosslinking agent is at least one selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, or a hydroxyalkylamide group, a hydroxyl group, a hydroxyalkyl group, and a lower alkoxyalkyl group.
  • a crosslinkable compound having a substituent, or a crosslinkable compound having a polymerizable unsaturated bond It is preferable to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinking agent examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetraglycidyl- 1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy) -1- Trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) oc
  • crosslinkable compound having an oxetane group examples include crosslinkable compounds represented by the formulas [4a] to [4k] described on pages 58 to 59 of the pamphlet of International Publication No. WO2011 / 132751.
  • Examples of the crosslinkable compound having a cyclocarbonate group include crosslinkable compounds represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of WO 2012/014898 pamphlet. .
  • Examples of the crosslinkable compound having a hydroxyalkylamide group include the crosslinkable compounds described on page 23 [Chemical Formula 35] of the pamphlet of International Publication No. WO2015 / 072554.
  • crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include those represented by formulas [6-1] to 6-66 of International Publication No. WO2011 / 132751. And a crosslinkable compound represented by [6-48].
  • Examples of the crosslinkable compound having a polymerizable unsaturated bond include the crosslinkable compounds described in [0112] to [0113] of pamphlet 58 to 59 of International Publication No. WO2015 / 060357.
  • the imidization accelerator can be used for the purpose of efficiently proceeding the imidization reaction of the polyamic acid ester (A) and the polyamic acid (B) when the coating film of the liquid crystal aligning agent of the present invention is baked.
  • the amount of the imidization accelerator used is preferably 0.01 mol or more, more preferably 0.05 mol or more, and still more preferably 0.8 mol, per 1 mol of an amic acid site and an amic acid ester site capable of imidization reaction. 1 mole or more.
  • the imidization accelerator itself remaining in the film after firing on various properties of the liquid crystal alignment film, it is preferably 2 mol or less, more preferably 1 mol or less, still more preferably. Is 0.5 mol or less.
  • Specific examples of the imidization accelerator include compounds represented by formulas (B-1) to (B-17), which are listed on page 29 of International Publication WO2010 / 114103 pamphlet. It is not limited.
  • the liquid crystal alignment film of the present invention is a liquid crystal alignment film obtained using the liquid crystal aligning agent of the present invention described above.
  • a known method can be used to obtain the liquid crystal alignment film.
  • it is a liquid crystal alignment film provided with a liquid crystal alignment ability by applying a liquid crystal aligning agent to a substrate, drying and baking, and irradiating a coating film obtained by rubbing or polarizing ultraviolet rays.
  • the substrate on which the liquid crystal alignment agent is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used.
  • a substrate on which an ITO electrode or the like is formed from the viewpoint of simplifying the process.
  • an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
  • the method for applying the liquid crystal aligning agent include a spin coating method, a printing method, and an ink jet method.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent.
  • drying is performed at 50 to 120 ° C. for 1 to 10 minutes, and then baking is performed at 150 to 300 ° C. for 5 to 120 minutes.
  • the thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
  • Examples of the method for aligning the coating film include a rubbing method and a photo-alignment processing method.
  • the liquid crystal aligning agent of the present invention is particularly useful when used in the rubbing method.
  • the liquid crystal display element of this invention is a liquid crystal display element which has said liquid crystal aligning film. More specifically, after a substrate with a liquid crystal alignment film is obtained from the liquid crystal aligning agent of the present embodiment by the above-described method, a liquid crystal cell is produced by a known method to obtain a liquid crystal display element.
  • An example of liquid crystal cell fabrication is as follows. First, a pair of substrates on which a liquid crystal alignment film is formed are prepared. Next, after bonding the other substrate so that the liquid crystal alignment film surface is on the inside, the liquid crystal is injected under reduced pressure and sealed. Alternatively, after the liquid crystal is dropped on the liquid crystal alignment film surface, the substrate may be attached and sealed.
  • the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • liquid crystal material examples include nematic liquid crystal and smectic liquid crystal. Among them, nematic liquid crystal is preferable, and either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the liquid crystal aligning film and liquid crystal display element of this invention are not limited to said description, The thing produced by the other well-known method may be used.
  • Boc is a tert-butoxycarbonyl group.
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • GBL ⁇ -butyrolactone
  • IPA Isopropyl alcohol
  • the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), and a temperature of 25 ° C. .
  • the molecular weight of the polymer is measured by a GPC (normal temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight (hereinafter also referred to as Mw) as polyethylene glycol and polyethylene oxide converted values. Calculated.
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805), column temperature: 50 ° C.
  • N N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L)
  • flow rate 1.0 ml / min
  • Standard sample for preparing calibration curve TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, manufactured by Tosoh Corporation 30,000) and polyethylene glycol manufactured by Polymer Laboratories (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000).
  • Mw weight average molecular weight
  • Mp peak top molecular weight
  • the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of the mixed sample were measured separately.
  • the liquid crystal aligning agent is filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, dried on an 80 ° C. hot plate for 5 minutes, and then baked at 230 ° C. for 20 minutes.
  • a 100 nm polyimide film was obtained.
  • This polyimide film was rubbed once with a rayon cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 20 mm / sec, pushing amount 0.4 mm).
  • the surface of the film was observed using a confocal laser microscope, and was scraped at a magnification of 100 times to observe the presence of scraps and the presence of scratches.
  • the evaluation was defined as “good” when the scraped scraps and scratches were hardly seen, and defined as “bad” when the scraped scraps and rubbing scratches were observed.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed on the substrate.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a dogleg shape whose central portion is bent.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel.
  • the electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane.
  • the polyimide film is rubbed with a rayon cloth in a predetermined rubbing direction (roll diameter 120 mm, rotation speed 500 rpm, moving speed 30 mm / sec, pushing amount 0.3 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. And dried at 80 ° C. for 10 minutes.
  • the rubbing directions are combined so that they are antiparallel, the periphery is sealed leaving the liquid crystal injection port, and an empty cell with a cell gap of 3.8 ⁇ m is formed.
  • a liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell.
  • the obtained liquid crystal cell constitutes an FFS mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
  • the afterimage was evaluated using the following optical system and the like.
  • the prepared liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted.
  • a VT curve voltage-transmittance curve
  • a DC voltage of 1 V was applied at the same time while driving the liquid crystal cell by applying an AC voltage having a relative transmittance of 23% and a frequency of 30 Hz, and driving was performed for 60 minutes. Thereafter, the applied DC voltage value was set to 0 V, and only the application of the DC voltage was stopped, and in that state, driving was continued for another 30 minutes.
  • the evaluation was defined as “good” when the relative transmittance dropped to 30% or less by the time 60 minutes passed from the start of application of the DC voltage. When it took 60 minutes or more for the relative transmittance to drop to 30% or less, it was defined as “bad” and evaluated.
  • the afterimage evaluation according to the method mentioned above was performed on the temperature conditions of the state whose temperature of a liquid crystal cell is 23 degreeC.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated.
  • the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell.
  • the afterimage was evaluated using the following optical system and the like.
  • the prepared liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted.
  • a VT curve voltage-transmittance curve
  • the LED backlight that was turned on is temporarily turned off and left to block light for 72 hours, and then the LED backlight is turned on again.
  • the frequency at which the relative transmittance becomes 23% at the same time when the backlight turns on is 30 Hz.
  • the AC voltage was applied and the liquid crystal cell was driven for 60 minutes to track the flicker amplitude.
  • the flicker amplitude is a data collection / data logger switch unit 34970A (Agilent technologies) that connects the transmitted light of the LED backlight that has passed through the two polarizing plates and the liquid crystal cell therebetween, via a photodiode and an IV conversion amplifier. ).
  • z is a value obtained by reading the luminance when driven by an AC voltage having a frequency of 30 Hz with a relative transmittance of 23% by the data collection / data logger switch unit 34970A.
  • the evaluation of the flicker level is defined as “good” when the flicker level is maintained at less than 3% by 60 minutes after the start of lighting of the LED backlight and application of the AC voltage. went. When the flicker level reached 3% or more in 60 minutes, it was defined as “bad” and evaluated.
  • the evaluation of the flicker level according to the above-described method was performed under temperature conditions where the temperature of the liquid crystal cell was 23 ° C.
  • This polyamic acid ester solution was put into 20739 g of IPA, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder.
  • NMP was added to the obtained polyamic acid ester powder so as to have a solid content concentration of 12% by weight and dissolved by stirring at 50 ° C. for 30 hr to obtain a polyamic acid ester solution (PAE-1).
  • This polyamic acid ester solution was put into 1218 g of IPA, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder.
  • Example 1 In a 20 ml sample tube containing a stir bar, 2.31 g of PAE-1 and 8.31 g of PAA-1 were taken, 1.31 g of NMP, 2.38 g of GBL, 4.0 g of BCS, and 1 AD-1 1.2 g of NMP solution containing wt% and 0.60 g of AD-2 were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-1).
  • A-1 liquid crystal aligning agent
  • Example 2 In a 20 ml sample tube containing a stir bar, 3.46 g of PAE-1 and 7.18 g of PAA-1 were taken, 0.73 g of NMP, 2.38 g of GBL, 4.0 g of BCS, and 1 AD-1 1.2 g of NMP solution containing wt% and 0.60 g of AD-2 were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-2).
  • A-2 liquid crystal aligning agent
  • Example 3 In a 20 ml sample tube containing a stir bar, 4.62 g of PAE-1 and 6.15 g of PAA-1 are taken, 0.15 g of NMP, 2.38 g of GBL, 4.0 g of BCS, and 1 AD-1. 1.2 g of NMP solution containing 5% by weight and 0.60 g of AD-2 were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-3).
  • A-3 liquid crystal aligning agent
  • the liquid crystal alignment film of the present invention showed good results in any of evaluation of rubbing resistance, evaluation of afterimage erasing time, evaluation of stability of liquid crystal alignment, and evaluation of flicker level immediately after driving.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can be used in a wide range of liquid crystal display elements including an IPS driving method and an FFS driving method, which are required to realize various characteristics at a higher level than before. .
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2015-229489 filed on November 25, 2015 are cited here as disclosure of the specification of the present invention. Incorporate.

Abstract

Provided is a liquid crystal aligning agent which has excellent storage stability and is capable of providing a liquid crystal alignment film that exhibits excellent rubbing resistance, excellent liquid crystal alignment stability and quick reduction of accumulated charge, while being suppressed in flickering (namely, being at a low flicker level) immediately after driving. A liquid crystal aligning agent which contains: a polyamic acid ester having a specific repeating unit having a structure of formula (Y1-1) and a specific repeating unit having a structure of formula (Y2-1) (component A); and a polyamic acid having a specific structure (component B). (In the formulae, the symbols are as defined in the description.)

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向膜を作製するのに用いられる液晶配向剤、前記液晶配向剤から得られる液晶配向膜、及び前記液晶配向膜を有する液晶表示素子に関するものである。 The present invention relates to a liquid crystal alignment agent used for preparing a liquid crystal alignment film, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film.
 現在、液晶表示素子はデジタルカメラ、パソコン、携帯型端末、テレビなど、多くの機器における画像表示部分に広く使用されている。この様な液晶表示素子は、流動性がある液晶組成物を二枚の支持基板で挟み封じ込めた構造をしており、前記基板の液晶に接する面には、液晶分子を配向させるための液晶配向膜が設けられている。液晶配向膜は一般的に前記基板上に液晶配向剤を塗布する工程を経て作製される。また、液晶分子を基板の面内方向に配向させる場合は、液晶配向剤から得られた膜に対して、ラビング処理や光配向処理などが行われる。 Currently, liquid crystal display elements are widely used in image display portions of many devices such as digital cameras, personal computers, portable terminals, and televisions. Such a liquid crystal display element has a structure in which a liquid crystal composition having fluidity is sandwiched and sealed between two support substrates, and a liquid crystal alignment for aligning liquid crystal molecules on the surface of the substrate in contact with the liquid crystal. A membrane is provided. The liquid crystal alignment film is generally produced through a step of applying a liquid crystal aligning agent on the substrate. Moreover, when aligning liquid crystal molecules in the in-plane direction of the substrate, a rubbing treatment, a photo-alignment treatment, or the like is performed on the film obtained from the liquid crystal aligning agent.
 液晶配向膜に求められる基本的な特性は液晶分子を所定の方向に配向させることであるが、高性能な液晶表示素子を実現する為には他にも様々な特性の改善が必要とされ、更には、安定した工業生産においては液晶配向剤の塗布性や保存安定性などの特性も重要になる。例えば特許文献1には、ラビング処理による膜の削れや傷が起こりにくい液晶配向膜を提供することを目的とした液晶配向剤が開示されている。また特許文献2には、膜のラビング耐性に加えて、ラビング方向と液晶の配向方向のずれを抑制することができ、液晶表示素子にした時の電圧保持率が高く、蓄積した電荷を素早く緩和させることができる液晶配向膜の提供を目的とした液晶配向剤が開示されている。 The basic characteristics required of the liquid crystal alignment film are to align the liquid crystal molecules in a predetermined direction, but various other improvements are required to realize a high-performance liquid crystal display element. Furthermore, in stable industrial production, characteristics such as coating properties and storage stability of the liquid crystal aligning agent are important. For example, Patent Document 1 discloses a liquid crystal aligning agent for the purpose of providing a liquid crystal alignment film that is less likely to be scraped or scratched by rubbing. In addition to the rubbing resistance of the film, Patent Document 2 can suppress a deviation between the rubbing direction and the alignment direction of the liquid crystal, has a high voltage holding ratio when used as a liquid crystal display element, and quickly relieves accumulated charges. A liquid crystal aligning agent for the purpose of providing a liquid crystal aligning film that can be produced is disclosed.
国際公開公報WO2010/053128号パンフレットInternational Publication WO2010 / 053128 Pamphlet 国際公開公報WO2015/122413号パンフレットInternational Publication WO2015 / 122413 Pamphlet
 近年の液晶表示素子の益々の高性能化に伴い、液晶配向膜には種々の特性を今までよりも高いレベルで実現することが求められている。例えば、液晶表示素子が高精細化したことにより、ラビング耐性に関しては従来よりも小さな削れや傷が問題にされるようになってきた。加えて他の複数の特性も同時に実現することも求められている。 With recent increase in performance of liquid crystal display elements, liquid crystal alignment films are required to realize various characteristics at a higher level than before. For example, as the liquid crystal display element has been made higher in definition, smaller rubbing and scratches have become a problem with respect to rubbing resistance. In addition, it is also required to simultaneously realize other characteristics.
 以上のことから、本発明は、ラビング耐性や液晶配向の安定性に優れ、液晶表示素子の蓄積電荷の緩和が早い液晶配向膜、更には液晶表示素子を駆動させた直後のちらつき(フリッカーレベル)が小さい液晶配向膜を得ることができ、かつ、保存安定性に優れる液晶配向剤の提供を課題とする。 From the above, the present invention is excellent in rubbing resistance and stability of liquid crystal alignment, a liquid crystal alignment film in which the accumulated charge of the liquid crystal display element is quickly relaxed, and flicker immediately after driving the liquid crystal display element (flicker level) It is an object of the present invention to provide a liquid crystal aligning agent that can obtain a liquid crystal aligning film having a small size and is excellent in storage stability.
 本発明者らは検討を重ねた結果、本発明を完成するに至ったものであり、本発明は以下を要旨とする。
 下記の(A)成分、及び(B)成分を含有することを特徴とする液晶配向剤。
(A)成分:下記式(1)で表される繰り返し単位と下記式(2)で表される繰り返し単位とを含有するポリアミック酸エステル。
(B)成分:下記式(3)で表される繰り返し単位を有するポリアミック酸。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 (式(1)及び式(2)中、複数あるRは、それぞれ独立して、炭素数1~6のアルキル基であり、複数あるRは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基であり、Yは下記式(Y1-1)で表される2価の有機基であり、Yは下記式(Y2-1)で表される2価の有機基である。)
Figure JPOXMLDOC01-appb-C000012
 式(Y1-1)中、2つのRは、それぞれ独立して、単結合、-O-、-S-、-OCO-、又は-COO-であり、2つのRは、それぞれ独立して、炭素数1~3のアルキレン基であり、Rは酸素原子または硫黄原子である。
Figure JPOXMLDOC01-appb-C000013
 式(Y2-1)中、A及びAはそれぞれ独立して単結合、メチレン、炭素数2~5のアルキレン、アゼチジンジイル、ピロリジンジイル、又はピペリジンジイルであり、B及びBはそれぞれ独立して単結合、-O-、-COO-、-OCO-、-CONH-、-NHCO-、-CONCH-、又は-NCHCO-であり、A及びAはそれぞれ独立して単結合、メチレン、又は炭素数2~5のアルキレンであり、Aはメチレン、又は炭素数2~6のアルキレンであり、aは0又は1であり、Rは水素原子又はメチル基であり、Dは熱により水素原子に置き換わる保護基である。
Figure JPOXMLDOC01-appb-C000014

 式(3)中、Xは4価の有機基であり、Yは2価の有機基であり、Rは水素原子又は炭素数1~4のアルキル基である。
As a result of repeated studies, the present inventors have completed the present invention, and the present invention is summarized as follows.
The liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
(A) Component: Polyamic acid ester containing a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2).
Component (B): a polyamic acid having a repeating unit represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(In Formula (1) and Formula (2), a plurality of R 1 are each independently an alkyl group having 1 to 6 carbon atoms, and a plurality of R 2 are each independently a hydrogen atom or a carbon number) 1 to 6 are alkyl groups, Y 1 is a divalent organic group represented by the following formula (Y1-1), and Y 2 is a divalent organic group represented by the following formula (Y2-1). .)
Figure JPOXMLDOC01-appb-C000012
In formula (Y1-1), two R 3 are each independently a single bond, —O—, —S—, —OCO—, or —COO—, and the two R 4 are each independently An alkylene group having 1 to 3 carbon atoms, and R 5 is an oxygen atom or a sulfur atom.
Figure JPOXMLDOC01-appb-C000013
In formula (Y2-1), A 1 and A 5 are each independently a single bond, methylene, alkylene having 2 to 5 carbon atoms, azetidine diyl, pyrrolidine diyl, or piperidine diyl, and B 1 and B 2 are each independently single bond, -O and -, - COO -, - OCO -, - CONH -, - NHCO -, - CONCH 3 -, or -NCH 3 is CO-, a 2 and a 4 each independently represent a single A bond, methylene, or alkylene having 2 to 5 carbon atoms; A 3 is methylene or alkylene having 2 to 6 carbon atoms; a is 0 or 1; R is a hydrogen atom or a methyl group; Is a protecting group that is replaced by a hydrogen atom by heat.
Figure JPOXMLDOC01-appb-C000014

In the formula (3), X is a tetravalent organic group, Y is a divalent organic group, and R 6 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 本発明によれば、ラビング耐性や液晶配向の安定性に優れ、液晶表示素子の蓄積電荷の緩和が早い液晶配向膜、更には液晶表示素子を駆動させた直後のちらつき(フリッカーレベル)が小さい液晶配向膜を得ることができ、かつ、保存安定性に優れる液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を具備する高性能な液晶表示素子が提供することができる。 According to the present invention, a liquid crystal alignment film that has excellent rubbing resistance and stability of liquid crystal alignment and has a fast relaxation of stored charge of the liquid crystal display element, and further a liquid crystal with a small flicker (flicker level) immediately after the liquid crystal display element is driven. An alignment film can be obtained, and a liquid crystal alignment agent having excellent storage stability, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a high-performance liquid crystal display device including the liquid crystal alignment film can be provided. .
 <ポリアミック酸エステル(A)>
 前記(A)成分であるポリアミック酸エステルは、上記式(1)で表される繰り返し単位と、下記式(2)で表される繰り返し単位と、を含有するポリアミック酸エステルである。
 式(1)及び式(2)中、複数あるRはそれぞれ独立して炭素数1~6のアルキル基であり、好ましくはメチル基又はエチル基である。また、式(1)及び式(2)中、複数あるRはそれぞれ独立して水素原子又は炭素数1~6のアルキル基であり、好ましくは水素原子又はメチル基である。
<Polyamic acid ester (A)>
The polyamic acid ester as the component (A) is a polyamic acid ester containing a repeating unit represented by the above formula (1) and a repeating unit represented by the following formula (2).
In formula (1) and formula (2), a plurality of R 1 are each independently an alkyl group having 1 to 6 carbon atoms, preferably a methyl group or an ethyl group. In the formulas (1) and (2), a plurality of R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group.
 式(1)中、Yは、下記式(Y1-1)で表される2価の有機基である。
Figure JPOXMLDOC01-appb-C000015

 式(Y1-1)中、R、R、Rは、上記に定義したとおりである、なかでも、Rは、単結合、-O-が好ましく、Rはメチレン基が好ましく、Rは酸素原子が好ましい。
In formula (1), Y 1 is a divalent organic group represented by the following formula (Y1-1).
Figure JPOXMLDOC01-appb-C000015

In formula (Y1-1), R 3 , R 4 , and R 5 are as defined above. Among them, R 3 is preferably a single bond, —O—, and R 4 is preferably a methylene group, R 5 is preferably an oxygen atom.
 以下にYの具体例を挙げるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000016
Specific examples of Y 1 are given below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記の中でも、液晶の配向安定性の観点からは(Y1-1-1)~(Y1-1-8)が好ましい。また、式(1)で表される繰り返し単位の(含有)割合は、(A)成分であるポリアミック酸エステルに含まれる全繰り返し単位のうちの1~70モル%であることが好ましく、より好ましくは5~50モル%である。 Among these, (Y1-1-1) to (Y1-1-8) are preferable from the viewpoint of the alignment stability of the liquid crystal. In addition, the (containing) ratio of the repeating unit represented by the formula (1) is preferably 1 to 70 mol% of all repeating units contained in the polyamic acid ester as the component (A), more preferably. Is 5 to 50 mol%.
 前記式(2)中、Yは、下記式(Y2-1)で表される2価の有機基である。
Figure JPOXMLDOC01-appb-C000018
In the formula (2), Y 2 is a divalent organic group represented by the following formula (Y2-1).
Figure JPOXMLDOC01-appb-C000018
 式(Y2-1)中、A、Aは、B、B、A、A、A、R,、aは、上記に定義したとおりである。なかでも、A、Aは単結合、メチレン基、エチレン基又は、プロピレン基が好ましい。また、A又はAがアゼチジンジイル、ピロリジンジイル、ピペリジンジイルなどの脂肪族複素環である場合は、アゼチジン-1,3-ジイル、ピロリジン-1,3-ジイル、又はピペリジン-1,4-ジイルが好ましく、環内の窒素原子が隣接するベンゼン環に結合するのがより好ましい。
 また、B及びBは、単結合、又は-O-が好ましい。A及びAは単結合、メチレン基、エチレン基、又はプロピレン基が好ましい。Aはエチレン基が好ましい。aは0が好ましい。Rは水素原子が好ましい。
In the formula (Y2-1), A 1 and A 5 are B 1 , B 2 , A 2 , A 3 , A 4 , R, and a are as defined above. Among these, A 1 and A 5 are preferably a single bond, a methylene group, an ethylene group or a propylene group. When A 1 or A 5 is an aliphatic heterocycle such as azetidinediyl, pyrrolidinediyl, piperidinediyl, etc., azetidine-1,3-diyl, pyrrolidine-1,3-diyl, or piperidine-1,4-diyl It is preferable that the nitrogen atom in the ring is bonded to the adjacent benzene ring.
B 1 and B 2 are preferably a single bond or —O—. A 2 and A 4 are preferably a single bond, a methylene group, an ethylene group, or a propylene group. A 3 is preferably an ethylene group. a is preferably 0. R is preferably a hydrogen atom.
 式(Y2-1)中、Dは熱により水素原子に置き換わる保護基であり、液晶配向剤の保存安定性の観点から、室温では脱離せず、かつ液晶配向膜の作製工程における加熱で脱離して水素原子に置き換わる基が好適である。好ましい脱離温度としては80~200℃、より好ましくは100~200℃、特に好ましくは150~200℃である。このような基の具体例としては1,1-ジメチル-2-クロロエトキシカルボニル基、1,1-ジメチル-2-シアノエトキシカルボニル基、tert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基などが挙げられ、好ましくはtert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニルV基であり、特に好ましいのはtert-ブトキシカルボニル基である。 In formula (Y2-1), D is a protecting group that is replaced with a hydrogen atom by heat, and is not detached at room temperature from the viewpoint of the storage stability of the liquid crystal aligning agent, and is detached by heating in the manufacturing process of the liquid crystal alignment film. Thus, a group that replaces a hydrogen atom is preferred. A preferable desorption temperature is 80 to 200 ° C, more preferably 100 to 200 ° C, and particularly preferably 150 to 200 ° C. Specific examples of such groups include 1,1-dimethyl-2-chloroethoxycarbonyl group, 1,1-dimethyl-2-cyanoethoxycarbonyl group, tert-butoxycarbonyl group, or 9-fluorenylmethoxycarbonyl group. Preferred are a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl V group, and particularly preferred is a tert-butoxycarbonyl group.
 上記式(Y2-1)で表される2価の有機基のうち、A~A、B、B及びaの好ましい組合せとしては、以下に示すタイプ1~タイプ3の組合せを挙げることができ、より好ましくはタイプ1又はタイプ2であり、特に好ましいのはタイプ1である。 Of the divalent organic groups represented by the above formula (Y2-1), preferable combinations of A 1 to A 5 , B 1 , B 2 and a include the combinations of types 1 to 3 shown below. More preferably, type 1 or type 2 is preferable, and type 1 is particularly preferable.
 タイプ1:A及びAは独立して、単結合、メチレン、炭素数2~5のアルキレンであり、B及びBは独立して単結合、-O-、-COO-、-OCO-、-CONH-、-NHCO-、-CONCH-、又は-NCHCO-であり、A及びAは独立してメチレン、又は炭素数2~5のアルキレンであり、Aはメチレン、又は炭素数2~6のアルキレンであり、aが0又は1である。
 より好ましくは、A及びAは共に単結合であり、B及びBは独立して単結合又は-O-であり、A及びAは独立してメチレン、又は炭素数2~5のアルキレンであり、Aはメチレン、又は炭素数2~6のアルキレンであり、aが0又は1である。
Type 1: A 1 and A 5 are independently a single bond, methylene, alkylene having 2 to 5 carbon atoms, and B 1 and B 2 are independently a single bond, —O—, —COO—, —OCO. -, - CONH -, - NHCO -, - CONCH 3 -, or -NCH 3 is CO-, a 2 and a 4 are independently methylene or alkylene having a carbon number of 2 ~ 5, a 3 is methylene Or alkylene having 2 to 6 carbon atoms, and a is 0 or 1.
More preferably, A 1 and A 5 are both a single bond, B 1 and B 2 are independently a single bond or —O—, and A 2 and A 4 are independently methylene, or a group having 2 to 5 is alkylene, A 3 is methylene or alkylene having 2 to 6 carbon atoms, and a is 0 or 1.
 タイプ2:A及びAは独立して単結合、アゼチジンジイル、ピロリジンジイル、又はピペリジンジイルであり、B及びBは共に単結合であり、A及びAは独立してメチレン、又は炭素数2~5のアルキレンであり、aが0である。より好ましくは、Aはアゼチジンジイル、ピロリジンジイル、又はピペリジンジイルであり、Aはメチレン、又は炭素数2~5のアルキレンであり、A、A、B及びBは単結合であり、aが0である。
 タイプ3:A、A、A、A、B、Bは単結合であり、Aはメチレン、又は炭素数2~6のアルキレンであり、aが1である。
Type 2: A 1 and A 5 are independently a single bond, azetidinediyl, pyrrolidinediyl, or piperidinediyl, B 1 and B 2 are both single bonds, and A 2 and A 4 are independently methylene, or An alkylene having 2 to 5 carbon atoms and a is 0; More preferably, A 1 is Azechijinjiiru a pyrrolidinediyl or piperidine-diyl, A 2 is an alkylene methylene, or C 2 ~ 5, A 4, A 5, B 1 and B 2 is a single bond , A is 0.
Type 3: A 1 , A 2 , A 4 , A 5 , B 1 , B 2 are single bonds, A 3 is methylene or alkylene having 2 to 6 carbon atoms, and a is 1.
 以下にYの具体例を挙げるが、本発明はこれらに限定されるものではない。なお下記構造中のDは、式(Y2-1)の定義と同じである。
Figure JPOXMLDOC01-appb-C000019
Specific examples of Y 2 are given below, but the present invention is not limited to these. In the following structure, D has the same definition as in formula (Y2-1).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式(2)で表される繰り返し単位の(含有)割合は、(A)成分であるポリアミック酸エステルに含まれる全繰り返し単位のうちの1~70モル%が好ましく、より好ましくは5~50モル%である。
 (A)成分であるポリアミック酸エステルにおいて、式(1)で表される繰り返し単位と式(2)で表される繰り返し単位の好ましい比率としては、モル比で1:10~10:1であり、より好ましくは1:6~6:1である。また、(A)成分であるポリアミック酸エステルに含まれる全繰り返し単位において、式(1)で表される繰り返し単位と式(2)で表される繰り返し単位の合計は、15モル%以上であることが好ましく、より好ましくは30モル%以上である。
The (containing) ratio of the repeating unit represented by the formula (2) is preferably 1 to 70 mol%, more preferably 5 to 50 mol of all repeating units contained in the polyamic acid ester as the component (A). %.
In the polyamic acid ester which is the component (A), a preferred ratio of the repeating unit represented by the formula (1) to the repeating unit represented by the formula (2) is 1:10 to 10: 1 in molar ratio. More preferably, it is 1: 6 to 6: 1. Moreover, in all the repeating units contained in the polyamic acid ester which is the component (A), the total of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) is 15 mol% or more. More preferably, it is 30 mol% or more.
 前記(A)成分であるポリアミック酸エステルは、前記式(1)及び式(2)以外の繰り返し単位を有していてもよい。式(1)及び式(2)以外の繰り返し単位の構造は特に限定されないが、あえてその具体例を挙げるなら下記式(4)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000024
The polyamic acid ester as the component (A) may have a repeating unit other than the formula (1) and the formula (2). The structure of the repeating unit other than those represented by formula (1) and formula (2) is not particularly limited, but if a specific example is given, the repeating unit represented by the following formula (4) is preferable.
Figure JPOXMLDOC01-appb-C000024
 式(4)中、R,Rは式(1)と同じ定義であり、Yは前記式(Y1-1)及び式(Y2-1)以外の2価の有機基を表す。式(4)中のYの構造は前記式(Y1-1)及び式(Y2-1)以外の2価の有機基であれば特に限定されない。以下に好ましい構造の具体例を示すが、本発明はこれらに限定されるものではない。 In formula (4), R 1 and R 2 have the same definition as in formula (1), and Y 3 represents a divalent organic group other than formula (Y1-1) and formula (Y2-1). The structure of Y 3 in the formula (4) is not particularly limited as long as it is a divalent organic group other than the formulas (Y1-1) and (Y2-1). Although the specific example of a preferable structure is shown below, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 上記構造の内でも、(Y-5)、(Y-10)~(Y-16)、(Y-18)、(Y-24)~(Y-29)などは特に好ましい。
 以上(A)成分であるポリアミック酸エステルは、既知の合成手法で得ることができる。その例としては、下記式(1a)で表される化合物を含むテトラカルボン酸誘導体成分と下記式(1b)及び(2b)で表される化合物を含むジアミン成分とを縮重合させる手法、または、下記式(1a’)で表される化合物を含むテトラカルボン酸二無水物成分と下記式(1b)及び(2b)で表される化合物を含むジアミン成分とを付加重合させてポリアミック酸を得た後にカルボキシル基をエステル化する手法などを挙げることができる。
Of the above structures, (Y-5), (Y-10) to (Y-16), (Y-18), (Y-24) to (Y-29) and the like are particularly preferable.
The polyamic acid ester as the component (A) can be obtained by a known synthesis method. For example, a method of polycondensing a tetracarboxylic acid derivative component containing a compound represented by the following formula (1a) and a diamine component containing a compound represented by the following formulas (1b) and (2b), or A polyamic acid was obtained by addition polymerization of a tetracarboxylic dianhydride component containing a compound represented by the following formula (1a ′) and a diamine component containing a compound represented by the following formulas (1b) and (2b). The method of esterifying a carboxyl group later can be mentioned.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式中、Rはヒドロキシ基又は塩素原子であり、R,R,Yは式(1)と同じ定義であり、Yは式(2)と同じ定義である。
 本発明の液晶配向剤において、(A)成分であるポリアミック酸エステルの分子量は特に限定されないが、好ましくは重量平均分子量で2,000~500,000、より好ましくは5,000~300,000であり、さらに好ましくは10,000~100,000である。
In the formula, R is a hydroxy group or a chlorine atom, R 1 , R 2 and Y 1 have the same definition as in formula (1), and Y 2 has the same definition as in formula (2).
In the liquid crystal aligning agent of the present invention, the molecular weight of the polyamic acid ester as the component (A) is not particularly limited, but is preferably 2,000 to 500,000 in weight average molecular weight, more preferably 5,000 to 300,000. More preferably, it is 10,000 to 100,000.
<ポリアミック酸(B)>
 前記(B)成分であるポリアミック酸は、下記式(3)で表される繰り返し単位を有する。なお、このポリアミック酸に含まれる式(3)の構造は1種類であっても2種類以上であってもよい。
Figure JPOXMLDOC01-appb-C000030
<Polyamic acid (B)>
The polyamic acid as the component (B) has a repeating unit represented by the following formula (3). In addition, the structure of Formula (3) contained in this polyamic acid may be one type or two or more types.
Figure JPOXMLDOC01-appb-C000030
 式(3)中、Xは4価の有機基であり、Yは2価の有機基であり、Rは水素原子又は炭素数1~4のアルキル基である。
 上記式(3)で表される繰り返し単位を有するポリアミック酸は、例えば、下記式(3a)で表される少なくとも1種類の化合物と、下記式(3b)で表される少なくとも1種類の化合物との縮重合によって得ることができる。従って、式(3)における、Xは式(3a)で表される全ての化合物に対応する構造を含むことができる。同様に、式(3)におけるY及びRは式(3b)で表される全ての化合物に対応する構造を含むことができる。
In the formula (3), X is a tetravalent organic group, Y is a divalent organic group, and R 6 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
The polyamic acid having a repeating unit represented by the above formula (3) includes, for example, at least one compound represented by the following formula (3a) and at least one compound represented by the following formula (3b): Can be obtained by condensation polymerization. Therefore, X in the formula (3) can include structures corresponding to all the compounds represented by the formula (3a). Similarly, Y and R 6 in formula (3) can include structures corresponding to all the compounds represented by formula (3b).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 式(3a)及び式(3b)におけるX,Y,Rは、式(3)におけるそれぞれと同じ定義である。
 以下に、式(3)におけるXの好ましい構造の具体例を示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000032
X, Y, and R 6 in Formula (3a) and Formula (3b) have the same definitions as in Formula (3).
Specific examples of preferred structures of X in formula (3) are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 上記(X-1)において、R~R10は、それぞれ独立して、水素原子又は炭素数1~6のアルキル基である。
 前記式(3)におけるXは、上記(X-1)~(X-14)からなる群から選ばれる少なくとも1種であることが好ましく、特に好ましいのは上記(X-1)においてR~R10が全て水素原子である構造、(X-2)、(X-3)、(X-5)、(X-6)、(X-7)、(X-8)、(X-10)、(X-11)、及び(X-14)からなる群から選ばれる少なくとも1種である。
In the (X-1), R 7 ~ R 10 are each independently hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
X in the formula (3) is preferably at least one selected from the group consisting of the above (X-1) to (X-14), and particularly preferably in the above (X-1), R 7 to Structures in which R 10 is all hydrogen atoms, (X-2), (X-3), (X-5), (X-6), (X-7), (X-8), (X-10) ), (X-11), and (X-14).
 式(3)におけるYは、2価の有機基であればその構造は特に限定されないが、液晶表示素子を駆動させた直後のちらつき(フリッカーレベル)の改善効果を高めるという観点からは、Yが式(Y1-1)又は式(Y2-1)である繰り返し単位を含まないことが好ましい。
 より具体的には、Yは下記(i)~(iii)からなる群より選ばれる2価の有機基が好ましい。
The structure of Y in formula (3) is not particularly limited as long as it is a divalent organic group. However, from the viewpoint of enhancing the flicker improvement effect immediately after driving the liquid crystal display element, Y is It is preferable that the repeating unit of formula (Y1-1) or formula (Y2-1) is not included.
More specifically, Y is preferably a divalent organic group selected from the group consisting of (i) to (iii) below.
(i) 下記(c-1)又は(c-2)で表される構造。
(ii) 下記(c-1)~(c-4)から選ばれる構造の組合せ。
(iii) 下記(c-1)~(c-4)から選ばれる構造の組合せの途中に下記(d-1)~(d-3)から選ばれる結合基を含む。
(I) A structure represented by the following (c-1) or (c-2).
(Ii) A combination of structures selected from the following (c-1) to (c-4).
(Iii) A linking group selected from the following (d-1) to (d-3) is included in the middle of a combination of structures selected from the following (c-1) to (c-4).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式(c-1)中、Rは水素原子、メチル基、又はカルボキシル基を表す。
 上記で、(c-1)~(c-4)からなる群から選ばれる構造の組合せにおいては、同じ構造を複数用いた組合せであってもよい。また、(d-1)~(d-3)からなる群から選ばれる結合基どうしが隣り合うことはない。(i)~(iii)からなる群より選ばれる2価の有機基の分子量は1000以下であるとより好ましい。かかるYの具体例としては、前記(Y-1)~(Y-34)などが挙げられるが、本発明はこれらに限定されない。なかでも、(Y-5)、(Y-8)、(Y-9)、(Y-12)、(Y-17)、(Y-18)~(Y-20)、又は(Y-29)特に好ましい。
In formula (c-1), R represents a hydrogen atom, a methyl group, or a carboxyl group.
In the above, the combination of structures selected from the group consisting of (c-1) to (c-4) may be a combination using a plurality of the same structures. Further, bonding groups selected from the group consisting of (d-1) to (d-3) are not adjacent to each other. The molecular weight of the divalent organic group selected from the group consisting of (i) to (iii) is more preferably 1000 or less. Specific examples of Y include (Y-1) to (Y-34), but the present invention is not limited to these. Among them, (Y-5), (Y-8), (Y-9), (Y-12), (Y-17), (Y-18) to (Y-20), or (Y-29) ) Particularly preferred.
 本発明の液晶配向剤において、(B)成分であるポリアミック酸の分子量は、好ましくは重量平均分子量で2,000~500,000、より好ましくは5,000~300,000であり、さらに好ましくは10,000~100,000である。 In the liquid crystal aligning agent of the present invention, the molecular weight of the polyamic acid as the component (B) is preferably 2,000 to 500,000, more preferably 5,000 to 300,000 in weight average molecular weight, and still more preferably. 10,000 to 100,000.
<液晶配向剤>
 本発明の液晶配向剤に含有されるポリアミック酸エステル(A)とポリアミック酸(B)との質量(含有)比率(ポリアミック酸エステル/ポリアミック酸)は、1/9~9/1が好ましく、より好ましくは2/8~8/2である。
 本発明の液晶配向剤は、ポリアミック酸エステル(A)とポリアミック酸(B)とを含有する溶液の形態であると好ましい。この場合、ポリアミック酸エステル(A)及びポリアミック酸(B)の合計含有量は、形成させようとする液晶配向膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させる点から、液晶配向剤全体の0.5質量%以上が好ましく、溶液の保存安定性の点からは15質量%以下が好ましい。特に、0.5~10質量%がより好ましく、1~10質量%が特に好ましい。
<Liquid crystal aligning agent>
The mass (containing) ratio (polyamic acid ester / polyamic acid) of the polyamic acid ester (A) and the polyamic acid (B) contained in the liquid crystal aligning agent of the present invention is preferably 1/9 to 9/1, more preferably It is preferably 2/8 to 8/2.
The liquid crystal aligning agent of the present invention is preferably in the form of a solution containing a polyamic acid ester (A) and a polyamic acid (B). In this case, the total content of the polyamic acid ester (A) and the polyamic acid (B) can be appropriately changed by setting the thickness of the liquid crystal alignment film to be formed. From the point of forming, 0.5 mass% or more of the whole liquid crystal aligning agent is preferable, and 15 mass% or less is preferable from the point of the storage stability of a solution. In particular, 0.5 to 10% by mass is more preferable, and 1 to 10% by mass is particularly preferable.
 本発明の液晶配向剤に含有される有機溶媒は、ポリアミック酸エステル(A)及びポリアミック酸(B)のポリマー成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。
 なお、本発明の液晶配向剤に含有されるポリアミック酸エステル(A)とポリアミック酸(B)との相溶性等の観点から、N-メチル-2-ピロリドンの含有比率が、液晶配向剤の全重量に対して30~80質量%であると好ましい。また、単独ではポリマー成分を均一に溶解できない溶媒であっても、ポリマーが析出しない範囲であれば、上記の有機溶媒に混合してもよい。
The organic solvent contained in the liquid crystal aligning agent of this invention will not be specifically limited if the polymer component of a polyamic acid ester (A) and a polyamic acid (B) melt | dissolves uniformly. Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, And 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. it can. You may use these 1 type or in mixture of 2 or more types.
From the viewpoint of compatibility between the polyamic acid ester (A) and the polyamic acid (B) contained in the liquid crystal aligning agent of the present invention, the N-methyl-2-pyrrolidone content ratio is It is preferably 30 to 80% by mass with respect to the weight. Moreover, even if it is a solvent which cannot melt | dissolve a polymer component uniformly by itself, if it is a range which a polymer does not precipitate, you may mix with said organic solvent.
 本発明の液晶配向剤は、有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類上を併用してもよい。 The liquid crystal aligning agent of the present invention may contain, in addition to the organic solvent, a solvent for improving the coating film uniformity when the liquid crystal aligning agent is applied to the substrate. As such a solvent, a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of these solvents may be used in combination.
 本発明の液晶配向剤は、シランカップリング剤、架橋剤、イミド化促進剤等の各種添加剤を含有してもよい。
 シランカップリング剤は、液晶配向膜と基板との密着性を向上させる目的で添加され得る。また、シランカップリング剤は1種類でも、2種類以上組み合わせてもよい。シランカップリング剤の含有量は、ポリマー成分100質量部に対して0.01~5.0質量部が好ましく、0.1~2.0質量部がより好ましい。
The liquid crystal aligning agent of this invention may contain various additives, such as a silane coupling agent, a crosslinking agent, and an imidation promoter.
The silane coupling agent can be added for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate. Moreover, the silane coupling agent may be one kind or a combination of two or more kinds. The content of the silane coupling agent is preferably 0.01 to 5.0 parts by mass, more preferably 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the polymer component.
 シランカップリング剤の具体例を以下に挙げるが、これらに限定されるものではない。3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-アミノプロピルジエトキシメチルシラン等のアミン系シランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、ビニルトリアセトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、p-スチリルトリメトキシシラン等のビニル系シランカップリング剤;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ系シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のメタクリル系シランカップリング剤;3-アクリロキシプロピルトリメトキシシラン等のアクリル系シランカップリング剤;3-ウレイドプロピルトリエトキシシラン等のウレイド系シランカップリング剤;ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド等のスルフィド系シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-オクタノイルチオ-1-プロピルトリエトキシシラン等のメルカプト系シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン等のイソシアネート系シランカップリング剤;トリエトキシシリルブチルアルデヒド等のアルデヒド系シランカップリング剤;トリエトキシシリルプロピルメチルカルバメート、(3-トリエトキシシリルプロピル)-t-ブチルカルバメート等のカルバメート系シランカップリング剤。 Specific examples of the silane coupling agent are listed below, but are not limited thereto. 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-phenylaminopropyltri Amine-based silane coupling agents such as methoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-aminopropyldiethoxymethylsilane; vinyltrimethoxysilane, vinyltriethoxysilane, Vinyl-based silane coupling agents such as vinyltris (2-methoxyethoxy) silane, vinylmethyldimethoxysilane, vinyltriacetoxysilane, vinyltriisopropoxysilane, allyltrimethoxysilane, p-styryltrimethoxysilane 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ) Epoxy silane coupling agents such as ethyltrimethoxysilane; 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane Methacrylic silane coupling agents such as 3-acryloxypropyltrimethoxysilane and other acrylic silane coupling agents; 3-ureidopropyltriethoxysilane and other ureido silane coupling agents; Sulfide-based silane coupling agents such as (3- (triethoxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide; 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, Mercapto silane coupling agents such as 3-octanoylthio-1-propyltriethoxysilane; Isocyanate silane coupling agents such as 3-isocyanatopropyltriethoxysilane and 3-isocyanatopropyltrimethoxysilane; Triethoxysilylbutyraldehyde Aldehyde-based silane coupling agents; carbamate-based silane coupling agents such as triethoxysilylpropylmethyl carbamate and (3-triethoxysilylpropyl) -t-butyl carbamate Agent.
 上記架橋剤は、液晶配向膜の膜強度を高める目的で使用できる。また、架橋剤は1種類であってもよく、2種類以上組み合わせてもよい。架橋剤の使用量は、ポリマー成分100質量部に対して、0.1~50質量部であることが好ましく、より好ましくは1~20質量部である。
 上記架橋剤としては、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、又はヒドロキシアルキルアミド基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物などを挙げることができる。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有することが好ましい。
The crosslinking agent can be used for the purpose of increasing the film strength of the liquid crystal alignment film. Moreover, one type of crosslinking agent may be sufficient and it may combine two or more types. The amount of the crosslinking agent used is preferably 0.1 to 50 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymer component.
The crosslinking agent is at least one selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, or a hydroxyalkylamide group, a hydroxyl group, a hydroxyalkyl group, and a lower alkoxyalkyl group. And a crosslinkable compound having a substituent, or a crosslinkable compound having a polymerizable unsaturated bond. It is preferable to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
 架橋剤の具体例を以下に挙げるが、これらに限定されるものではない。エポキシ基又はイソシアネート基を有する架橋性化合物としては、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン、1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノール等が挙げられる。 Specific examples of the crosslinking agent are listed below, but are not limited thereto. Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetraglycidyl- 1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy) -1- Trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl, triglyceride Zyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxypropoxy) ) Phenyl) ethyl) phenyl) propane, 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3- And epoxypropoxy) phenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol.
 オキセタン基を有する架橋性化合物としては、国際公開公報WO2011/132751号パンフレットの58~59頁に掲載される式[4a]~[4k]で表される架橋性化合物が挙げられる。シクロカーボネート基を有する架橋性化合物としては、国際公開公報WO2012/014898号パンフレットの76~82頁に掲載される式[5-1]~[5-42]で表される架橋性化合物が挙げられる。
 ヒドロキシアルキルアミド基を有する架橋性化合物としては、国際公開公報WO2015/072554号パンフレットの23ページ[化35]に掲載される架橋性化合物が挙げられる。ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、国際公開公報WO2011/132751号パンフレットの62~66頁に掲載される、式[6-1]~[6-48]で表される架橋性化合物が挙げられる。
Examples of the crosslinkable compound having an oxetane group include crosslinkable compounds represented by the formulas [4a] to [4k] described on pages 58 to 59 of the pamphlet of International Publication No. WO2011 / 132751. Examples of the crosslinkable compound having a cyclocarbonate group include crosslinkable compounds represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of WO 2012/014898 pamphlet. .
Examples of the crosslinkable compound having a hydroxyalkylamide group include the crosslinkable compounds described on page 23 [Chemical Formula 35] of the pamphlet of International Publication No. WO2015 / 072554. Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include those represented by formulas [6-1] to 6-66 of International Publication No. WO2011 / 132751. And a crosslinkable compound represented by [6-48].
 重合性不飽和結合を有する架橋性化合物としては、国際公開公報WO2015/060357号パンフレット58~59頁の[0112]~[0113]に掲載される架橋性化合物が挙げられる。
 イミド化促進剤は、本発明の液晶配向剤の塗膜を焼成する際にポリアミック酸エステル(A)及びポリアミック酸(B)のイミド化反応を効率よく進行させる目的で使用できる。イミド化促進剤の使用量は、イミド化反応可能なアミック酸部位及びアミック酸エステル部位1モルに対して、好ましくは0.01モル以上、より好ましくは0.05モル以上、更に好ましくは0.1モル以上である。また、焼成後の膜中に残留するイミド化促進剤自体が、液晶配向膜の諸特性に及ぼす悪影響を最小限に留めるという観点から、好ましくは2モル以下、より好ましくは1モル以下、更に好ましくは0.5モル以下である。
 イミド化促進剤の具体例としては、国際公開公報WO2010/114103号パンフレットの29頁に掲載される、式(B-1)~(B-17)で表される化合物が挙げられるが、これに限定されるものではない。
Examples of the crosslinkable compound having a polymerizable unsaturated bond include the crosslinkable compounds described in [0112] to [0113] of pamphlet 58 to 59 of International Publication No. WO2015 / 060357.
The imidization accelerator can be used for the purpose of efficiently proceeding the imidization reaction of the polyamic acid ester (A) and the polyamic acid (B) when the coating film of the liquid crystal aligning agent of the present invention is baked. The amount of the imidization accelerator used is preferably 0.01 mol or more, more preferably 0.05 mol or more, and still more preferably 0.8 mol, per 1 mol of an amic acid site and an amic acid ester site capable of imidization reaction. 1 mole or more. In addition, from the viewpoint of minimizing the adverse effect of the imidization accelerator itself remaining in the film after firing on various properties of the liquid crystal alignment film, it is preferably 2 mol or less, more preferably 1 mol or less, still more preferably. Is 0.5 mol or less.
Specific examples of the imidization accelerator include compounds represented by formulas (B-1) to (B-17), which are listed on page 29 of International Publication WO2010 / 114103 pamphlet. It is not limited.
<液晶配向膜>
 本発明の液晶配向膜は、上記に記載の本発明の液晶配向剤を用いて得られた液晶配向膜である。液晶配向膜を得る方法は既知の手法を用いることができる。例えば、液晶配向剤を基板に塗布し、乾燥、焼成して得られた塗膜にラビング処理又は偏光紫外線を照射することにより液晶配向能が付与された液晶配向膜である。
 液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法等が挙げられる。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is a liquid crystal alignment film obtained using the liquid crystal aligning agent of the present invention described above. A known method can be used to obtain the liquid crystal alignment film. For example, it is a liquid crystal alignment film provided with a liquid crystal alignment ability by applying a liquid crystal aligning agent to a substrate, drying and baking, and irradiating a coating film obtained by rubbing or polarizing ultraviolet rays.
The substrate on which the liquid crystal alignment agent is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. It is preferable to use a substrate on which an ITO electrode or the like is formed from the viewpoint of simplifying the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used. Examples of the method for applying the liquid crystal aligning agent include a spin coating method, a printing method, and an ink jet method.
 液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50~120℃で1分~10分乾燥させ、その後150~300℃で5~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
 この塗膜を配向処理する方法としては、ラビング法、光配向処理法等が挙げられるが、本発明の液晶配向剤はラビング法で使用する場合に特に有用である。
Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent. Usually, in order to sufficiently remove the organic solvent contained, drying is performed at 50 to 120 ° C. for 1 to 10 minutes, and then baking is performed at 150 to 300 ° C. for 5 to 120 minutes. The thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
Examples of the method for aligning the coating film include a rubbing method and a photo-alignment processing method. The liquid crystal aligning agent of the present invention is particularly useful when used in the rubbing method.
<液晶表示素子>
 本発明の液晶表示素子は、上記の液晶配向膜を有する液晶表示素子である。より具体的には、上記した手法により本実施の形態の液晶配向剤から液晶配向膜付き基板を得た後、既知の方法で液晶セルを作製し、液晶表示素子としたものである。
 液晶セル作製の一例を挙げるならば、次の通りである。まず、液晶配向膜の形成された一対の基板を用意する。次いで、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせた後、液晶を減圧注入して封止する。または、液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行ってもよい。このとき、一対の基板間に液晶材料が充填される空間を確保する為に、一方の基板上に柱状の突起を設けるか、一方の基板上にスペーサーを散布するか、シール材にスペーサーを混入するか、又はこれらを組み合わせるなどの手段を取ることが好ましい。スペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。
<Liquid crystal display element>
The liquid crystal display element of this invention is a liquid crystal display element which has said liquid crystal aligning film. More specifically, after a substrate with a liquid crystal alignment film is obtained from the liquid crystal aligning agent of the present embodiment by the above-described method, a liquid crystal cell is produced by a known method to obtain a liquid crystal display element.
An example of liquid crystal cell fabrication is as follows. First, a pair of substrates on which a liquid crystal alignment film is formed are prepared. Next, after bonding the other substrate so that the liquid crystal alignment film surface is on the inside, the liquid crystal is injected under reduced pressure and sealed. Alternatively, after the liquid crystal is dropped on the liquid crystal alignment film surface, the substrate may be attached and sealed. At this time, in order to secure a space filled with a liquid crystal material between a pair of substrates, columnar protrusions are provided on one substrate, spacers are dispersed on one substrate, or spacers are mixed in a sealing material. It is preferable to take measures such as combining them. The thickness of the spacer is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 上記の液晶材料としては、ネマティック液晶、スメクティック液晶を挙げることができ、その中でもネマティック液晶が好ましく、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。
 なお、本発明の液晶配向膜及び液晶表示素子は、上記の記載に限定されるものでは無く、その他の公知の手法で作製されたものであっても良い。液晶配向剤から液晶表示素子を得るまでの工程は、例えば日本国特開2015-135393号公報の17頁[0074]~19頁[0081]などの他、数多くの文献でも開示されている。
Examples of the liquid crystal material include nematic liquid crystal and smectic liquid crystal. Among them, nematic liquid crystal is preferable, and either a positive liquid crystal material or a negative liquid crystal material may be used. Next, a polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
In addition, the liquid crystal aligning film and liquid crystal display element of this invention are not limited to said description, The thing produced by the other well-known method may be used. Processes for obtaining a liquid crystal display element from a liquid crystal aligning agent are also disclosed in a number of documents in addition to, for example, page 17 [0074] to page 19 [0081] of Japanese Patent Application Laid-Open No. 2015-135393.
 以下に実施例を挙げて、本発明をさらに具体的に説明する。但し、本発明は、これらの実施例に限定して解釈されるものではない。以後で使用する化合物の略号、及び各特性の測定方法は、次のとおりである。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not construed as being limited to these examples. The abbreviations of the compounds to be used hereinafter and the measuring methods of the respective characteristics are as follows.
<化合物の略号>
 下記において「Boc」はtert-ブトキシカルボニル基である。
Figure JPOXMLDOC01-appb-C000035
<Abbreviation of compound>
In the following, “Boc” is a tert-butoxycarbonyl group.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
<溶媒の略号>
NMP:N-メチル-2-ピロリドン、 BCS:ブチルセロソルブ
GBL:γ-ブチロラクトン、     IPA:イソプロピルアルコール
<粘度>
 重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
Figure JPOXMLDOC01-appb-C000036
<Abbreviation of solvent>
NMP: N-methyl-2-pyrrolidone, BCS: Butyl cellosolve GBL: γ-butyrolactone, IPA: Isopropyl alcohol <viscosity>
The viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), and a temperature of 25 ° C. .
<分子量>
 重合体の分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
<Molecular weight>
The molecular weight of the polymer is measured by a GPC (normal temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight (hereinafter also referred to as Mw) as polyethylene glycol and polyethylene oxide converted values. Calculated.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805), column temperature: 50 ° C.
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L), flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, manufactured by Tosoh Corporation 30,000) and polyethylene glycol manufactured by Polymer Laboratories (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of the mixed sample were measured separately.
<ラビング耐性評価>
 液晶配向剤を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、230℃で20分間焼成して、膜厚100nmのポリイミド膜を得た。このポリイミド膜をレーヨン布で1回ラビング(ロール径120mm、回転数1000rpm、移動速度20mm/sec、押し込み量0.4mm)した。この膜表面を、共焦点レーザー顕微鏡を用いて表面状態を観察し、倍率100倍で削れカスの有無と傷の有無を観察した。削れカスや傷がほとんど見られないものを「良好」と定義して評価し、多くの削れカスやラビング傷が見られるものは「不良」と定義して評価した。
<Rubbing resistance evaluation>
The liquid crystal aligning agent is filtered through a 1.0 μm filter, spin-coated on a glass substrate with a transparent electrode, dried on an 80 ° C. hot plate for 5 minutes, and then baked at 230 ° C. for 20 minutes. A 100 nm polyimide film was obtained. This polyimide film was rubbed once with a rayon cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 20 mm / sec, pushing amount 0.4 mm). The surface of the film was observed using a confocal laser microscope, and was scraped at a magnification of 100 times to observe the presence of scraps and the presence of scratches. The evaluation was defined as “good” when the scraped scraps and scratches were hardly seen, and defined as “bad” when the scraped scraps and rubbing scratches were observed.
<液晶表示素子の作製>
 初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素および第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
<Production of liquid crystal display element>
First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. On the substrate, an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed. On the counter electrode of the first layer, a SiN (silicon nitride) film formed by the CVD method is formed as the second layer. The second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film. On the second SiN film, a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a dogleg shape whose central portion is bent. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
 次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と対向基板として裏面にITO膜が成膜されており、かつ高さ4μmの柱状のスペーサーを有するガラス基板のそれぞれにスピンコートした。次いで、80℃のホットプレート上で5分間乾燥後、230℃で20分間焼成して膜厚60nmの塗膜として、各基板上にポリイミド膜を得た。このポリイミド膜上を、所定のラビング方向で、レーヨン布によりラビング(ロール径120mm、回転数500rpm、移動速度30mm/sec、押し込み量0.3mm)した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel. The electrode elements of the electrode are formed so as to form an angle of −10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
Next, after the obtained liquid crystal aligning agent is filtered through a 1.0 μm filter, an ITO film is formed on the back surface as the prepared substrate with electrodes and a counter substrate, and a columnar spacer having a height of 4 μm. Each of the glass substrates having was spin-coated. Subsequently, after drying for 5 minutes on an 80 degreeC hotplate, it baked at 230 degreeC for 20 minutes, and obtained the polyimide film on each board | substrate as a 60 nm-thick coating film. The polyimide film is rubbed with a rayon cloth in a predetermined rubbing direction (roll diameter 120 mm, rotation speed 500 rpm, moving speed 30 mm / sec, pushing amount 0.3 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. And dried at 80 ° C. for 10 minutes.
 その後、上記液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが3.8μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入したのち、注入口を封止してアンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから各評価に使用した。 Then, using the two types of substrates with the liquid crystal alignment film, the rubbing directions are combined so that they are antiparallel, the periphery is sealed leaving the liquid crystal injection port, and an empty cell with a cell gap of 3.8 μm is formed. Produced. A liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell. The obtained liquid crystal cell constitutes an FFS mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
<蓄積電荷の緩和特性の評価>
 以下の光学系等を用いて残像の評価を行った。作製した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でLEDバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。
 次に、この液晶セルに周波数30Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。
<Evaluation of relaxation characteristics of accumulated charge>
The afterimage was evaluated using the following optical system and the like. The prepared liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.
Next, a VT curve (voltage-transmittance curve) was measured while applying an AC voltage with a frequency of 30 Hz to the liquid crystal cell, and an AC voltage with a relative transmittance of 23% was calculated as a drive voltage.
 残像評価では、相対透過率が23%となる周波数30Hzの交流電圧を印加して液晶セルを駆動させながら、同時に1Vの直流電圧を印加し、60分間駆動させた。その後、印加直流電圧値を0Vにして直流電圧の印加のみを停止し、その状態でさらに30分駆動した。
 評価は、直流電圧の印加を開始した時点から60分間が経過するまでに、相対透過率が30%以下に低下した場合に、「良好」と定義して評価を行った。相対透過率が30%以下に低下するまでに60分間以上を要した場合には、「不良」と定義して評価した。
 そして、上述した方法に従う残像評価は、液晶セルの温度が23℃の状態の温度条件下で行った。
In the afterimage evaluation, a DC voltage of 1 V was applied at the same time while driving the liquid crystal cell by applying an AC voltage having a relative transmittance of 23% and a frequency of 30 Hz, and driving was performed for 60 minutes. Thereafter, the applied DC voltage value was set to 0 V, and only the application of the DC voltage was stopped, and in that state, driving was continued for another 30 minutes.
The evaluation was defined as “good” when the relative transmittance dropped to 30% or less by the time 60 minutes passed from the start of application of the DC voltage. When it took 60 minutes or more for the relative transmittance to drop to 30% or less, it was defined as “bad” and evaluated.
And the afterimage evaluation according to the method mentioned above was performed on the temperature conditions of the state whose temperature of a liquid crystal cell is 23 degreeC.
<液晶配向の安定性評価>
 この液晶セルを用い、60℃の恒温環境下、周波数30Hzで10VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。この液晶セルの角度Δの値が0.2度を越える場合には、「不良」と定義し評価した。この液晶セルの角度Δの値が0.2度を越えない場合には、「良好」と定義し評価した。
<Stability evaluation of liquid crystal alignment>
Using this liquid crystal cell, an AC voltage of 10 VPP was applied at a frequency of 30 Hz in a constant temperature environment of 60 ° C. for 168 hours. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle Δ. Similarly, for the second pixel, the second area was compared with the first area, and a similar angle Δ was calculated. Then, the average value of the angle Δ values of the first pixel and the second pixel was calculated as the angle Δ of the liquid crystal cell. When the value of the angle Δ of the liquid crystal cell exceeded 0.2 degrees, it was defined as “defective” and evaluated. When the value of the angle Δ of the liquid crystal cell did not exceed 0.2 degrees, it was defined as “good” and evaluated.
<駆動直後のフリッカーレベルの評価>
 以下の光学系等を用いて残像の評価を行った。
 作製した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でLEDバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。
 次に、この液晶セルに周波数30Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。
<Evaluation of flicker level immediately after driving>
The afterimage was evaluated using the following optical system and the like.
The prepared liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.
Next, a VT curve (voltage-transmittance curve) was measured while applying an AC voltage with a frequency of 30 Hz to the liquid crystal cell, and an AC voltage with a relative transmittance of 23% was calculated as a drive voltage.
 フリッカーレベルの測定では、点灯させておいたLEDバックライトを一旦消灯して72時間遮光放置した後に、LEDバックライトを再度点灯し、バックライト点灯開始と同時に相対透過率が23%となる周波数30Hzの交流電圧を印加して、液晶セルを60分間駆動させてフリッカー振幅を追跡した。フリッカー振幅は、2枚の偏光板及びその間の液晶セルを通過したLEDバックライトの透過光を、フォトダイオード及びI-V変換アンプを介して接続されたデータ収集/データロガースイッチユニット34970A(Agilent technologies社製)で読み取った。フリッカーレベルは以下の数式で算出した。
  フリッカーレベル(%)={フリッカー振幅/(2×z)}×100
In the measurement of the flicker level, the LED backlight that was turned on is temporarily turned off and left to block light for 72 hours, and then the LED backlight is turned on again. The frequency at which the relative transmittance becomes 23% at the same time when the backlight turns on is 30 Hz. The AC voltage was applied and the liquid crystal cell was driven for 60 minutes to track the flicker amplitude. The flicker amplitude is a data collection / data logger switch unit 34970A (Agilent technologies) that connects the transmitted light of the LED backlight that has passed through the two polarizing plates and the liquid crystal cell therebetween, via a photodiode and an IV conversion amplifier. ). The flicker level was calculated by the following formula.
Flicker level (%) = {flicker amplitude / (2 × z)} × 100
 上記式において、zは相対透過率が23%となる周波数30Hzの交流電圧で駆動した際の輝度をデータ収集/データロガースイッチユニット34970Aで読み取った値である。
 フリッカーレベルの評価は、LEDバックライトの点灯及び交流電圧の印加を開始した時点から60分間が経過するまでに、フリッカーレベルが3%未満を維持した場合に、「良好」と定義して評価を行った。60分間でフリッカーレベルが3%以上に達した場合には、「不良」と定義して評価した。
 そして、上述した方法に従うフリッカーレベルの評価は、液晶セルの温度が23℃の状態の温度条件下で行った。
In the above formula, z is a value obtained by reading the luminance when driven by an AC voltage having a frequency of 30 Hz with a relative transmittance of 23% by the data collection / data logger switch unit 34970A.
The evaluation of the flicker level is defined as “good” when the flicker level is maintained at less than 3% by 60 minutes after the start of lighting of the LED backlight and application of the AC voltage. went. When the flicker level reached 3% or more in 60 minutes, it was defined as “bad” and evaluated.
The evaluation of the flicker level according to the above-described method was performed under temperature conditions where the temperature of the liquid crystal cell was 23 ° C.
<保存安定性の評価>
 保存安定性の評価は、下記調整溶液の室温保管1週間前後での粘度変化が5mPa・s未満の場合に「良好」とし、5mPa・s以上の場合に「不良」として評価した。
<Evaluation of storage stability>
The storage stability was evaluated as “good” when the viscosity change of the following adjustment solution at room temperature storage for about 1 week was less than 5 mPa · s, and “bad” when the viscosity change was 5 mPa · s or more.
<合成例>
(合成例1)
 撹拌子を入れた7Lセパラブルフラスコに、CE-1を119g(0.46mol)投入した後、NMPを2372g加えて撹拌して溶解させた。次いで、トリエチルアミンを146g(1.44mol)、DA-1を61g(0.26mol)、DA-3を21g(0.072mol)、及びDA-5を49g(0.14mol)加えて、撹拌して溶解させた。
 この溶液を水冷下で撹拌しながら、DBOPを362g(0.94mol)添加し、更にNMPを326g加え、室温で12時間撹拌してポリアミド酸エステルの溶液を得た。このポリアミド酸エステル溶液の粘度は27.3mPa・sであった。
<Synthesis example>
(Synthesis Example 1)
After adding 119 g (0.46 mol) of CE-1 to a 7 L separable flask containing a stir bar, 2372 g of NMP was added and stirred to dissolve. Next, 146 g (1.44 mol) of triethylamine, 61 g (0.26 mol) of DA-1, 21 g (0.072 mol) of DA-3, and 49 g (0.14 mol) of DA-5 were added and stirred. Dissolved.
While stirring this solution under water cooling, 362 g (0.94 mol) of DBOP was added, 326 g of NMP was further added, and the mixture was stirred at room temperature for 12 hours to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution was 27.3 mPa · s.
 このポリアミド酸エステル溶液を20739gのIPA中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度100℃で減圧乾燥し、ポリアミド酸エステルの粉末を得た。このポリアミド酸エステルの分子量はMn=12,200、Mw=21,700であった。
 得られたポリアミド酸エステルの粉末に、固形分濃度が12重量%になるようにNMPを加えて、50℃にて30hr攪拌して溶解させ、ポリアミド酸エステル溶液(PAE-1)を得た。
This polyamic acid ester solution was put into 20739 g of IPA, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 12,200 and Mw = 21,700.
NMP was added to the obtained polyamic acid ester powder so as to have a solid content concentration of 12% by weight and dissolved by stirring at 50 ° C. for 30 hr to obtain a polyamic acid ester solution (PAE-1).
(合成例2)
 撹拌子を入れた300mL四つ口フラスコに、CE-1を6.85g(26.3mmol)投入した後、NMPを140g加えて撹拌して溶解させた。次いで、トリエチルアミンを8.5g(84.0mmol)、DA-2を4.10g(16.8mmol)、及びDA-5を3.82g(11.2mmol)加えて、撹拌して溶解させた。
 この溶液を水冷下で撹拌しながら、DBOPを20.7g(54.0mmol)添加し、更にNMPを19.2g加え、室温で12時間撹拌してポリアミド酸エステルの溶液を得た。このポリアミド酸エステル溶液の粘度は31.4mPa・sであった。
 このポリアミド酸エステル溶液を1218gのIPA中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度100℃で減圧乾燥し、ポリアミド酸エステルの粉末を得た。このポリアミド酸エステルの分子量はMn=11,600、Mw=20,500であった。
 得られたポリアミド酸エステルの粉末に、固形分濃度が12重量%になるようにNMPを加えて、50℃にて30hr攪拌して溶解させ、ポリアミド酸エステル溶液(PAE-2)を得た。
(Synthesis Example 2)
After adding 6.85 g (26.3 mmol) of CE-1 to a 300 mL four-necked flask containing a stir bar, 140 g of NMP was added and stirred to dissolve. Next, 8.5 g (84.0 mmol) of triethylamine, 4.10 g (16.8 mmol) of DA-2, and 3.82 g (11.2 mmol) of DA-5 were added and dissolved by stirring.
While stirring this solution under water cooling, 20.7 g (54.0 mmol) of DBOP was added, and 19.2 g of NMP was further added, followed by stirring at room temperature for 12 hours to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution was 31.4 mPa · s.
This polyamic acid ester solution was put into 1218 g of IPA, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 11,600 and Mw = 20,500.
NMP was added to the obtained polyamic acid ester powder so as to have a solid content concentration of 12% by weight, and the mixture was dissolved by stirring at 50 ° C. for 30 hours to obtain a polyamic acid ester solution (PAE-2).
(合成例3)
 撹拌装置及び窒素導入管付きの5Lセパラブルフラスコに、DA-4を243.9g(1.22mol)及びDA-2を74.8g(0.31mol)取り、溶媒(NMP:GBL=50wt%:50wt%)を3154g加えて、窒素を送りながら撹拌し溶解させた。
 このジアミン溶液を水冷下で撹拌しながらCA-2を129.0g(0.66mol)、CA-1を166.8g(0.77mol)添加し、更に固形分濃度が12重量%になるように溶媒(NMP:GBL=50wt%:50wt%)を加え、50℃で12時間撹拌してポリアミック酸溶液(PAA-1)を得た。このポリアミック酸溶液の粘度は310mPa・sであった。また、このポリアミック酸のMn=11,700、Mw=24,300であった。
(Synthesis Example 3)
In a 5 L separable flask equipped with a stirrer and a nitrogen introducing tube, 243.9 g (1.22 mol) of DA-4 and 74.8 g (0.31 mol) of DA-2 were taken, and a solvent (NMP: GBL = 50 wt%: 50 wt%) was added, and the mixture was stirred and dissolved while feeding nitrogen.
While stirring this diamine solution under water cooling, 129.0 g (0.66 mol) of CA-2 and 166.8 g (0.77 mol) of CA-1 were added, and the solid content concentration was further adjusted to 12% by weight. A solvent (NMP: GBL = 50 wt%: 50 wt%) was added and stirred at 50 ° C. for 12 hours to obtain a polyamic acid solution (PAA-1). The viscosity of this polyamic acid solution was 310 mPa · s. Moreover, it was Mn = 11,700 and Mw = 24,300 of this polyamic acid.
(合成例4)
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、DA-4を4.1g(20.4mmol)、DA-6を5.4g(13.6mmol)、及びDA-2を8.3g(34.0mol)取り、NMPを173g加えて、窒素を送りながら撹拌し溶解させた。
 このジアミン溶液を水冷下で撹拌しながらCA-2を5.3g(27.2mmol)、CA-1を7.4g(34.0mmol)添加し、更に固形分濃度が15重量%になるようにNMPを加え、50℃で12時間撹拌してポリアミック酸溶液(PAA-2)を得た。このポリアミック酸溶液の温度25℃における粘度は530mPa・sであった。また、このポリアミック酸の分子量はMn=11,700、Mw=27,200であった。
(Synthesis Example 4)
In a 200 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 4.1 g (20.4 mmol) of DA-4, 5.4 g (13.6 mmol) of DA-6, and 8.3 g of DA-2 ( 34.0 mol), 173 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen.
While stirring this diamine solution under water cooling, 5.3 g (27.2 mmol) of CA-2 and 7.4 g (34.0 mmol) of CA-1 were added, and the solid content concentration was further adjusted to 15% by weight. NMP was added and stirred at 50 ° C. for 12 hours to obtain a polyamic acid solution (PAA-2). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 530 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 11,700 and Mw = 27,200.
(実施例1)
 撹拌子を入れた20mlサンプル管に、PAE-1を2.31g、PAA-1を8.31g取り、NMPを1.31g、GBLを2.38g、BCSを4.0g、AD-1を1重量%含むNMP溶液を1.2g、及びAD-2を0.60g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-1)を得た。
Example 1
In a 20 ml sample tube containing a stir bar, 2.31 g of PAE-1 and 8.31 g of PAA-1 were taken, 1.31 g of NMP, 2.38 g of GBL, 4.0 g of BCS, and 1 AD-1 1.2 g of NMP solution containing wt% and 0.60 g of AD-2 were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-1).
(実施例2)
 撹拌子を入れた20mlサンプル管に、PAE-1を3.46g、PAA-1を7.18g取り、NMPを0.73g、GBLを2.38g、BCSを4.0g、AD-1を1重量%含むNMP溶液を1.2g、及びAD-2を0.60g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-2)を得た。
(Example 2)
In a 20 ml sample tube containing a stir bar, 3.46 g of PAE-1 and 7.18 g of PAA-1 were taken, 0.73 g of NMP, 2.38 g of GBL, 4.0 g of BCS, and 1 AD-1 1.2 g of NMP solution containing wt% and 0.60 g of AD-2 were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-2).
(実施例3)
 撹拌子を入れた20mlサンプル管に、PAE-1を4.62g、PAA-1を6.15g取り、NMPを0.15g、GBLを2.38g、BCSを4.0g、AD-1を1重量%含むNMP溶液を1.2g、及びAD-2を0.60g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-3)を得た。
(Example 3)
In a 20 ml sample tube containing a stir bar, 4.62 g of PAE-1 and 6.15 g of PAA-1 are taken, 0.15 g of NMP, 2.38 g of GBL, 4.0 g of BCS, and 1 AD-1. 1.2 g of NMP solution containing 5% by weight and 0.60 g of AD-2 were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-3).
(比較例1)
 撹拌子を入れた20mlサンプル管に、PAE-2を2.40g、PAA-2を6.88g取り、GBLを4.92g、BCSを4.0g、AD-1を1重量%含むNMP溶液を1.2g、及びAD-2を0.60g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(B-1)を得た。
 上記で得られた液晶配向剤を用いて、ラビング耐性、蓄積電荷の緩和特性、液晶配向の安定性、駆動直後のフリッカーレベル、及び保存安定性の評価を行った。結果を表1に示す。
(Comparative Example 1)
In a 20 ml sample tube containing a stir bar, 2.40 g of PAE-2, 6.88 g of PAA-2, 4.92 g of GBL, 4.0 g of BCS, and 1 wt% of AD-1 are added to an NMP solution. 1.2 g and 0.60 g of AD-2 were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (B-1).
Using the liquid crystal aligning agent obtained above, the rubbing resistance, the accumulated charge relaxation characteristics, the stability of liquid crystal alignment, the flicker level immediately after driving, and the storage stability were evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 以上のように、本発明の液晶配向膜は、ラビング耐性評価、残像消去時間の評価、液晶配向の安定性評価、駆動直後のフリッカーレベルの評価のいずれにおいても良好な結果を示した。 As described above, the liquid crystal alignment film of the present invention showed good results in any of evaluation of rubbing resistance, evaluation of afterimage erasing time, evaluation of stability of liquid crystal alignment, and evaluation of flicker level immediately after driving.
 本発明の液晶配向剤から得られる液晶配向膜は、種々の特性を今までよりも高いレベルで実現することが求められる、IPS駆動方式やFFS駆動方式を含めた広範囲の液晶表示素子において使用できる。
 なお、2015年11月25日に出願された日本特許出願2015-229489号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can be used in a wide range of liquid crystal display elements including an IPS driving method and an FFS driving method, which are required to realize various characteristics at a higher level than before. .
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2015-229489 filed on November 25, 2015 are cited here as disclosure of the specification of the present invention. Incorporate.

Claims (13)

  1.  下記の(A)成分、及び(B)成分を含有することを特徴とする液晶配向剤。
    (A)成分:下記式(1)で表される繰り返し単位と下記式(2)で表される繰り返し単位とを含有するポリアミック酸エステル。
    (B)成分:下記式(3)で表される繰り返し単位を有するポリアミック酸。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(1)及び式(2)中、複数あるRは、それぞれ独立して、炭素数1~6のアルキル基である。複数あるRは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基である。Yは、下記式(Y1-1)で表される2価の有機基であり、Yは下記式(Y2-1)で表される2価の有機基である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(Y1-1)中、2つのRは、それぞれ独立して、単結合、-O-、-S-、-OCO-、又は-COO-である。2つのRは、それぞれ独立して、炭素数1~3のアルキレン基である。Rは酸素原子または硫黄原子である。)
    Figure JPOXMLDOC01-appb-C000004
    (式(Y2-1)中、A及びAは、それぞれ独立して、単結合、メチレン、炭素数2~5のアルキレン、アゼチジンジイル、ピロリジンジイル、又はピペリジンジイルである。B及びBは、それぞれ独立して、単結合、-O-、-COO-、-OCO-、-CONH-、-NHCO-、-CONCH-、又は-NCHCO-である。A及びAは、それぞれ独立して、単結合、メチレン、又は炭素数2~5のアルキレンである。Aはメチレン、又は炭素数2~6のアルキレンである。aは0又は1である。Rは水素原子又はメチル基であり、Dは熱により水素原子に置き換わる保護基である。)
    Figure JPOXMLDOC01-appb-C000005
    (式(3)中、Xは4価の有機基であり、Yは2価の有機基であり、Rは水素原子又は炭素数1~4のアルキル基である。)
    The liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
    (A) Component: Polyamic acid ester containing a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2).
    Component (B): a polyamic acid having a repeating unit represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (1) and Formula (2), a plurality of R 1 are each independently an alkyl group having 1 to 6 carbon atoms. A plurality of R 2 are each independently a hydrogen atom or a carbon number) And Y 1 is a divalent organic group represented by the following formula (Y1-1), and Y 2 is a divalent organic group represented by the following formula (Y2-1). Group.)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (Y1-1), two R 3 s are each independently a single bond, —O—, —S—, —OCO—, or —COO—. The two R 4 s are each independently An alkylene group having 1 to 3 carbon atoms, and R 5 is an oxygen atom or a sulfur atom.)
    Figure JPOXMLDOC01-appb-C000004
    (In Formula (Y2-1), A 1 and A 5 are each independently a single bond, methylene, alkylene having 2 to 5 carbon atoms, azetidinediyl, pyrrolidinediyl, or piperidinediyl. B 1 and B 2 are each independently a single bond, -O -, - COO -, - OCO -, - CONH -, - NHCO -, - CONCH 3 -, or -NCH 3 is CO- .A 2 and a 4 Each independently represents a single bond, methylene, or alkylene having 2 to 5 carbon atoms, A 3 is methylene or alkylene having 2 to 6 carbon atoms, a is 0 or 1, and R is a hydrogen atom. Alternatively, it is a methyl group, and D is a protecting group that is replaced with a hydrogen atom by heat.
    Figure JPOXMLDOC01-appb-C000005
    (In formula (3), X is a tetravalent organic group, Y is a divalent organic group, and R 6 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
  2.  式(Y1-1が、下記の(Y1-1-1)~(Y1-1-8)からなる群から選ばれる請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    The liquid crystal aligning agent according to claim 1, wherein the formula (Y1-1) is selected from the group consisting of the following (Y1-1-1) to (Y1-1-8).
    Figure JPOXMLDOC01-appb-C000006
  3.  式(Y2-1中、A、A、A、A、B、Bは単結合であり、Aはメチレン、又は炭素数2~6のアルキレンであり、aが1である、請求項1又は2に記載の液晶配向剤。 In formula (Y2-1, A 1 , A 2 , A 4 , A 5 , B 1 , B 2 are single bonds, A 3 is methylene or alkylene having 2 to 6 carbon atoms, and a is 1 The liquid crystal aligning agent of Claim 1 or 2.
  4.  式(3)中、Yが、下記(i)、(iii)及び(iii)からなる群より選ばれる2価の有機基である、請求項1~3のいずれか1項に記載の液晶配向剤。
    (i) 下記(c-1)又は(c-2)で表される構造。
    (ii) 下記(c-1)~(c-4)からなる群から選ばれる構造の組合せ。
    (iii) 下記(c-1)~(c-4)からなる群から選ばれる構造の組合せの途中に下記(d-1)~(d-3)からなる群から選ばれる結合基を含む。
    Figure JPOXMLDOC01-appb-C000007
    (式(c-1)中、Rは、水素原子、メチル基、又はカルボキシル基を表す。)
    The liquid crystal alignment according to any one of claims 1 to 3, wherein Y in the formula (3) is a divalent organic group selected from the group consisting of the following (i), (iii) and (iii): Agent.
    (I) A structure represented by the following (c-1) or (c-2).
    (Ii) A combination of structures selected from the group consisting of the following (c-1) to (c-4).
    (Iii) A linking group selected from the group consisting of the following (d-1) to (d-3) is included in the middle of a combination of structures selected from the group consisting of the following (c-1) to (c-4).
    Figure JPOXMLDOC01-appb-C000007
    (In the formula (c-1), R represents a hydrogen atom, a methyl group, or a carboxyl group.)
  5.  式(3)中、Xが下記(X-1)~(X-14)からなる群から選ばれる少なくとも1種の4価の有機基である、請求項4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    The liquid crystal aligning agent according to claim 4, wherein in formula (3), X is at least one tetravalent organic group selected from the group consisting of the following (X-1) to (X-14).
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
  6.  式(1)で表される繰り返し単位の割合、又は式(2)で表される繰り返し単位の割合は、(A)成分であるポリアミック酸エステルに含まれる全繰り返し単位のうちの1~70モル%である請求項1~5のいずれか1項に記載の液晶配向剤。 The ratio of the repeating unit represented by the formula (1) or the ratio of the repeating unit represented by the formula (2) is 1 to 70 mol of all repeating units contained in the polyamic acid ester as the component (A). The liquid crystal aligning agent according to any one of claims 1 to 5, which is%.
  7.  前記(A)成分のポリアミック酸エステルにおける、式(1)で表される繰り返し単位と下記式(2)で表される繰り返し単位との含有比率(モル比)が、1:10~10:1である、請求項1~6のいずれか1項に記載の液晶配向剤。 In the polyamic acid ester of the component (A), the content ratio (molar ratio) between the repeating unit represented by the formula (1) and the repeating unit represented by the following formula (2) is 1:10 to 10: 1. The liquid crystal aligning agent according to any one of claims 1 to 6, wherein
  8.  前記前記(A)成分及び(B)成分の合計含有量が、液晶配向剤全体に対して、0.5~15質量%である、請求項1~7のいずれか1項に記載の液晶配向剤。 The liquid crystal alignment according to any one of claims 1 to 7, wherein a total content of the component (A) and the component (B) is 0.5 to 15% by mass with respect to the entire liquid crystal aligning agent. Agent.
  9.  前記(A)成分と前記(B)成分との質量含有比率が1/9~9/1であり、前記(A)成分の100質量部に対して、前記(B)成分が100~400質量部含有される、請求項1~8のいずれか1項に記載の液晶配向剤。 The mass content ratio of the component (A) and the component (B) is 1/9 to 9/1, and the component (B) is 100 to 400 mass with respect to 100 parts by mass of the component (A). The liquid crystal aligning agent according to any one of claims 1 to 8, which is contained in a part.
  10.  N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、及び3-メトキシ-N,N-ジメチルプロパンアミドからなる群から選ばれる有機溶媒を含有する請求項1~9のいずれか1項に記載の液晶配向剤。 N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-vinyl- Claims containing an organic solvent selected from the group consisting of 2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-2-imidazolidinone, and 3-methoxy-N, N-dimethylpropanamide Item 10. The liquid crystal aligning agent according to any one of Items 1 to 9.
  11.  さらに、シランカップリング剤、架橋剤、又はド化促進剤を含有する請求項1~10のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 10, further comprising a silane coupling agent, a crosslinking agent, or a dosing accelerator.
  12.  請求項1~11のいずれか1項に記載の液晶配向剤を用いて得られる液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of claims 1 to 11.
  13.  請求項12に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 12.
PCT/JP2016/084841 2015-11-25 2016-11-24 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element WO2017090691A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187017922A KR20180085003A (en) 2015-11-25 2016-11-24 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2017552704A JP6747452B2 (en) 2015-11-25 2016-11-24 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
CN201680080101.1A CN108604027A (en) 2015-11-25 2016-11-24 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015229489 2015-11-25
JP2015-229489 2015-11-25

Publications (1)

Publication Number Publication Date
WO2017090691A1 true WO2017090691A1 (en) 2017-06-01

Family

ID=58763526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084841 WO2017090691A1 (en) 2015-11-25 2016-11-24 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6747452B2 (en)
KR (1) KR20180085003A (en)
CN (1) CN108604027A (en)
TW (1) TWI704183B (en)
WO (1) WO2017090691A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051923A1 (en) * 2016-09-13 2018-03-22 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN111602088A (en) * 2018-01-19 2020-08-28 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210137494A (en) * 2019-03-12 2021-11-17 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060366A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2015060363A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2015182762A1 (en) * 2014-05-30 2015-12-03 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477533B (en) 2008-11-06 2015-03-21 Nissan Chemical Ind Ltd Liquid crystal alignment agent
JP5915523B2 (en) * 2010-03-15 2016-05-11 日産化学工業株式会社 Polyamic acid ester-containing liquid crystal aligning agent and liquid crystal aligning film
TWI596137B (en) * 2011-10-27 2017-08-21 Nissan Chemical Ind Ltd Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR102221877B1 (en) * 2013-03-25 2021-03-02 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6578948B2 (en) * 2013-10-23 2019-09-25 日産化学株式会社 Liquid crystal aligning agent containing polyimide precursor and / or polyimide having thermally detachable group
JP6638398B2 (en) 2014-02-13 2020-01-29 日産化学株式会社 Novel liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP6492564B2 (en) * 2014-02-13 2019-04-03 Jsr株式会社 Liquid Crystal Alignment Agent, Liquid Crystal Alignment Film, Liquid Crystal Display Element, Retardation Film, Method of Producing Retardation Film, Polymer, and Compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060366A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2015060363A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2015182762A1 (en) * 2014-05-30 2015-12-03 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051923A1 (en) * 2016-09-13 2018-03-22 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN111602088A (en) * 2018-01-19 2020-08-28 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
CN111602088B (en) * 2018-01-19 2023-06-30 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Also Published As

Publication number Publication date
KR20180085003A (en) 2018-07-25
TWI704183B (en) 2020-09-11
JP6747452B2 (en) 2020-08-26
CN108604027A (en) 2018-09-28
JPWO2017090691A1 (en) 2018-09-13
TW201731958A (en) 2017-09-16

Similar Documents

Publication Publication Date Title
TWI548677B (en) A liquid crystal alignment agent for use in a light alignment treatment, and a liquid crystal alignment film using the same
JP6083388B2 (en) Method for producing liquid crystal aligning agent
WO2015152174A1 (en) Liquid crystal alignment agent containing polyamic acid ester-polyamic acid compolymer, and liquid crystal alignment film using same
JPWO2016063834A1 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP6596931B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014157143A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6747452B2 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
JP2017138575A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, polymer and diamine
JP6791143B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2017161602A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, polymer and compound
JPWO2020100918A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
TW202045698A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN108604029B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JP7468365B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
WO2018047872A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JPWO2020166623A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
CN116234857B (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7302744B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20230027062A (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP2024022213A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN117126676A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
JP2017090529A (en) Liquid crystal alignment agent, liquid crystal alignment film, manufacturing method of liquid crystal alignment film, and liquid crystal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552704

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187017922

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16868634

Country of ref document: EP

Kind code of ref document: A1