WO2017090689A1 - Laminated glass, window glass for automobiles, and window glass for buildings - Google Patents

Laminated glass, window glass for automobiles, and window glass for buildings Download PDF

Info

Publication number
WO2017090689A1
WO2017090689A1 PCT/JP2016/084823 JP2016084823W WO2017090689A1 WO 2017090689 A1 WO2017090689 A1 WO 2017090689A1 JP 2016084823 W JP2016084823 W JP 2016084823W WO 2017090689 A1 WO2017090689 A1 WO 2017090689A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
glass
thickness
transparent
value
Prior art date
Application number
PCT/JP2016/084823
Other languages
French (fr)
Japanese (ja)
Inventor
千恵子 室伏
室伏 英伸
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017090689A1 publication Critical patent/WO2017090689A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor

Definitions

  • the present invention relates to laminated glass, automotive window glass and building window glass.
  • Laminated glass with two glass plates bonded together with an intermediate film is excellent in penetration resistance, and even when broken, there is little scattering of glass fragments, so window glass for vehicles, window glass for buildings, etc. It is used as.
  • a laminated glass there is known a laminated glass provided with an infrared reflection layer or an infrared absorption layer on an intermediate film in order to suppress a temperature rise in a vehicle or a room due to solar radiation (Patent Documents 1 to 4).
  • laminated glass with an infrared reflecting layer or infrared absorbing layer on the interlayer can block infrared rays that enter from outside the vehicle or from the outside of the vehicle, but it cannot block heat conducted through the laminated glass itself.
  • outdoor heat flows through the laminated glass through the laminated glass and flows into the vehicle and the room, and in winter, heat from inside and indoor heating flows through the laminated glass and flows out of the vehicle and the outdoor.
  • a laminated glass that blocks heat conducted through the laminated glass itself, that is, has a heat insulating property, is composed of a first layer containing hollow silica fine particles and a second layer and a third layer sandwiching the interlayer.
  • Patent Document 5 has been proposed.
  • the first layer containing the hollow silica fine particles is designed to be thin in order to maintain the transmittance, so that the thermal conductivity is high and the heat insulation is insufficient.
  • the present invention provides laminated glass, automobile window glass and building window glass that have high transparency and excellent heat insulation.
  • the present invention has the following aspects. ⁇ 1> A first glass plate, a first transparent adhesive layer, a transparent heat-insulating layer having independent pores, a second transparent adhesive layer, and a second glass plate in order, wherein the independent pores ,
  • the pores are pores covered with a shell, the A value represented by the following formula (1) is 7.4 ⁇ 10 5 or less, and the B value represented by the following formula (2) is Laminated glass which is 35 or more.
  • D is the pore size (nm) of the independent pores of the transparent heat insulation layer
  • P is the porosity of the transparent heat insulation layer
  • d i is the thickness (mm) of the transparent heat insulation layer
  • d g is the first the sum of the thickness and the thickness of the second glass plate of the glass plate (mm)
  • d a is the total thickness of the first transparent adhesive layer thickness and a second transparent adhesive layer (mm) .
  • ⁇ 4> The laminated glass according to any one of ⁇ 1> to ⁇ 3>, wherein the transparent heat insulating layer has a thickness of 0.2 to 10 mm.
  • ⁇ 5> The laminated glass according to any one of ⁇ 1> to ⁇ 4>, wherein the thickness of the first glass plate and the thickness of the second glass plate are 0.1 to 6 mm, respectively.
  • ⁇ 6> The laminated glass according to any one of ⁇ 1> to ⁇ 5>, wherein the thickness of the first transparent adhesive layer and the thickness of the second transparent adhesive layer are 0.1 to 3 mm, respectively.
  • An automotive window glass comprising the laminated glass according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 8> A window glass for buildings provided with the laminated glass according to any one of ⁇ 1> to ⁇ 6>.
  • the laminated glass, the window glass for automobiles and the window glass for buildings of the present invention have high transparency and excellent heat insulation.
  • FIG. 1 is a cross-sectional view showing an example of the laminated glass of the present invention.
  • the “pore” means a hole made of a void formed in the heat insulating material.
  • Independent pores means pores that are completely covered with a matrix or shell around each pore. Independent pores include independent pores directly covered with a matrix without going through a shell, and independent pores formed by hollow particles having shells dispersed in the matrix. There are pores. The independent pores in the present invention are the latter independent pores.
  • Transparent means that light can be transmitted.
  • the “pore diameter” is a value obtained by observing 20 hollow fine particles using a transmission microscope and averaging their inner diameters.
  • Transmittance is a value measured in accordance with JIS R 3106: 1998 “Testing method for transmittance, reflectance, emissivity, and solar heat gain of plate glass” (ISO 9050: 1990).
  • Heat transmissivity (U value) is defined in JIS R 3107: 1998 “Method of calculating thermal resistance of sheet glass and heat transmissivity in architecture” (ISO 10292: 1994) and JIS R 3209: 1998 “Multilayer glass”. It is a value measured in compliance.
  • the “compressive modulus” is a value measured in accordance with JIS K 7181: 2011 “Plastics—How to obtain compression properties” (ISO 604: 2002).
  • FIG. 1 is a cross-sectional view showing an example of the laminated glass of the present invention.
  • the laminated glass 1 includes a first glass plate 10; a second glass plate 12; a transparent heat insulating layer 14 having independent pores disposed between the first glass plate 10 and the second glass plate 12.
  • a first transparent adhesive layer 16 that bonds the first glass plate 10 and the transparent heat insulating layer 14; and a second transparent adhesive layer 18 that bonds the second glass plate 12 and the transparent heat insulating layer 14 Have.
  • the material of the first glass plate and the second glass plate may be an inorganic glass or an organic glass, and has weather resistance, rigidity, and solvent resistance.
  • inorganic glass is preferable.
  • the materials of the first glass plate and the second glass plate may be the same or different.
  • the inorganic glass include soda lime glass, borosilicate glass, non-alkali glass, and quartz glass. Soda lime glass is preferable.
  • the organic glass include polycarbonate and acrylic resin.
  • the glass plate may be a colorless transparent glass plate or a colored transparent glass plate, and is preferably a heat ray absorbing glass plate (blue glass plate or green glass plate) rich in iron.
  • a tempered glass plate may be used to enhance safety.
  • a tempered glass plate obtained by an air cooling tempering method or a chemical tempering method can be used.
  • the shape of the glass plate may be curved or flat. Since the window glass for automobiles is often curved, when the laminated glass of the present invention is used as the window glass for automobiles, the shape of the glass plate is often curved.
  • the thickness of the glass plate is preferably 0.1 to 6 mm, more preferably 1 to 3 mm.
  • the thicknesses of the first glass plate and the second glass plate may be the same or different.
  • the thickness of the glass plate in this invention is geometric thickness. Hereinafter, the same applies to the thickness of each layer of the laminated glass of the present invention other than the glass plate.
  • the material of the first transparent adhesive layer and the second transparent adhesive layer may be any transparent resin that can adhere the glass plate and the transparent heat insulating layer.
  • the transparent resin include polyvinyl butyral, ethylene-vinyl acetate copolymer, and commercially available optically clear adhesive (OCA), and polyvinyl butyral and ethylene-vinyl acetate copolymer are preferable. Polyvinyl butyral is more preferable for applications requiring penetration resistance such as window glass.
  • the materials of the first transparent adhesive layer and the second transparent adhesive layer may be the same or different. Each transparent adhesive layer may be a laminate of two or more layers of the same or different types.
  • the transparent adhesive layer may contain an infrared absorber, an ultraviolet absorber, an antioxidant, a light stabilizer, a colorant and the like within a range not impairing the effects of the present invention.
  • the thickness of the transparent adhesive layer is preferably from 0.1 to 3 mm, and more preferably from 0.3 to 0.8 mm.
  • the thickness of the first transparent adhesive layer and the second transparent adhesive layer may be the same or different.
  • the compressive elastic modulus of the transparent heat insulating layer is preferably 4.3 MPa or more, more preferably 12 MPa or more, and further preferably 120 MPa or more.
  • the compression modulus is equal to or higher than the lower limit of the above range, the transparent heat insulating layer is excellent in mechanical strength and can withstand compression when bonded to a glass plate during the production of laminated glass.
  • the thickness of the transparent heat insulating layer is preferably 0.2 to 10 mm, more preferably 0.5 to 6 mm, and further preferably 1 to 3 mm. If the thickness of a transparent heat insulation layer is more than the lower limit of the said range, it will be further excellent in the heat insulation of a laminated glass. If the thickness of a transparent heat insulation layer is below the upper limit of the said range, the transparency of a laminated glass will become still higher.
  • the transparent heat insulating layer has independent pores whose pores are covered with a shell different from the matrix (hereinafter also referred to as independent pores with a shell or simply independent pores).
  • independent pores with a shell or simply independent pores examples include a hollow fine particle dispersed resin sheet; and a porous fine particle dispersed resin sheet.
  • the porous fine particles include porous silica aggregated particles.
  • a hollow fine particle dispersed resin sheet is preferable from the viewpoint of easily adjusting the porosity of the transparent heat insulating layer and the pore diameter of the independent pores in order to achieve both transparency and heat insulating properties of the laminated glass.
  • the hollow fine particle dispersed resin sheet is a sheet having independent pores made of hollow fine particles dispersed in a matrix made of a resin material.
  • Examples of the resin contained in the resin material include amorphous thermoplastic resins, crystalline thermoplastic resins, and cured products of curable resins.
  • Amorphous thermoplastic resins include polystyrene, polymethyl methacrylate, polycarbonate, amorphous polyester resin, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer, norbornene resin, amorphous fluororesin, Examples include polyether sulfone, polysulfone, polyether imide, polyarylate, polyester carbonate, triacetyl cellulose, and amorphous nylon resin.
  • thermoplastic resin examples include polypropylene, polyethylene, polyvinyl chloride, crystalline polyester resin, crystalline fluororesin, poly-4-methylpentene-1, and the like.
  • curable resin examples include epoxy resin, diethylene glycol biscarbonate, polyfunctional acrylate resin, and polyfunctional methacrylate resin.
  • the resin material is a foam nucleating agent, a colorant, an antioxidant, a light stabilizer, a mold release agent, an antiseptic, an infrared absorber, an ultraviolet absorber, a plasticizer, and a flame retardant.
  • a conductivity imparting agent, an antistatic agent, a crystal nucleating agent and the like may be contained.
  • hollow fine particles examples include fine particles having a hollow portion in the shell, and specific examples include hollow silica fine particles, hollow resin fine particles, hollow titania fine particles, hollow zirconia fine particles, and hollow alumina fine particles. From the viewpoint of availability, hollow silica fine particles are preferable.
  • hollow silica fine particle a commercially available thing may be used and what was manufactured by the well-known manufacturing method may be used.
  • a method for producing hollow silica fine particles for example, a liquid containing core particles composed of acid-soluble inorganic particles (zinc oxide, sodium aluminate, calcium carbonate, etc.) and alkoxysilane is heated to form silica on the surface of the core particles.
  • hollow silica fine particles may be isolated and fired.
  • tetraalkoxytitanium (IV) can be used as a raw material and can be obtained by the same method as hollow silica fine particles.
  • the thickness of the shell of the hollow fine particles is preferably 2 nm or more, and more preferably 3 nm or more from the viewpoint of mechanical properties. From the point of the transparency and heat insulation of a transparent heat insulation layer, 15 nm or less is preferable and 10 nm or less is more preferable. In order to form a shell having excellent mechanical properties even if it is thin, it is necessary to make the shell dense. As a method for forming such a shell, a method using a microwave is preferable. It is preferable that the hollow fine particle shell has no holes. When a large hole is opened, the matrix may enter the hollow portion from the hole and the hollow function may not be performed.
  • the method for surface modification include a method of condensing with a hydroxyl group (OH) on the surface of the hollow fine particles using a silane coupling agent having an alkyl group.
  • the type of the alkyl group may be appropriately selected according to the matrix.
  • the hollow fine particle-dispersed resin sheet is a method in which a thermoplastic resin and a resin material containing hollow fine particles are formed into a sheet shape by a known molding method (extrusion molding method, etc.); curing in which hollow fine particles are dispersed in a liquid curable resin
  • the composition can be produced by a method of spreading the composition into a sheet and curing it.
  • the inner diameter of the shell of the hollow fine particles may be reduced.
  • the ratio of the hollow fine particles contained in the transparent heat insulating material may be increased.
  • Obtaining a transparent heat insulating layer having an independent pore with a shell having a compression modulus of 4.3 MPa or more is achieved by dispersing the hollow fine particles in a matrix because the hollow fine particles themselves usually have a sufficient compression modulus. it can.
  • the A value represented by the following formula (1) is 7.4 ⁇ 10 5 or less, preferably 2.6 ⁇ 10 5 or less, more preferably 1.0 ⁇ 10 5 or less. . If A value is 7.4 * 10 ⁇ 5 > or less, the transmittance
  • the transmittance of the transparent heat insulation layer necessary for the transmittance of the laminated glass is determined.
  • the purpose of this derivation is to obtain a relational expression as to what the transmittance T 3 of the transparent heat insulating layer needs to be when the required numerical value of the transmittance S 6 of the laminated glass is designated.
  • the Fresnel reflection F 1 at the interface between the layer having the refractive index n 1 and the layer having the refractive index n 2 is expressed by the following equation.
  • Formula (4) is represented by the following Formula (5).
  • the refractive indexes n 1 and n 5 of a normal glass plate and the refractive indexes n 2 and n 4 of the transparent adhesive layer are about 1.5.
  • equation (5) is expressed by the following equation.
  • the transmittance T i of the transparent heat insulating layer necessary for the transmittance T L of the laminated glass to be realized can be calculated.
  • the transmittance T i of the transparent heat insulation layer is expressed as follows: the incident light intensity to the transparent heat insulation layer is I 0 , the transmitted light intensity from the transparent heat insulation layer is I, the scattering cross section of the independent pores of the transparent heat insulation layer is ⁇ , the number of pores per unit volume N, and the thickness of the transparent heat insulating layer and d i (mm), is represented by the following formula (7) (polymer Collected papers, Vol.67, No.7, pp.390 -396 (2010)).
  • the scattering cross-sectional area ⁇ is expressed by the following equation, where the pore diameter is D (mm) and the wavelength is ⁇ (nm).
  • the number N of pores per unit volume of the transparent heat insulation layer is expressed by the following formula.
  • Formula (12) is represented by the following Formula (13).
  • the thickness d i of the layer should be in the relationship of the following formula (14).
  • the unit of A value is nm 3 mm.
  • the B value represented by the following formula (2) is 35 or more, and preferably 85 or more.
  • the heat flow rate (U value) of the laminated glass which is a measure of heat insulation, is 5.0 W / m 2 K or less. If the B value is 85 or more, the U value of the laminated glass is 4.0 W / m 2 K or less.
  • the thermal conductivity of the laminated glass is U (W / m 2 K), the outdoor surface heat transfer coefficient is h ext (W / m 2 K), and the indoor surface heat transfer coefficient is h in (W / m 2 K). ), R (m 2 K / W) for the thermal resistance of each layer, d g (mm) for the total thickness of the two glass plates, ⁇ g (W / mK) for the thermal conductivity of the glass plate, transparent adhesion
  • the total thickness of the layers is d a (mm)
  • the thermal conductivity of the transparent adhesive layer is ⁇ a (W / mK)
  • the thickness of the transparent heat insulation layer is d i (mm)
  • the heat conductivity of the transparent heat insulation layer is ⁇ If i (W / mK), it is represented by the following formula (16).
  • Thermal conductivity ⁇ i of the transparent insulation layer mat the thermal conductivity of the matrix of transparent thermal insulation layer ⁇ (W / mK), the porosity of the transparent thermal insulation layer and is P, Japan University of Industrial Technology 37th (2004 Academic Lecture Meeting Applied Molecular Chemistry Group Program 5-8 “Measurement of thermal conductivity of gas hydrate simulated sediment sample” Using equation (17), b is a proportional constant Is done.
  • the hemispherical emissivity ⁇ ext of the outdoor member surface is 0.837 W / m 2 K
  • the hemispherical emissivity ⁇ in of the indoor member surface is 0.837 W / m 2 K.
  • the surface heat transfer coefficient h ext and the indoor surface heat transfer coefficient h in are as follows.
  • the thermal conductivity ⁇ g of the glass plate is approximately 1.0 W / mK even if the glass type is different, and the thermal conductivity ⁇ a of the material used for the transparent adhesive layer is approximately 0.3 W / mK. . Further, the thermal conductivity ⁇ mat of the transparent heat insulating layer matrix can be set to 1.0 W / mK as the worst case. From these, when unit (m) is unified and equation (16) is arranged, it is expressed by the following equation (18).
  • the B value is as follows.
  • the pore diameter D of the independent pores of the transparent heat insulating layer, the porosity P of the transparent heat insulating layer, the thickness d i of the transparent heat insulating layer, total d g thickness, total d a thickness of the transparent adhesive layer it can be seen that it is sufficient to relation of the following equation (22).
  • the transmittance of light having a wavelength of 500 nm of the laminated glass is preferably 50% or more, more preferably 70 to 99%, and further preferably 70 to 96%. If the transmittance
  • the heat transmissivity (U value) of the laminated glass is preferably 5.8 W / m 2 K or less from the viewpoint of improving fuel efficiency since the current laminated glass for automobiles is 5.8 W / m 2 K. More preferable is 0.0 W / m 2 K or less.
  • the thickness of the laminated glass is preferably 2 to 20 mm, more preferably 3 to 10 mm, and even more preferably 4 to 6 mm. If the thickness of the laminated glass is not less than the lower limit of the above range, the heat insulating property of the laminated glass is further improved, and the mechanical strength is also excellent. If the thickness of a laminated glass is below the upper limit of the said range, a laminated glass will not become too heavy and it is excellent also in transparency.
  • Laminated glass can be produced by a known method. For example, a second glass plate, a transparent resin sheet to be a second transparent adhesive layer, a transparent heat insulating sheet to be a transparent heat insulating layer, a transparent resin sheet to be a first transparent adhesive layer, and a first glass plate are sequentially stacked. After these are temporarily bonded, they can be manufactured by main bonding by heating and pressing. At this time, the transparent resin sheet serving as the first transparent adhesive layer and the transparent resin sheet serving as the second transparent adhesive layer may each be the same type or may be composed of two or more different types of sheets. Good.
  • a first glass plate, a first transparent adhesive layer, a transparent heat insulating layer having independent pores with a shell, a second transparent adhesive layer, and a second glass plate are sequentially arranged.
  • the A value is 7.4 ⁇ 10 5 or less and the B value is 35 or more, and is not limited to the illustrated example.
  • the laminated glass of this invention may have a 3rd glass plate or more glass plates as needed.
  • the laminated glass of this invention may have functional layers other than a transparent heat insulation layer, such as an infrared absorption layer and an ultraviolet absorption layer.
  • the pore diameter of the independent pores in the transparent heat insulating layer was determined by observing 20 hollow fine particles using a transmission microscope (manufactured by JEOL Ltd., JEM-1230) and averaging their inner diameters.
  • Porosity of transparent heat insulation layer It calculated
  • Porosity 1 ⁇ (Volume of transparent heat insulating layer after pressing / Volume of transparent heat insulating layer before pressing)
  • Heat transmissivity (U value) The U value of the laminated glass was measured using HC-074 / 630 manufactured by Eihiro Seiki Co., Ltd. in accordance with JIS R 3107: 1998 and JIS R 3209: 1998.
  • a value About the A value calculated
  • B value About the B value calculated
  • the transmittance is 70% or more and the U value is 4.0 W / m 2 K or less.
  • The transmittance is 50% or more and the U value is 5.0 W / m 2 K or less.
  • X The transmittance is less than 50% or the U value is less than 5.0 W / m 2 K.
  • Example 1 In a 200 mL quartz pressure vessel, 55.6 g of an aqueous dispersion of zinc oxide particles (average aggregated particle size: 100 nm, solid content concentration: 20% by mass), tetraethoxysilane (TEOS) (silicon oxide equivalent solid content concentration) : 28.8% by mass), 6.9 g of ethanol, 36.9 g of ethanol, and 0.6 g of 28% by mass of ammonia aqueous solution were added to prepare a raw material solution having a pH of 10.
  • TEOS tetraethoxysilane
  • microwave material is used to irradiate the raw material liquid with microwave (MW) of maximum output: 500 W, frequency: 2.45 GHz for 5 minutes, hydrolyze TEOS, Silicon oxide was deposited on the surface to form a shell, and 100 g of a dispersion of core-shell particles was obtained.
  • the temperature of the reaction solution during microwave irradiation was 120 ° C.
  • 100 g of strongly acidic cation exchange resin (total exchange capacity of 2.0 meq / mL or more) is added to 100 g of this core-shell particle dispersion, and the mixture is stirred for 1 hour until pH becomes 4, and then strongly acidic cation exchange is performed by filtration. The resin was removed to obtain a dispersion of hollow silica fine particles.
  • the dispersion was concentrated to a solid content concentration of 20% by mass by ultrafiltration.
  • the average inner diameter (corresponding to the pore diameter) of the hollow silica fine particles was 100 nm, and the shell thickness was 10 nm. The same operation was repeated 10 batches.
  • silane coupling agent KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.
  • solid content concentration 20 mass% 5 g
  • the dispersion was added to 1 L of water and stirred, and the precipitate was filtered.
  • dehydration was carried out while refluxing in methyl isobutyl ketone (MIBK) with a Dean-Stark dehydrator, and after 5 hours 1 g of sodium hydroxide 1 mol / L solution The mixture was further refluxed for 30 minutes and dehydrated. After cooling, MIBK was evaporated with an evaporator and then vacuum-dried at 70 ° C. for 24 hours to obtain 22 g of hollow silica fine particles.
  • MIBK methyl isobutyl ketone
  • the hollow fine particle dispersed resin sheet is used as a transparent heat insulation layer, sandwiched between both sides by 0.38mm thick polyvinyl butyral (PVB) film, and further sandwiched by 1.6mm thick soda lime glass (Asahi Glass Co., Ltd.) for vacuum packaging.
  • the product was put in a bag and sucked under reduced pressure, air remaining at the interface of each layer was degassed, and temporarily bonded at 120 ° C. for 30 minutes to obtain a laminate.
  • the laminate was put in an autoclave and was finally bonded at 120 ° C. and 1.3 MPa for 90 minutes to obtain a laminated glass.
  • the transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • Example 2 Except for using an aqueous dispersion of zinc oxide particles having an average aggregated particle size of 120 nm, hollow silica fine particles having an average inner diameter (corresponding to pore size) of 120 nm and a shell thickness of 12 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
  • a hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, and both sides are sandwiched between 2.0 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did.
  • the transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • Example 3 Except for using an aqueous dispersion of zinc oxide particles having an average aggregate particle diameter of 80 nm, hollow silica fine particles having an average inner diameter (corresponding to pore diameter) of 80 nm and a shell thickness of 10 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
  • a hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, and both sides are sandwiched between 0.1 mm thick PVB films, and both sides are sandwiched between 2.0 mm thick soda lime glass, and a laminated glass is produced in the same manner as in Example 1. did.
  • the transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • Example 4 Except for using an aqueous dispersion of zinc oxide particles having an average aggregate particle diameter of 50 nm, hollow silica fine particles having an average inner diameter (corresponding to pore diameter) of 50 nm and a shell thickness of 2 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
  • the hollow fine particle dispersed resin sheet is used as a transparent heat insulating layer, and both sides are sandwiched between PVB films having a thickness of 0.38 mm, and both sides are sandwiched between soda lime glass having a thickness of 1.0 mm and soda lime glass having a thickness of 3.0 mm.
  • a laminated glass was produced in the same manner as in 1. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • Example 5 In the same manner as in Example 4, hollow silica fine particles having an average inner diameter (corresponding to the pore diameter) of 50 nm and a shell thickness of 2 nm were obtained. Furthermore, the surface was modified by the same method.
  • a hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, both sides are sandwiched between 1.0 mm thick soda lime glass, and a laminated glass is produced in the same manner as in Example 1. did.
  • the transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • Example 6 Except for using an aqueous dispersion of zinc oxide particles having an average aggregate particle diameter of 70 nm, hollow silica fine particles having an average inner diameter (corresponding to pore diameter) of 70 nm and a shell thickness of 5 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
  • a hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, and both sides are sandwiched between 2.0 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did.
  • the transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • Example 7 Except for using an aqueous dispersion of zinc oxide particles having an average agglomerated particle diameter of 40 nm, hollow silica fine particles having an average inner diameter (corresponding to pore diameter) of 40 nm and a shell thickness of 3 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
  • a hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, and both sides are sandwiched between two layers of 0.38 mm thick PVB film and four layers of 0.76 mm thick PVB film, and both sides are 6.0 mm thick soda.
  • Laminated glass was prepared by the same method as in Example 1 by sandwiching with lime glass. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • Example 8 In the same manner as in Example 1, except that an aqueous dispersion of zinc oxide particles having an average aggregate particle diameter of 60 nm was used and 10 g of tetraisopropyl orthotitanate was used instead of tetraethoxysilane, Hollow titania fine particles having a thickness of 60 nm and a shell thickness of 3 nm were obtained. Furthermore, the surface was modified by the same method.
  • a hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.76 mm thick PVB films, and both sides are sandwiched between 3.0 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did.
  • the transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • Example 9 A powdery PMMA having a weight average molecular weight of 25,000, 4.4 g of BR87 (manufactured by Mitsubishi Rayon Co., Ltd.) and 35 g of tetrahydrofuran were dissolved at 50 ° C. over 1 hour. This solution was mixed with 5.6 g of hollow silica fine particles prepared in the same manner as in Example 1. This was poured into a polypropylene tray, and vacuum dried at 70 ° C. for 24 hours with a vacuum dryer to obtain a 2.1 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
  • a hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, and both sides are sandwiched between 1.6 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did.
  • the transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • Example 10 (Example 10) 3.2 g of BR80 (manufactured by Mitsubishi Rayon Co.), which is a powdery PMMA having a weight average molecular weight of 95,000, and 30 g of tetrahydrofuran were dissolved at 50 ° C. for 10 hours. This solution was mixed with 6.8 g of hollow silica fine particles prepared in the same manner as in Example 2. This was poured into a tray made of polypropylene and vacuum dried at 70 ° C. for 24 hours with a vacuum dryer to obtain a hollow fine particle dispersed resin sheet having a thickness of 1.3 mm. The porosity of the hollow fine particle dispersed resin sheet was measured.
  • BR80 manufactured by Mitsubishi Rayon Co.
  • a hollow fine particle-dispersed resin sheet was used as a transparent heat insulating layer, both sides were sandwiched between 0.38 mm thick PVB films, and both sides were sandwiched between 2 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1.
  • the transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • Comparative Example 1 Except for using an aqueous dispersion of zinc oxide particles having an average aggregate particle diameter of 150 nm, hollow silica fine particles having an average inner diameter (corresponding to pore diameter) of 150 nm and a shell thickness of 15 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
  • a hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, and both sides are sandwiched between 2.0 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did.
  • the transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • 3 g of hollow silica fine particles were dispersed in 30 g of ethyl acetate and then mixed with 4 g of A-HD-N, 3 g of UA-160 TM, and 0.06 g of Irgacure® 184.
  • Ethyl acetate was evaporated with an evaporator. This was expanded into a sheet and irradiated with 80 J / cm 2 of UV light from a UV lamp and cured to obtain a 0.2 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
  • a hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, and both sides are sandwiched between 2.0 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did.
  • the transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
  • the laminated glasses of Examples 1 to 10 having an A value of 7.4 ⁇ 10 5 or less and a B value of 35 or more had high transparency and excellent heat insulation.
  • the laminated glass of Comparative Example 1 having an A value of over 7.4 ⁇ 10 5 and a B value of less than 35 had low transparency and poor heat insulation.
  • the laminated glass of Comparative Example 2 having a B value of less than 35 was inferior in heat insulating properties.
  • the laminated glass of Comparative Example 3 not provided with a transparent heat insulating layer was inferior in heat insulating properties.
  • the laminated glass of the present invention includes automotive window glass (windshield, roof window, elevating window, side fixing window, backlight, roof window, etc.), vehicle window glass such as railcar window glass, and building window glass. Useful as such.

Abstract

This laminated glass (1) is provided with a first glass sheet (10), a first transparent adhesive layer (16), a transparent heat-insulation layer (14) having independent pores with shells, a second transparent adhesive layer (18), and a second glass sheet (12), in that order. The value of A in formula (1) is not more than 7.4×105, and the value of B in formula (2) is at least 35 (in the formulae, D is the pore size (nm), P is the porosity, di is the thickness (mm) of the transparent heat-insulation layer, dg is the total (mm) thickness of the glass sheets, and da is the total (mm) thickness of the transparent adhesive layers).

Description

合わせガラス、自動車用窓ガラスおよび建物用窓ガラスLaminated glass, automotive window glass and building window glass
 本発明は、合わせガラス、自動車用窓ガラスおよび建物用窓ガラスに関する。 The present invention relates to laminated glass, automotive window glass and building window glass.
 2枚のガラス板を中間膜で貼り合わせた合わせガラスは、耐貫通性に優れ、また、破損してもガラス片の飛散が少ないことから、自動車等の車両用窓ガラス、建物用窓ガラス等として用いられている。
 合わせガラスとしては、日射による車内や室内の温度上昇を抑えるため、中間膜に赤外線反射層や赤外線吸収層を設けたものが知られている(特許文献1~4)。
Laminated glass with two glass plates bonded together with an intermediate film is excellent in penetration resistance, and even when broken, there is little scattering of glass fragments, so window glass for vehicles, window glass for buildings, etc. It is used as.
As a laminated glass, there is known a laminated glass provided with an infrared reflection layer or an infrared absorption layer on an intermediate film in order to suppress a temperature rise in a vehicle or a room due to solar radiation (Patent Documents 1 to 4).
 しかし、中間膜に赤外線反射層や赤外線吸収層を設けた合わせガラスには、車外や室外から入射する赤外線を遮蔽できるものの、合わせガラス自体を伝導する熱を遮断できないため、夏季においては、車外や室外の熱が合わせガラスを伝導して車内や室内に流入し、冬季においては、車内や室内の暖房の熱が合わせガラスを伝導して車外や室外に流出するという問題がある。 However, laminated glass with an infrared reflecting layer or infrared absorbing layer on the interlayer can block infrared rays that enter from outside the vehicle or from the outside of the vehicle, but it cannot block heat conducted through the laminated glass itself. There is a problem in that outdoor heat flows through the laminated glass through the laminated glass and flows into the vehicle and the room, and in winter, heat from inside and indoor heating flows through the laminated glass and flows out of the vehicle and the outdoor.
 合わせガラス自体を伝導する熱を遮断する、すなわち断熱性を有する合わせガラスとしては、中間膜を、中空シリカ微粒子を含む第1の層とこれを挟む第2の層および第3の層からなるものとしたものが提案されている(特許文献5)。 A laminated glass that blocks heat conducted through the laminated glass itself, that is, has a heat insulating property, is composed of a first layer containing hollow silica fine particles and a second layer and a third layer sandwiching the interlayer. Has been proposed (Patent Document 5).
国際公開第2013/168714号International Publication No. 2013/168714 日本国特許第4848872号公報Japanese Patent No. 4848872 日本国特開2007-148330号公報Japanese Unexamined Patent Publication No. 2007-148330 日本国特開2010-222233号公報Japanese Unexamined Patent Publication No. 2010-222233 国際公開第2012/063881号International Publication No. 2012/063881
 しかし、特許文献5の合わせガラスは、透過率を維持するために、中空シリカ微粒子を含む第1の層を薄く設計しているため、熱伝導率が高く、断熱性が不充分である。 However, in the laminated glass of Patent Document 5, the first layer containing the hollow silica fine particles is designed to be thin in order to maintain the transmittance, so that the thermal conductivity is high and the heat insulation is insufficient.
 本発明は、透明性が高く、かつ断熱性に優れる合わせガラス、自動車用窓ガラスおよび建物用窓ガラスを提供する。 DETAILED DESCRIPTION OF THE INVENTION The present invention provides laminated glass, automobile window glass and building window glass that have high transparency and excellent heat insulation.
 本発明は、下記の態様を有する。
 <1>第1のガラス板と、第1の透明接着層と、独立気孔を有する透明断熱層と、第2の透明接着層と、第2のガラス板とを順に有し、前記独立気孔が、気孔のまわりがシェルで覆われた気孔であり、下式(1)で表されるA値が、7.4×10以下であり、下式(2)で表されるB値が、35以上である、合わせガラス。
The present invention has the following aspects.
<1> A first glass plate, a first transparent adhesive layer, a transparent heat-insulating layer having independent pores, a second transparent adhesive layer, and a second glass plate in order, wherein the independent pores , The pores are pores covered with a shell, the A value represented by the following formula (1) is 7.4 × 10 5 or less, and the B value represented by the following formula (2) is Laminated glass which is 35 or more.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ただし、Dは透明断熱層の独立気孔の気孔径(nm)であり、Pは透明断熱層の気孔率であり、dは透明断熱層の厚さ(mm)であり、dは第1のガラス板の厚さと第2のガラス板の厚さの合計(mm)であり、dは第1の透明接着層の厚さと第2の透明接着層の厚さの合計(mm)である。
 <2>前記A値が、2.6×10以下であり、前記B値が、85以上である、<1>の合わせガラス。
 <3>前記透明断熱層が、中空微粒子分散樹脂シートである、<1>または<2>の合わせガラス。
 <4>前記透明断熱層の厚さが、0.2~10mmである、<1>~<3>のいずれかの合わせガラス。
 <5>前記第1のガラス板の厚さおよび前記第2のガラス板の厚さが、それぞれ0.1~6mmである、<1>~<4>のいずれかの合わせガラス。
 <6>前記第1の透明接着層の厚さおよび前記第2の透明接着層の厚さが、それぞれ0.1~3mmである、<1>~<5>のいずれかの合わせガラス。
 <7>前記<1>~<6>のいずれかの合わせガラスを備えた、自動車用窓ガラス。
 <8>前記<1>~<6>のいずれかの合わせガラスを備えた、建物用窓ガラス。
Where D is the pore size (nm) of the independent pores of the transparent heat insulation layer, P is the porosity of the transparent heat insulation layer, d i is the thickness (mm) of the transparent heat insulation layer, and d g is the first the sum of the thickness and the thickness of the second glass plate of the glass plate (mm), d a is the total thickness of the first transparent adhesive layer thickness and a second transparent adhesive layer (mm) .
<2> The laminated glass according to <1>, wherein the A value is 2.6 × 10 5 or less, and the B value is 85 or more.
<3> The laminated glass according to <1> or <2>, wherein the transparent heat insulating layer is a hollow fine particle dispersed resin sheet.
<4> The laminated glass according to any one of <1> to <3>, wherein the transparent heat insulating layer has a thickness of 0.2 to 10 mm.
<5> The laminated glass according to any one of <1> to <4>, wherein the thickness of the first glass plate and the thickness of the second glass plate are 0.1 to 6 mm, respectively.
<6> The laminated glass according to any one of <1> to <5>, wherein the thickness of the first transparent adhesive layer and the thickness of the second transparent adhesive layer are 0.1 to 3 mm, respectively.
<7> An automotive window glass comprising the laminated glass according to any one of <1> to <6>.
<8> A window glass for buildings provided with the laminated glass according to any one of <1> to <6>.
 本発明の合わせガラス、自動車用窓ガラスおよび建物用窓ガラスは、透明性が高く、かつ断熱性に優れる。 The laminated glass, the window glass for automobiles and the window glass for buildings of the present invention have high transparency and excellent heat insulation.
図1は、本発明の合わせガラスの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the laminated glass of the present invention.
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「気孔」とは、断熱材内に形成された空隙からなる孔を意味する。
 「独立気孔」とは、各気孔のまわりがマトリックスやシェルで完全に覆われた気孔を意味する。独立気孔には、気孔のまわりがシェルを介することなくマトリックスで直接覆われた独立気孔と、マトリックス中に分散されたシェルを有する中空粒子等によって形成される気孔のまわりがシェルで覆われた独立気孔とがある。本発明における独立気孔は、後者の独立気孔となる。
 「透明」とは、光を透過できることを意味する。
 「気孔径」は、透過型顕微鏡を用いて20個の中空微粒子を観察し、それらの内径を平均した値である。
 「気孔率」は、プレス前の透明断熱層の体積と、温度:200℃、圧力:35MPa、時間:10分間の条件でプレスした後の透明断熱層の体積とから下式によって求めた値である。
 気孔率=1-(プレス後の透明断熱層の体積/プレス前の透明断熱層の体積)
 「透過率」は、JIS R 3106:1998「板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法」(ISO 9050:1990)に準拠して測定される値である。
 「熱貫流率(U値)」は、JIS R 3107:1998「板ガラス類の熱抵抗及び建築における熱貫流率の算定方法」(ISO 10292:1994)およびJIS R 3209:1998「複層ガラス」に準拠して測定される値である。
 「圧縮弾性率」は、JIS K 7181:2011「プラスチック-圧縮特性の求め方」(ISO 604:2002)に準拠して測定される値である。
The following definitions of terms apply throughout this specification and the claims.
The “pore” means a hole made of a void formed in the heat insulating material.
“Independent pores” means pores that are completely covered with a matrix or shell around each pore. Independent pores include independent pores directly covered with a matrix without going through a shell, and independent pores formed by hollow particles having shells dispersed in the matrix. There are pores. The independent pores in the present invention are the latter independent pores.
“Transparent” means that light can be transmitted.
The “pore diameter” is a value obtained by observing 20 hollow fine particles using a transmission microscope and averaging their inner diameters.
“Porosity” is a value obtained by the following equation from the volume of the transparent heat insulating layer before pressing and the volume of the transparent heat insulating layer after pressing under the conditions of temperature: 200 ° C., pressure: 35 MPa, time: 10 minutes. is there.
Porosity = 1− (Volume of transparent heat insulating layer after pressing / Volume of transparent heat insulating layer before pressing)
“Transmittance” is a value measured in accordance with JIS R 3106: 1998 “Testing method for transmittance, reflectance, emissivity, and solar heat gain of plate glass” (ISO 9050: 1990).
“Heat transmissivity (U value)” is defined in JIS R 3107: 1998 “Method of calculating thermal resistance of sheet glass and heat transmissivity in architecture” (ISO 10292: 1994) and JIS R 3209: 1998 “Multilayer glass”. It is a value measured in compliance.
The “compressive modulus” is a value measured in accordance with JIS K 7181: 2011 “Plastics—How to obtain compression properties” (ISO 604: 2002).
<合わせガラス>
 図1は、本発明の合わせガラスの一例を示す断面図である。
 合わせガラス1は、第1のガラス板10と;第2のガラス板12と;第1のガラス板10と第2のガラス板12との間に配置された、独立気孔を有する透明断熱層14と;第1のガラス板10と透明断熱層14とを貼り合わせる第1の透明接着層16と;第2のガラス板12と透明断熱層14とを貼り合わせる第2の透明接着層18とを有する。
<Laminated glass>
FIG. 1 is a cross-sectional view showing an example of the laminated glass of the present invention.
The laminated glass 1 includes a first glass plate 10; a second glass plate 12; a transparent heat insulating layer 14 having independent pores disposed between the first glass plate 10 and the second glass plate 12. A first transparent adhesive layer 16 that bonds the first glass plate 10 and the transparent heat insulating layer 14; and a second transparent adhesive layer 18 that bonds the second glass plate 12 and the transparent heat insulating layer 14 Have.
 (ガラス板)
 第1のガラス板および第2のガラス板(以下、まとめてガラス板とも記す。)の材料は、無機ガラスであってもよく、有機ガラスであってもよく、耐候性、剛性、耐溶剤性等の点から、無機ガラスが好ましい。第1のガラス板および第2のガラス板の材料は、同じであってもよく、異なっていてもよい。
 無機ガラスとしては、ソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラス等が挙げられ、ソーダライムガラスが好適である。
 有機ガラスとしては、ポリカーボネート、アクリル樹脂等が挙げられる。
(Glass plate)
The material of the first glass plate and the second glass plate (hereinafter collectively referred to as a glass plate) may be an inorganic glass or an organic glass, and has weather resistance, rigidity, and solvent resistance. In view of the above, inorganic glass is preferable. The materials of the first glass plate and the second glass plate may be the same or different.
Examples of the inorganic glass include soda lime glass, borosilicate glass, non-alkali glass, and quartz glass. Soda lime glass is preferable.
Examples of the organic glass include polycarbonate and acrylic resin.
 ガラス板は、無色透明ガラス板であってもよく、有色透明ガラス板であってもよく、鉄分が多い熱線吸収ガラス板(ブルーガラス板またはグリーンガラス板)が好ましい。
 ガラス板としては、安全性を高めるために強化ガラス板を用いてもよい。強化ガラス板としては、風冷強化法や化学強化法により得られる強化ガラス板を用いることができる。
The glass plate may be a colorless transparent glass plate or a colored transparent glass plate, and is preferably a heat ray absorbing glass plate (blue glass plate or green glass plate) rich in iron.
As the glass plate, a tempered glass plate may be used to enhance safety. As the tempered glass plate, a tempered glass plate obtained by an air cooling tempering method or a chemical tempering method can be used.
 ガラス板の形状は、湾曲状であってもよく、平板状であってもよい。自動車用窓ガラスは湾曲していることが多いため、本発明の合わせガラスを自動車用窓ガラスとして用いる場合は、ガラス板の形状は、湾曲状であることが多い。 The shape of the glass plate may be curved or flat. Since the window glass for automobiles is often curved, when the laminated glass of the present invention is used as the window glass for automobiles, the shape of the glass plate is often curved.
 ガラス板の厚さは、0.1~6mmが好ましく、1~3mmがより好ましい。第1のガラス板および第2のガラス板の厚さは、同じであってもよく、異なっていてもよい。なお、本発明におけるガラス板の厚さは、幾何学的厚さである。以下、ガラス板以外の本発明の合わせガラスが有する各層の厚さについても同様である。 The thickness of the glass plate is preferably 0.1 to 6 mm, more preferably 1 to 3 mm. The thicknesses of the first glass plate and the second glass plate may be the same or different. In addition, the thickness of the glass plate in this invention is geometric thickness. Hereinafter, the same applies to the thickness of each layer of the laminated glass of the present invention other than the glass plate.
 (透明接着層)
 第1の透明接着層および第2の透明接着層(以下、まとめて透明接着層とも記す。)の材料は、ガラス板と透明断熱層とを接着できる透明樹脂であればよい。該透明樹脂としては、ポリビニルブチラール、エチレン-酢酸ビニル共重合体、市販の光学透明粘着剤(OCA:Optically Clear Adhesive)等が挙げられ、ポリビニルブチラール、エチレン-酢酸ビニル共重合体が好ましく、自動車用窓ガラス等のような耐貫通性を要求される用途においては、ポリビニルブチラールがより好ましい。第1の透明接着層および第2の透明接着層の材料は、同じであってもよく、異なっていてもよい。また各々の透明接着層は、同種または異種の2層以上の材料が積層されたものであってもよい。
(Transparent adhesive layer)
The material of the first transparent adhesive layer and the second transparent adhesive layer (hereinafter collectively referred to as a transparent adhesive layer) may be any transparent resin that can adhere the glass plate and the transparent heat insulating layer. Examples of the transparent resin include polyvinyl butyral, ethylene-vinyl acetate copolymer, and commercially available optically clear adhesive (OCA), and polyvinyl butyral and ethylene-vinyl acetate copolymer are preferable. Polyvinyl butyral is more preferable for applications requiring penetration resistance such as window glass. The materials of the first transparent adhesive layer and the second transparent adhesive layer may be the same or different. Each transparent adhesive layer may be a laminate of two or more layers of the same or different types.
 透明接着層は、本発明の効果を損なわない範囲内において、赤外線吸収剤、紫外線吸収剤、酸化防止剤、光安定剤、着色剤等を含んでいてもよい。
 透明接着層の厚さは、0.1~3mmが好ましく、0.3~0.8mmがより好ましい。第1の透明接着層および第2の透明接着層の厚さは、同じであってもよく、異なっていてもよい。
The transparent adhesive layer may contain an infrared absorber, an ultraviolet absorber, an antioxidant, a light stabilizer, a colorant and the like within a range not impairing the effects of the present invention.
The thickness of the transparent adhesive layer is preferably from 0.1 to 3 mm, and more preferably from 0.3 to 0.8 mm. The thickness of the first transparent adhesive layer and the second transparent adhesive layer may be the same or different.
 (透明断熱層)
 透明断熱層の圧縮弾性率は、4.3MPa以上が好ましく、12MPa以上がより好ましく、120MPa以上がさらに好ましい。圧縮弾性率が前記範囲の下限値以上であれば、透明断熱層の機械的強度に優れ、合わせガラスの製造の際にガラス板と貼合する際の圧縮に耐え得る。
(Transparent insulation layer)
The compressive elastic modulus of the transparent heat insulating layer is preferably 4.3 MPa or more, more preferably 12 MPa or more, and further preferably 120 MPa or more. When the compression modulus is equal to or higher than the lower limit of the above range, the transparent heat insulating layer is excellent in mechanical strength and can withstand compression when bonded to a glass plate during the production of laminated glass.
 透明断熱層の厚さは、0.2~10mmが好ましく、0.5~6mmがより好ましく、1~3mmがさらに好ましい。透明断熱層の厚さが前記範囲の下限値以上であれば、合わせガラスの断熱性にさらに優れる。透明断熱層の厚さが前記範囲の上限値以下であれば、合わせガラスの透明性がさらに高くなる。 The thickness of the transparent heat insulating layer is preferably 0.2 to 10 mm, more preferably 0.5 to 6 mm, and further preferably 1 to 3 mm. If the thickness of a transparent heat insulation layer is more than the lower limit of the said range, it will be further excellent in the heat insulation of a laminated glass. If the thickness of a transparent heat insulation layer is below the upper limit of the said range, the transparency of a laminated glass will become still higher.
 透明断熱層は、気孔のまわりがマトリックスとは異なるシェルで覆われた独立気孔(以下、シェルありの独立気孔または単に独立気孔とも記す。)を有するものである。
 シェルありの独立気孔を有する透明断熱層としては、中空微粒子分散樹脂シート;、多孔質微粒子分散樹脂シート等が挙げられる。多孔質微粒子としては、多孔質シリカ凝集粒子等が挙げられる。
The transparent heat insulating layer has independent pores whose pores are covered with a shell different from the matrix (hereinafter also referred to as independent pores with a shell or simply independent pores).
Examples of the transparent heat insulating layer having independent pores with a shell include a hollow fine particle dispersed resin sheet; and a porous fine particle dispersed resin sheet. Examples of the porous fine particles include porous silica aggregated particles.
 透明断熱層としては、合わせガラスの透明性および断熱性を両立するための透明断熱層の気孔率および独立気孔の気孔径を調整しやすい点から、中空微粒子分散樹脂シートが好ましい。 As the transparent heat insulating layer, a hollow fine particle dispersed resin sheet is preferable from the viewpoint of easily adjusting the porosity of the transparent heat insulating layer and the pore diameter of the independent pores in order to achieve both transparency and heat insulating properties of the laminated glass.
 (中空微粒子分散樹脂シート)
 中空微粒子分散樹脂シートは、樹脂材料からなるマトリクス中に分散された中空微粒子からなる独立気孔を有するシートである。
(Hollow particle dispersed resin sheet)
The hollow fine particle dispersed resin sheet is a sheet having independent pores made of hollow fine particles dispersed in a matrix made of a resin material.
 樹脂材料に含まれる樹脂としては、非晶性熱可塑性樹脂、結晶性熱可塑性樹脂、硬化性樹脂の硬化物等が挙げられる。
 非晶性熱可塑性樹脂としては、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、非晶性ポリエステル系樹脂、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ノルボルネン系樹脂、非晶性フッ素樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリエーテルイミド、ポリアリレート、ポリエステルカーボネート、トリアセチルセルロース、非晶性ナイロン樹脂等が挙げられる。
 結晶性熱可塑性樹脂としては、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、結晶性ポリエステル樹脂、結晶性フッ素樹脂、ポリ-4-メチルペンテン-1等が挙げられる。
 硬化性樹脂としては、エポキシ樹脂、ジエチレングリコールビスカーボネート、多官能アクリレート系樹脂、多官能メタクリレート系樹脂等が挙げられる。
Examples of the resin contained in the resin material include amorphous thermoplastic resins, crystalline thermoplastic resins, and cured products of curable resins.
Amorphous thermoplastic resins include polystyrene, polymethyl methacrylate, polycarbonate, amorphous polyester resin, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer, norbornene resin, amorphous fluororesin, Examples include polyether sulfone, polysulfone, polyether imide, polyarylate, polyester carbonate, triacetyl cellulose, and amorphous nylon resin.
Examples of the crystalline thermoplastic resin include polypropylene, polyethylene, polyvinyl chloride, crystalline polyester resin, crystalline fluororesin, poly-4-methylpentene-1, and the like.
Examples of the curable resin include epoxy resin, diethylene glycol biscarbonate, polyfunctional acrylate resin, and polyfunctional methacrylate resin.
 樹脂材料は、本発明の効果を損なわない範囲内において、発泡核剤、着色剤、酸化防止剤、光安定剤、離型剤、防腐剤、赤外線吸収剤、紫外線吸収剤、可塑剤、難燃剤、導電性付与剤、帯電防止剤、結晶核剤等を含んでいてもよい。 As long as the effect of the present invention is not impaired, the resin material is a foam nucleating agent, a colorant, an antioxidant, a light stabilizer, a mold release agent, an antiseptic, an infrared absorber, an ultraviolet absorber, a plasticizer, and a flame retardant. , A conductivity imparting agent, an antistatic agent, a crystal nucleating agent and the like may be contained.
 中空微粒子としては、シェル内に中空部を有する微粒子が挙げられ、具体的には、中空シリカ微粒子、中空樹脂微粒子、中空チタニア微粒子、中空ジルコニア微粒子、中空アルミナ微粒子等が挙げられる。入手しやすさの点からは、中空シリカ微粒子が好ましい。 Examples of the hollow fine particles include fine particles having a hollow portion in the shell, and specific examples include hollow silica fine particles, hollow resin fine particles, hollow titania fine particles, hollow zirconia fine particles, and hollow alumina fine particles. From the viewpoint of availability, hollow silica fine particles are preferable.
 中空シリカ微粒子としては、市販のものを用いてもよく、公知の製造方法によって製造したものを用いてもよい。
 中空シリカ微粒子の製造方法としては、たとえば、酸溶解性無機粒子(酸化亜鉛、アルミン酸ナトリウム、炭酸カルシウム等)からなるコア粒子とアルコキシシランとを含む液を加熱して、コア粒子の表面にシリカを主成分とするシェルを形成し、コア-シェル粒子の分散液を得る工程と;コア-シェル粒子の分散液に酸を添加し、コア-シェル粒子のコア粒子を溶解、除去し、中空シリカ微粒子の分散液を得る工程とを有する方法が挙げられる。さらに中空シリカ微粒子を単離して焼成してもよい。
 中空チタニア微粒子の場合は、テトラアルコキシチタン(IV)を原料に用いて、中空シリカ微粒子と同様の方法で得ることができる。
As a hollow silica fine particle, a commercially available thing may be used and what was manufactured by the well-known manufacturing method may be used.
As a method for producing hollow silica fine particles, for example, a liquid containing core particles composed of acid-soluble inorganic particles (zinc oxide, sodium aluminate, calcium carbonate, etc.) and alkoxysilane is heated to form silica on the surface of the core particles. A step of forming a shell mainly composed of a core and obtaining a dispersion of core-shell particles; adding an acid to the dispersion of core-shell particles to dissolve and remove the core particles of the core-shell particles; And a step of obtaining a dispersion of fine particles. Further, the hollow silica fine particles may be isolated and fired.
In the case of hollow titania fine particles, tetraalkoxytitanium (IV) can be used as a raw material and can be obtained by the same method as hollow silica fine particles.
 中空微粒子のシェルの厚さは、機械的特性の点からは、2nm以上が好ましく、3nm以上がより好ましい。透明断熱層の透明性および断熱性の点からは、15nm以下が好ましく、10nm以下がより好ましい。
 薄くても機械的特性が優れるシェルを形成するためには、シェルを緻密にすることが必要である。このようなシェルを形成する方法としては、マイクロ波を利用した方法が好ましい。
 中空微粒子のシェルには穴が開いていないことが好ましい。大きい穴が開いている場合、マトリックスがその穴から中空部に侵入し、中空の役目を果たさなくなるおそれがある。
The thickness of the shell of the hollow fine particles is preferably 2 nm or more, and more preferably 3 nm or more from the viewpoint of mechanical properties. From the point of the transparency and heat insulation of a transparent heat insulation layer, 15 nm or less is preferable and 10 nm or less is more preferable.
In order to form a shell having excellent mechanical properties even if it is thin, it is necessary to make the shell dense. As a method for forming such a shell, a method using a microwave is preferable.
It is preferable that the hollow fine particle shell has no holes. When a large hole is opened, the matrix may enter the hollow portion from the hole and the hollow function may not be performed.
 透明断熱層の透明性を向上させるためには、中空微粒子を、凝集させることなくマトリックスに均一分散させることが必要である。そのためには、中空微粒子の表面にマトリックスと相性のよい修飾を施すことが好ましい。表面修飾を施す方法としては、アルキル基を有するシランカップリング剤を用いて、中空微粒子の表面の水酸基(OH)と縮合させる方法が挙げられる。アルキル基の種類は、マトリックスに合せて適宜選択すればよい。 In order to improve the transparency of the transparent heat insulating layer, it is necessary to uniformly disperse the hollow fine particles in the matrix without agglomerating. For this purpose, it is preferable to modify the surface of the hollow fine particles with a compatibility with the matrix. Examples of the method for surface modification include a method of condensing with a hydroxyl group (OH) on the surface of the hollow fine particles using a silane coupling agent having an alkyl group. The type of the alkyl group may be appropriately selected according to the matrix.
 中空微粒子分散樹脂シートは、熱可塑性樹脂および中空微粒子を含む樹脂材料を、公知の成形方法(押出成形法等)によってシート状に成形する方法;液状の硬化性樹脂に中空微粒子を分散させた硬化性組成物をシート状に拡げ、硬化させる方法等によって製造できる。 The hollow fine particle-dispersed resin sheet is a method in which a thermoplastic resin and a resin material containing hollow fine particles are formed into a sheet shape by a known molding method (extrusion molding method, etc.); curing in which hollow fine particles are dispersed in a liquid curable resin The composition can be produced by a method of spreading the composition into a sheet and curing it.
 (透明断熱層の設計)
 後述するA値およびB値を特定の範囲とすることによって、合わせガラスの透明性および断熱性を両立することは、透明断熱層の独立気孔の気孔径および気孔率を調整することによって達成できる。
(Design of transparent heat insulation layer)
By making A value and B value mentioned later into a specific range, coexistence of transparency and heat insulation of a laminated glass can be achieved by adjusting the pore diameter and porosity of the independent pores of the transparent heat insulation layer.
 透明断熱層におけるシェルありの独立気孔の気孔径を小さくするためには、たとえば、中空微粒子のシェルの内径を小さくすればよい。
 透明断熱層におけるシェルありの独立気孔の気孔径を変えずに透明断熱層の気孔率を高くするためには、たとえば、透明断熱材に含まれる中空微粒子の割合を多くすればよい。
In order to reduce the pore diameter of the independent pores with a shell in the transparent heat insulating layer, for example, the inner diameter of the shell of the hollow fine particles may be reduced.
In order to increase the porosity of the transparent heat insulating layer without changing the pore diameter of the independent pores with shells in the transparent heat insulating layer, for example, the ratio of the hollow fine particles contained in the transparent heat insulating material may be increased.
 圧縮弾性率が4.3MPa以上であるシェルありの独立気孔を有する透明断熱層を得ることは、中空微粒子自体が通常充分な圧縮弾性率を有することから、中空微粒子をマトリックスに分散させることによって達成できる。 Obtaining a transparent heat insulating layer having an independent pore with a shell having a compression modulus of 4.3 MPa or more is achieved by dispersing the hollow fine particles in a matrix because the hollow fine particles themselves usually have a sufficient compression modulus. it can.
 (A値)
 本発明の合わせガラスは、下式(1)で表されるA値が、7.4×10以下であり、2.6×10以下が好ましく、1.0×10以下がより好ましい。
 A値が7.4×10以下であれば、合わせガラスの透過率が50%以上となる。A値が2.6×10以下であれば、合わせガラスの透過率が70%以上となる。
(A value)
In the laminated glass of the present invention, the A value represented by the following formula (1) is 7.4 × 10 5 or less, preferably 2.6 × 10 5 or less, more preferably 1.0 × 10 5 or less. .
If A value is 7.4 * 10 < 5 > or less, the transmittance | permeability of a laminated glass will be 50% or more. If the A value is 2.6 × 10 5 or less, the transmittance of the laminated glass is 70% or more.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 A値を7.4×10以下とすることによって合わせガラスの透過率が50%以上となる理由、およびA値を2.6×10以下とすることによって合わせガラスの透過率が70%以上となる理由を以下に説明する。 The reason why the transmittance of the laminated glass is 50% or more when the A value is 7.4 × 10 5 or less, and the transmittance of the laminated glass is 70% when the A value is 2.6 × 10 5 or less. The reason for this will be described below.
 図1に示すような層構成の合わせガラスについて、空気(第0層)、第1のガラス板(第1層)、第1の透明接着層(第2層)、透明断熱層(第3層)、第2の透明接着層(第4層)、第2のガラス板(第5層)および空気(第6層)の厚さ、屈折率、累計透過率、フレネル反射および内部透過率を、表1のように表す。 About laminated glass having a layer structure as shown in FIG. 1, air (0th layer), first glass plate (first layer), first transparent adhesive layer (second layer), transparent heat insulating layer (third layer) ), Thickness of second transparent adhesive layer (fourth layer), second glass plate (fifth layer) and air (sixth layer), refractive index, cumulative transmittance, Fresnel reflection and internal transmittance, As shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 まず、合わせガラスの透過率からそれに必要な透明断熱層の透過率を求める。この導出の目的は、合わせガラスの透過率Sの必要数値が指定された時に、透明断熱層の透過率Tはいくつである必要があるかの関係式を求めることである。  First, the transmittance of the transparent heat insulation layer necessary for the transmittance of the laminated glass is determined. The purpose of this derivation is to obtain a relational expression as to what the transmittance T 3 of the transparent heat insulating layer needs to be when the required numerical value of the transmittance S 6 of the laminated glass is designated.
 フレネル反射については、たとえば、屈折率nの層と屈折率nの層の界面でのフレネル反射Fは下式で表される。 Regarding the Fresnel reflection, for example, the Fresnel reflection F 1 at the interface between the layer having the refractive index n 1 and the layer having the refractive index n 2 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 入射側の空気の累計透過率Sを1としたとき、各層の累計透過率は、下式(3)で表される。 When the cumulative transmittance S 0 of the incident side air is 1, the cumulative transmittance of each layer is expressed by the following formula (3).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 SとTとの関係を求めることを目的としていることから、式(3)をTに注目して変形すると下式(4)で表される。ここで、F=F、F=F、F=Fとする。 Since the purpose is to obtain the relationship between S 6 and T 3 , when the expression (3) is transformed by paying attention to T 3 , it is expressed by the following expression (4). Here, it is assumed that F 0 = F 5 , F 1 = F 4 , and F 2 = F 3 .
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ガラス板および透明接着層は、10mm程度以下の厚さでは充分に透明性が高いことから、T、T、T、Tは1と近似できる。よって、式(4)は、下式(5)で表される。 Since the glass plate and the transparent adhesive layer are sufficiently transparent at a thickness of about 10 mm or less, T 1 , T 2 , T 4 , and T 5 can be approximated to 1. Therefore, Formula (4) is represented by the following Formula (5).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 波長500nmにおいて、通常のガラス板の屈折率n、n、透明接着層の屈折率n、nは1.5程度である。一方、透明断熱層の屈折率は材料によって異なるが、ワーストケースとして空気と同じn=1.0と置けば、論理上どんな場合にも問題は起こらない。したがって、各界面でのフレネル反射は以下のように近似できる。 At a wavelength of 500 nm, the refractive indexes n 1 and n 5 of a normal glass plate and the refractive indexes n 2 and n 4 of the transparent adhesive layer are about 1.5. On the other hand, the refractive index of the transparent heat-insulating layer varies depending on the material, if you put the same n 3 = 1.0 and air as the worst case, does not occur a problem even if the logic on any. Therefore, Fresnel reflection at each interface can be approximated as follows.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 したがって式(5)は、下式で表される。 Therefore, equation (5) is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、Tは、透明断熱層の透過率であるからTとし、Sは、合わせガラスの透過率であるからTとすると、この式は下式(6)で表される。 Here, when T 3 is the transmittance of the transparent heat insulating layer and T i is set, and S 6 is the transmittance of the laminated glass and T L is set, this formula is expressed by the following formula (6).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(6)によって、実現したい合わせガラスの透過率Tのために必要な透明断熱層の透過率Tを計算できる。 By the equation (6), the transmittance T i of the transparent heat insulating layer necessary for the transmittance T L of the laminated glass to be realized can be calculated.
 つぎに、透明断熱層の独立気孔の気孔径D、透明断熱層の気孔率Pおよび透明断熱層の厚さdと、合わせガラスの透過率Tとの関係を求める。 Next, the relationship between the pore diameter D of the independent pores of the transparent heat insulating layer, the porosity P of the transparent heat insulating layer, the thickness d i of the transparent heat insulating layer, and the transmittance TL of the laminated glass is obtained.
 透明断熱層の透過率Tは、透明断熱層への入射光強度をI、透明断熱層からの透過光強度をI、透明断熱層の独立気孔の散乱断面積をσ、透明断熱層の単位体積あたりの気孔数をN、透明断熱層の厚さをd(mm)とすると、下式(7)で表される(高分子論文集,Vol.67,No.7,pp.390-396(2010))。 The transmittance T i of the transparent heat insulation layer is expressed as follows: the incident light intensity to the transparent heat insulation layer is I 0 , the transmitted light intensity from the transparent heat insulation layer is I, the scattering cross section of the independent pores of the transparent heat insulation layer is σ, the number of pores per unit volume N, and the thickness of the transparent heat insulating layer and d i (mm), is represented by the following formula (7) (polymer Collected papers, Vol.67, No.7, pp.390 -396 (2010)).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 透明断熱層の独立気孔の気孔径が光の波長よりも小さい場合にはレイリー散乱が適用される。よって、散乱断面積σは、気孔径をD(mm)、波長をλ(nm)とすると、下式で表される。 Rayleigh scattering is applied when the pore size of the independent pores of the transparent heat insulation layer is smaller than the wavelength of light. Accordingly, the scattering cross-sectional area σ is expressed by the following equation, where the pore diameter is D (mm) and the wavelength is λ (nm).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 透明断熱層の単位体積あたりの気孔数Nは、下式で表される。 The number N of pores per unit volume of the transparent heat insulation layer is expressed by the following formula.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 単位をメートルに統一して式(7)を整理すると、下式(8)で表される。 When the unit (m) is unified and the equation (7) is arranged, it is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここで、比例定数をCと置くと、式(8)はさらに下式(9)、(10)、(11)で表される。なお、式(9)、(10)、(11)は等価である。 Here, when the proportionality constant is set to C, the equation (8) is further expressed by the following equations (9), (10), and (11). Expressions (9), (10), and (11) are equivalent.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 式(10)に式(6)を代入すると、下式(12)となる。 Substituting equation (6) into equation (10) yields the following equation (12).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 実際に、色々と条件を変えた合わせガラスを作製して、D、P、d、波長500nmにおける透過率Tを測定し、これらの値を式(12)に代入してCの値を計算すると、表2の結果が得られた。なお、波長は500nmである必要はないが、それより短波長では不純物の影響を受けやすく、また長波長では散乱の影響が見えにくい。よって、波長500nmにおける透過率Tの値で評価した。  Actually, a laminated glass with various conditions is prepared, D, P, d i , transmittance TL at a wavelength of 500 nm are measured, and these values are substituted into equation (12) to obtain the value of C. When calculated, the results in Table 2 were obtained. The wavelength does not have to be 500 nm, but is easily affected by impurities at shorter wavelengths, and the influence of scattering is less visible at longer wavelengths. Therefore, it evaluated by the value of transmittance TL at a wavelength of 500 nm.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実測値から得られたCの値を平均して、C=5.8×10-5の値を得た。したがって、式(12)は、下式(13)で表される。 The value of C obtained from the actually measured value was averaged to obtain a value of C = 5.8 × 10 −5 . Therefore, Formula (12) is represented by the following Formula (13).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 たとえば、合わせガラスの透過率TLが50%の場合には、式(13)の括弧内の数値は下記のようになる。 For example, when the transmittance TL of the laminated glass is 50%, the numerical values in parentheses in the formula (13) are as follows.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 よって、波長を500nmに固定して考えると、合わせガラスの透過率TLが50%以上を満たすためには、透明断熱層の独立気孔の気孔径D、透明断熱層の気孔率Pおよび透明断熱層の厚さdが、下式(14)の関係にあればよいことがわかる。 Therefore, when the wavelength is fixed at 500 nm, in order for the transmittance TL of the laminated glass to satisfy 50% or more, the pore diameter D of the independent pores of the transparent heat insulation layer, the porosity P of the transparent heat insulation layer, and the transparent heat insulation It can be seen that the thickness d i of the layer should be in the relationship of the following formula (14).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 同様にして、合わせガラスの透過率Tが70%以上を満たすためには、下式(15)の関係にあればよい。A値の単位はnm・mmとなる。 Similarly, in order for the transmittance TL of the laminated glass to satisfy 70% or more, the relationship of the following formula (15) is sufficient. The unit of A value is nm 3 mm.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 (B値)
 本発明の合わせガラスは、下式(2)で表されるB値が、35以上であり、85以上が好ましい。
 B値が35以上であれば、断熱性の目安である合わせガラスの熱貫流率(U値)が5.0W/mK以下となる。B値が85以上あれば、合わせガラスのU値が4.0W/mK以下となる。
(B value)
In the laminated glass of the present invention, the B value represented by the following formula (2) is 35 or more, and preferably 85 or more.
When the B value is 35 or more, the heat flow rate (U value) of the laminated glass, which is a measure of heat insulation, is 5.0 W / m 2 K or less. If the B value is 85 or more, the U value of the laminated glass is 4.0 W / m 2 K or less.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 B値を35以上とすることによって合わせガラスのU値が5.0W/mK以下となる理由、およびB値を85以上とすることによって合わせガラスのU値が4.0W/mK以下となる理由を以下に説明する。 Why U value of the laminated glass by the B value of 35 or more is less than 5.0W / m 2 K, and B values of the laminated glass by 85 or more U value 4.0 W / m 2 K The reason for the following will be described below.
 合わせガラスの熱貫流率をU(W/mK)、 室外側の表面熱伝達率をhext(W/mK)、室内側の表面熱伝達率をhin(W/mK)、各層の熱抵抗をR(mK/W)、2枚のガラス板の厚さの合計をd(mm)、ガラス板の熱伝導率をλ(W/mK)、透明接着層の厚さの合計をd(mm)、透明接着層の熱伝導率をλ(W/mK)、透明断熱層の厚みをd(mm)、透明断熱層の熱伝導率をλ(W/mK)とすると、下式(16)で表される。  The thermal conductivity of the laminated glass is U (W / m 2 K), the outdoor surface heat transfer coefficient is h ext (W / m 2 K), and the indoor surface heat transfer coefficient is h in (W / m 2 K). ), R (m 2 K / W) for the thermal resistance of each layer, d g (mm) for the total thickness of the two glass plates, λ g (W / mK) for the thermal conductivity of the glass plate, transparent adhesion The total thickness of the layers is d a (mm), the thermal conductivity of the transparent adhesive layer is λ a (W / mK), the thickness of the transparent heat insulation layer is d i (mm), and the heat conductivity of the transparent heat insulation layer is λ If i (W / mK), it is represented by the following formula (16).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 室温での空気の熱伝導率をλair(0.026W/mK)、平均自由行程をL(62.5×10-9m)、透明断熱層の独立気孔の気孔径をD(mm)、独立気孔の熱伝導率をλpore(W/mK)とすると、これらの関係は下式(17)で表される(G. Wei et al.,International Journal of Heat and Mass Transfer(2011)54,2355-2366)。 The thermal conductivity of air at room temperature is λ air (0.026 W / mK), the mean free path is L (62.5 × 10 −9 m), the pore diameter of the independent pores of the transparent heat insulation layer is D (mm), When the thermal conductivity of the independent pores is λ pore (W / mK), these relationships are expressed by the following equation (17) (G. Wei et al., International Journal of Heat and Mass Transfer (2011) 54, 2355-2366).
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 透明断熱層の熱伝導率λは、透明断熱層のマトリックスの熱伝導率をλmat(W/mK)、透明断熱層の気孔率をPとすると、日本大学生産工学部第37回(平成16年度)学術講演会 応用分子化学部会 プログラム5-8「ガスハイドレート模擬堆積物試料の熱伝導率測定」に記載の分散モデルから、式(17)を用い、bを比例定数として下式で表される。 Thermal conductivity λ i of the transparent insulation layer, mat the thermal conductivity of the matrix of transparent thermal insulation layer λ (W / mK), the porosity of the transparent thermal insulation layer and is P, Japan University of Industrial Technology 37th (2004 Academic Lecture Meeting Applied Molecular Chemistry Group Program 5-8 “Measurement of thermal conductivity of gas hydrate simulated sediment sample” Using equation (17), b is a proportional constant Is done.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 室外側の部材表面の半球放射率εextは0.837W/mKであり、室内側の部材表面の半球放射率εinも0.837W/mKであるから、定義により、室外側の表面熱伝達率hextおよび室内側の表面熱伝達率hinは下記のようになる。 The hemispherical emissivity ε ext of the outdoor member surface is 0.837 W / m 2 K, and the hemispherical emissivity ε in of the indoor member surface is 0.837 W / m 2 K. The surface heat transfer coefficient h ext and the indoor surface heat transfer coefficient h in are as follows.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 ガラス板の熱伝導率λは、ガラスの種類が異なってもおおむね1.0W/mKであり、透明接着層に使われる材料の熱伝導率λは、おおむね0.3W/mK程度である。また、透明断熱層のマトリックスの熱伝導率λmatは、ワーストケースとして1.0W/mKと置くことができる。これらより、単位をメートルに統一して式(16)を整理すると、下式(18)で表される。 The thermal conductivity λ g of the glass plate is approximately 1.0 W / mK even if the glass type is different, and the thermal conductivity λ a of the material used for the transparent adhesive layer is approximately 0.3 W / mK. . Further, the thermal conductivity λ mat of the transparent heat insulating layer matrix can be set to 1.0 W / mK as the worst case. From these, when unit (m) is unified and equation (16) is arranged, it is expressed by the following equation (18).
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 式(18)を整理し、Bと置くと、下式(19)で表される。 When organizing equation (18) and placing it as B, it is represented by the following equation (19).
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 式(19)をbに関して変形すると、下式(20)で表される。 When formula (19) is transformed with respect to b, it is represented by the following formula (20).
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 実際に、色々と条件を変えた合わせガラスを作製して、D、P、d、d、d、U値を測定し、これらの値を式(20)に代入してbの値を計算すると、表3の結果が得られた。  Actually, a laminated glass with various conditions is prepared, D, P, d i , d g , d a , and U values are measured, and these values are substituted into equation (20) to obtain the value of b The results in Table 3 were obtained.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 実測値から得られたbの値を平均して、b=0.187の値を得た。したがって、式(19)は、bの値を代入して下式(21)で表される。 The value of b obtained from the actual measurement value was averaged to obtain a value of b = 0.187. Therefore, Expression (19) is expressed by Expression (21) below by substituting the value of b.
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 たとえば、U値が5.0W/mKの場合には、B値は下記のようになる。 For example, when the U value is 5.0 W / m 2 K, the B value is as follows.
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 よって、U値が5.0W/mK以下を満たすためには、透明断熱層の独立気孔の気孔径D、透明断熱層の気孔率P、透明断熱層の厚さd、ガラス板の厚さの合計d、透明接着層の厚さの合計dが、下式(22)の関係にあればよいことが分かる。 Therefore, in order to satisfy the U value of 5.0 W / m 2 K or less, the pore diameter D of the independent pores of the transparent heat insulating layer, the porosity P of the transparent heat insulating layer, the thickness d i of the transparent heat insulating layer, total d g thickness, total d a thickness of the transparent adhesive layer, it can be seen that it is sufficient to relation of the following equation (22).
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
 同様にして、U値が4.0W/mK以下を満たすためには、下式(23)の関係にあればよい。B値の単位はmmである。 Similarly, in order to satisfy the U value of 4.0 W / m 2 K or less, the relationship of the following expression (23) is sufficient. The unit of B value is mm.
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
 (合わせガラスの特性)
 合わせガラスの波長500nmの光の透過率は、50%以上が好ましく、70~99%がより好ましく、70~96%がさらに好ましい。波長500nmの光の透過率が前記範囲の下限値以上であれば、合わせガラスの透明性が高くなる。波長500nmの光の透過率が前記範囲の上限値を超える合わせガラスは、製造が困難である。
(Characteristics of laminated glass)
The transmittance of light having a wavelength of 500 nm of the laminated glass is preferably 50% or more, more preferably 70 to 99%, and further preferably 70 to 96%. If the transmittance | permeability of the light of wavelength 500nm is more than the lower limit of the said range, the transparency of a laminated glass will become high. It is difficult to produce a laminated glass having a light transmittance of a wavelength of 500 nm exceeding the upper limit of the above range.
 合わせガラスの熱貫流率(U値)は、現状の自動車用の合せガラスが5.8W/mKであることから、燃費向上の点から、5.0W/mK以下が好ましく、4.0W/mK以下がさらに好ましい。 The heat transmissivity (U value) of the laminated glass is preferably 5.8 W / m 2 K or less from the viewpoint of improving fuel efficiency since the current laminated glass for automobiles is 5.8 W / m 2 K. More preferable is 0.0 W / m 2 K or less.
 合わせガラスの厚さは、2~20mmが好ましく、3~10mmがより好ましく、4~6mmがさらに好ましい。合わせガラスの厚さが前記範囲の下限値以上であれば、合わせガラスの断熱性にさらに優れ、また、機械強度にも優れる。合わせガラスの厚さが前記範囲の上限値以下であれば、合わせガラスが重くなりすぎず、また透明性にも優れる。 The thickness of the laminated glass is preferably 2 to 20 mm, more preferably 3 to 10 mm, and even more preferably 4 to 6 mm. If the thickness of the laminated glass is not less than the lower limit of the above range, the heat insulating property of the laminated glass is further improved, and the mechanical strength is also excellent. If the thickness of a laminated glass is below the upper limit of the said range, a laminated glass will not become too heavy and it is excellent also in transparency.
 (合わせガラスの製造方法)
 合わせガラスは、公知の方法によって製造できる。たとえば、第2のガラス板、第2の透明接着層となる透明樹脂シート、透明断熱層となる透明断熱シート、第1の透明接着層となる透明樹脂シート、第1のガラス板を順に重ね、これらを仮接着した後、加熱および加圧することによって本接着することによって製造できる。この際、第1の透明接着層となる透明樹脂シートと第2の透明接着層となる透明樹脂シートは、各々、同種であってもよく、異種の2枚以上のシートから構成されていてもよい。
(Laminated glass manufacturing method)
Laminated glass can be produced by a known method. For example, a second glass plate, a transparent resin sheet to be a second transparent adhesive layer, a transparent heat insulating sheet to be a transparent heat insulating layer, a transparent resin sheet to be a first transparent adhesive layer, and a first glass plate are sequentially stacked. After these are temporarily bonded, they can be manufactured by main bonding by heating and pressing. At this time, the transparent resin sheet serving as the first transparent adhesive layer and the transparent resin sheet serving as the second transparent adhesive layer may each be the same type or may be composed of two or more different types of sheets. Good.
 (他の形態)
 本発明の合わせガラスは、第1のガラス板と、第1の透明接着層と、シェルありの独立気孔を有する透明断熱層と、第2の透明接着層と、第2のガラス板とを順に有し、A値が7.4×10以下であり、B値が35以上であるものであればよく、図示例のものに限定はされない。
(Other forms)
In the laminated glass of the present invention, a first glass plate, a first transparent adhesive layer, a transparent heat insulating layer having independent pores with a shell, a second transparent adhesive layer, and a second glass plate are sequentially arranged. And the A value is 7.4 × 10 5 or less and the B value is 35 or more, and is not limited to the illustrated example.
 たとえば、本発明の合わせガラスは、必要に応じて第3のガラス板、またはそれ以上のガラス板を有するものであってもよい。
 本発明の合わせガラスは、赤外線吸収層、紫外線吸収層等の、透明断熱層以外の機能層を有していてもよい。
For example, the laminated glass of this invention may have a 3rd glass plate or more glass plates as needed.
The laminated glass of this invention may have functional layers other than a transparent heat insulation layer, such as an infrared absorption layer and an ultraviolet absorption layer.
 (作用機序)
 以上説明した本発明の合わせガラスにあっては、独立気孔を有する透明断熱層によって車内や室内の温度上昇を抑えることができるため、日射による車内や室内の温度上昇を抑えるための金属薄膜を設ける必要がない。そのため、電波透過性を有する。
 また、本発明の合わせガラスにあっては、A値が7.4×10以下であるため、透明性が高い。
 また、本発明の合わせガラスにあっては、B値が35以上であるため、熱貫流率(U値)が5.0W/mK以下となり、断熱性に優れる。
(Mechanism of action)
In the laminated glass of the present invention described above, since the temperature rise in the vehicle and the room can be suppressed by the transparent heat insulating layer having independent pores, a metal thin film for suppressing the temperature increase in the vehicle and the room due to solar radiation is provided. There is no need. Therefore, it has radio wave permeability.
Moreover, in the laminated glass of this invention, since A value is 7.4x10 < 5 > or less, transparency is high.
Moreover, in the laminated glass of this invention, since B value is 35 or more, a heat transmissivity (U value) will be 5.0 W / m < 2 > K or less, and it is excellent in heat insulation.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
 (独立気孔の気孔径)
 透明断熱層における独立気孔の気孔径は、透過型顕微鏡(日本電子社製、JEM-1230)を用いて20個の中空微粒子を観察し、それらの内径を平均して求めた。
(Independent pore size)
The pore diameter of the independent pores in the transparent heat insulating layer was determined by observing 20 hollow fine particles using a transmission microscope (manufactured by JEOL Ltd., JEM-1230) and averaging their inner diameters.
 (透明断熱層の気孔率)
 プレス前の透明断熱層の体積と、温度:200℃、圧力:35MPa、時間:10分間の条件でプレスした後の透明断熱層の体積とから下式によって求めた。
 気孔率=1-(プレス後の透明断熱層の体積/プレス前の透明断熱層の体積)
(Porosity of transparent heat insulation layer)
It calculated | required by the following Formula from the volume of the transparent heat insulation layer before pressing, and the volume of the transparent heat insulation layer after pressing on the conditions of temperature: 200 degreeC, pressure: 35MPa, time: 10 minutes.
Porosity = 1− (Volume of transparent heat insulating layer after pressing / Volume of transparent heat insulating layer before pressing)
 (合わせガラスの透過率)
 合わせガラスの波長500nmの光の透過率は、JIS R 3106:1998(ISO 9050:1990)に準拠し、分光光度計(島津製作所社製、SolidSpec-3700DUV)を用いて測定した。
(Transmissivity of laminated glass)
The transmittance of light with a wavelength of 500 nm of the laminated glass was measured using a spectrophotometer (manufactured by Shimadzu Corporation, SolidSpec-3700DUV) in accordance with JIS R 3106: 1998 (ISO 9050: 1990).
 (熱貫流率(U値))
 合わせガラスのU値を、JIS R 3107:1998およびJIS R 3209:1998に準拠し、英弘精機社製のHC-074/630を用いて測定した。
(Heat transmissivity (U value))
The U value of the laminated glass was measured using HC-074 / 630 manufactured by Eihiro Seiki Co., Ltd. in accordance with JIS R 3107: 1998 and JIS R 3209: 1998.
 (A値)
 式(1)から求めたA値について、下記基準にて判定した。
 ◎:A値が2.6×10以下。
 ○:A値が2.6×10超7.4×10以下。
 ×:A値が7.4×10超。
(A value)
About the A value calculated | required from Formula (1), it determined by the following reference | standard.
A: A value is 2.6 × 10 5 or less.
A: A value is more than 2.6 × 10 5 and not more than 7.4 × 10 5 .
X: A value exceeds 7.4x10 < 5 >.
 (B値)
 式(2)から求めたB値について、下記基準にて判定した。
 ◎:B値が85以上。
 ○:B値が35以上85未満。
 ×:B値が35未満。
(B value)
About the B value calculated | required from Formula (2), it determined by the following reference | standard.
A: B value is 85 or more.
○: B value is 35 or more and less than 85.
X: B value is less than 35.
 (総合判定)
 合わせガラスの透過率およびU値から下記基準にて総合的に判定した。
 ◎:透過率が70%以上かつU値が4.0W/mK以下。
 ○:透過率が50%以上かつU値が5.0W/mK以下。
 ×:透過率が50%未満またはU値が5.0W/mK未満。
(Comprehensive judgment)
Based on the transmittance and U value of the laminated glass, a comprehensive judgment was made based on the following criteria.
A: The transmittance is 70% or more and the U value is 4.0 W / m 2 K or less.
○: The transmittance is 50% or more and the U value is 5.0 W / m 2 K or less.
X: The transmittance is less than 50% or the U value is less than 5.0 W / m 2 K.
 (実施例1)
 200mLの石英製耐圧容器に、酸化亜鉛粒子の水分散液(平均凝集粒子径:100nm、固形分濃度:20質量%)を55.6g、テトラエトキシシラン(TEOS)(酸化ケイ素換算の固形分濃度:28.8質量%)を6.9g、エタノールを36.9g、28質量%のアンモニア水溶液を0.6g入れ、pHが10の原料液を調製した。耐圧容器を密封した後、マイクロ波加熱装置を用い、原料液に最大出力:500W、周波数:2.45GHzのマイクロ波(MW)を5分間照射し、TEOSを加水分解して、酸化亜鉛粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液を100g得た。マイクロ波照射中の反応液の温度は120℃であった。このコア-シェル粒子の分散液100gに、強酸性カチオン交換樹脂(総交換容量2.0meq/mL以上)を100g加え、1時間撹拌してpHが4となった後、ろ過により強酸性カチオン交換樹脂を除去し、中空シリカ微粒子の分散液を得た。該分散液を限外ろ過により固形分濃度20質量%まで濃縮した。分散液の一部を採取し、透過型顕微鏡にて測定したところ、中空シリカ微粒子の平均内径(気孔径に相当)は100nmであり、シェル厚は10nmであった。同じ操作を10バッチ繰り返した。
Example 1
In a 200 mL quartz pressure vessel, 55.6 g of an aqueous dispersion of zinc oxide particles (average aggregated particle size: 100 nm, solid content concentration: 20% by mass), tetraethoxysilane (TEOS) (silicon oxide equivalent solid content concentration) : 28.8% by mass), 6.9 g of ethanol, 36.9 g of ethanol, and 0.6 g of 28% by mass of ammonia aqueous solution were added to prepare a raw material solution having a pH of 10. After sealing the pressure vessel, microwave material is used to irradiate the raw material liquid with microwave (MW) of maximum output: 500 W, frequency: 2.45 GHz for 5 minutes, hydrolyze TEOS, Silicon oxide was deposited on the surface to form a shell, and 100 g of a dispersion of core-shell particles was obtained. The temperature of the reaction solution during microwave irradiation was 120 ° C. 100 g of strongly acidic cation exchange resin (total exchange capacity of 2.0 meq / mL or more) is added to 100 g of this core-shell particle dispersion, and the mixture is stirred for 1 hour until pH becomes 4, and then strongly acidic cation exchange is performed by filtration. The resin was removed to obtain a dispersion of hollow silica fine particles. The dispersion was concentrated to a solid content concentration of 20% by mass by ultrafiltration. When a part of the dispersion was collected and measured with a transmission microscope, the average inner diameter (corresponding to the pore diameter) of the hollow silica fine particles was 100 nm, and the shell thickness was 10 nm. The same operation was repeated 10 batches.
 中空微粒子の表面修飾のために、100gの分散液(固形分濃度20質量%)に、シランカップリング剤であるKBM-503(信越化学工業社製)を5g加え、室温で1週間撹拌を続けた。分散液を水1Lに投入して撹拌し、沈殿物をろ過した。この沈殿物の表面に付いたシラノール基の脱水縮合を進めるため、ディーンスターク脱水装置にて、メチルイソブチルケトン(MIBK)中で還流しながら脱水を進め、5時間後に水酸化ナトリウム1mol/L溶液1gを加え、さらに30分間還流を続け脱水を行った。冷却した後、エバポレーターでMIBKを蒸発させた後、70℃にて24時間真空乾燥を行い、中空シリカ微粒子を22g得た。 To modify the surface of the hollow fine particles, 5 g of silane coupling agent KBM-503 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of the dispersion (solid content concentration 20 mass%), and stirring was continued at room temperature for 1 week. It was. The dispersion was added to 1 L of water and stirred, and the precipitate was filtered. In order to proceed with dehydration condensation of silanol groups attached to the surface of this precipitate, dehydration was carried out while refluxing in methyl isobutyl ketone (MIBK) with a Dean-Stark dehydrator, and after 5 hours 1 g of sodium hydroxide 1 mol / L solution The mixture was further refluxed for 30 minutes and dehydrated. After cooling, MIBK was evaporated with an evaporator and then vacuum-dried at 70 ° C. for 24 hours to obtain 22 g of hollow silica fine particles.
 5.6gの中空シリカ微粒子、UV硬化性モノマーである2.2gのA-HD-N(新中村化学工業社製)、UV硬化性オリゴマーである2.2gのUA-160TM(新中村化学工業社製)、および光開始剤として0.07gのイルガキュア(登録商標)184(BASF社製)を混合した。これをシート状に拡げたものにUVランプから100J/cmの紫外線を照射し、硬化させて、1.5mm厚の中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。 5.6 g of hollow silica fine particles, 2.2 g of A-HD-N (manufactured by Shin-Nakamura Chemical Co., Ltd.) which is a UV curable monomer, 2.2 g of UA-160TM (Shin Nakamura Chemical Co., Ltd.) which is a UV curable oligomer ) And 0.07 g of Irgacure (registered trademark) 184 (manufactured by BASF) as a photoinitiator. This was expanded into a sheet and irradiated with 100 J / cm 2 of UV light from a UV lamp and cured to obtain a 1.5 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を0.38mm厚のポリビニルブチラール(PVB)フィルムで挟み、さらにその両面を1.6mm厚のソーダライムガラス(旭硝子社製)で挟み、真空包装用バッグに入れて減圧吸引し、各層の界面に残留する空気を脱気し、120℃、30分間で仮接着して積層体を得た。次に、積層体をオートクレーブに入れ、120℃、1.3MPa、90分間で本接着し、合わせガラスを得た。合わせガラスの透過率、U値を測定した。結果を表4に示す。 The hollow fine particle dispersed resin sheet is used as a transparent heat insulation layer, sandwiched between both sides by 0.38mm thick polyvinyl butyral (PVB) film, and further sandwiched by 1.6mm thick soda lime glass (Asahi Glass Co., Ltd.) for vacuum packaging. The product was put in a bag and sucked under reduced pressure, air remaining at the interface of each layer was degassed, and temporarily bonded at 120 ° C. for 30 minutes to obtain a laminate. Next, the laminate was put in an autoclave and was finally bonded at 120 ° C. and 1.3 MPa for 90 minutes to obtain a laminated glass. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (実施例2)
 平均凝集粒子径120nmの酸化亜鉛粒子の水分散液を使用する以外は、実施例1と同様の方法で、平均内径(気孔径に相当)120nm、シェル厚12nmの中空シリカ微粒子を得た。さらに同様の方法で表面修飾した。
(Example 2)
Except for using an aqueous dispersion of zinc oxide particles having an average aggregated particle size of 120 nm, hollow silica fine particles having an average inner diameter (corresponding to pore size) of 120 nm and a shell thickness of 12 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
 6.8gの中空シリカ微粒子、1.2gのA-HD-N、2.0gのUA-160TM、および0.06gのイルガキュア(登録商標)184を混合した。これをシート状に拡げたものにUVランプから80J/cmの紫外線を照射し、硬化させて、1.1mm厚の中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。 6.8 g hollow silica particulates, 1.2 g A-HD-N, 2.0 g UA-160 ™, and 0.06 g Irgacure® 184 were mixed. This was expanded into a sheet and irradiated with 80 J / cm 2 ultraviolet rays from a UV lamp and cured to obtain a 1.1 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を0.38mm厚のPVBフィルムで挟み、さらにその両面を2.0mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合わせガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。 A hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, and both sides are sandwiched between 2.0 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (実施例3)
 平均凝集粒子径80nmの酸化亜鉛粒子の水分散液を使用する以外は、実施例1と同様の方法で、平均内径(気孔径に相当)80nm、シェル厚10nmの中空シリカ微粒子を得た。さらに同様の方法で表面修飾した。
(Example 3)
Except for using an aqueous dispersion of zinc oxide particles having an average aggregate particle diameter of 80 nm, hollow silica fine particles having an average inner diameter (corresponding to pore diameter) of 80 nm and a shell thickness of 10 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
 5.0gの中空シリカ微粒子、2.5gのA-HD-N、UV硬化性モノマーである2.5gのA-TMPT(新中村化学工業社製)、および0.1gのイルガキュア(登録商標)184を混合した。これをシート状に拡げたものにUVランプから200J/cmの紫外線を照射し、硬化させて、6.0mm厚の中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。 5.0 g of hollow silica fine particles, 2.5 g of A-HD-N, 2.5 g of A-TMPT (made by Shin-Nakamura Chemical Co., Ltd.) which is a UV curable monomer, and 0.1 g of Irgacure (registered trademark) 184 was mixed. This was expanded into a sheet and irradiated with 200 J / cm 2 of UV light from a UV lamp and cured to obtain a 6.0 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を0.1mm厚のPVBフィルムで挟み、さらにその両面を2.0mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合わせガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。 A hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, and both sides are sandwiched between 0.1 mm thick PVB films, and both sides are sandwiched between 2.0 mm thick soda lime glass, and a laminated glass is produced in the same manner as in Example 1. did. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (実施例4)
 平均凝集粒子径50nmの酸化亜鉛粒子の水分散液を使用する以外は、実施例1と同様の方法で、平均内径(気孔径に相当)50nm、シェル厚2nmの中空シリカ微粒子を得た。さらに同様の方法で表面修飾した。
Example 4
Except for using an aqueous dispersion of zinc oxide particles having an average aggregate particle diameter of 50 nm, hollow silica fine particles having an average inner diameter (corresponding to pore diameter) of 50 nm and a shell thickness of 2 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
 4.6gの中空シリカ微粒子、1.8gのA-HD-N、UV硬化性モノマーである2.0gのA-DPH(新中村化学工業社製)、および0.1gのイルガキュア(登録商標)184を混合した。これをシート状に拡げたものにUVランプから80J/cmの紫外線を照射し、硬化させて、0.5mm厚の中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。 4.6 g of hollow silica fine particles, 1.8 g of A-HD-N, 2.0 g of A-DPH (manufactured by Shin-Nakamura Chemical Co., Ltd.) which is a UV curable monomer, and 0.1 g of Irgacure (registered trademark) 184 was mixed. This was expanded into a sheet and irradiated with 80 J / cm 2 of UV light from a UV lamp and cured to obtain a 0.5 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を0.38mm厚のPVBフィルムで挟み、さらにその両面を、1.0mm厚のソーダライムガラスおよび3.0mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合わせガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。 The hollow fine particle dispersed resin sheet is used as a transparent heat insulating layer, and both sides are sandwiched between PVB films having a thickness of 0.38 mm, and both sides are sandwiched between soda lime glass having a thickness of 1.0 mm and soda lime glass having a thickness of 3.0 mm. A laminated glass was produced in the same manner as in 1. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (実施例5)
 実施例4と同様の方法で、平均内径(気孔径に相当)50nm、シェル厚2nmの中空シリカ微粒子を得た。さらに同様の方法で表面修飾した。
(Example 5)
In the same manner as in Example 4, hollow silica fine particles having an average inner diameter (corresponding to the pore diameter) of 50 nm and a shell thickness of 2 nm were obtained. Furthermore, the surface was modified by the same method.
 5.6gの中空シリカ微粒子、2.0gのA-HD-N、1.6gのUA-160TM、および0.07gのイルガキュア(登録商標)184を混合した。これをシート状に拡げたものにUVランプから80J/cmの紫外線を照射し、硬化させて、1.2mm厚の中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。 5.6 g of hollow silica fine particles, 2.0 g of A-HD-N, 1.6 g of UA-160 ™, and 0.07 g of Irgacure® 184 were mixed. This was expanded into a sheet and irradiated with 80 J / cm 2 ultraviolet rays from a UV lamp and cured to obtain a 1.2 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を0.38mm厚のPVBフィルムで挟み、さらにその両面を1.0mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合わせガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。 A hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, both sides are sandwiched between 1.0 mm thick soda lime glass, and a laminated glass is produced in the same manner as in Example 1. did. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (実施例6)
 平均凝集粒子径70nmの酸化亜鉛粒子の水分散液を使用する以外は、実施例1と同様の方法で、平均内径(気孔径に相当)70nm、シェル厚5nmの中空シリカ微粒子を得た。さらに同様の方法で表面修飾した。
(Example 6)
Except for using an aqueous dispersion of zinc oxide particles having an average aggregate particle diameter of 70 nm, hollow silica fine particles having an average inner diameter (corresponding to pore diameter) of 70 nm and a shell thickness of 5 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
 6.7gの中空シリカ微粒子、2.0gのA-HD-N、UV硬化性モノマーである1.3gのA-DCP(新中村化学工業社製)、および0.1gのイルガキュア(登録商標)184を混合した。これをシート状に拡げたものにUVランプから80J/cmの紫外線を照射し、硬化させて、1.2mm厚みの中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。 6.7 g of hollow silica fine particles, 2.0 g of A-HD-N, 1.3 g of A-DCP (made by Shin-Nakamura Chemical Co., Ltd.) which is a UV curable monomer, and 0.1 g of Irgacure (registered trademark) 184 was mixed. This was expanded into a sheet and irradiated with 80 J / cm 2 of UV light from a UV lamp and cured to obtain a hollow fine particle dispersed resin sheet having a thickness of 1.2 mm. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を0.38mm厚のPVBフィルムで挟み、さらにその両面を2.0mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合わせガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。 A hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, and both sides are sandwiched between 2.0 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (実施例7)
 平均凝集粒子径40nmの酸化亜鉛粒子の水分散液を使用する以外は、実施例1と同様の方法で、平均内径(気孔径に相当)40nm、シェル厚3nmの中空シリカ微粒子を得た。さらに同様の方法で表面修飾した。
(Example 7)
Except for using an aqueous dispersion of zinc oxide particles having an average agglomerated particle diameter of 40 nm, hollow silica fine particles having an average inner diameter (corresponding to pore diameter) of 40 nm and a shell thickness of 3 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
 6.7gの中空シリカ微粒子、1.6gのA-HD-N、1.7gのUA-160TM、および0.1gのイルガキュア(登録商標)184を混合した。これをシート状に拡げたものにUVランプから80J/cmの紫外線を照射し、硬化させて、2.0mm厚の中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。 6.7 g of hollow silica fine particles, 1.6 g of A-HD-N, 1.7 g of UA-160 ™, and 0.1 g of Irgacure® 184 were mixed. This was expanded into a sheet and irradiated with 80 J / cm 2 of UV light from a UV lamp and cured to obtain a 2.0 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を、0.38mm厚のPVBフィルムの2枚重ねおよび0.76mm厚のPVBフィルムの4枚重ねで挟み、さらにその両面を6.0mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合わせガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。 A hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, and both sides are sandwiched between two layers of 0.38 mm thick PVB film and four layers of 0.76 mm thick PVB film, and both sides are 6.0 mm thick soda. Laminated glass was prepared by the same method as in Example 1 by sandwiching with lime glass. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (実施例8)
 平均凝集粒子径60nmの酸化亜鉛粒子の水分散液を使用し、テトラエトキシシランの代わりに、10gのオルトチタン酸テトライソプロピルを用いた以外は、実施例1と同様の方法で、平均内径(気孔径に相当)60nm、シェル厚3nmの中空チタニア微粒子を得た。さらに同様の方法で表面修飾した。
(Example 8)
In the same manner as in Example 1, except that an aqueous dispersion of zinc oxide particles having an average aggregate particle diameter of 60 nm was used and 10 g of tetraisopropyl orthotitanate was used instead of tetraethoxysilane, Hollow titania fine particles having a thickness of 60 nm and a shell thickness of 3 nm were obtained. Furthermore, the surface was modified by the same method.
 16.0gの中空チタニア微粒子、2.0gのA-HD-N、2.0gのUA-160TM、および0.2gのイルガキュア(登録商標)184を混合した。これをシート状に拡げたものにUVランプから100J/cmの紫外線を照射し、硬化させて、1.2mm厚の中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。 16.0 g hollow titania microparticles, 2.0 g A-HD-N, 2.0 g UA-160 ™, and 0.2 g Irgacure® 184 were mixed. This was expanded into a sheet and irradiated with 100 J / cm 2 of UV light from a UV lamp and cured to obtain a 1.2 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を0.76mm厚のPVBフィルムで挟み、さらにその両面を3.0mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合わせガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。 A hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.76 mm thick PVB films, and both sides are sandwiched between 3.0 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (実施例9)
 重量平均分子量25,000である粉末状のPMMAである4.4gのBR87(三菱レイヨン社製)と35gのテトラヒドロフランとを、50℃にて1時間掛けて溶解した。この溶液と、実施例1と同様の方法で作製した5.6gの中空シリカ微粒子を混合した。これをポリプロピレン製のトレイに流し込み、真空乾燥機で70℃にて24時間真空乾燥を行い、2.1mm厚の中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。
Example 9
A powdery PMMA having a weight average molecular weight of 25,000, 4.4 g of BR87 (manufactured by Mitsubishi Rayon Co., Ltd.) and 35 g of tetrahydrofuran were dissolved at 50 ° C. over 1 hour. This solution was mixed with 5.6 g of hollow silica fine particles prepared in the same manner as in Example 1. This was poured into a polypropylene tray, and vacuum dried at 70 ° C. for 24 hours with a vacuum dryer to obtain a 2.1 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を0.38mm厚のPVBフィルムで挟み、さらにその両面を1.6mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合わせガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。 A hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, and both sides are sandwiched between 1.6 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (実施例10)
 重量平均分子量95,000である粉末状のPMMAである3.2gのBR80(三菱レイヨン社製)と30gのテトラヒドロフランとを、50℃にて10時間掛けて溶解した。この溶液と、実施例2と同様の方法で作製した6.8gの中空シリカ微粒子とを混合した。これをポリプロピレン製のトレイに流し込み、真空乾燥機で70℃にて24時間真空乾燥を行い、1.3mm厚の中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。
(Example 10)
3.2 g of BR80 (manufactured by Mitsubishi Rayon Co.), which is a powdery PMMA having a weight average molecular weight of 95,000, and 30 g of tetrahydrofuran were dissolved at 50 ° C. for 10 hours. This solution was mixed with 6.8 g of hollow silica fine particles prepared in the same manner as in Example 2. This was poured into a tray made of polypropylene and vacuum dried at 70 ° C. for 24 hours with a vacuum dryer to obtain a hollow fine particle dispersed resin sheet having a thickness of 1.3 mm. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を0.38mm厚のPVBフィルムで挟み、さらにその両面を2mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合わせガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。 A hollow fine particle-dispersed resin sheet was used as a transparent heat insulating layer, both sides were sandwiched between 0.38 mm thick PVB films, and both sides were sandwiched between 2 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (比較例1)
 平均凝集粒子径150nmの酸化亜鉛粒子の水分散液を使用する以外は、実施例1と同様の方法で、平均内径(気孔径に相当)150nm、シェル厚15nmの中空シリカ微粒子を得た。さらに同様の方法で表面修飾した。
(Comparative Example 1)
Except for using an aqueous dispersion of zinc oxide particles having an average aggregate particle diameter of 150 nm, hollow silica fine particles having an average inner diameter (corresponding to pore diameter) of 150 nm and a shell thickness of 15 nm were obtained in the same manner as in Example 1. Furthermore, the surface was modified by the same method.
 7.5gの中空シリカ微粒子、1.5gのA-HD-N、1.0gのUA-160TM、および0.07gのイルガキュア(登録商標)184を混合した。これをシート状に拡げたものにUVランプから80J/cmの紫外線を照射し、硬化させて、1.2mm厚の中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。 7.5 g of hollow silica fine particles, 1.5 g of A-HD-N, 1.0 g of UA-160TM, and 0.07 g of Irgacure® 184 were mixed. This was expanded into a sheet and irradiated with 80 J / cm 2 ultraviolet rays from a UV lamp and cured to obtain a 1.2 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を0.38mm厚のPVBフィルムで挟み、さらにその両面を2.0mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合わせガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。 A hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, and both sides are sandwiched between 2.0 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (比較例2)
 国際公開第2012/063881号に記載の実施例1と同様の方法により、空隙率59%、外径100nm、内径84nm、シェル厚8nmの中空シリカ微粒子を得た。
(Comparative Example 2)
Hollow silica fine particles having a porosity of 59%, an outer diameter of 100 nm, an inner diameter of 84 nm, and a shell thickness of 8 nm were obtained in the same manner as in Example 1 described in International Publication No. 2012/063881.
 3gの中空シリカ微粒子を30gの酢酸エチルに分散させた後、4gのA-HD-N、3gのUA-160TM、および0.06gのイルガキュア(登録商標)184と混合した。エバポレーターで酢酸エチルを蒸発させた。これをシート状に拡げたものにUVランプから80J/cmの紫外線を照射し、硬化させて、0.2mm厚の中空微粒子分散樹脂シートを得た。中空微粒子分散樹脂シートの気孔率を測定した。 3 g of hollow silica fine particles were dispersed in 30 g of ethyl acetate and then mixed with 4 g of A-HD-N, 3 g of UA-160 ™, and 0.06 g of Irgacure® 184. Ethyl acetate was evaporated with an evaporator. This was expanded into a sheet and irradiated with 80 J / cm 2 of UV light from a UV lamp and cured to obtain a 0.2 mm thick hollow fine particle dispersed resin sheet. The porosity of the hollow fine particle dispersed resin sheet was measured.
 中空微粒子分散樹脂シートを透明断熱層として、両面を0.38mm厚のPVBフィルムで挟み、さらにその両面を2.0mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合わせガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。 A hollow fine particle-dispersed resin sheet is used as a transparent heat insulating layer, both sides are sandwiched between 0.38 mm thick PVB films, and both sides are sandwiched between 2.0 mm thick soda lime glass to produce a laminated glass in the same manner as in Example 1. did. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
 (比較例3)
 透明断熱層を入れずに、0.76mm厚の1枚のPVBフィルムを2枚の2.0mm厚のソーダライムガラスで挟み、実施例1と同様の方法で合せガラスを作製した。合わせガラスの透過率、U値を測定した。結果を表4に示す。
(Comparative Example 3)
Without putting the transparent heat insulation layer, one PVB film having a thickness of 0.76 mm was sandwiched between two 2.0 mm-thick soda lime glasses, and a laminated glass was produced in the same manner as in Example 1. The transmittance and U value of the laminated glass were measured. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 A値が7.4×10以下であり、B値が35以上である実施例1~10の合わせガラスは、透明性が高く、かつ断熱性に優れていた。
 A値が7.4×10超であり、B値が35未満である比較例1の合わせガラスは、透明性が低く、かつ断熱性に劣っていた。
 B値が35未満である比較例2の合わせガラスは、断熱性に劣っていた。
 透明断熱層を設けていない比較例3の合わせガラスは、断熱性に劣っていた。
The laminated glasses of Examples 1 to 10 having an A value of 7.4 × 10 5 or less and a B value of 35 or more had high transparency and excellent heat insulation.
The laminated glass of Comparative Example 1 having an A value of over 7.4 × 10 5 and a B value of less than 35 had low transparency and poor heat insulation.
The laminated glass of Comparative Example 2 having a B value of less than 35 was inferior in heat insulating properties.
The laminated glass of Comparative Example 3 not provided with a transparent heat insulating layer was inferior in heat insulating properties.
 本出願は、2015年11月26日出願の日本特許出願、特願2015-231013に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2015-2331013 filed on Nov. 26, 2015, the contents of which are incorporated herein by reference.
 本発明の合わせガラスは、自動車用窓ガラス(ウインドシールド、ルーフ窓、昇降窓、側部固定窓、バックライト、ルーフ窓等)、鉄道車両用窓ガラス等の車両用窓ガラス、建物用窓ガラス等としてとして有用である。 The laminated glass of the present invention includes automotive window glass (windshield, roof window, elevating window, side fixing window, backlight, roof window, etc.), vehicle window glass such as railcar window glass, and building window glass. Useful as such.
 1 合わせガラス
 10 第1のガラス板
 12 第2のガラス板
 14 透明断熱層
 16 第1の透明接着層
 18 第2の透明接着層
DESCRIPTION OF SYMBOLS 1 Laminated glass 10 1st glass plate 12 2nd glass plate 14 Transparent heat insulation layer 16 1st transparent contact bonding layer 18 2nd transparent contact bonding layer

Claims (8)

  1.  第1のガラス板と、第1の透明接着層と、独立気孔を有する透明断熱層と、第2の透明接着層と、第2のガラス板とを順に有し、
     前記独立気孔が、気孔のまわりがシェルで覆われた気孔であり、
     下式(1)で表されるA値が、7.4×10以下であり、
     下式(2)で表されるB値が、35以上である、合わせガラス。
    Figure JPOXMLDOC01-appb-M000001
     ただし、Dは透明断熱層の独立気孔の気孔径(nm)であり、Pは透明断熱層の気孔率であり、dは透明断熱層の厚さ(mm)であり、dは第1のガラス板の厚さと第2のガラス板の厚さの合計(mm)であり、dは第1の透明接着層の厚さと第2の透明接着層の厚さの合計(mm)である。
    A first glass plate, a first transparent adhesive layer, a transparent heat insulating layer having independent pores, a second transparent adhesive layer, and a second glass plate in order;
    The independent pores are pores surrounded by a shell around the pores;
    The A value represented by the following formula (1) is 7.4 × 10 5 or less,
    Laminated glass having a B value represented by the following formula (2) of 35 or more.
    Figure JPOXMLDOC01-appb-M000001
    Where D is the pore size (nm) of the independent pores of the transparent heat insulation layer, P is the porosity of the transparent heat insulation layer, d i is the thickness (mm) of the transparent heat insulation layer, and d g is the first the sum of the thickness and the thickness of the second glass plate of the glass plate (mm), d a is the total thickness of the first transparent adhesive layer thickness and a second transparent adhesive layer (mm) .
  2.  前記A値が、2.6×10以下であり、
     前記B値が、85以上である、請求項1に記載の合わせガラス。
    The A value is 2.6 × 10 5 or less,
    The laminated glass according to claim 1, wherein the B value is 85 or more.
  3.  前記透明断熱層が、中空微粒子分散樹脂シートである、請求項1または2に記載の合わせガラス。 The laminated glass according to claim 1 or 2, wherein the transparent heat insulating layer is a hollow fine particle dispersed resin sheet.
  4.  前記透明断熱層の厚さが、0.2mm~10mmである、請求項1~3のいずれか一項に記載の合わせガラス。 The laminated glass according to any one of claims 1 to 3, wherein the transparent heat insulating layer has a thickness of 0.2 mm to 10 mm.
  5.  前記第1のガラス板の厚さおよび前記第2のガラス板の厚さが、それぞれ0.1mm~6mmである、請求項1~4のいずれか一項に記載の合わせガラス。 The laminated glass according to any one of claims 1 to 4, wherein a thickness of the first glass plate and a thickness of the second glass plate are 0.1 mm to 6 mm, respectively.
  6.  前記第1の透明接着層の厚さおよび前記第2の透明接着層の厚さが、それぞれ0.1mm~3mmである、請求項1~5のいずれか一項に記載の合わせガラス。 The laminated glass according to any one of claims 1 to 5, wherein a thickness of the first transparent adhesive layer and a thickness of the second transparent adhesive layer are 0.1 mm to 3 mm, respectively.
  7.  請求項1~6のいずれか一項に記載の合わせガラスを備えた、自動車用窓ガラス。 An automotive window glass comprising the laminated glass according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか一項に記載の合わせガラスを備えた、建物用窓ガラス。 Building glass provided with the laminated glass according to any one of claims 1 to 6.
PCT/JP2016/084823 2015-11-26 2016-11-24 Laminated glass, window glass for automobiles, and window glass for buildings WO2017090689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-231013 2015-11-26
JP2015231013A JP2019014608A (en) 2015-11-26 2015-11-26 Glass laminate, automobile window glass and building window glass

Publications (1)

Publication Number Publication Date
WO2017090689A1 true WO2017090689A1 (en) 2017-06-01

Family

ID=58763427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084823 WO2017090689A1 (en) 2015-11-26 2016-11-24 Laminated glass, window glass for automobiles, and window glass for buildings

Country Status (2)

Country Link
JP (1) JP2019014608A (en)
WO (1) WO2017090689A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220114524A (en) * 2019-12-12 2022-08-17 세키스이가가쿠 고교가부시키가이샤 Interlayer film for laminated glass, and laminated glass
WO2022260040A1 (en) * 2021-06-10 2022-12-15 Agc株式会社 Method for manufacturing automotive window glass with attached part
CN117396348A (en) * 2021-06-10 2024-01-12 Agc株式会社 Method for manufacturing vehicle window glass with metal component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222529A (en) * 2007-03-15 2008-09-25 Agc Glass Kenzai Engineering Co Ltd Laminated glass and method of manufacturing laminated glass
JP2009285864A (en) * 2008-05-27 2009-12-10 Bridgestone Corp Heat ray shielding film, and heat ray shielding glass laminate using the same
JP2010100778A (en) * 2008-10-27 2010-05-06 Denki Kagaku Kogyo Kk Sheet and method for producing the same
WO2013168714A1 (en) * 2012-05-08 2013-11-14 コニカミノルタ株式会社 Laminated glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222529A (en) * 2007-03-15 2008-09-25 Agc Glass Kenzai Engineering Co Ltd Laminated glass and method of manufacturing laminated glass
JP2009285864A (en) * 2008-05-27 2009-12-10 Bridgestone Corp Heat ray shielding film, and heat ray shielding glass laminate using the same
JP2010100778A (en) * 2008-10-27 2010-05-06 Denki Kagaku Kogyo Kk Sheet and method for producing the same
WO2013168714A1 (en) * 2012-05-08 2013-11-14 コニカミノルタ株式会社 Laminated glass

Also Published As

Publication number Publication date
JP2019014608A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
WO2017090686A1 (en) Laminated glass, window glass for automobiles, and window glass for buildings
CN102863917B (en) Polyvinyl butyral transparent film and preparation method thereof
JP4848872B2 (en) Laminated glass for windows
EP1517785A1 (en) Laminated glass
WO2017090689A1 (en) Laminated glass, window glass for automobiles, and window glass for buildings
WO2017155066A1 (en) Windshield
CN111819160B (en) Glass laminate
JP2008037668A (en) Laminated glass for window
KR20150022930A (en) Heat-shielding ply structure
KR101615601B1 (en) Light-permeable heat protection element with aluminate-modified or borate-modified silicon dioxide
KR101019498B1 (en) Insulation Film contained Tungsten Bronze Compound and Method of Manufacturing The Same
JP2007203474A (en) Transparent resin laminated sheet
WO2017154510A1 (en) Windshield
KR101222936B1 (en) Water-soluble Coating Agent For Selective Blocking Infrared and Ultraviolet Rays Including Aminosilane And Coating Film Using The Same
WO2018097101A1 (en) Laminated glass
JP4828444B2 (en) Laminated glass
CN108621491B (en) Heat insulation board for automobile and preparation method thereof
WO2017090690A1 (en) Laminated glass, window glass for automobiles, and window glass for buildings
WO2018092779A1 (en) Antifogging laminate and method for attaching antifogging sheet
JP4957003B2 (en) Transparent resin laminated sheet
JP2006330511A (en) Dimming structure capable of switching between scatter transmission and reflection of light
CN203831896U (en) Flame-retardant heat-insulating film
CN108621505B (en) Energy-saving glass with aerogel composite board inside and preparation method thereof
CN108621506B (en) Energy-saving glass with aerogel composite board inside and preparation method thereof
CN105566828A (en) Transparent and heat-insulating material including polymer capsule and method for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP