WO2017090151A1 - Water heater control system, control method, and program - Google Patents

Water heater control system, control method, and program Download PDF

Info

Publication number
WO2017090151A1
WO2017090151A1 PCT/JP2015/083223 JP2015083223W WO2017090151A1 WO 2017090151 A1 WO2017090151 A1 WO 2017090151A1 JP 2015083223 W JP2015083223 W JP 2015083223W WO 2017090151 A1 WO2017090151 A1 WO 2017090151A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
hot water
water heater
time
temperature
Prior art date
Application number
PCT/JP2015/083223
Other languages
French (fr)
Japanese (ja)
Inventor
雄喜 小川
矢部 正明
正之 小松
聡司 峯澤
隆司 新井
智 赤木
淳子 貴島
晶代 大野
正樹 豊島
啓輔 ▲高▼山
赳弘 古谷野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/083223 priority Critical patent/WO2017090151A1/en
Priority to JP2017552610A priority patent/JP6580159B2/en
Publication of WO2017090151A1 publication Critical patent/WO2017090151A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/244Home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units

Definitions

  • the present invention relates to a water heater control system, a control method, and a program.
  • Demand and supply balance of the commercial power system may be disrupted due to reverse power flow from the customer to the commercial power system. For example, on a sunny holiday, the demand is greatly reduced, and the amount of power generated by sunlight is increased to increase the supply amount.
  • the establishment of a system is in progress for an electric power company to specify the time in advance for consumers to specify the suppression of reverse power flow.
  • Japan's Agency for Natural Resources and Energy announced an output control rule for photovoltaic power generation. This output control rule adjusts the power generation amount of the distributed power source to suppress the power sale to the commercial power system.
  • Patent Document 1 describes a technique for operating a hot water supply / heating device including a hot water storage tank in an operation time period including a time period in which the amount of reverse power flow is maximized. Since the power consumption of a hot water supply apparatus including a hot water storage tank is generally large, the technique described in Patent Document 1 can effectively reduce the amount of reverse power flow.
  • the technique described in Patent Document 1 does not reduce the reverse power flow in response to the instruction for suppressing the reverse power flow as described above, it does not necessarily improve the supply and demand balance of the commercial power system.
  • the technique described in Patent Document 1 stores heat up to the vicinity of the maximum capacity of the hot water storage tank by the time zone in order to generate the amount of heat required thereafter during the time zone when the amount of reverse power flow increases. In this case, the electric power consumed by operating the hot water heater is small, and the amount of decrease in reverse power flow is small. In this case, if it is instructed to suppress the reverse power flow, it is necessary to limit the generated power, and there is a possibility that the power generation capability of the distributed power source cannot be fully utilized. As a result, the technique described in Patent Document 1 has room for improving the power use efficiency.
  • the present invention has been made in view of the above circumstances, and aims to improve the power utilization efficiency.
  • a water heater control system of the present invention controls a water heater that generates hot water using electric power supplied from at least one of a commercial power system and a distributed power source that supplies power to the commercial power system.
  • An hot water heater control system wherein an instruction acquisition means for acquiring an instruction to suppress power supply from a distributed power source to a commercial power system in a first time, and hot water supply at a second time different from the first time Control means for causing the water heater to generate hot water at a first temperature and causing the water heater to generate hot water at a second temperature higher than the first temperature at a first time when an instruction is acquired by the instruction acquisition means.
  • the present invention when hot water having the first temperature is generated at the second time and the instruction is acquired by the instruction acquisition means, the first temperature higher than the first temperature is specified at the first time specified by the instruction. Two temperature hot water is produced. Thereby, while increasing the power consumption in 1st time and utilizing the power generation capability of a distributed power supply, the hot water with little influence of heat dissipation can be produced
  • FIG. It is a figure which shows the structure of the water heater control system which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the control instruction
  • FIG. It is a flowchart which shows a power sale price determination process. It is a figure which shows the structure of the water heater control system which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows the functional structure of the water heater control system which concerns on Embodiment 2.
  • FIG. It is a figure which shows the structure of the water heater control system which concerns on Embodiment 3.
  • FIG. It is a figure which shows the structure of the water heater control system which concerns on Embodiment 4.
  • FIG. It is a figure which shows the structure of the water heater control system which concerns on Embodiment 5.
  • FIG. It is a flowchart which shows an object apparatus selection process.
  • FIG. 1 shows the configuration of water heater control system 100 according to the first embodiment.
  • the water heater control system 100 is a HEMS (Home Energy Management System) for efficiently using electric power by controlling the water heater 20 installed in the house HM.
  • the water heater control system 100 includes a control device 10 that controls the water heater 20, a water heater 20 that supplies and stores hot water generated by heating water in a tank, and a dispersion that generates power by sunlight.
  • the measuring device 40 Connected to the control device 10 via the power source 30, the measuring device 40 that measures the power generated by the distributed power source 30 and the power consumed by the house HM, the electric device 50 that consumes the power, and the wide area network NW 1
  • the power server 60 and the data server 70 are provided.
  • control device 10 the water heater 20, the distributed power source 30, the measuring device 40, and the electric device 50 are all installed in the house HM.
  • a thick solid line connected to the commercial power system PS in FIG. 1 represents a power line
  • a thin broken line represents a communication line (signal line).
  • the control device 10 is a HEMS controller that can integrally control devices in the house HM.
  • the control apparatus 10 monitors the operation state of the water heater 20 and the electric device 50 by periodically acquiring the operation state from the water heater 20 and the electric device 50. And the control apparatus 10 changes the driving
  • control device 10 periodically acquires the power measurement result from the measurement device 40, and provides the acquired measurement result to the distributed power source 30 and the data server 70. Furthermore, the control device 10 includes an instruction acquisition unit 11 that acquires an instruction from the power server 60.
  • the instruction acquisition unit 11 acquires an instruction for suppressing the supply of power from the distributed power supply 30 to the commercial power system PS at a specific time from the power server 60 and transfers the instruction to the distributed power supply 30.
  • the instruction from the power server 60 is referred to as a suppression instruction.
  • the specific time specified by the suppression instruction is usually a time when the power generated by the distributed power source 30 becomes excessive with respect to the supply and demand situation of the commercial power system PS.
  • the suppression instruction specifies a limit value of generated power when power is supplied from the distributed power supply 30 to the commercial power system PS at a specific time.
  • FIG. 2 shows a specific example of the suppression instruction.
  • the power generation amount from 0:00 to 9:00 is 100% of the rated power of the distributed power source 30.
  • the power generation amount from 9:00 to 11:00 is 40% of the rated power of the distributed power source 30.
  • the limit value is specified by the ratio with respect to the rated power of the distributed power source 30, but the limit value of the generated power may be specified in units of kW.
  • a line La indicated by a solid line in FIG. 2 represents a transition of generated power that can be output by the distributed power supply 30, and a line Lp represented by a broken line represents a transition of a limit value specified by the suppression instruction.
  • the time during which generated power is limited by the suppression instruction is simply referred to as daytime.
  • the daytime in the example of FIG. 2 means from 9:00 to 15:00.
  • the water heater 20 is a heat pump type electric water heater.
  • the water heater 20 supplies the hot water generated by heating the water supplied from the water supply to the hot water storage tank 24 (see FIG. 5), and discharges the hot water used by the residents of the house HM from the hot water storage tank 24.
  • the water heater 20 boils the amount of hot water necessary for one day at night when the electricity rate is low, and boils hot water only at times other than the night when the amount of hot water is insufficient.
  • the boiling of hot water means that hot water is generated and supplied to the hot water storage tank 24.
  • the temperature of hot water generated by the water heater 20 at night is about 60 ° C.
  • the water heater 20 has a control unit 21 that controls a heat pump unit 23 (see FIG. 5) included in the water heater 20.
  • the function of the control unit 21 will be described later.
  • the distributed power source 30 is a power generator installed on the roof of the house HM.
  • the distributed power source 30 includes, for example, a polycrystalline silicon solar panel (not shown), and a power conditioner 31 that converts and outputs electric power generated by the solar panel.
  • the power conditioner 31 is consumed in the house HM having the generated power Pg, the hot water heater 20, the distributed power source 30, and the electric device 50 by acquiring the measurement result by the measuring device 40 via the control device 10.
  • the power consumption Pc is monitored.
  • surplus power is generated in the house HM.
  • This surplus power is supplied to the commercial power system PS as reverse power Pr.
  • the reverse power Pr is a negative value.
  • the power consumption consumed in the house HM is simply referred to as power consumption.
  • the power conditioner 31 limits the generated power Pg so as not to exceed the limit value at the time specified by the suppression instruction.
  • this limit value is a limit value specified when reverse power flow occurs, when the reverse power power Pr is negative, the power conditioner 31 generates power within a range in which the reverse power power Pr does not become positive.
  • the power Pg is limited.
  • the generated power Pg in this case may exceed the limit value. That is, when the power consumption Pc exceeds the limit value, the power conditioner 31 supplies the generated power Pg having a magnitude that does not exceed the power consumption Pc to the house HM, and sets the reverse power Pr to zero.
  • the power conditioner 31 supplies the generated power Pg having the same magnitude as the power consumption Pc to the house HM.
  • FIG. 3 shows a specific example of the generated power Pg limited by the power conditioner 31.
  • a line Lc indicated by a one-dot chain line in FIG. 3 represents a transition of the power consumption Pc
  • a line Lg represented by a thick solid line represents a transition of the generated power Pg actually generated.
  • the generated power Pg becomes equal to the power that can be output by the distributed power source 30 at times P1 and P4 when the generated power is not limited.
  • the generated power Pg becomes equal to the limit value.
  • time P3 when the limit value is smaller than the power consumption Pc the generated power Pg becomes equal to the power consumption Pc.
  • the generated power Pg becomes equal to the power that can be output, as shown immediately before 15:00 in FIG.
  • the generated power Pg is equal to the limit value at the time T1 included in the time P2 since the generated power Pg is equal to the limit value at the time T1 included in the time P2, the loss power obtained by subtracting the actual generated power Pg from the power that can be output is relatively large.
  • the power that can be output and the limit value are substantially equal to time T1.
  • the power consumption Pc increases to some extent from time T1 and exceeds the limit value. Therefore, the generated power Pg is equal to the power consumption Pc, and the loss power is relatively small. For this reason, if the power consumption Pc is increased so as to exceed the limit value during the daytime when the backflow power is limited by the suppression instruction, the power loss can be reduced.
  • the measuring device 40 measures generated power and consumed power using a current transformer (not shown) attached to the power line in the distribution board of the house HM.
  • the measurement device 40 includes a first measurement value acquisition unit 41 that acquires a measurement value of generated power and a second measurement value acquisition unit 42 that acquires a measurement value of power consumption. The measurement device 40 notifies the control device 10 of the acquired measurement value.
  • the electric device 50 is, for example, a home appliance represented by an air conditioner, a lighting device, or a cooking device.
  • the electric device 50 may be a terminal for operating the water heater 20 via the control device 10. Further, the electric device 50 may be a power storage device having a storage battery.
  • the power server 60 is a distribution server operated by an electric power company that provides the commercial power system PS as a commercial power source.
  • the power server 60 distributes, for example, a suppression instruction created based on a weather forecast to the consumer before the day before the time specified by the suppression instruction.
  • the suppression instruction is not distributed on the day when it is not necessary to suppress the reverse power flow by the consumer.
  • the data server 70 is a server device for causing the HEMS to function in cooperation with the control device 10.
  • the data server 70 stores data necessary for the operation of the control device 10. For example, the data server 70 acquires and accumulates measurement results obtained by the measurement device 40 via the control device 10. In addition, the data server 70 acquires and accumulates the operating states of the water heater 20 and the electric device 50 collected by the control device 10. In addition, the data server 70 stores the operation state of each of the water heater 20 and the electric device 50 and the power consumed in the operation state in association with each other. Further, the data server 70 stores a unit price for power supplied from the commercial power system PS to the house HM and a unit price for selling reverse power supplied to the commercial power system PS for each time zone. Then, the data server 70 provides data to the control device 10 in response to a request from the control device 10.
  • FIG. 4 shows a hardware configuration of the control device 10, the control unit 21 of the water heater 20, the measurement device 40, and the data server 70.
  • the control device 10, the control unit 21, the measurement device 40, and the data server 70 include a processor H1, a main storage unit H2, an auxiliary storage unit H3, an input unit H4, an output unit H5, and a communication unit H6. It is comprised as a computer which has.
  • the main storage unit H2, the auxiliary storage unit H3, the input unit H4, the output unit H5, and the communication unit H6 are all connected to the processor H1 via the internal bus H7.
  • the processor H1 includes a CPU (Central Processing Unit).
  • the processor H1 exhibits the functions described later by executing the program Pa stored in the auxiliary storage unit H3.
  • the main storage unit H2 includes a RAM (Random Access Memory).
  • the main storage unit H2 loads the program Pa from the auxiliary storage unit H3.
  • the main storage unit H2 is used as a work area for the processor H1.
  • the auxiliary storage unit H3 includes a nonvolatile memory such as an HDD (Hard Disk Drive) or a flash memory. In addition to the program Pa, the auxiliary storage unit H3 stores various data used for the processing of the processor H1.
  • HDD Hard Disk Drive
  • flash memory a nonvolatile memory
  • the auxiliary storage unit H3 stores various data used for the processing of the processor H1.
  • the input unit H4 includes, for example, an input key and a capacitance type pointing device.
  • the input unit H4 acquires information input by the user and notifies the processor H1.
  • the output unit H5 includes a display device represented by, for example, an LCD (Liquid Crystal Display).
  • the output unit H5 is formed integrally with a pointing device that configures the input unit H4, thereby configuring a touch screen.
  • the communication unit H6 includes a communication interface circuit for communicating with an external device.
  • the communication unit H6 notifies the processor H1 of information included in the signal received from the outside, and transmits a signal for transmitting the information output from the processor H1 to an external device.
  • FIG. 5 shows a functional configuration of the water heater control system 100.
  • the functions of the control device 10, the control unit 21 of the water heater 20, the measurement device 40, and the data server 70 shown in FIG. 5 are realized by the above hardware operating in cooperation.
  • the instruction acquisition unit 11 and the transfer unit 12 of the control device 10 are mainly realized by the processor H1 and the communication unit H6 of the control device 10.
  • the instruction acquisition unit 11 transfers the suppression instruction transmitted from the power server 60 to the power conditioner 31 and the determination unit 14 of the distributed power supply 30.
  • the transfer unit 12 transfers the measurement result obtained by the measurement device 40 to the power generation consumption prediction unit 71 of the data server 70.
  • the surplus power prediction unit 13 is mainly realized by the processor H1 of the control device 10.
  • the surplus power prediction unit 13 predicts the transition of surplus power in the house HM based on the generated power predicted by the power generation and consumption prediction unit 71 of the data server 70 and the predicted value of power consumption. Then, the surplus power prediction unit 13 notifies the determination unit 14 of the prediction result.
  • the determination unit 14 is mainly realized by the processor H1 and the communication unit H6 of the control device 10. As shown in FIG. 6, the determination unit 14 performs the night boiling operation as to whether or not a condition for performing the boiling operation of the water heater 20 that is normally performed at night is satisfied during the day. It is determined according to the suppression instruction before being performed. If the boiling operation is performed in the daytime, the power consumption in the daytime increases and the power loss can be reduced. The determination unit 14 notifies the determination result to the control unit 21 of the water heater 20.
  • the control unit 21 of the water heater 20 controls the heat pump unit 23 based on the determination result of the determination unit 14 to cause the water heater 20 to generate hot water.
  • the control unit 21 causes the hot water heater 20 to supply the hot water storage tank 24 with hot water of the target hot water storage amount when the instruction acquisition unit 11 of the control device 10 does not acquire the suppression instruction.
  • the target hot water storage amount is the amount of hot water that is expected to be used in one day, and is determined in advance from the actual use of hot water by past users.
  • the control unit 21 supplies hot water in the daytime by causing the water heater 20 to supply a smaller amount of hot water than the target hot water storage amount at night when the condition is established when the instruction acquisition unit 11 acquires the suppression instruction. By doing so, hot water in an amount greater than the target hot water storage amount is supplied to the hot water storage tank 24.
  • FIG. 7 shows changes in the amount of hot water when the water heater 20 performs a boiling operation during the day and when it does not.
  • L11 indicated by a solid line in FIG. 7 corresponds to a normal case of boiling the target hot water storage amount at night without performing the boiling operation during the daytime.
  • L12 indicated by a broken line corresponds to a case where the amount of hot water to be boiled at night is reduced from the target hot water storage amount and the hot water is boiled in the daytime according to a suppression instruction.
  • the amount of hot water V1 that is normally boiled at night shifts in the daytime, and the power consumption also shifts in the daytime.
  • the determination unit 14 determines whether or not to allow the water heater 20 to generate high-temperature hot water by increasing the temperature of the generated hot water when performing the boiling operation during the daytime.
  • the hot water is 90 ° C. hot water.
  • generated at night is called normal temperature.
  • FIG. 8 shows a comparative example of the temperature distribution in the hot water storage tank 24 of the water heater 20 when normal temperature hot water is generated and when hot water is generated.
  • the line L31 in FIG. 8 shows the temperature distribution of the hot water generated by constant power consumption
  • the line L32 shows the temperature distribution after about 2 days have passed and then radiated heat
  • the line L33 The temperature distribution when the boiling operation is executed is shown.
  • Hot water of about 40 ° C. is so-called medium temperature water.
  • a dedicated device is required.
  • the thermal efficiency is poor.
  • Hot water of 50 to 60 ° C. can be provided to the user and can be used more effectively than medium-temperature water. That is, it is preferable to boil high-temperature hot water, even if the temperature decreases due to heat dissipation, the period that can be used as it is becomes longer.
  • the power consumption when generating hot water is less efficient than the power consumption when generating normal temperature hot water, so if hot water is generated with power supplied from the commercial power system PS, The price will be high.
  • the control unit 21 plans the operation plan of the water heater 20, and the first control module 22 a and the second control that control the heat pump unit 23 according to the operation plan prepared by the planning module 22. It has a module 22b.
  • the planning module 22, the first control module 22a, and the second control module 22b are mainly realized by the processor H1 and the communication unit H6 of the control unit 21.
  • the first control module 22a causes the heat pump unit 23 to generate hot water at normal temperature at night according to the operation plan.
  • the second control module 22b generates at least one of normal temperature hot water and high temperature hot water in the heat pump unit 23 during the day according to the operation plan established when the condition is satisfied when the suppression instruction is delivered.
  • the heat pump unit 23 is connected to the hot water storage tank 24 via a pipeline, and heats the hot water stored in the hot water storage tank 24 and then supplies the hot water to the hot water storage tank 24.
  • the capacity of the hot water storage tank 24 is, for example, 800 liters.
  • the amount of hot water generated by the boiling operation of the water heater 20 means the amount of hot water supplied to the hot water storage tank 24 by the heat pump unit 23 through the water pipe. Further, the amount of hot water stored in the hot water storage tank 24 may mean the amount when converted into hot water at 43 ° C. that is assumed to be used by the user.
  • FIG. 9 shows the power generation suppression process executed by the power conditioner 31 of the distributed power source 30.
  • this power generation suppression process is repeatedly executed at a constant cycle.
  • the fixed period is 1 minute.
  • the power conditioner 31 first determines whether or not the current time is included in the time specified by the suppression instruction (step S311). When there is no suppression instruction, the determination in step S311 is negative.
  • the power conditioner 31 If it is determined that the current time is not included in the time specified by the suppression instruction (step S311; No), the power conditioner 31 operates in the normal mode (step S312).
  • the normal mode is a mode in which all outputable power is supplied to the house HM and the commercial power system PS without limiting the generated power. Thereafter, the power conditioner 31 ends the power generation suppression process.
  • the power conditioner 31 determines whether or not the current power generation capacity is greater than the limit value (step S313).
  • the current power generation capacity means generated power that can be output at the current time.
  • step S313 When it is determined that the current power generation capacity is not greater than the limit value (step S313; No), the power conditioner 31 does not need to limit the generated power, and thus proceeds to step S312.
  • step S313 determines whether or not power is supplied from the commercial power system PS. That is, the power conditioner 31 determines whether or not the reverse flow power Pr is negative.
  • the power conditioner 31 When it is determined that power is not supplied from the commercial power system PS (step S314; No), the power conditioner 31 operates in the output suppression mode (step S315).
  • the output suppression mode is a mode in which the generated power is limited to the limit value specified by the suppression instruction. Thereafter, the power conditioner 31 ends the power generation suppression process.
  • the power conditioner 31 When it is determined that power is supplied from the commercial power system PS (step S314; Yes), the power conditioner 31 operates in the reverse power flow zero mode (step S316).
  • the reverse power flow zero mode is a mode in which the generated power is limited so that the reverse power power Pr approaches zero as much as possible. Thereafter, the power conditioner 31 ends the power generation suppression process.
  • step S ⁇ b> 1 when a suppression instruction is transmitted from the power server 60 to the control device 10 (step S ⁇ b> 1), the control device 10 satisfies a condition for causing the water heater 20 to generate hot water during the daytime. It is determined whether or not (step S2).
  • step S2 If it is determined that the condition is satisfied (step S2; Yes), the control device 10 requests the water heater 20 to boil in the daytime (step S3). Then, the control device 10 further determines whether or not hot water can be generated in at least part of the daytime boiling operation (step S4).
  • step S4 When it is determined that high temperature hot water can be generated (step S4; Yes), the control device 10 requests the water heater 20 to boil high temperature hot water (step S5).
  • step S2 When it is determined in step S2 that the condition is not satisfied (step S2; No), the control device 10 does not request daytime boiling. Moreover, when it determines with not producing hot hot water in step S4 (step S4; No), the control apparatus 10 does not request
  • the water heater 20 that is requested to boil in the daytime executes a planning process for planning a daytime boiling operation (step S22).
  • the water heater 20 also plans an operation of boiling hot water during daytime boiling operation.
  • the water heater 20 executes a control process for controlling the heat pump unit 23 of the water heater 20 in accordance with the operation plan established in the planning process (step S21).
  • the control process in this case includes a process executed by the first control module 22a (see FIG. 5) and a process executed by the second control module 22b (see FIG. 5). Thereby, the water heater 20 will perform the night boiling operation and the daytime boiling operation.
  • control device 10 determines whether or not the operation mode change flag is ON (step S6).
  • the change of the operation mode means that the daytime boiling operation planned in advance is stopped according to the actual generated power and power consumption.
  • step S6 When it is determined that the operation mode change flag is ON (step S6; Yes), the control device 10 requests the water heater 20 to change the operation mode (step S7). On the other hand, when it is determined that the operation mode change flag is not ON (step S6; No), the control device 10 does not request the hot water heater 20 to change the operation mode.
  • the water heater 20 changes the operation mode (step S8).
  • a suppression instruction is transmitted from the power server 60 to the control device 10 (step S1).
  • the measurement device 40 sequentially transmits the measurement values of the generated power and the power consumption to the data server 70 via the control device 10.
  • the data server 70 executes a power generation consumption prediction process that calculates a predicted value of generated power and power consumption from the received measurement values (step S70).
  • the prediction by the power generation consumption prediction process may be, for example, calculating an average of the transition of one day in the past fixed period, or statistically using parameters including weather conditions, day of the week, and user schedule.
  • a prediction value may be calculated.
  • the prediction of the generated power is executed by excluding the actual result of the generated power suppressed in the past by the suppression instruction. That is, the predicted value of the generated power means a predicted value of the generated power that can be output by the distributed power source 30.
  • the predicted value of power consumption be predicted by excluding the case where daytime boiling operation is executed, it may be predicted including this case.
  • the control device 10 requests the data server 70 for a prediction result, and obtains the prediction result as a response. And the control apparatus 10 performs the surplus power prediction process which calculates the predicted value of the surplus power in the house HM based on the predicted value of generated electric power and power consumption (step S13). This surplus power prediction process will be described with reference to FIGS.
  • the surplus power prediction process is a process for predicting the surplus power transition from 0:00 to 24:00 on the next day for each 30-minute time segment.
  • the surplus power prediction unit 13 of the control device 10 first substitutes 1 for a variable a (step S131).
  • the variable a is a number assigned to the time segment.
  • the surplus power prediction unit 13 predicts surplus power in the a-th time segment (step S132).
  • a predicted value of surplus power is obtained by subtracting a predicted value of power consumption from a predicted value of generated power in the a-th time segment. Note that when the predicted values of generated power and consumed power are not divided into 30-minute time segments, the surplus power predicting unit 13 calculates the predicted value of surplus power using the average value in this time segment.
  • the surplus power prediction unit 13 determines whether or not the variable a is the last value (step S133).
  • the last value is the number “48” assigned to the time segment from 23:30 to 24:00.
  • step S133 When it is determined that the variable a is not the last value (step S133; No), the surplus power prediction unit 13 increases the value of the variable a by 1 (step S134). Thereafter, the surplus power predicting unit 13 repeats the processes after step S132.
  • step S133 when it determines with the variable a being the last value (step S133; Yes), the surplus power prediction part 13 complete
  • FIG. 13 shows a prediction result by the surplus power prediction process.
  • a region corresponding to surplus power is hatched.
  • the value of power is predicted by dividing the hatched region into 30-minute time segments.
  • the line Lg in FIG. 13 shows the transition of the predicted value of the generated power
  • the line Lc shows the transition of the predicted value of the power consumption.
  • the daytime boiling determination process is a process for determining whether or not a condition for performing the boiling operation during the day is satisfied, and corresponds to step S2 in FIG.
  • daytime boiling determination processing will be described with reference to FIGS.
  • the determination unit 14 first assigns 1 to the variable a and sets all daytime boiling permission flags to OFF (step S141).
  • the determination unit 14 determines whether there is a suppression instruction for the a-th time segment (step S142). Specifically, the determination unit 14 determines whether or not the a-th time segment of the next day is included in the time specified by the suppression instruction and a limit value smaller than the rated power of the distributed power source 30 is specified. Determine whether.
  • step S142 If it is determined that there is no suppression instruction for the a-th time segment (step S142; No), the determination unit 14 proceeds to step S149. On the other hand, if it is determined that there is a suppression instruction for the a-th time segment (step S142; Yes), the determination unit 14 calculates a limit value of the generated power in the a-th time segment (step S143). Specifically, when the limit value specified by the suppression instruction indicates a ratio with respect to the rated power of the distributed power supply 30, the determination unit 14 multiplies the rated power by this ratio to make a unit of W or kW. The limit value is calculated.
  • the determination unit 14 determines whether or not the power consumption is smaller than the generated power even when the water heater 20 generates hot water at a normal temperature in the a-th time segment (step S144). Specifically, the determination unit 14 predicts the increased power consumption even if the predicted value of the power consumption consumed in the house HM increases when the water heater 20 performs the boiling operation in the a-th time segment. It is determined whether the value is smaller than the predicted value of the generated power.
  • the predicted value of the power consumption output from the power generation consumption prediction unit 71 indicates the power consumption when the water heater 20 performs the boiling operation at night without performing the boiling operation during the daytime.
  • the determination unit 14 refers to the history of the operation state of the water heater 20 stored in the data server 70 and the power consumed in the operation state, so that the water heater among the predicted power consumption values. A predicted value of the total power consumption of devices other than 20 can be obtained. The determination unit 14 determines whether the sum of the predicted value of the total power consumption and the power consumption of the water heater 20 that performs the boiling operation is smaller than the predicted value of the generated power.
  • step S144 If it is determined that even if the water heater 20 generates hot water, the power consumption is not smaller than the generated power (step S144; No), the determination unit 14 proceeds to step S149.
  • step S144 determines whether the power consumption is smaller than the generated power even if the water heater 20 generates hot water.
  • the determination unit 14 determines whether the generated power in the a-th time segment is larger than the limit value. Is determined (step S145). Specifically, the determination unit 14 determines whether or not the predicted value of the generated power is larger than the limit value calculated in step S143.
  • step S145 If it is determined that the generated power is greater than the limit value (step S145; Yes), the determination unit 14 determines whether the power consumption in the a-th time segment is greater than the limit value (step S146). Specifically, the determination unit 14 determines whether or not the predicted power consumption value is greater than the limit value calculated in step S143.
  • step S146 If it is determined that the power consumption is greater than the limit value (step S146; Yes), the determination unit 14 determines that the condition is satisfied and sets the boiling permission flag corresponding to the a-th time segment to ON ( Step S147).
  • step S145 If it is determined in step S145 that the generated power is not larger than the limit value (step S145; No), the determination unit 14 sells the reverse power during the day when the power purchase price of the power consumed by the water heater 20 is nighttime. It is determined whether or not the price is larger (step S148). Specifically, the determination unit 14 determines whether the charge for the power consumed by the water heater 20 at 30 minutes at night is larger than the power sale price of the predicted value of the reverse power in the a-th time segment. To do.
  • step S148 If the determination in step S148 is affirmative (step S148; Yes), the a-th time is more than the economic benefit obtained by supplying the reverse power to the commercial power system PS for sale in the a-th time segment.
  • the economic benefits obtained by causing the water heater 20 to perform a boiling operation in the section and reducing the charge for nighttime power consumption are greater. That is, it is more economical to perform boiling operation during the daytime. For this reason, when determination of step S148 is affirmed, the determination part 14 transfers to step S147, and sets a boiling permission flag to ON.
  • step S148 determines whether the determination in step S148 is negative, it is more economical not to perform the boiling operation in the daytime. For this reason, the determination part 14 transfers a process to step S149, without turning ON a boiling permission flag.
  • step S148 executed after the determination in step S145 is denied, the reverse power flow is equal to the generated power minus power consumption.
  • step S146 If it is determined in step S146 that the power consumption is not greater than the limit value (step S146; No), the determination unit 14 proceeds to step S148. However, in the determination in step S148 in this case, the reverse power flow is equal to the limit value minus the power consumption.
  • the boiling permission flag is set to ON in a specific case by the processing of steps S144 to S147.
  • FIG. 15 shows the magnitude relationship among the generated power Pg, the limit value Pp, the total power consumption Pd of devices other than the water heater 20, and the power consumption Ph of the water heater 20, the economic effect, the boiling permission flag, and the power condition.
  • related with the operation mode of NA 31 is shown.
  • FIG. 16 shows the relationship between the generated power Pg and the economic effect when the limit value Pp is larger than the sum of the total power consumption Pd of the devices other than the water heater 20 and the power consumption Ph of the water heater 20. ing.
  • the line L21 in FIG. 16 corresponds to the case where the boiling operation is not performed in the daytime, and the line L22 corresponds to the case where the boiling operation is performed in the daytime.
  • Gmax means the rated power of the distributed power supply 30. 16 includes cases 1, 2, 7, 8, 9, and 10 shown in FIG.
  • the reverse power is generated when the generated power Pg exceeds the total power consumption Pd.
  • the generated power Pg exceeds the limit value Pp
  • the power that is actually generated is limited to the limit value Pp, so the economic effect does not increase.
  • the generated power Pg falls below the total power consumption Pd and becomes zero, the total power consumption Pd is covered by power from the commercial power system PS, so the economic effect is reduced.
  • FIG. 17 shows the relationship between the generated power Pg and the economic effect when the limit value Pp is larger than the total power consumption Pd and smaller than the sum of the total power consumption Pd and the power consumption Ph of the water heater 20. Yes.
  • the power magnitude relationship shown in FIG. 17 includes case 3 shown in FIG.
  • FIG. 18 shows the relationship between the generated power Pg and the economic effect when the limit value Pp is smaller than the total power consumption Pd.
  • the power magnitude relationship shown in FIG. 18 includes cases 4, 5, 6, and 11 shown in FIG.
  • step S147 the determination unit 14 determines whether or not the variable a is the last value (step S149). If it is determined that the variable a is not the last value (step S149; No), the determination unit 14 increases the value of the variable a by 1 (step S150). Then, the determination part 14 repeats the process after step S142.
  • step S141 to S149 the boiling permission flag is set to ON or OFF for each time segment on the next day.
  • FIG. 19 shows an example of the relationship between the boiling permission flag series and the transition of the generated power, the power consumption, and the limit value.
  • the area corresponding to the surplus power during the time when the boiling permission flag is set to ON is hatched.
  • the limit value is specified by the suppression instruction, at time P13, the surplus power is insufficient, and when the water heater 20 performs the boiling operation, the power consumption exceeds the generated power, so the boiling permission flag is turned off. Is set.
  • the limit value exceeds the power consumption, and the boiling power is raised based on the judgment that it is more economical to sell the reverse power than to make the water heater 20 perform the boiling operation.
  • the permission flag is set to OFF.
  • the boiling permission flag is set to ON.
  • step S149 When it is determined in step S149 shown in FIG. 14 that the variable a is the last value (step S149; Yes), the determination unit 14 sets the boiling permission flag as the condition establishment time as shown in FIG. The longest time that is continuously turned on is searched (step S151).
  • the determination unit 14 sets the boiling permission flag other than the condition establishment time to OFF (step S152). Thereby, execution and stop of the boiling operation of the water heater 20 can be prevented from being repeated alternately.
  • the determination unit 14 acquires the start time and end time of the condition establishment time (step S153).
  • the determination unit 14 notifies the acquired start time and end time to the water heater 20 (step S154).
  • the control device 10 executes a high temperature boiling determination process (step S16).
  • the high-temperature boiling determination process is a process for determining whether or not a high-temperature boiling condition for generating high-temperature hot water is satisfied, and corresponds to step S4 in FIG.
  • the high temperature boiling determination process is executed by 22:30 so that, for example, steps S3 and S5 described later are completed by 23:00 when the electricity bill becomes cheap.
  • steps S3 and S5 described later will be described with reference to FIG.
  • the determination unit 14 first determines whether or not the distributed power source 30 is connected to the power storage device via the power line (step S161). Since the control device 10 manages the devices in the house HM, the determination unit 14 performs the determination in step S161 based on the management information of the devices used by the control device 10.
  • step S161; No When it is determined that the power storage device is connected (step S161; No), the determination unit 14 ends the high temperature boiling determination process. Thereby, the charging process of the power storage device is prioritized over the hot water boiling operation by the water heater 20. On the other hand, when it determines with the electrical storage apparatus not being connected (step S161; Yes), the determination part 14 sets a high temperature time length to zero and initializes (step S162).
  • the determination unit 14 initializes the variable b by substituting the value of the variable a corresponding to the boiling permission flag last set to ON into the variable b (step S163).
  • the variable b is a number assigned to the time segment in the same manner as the variable a. However, the variable b is handled differently from the variable a in that a value corresponding to the last time section of the condition establishment time is set as an initial value.
  • the determination unit 14 determines whether or not the power consumption is smaller than the generated power even if the water heater 20 generates hot water in the b-th time segment (step S164). Specifically, the determination unit 14 predicts the increased power consumption even if the predicted value of the power consumption consumed in the house HM increases because the water heater 20 generates hot water in the b-th time segment. It is determined whether the value is smaller than the predicted value of the generated power.
  • step S164 If it is determined that the power consumption is smaller than the generated power (step S164; Yes), the determination unit 14 extends the high temperature time length by 30 minutes (step S165). Then, the determination unit 14 decreases the value of the variable b by 1 (step S166). Then, the determination part 14 repeats the process after step S164.
  • step S164 When it is determined in step S164 that the power consumption is not smaller than the generated power (step S164; No), the determination unit 14 calculates the start time of the high temperature boiling permission time. Specifically, the determination unit 14 calculates a time preceding the end time of the condition establishment time by the high temperature time length as the start time of the high temperature boiling permission time. Thereafter, the determination unit 14 ends the high temperature boiling determination process.
  • step S ⁇ b> 16 when the high temperature boiling determination process (step S ⁇ b> 16) is completed, the control device 10 notifies the hot water heater 20 of the daytime boiling by notifying the start time and the end time of the daytime boiling condition establishment time. Request to execute the raising operation (step S3). Moreover, the control apparatus 10 requests
  • the water heater 20 executes a planning process (step S22).
  • the planning process is a process for planning the start time and end time of the boiling operation and the amount of boiling water based on the time notified from the control device 10. This planning process will be described with reference to FIG.
  • the planning module 22 of the water heater 20 first acquires the length of the condition establishment time from the start time and end time of the condition establishment time (step S221). Next, the planning module 22 determines whether or not the length of the condition establishment time is longer than the lower limit value of the boiling operation time (step S222).
  • the lower limit value of the boiling operation time is, for example, 20 minutes, and is set in advance according to the model of the water heater 20, but may be set by the user.
  • step S222 When it is determined that the length of the condition establishment time is not longer than the lower limit value of the boiling operation time (step S222; No), the planning module 22 moves the process to step S233. On the other hand, when it is determined that the condition establishment time is longer than the lower limit value of the boiling operation time (step S222; Yes), the length of the high temperature boiling permission time is acquired (step S223).
  • the planning module 22 determines whether or not the length of the high temperature boiling permission time is longer than zero (step S224). When it is determined that the length is longer than zero (step S224; Yes), the planning module 22 determines whether or not the length of the condition establishment time is excessive (step S225). Specifically, the planning module 22 determines whether or not the coefficient calculated from the length of the condition establishment time and the length of the high temperature boiling permission time is greater than the threshold value. This coefficient is, for example, the sum of the condition establishment time and the value obtained by multiplying the high temperature boiling permission time by the high temperature efficiency ratio. High temperature efficiency ratio refers to the rate of increase in the amount of heat at high temperatures relative to normal temperature.
  • the threshold value is the longest daytime in which the boiling operation can be performed, and is determined according to the amount of hot water that can be boiled in the daytime.
  • the amount of hot water that can be boiled in the daytime is, for example, an amount obtained by subtracting the minimum hot water storage amount for preventing hot water shortage until the daytime from the target hot water storage amount.
  • step S225 When it is determined that the condition establishment time is excessive (step S225; Yes), the planning module 22 cannot allocate all the condition establishment times to the boiling operation. In this case, the planning module 22 sets the amount of hot water generated at night to the minimum amount of stored hot water (step S226).
  • the planning module 22 calculates the amount of hot water generated at daytime and the amount of hot water at normal temperature (step S227). Specifically, the planning module 22 calculates the amount of hot water that is boiled at the high temperature permission time, and reduces the amount of hot water at normal temperature to the amount obtained by subtracting the minimum amount of hot water and the amount of hot water from the maximum amount of hot water stored in the water heater 20 Set.
  • the maximum hot water storage amount is the capacity of the hot water storage tank 24.
  • the planning module 22 sets the generation end time of hot water at normal temperature and the generation end time of hot water at normal temperature based on the time required to boil the amount of hot water calculated in step S227 (step S227). S228). Specifically, the plan module 22 sets the generation end time of the hot water as the end time of the condition establishment time. The planning module 22 sets the generation end time of normal temperature hot water to the generation start time of high temperature hot water. Thereby, the boiling operation is executed in a continuous time until the end time of the condition establishment time, and heat radiation can be suppressed as much as possible.
  • the hot water generation end time means the end time of the boiling operation.
  • the planning module 22 sets the generation start time of normal temperature hot water in the daytime (step S229). Specifically, the planning module 22 calculates the time required to store the maximum amount of hot water, and generates the time obtained by subtracting the calculated time from the generation end time set in step S228. Set as start time.
  • the hot water generation start time means the start time of the boiling operation. Thereafter, the planning module 22 shifts the processing to step S233.
  • step S225 If it is determined in step S225 that the condition establishment time is not excessive (step S225; No), the planning module 22 can assign all of the condition establishment times to the boiling operation. In this case, the planning module 22 sets the start time and end time of the condition establishment time and the start time and end time of the high temperature boiling permission time as they are as the hot water generation start time and end time (step S230). .
  • the planning module 22 calculates the amount of hot water that can be generated during the condition establishment time and the amount of hot water that can be generated during the high temperature boiling permission time as the amount of hot water generated during the daytime (step S231).
  • the planning module 22 sets the amount of hot water generated at night to an amount obtained by subtracting the amount of hot water generated during the day from the target hot water storage amount (step S232).
  • the planning module 22 calculates the hot water generation start time and generation end time at night. Specifically, the planning module 22 sets a time for generating the amount of hot water set in step S226 or step S232. This time is preferably set in the vicinity of the end of the time when the electricity rate is low, from the viewpoint of suppressing heat dissipation as much as possible.
  • FIG. 23 shows an example of the amount of hot water set in steps S226 to S232.
  • the condition establishment time is excessive
  • the amount of hot water generated during the day is set after the amount of hot water generated during the night is set.
  • the minimum hot water storage amount, the hot water amount, and the normal temperature hot water amount are set in this order.
  • the minimum hot water storage amount is set to an amount obtained by adding a margin to the minimum starting hot water storage amount for preventing hot water shortage.
  • the condition establishment time is not excessive, as shown by an arrow, the amount of hot water generated at night is set after the amount of hot water generated during the day is set. Specifically, it is set in the order of the amount of hot water, the amount of hot water at normal temperature, and the amount of hot water generated at night.
  • step S224 determines with the length of high temperature boiling permission time not being longer than zero in step S224 (step S224; No), as shown in FIG. 24, the plan module 22 has the length of condition establishment time longer than a threshold value. It is determined whether or not it is long (step S234). This determination is equivalent to the determination in the case where the length of the high temperature boiling permission time is zero in step S225.
  • the planning module 22 cannot allocate all the condition establishment times to the boiling operation. In this case, the planning module 22 sets the amount of hot water generated at night to the minimum amount of stored hot water (step S235). The planning module 22 sets the amount of hot water at normal temperature generated in the daytime to an amount obtained by subtracting the minimum amount of hot water from the maximum amount of stored hot water (step S236).
  • the planning module 22 sets the generation end time of daytime hot water to the end time of the condition establishment time (step S237). Then, the planning module 22 sets the daytime hot water generation start time (step S227). Specifically, the planning module 22 calculates the time required to store the maximum amount of hot water, and generates the time obtained by subtracting the calculated time from the generation end time set in step S237. Set as start time. Thereafter, the planning module 22 shifts the process to step S243.
  • step S234 If it is determined in step S234 that the condition establishment time is not longer than the threshold (step S234; No), the planning module 22 can assign all of the condition establishment times to the boiling operation. In this case, the planning module 22 sets the generation start time and generation end time of daytime hot water to the start time and end time of the condition establishment time (step S240).
  • the planning module 22 calculates the amount of hot water at a normal temperature that can be generated during the condition establishment time as the amount of hot water generated during the daytime (step S241).
  • the planning module 22 sets the amount of hot water generated at night to an amount obtained by subtracting the amount of hot water generated during the day from the target hot water storage amount (step S242).
  • the planning module 22 calculates the generation start time and generation end time of nighttime hot water (step S243). Specifically, the planning module 22 sets a time for generating the amount of hot water set in step S235 or step S242. Thereafter, the planning module 22 ends the planning process.
  • step S ⁇ b> 22 the control device 10 requests the hot water generator 20 for the hot water generation time planned in the planning process and receives a response to this request to receive the hot water. Get generation time of. And the control apparatus 10 performs the prediction correction process which corrects a predicted value (step S18). This prediction correction process will be described with reference to FIG.
  • the processor H1 of the control device 10 first substitutes 1 for the variable a (step S181).
  • the processor H1 determines whether or not the boiling operation in the a-th time segment is different from the schedule of the water heater 20 stored by the control device 10 (step S182).
  • This schedule is usually a schedule for performing a boiling operation at night without performing a boiling operation in the daytime.
  • step S182 If it is determined that the presence or absence of the boiling operation is not different from the schedule (step S182; No), the processor H1 moves the process to step S184. On the other hand, when it is determined that the presence or absence of the boiling operation is different from the schedule (step S182; Yes), the processor H1 corrects the predicted power consumption value in the a-th time segment (step S183).
  • step S184 determines whether or not the variable a is the last value. If it is determined that the variable a is not the last value (step S184; No), the value of the variable a is increased by 1. (Step S185), and the processing after Step S182 is repeated. On the other hand, when it is determined that the variable a is the last value (step S184; Yes), the processor H1 ends the prediction correction process.
  • the water heater 20 starts generating hot water (step S25).
  • the measurement device 40 repeatedly transmits the measurement values of the generated power and the power consumption to the control device 10.
  • the control device 10 sequentially executes a power purchase price determination process (step S191) and a power sale price determination process (step S195) based on the measured value.
  • These processes are processes for determining whether or not to change the operation mode of the water heater 20 when the actual surplus power is different from the predicted surplus power. Hereinafter, these processes will be described with reference to FIGS.
  • FIG. 27 shows a power purchase price determination process.
  • the power purchase price determination process is a process for determining whether or not the power purchase caused by the shortage of surplus power should be suppressed by stopping the boiling operation of the water heater 20.
  • the determination unit 14 first calculates an integrated value of the power purchase price in the daytime (step S192). If the surplus power changes as predicted and the boiling operation is performed in the daytime, the power consumption does not exceed the generated power, so the power purchase price calculated in step S192 is zero.
  • the determination unit 14 determines whether or not the calculated power purchase price is larger than the average value of the power purchase price of the power consumption of the water heater 20 in one day (step S193).
  • This average value is calculated from, for example, the operation history of the water heater 20 in a past fixed period.
  • step S193 When it is determined that the calculated power purchase price is not greater than the average value (step S193; No), the determination unit 14 ends the power purchase price determination process. On the other hand, when it determines with the calculated electric power purchase price being larger than an average value (step S193; Yes), the determination part 14 sets an operation mode change flag to ON, and sets the hot water amount which should be produced
  • FIG. 28 shows the power selling price determination process.
  • the power selling price determination process is a process for determining whether or not surplus power is excessive and whether power should be supplied to the commercial power system PS instead of the water heater 20 from the viewpoint of economic effect.
  • the determination unit 14 first determines whether or not the current hot water storage amount is larger than the target hot water storage amount (step S196).
  • the determination unit 14 determines whether or not the power selling price of the reverse power when the water heater 20 does not generate hot water exceeds the power purchase price of the power consumed by the water heater at night (step S197). ). Specifically, the determination unit 14 calculates the power obtained by subtracting the power consumption of the water heater 20 from the current measured power consumption value as the power consumption when the water heater 20 does not generate hot water, and calculates the calculated power. Calculate the selling price of the reverse power obtained by subtracting the current generated power. Moreover, the determination part 14 calculates the electric power purchase price of the electric power consumed when the water heater 20 performs a boiling operation at night, without performing a boiling operation in the daytime. Then, the determination unit 14 determines whether or not the calculated power sale price is higher than the power purchase price.
  • step S197; No If it is determined that the power sale price does not exceed the power purchase price (step S197; No), the determination unit 14 ends the power sale price determination process. On the other hand, when it determines with a power sale price exceeding a power purchase price (step S197; Yes), the determination part 14 sets an operation mode change flag to ON, and makes the water heater 20 stop boiling operation (step). S198). Thereafter, the determination unit 14 ends the power sale price determination process.
  • control device 10 determines whether or not the operation mode change flag is set to ON (step S6).
  • step S6 When it is determined that the operation mode change flag is not set to ON (step S6; No), the control device 10 does not change the operation mode of the water heater 20. On the other hand, when it determines with the operation mode change flag being set to ON (step S6; Yes), the control apparatus 10 requests
  • the water heater 20 changes the operation mode in accordance with a request from the control device 10 (step S8). Then, when the hot water generation end time is reached and the boiling operation is continued, the water heater 20 stops the hot water generation (step S27).
  • the control unit 21 of the water heater 20 causes the water heater 20 to generate normal temperature hot water at night, and a suppression instruction is sent to the control device 10.
  • the hot water heater 20 is caused to generate hot water during the daytime specified by the suppression instruction.
  • the water heater control system 100 even if the water heater 20 generates high-temperature hot water during the day, the first measured value acquisition unit indicates that the power consumption is smaller than the generated power. 41 and the control part 21 made the hot water heater 20 produce
  • control unit 21 causes the water heater 20 to generate hot water at normal temperature and then generate hot water. Normally, the hot water that has been boiled flows into the hot water storage tank 24 from the upper part of the hot water storage tank 24, so that hot water of normal temperature and hot water are mixed in the hot water storage tank 24 by boiling the hot water later. Can be avoided.
  • the distributed power source 30 when the distributed power source 30 is connected to the power storage device via the power line, hot water is not generated. Thereby, surplus electric power is preferentially assigned to the charging process of the power storage device over the generation of hot water.
  • the power storage device is highly convenient because the stored energy can be supplied again as electric power. For this reason, convenience can be improved by supplying surplus electric power preferentially to a power storage device.
  • Embodiment 2 FIG. Next, the second embodiment will be described focusing on the differences from the first embodiment.
  • the description is abbreviate
  • the water heater control system 101 according to the present embodiment is different from the water heater control system 100 according to the first embodiment in that the controller 10 is omitted.
  • the distributed power source 30, the measuring device 40, and the electric device 50 can communicate with the data server 70 via the home network NW2 and the wide area network NW1. It is connected.
  • the water heater 20 is connected so as to be communicable with the distributed power source 30 and is connected to the data server 70 via the distributed power source 30.
  • the data server 70 has an instruction acquisition unit 11.
  • the data server 70 functions in the same manner as the control device 10 according to the first embodiment.
  • FIG. 30 shows a functional configuration of the water heater control system 101 according to the present embodiment.
  • the data server 70 includes an instruction acquisition unit 11, a surplus power prediction unit 13, and a determination unit 14.
  • the distributed power source 30 includes a relay unit 32 that relays communication between the determination unit 14 of the data server 70 and the control unit 21 of the water heater 20.
  • the water heater control system 101 is configured by omitting the control device 10. Thereby, the number of the apparatuses installed in the house HM can be reduced, and the water heater control system 101 can be simply configured.
  • Embodiment 3 FIG. Subsequently, the third embodiment will be described focusing on differences from the above-described second embodiment.
  • the description is abbreviate
  • the water heater control system 102 is a water heater control system according to the second embodiment in that the water heater 20 communicates with the data server 70 via the home network NW2. 101.
  • the water heater control system 102 using the general-purpose distributed power source 30 is used. Can be configured.
  • Embodiment 4 FIG. Next, the fourth embodiment will be described focusing on the differences from the first embodiment.
  • the description is abbreviate
  • the water heater control system 103 according to the present embodiment is different from the water heater control system 100 according to the first embodiment in that the controller 10 and the data server 70 are omitted. Further, the water heater control system 103 is different from the water heater control system 100 in that the power generation consumption prediction unit 71 and the surplus power prediction unit 13 are omitted.
  • FIG. 32 shows a functional configuration of the water heater control system 103.
  • the water heater 20 includes an instruction acquisition unit 11, a determination unit 14, and a storage unit 19 that accumulates measurement values.
  • the determination unit 14 replaces the predicted value according to the first embodiment with the average value of the generated power and the measured power consumption accumulated in the storage unit 19 for the daytime boiling determination process and the high temperature boiling determination process. Use.
  • the water heater control system 103 is configured by omitting the control device 10 and the data server 70. Thereby, the water heater control system 103 can be simply configured.
  • Embodiment 5 FIG. Next, the fifth embodiment will be described focusing on the differences from the first embodiment described above. In addition, about the structure which is the same as that of the said Embodiment 1, or equivalent, while using an equivalent code
  • the water heater control system 104 is different from the water heater control system 100 according to the first embodiment in that it includes a power storage device 81 and an electric vehicle 82, as shown in FIG. Also, the water heater control system 104 is different from the water heater control system 100 in that a device to be operated during the day according to the suppression instruction is selected from the water heater 20, the electric device 50, the power storage device 81, and the electric vehicle 82. Yes.
  • This target device selection process is a process of selecting a device to be operated by consuming electric power during the daytime.
  • the processor H1 of the control device 10 first determines whether or not the power storage device 81 or the electric vehicle 82 is connected so as to be communicable with the control device 10 (step S81). When it is determined that the power storage device 81 or the electric vehicle 82 is connected (step S81; Yes), the processor H1 determines whether the target device conformity condition is satisfied for the connected power storage device 81 or the electric vehicle 82. Is determined (step S82).
  • This conforming condition includes, for example, that the user does not plan to use or that the charging rate is a certain value or less.
  • step S82 If it is determined that the conforming condition is satisfied (step S82; Yes), the processor H1 selects the power storage device 81 or the electric vehicle 82 (step S83). When these devices are selected, the control device 10 causes these devices to execute a charging process at the time designated by the suppression instruction. Thereafter, the processor H1 ends the target device selection process.
  • step S81 When it is determined in step S81 that the power storage device 81 or the electric vehicle 82 is not connected (step S81; No), or when it is determined in step S82 that the matching condition is not satisfied (step S82; No), the processor H1 Determines whether the water heater 20 is communicably connected to the control device 10 (step S84).
  • the processor H1 determines whether or not a conforming condition is satisfied for the connected water heater 20 (step S85).
  • This conforming condition includes, for example, that the user does not plan to use, or that the amount of stored hot water is a predetermined value or less.
  • step S85 When it is determined that the conforming condition is satisfied (step S85; Yes), the processor H1 selects the water heater 20 (step S86). Thereafter, the processor H1 ends the target device selection process.
  • step S84 When it is determined in step S84 that the water heater 20 is not connected (step S84; No), or when it is determined in step S85 that the matching condition is not satisfied (step S85; No), the processor H1 Is determined to be communicable with the control device 10 (step S87).
  • the power saving device means the electric device 50 that is a target of power saving, and is, for example, a refrigerator or an air conditioning device.
  • step S87 When it is determined that the power saving device is connected (step S87; Yes), the processor H1 determines whether or not a conforming condition is satisfied for the connected power saving device (step S88).
  • step S88 If it is determined that the matching condition is satisfied (step S88; Yes), the processor H1 selects a power saving device (step S89).
  • the control device 10 cancels the power saving setting imposed on the power saving device at the time specified by the suppression instruction. Thereafter, the processor H1 ends the target device selection process.
  • step S87 If it is determined in step S87 that the power-saving device is not connected (step S87; No), or if it is determined in step S88 that the matching condition is not satisfied (step S88; No), the processor H1 selects the target device. The target device selection process is terminated without making a selection.
  • the control device 10 selects the target device in the order of the power storage device 81 or the electric vehicle 82, the water heater 20, and the power saving device.
  • the power storage device 81 and the electric vehicle 82 are highly convenient because they have a large energy storage capacity and can reuse the stored energy as electric power.
  • the hot water heater 20 cannot reuse the accumulated amount of heat as electric power, but the capacity of the accumulated energy is relatively large. For this reason, a suitable apparatus can be selected in order with high convenience.
  • the distributed power source 30 is not limited to a device that generates power using sunlight, and may be a device that generates power using wind or hydraulic power, or a device including a fuel cell.
  • the program Pa stored in the auxiliary storage unit H3 can be read by a computer such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and an MO (Magneto-Optical Disk).
  • a computer such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and an MO (Magneto-Optical Disk).
  • the program Pa may be stored in a disk device included in a server device on a communication network represented by the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example.
  • the above-described processing can also be achieved by starting and executing the program Pa while transferring it over the network.
  • processing can also be achieved by executing all or part of the program Pa on the server device and executing the program Pa while the computer transmits / receives information related to the processing via the communication network. .
  • the means for realizing the functions of the control device 10 and the water heater 20 is not limited to software, and a part or all of the means may be realized by dedicated hardware.
  • the instruction acquisition unit 11, surplus power prediction unit 13, determination unit 14, planning module 22, first control module 22 a, and second control module 22 b are integrated into an FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit). If the circuit is typified, the power consumption of the control device 10 and the water heater 20 can be reduced.
  • the water heater control system, control method, and program of the present invention are suitable for efficient use of electric power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A water heater control system (100) controls a water heater (20) that produces hot water using power supplied from a commercial power system and/or a distributed power source (30) that supplies power to the commercial power system. The water heater control system (100) is provided with: an instruction acquisition unit (11) that acquires an instruction to inhibit the supply of power from the distributed power source (30) to the commercial power system at a first time; and a control unit (21) that causes the water heater (20) to produce hot water of a first temperature at a second time that is different than the first time, and, if an instruction is acquired by the instruction acquisition unit (11), causes the water heater (20) to produce hot water of a second temperature, which is higher than the first temperature, at the first time.

Description

給湯器制御システム、制御方法及びプログラムWater heater control system, control method and program
 本発明は、給湯器制御システム、制御方法及びプログラムに関する。 The present invention relates to a water heater control system, a control method, and a program.
 近年、自然エネルギーを活用する技術が注目されており、太陽光及び風力に代表される自然エネルギーにより発電する分散型電源が需要家に設置されるケースが多くなっている。このような需要家は、分散型電源による発電電力を自ら消費したり商用電力系統へ供給して電気事業者に売ったりする。これにより、需要家は、商用電力系統から購入する電力を減少させて、経済的利益を得ることができる。 In recent years, technology utilizing natural energy has attracted attention, and there are many cases where distributed power sources that generate power using natural energy represented by sunlight and wind power are installed in consumers. Such a consumer consumes the electric power generated by the distributed power source or supplies it to a commercial power system and sells it to an electric utility. Thereby, a consumer can reduce the electric power purchased from a commercial power grid, and can obtain an economic profit.
 需要家から商用電力系統へ電力が供給される逆潮流により、商用電力系統の需給バランスが崩れることがある。例えば、快晴の休日には、需要が大幅に減少するとともに、太陽光による発電量が増加して供給量が増加する。 Demand and supply balance of the commercial power system may be disrupted due to reverse power flow from the customer to the commercial power system. For example, on a sunny holiday, the demand is greatly reduced, and the amount of power generated by sunlight is increased to increase the supply amount.
 そこで、商用電力系統の需給バランスを保つために、電気事業者が需要家に対して時間を指定して逆潮流の抑制を予め指示するための制度の整備が進められている。例えば、2014年には日本の資源エネルギー庁から、太陽光発電に対する出力制御ルールが公示されている。この出力制御ルールは、分散型電源の発電量を調整して、商用電力系統への売電を抑えるものである。 Therefore, in order to maintain the supply and demand balance of the commercial power system, the establishment of a system is in progress for an electric power company to specify the time in advance for consumers to specify the suppression of reverse power flow. For example, in 2014, Japan's Agency for Natural Resources and Energy announced an output control rule for photovoltaic power generation. This output control rule adjusts the power generation amount of the distributed power source to suppress the power sale to the commercial power system.
 また、発電電力を需要家で極力消費して、逆潮流を減少させるための技術が提案されている(例えば、特許文献1を参照)。特許文献1には、逆潮電力量が最も多くなる時間帯を含む運転時間帯に、貯湯タンクを備える給湯暖房装置を動作させる技術が記載されている。貯湯タンクを備える給湯装置の消費電力は一般的に大きいため、特許文献1に記載の技術は、逆潮電力量を効果的に減少させることができる。 In addition, a technique for reducing the reverse power flow by consuming the generated power as much as possible by a consumer has been proposed (see, for example, Patent Document 1). Patent Document 1 describes a technique for operating a hot water supply / heating device including a hot water storage tank in an operation time period including a time period in which the amount of reverse power flow is maximized. Since the power consumption of a hot water supply apparatus including a hot water storage tank is generally large, the technique described in Patent Document 1 can effectively reduce the amount of reverse power flow.
国際公開第2012/090365号International Publication No. 2012/090365
 しかしながら、特許文献1に記載の技術は、上述のような逆潮流を抑制するための指示に応じて逆潮流を減少させるものではないため、商用電力系統の需給バランスを改善するとは限らない。また、特許文献1に記載の技術は、逆潮電力量が多くなる時間帯に、その後に必要とされる熱量を生成するため、当該時間帯までに貯湯タンクの最大容量付近まで蓄熱されている場合には、給湯暖房装置を動作させることで消費される電力が小さく、逆潮流の減少量は小さくなる。この場合において逆潮流を抑制することが指示されると、発電電力を制限する必要があり、分散型電源の発電能力を十分に活用することができないおそれがあった。ひいては、特許文献1に記載の技術には、電力の利用効率を向上させる余地があった。 However, since the technique described in Patent Document 1 does not reduce the reverse power flow in response to the instruction for suppressing the reverse power flow as described above, it does not necessarily improve the supply and demand balance of the commercial power system. In addition, the technique described in Patent Document 1 stores heat up to the vicinity of the maximum capacity of the hot water storage tank by the time zone in order to generate the amount of heat required thereafter during the time zone when the amount of reverse power flow increases. In this case, the electric power consumed by operating the hot water heater is small, and the amount of decrease in reverse power flow is small. In this case, if it is instructed to suppress the reverse power flow, it is necessary to limit the generated power, and there is a possibility that the power generation capability of the distributed power source cannot be fully utilized. As a result, the technique described in Patent Document 1 has room for improving the power use efficiency.
 本発明は、上記の事情に鑑みてなされたもので、電力の利用効率を向上させることを目的とする。 The present invention has been made in view of the above circumstances, and aims to improve the power utilization efficiency.
 上記目的を達成するため、本発明の給湯器制御システムは、商用電力系統と商用電力系統に電力を供給する分散型電源との少なくとも一方から供給される電力で湯を生成する給湯器を制御する給湯器制御システムであって、第1の時間における分散型電源から商用電力系統への電力の供給を抑制する指示を取得する指示取得手段と、第1の時間とは異なる第2の時間に給湯器に第1温度の湯を生成させ、指示取得手段によって指示が取得された場合に、第1の時間に給湯器に第1温度より高い第2温度の湯を生成させる制御手段と、を備える。 In order to achieve the above object, a water heater control system of the present invention controls a water heater that generates hot water using electric power supplied from at least one of a commercial power system and a distributed power source that supplies power to the commercial power system. An hot water heater control system, wherein an instruction acquisition means for acquiring an instruction to suppress power supply from a distributed power source to a commercial power system in a first time, and hot water supply at a second time different from the first time Control means for causing the water heater to generate hot water at a first temperature and causing the water heater to generate hot water at a second temperature higher than the first temperature at a first time when an instruction is acquired by the instruction acquisition means. .
 本発明によれば、第2の時間に第1温度の湯が生成され、指示取得手段によって指示が取得された場合には、指示により指定された第1の時間に、第1温度より高い第2温度の湯が生成される。これにより、第1の時間における消費電力を増加させて分散型電源の発電能力を活用するとともに、放熱の影響が少ない高温の湯を生成することができる。ひいては、電力の利用効率を向上させることができる。 According to the present invention, when hot water having the first temperature is generated at the second time and the instruction is acquired by the instruction acquisition means, the first temperature higher than the first temperature is specified at the first time specified by the instruction. Two temperature hot water is produced. Thereby, while increasing the power consumption in 1st time and utilizing the power generation capability of a distributed power supply, the hot water with little influence of heat dissipation can be produced | generated. As a result, the utilization efficiency of electric power can be improved.
実施の形態1に係る給湯器制御システムの構成を示す図である。It is a figure which shows the structure of the water heater control system which concerns on Embodiment 1. FIG. 逆潮電力を抑制する抑制指示を説明するための図である。It is a figure for demonstrating the control instruction | indication which suppresses reverse power. パワーコンディショナによって制限される発電電力の一例を示す図である。It is a figure which shows an example of the generated electric power restrict | limited by a power conditioner. 制御装置、給湯器の制御部、計測装置及びデータサーバのハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of a control apparatus, the control part of a water heater, a measuring device, and a data server. 給湯器制御システムの機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of a water heater control system. 沸上げ運転を夜間から昼間にシフトすることを示す模式図である。It is a schematic diagram which shows shifting boiling operation from night to daytime. 沸上げ運転による湯量の推移の例を示す図である。It is a figure which shows the example of transition of the amount of hot water by boiling operation. 貯湯タンク内の温度分布の一例を示す図である。It is a figure which shows an example of the temperature distribution in a hot water storage tank. 発電抑制処理を示すフロー図である。It is a flowchart which shows a power generation suppression process. 制御装置と給湯器との間で行われる通信の概要を示すシーケンス図である。It is a sequence diagram which shows the outline | summary of the communication performed between a control apparatus and a water heater. 夜間までに実行される処理の概要を示すシーケンス図である。It is a sequence diagram which shows the outline | summary of the process performed by night. 余剰電力予測処理を示すフロー図である。It is a flowchart which shows a surplus electric power prediction process. 余剰電力の予測値の一例を示す図である。It is a figure which shows an example of the predicted value of surplus electric power. 昼間沸上げ判定処理を示す第1のフロー図である。It is a 1st flowchart which shows a daytime boiling determination process. 沸上げ許可フラグに設定される値を説明するための図である。It is a figure for demonstrating the value set to a boiling permission flag. 発電電力と経済効果との関係を説明するための第1の図である。It is a 1st figure for demonstrating the relationship between generated electric power and an economic effect. 発電電力と経済効果との関係を説明するための第2の図である。It is a 2nd figure for demonstrating the relationship between generated electric power and an economic effect. 発電電力と経済効果との関係を説明するための第3の図である。It is a 3rd figure for demonstrating the relationship between generated electric power and an economic effect. 沸上げ許可フラグの系列について説明するための図である。It is a figure for demonstrating the series of a boiling permission flag. 昼間沸上げ判定処理を示す第2のフロー図である。It is a 2nd flowchart which shows a daytime boiling determination process. 高温沸上げ判定処理を示すフロー図である。It is a flowchart which shows a high temperature boiling determination process. 計画処理を示す第1のフロー図である。It is a 1st flowchart which shows a plan process. 湯量の計画について説明するための図である。It is a figure for demonstrating the plan of the amount of hot water. 計画処理を示す第2のフロー図である。It is a 2nd flowchart which shows a plan process. 予測修正処理を示すフロー図である。It is a flowchart which shows a prediction correction process. 昼間に実行される処理の概要を示すシーケンス図である。It is a sequence diagram which shows the outline | summary of the process performed in the daytime. 買電価格判定処理を示すフロー図である。It is a flowchart which shows a power purchase price determination process. 売電価格判定処理を示すフロー図である。It is a flowchart which shows a power sale price determination process. 実施の形態2に係る給湯器制御システムの構成を示す図である。It is a figure which shows the structure of the water heater control system which concerns on Embodiment 2. FIG. 実施の形態2に係る給湯器制御システムの機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the water heater control system which concerns on Embodiment 2. FIG. 実施の形態3に係る給湯器制御システムの構成を示す図である。It is a figure which shows the structure of the water heater control system which concerns on Embodiment 3. FIG. 実施の形態4に係る給湯器制御システムの構成を示す図である。It is a figure which shows the structure of the water heater control system which concerns on Embodiment 4. FIG. 実施の形態5に係る給湯器制御システムの構成を示す図である。It is a figure which shows the structure of the water heater control system which concerns on Embodiment 5. FIG. 対象機器選択処理を示すフロー図である。It is a flowchart which shows an object apparatus selection process.
 以下、本発明の実施の形態を、図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 実施の形態1.
 図1には、実施の形態1に係る給湯器制御システム100の構成が示されている。給湯器制御システム100は、住宅HMに設置された給湯器20を制御して電力を効率的に利用するためのHEMS(Home Energy Management System)である。給湯器制御システム100は、図1に示されるように、給湯器20を制御する制御装置10、水を加熱して生成した湯をタンクに供給して貯える給湯器20、太陽光により発電する分散型電源30、分散型電源30によって発電される発電電力及び住宅HMで消費される電力を計測する計測装置40、電力を消費する電気機器50、並びに、広域ネットワークNW1を介して制御装置10に接続される電力サーバ60及びデータサーバ70を有している。なお、制御装置10、給湯器20、分散型電源30、計測装置40及び電気機器50はいずれも、住宅HMに設置される。また、図1中の商用電力系統PSにつながる太い実線は電力線を表し、細い破線は通信線(信号線)を表している。
Embodiment 1 FIG.
FIG. 1 shows the configuration of water heater control system 100 according to the first embodiment. The water heater control system 100 is a HEMS (Home Energy Management System) for efficiently using electric power by controlling the water heater 20 installed in the house HM. As shown in FIG. 1, the water heater control system 100 includes a control device 10 that controls the water heater 20, a water heater 20 that supplies and stores hot water generated by heating water in a tank, and a dispersion that generates power by sunlight. Connected to the control device 10 via the power source 30, the measuring device 40 that measures the power generated by the distributed power source 30 and the power consumed by the house HM, the electric device 50 that consumes the power, and the wide area network NW 1 The power server 60 and the data server 70 are provided. Note that the control device 10, the water heater 20, the distributed power source 30, the measuring device 40, and the electric device 50 are all installed in the house HM. Further, a thick solid line connected to the commercial power system PS in FIG. 1 represents a power line, and a thin broken line represents a communication line (signal line).
 制御装置10は、住宅HM内の機器を統合的に制御することが可能なHEMSコントローラである。制御装置10は、給湯器20及び電気機器50から、その運転状態を定期的に取得することにより、給湯器20及び電気機器50の運転状態を監視する。そして、制御装置10は、制御コマンドを送信することにより給湯器20及び電気機器50の運転状態を変化させて、給湯器20及び電気機器50を制御する。 The control device 10 is a HEMS controller that can integrally control devices in the house HM. The control apparatus 10 monitors the operation state of the water heater 20 and the electric device 50 by periodically acquiring the operation state from the water heater 20 and the electric device 50. And the control apparatus 10 changes the driving | running state of the water heater 20 and the electric equipment 50 by transmitting a control command, and controls the water heater 20 and the electric equipment 50.
 また、制御装置10は、計測装置40から電力の計測結果を定期的に取得して、取得した計測結果を分散型電源30及びデータサーバ70に提供する。さらに、制御装置10は、電力サーバ60からの指示を取得する指示取得部11を有している。指示取得部11は、特定の時間における分散型電源30から商用電力系統PSへの電力の供給を抑制する指示を電力サーバ60から取得して、分散型電源30へ転送する。電力サーバ60からの指示を、以下では抑制指示という。抑制指示によって指定される特定の時間は、通常、商用電力系統PSの需給状況に対して分散型電源30による発電電力が過剰となる時間である。 Further, the control device 10 periodically acquires the power measurement result from the measurement device 40, and provides the acquired measurement result to the distributed power source 30 and the data server 70. Furthermore, the control device 10 includes an instruction acquisition unit 11 that acquires an instruction from the power server 60. The instruction acquisition unit 11 acquires an instruction for suppressing the supply of power from the distributed power supply 30 to the commercial power system PS at a specific time from the power server 60 and transfers the instruction to the distributed power supply 30. Hereinafter, the instruction from the power server 60 is referred to as a suppression instruction. The specific time specified by the suppression instruction is usually a time when the power generated by the distributed power source 30 becomes excessive with respect to the supply and demand situation of the commercial power system PS.
 抑制指示は、特定の時間に分散型電源30から商用電力系統PSへ電力が供給されるときの発電電力の制限値を指定する。図2には、抑制指示の具体例が示されている。図2に示される例では、0時から9時までの発電量を、分散型電源30の定格電力の100%とすることが指定されている。また、9時から11時までの発電量を、分散型電源30の定格電力の40%とすることが指定されている。図2に例示された抑制指示は、分散型電源30の定格電力に対する割合で制限値を指定したが、発電電力の制限値をkW単位で指定してもよい。 The suppression instruction specifies a limit value of generated power when power is supplied from the distributed power supply 30 to the commercial power system PS at a specific time. FIG. 2 shows a specific example of the suppression instruction. In the example shown in FIG. 2, it is specified that the power generation amount from 0:00 to 9:00 is 100% of the rated power of the distributed power source 30. In addition, it is specified that the power generation amount from 9:00 to 11:00 is 40% of the rated power of the distributed power source 30. In the suppression instruction illustrated in FIG. 2, the limit value is specified by the ratio with respect to the rated power of the distributed power source 30, but the limit value of the generated power may be specified in units of kW.
 なお、図2中の実線で示される線Laは、分散型電源30によって出力可能な発電電力の推移を表し、破線で示される線Lpは、抑制指示によって指定される制限値の推移を表す。本実施の形態では、抑制指示によって発電電力が制限される時間を、単に昼間という。ただし、100%の制限値では、実質的に発電電力が制限されないため、図2の例における昼間は、9時から15時を意味する。 Note that a line La indicated by a solid line in FIG. 2 represents a transition of generated power that can be output by the distributed power supply 30, and a line Lp represented by a broken line represents a transition of a limit value specified by the suppression instruction. In the present embodiment, the time during which generated power is limited by the suppression instruction is simply referred to as daytime. However, since the generated power is not substantially limited at the limit value of 100%, the daytime in the example of FIG. 2 means from 9:00 to 15:00.
 図1に戻り、給湯器20は、ヒートポンプ式の電気給湯器である。給湯器20は、上水道から供給された水を加熱して生成した湯を貯湯タンク24(図5参照)に供給し、住宅HMの住人が使用する湯を貯湯タンク24から出水する。通常、給湯器20は、電気料金が安価になる夜間に、1日間に必要な量の湯を沸上げて、夜間以外の時間には、湯量が不足した場合に限り湯を沸上げる。なお、湯の沸上げは、湯を生成して貯湯タンク24に供給することを意味する。給湯器20によって夜間に生成される湯の温度は、約60℃である。 Referring back to FIG. 1, the water heater 20 is a heat pump type electric water heater. The water heater 20 supplies the hot water generated by heating the water supplied from the water supply to the hot water storage tank 24 (see FIG. 5), and discharges the hot water used by the residents of the house HM from the hot water storage tank 24. Usually, the water heater 20 boils the amount of hot water necessary for one day at night when the electricity rate is low, and boils hot water only at times other than the night when the amount of hot water is insufficient. The boiling of hot water means that hot water is generated and supplied to the hot water storage tank 24. The temperature of hot water generated by the water heater 20 at night is about 60 ° C.
 給湯器20は、給湯器20が備えるヒートポンプユニット23(図5参照)を制御する制御部21を有している。制御部21の機能については、後述する。 The water heater 20 has a control unit 21 that controls a heat pump unit 23 (see FIG. 5) included in the water heater 20. The function of the control unit 21 will be described later.
 分散型電源30は、住宅HMの屋根の上に設置される発電装置である。分散型電源30は、例えば多結晶シリコン型のソーラーパネル(不図示)、及びソーラーパネルにより発電された電力を変換して出力するパワーコンディショナ31を有している。 The distributed power source 30 is a power generator installed on the roof of the house HM. The distributed power source 30 includes, for example, a polycrystalline silicon solar panel (not shown), and a power conditioner 31 that converts and outputs electric power generated by the solar panel.
 パワーコンディショナ31は、計測装置40による計測結果を、制御装置10を介して取得することにより、発電電力Pgと、給湯器20、分散型電源30及び電気機器50を有する住宅HMで消費される消費電力Pcを監視する。発電電力Pgが消費電力Pcを超えると、住宅HMでは余剰電力が生じる。この余剰電力は逆潮電力Prとして商用電力系統PSへ供給される。このため、Pg=Pc+Prの関係式が成立する。なお、商用電力系統PSから電力が住宅HMに供給される場合には、逆潮電力Prが負の値になる。以下では、住宅HMで消費される消費電力を、単に消費電力という。 The power conditioner 31 is consumed in the house HM having the generated power Pg, the hot water heater 20, the distributed power source 30, and the electric device 50 by acquiring the measurement result by the measuring device 40 via the control device 10. The power consumption Pc is monitored. When the generated power Pg exceeds the power consumption Pc, surplus power is generated in the house HM. This surplus power is supplied to the commercial power system PS as reverse power Pr. For this reason, the relational expression of Pg = Pc + Pr is established. Note that, when power is supplied from the commercial power system PS to the house HM, the reverse power Pr is a negative value. Hereinafter, the power consumption consumed in the house HM is simply referred to as power consumption.
 パワーコンディショナ31は、電力サーバ60から指示取得部11を介して抑制指示を取得すると、抑制指示により指定された時間に、制限値を超えないように発電電力Pgを制限する。ただし、この制限値は、逆潮流が生じる際に指定された制限値であるため、逆潮電力Prが負の場合には、パワーコンディショナ31は、逆潮電力Prが正にならない範囲で発電電力Pgを制限する。この場合の発電電力Pgは、制限値を超えることがある。すなわち、パワーコンディショナ31は、消費電力Pcが制限値を超えると、消費電力Pcを超えない大きさの発電電力Pgを住宅HMに供給して、逆潮電力Prをゼロとする。分散型電源30が出力可能な電力が消費電力Pcより大きい場合には、パワーコンディショナ31は、消費電力Pcに等しい大きさの発電電力Pgを住宅HMに供給することになる。 When the power conditioner 31 acquires the suppression instruction from the power server 60 via the instruction acquisition unit 11, the power conditioner 31 limits the generated power Pg so as not to exceed the limit value at the time specified by the suppression instruction. However, since this limit value is a limit value specified when reverse power flow occurs, when the reverse power power Pr is negative, the power conditioner 31 generates power within a range in which the reverse power power Pr does not become positive. The power Pg is limited. The generated power Pg in this case may exceed the limit value. That is, when the power consumption Pc exceeds the limit value, the power conditioner 31 supplies the generated power Pg having a magnitude that does not exceed the power consumption Pc to the house HM, and sets the reverse power Pr to zero. When the power that can be output from the distributed power source 30 is larger than the power consumption Pc, the power conditioner 31 supplies the generated power Pg having the same magnitude as the power consumption Pc to the house HM.
 図3には、パワーコンディショナ31によって制限される発電電力Pgの具体例が示されている。図3中の一点鎖線で示される線Lcは、消費電力Pcの推移を表し、太い実線で示される線Lgは、実際に発電される発電電力Pgの推移を表す。図3に示される例において、発電電力が制限されない時間P1,P4では、発電電力Pgが、分散型電源30により出力可能な電力に等しくなる。また、制限値が消費電力Pcより大きい時間P2では、発電電力Pgが、制限値に等しくなる。また、制限値が消費電力Pcより小さい時間P3では、発電電力Pgが、消費電力Pcに等しくなる。ただし、分散型電源30により出力可能な電力が消費電力Pcより小さければ、発電電力Pgは、図3中の15時直前に示されるように、出力可能な電力に等しくなる。 FIG. 3 shows a specific example of the generated power Pg limited by the power conditioner 31. A line Lc indicated by a one-dot chain line in FIG. 3 represents a transition of the power consumption Pc, and a line Lg represented by a thick solid line represents a transition of the generated power Pg actually generated. In the example shown in FIG. 3, the generated power Pg becomes equal to the power that can be output by the distributed power source 30 at times P1 and P4 when the generated power is not limited. In addition, at time P2 when the limit value is greater than the power consumption Pc, the generated power Pg becomes equal to the limit value. Further, at time P3 when the limit value is smaller than the power consumption Pc, the generated power Pg becomes equal to the power consumption Pc. However, if the power that can be output by the distributed power source 30 is smaller than the power consumption Pc, the generated power Pg becomes equal to the power that can be output, as shown immediately before 15:00 in FIG.
 図3下部に示されるように、時間P2に含まれる時刻T1において、発電電力Pgが制限値に等しいため、出力可能な電力から実際の発電電力Pgを減じて得る損失電力は、比較的大きい。一方、時間P3に含まれる時刻T2では、出力可能な電力及び制限値が時刻T1とほぼ等しい。この時刻T2では、消費電力Pcが時刻T1からある程度増加して制限値を超えるため、発電電力Pgが消費電力Pcに等しく、損失電力は、比較的小さくなる。このため、抑制指示により逆潮電力が制限される昼間に、制限値を超えるように消費電力Pcを増加させれば、損失電力を低減させることができる。 As shown in the lower part of FIG. 3, since the generated power Pg is equal to the limit value at the time T1 included in the time P2, the loss power obtained by subtracting the actual generated power Pg from the power that can be output is relatively large. On the other hand, at time T2 included in time P3, the power that can be output and the limit value are substantially equal to time T1. At time T2, the power consumption Pc increases to some extent from time T1 and exceeds the limit value. Therefore, the generated power Pg is equal to the power consumption Pc, and the loss power is relatively small. For this reason, if the power consumption Pc is increased so as to exceed the limit value during the daytime when the backflow power is limited by the suppression instruction, the power loss can be reduced.
 図1に戻り、計測装置40は、住宅HMの分電盤内で電力線に取り付けられた変流器(不図示)を用いて、発電電力及び消費電力を計測する。計測装置40は、発電電力の計測値を取得する第1計測値取得部41と、消費電力の計測値を取得する第2計測値取得部42とを有している。計測装置40は、取得した計測値を、制御装置10に通知する。 Returning to FIG. 1, the measuring device 40 measures generated power and consumed power using a current transformer (not shown) attached to the power line in the distribution board of the house HM. The measurement device 40 includes a first measurement value acquisition unit 41 that acquires a measurement value of generated power and a second measurement value acquisition unit 42 that acquires a measurement value of power consumption. The measurement device 40 notifies the control device 10 of the acquired measurement value.
 電気機器50は、例えば、空調機器、照明機器又は調理機器に代表される家電機器である。電気機器50は、制御装置10を介して給湯器20を操作するための端末であってもよい。また、電気機器50は、蓄電池を有する蓄電装置であってもよい。 The electric device 50 is, for example, a home appliance represented by an air conditioner, a lighting device, or a cooking device. The electric device 50 may be a terminal for operating the water heater 20 via the control device 10. Further, the electric device 50 may be a power storage device having a storage battery.
 電力サーバ60は、商用電力系統PSを商用電源として提供する電気事業者によって運営される配信サーバである。電力サーバ60は、抑制指示によって時間が指定される日の前日以前に、例えば気象予報に基づいて作成した抑制指示を需要家へ配信する。なお、需要家による逆潮流を抑制する必要がない日には、抑制指示が配信されない。 The power server 60 is a distribution server operated by an electric power company that provides the commercial power system PS as a commercial power source. The power server 60 distributes, for example, a suppression instruction created based on a weather forecast to the consumer before the day before the time specified by the suppression instruction. In addition, the suppression instruction is not distributed on the day when it is not necessary to suppress the reverse power flow by the consumer.
 データサーバ70は、制御装置10と連携してHEMSを機能させるためのサーバ装置である。データサーバ70は、制御装置10の動作に必要なデータを記憶する。例えば、データサーバ70は、計測装置40による計測結果を、制御装置10を介して取得して蓄積する。また、データサーバ70は、制御装置10によって収集された給湯器20及び電気機器50の運転状態を取得して蓄積する。また、データサーバ70は、給湯器20及び電気機器50それぞれの運転状態と、その運転状態で消費される電力とを対応付けて記憶している。さらに、データサーバ70は、商用電力系統PSから住宅HMへ供給される電力の買電単価と、商用電力系統PSへ供給される逆潮電力の売電単価を時間帯別に記憶している。そして、データサーバ70は、制御装置10からの要求に応じて、データを制御装置10に提供する。 The data server 70 is a server device for causing the HEMS to function in cooperation with the control device 10. The data server 70 stores data necessary for the operation of the control device 10. For example, the data server 70 acquires and accumulates measurement results obtained by the measurement device 40 via the control device 10. In addition, the data server 70 acquires and accumulates the operating states of the water heater 20 and the electric device 50 collected by the control device 10. In addition, the data server 70 stores the operation state of each of the water heater 20 and the electric device 50 and the power consumed in the operation state in association with each other. Further, the data server 70 stores a unit price for power supplied from the commercial power system PS to the house HM and a unit price for selling reverse power supplied to the commercial power system PS for each time zone. Then, the data server 70 provides data to the control device 10 in response to a request from the control device 10.
 図4には、制御装置10、給湯器20の制御部21、計測装置40及びデータサーバ70のハードウェア構成が示されている。図4に示されるように、制御装置10、制御部21、計測装置40及びデータサーバ70は、プロセッサH1、主記憶部H2、補助記憶部H3、入力部H4、出力部H5、及び通信部H6を有するコンピュータとして構成される。主記憶部H2、補助記憶部H3、入力部H4、出力部H5、及び通信部H6はいずれも、内部バスH7を介してプロセッサH1に接続されている。 FIG. 4 shows a hardware configuration of the control device 10, the control unit 21 of the water heater 20, the measurement device 40, and the data server 70. As shown in FIG. 4, the control device 10, the control unit 21, the measurement device 40, and the data server 70 include a processor H1, a main storage unit H2, an auxiliary storage unit H3, an input unit H4, an output unit H5, and a communication unit H6. It is comprised as a computer which has. The main storage unit H2, the auxiliary storage unit H3, the input unit H4, the output unit H5, and the communication unit H6 are all connected to the processor H1 via the internal bus H7.
 プロセッサH1は、CPU(Central Processing Unit)を含んで構成される。プロセッサH1は、補助記憶部H3に記憶されるプログラムPaを実行することにより、後述の機能を発揮する。 The processor H1 includes a CPU (Central Processing Unit). The processor H1 exhibits the functions described later by executing the program Pa stored in the auxiliary storage unit H3.
 主記憶部H2は、RAM(Random Access Memory)を含んで構成される。主記憶部H2は、補助記憶部H3からプログラムPaをロードする。そして、主記憶部H2は、プロセッサH1の作業領域として用いられる。 The main storage unit H2 includes a RAM (Random Access Memory). The main storage unit H2 loads the program Pa from the auxiliary storage unit H3. The main storage unit H2 is used as a work area for the processor H1.
 補助記憶部H3は、HDD(Hard Disk Drive)又はフラッシュメモリ等の不揮発性メモリを含んで構成される。補助記憶部H3は、プログラムPaの他に、プロセッサH1の処理に用いられる種々のデータを記憶している。 The auxiliary storage unit H3 includes a nonvolatile memory such as an HDD (Hard Disk Drive) or a flash memory. In addition to the program Pa, the auxiliary storage unit H3 stores various data used for the processing of the processor H1.
 入力部H4は、例えば入力キー及び静電容量方式のポインティングデバイスを含んで構成される。入力部H4は、ユーザによって入力された情報を取得して、プロセッサH1に通知する。 The input unit H4 includes, for example, an input key and a capacitance type pointing device. The input unit H4 acquires information input by the user and notifies the processor H1.
 出力部H5は、例えばLCD(Liquid Crystal Display)に代表される表示デバイスを含んで構成される。出力部H5は、例えば、入力部H4を構成するポインティングデバイスと一体的に形成されることで、タッチスクリーンを構成する。 The output unit H5 includes a display device represented by, for example, an LCD (Liquid Crystal Display). For example, the output unit H5 is formed integrally with a pointing device that configures the input unit H4, thereby configuring a touch screen.
 通信部H6は、外部の機器と通信するための通信インタフェース回路を含んで構成される。通信部H6は、外部から受信した信号に含まれる情報をプロセッサH1に通知して、プロセッサH1から出力された情報を伝送するための信号を外部の機器に送信する。 The communication unit H6 includes a communication interface circuit for communicating with an external device. The communication unit H6 notifies the processor H1 of information included in the signal received from the outside, and transmits a signal for transmitting the information output from the processor H1 to an external device.
 図5には、給湯器制御システム100の機能的な構成が示されている。図5に示される制御装置10、給湯器20の制御部21、計測装置40及びデータサーバ70の機能は、上述のハードウェアが連携して動作することで実現される。 FIG. 5 shows a functional configuration of the water heater control system 100. The functions of the control device 10, the control unit 21 of the water heater 20, the measurement device 40, and the data server 70 shown in FIG. 5 are realized by the above hardware operating in cooperation.
 制御装置10の指示取得部11及び転送部12は、主として制御装置10のプロセッサH1と通信部H6とによって実現される。指示取得部11は、電力サーバ60から送信された抑制指示を分散型電源30のパワーコンディショナ31及び判定部14へ転送する。また、転送部12は、計測装置40による計測結果をデータサーバ70の発電消費予測部71へ転送する。 The instruction acquisition unit 11 and the transfer unit 12 of the control device 10 are mainly realized by the processor H1 and the communication unit H6 of the control device 10. The instruction acquisition unit 11 transfers the suppression instruction transmitted from the power server 60 to the power conditioner 31 and the determination unit 14 of the distributed power supply 30. In addition, the transfer unit 12 transfers the measurement result obtained by the measurement device 40 to the power generation consumption prediction unit 71 of the data server 70.
 余剰電力予測部13は、主として制御装置10のプロセッサH1によって実現される。余剰電力予測部13は、データサーバ70の発電消費予測部71によって予測された発電電力及び消費電力の予測値に基づいて、住宅HMにおける余剰電力の推移を予測する。そして、余剰電力予測部13は、予測結果を判定部14に通知する。 The surplus power prediction unit 13 is mainly realized by the processor H1 of the control device 10. The surplus power prediction unit 13 predicts the transition of surplus power in the house HM based on the generated power predicted by the power generation and consumption prediction unit 71 of the data server 70 and the predicted value of power consumption. Then, the surplus power prediction unit 13 notifies the determination unit 14 of the prediction result.
 判定部14は、主として制御装置10のプロセッサH1と通信部H6とによって実現される。判定部14は、図6に示されるように、通常は夜間に実行される給湯器20の沸上げ運転を昼間に実行するための条件が成立するか否かを、夜間の沸上げ運転が実行される前に抑制指示に応じて判定する。沸上げ運転が昼間に実行されれば、昼間の消費電力が増加して、損失電力を低減することが可能になる。判定部14は、判定の結果を給湯器20の制御部21に通知する。 The determination unit 14 is mainly realized by the processor H1 and the communication unit H6 of the control device 10. As shown in FIG. 6, the determination unit 14 performs the night boiling operation as to whether or not a condition for performing the boiling operation of the water heater 20 that is normally performed at night is satisfied during the day. It is determined according to the suppression instruction before being performed. If the boiling operation is performed in the daytime, the power consumption in the daytime increases and the power loss can be reduced. The determination unit 14 notifies the determination result to the control unit 21 of the water heater 20.
 給湯器20の制御部21は、判定部14の判定結果に基づいて、ヒートポンプユニット23を制御することにより、給湯器20に湯を生成させる。換言すると、制御部21は、制御装置10の指示取得部11によって抑制指示が取得されない場合には夜間に給湯器20に目標貯湯量の湯を貯湯タンク24へ供給させる。目標貯湯量は、1日間に使用が見込まれる湯量であって、過去のユーザによる湯の使用実績から予め定められる。また、制御部21は、指示取得部11によって抑制指示が取得された場合において条件が成立したときには、給湯器20に、夜間に目標貯湯量より少ない量の湯を供給させて昼間に湯を供給させることにより、目標貯湯量以上の量の湯を貯湯タンク24へ供給させる。 The control unit 21 of the water heater 20 controls the heat pump unit 23 based on the determination result of the determination unit 14 to cause the water heater 20 to generate hot water. In other words, the control unit 21 causes the hot water heater 20 to supply the hot water storage tank 24 with hot water of the target hot water storage amount when the instruction acquisition unit 11 of the control device 10 does not acquire the suppression instruction. The target hot water storage amount is the amount of hot water that is expected to be used in one day, and is determined in advance from the actual use of hot water by past users. In addition, the control unit 21 supplies hot water in the daytime by causing the water heater 20 to supply a smaller amount of hot water than the target hot water storage amount at night when the condition is established when the instruction acquisition unit 11 acquires the suppression instruction. By doing so, hot water in an amount greater than the target hot water storage amount is supplied to the hot water storage tank 24.
 図7には、給湯器20が昼間に沸上げ運転を実行する場合と実行しない場合それぞれの湯量の推移が示されている。図7中の実線で示されるL11は、昼間に沸上げ運転を実行することなく、夜間に目標貯湯量の湯を沸上げる通常の場合に対応する。一方、破線で示されるL12は、夜間に沸上げる湯量を目標貯湯量から減らして、抑制指示に応じて昼間に湯を沸上げる場合に対応する。図7に示されるように、昼間沸上げ運転を実行すると、通常は夜間に沸上げられる湯量V1が昼間にシフトして、電力消費も昼間にシフトすることとなる。 FIG. 7 shows changes in the amount of hot water when the water heater 20 performs a boiling operation during the day and when it does not. L11 indicated by a solid line in FIG. 7 corresponds to a normal case of boiling the target hot water storage amount at night without performing the boiling operation during the daytime. On the other hand, L12 indicated by a broken line corresponds to a case where the amount of hot water to be boiled at night is reduced from the target hot water storage amount and the hot water is boiled in the daytime according to a suppression instruction. As shown in FIG. 7, when the daytime boiling operation is executed, the amount of hot water V1 that is normally boiled at night shifts in the daytime, and the power consumption also shifts in the daytime.
 さらに、判定部14は、昼間に沸上げ運転を実行する際に、生成する湯の温度を高くして、高温の湯を生成することを給湯器20に許可するか否かを判定する。高温の湯は、90℃の湯である。以下では、夜間に生成される湯の温度を通常温度という。昼間に沸上げ運転が実行される場合には、通常温度の湯と高温の湯との少なくとも一方が生成されることとなる。 Furthermore, the determination unit 14 determines whether or not to allow the water heater 20 to generate high-temperature hot water by increasing the temperature of the generated hot water when performing the boiling operation during the daytime. The hot water is 90 ° C. hot water. Below, the temperature of the hot water produced | generated at night is called normal temperature. When the boiling operation is performed in the daytime, at least one of normal temperature hot water and high temperature hot water is generated.
 図8には、給湯器20の貯湯タンク24内の温度分布について、通常温度の湯が生成される場合と、高温の湯が生成される場合との比較例が示されている。図8中の線L31は、一定の電力消費により生成した湯の温度分布を示し、線L32は、その後に2日程度経過して放熱した後の温度分布を示し、線L33は、さらにその後に沸上げ運転を実行した場合の温度分布を示している。 FIG. 8 shows a comparative example of the temperature distribution in the hot water storage tank 24 of the water heater 20 when normal temperature hot water is generated and when hot water is generated. The line L31 in FIG. 8 shows the temperature distribution of the hot water generated by constant power consumption, the line L32 shows the temperature distribution after about 2 days have passed and then radiated heat, and the line L33 The temperature distribution when the boiling operation is executed is shown.
 図8に示されるように、通常温度の湯が生成される場合には、放熱した結果、約50℃の温度になった湯が、沸上げ運転後にタンク下部に移動し、40℃程度の湯になる。40℃程度の湯は、いわゆる中温水である。中温水をこのままユーザに提供するには専用の装置が必要になる一方、中温水を再度加熱すると熱効率が悪いため、中温水の発生は好ましくない。 As shown in FIG. 8, when normal temperature hot water is generated, the hot water having a temperature of about 50 ° C. as a result of heat dissipation moves to the bottom of the tank after the boiling operation, and the hot water of about 40 ° C. become. Hot water of about 40 ° C. is so-called medium temperature water. In order to provide the user with the intermediate temperature water as it is, a dedicated device is required. On the other hand, when the intermediate temperature water is heated again, the thermal efficiency is poor.
 一方、高温の湯が生成される場合には、放熱した結果、約70℃の温度になった湯が、沸上げ運転後に貯湯タンク24の下側に移動して50~60℃の湯になる。50~60℃の湯は、ユーザに提供することが可能であり、中温水よりも有効に利用することができる。すなわち、高温の湯を沸上げると、放熱により温度が低下しても、そのまま利用できる期間が長くなり、好ましい。ただし、高温の湯を生成する際の電力消費は、通常温度の湯を生成する際の電力消費より効率が悪いため、商用電力系統PSから供給された電力で高温の湯を生成すると、買電価格が高くなってしまう。 On the other hand, when high-temperature hot water is generated, the hot water having a temperature of about 70 ° C. as a result of heat dissipation moves to the lower side of the hot water storage tank 24 after the boiling operation and becomes hot water of 50-60 ° C. . Hot water of 50 to 60 ° C. can be provided to the user and can be used more effectively than medium-temperature water. That is, it is preferable to boil high-temperature hot water, even if the temperature decreases due to heat dissipation, the period that can be used as it is becomes longer. However, the power consumption when generating hot water is less efficient than the power consumption when generating normal temperature hot water, so if hot water is generated with power supplied from the commercial power system PS, The price will be high.
 図5に戻り、制御部21は、給湯器20の運転計画を立案する計画モジュール22、並びに、計画モジュール22によって立案された運転計画に従ってヒートポンプユニット23を制御する第1制御モジュール22a及び第2制御モジュール22bを有している。計画モジュール22、第1制御モジュール22a及び第2制御モジュール22bは、主として制御部21のプロセッサH1及び通信部H6により実現される。第1制御モジュール22aは、運転計画に従って夜間にヒートポンプユニット23に通常温度の湯を生成させる。また、第2制御モジュール22bは、抑制指示が配信された場合において条件が成立したときに立案された運転計画に従って、昼間にヒートポンプユニット23に通常温度の湯と高温の湯との少なくとも一方を生成させる。 Returning to FIG. 5, the control unit 21 plans the operation plan of the water heater 20, and the first control module 22 a and the second control that control the heat pump unit 23 according to the operation plan prepared by the planning module 22. It has a module 22b. The planning module 22, the first control module 22a, and the second control module 22b are mainly realized by the processor H1 and the communication unit H6 of the control unit 21. The first control module 22a causes the heat pump unit 23 to generate hot water at normal temperature at night according to the operation plan. Further, the second control module 22b generates at least one of normal temperature hot water and high temperature hot water in the heat pump unit 23 during the day according to the operation plan established when the condition is satisfied when the suppression instruction is delivered. Let
 ヒートポンプユニット23は、貯湯タンク24と管路を介して接続され、貯湯タンク24に貯えられる湯水を加熱してから貯湯タンク24に供給する。貯湯タンク24の容量は、例えば800リットルである。なお、給湯器20の沸上げ運転によって生成される湯の量は、ヒートポンプユニット23により配水管を介して貯湯タンク24に供給される湯の量を意味する。また、貯湯タンク24に貯えられた湯の量は、ユーザによる使用が想定される43℃の湯に換算したときの量を意味するものとしてもよい。 The heat pump unit 23 is connected to the hot water storage tank 24 via a pipeline, and heats the hot water stored in the hot water storage tank 24 and then supplies the hot water to the hot water storage tank 24. The capacity of the hot water storage tank 24 is, for example, 800 liters. The amount of hot water generated by the boiling operation of the water heater 20 means the amount of hot water supplied to the hot water storage tank 24 by the heat pump unit 23 through the water pipe. Further, the amount of hot water stored in the hot water storage tank 24 may mean the amount when converted into hot water at 43 ° C. that is assumed to be used by the user.
 続いて、給湯器制御システム100において実行される処理について、図9~28を用いて説明する。 Subsequently, processing executed in the water heater control system 100 will be described with reference to FIGS.
 図9には、分散型電源30のパワーコンディショナ31によって実行される発電抑制処理が示されている。この発電抑制処理は、パワーコンディショナ31に電力が供給されると、一定の周期でくり返し実行される。一定の周期は、1分間である。 FIG. 9 shows the power generation suppression process executed by the power conditioner 31 of the distributed power source 30. When power is supplied to the power conditioner 31, this power generation suppression process is repeatedly executed at a constant cycle. The fixed period is 1 minute.
 発電抑制処理において、パワーコンディショナ31は、まず、現在時刻が抑制指示により指定された時間に含まれるか否かを判定する(ステップS311)。なお、抑制指示がない場合には、ステップS311の判定は否定される。 In the power generation suppression process, the power conditioner 31 first determines whether or not the current time is included in the time specified by the suppression instruction (step S311). When there is no suppression instruction, the determination in step S311 is negative.
 現在時刻が抑制指示により指定された時間に含まれないと判定した場合(ステップS311;No)、パワーコンディショナ31は、通常モードで動作する(ステップS312)。通常モードは、発電電力を制限することなく、出力可能な電力をすべて住宅HM及び商用電力系統PSへ供給するモードである。その後、パワーコンディショナ31は、発電抑制処理を終了する。 If it is determined that the current time is not included in the time specified by the suppression instruction (step S311; No), the power conditioner 31 operates in the normal mode (step S312). The normal mode is a mode in which all outputable power is supplied to the house HM and the commercial power system PS without limiting the generated power. Thereafter, the power conditioner 31 ends the power generation suppression process.
 一方、現在時刻が抑制指示により指定された時間に含まれると判定した場合(ステップS311;Yes)、パワーコンディショナ31は、現在の発電能力が制限値より大きいか否かを判定する(ステップS313)。現在の発電能力は、現在時刻において出力可能な発電電力を意味する。 On the other hand, when it is determined that the current time is included in the time specified by the suppression instruction (step S311; Yes), the power conditioner 31 determines whether or not the current power generation capacity is greater than the limit value (step S313). ). The current power generation capacity means generated power that can be output at the current time.
 現在の発電能力が制限値より大きくないと判定した場合(ステップS313;No)、パワーコンディショナ31は、発電電力を制限する必要がないため、ステップS312へ移行する。 When it is determined that the current power generation capacity is not greater than the limit value (step S313; No), the power conditioner 31 does not need to limit the generated power, and thus proceeds to step S312.
 一方、現在の発電能力が制限値より大きいと判定した場合(ステップS313;Yes)、パワーコンディショナ31は、商用電力系統PSから電力が供給されているか否かを判定する(ステップS314)。すなわち、パワーコンディショナ31は、逆潮電力Prが負であるか否かを判定する。 On the other hand, if it is determined that the current power generation capacity is greater than the limit value (step S313; Yes), the power conditioner 31 determines whether or not power is supplied from the commercial power system PS (step S314). That is, the power conditioner 31 determines whether or not the reverse flow power Pr is negative.
 商用電力系統PSから電力が供給されていないと判定した場合(ステップS314;No)、パワーコンディショナ31は、出力抑制モードで動作する(ステップS315)。出力抑制モードは、抑制指示により指定された制限値まで発電電力を制限するモードである。その後、パワーコンディショナ31は、発電抑制処理を終了する。 When it is determined that power is not supplied from the commercial power system PS (step S314; No), the power conditioner 31 operates in the output suppression mode (step S315). The output suppression mode is a mode in which the generated power is limited to the limit value specified by the suppression instruction. Thereafter, the power conditioner 31 ends the power generation suppression process.
 商用電力系統PSから電力が供給されていると判定した場合(ステップS314;Yes)パワーコンディショナ31は、逆潮流ゼロモードで動作する(ステップS316)。逆潮流ゼロモードは、逆潮電力Prが極力ゼロに近づくように発電電力を制限するモードである。その後、パワーコンディショナ31は、発電抑制処理を終了する。 When it is determined that power is supplied from the commercial power system PS (step S314; Yes), the power conditioner 31 operates in the reverse power flow zero mode (step S316). The reverse power flow zero mode is a mode in which the generated power is limited so that the reverse power power Pr approaches zero as much as possible. Thereafter, the power conditioner 31 ends the power generation suppression process.
 続いて、制御装置10と給湯器20との間で行われる通信の概要について、図10を用いて説明する。図10に示されるように、電力サーバ60から抑制指示が制御装置10へ送信されると(ステップS1)、制御装置10は、給湯器20に昼間に湯を生成させるための条件が成立するか否かを判定する(ステップS2)。 Subsequently, an outline of communication performed between the control device 10 and the water heater 20 will be described with reference to FIG. As illustrated in FIG. 10, when a suppression instruction is transmitted from the power server 60 to the control device 10 (step S <b> 1), the control device 10 satisfies a condition for causing the water heater 20 to generate hot water during the daytime. It is determined whether or not (step S2).
 条件が成立すると判定した場合(ステップS2;Yes)、制御装置10は、給湯器20に対して昼間の沸上げを要求する(ステップS3)。そして、制御装置10は、さらに昼間の沸上げ運転のうち少なくとも一部で高温の湯を生成可能か否かを判定する(ステップS4)。 If it is determined that the condition is satisfied (step S2; Yes), the control device 10 requests the water heater 20 to boil in the daytime (step S3). Then, the control device 10 further determines whether or not hot water can be generated in at least part of the daytime boiling operation (step S4).
 高温の湯を生成可能と判定した場合(ステップS4;Yes)、制御装置10は、給湯器20に対して高温の湯の沸上げを要求する(ステップS5)。 When it is determined that high temperature hot water can be generated (step S4; Yes), the control device 10 requests the water heater 20 to boil high temperature hot water (step S5).
 ステップS2にて条件が成立しないと判定した場合(ステップS2;No)、制御装置10は、昼間の沸上げを要求しない。また、ステップS4にて高温の湯を生成可能ではないと判定した場合(ステップS4;No)、制御装置10は、高温の湯の沸上げを要求しない。 When it is determined in step S2 that the condition is not satisfied (step S2; No), the control device 10 does not request daytime boiling. Moreover, when it determines with not producing hot hot water in step S4 (step S4; No), the control apparatus 10 does not request | require boiling of hot hot water.
 昼間の沸上げを要求された給湯器20は、昼間の沸上げ運転を計画する計画処理を実行する(ステップS22)。高温の湯の沸上げを要求された場合には、給湯器20は、昼間の沸上げ運転のうち高温の湯を沸上げる運転も計画する。その後、給湯器20は、計画処理にて立案された運転計画に従って、給湯器20のヒートポンプユニット23を制御する制御処理を実行する(ステップS21)。この場合の制御処理は、第1制御モジュール22a(図5参照)によって実行される処理と、第2制御モジュール22b(図5参照)によって実行される処理とを含む。これにより、給湯器20は、夜間の沸上げ運転と昼間の沸上げ運転とを実行することとなる。 The water heater 20 that is requested to boil in the daytime executes a planning process for planning a daytime boiling operation (step S22). When boiling of hot water is requested, the water heater 20 also plans an operation of boiling hot water during daytime boiling operation. Thereafter, the water heater 20 executes a control process for controlling the heat pump unit 23 of the water heater 20 in accordance with the operation plan established in the planning process (step S21). The control process in this case includes a process executed by the first control module 22a (see FIG. 5) and a process executed by the second control module 22b (see FIG. 5). Thereby, the water heater 20 will perform the night boiling operation and the daytime boiling operation.
 制御処理が実行されると、制御装置10は、運転モード変更フラグがONか否かを判定する(ステップS6)。運転モードの変更は、予め計画された昼間の沸上げ運転を、実際の発電電力及び消費電力の状況に応じて停止することを意味する。 When the control process is executed, the control device 10 determines whether or not the operation mode change flag is ON (step S6). The change of the operation mode means that the daytime boiling operation planned in advance is stopped according to the actual generated power and power consumption.
 運転モード変更フラグがONであると判定した場合(ステップS6;Yes)、制御装置10は、給湯器20に対して運転モードの変更を要求する(ステップS7)。一方、運転モード変更フラグがONではないと判定した場合(ステップS6;No)、制御装置10は、給湯器20に対して運転モードの変更を要求しない。 When it is determined that the operation mode change flag is ON (step S6; Yes), the control device 10 requests the water heater 20 to change the operation mode (step S7). On the other hand, when it is determined that the operation mode change flag is not ON (step S6; No), the control device 10 does not request the hot water heater 20 to change the operation mode.
 給湯器20は、運転モードの変更を要求されると、運転モードを変更する(ステップS8)。 When requested to change the operation mode, the water heater 20 changes the operation mode (step S8).
 続いて、図10に示された一連の処理のうち、夜間までに実行される部分の詳細を、図11を用いて説明する。 Subsequently, details of a part executed by night in the series of processes shown in FIG. 10 will be described with reference to FIG.
 図11に示されるように、電力サーバ60から制御装置10に抑制指示が送信される(ステップS1)。また、計測装置40は、発電電力及び消費電力の計測値を、制御装置10を介してデータサーバ70へ順次送信する。 As shown in FIG. 11, a suppression instruction is transmitted from the power server 60 to the control device 10 (step S1). In addition, the measurement device 40 sequentially transmits the measurement values of the generated power and the power consumption to the data server 70 via the control device 10.
 データサーバ70は、受信した計測値から、発電電力及び消費電力の予測値を算出する発電消費予測処理を実行する(ステップS70)。発電消費予測処理による予測は、例えば、過去の一定期間における1日間の推移の平均を算出するものであってもよいし、気象状況、曜日、及びユーザのスケジュールを含むパラメータを用いて統計的に予測値を算出するものであってもよい。なお、発電電力の予測は、抑制指示によって過去に抑制された発電電力の実績を排除して実行される。すなわち、発電電力の予測値は、分散型電源30によって出力可能な発電電力の予測値を意味する。また、消費電力の予測値は、昼間の沸上げ運転が実行されるケースを排除して予測されたものであることが望ましいが、このケースを含んで予測されたものであってもよい。 The data server 70 executes a power generation consumption prediction process that calculates a predicted value of generated power and power consumption from the received measurement values (step S70). The prediction by the power generation consumption prediction process may be, for example, calculating an average of the transition of one day in the past fixed period, or statistically using parameters including weather conditions, day of the week, and user schedule. A prediction value may be calculated. Note that the prediction of the generated power is executed by excluding the actual result of the generated power suppressed in the past by the suppression instruction. That is, the predicted value of the generated power means a predicted value of the generated power that can be output by the distributed power source 30. Moreover, although it is desirable that the predicted value of power consumption be predicted by excluding the case where daytime boiling operation is executed, it may be predicted including this case.
 制御装置10は、データサーバ70に対して予測結果を要求し、その応答により予測結果を得る。そして、制御装置10は、発電電力及び消費電力の予測値に基づいて住宅HM内の余剰電力の予測値を算出する余剰電力予測処理を実行する(ステップS13)。この余剰電力予測処理について、図12,13を用いて説明する。 The control device 10 requests the data server 70 for a prediction result, and obtains the prediction result as a response. And the control apparatus 10 performs the surplus power prediction process which calculates the predicted value of the surplus power in the house HM based on the predicted value of generated electric power and power consumption (step S13). This surplus power prediction process will be described with reference to FIGS.
 余剰電力予測処理は、翌日の0時から24時における余剰電力の推移を、30分間の時間区分毎に予測する処理である。図12に示される余剰電力予測処理において、制御装置10の余剰電力予測部13は、まず、変数aに1を代入する(ステップS131)。変数aは、時間区分に付される番号である。 The surplus power prediction process is a process for predicting the surplus power transition from 0:00 to 24:00 on the next day for each 30-minute time segment. In the surplus power prediction process shown in FIG. 12, the surplus power prediction unit 13 of the control device 10 first substitutes 1 for a variable a (step S131). The variable a is a number assigned to the time segment.
 次に、余剰電力予測部13は、a番目の時間区分における余剰電力を予測する(ステップS132)。この予測は、例えば、a番目の時間区分における発電電力の予測値から消費電力の予測値を減算することで余剰電力の予測値を得るものである。なお、発電電力及び消費電力の予測値が30分間の時間区分に区切られていないときには、余剰電力予測部13は、この時間区分における平均値を用いて、余剰電力の予測値を算出する。 Next, the surplus power prediction unit 13 predicts surplus power in the a-th time segment (step S132). In this prediction, for example, a predicted value of surplus power is obtained by subtracting a predicted value of power consumption from a predicted value of generated power in the a-th time segment. Note that when the predicted values of generated power and consumed power are not divided into 30-minute time segments, the surplus power predicting unit 13 calculates the predicted value of surplus power using the average value in this time segment.
 次に、余剰電力予測部13は、変数aが最後の値であるか否かを判定する(ステップS133)。最後の値は、23時30分から24時ちょうどまでの時間区分に付される番号「48」である。 Next, the surplus power prediction unit 13 determines whether or not the variable a is the last value (step S133). The last value is the number “48” assigned to the time segment from 23:30 to 24:00.
 変数aが最後の値ではないと判定した場合(ステップS133;No)、余剰電力予測部13は、変数aの値を1だけ増加させる(ステップS134)。その後、余剰電力予測部13は、ステップS132以降の処理をくり返す。 When it is determined that the variable a is not the last value (step S133; No), the surplus power prediction unit 13 increases the value of the variable a by 1 (step S134). Thereafter, the surplus power predicting unit 13 repeats the processes after step S132.
 一方、変数aが最後の値であると判定した場合(ステップS133;Yes)、余剰電力予測部13は、余剰電力予測処理を終了する。 On the other hand, when it determines with the variable a being the last value (step S133; Yes), the surplus power prediction part 13 complete | finishes a surplus power prediction process.
 図13には、余剰電力予測処理による予測結果が示されている。図13では、余剰電力に相当する領域にハッチングが付されている。余剰電力予測処理では、ハッチングが付された領域を30分間の時間区分に区切って電力の値が予測される。なお、図13中の線Lgは、発電電力の予測値の推移を示し、線Lcは、消費電力の予測値の推移を示している。 FIG. 13 shows a prediction result by the surplus power prediction process. In FIG. 13, a region corresponding to surplus power is hatched. In the surplus power prediction process, the value of power is predicted by dividing the hatched region into 30-minute time segments. In addition, the line Lg in FIG. 13 shows the transition of the predicted value of the generated power, and the line Lc shows the transition of the predicted value of the power consumption.
 図11に戻り、制御装置10は、余剰電力予測処理(ステップS13)に続いて昼間沸上げ判定処理を実行する(ステップS14)。昼間沸上げ判定処理は、昼間に沸上げ運転を実行するための条件が成立するか否かを判定する処理であって、図10中のステップS2に対応する。以下、昼間沸上げ判定処理について、図14~20を用いて説明する。 Referring back to FIG. 11, the control device 10 executes daytime boiling determination processing (step S14) following the surplus power prediction processing (step S13). The daytime boiling determination process is a process for determining whether or not a condition for performing the boiling operation during the day is satisfied, and corresponds to step S2 in FIG. Hereinafter, daytime boiling determination processing will be described with reference to FIGS.
 図14に示される昼間沸上げ判定処理では、判定部14は、まず、変数aに1を代入して、すべての昼間沸上げ許可フラグをOFFに設定する(ステップS141)。 In the daytime boiling determination process shown in FIG. 14, the determination unit 14 first assigns 1 to the variable a and sets all daytime boiling permission flags to OFF (step S141).
 次に、判定部14は、a番目の時間区分に対する抑制指示があるか否かを判定する(ステップS142)。具体的には、判定部14は、翌日のa番目の時間区分が抑制指示により指定された時間に含まれていて、かつ、分散型電源30の定格電力より小さい制限値が指定されているか否かを判定する。 Next, the determination unit 14 determines whether there is a suppression instruction for the a-th time segment (step S142). Specifically, the determination unit 14 determines whether or not the a-th time segment of the next day is included in the time specified by the suppression instruction and a limit value smaller than the rated power of the distributed power source 30 is specified. Determine whether.
 a番目の時間区分に対する抑制指示がないと判定した場合(ステップS142;No)、判定部14は、ステップS149へ処理を移行する。一方、a番目の時間区分に対する抑制指示があると判定した場合(ステップS142;Yes)、判定部14は、a番目の時間区分における発電電力の制限値を算出する(ステップS143)。具体的には、抑制指示により指定される制限値が、分散型電源30の定格電力に対する割合を示すものであるときに、判定部14は、この割合を定格電力に乗じることでW又はkW単位の制限値を算出する。 If it is determined that there is no suppression instruction for the a-th time segment (step S142; No), the determination unit 14 proceeds to step S149. On the other hand, if it is determined that there is a suppression instruction for the a-th time segment (step S142; Yes), the determination unit 14 calculates a limit value of the generated power in the a-th time segment (step S143). Specifically, when the limit value specified by the suppression instruction indicates a ratio with respect to the rated power of the distributed power supply 30, the determination unit 14 multiplies the rated power by this ratio to make a unit of W or kW. The limit value is calculated.
 次に、判定部14は、a番目の時間区分において給湯器20が通常温度の湯を生成しても消費電力が発電電力より小さいか否かを判定する(ステップS144)。具体的には、判定部14は、a番目の時間区分において給湯器20が沸上げ運転を実行して住宅HMで消費される消費電力の予測値が増加しても、増加した消費電力の予測値が発電電力の予測値より小さいか否かを判定する。 Next, the determination unit 14 determines whether or not the power consumption is smaller than the generated power even when the water heater 20 generates hot water at a normal temperature in the a-th time segment (step S144). Specifically, the determination unit 14 predicts the increased power consumption even if the predicted value of the power consumption consumed in the house HM increases when the water heater 20 performs the boiling operation in the a-th time segment. It is determined whether the value is smaller than the predicted value of the generated power.
 ただし、発電消費予測部71から出力された消費電力の予測値は、給湯器20が昼間に沸上げ運転を実行することなく夜間に沸上げ運転を実行したときの消費電力を示している。このため、判定部14は、データサーバ70に記憶される給湯器20の運転状態の履歴と、その運転状態で消費される電力とを参照することにより、消費電力の予測値のうち、給湯器20以外の機器の総消費電力の予測値を得ることができる。判定部14は、この総消費電力の予測値と、沸上げ運転を実行する給湯器20の消費電力との和が、発電電力の予測値より小さいか否かを判定する。 However, the predicted value of the power consumption output from the power generation consumption prediction unit 71 indicates the power consumption when the water heater 20 performs the boiling operation at night without performing the boiling operation during the daytime. For this reason, the determination unit 14 refers to the history of the operation state of the water heater 20 stored in the data server 70 and the power consumed in the operation state, so that the water heater among the predicted power consumption values. A predicted value of the total power consumption of devices other than 20 can be obtained. The determination unit 14 determines whether the sum of the predicted value of the total power consumption and the power consumption of the water heater 20 that performs the boiling operation is smaller than the predicted value of the generated power.
 給湯器20が湯を生成しても消費電力が発電電力より小さいわけではないと判定した場合(ステップS144;No)、判定部14は、ステップS149へ処理を移行する。 If it is determined that even if the water heater 20 generates hot water, the power consumption is not smaller than the generated power (step S144; No), the determination unit 14 proceeds to step S149.
 一方、給湯器20が湯を生成しても消費電力が発電電力より小さいと判定した場合(ステップS144;Yes)、判定部14は、a番目の時間区分における発電電力が制限値より大きいか否かを判定する(ステップS145)。具体的には、判定部14は、発電電力の予測値がステップS143で算出した制限値より大きいか否かを判定する。 On the other hand, if it is determined that the power consumption is smaller than the generated power even if the water heater 20 generates hot water (step S144; Yes), the determination unit 14 determines whether the generated power in the a-th time segment is larger than the limit value. Is determined (step S145). Specifically, the determination unit 14 determines whether or not the predicted value of the generated power is larger than the limit value calculated in step S143.
 発電電力が制限値より大きいと判定した場合(ステップS145;Yes)、判定部14は、a番目の時間区分における消費電力が制限値より大きいか否かを判定する(ステップS146)。具体的には、判定部14は、消費電力の予測値がステップS143で算出した制限値より大きいか否かを判定する。 If it is determined that the generated power is greater than the limit value (step S145; Yes), the determination unit 14 determines whether the power consumption in the a-th time segment is greater than the limit value (step S146). Specifically, the determination unit 14 determines whether or not the predicted power consumption value is greater than the limit value calculated in step S143.
 消費電力が制限値より大きいと判定した場合(ステップS146;Yes)、判定部14は、条件が成立したと判断して、a番目の時間区分に対応する沸上げ許可フラグをONに設定する(ステップS147)。 If it is determined that the power consumption is greater than the limit value (step S146; Yes), the determination unit 14 determines that the condition is satisfied and sets the boiling permission flag corresponding to the a-th time segment to ON ( Step S147).
 ステップS145において発電電力が制限値より大きくはないと判定した場合(ステップS145;No)、判定部14は、夜間に給湯器20が消費する電力の買電価格が昼間の逆潮電力の売電価格より大きいか否かを判定する(ステップS148)。具体的には、判定部14は、夜間に給湯器20が30分間で消費する電力にかかる料金が、a番目の時間区分における逆潮電力の予測値の売電価格より大きいか否かを判定する。 If it is determined in step S145 that the generated power is not larger than the limit value (step S145; No), the determination unit 14 sells the reverse power during the day when the power purchase price of the power consumed by the water heater 20 is nighttime. It is determined whether or not the price is larger (step S148). Specifically, the determination unit 14 determines whether the charge for the power consumed by the water heater 20 at 30 minutes at night is larger than the power sale price of the predicted value of the reverse power in the a-th time segment. To do.
 ステップS148の判定が肯定されれば(ステップS148;Yes)、a番目の時間区分に逆潮電力を商用電力系統PSへ供給して売電することにより得る経済的利益よりも、a番目の時間区分に給湯器20に沸上げ運転を実行させて夜間の電力消費にかかる料金を減少させることで得る経済的利益の方が大きい。すなわち、昼間に沸上げ運転を実行する方が、経済的利益が大きい。このため、ステップS148の判定が肯定された場合、判定部14は、ステップS147へ移行して、沸上げ許可フラグをONに設定する。 If the determination in step S148 is affirmative (step S148; Yes), the a-th time is more than the economic benefit obtained by supplying the reverse power to the commercial power system PS for sale in the a-th time segment. The economic benefits obtained by causing the water heater 20 to perform a boiling operation in the section and reducing the charge for nighttime power consumption are greater. That is, it is more economical to perform boiling operation during the daytime. For this reason, when determination of step S148 is affirmed, the determination part 14 transfers to step S147, and sets a boiling permission flag to ON.
 一方、ステップS148の判定が否定されれば、昼間に沸上げ運転を実行しない方が、経済的利益が大きい。このため、判定部14は、沸上げ許可フラグをONにすることなく、ステップS149へ処理を移行する。 On the other hand, if the determination in step S148 is negative, it is more economical not to perform the boiling operation in the daytime. For this reason, the determination part 14 transfers a process to step S149, without turning ON a boiling permission flag.
 ただし、ステップS145の判定が否定された後に実行されるステップS148の判定では、逆潮電力は、発電電力から消費電力を除いたものに等しい。 However, in the determination in step S148 executed after the determination in step S145 is denied, the reverse power flow is equal to the generated power minus power consumption.
 ステップS146において消費電力が制限値より大きくはないと判定した場合(ステップS146;No)、判定部14は、ステップS148へ処理を移行する。ただし、この場合におけるステップS148の判定では、逆潮電力は、制限値から消費電力を除いたものに等しい。 If it is determined in step S146 that the power consumption is not greater than the limit value (step S146; No), the determination unit 14 proceeds to step S148. However, in the determination in step S148 in this case, the reverse power flow is equal to the limit value minus the power consumption.
 ステップS144~S147の処理により、特定の場合に沸上げ許可フラグがONに設定される。図15には、発電電力Pg、制限値Pp、給湯器20以外の機器の総消費電力Pd、及び給湯器20の消費電力Phの大小関係と、経済効果と、沸上げ許可フラグと、パワーコンディショナ31の運転モードとを関連づけたテーブルが示されている。 The boiling permission flag is set to ON in a specific case by the processing of steps S144 to S147. FIG. 15 shows the magnitude relationship among the generated power Pg, the limit value Pp, the total power consumption Pd of devices other than the water heater 20, and the power consumption Ph of the water heater 20, the economic effect, the boiling permission flag, and the power condition. The table which linked | related with the operation mode of NA 31 is shown.
 また、図16には、制限値Ppが、給湯器20以外の機器の総消費電力Pdと給湯器20の消費電力Phとの和より大きい場合における発電電力Pgと経済効果との関係が示されている。図16中の線L21は、昼間に沸上げ運転を実行しない場合に対応し、線L22は、昼間に沸上げ運転を実行する場合に対応する。また、Gmaxは、分散型電源30の定格電力を意味する。図16に示される電力の大小関係は、図15に示されるケース1,2,7,8,9,10を含んでいる。 FIG. 16 shows the relationship between the generated power Pg and the economic effect when the limit value Pp is larger than the sum of the total power consumption Pd of the devices other than the water heater 20 and the power consumption Ph of the water heater 20. ing. The line L21 in FIG. 16 corresponds to the case where the boiling operation is not performed in the daytime, and the line L22 corresponds to the case where the boiling operation is performed in the daytime. Gmax means the rated power of the distributed power supply 30. 16 includes cases 1, 2, 7, 8, 9, and 10 shown in FIG.
 線L21で示されるように、昼間に沸上げ運転を実行しない場合において、発電電力Pgが総消費電力Pdを超えると逆潮電力が生じるため、売電による経済効果が得られる。ただし、発電電力Pgが制限値Ppを超えても、実際に発電される電力は制限値Ppに制限されるため、経済効果が増加することはない。また、発電電力Pgが総消費電力Pdを下回ってゼロになると、総消費電力Pdを商用電力系統PSからの電力で賄うことになるため、経済効果は減少する。 As indicated by the line L21, in the case where the boiling operation is not performed in the daytime, the reverse power is generated when the generated power Pg exceeds the total power consumption Pd. However, even if the generated power Pg exceeds the limit value Pp, the power that is actually generated is limited to the limit value Pp, so the economic effect does not increase. Further, when the generated power Pg falls below the total power consumption Pd and becomes zero, the total power consumption Pd is covered by power from the commercial power system PS, so the economic effect is reduced.
 また、線L22に示されるように、昼間に沸上げ運転を実行する場合において、発電電力Pgが総消費電力Pdと給湯器20の消費電力Phとの和Pd+Phを超えると、夜間の沸上げ運転に必要な電力消費が減少するため、経済効果が得られる。また、発電電力PgがPd+Phを下回ってゼロになると、総消費電力Pdと給湯器20の消費電力Phとを商用電力系統PSからの電力で賄うことになるため、経済効果は減少する。 Further, as shown by the line L22, when the boiling operation is performed in the daytime, if the generated power Pg exceeds the sum Pd + Ph of the total power consumption Pd and the power consumption Ph of the water heater 20, the night boiling operation is performed. Economical effects can be obtained because the power consumption required for this is reduced. Further, when the generated power Pg becomes less than Pd + Ph and becomes zero, the total power consumption Pd and the power consumption Ph of the water heater 20 are covered by the power from the commercial power system PS, so the economic effect is reduced.
 図17には、制限値Ppが、総消費電力Pdより大きく、総消費電力Pdと給湯器20の消費電力Phとの和より小さい場合における、発電電力Pgと経済効果との関係が示されている。図17に示される電力の大小関係は、図15に示されるケース3を含んでいる。 FIG. 17 shows the relationship between the generated power Pg and the economic effect when the limit value Pp is larger than the total power consumption Pd and smaller than the sum of the total power consumption Pd and the power consumption Ph of the water heater 20. Yes. The power magnitude relationship shown in FIG. 17 includes case 3 shown in FIG.
 図18には、制限値Ppが総消費電力Pdより小さい場合における発電電力Pgと経済効果との関係が示されている。図18に示される電力の大小関係は、図15に示されるケース4,5,6,11を含んでいる。 FIG. 18 shows the relationship between the generated power Pg and the economic effect when the limit value Pp is smaller than the total power consumption Pd. The power magnitude relationship shown in FIG. 18 includes cases 4, 5, 6, and 11 shown in FIG.
 図14に戻り、ステップS147に続いて、判定部14は、変数aが最後の値であるか否かを判定する(ステップS149)。変数aが最後の値ではないと判定した場合(ステップS149;No)、判定部14は、変数aの値を1だけ増加させる(ステップS150)。その後、判定部14は、ステップS142以降の処理をくり返す。 14, following step S147, the determination unit 14 determines whether or not the variable a is the last value (step S149). If it is determined that the variable a is not the last value (step S149; No), the determination unit 14 increases the value of the variable a by 1 (step S150). Then, the determination part 14 repeats the process after step S142.
 ステップS141~S149の処理により、翌日の時間区分それぞれについて沸上げ許可フラグがON又はOFFに設定される。図19には、沸上げ許可フラグの系列と、発電電力、消費電力及び制限値の推移との関係の一例が示されている。図19に示される例では、沸上げ許可フラグがONに設定される時間の余剰電力に対応する領域にハッチングが付されている。抑制指示により制限値が指定される時間のうち時間P13では、余剰電力が不足しており、給湯器20が沸上げ運転を実行すると消費電力が発電電力を超えるため、沸上げ許可フラグがOFFに設定される。また、時間P11では、制限値が消費電力を超えており、給湯器20に沸上げ運転を実行させるよりも逆潮電力を売電する方が、経済効果が大きいという判断に基づいて、沸上げ許可フラグがOFFに設定される。また、時間P12では、十分な余剰電力があり、制限値が消費電力より小さいため、沸上げ許可フラグがONに設定される。 In step S141 to S149, the boiling permission flag is set to ON or OFF for each time segment on the next day. FIG. 19 shows an example of the relationship between the boiling permission flag series and the transition of the generated power, the power consumption, and the limit value. In the example shown in FIG. 19, the area corresponding to the surplus power during the time when the boiling permission flag is set to ON is hatched. Of the time when the limit value is specified by the suppression instruction, at time P13, the surplus power is insufficient, and when the water heater 20 performs the boiling operation, the power consumption exceeds the generated power, so the boiling permission flag is turned off. Is set. Further, at time P11, the limit value exceeds the power consumption, and the boiling power is raised based on the judgment that it is more economical to sell the reverse power than to make the water heater 20 perform the boiling operation. The permission flag is set to OFF. In addition, at time P12, since there is sufficient surplus power and the limit value is smaller than the power consumption, the boiling permission flag is set to ON.
 図14に示されるステップS149において変数aが最後の値であると判定した場合(ステップS149;Yes)、判定部14は、図20に示されるように、条件成立時間として、沸上げ許可フラグが連続してONになる最長時間を探索する(ステップS151)。 When it is determined in step S149 shown in FIG. 14 that the variable a is the last value (step S149; Yes), the determination unit 14 sets the boiling permission flag as the condition establishment time as shown in FIG. The longest time that is continuously turned on is searched (step S151).
 次に、判定部14は、条件成立時間以外の沸上げ許可フラグをOFFに設定する(ステップS152)。これにより、給湯器20の沸上げ運転の実行と停止とが交互にくり返されることを防ぐことができる。 Next, the determination unit 14 sets the boiling permission flag other than the condition establishment time to OFF (step S152). Thereby, execution and stop of the boiling operation of the water heater 20 can be prevented from being repeated alternately.
 次に、判定部14は、条件成立時間の開始時刻と終了時刻を取得する(ステップS153)。判定部14は、取得した開始時刻及び終了時刻を給湯器20に通知する(ステップS154)。そして、判定部14は、昼間沸上げ判定処理を終了する。 Next, the determination unit 14 acquires the start time and end time of the condition establishment time (step S153). The determination unit 14 notifies the acquired start time and end time to the water heater 20 (step S154). And the determination part 14 complete | finishes a daytime boiling determination process.
 図11に戻り、昼間沸上げ判定処理(ステップS14)に続いて、制御装置10は、高温沸上げ判定処理を実行する(ステップS16)。高温沸上げ判定処理は、高温の湯を生成するための高温沸上げ条件が成立するか否かを判定する処理であって、図10中のステップS4に対応する。高温沸上げ判定処理は、例えば、電気料金が安価になる23時までに後述のステップS3,S5が完了するように、22時30分までに実行される。以下、高温沸上げ判定処理について、図21を用いて説明する。 Referring back to FIG. 11, following the daytime boiling determination process (step S14), the control device 10 executes a high temperature boiling determination process (step S16). The high-temperature boiling determination process is a process for determining whether or not a high-temperature boiling condition for generating high-temperature hot water is satisfied, and corresponds to step S4 in FIG. The high temperature boiling determination process is executed by 22:30 so that, for example, steps S3 and S5 described later are completed by 23:00 when the electricity bill becomes cheap. Hereinafter, the high temperature boiling determination process will be described with reference to FIG.
 高温沸上げ判定処理において、判定部14は、まず、分散型電源30が電力線を介して蓄電装置に接続されているか否かを判定する(ステップS161)。制御装置10は、住宅HM内の機器を管理するため、判定部14は、制御装置10により用いられる機器の管理情報に基づいて、ステップS161の判定を実行する。 In the high temperature boiling determination process, the determination unit 14 first determines whether or not the distributed power source 30 is connected to the power storage device via the power line (step S161). Since the control device 10 manages the devices in the house HM, the determination unit 14 performs the determination in step S161 based on the management information of the devices used by the control device 10.
 蓄電装置が接続されていると判定された場合(ステップS161;No)、判定部14は、高温沸上げ判定処理を終了する。これにより、給湯器20による高温の湯の沸上げ運転よりも、蓄電装置の充電処理が優先される。一方、蓄電装置が接続されていないと判定された場合(ステップS161;Yes)、判定部14は、高温時間長をゼロに設定して初期化する(ステップS162)。 When it is determined that the power storage device is connected (step S161; No), the determination unit 14 ends the high temperature boiling determination process. Thereby, the charging process of the power storage device is prioritized over the hot water boiling operation by the water heater 20. On the other hand, when it determines with the electrical storage apparatus not being connected (step S161; Yes), the determination part 14 sets a high temperature time length to zero and initializes (step S162).
 次に、判定部14は、最後にONに設定された沸上げ許可フラグに対応する変数aの値を変数bに代入することで、変数bを初期化する(ステップS163)。変数bは、変数aと同様に、時間区分に付される番号である。ただし、変数bは、初期値として条件成立時間の最後の時間区分に対応する値が設定される点で、変数aとは扱いが異なる。 Next, the determination unit 14 initializes the variable b by substituting the value of the variable a corresponding to the boiling permission flag last set to ON into the variable b (step S163). The variable b is a number assigned to the time segment in the same manner as the variable a. However, the variable b is handled differently from the variable a in that a value corresponding to the last time section of the condition establishment time is set as an initial value.
 次に、判定部14は、b番目の時間区分において給湯器20が高温の湯を生成しても消費電力が発電電力より小さいか否かを判定する(ステップS164)。具体的には、判定部14は、b番目の時間区分において給湯器20が高温の湯を生成して住宅HMで消費される消費電力の予測値が増加しても、増加した消費電力の予測値が発電電力の予測値より小さいか否かを判定する。 Next, the determination unit 14 determines whether or not the power consumption is smaller than the generated power even if the water heater 20 generates hot water in the b-th time segment (step S164). Specifically, the determination unit 14 predicts the increased power consumption even if the predicted value of the power consumption consumed in the house HM increases because the water heater 20 generates hot water in the b-th time segment. It is determined whether the value is smaller than the predicted value of the generated power.
 消費電力が発電電力より小さいと判定した場合(ステップS164;Yes)、判定部14は、高温時間長を30分間だけ延長する(ステップS165)。そして、判定部14は、変数bの値を1だけ減少させる(ステップS166)。その後、判定部14は、ステップS164以降の処理をくり返す。 If it is determined that the power consumption is smaller than the generated power (step S164; Yes), the determination unit 14 extends the high temperature time length by 30 minutes (step S165). Then, the determination unit 14 decreases the value of the variable b by 1 (step S166). Then, the determination part 14 repeats the process after step S164.
 ステップS164にて消費電力が発電電力より小さくないと判定した場合(ステップS164;No)、判定部14は、高温沸上げ許可時間の開始時刻を算出する。具体的には、判定部14は、条件成立時間の終了時刻から高温時間長だけ前の時刻を、高温沸上げ許可時間の開始時刻として算出する。その後、判定部14は、高温沸上げ判定処理を終了する。 When it is determined in step S164 that the power consumption is not smaller than the generated power (step S164; No), the determination unit 14 calculates the start time of the high temperature boiling permission time. Specifically, the determination unit 14 calculates a time preceding the end time of the condition establishment time by the high temperature time length as the start time of the high temperature boiling permission time. Thereafter, the determination unit 14 ends the high temperature boiling determination process.
 以上の高温沸上げ判定処理により、条件成立時間の終了時刻までに連続する時間が、新たに高温沸上げ許可時間として設定される。 By the above high-temperature boiling determination process, a continuous time until the end time of the condition establishment time is newly set as the high-temperature boiling permission time.
 図11に戻り、高温沸上げ判定処理(ステップS16)が完了すると、制御装置10は、昼間沸上げ条件成立時間の開始時刻及び終了時刻を通知することにより、給湯器20に対して昼間の沸上げ運転の実行を要求する(ステップS3)。また、制御装置10は、高温沸上げ許可時間の開始時刻を通知することにより、給湯器20に対して高温の湯の沸上げ運転の実行を要求する(ステップS5)。 Returning to FIG. 11, when the high temperature boiling determination process (step S <b> 16) is completed, the control device 10 notifies the hot water heater 20 of the daytime boiling by notifying the start time and the end time of the daytime boiling condition establishment time. Request to execute the raising operation (step S3). Moreover, the control apparatus 10 requests | requires execution of the boiling operation of high temperature hot water with respect to the water heater 20 by notifying the start time of high temperature boiling permission time (step S5).
 次に、給湯器20は、計画処理を実行する(ステップS22)。計画処理は、制御装置10から通知された時刻に基づいて、沸上げ運転の開始時刻及び終了時刻と、沸上げ湯量を計画する処理である。この計画処理について、図22を用いて説明する。 Next, the water heater 20 executes a planning process (step S22). The planning process is a process for planning the start time and end time of the boiling operation and the amount of boiling water based on the time notified from the control device 10. This planning process will be described with reference to FIG.
 計画処理では、給湯器20の計画モジュール22は、まず、条件成立時間の開始時刻及び終了時刻から条件成立時間の長さを取得する(ステップS221)。次に、計画モジュール22は、条件成立時間の長さが沸上げ運転時間の下限値より長いか否かを判定する(ステップS222)。沸上げ運転時間の下限値は、例えば20分間であって、給湯器20の機種に応じて予め設定されるが、ユーザにより設定されてもよい。 In the planning process, the planning module 22 of the water heater 20 first acquires the length of the condition establishment time from the start time and end time of the condition establishment time (step S221). Next, the planning module 22 determines whether or not the length of the condition establishment time is longer than the lower limit value of the boiling operation time (step S222). The lower limit value of the boiling operation time is, for example, 20 minutes, and is set in advance according to the model of the water heater 20, but may be set by the user.
 条件成立時間の長さが沸上げ運転時間の下限値より長くないと判定した場合(ステップS222;No)、計画モジュール22は、ステップS233へ処理を移行する。一方、条件成立時間の長さが沸上げ運転時間の下限値より長いと判定した場合(ステップS222;Yes)、高温沸上げ許可時間の長さを取得する(ステップS223)。 When it is determined that the length of the condition establishment time is not longer than the lower limit value of the boiling operation time (step S222; No), the planning module 22 moves the process to step S233. On the other hand, when it is determined that the condition establishment time is longer than the lower limit value of the boiling operation time (step S222; Yes), the length of the high temperature boiling permission time is acquired (step S223).
 次に、計画モジュール22は、高温沸上げ許可時間の長さがゼロより長いか否かを判定する(ステップS224)。長さがゼロより長いと判定した場合(ステップS224;Yes)、計画モジュール22は、条件成立時間の長さが過剰であるか否かを判定する(ステップS225)。具体的には、計画モジュール22は、条件成立時間の長さと、高温沸上げ許可時間の長さから計算される係数が、閾値より大きいか否かを判定する。この係数は、例えば、条件成立時間の長さと、高温沸上げ許可時間に高温効率比を乗じた値との和である。高温効率比は、通常温度に対する高温の熱量の増加比率を指す。また、閾値は、沸上げ運転を実行可能な昼間の最長の時間であって、昼間に沸上げ可能な湯量に応じて定められる。昼間に沸上げ可能な湯量は、例えば、目標貯湯量から、昼間までの湯切れを防止するための最小貯湯量を減じた量である。 Next, the planning module 22 determines whether or not the length of the high temperature boiling permission time is longer than zero (step S224). When it is determined that the length is longer than zero (step S224; Yes), the planning module 22 determines whether or not the length of the condition establishment time is excessive (step S225). Specifically, the planning module 22 determines whether or not the coefficient calculated from the length of the condition establishment time and the length of the high temperature boiling permission time is greater than the threshold value. This coefficient is, for example, the sum of the condition establishment time and the value obtained by multiplying the high temperature boiling permission time by the high temperature efficiency ratio. High temperature efficiency ratio refers to the rate of increase in the amount of heat at high temperatures relative to normal temperature. The threshold value is the longest daytime in which the boiling operation can be performed, and is determined according to the amount of hot water that can be boiled in the daytime. The amount of hot water that can be boiled in the daytime is, for example, an amount obtained by subtracting the minimum hot water storage amount for preventing hot water shortage until the daytime from the target hot water storage amount.
 条件成立時間の長さが過剰であると判定した場合には(ステップS225;Yes)、計画モジュール22は、条件成立時間のすべてを沸上げ運転に割り当てることができない。この場合に、計画モジュール22は、夜間に生成する湯量を、最小貯湯量に設定する(ステップS226)。 When it is determined that the condition establishment time is excessive (step S225; Yes), the planning module 22 cannot allocate all the condition establishment times to the boiling operation. In this case, the planning module 22 sets the amount of hot water generated at night to the minimum amount of stored hot water (step S226).
 次に、計画モジュール22は、昼間に生成する高温の湯量と、通常温度の湯量とを算出する(ステップS227)。具体的には、計画モジュール22は、高温許可時間で沸上げる高温の湯量を算出し、通常温度の湯量を、給湯器20の最大貯湯量から最小貯湯量と高温の湯量とを減じた量に設定する。最大貯湯量は、貯湯タンク24の容量である。 Next, the planning module 22 calculates the amount of hot water generated at daytime and the amount of hot water at normal temperature (step S227). Specifically, the planning module 22 calculates the amount of hot water that is boiled at the high temperature permission time, and reduces the amount of hot water at normal temperature to the amount obtained by subtracting the minimum amount of hot water and the amount of hot water from the maximum amount of hot water stored in the water heater 20 Set. The maximum hot water storage amount is the capacity of the hot water storage tank 24.
 次に、計画モジュール22は、ステップS227で算出した湯量を沸上げるために必要な時間に基づいて、昼間における高温の湯の生成終了時刻と通常温度の湯の生成終了時刻とを設定する(ステップS228)。具体的には、計画モジュール22は、高温の湯の生成終了時刻を、条件成立時間の終了時刻に設定する。また、計画モジュール22は、通常温度の湯の生成終了時刻を、高温の湯の生成開始時刻に設定する。これにより、条件成立時刻の終了時刻までに連続する時間で沸上げ運転が実行されて、放熱を極力抑えることができる。なお、湯の生成終了時刻は、沸上げ運転の終了時刻を意味する。 Next, the planning module 22 sets the generation end time of hot water at normal temperature and the generation end time of hot water at normal temperature based on the time required to boil the amount of hot water calculated in step S227 (step S227). S228). Specifically, the plan module 22 sets the generation end time of the hot water as the end time of the condition establishment time. The planning module 22 sets the generation end time of normal temperature hot water to the generation start time of high temperature hot water. Thereby, the boiling operation is executed in a continuous time until the end time of the condition establishment time, and heat radiation can be suppressed as much as possible. The hot water generation end time means the end time of the boiling operation.
 次に、計画モジュール22は、昼間における通常温度の湯の生成開始時刻を設定する(ステップS229)。具体的には、計画モジュール22は、最大貯湯量の湯を貯えるために必要な時間を算出して、算出した時間をステップS228で設定した生成終了時刻から減算することで得た時刻を、生成開始時刻として設定する。なお、湯の生成開始時刻は、沸上げ運転の開始時刻を意味する。その後、計画モジュール22は、ステップS233へ処理を移行する。 Next, the planning module 22 sets the generation start time of normal temperature hot water in the daytime (step S229). Specifically, the planning module 22 calculates the time required to store the maximum amount of hot water, and generates the time obtained by subtracting the calculated time from the generation end time set in step S228. Set as start time. The hot water generation start time means the start time of the boiling operation. Thereafter, the planning module 22 shifts the processing to step S233.
 ステップS225において条件成立時間の長さが過剰ではないと判定した場合には(ステップS225;No)、計画モジュール22は、条件成立時間のすべてを沸上げ運転に割り当てることができる。この場合に、計画モジュール22は、条件成立時間の開始時刻及び終了時刻と、高温沸上げ許可時間の開始時刻及び終了時刻とを、そのまま湯の生成開始時刻及び終了時刻として設定する(ステップS230)。 If it is determined in step S225 that the condition establishment time is not excessive (step S225; No), the planning module 22 can assign all of the condition establishment times to the boiling operation. In this case, the planning module 22 sets the start time and end time of the condition establishment time and the start time and end time of the high temperature boiling permission time as they are as the hot water generation start time and end time (step S230). .
 次に、計画モジュール22は、条件成立時間で生成可能な湯量と、高温沸上げ許可時間で生成可能な高温の湯量とを、昼間に生成する湯量として算出する(ステップS231)。計画モジュール22は、夜間に生成する湯量を、目標貯湯量から昼間に生成する湯量を減じた量に設定する(ステップS232)。 Next, the planning module 22 calculates the amount of hot water that can be generated during the condition establishment time and the amount of hot water that can be generated during the high temperature boiling permission time as the amount of hot water generated during the daytime (step S231). The planning module 22 sets the amount of hot water generated at night to an amount obtained by subtracting the amount of hot water generated during the day from the target hot water storage amount (step S232).
 その後、計画モジュール22は、夜間における湯の生成開始時刻と生成終了時刻とを算出する。具体的には、計画モジュール22は、ステップS226又はステップS232にて設定された湯量を生成する時間を設定する。この時間は、放熱を極力抑える観点から、電気料金が低廉な時間の終了時付近に設定されることが好ましい。 Thereafter, the planning module 22 calculates the hot water generation start time and generation end time at night. Specifically, the planning module 22 sets a time for generating the amount of hot water set in step S226 or step S232. This time is preferably set in the vicinity of the end of the time when the electricity rate is low, from the viewpoint of suppressing heat dissipation as much as possible.
 図23には、ステップS226~S232において設定される湯量の一例が示されている。図23において矢印で示されるように、条件成立時間が過剰である場合には、夜間の生成湯量が設定された後に、昼間の生成湯量が設定される。具体的には、最小貯湯量、高温の湯量、通常温度の湯量の順で設定される。なお、図23に示される例では、最小貯湯量は、湯切れを防止するための最低限の起動貯湯量にマージンを加えた量に設定される。一方、条件成立時間が過剰ではない場合には、矢印で示されるように、昼間の生成湯量が設定された後に、夜間の生成湯量が設定される。具体的には、高温の湯量、通常温度の湯量、夜間の生成湯量の順で設定される。 FIG. 23 shows an example of the amount of hot water set in steps S226 to S232. As indicated by arrows in FIG. 23, when the condition establishment time is excessive, the amount of hot water generated during the day is set after the amount of hot water generated during the night is set. Specifically, the minimum hot water storage amount, the hot water amount, and the normal temperature hot water amount are set in this order. In the example shown in FIG. 23, the minimum hot water storage amount is set to an amount obtained by adding a margin to the minimum starting hot water storage amount for preventing hot water shortage. On the other hand, when the condition establishment time is not excessive, as shown by an arrow, the amount of hot water generated at night is set after the amount of hot water generated during the day is set. Specifically, it is set in the order of the amount of hot water, the amount of hot water at normal temperature, and the amount of hot water generated at night.
 ステップS224にて高温沸上げ許可時間の長さがゼロより長くないと判定した場合(ステップS224;No)、計画モジュール22は、図24に示されるように、条件成立時間の長さが閾値より長いか否かを判定する(ステップS234)。この判定は、ステップS225において高温沸上げ許可時間の長さをゼロとした場合の判定に等しい。 When it determines with the length of high temperature boiling permission time not being longer than zero in step S224 (step S224; No), as shown in FIG. 24, the plan module 22 has the length of condition establishment time longer than a threshold value. It is determined whether or not it is long (step S234). This determination is equivalent to the determination in the case where the length of the high temperature boiling permission time is zero in step S225.
 条件成立時間の長さが閾値より長いと判定した場合には(ステップS234;Yes)、計画モジュール22は、条件成立時間のすべてを沸上げ運転に割り当てることができない。この場合に、計画モジュール22は、夜間に生成する湯量を、最小貯湯量に設定する(ステップS235)。計画モジュール22は、昼間に生成する通常温度の湯量を、最大貯湯量から最小貯湯量を減じた量に設定する(ステップS236)。 When it is determined that the condition establishment time is longer than the threshold (step S234; Yes), the planning module 22 cannot allocate all the condition establishment times to the boiling operation. In this case, the planning module 22 sets the amount of hot water generated at night to the minimum amount of stored hot water (step S235). The planning module 22 sets the amount of hot water at normal temperature generated in the daytime to an amount obtained by subtracting the minimum amount of hot water from the maximum amount of stored hot water (step S236).
 次に、計画モジュール22は、昼間の湯の生成終了時刻を、条件成立時間の終了時刻に設定する(ステップS237)。そして、計画モジュール22は、昼間の湯の生成開始時刻を設定する(ステップS227)。具体的には、計画モジュール22は、最大貯湯量の湯を貯えるために必要な時間を算出して、算出した時間をステップS237で設定した生成終了時刻から減算することで得た時刻を、生成開始時刻として設定する。その後、計画モジュール22は、ステップS243へ処理を移行する。 Next, the planning module 22 sets the generation end time of daytime hot water to the end time of the condition establishment time (step S237). Then, the planning module 22 sets the daytime hot water generation start time (step S227). Specifically, the planning module 22 calculates the time required to store the maximum amount of hot water, and generates the time obtained by subtracting the calculated time from the generation end time set in step S237. Set as start time. Thereafter, the planning module 22 shifts the process to step S243.
 ステップS234において条件成立時間の長さが閾値より長くないと判定した場合には(ステップS234;No)、計画モジュール22は、条件成立時間のすべてを沸上げ運転に割り当てることができる。この場合に、計画モジュール22は、昼間の湯の生成開始時刻及び生成終了時刻を、条件成立時間の開始時刻及び終了時刻に設定する(ステップS240)。 If it is determined in step S234 that the condition establishment time is not longer than the threshold (step S234; No), the planning module 22 can assign all of the condition establishment times to the boiling operation. In this case, the planning module 22 sets the generation start time and generation end time of daytime hot water to the start time and end time of the condition establishment time (step S240).
 次に、計画モジュール22は、条件成立時間で生成可能な通常温度の湯量を、昼間に生成する湯量として算出する(ステップS241)。計画モジュール22は、夜間に生成する湯量を、目標貯湯量から昼間に生成する湯量を減じた量に設定する(ステップS242)。 Next, the planning module 22 calculates the amount of hot water at a normal temperature that can be generated during the condition establishment time as the amount of hot water generated during the daytime (step S241). The planning module 22 sets the amount of hot water generated at night to an amount obtained by subtracting the amount of hot water generated during the day from the target hot water storage amount (step S242).
 次に、計画モジュール22は、夜間の湯の生成開始時刻及び生成終了時刻を算出する(ステップS243)。具体的には、計画モジュール22は、ステップS235又はステップS242にて設定された湯量を生成する時間を設定する。その後、計画モジュール22は、計画処理を終了する。 Next, the planning module 22 calculates the generation start time and generation end time of nighttime hot water (step S243). Specifically, the planning module 22 sets a time for generating the amount of hot water set in step S235 or step S242. Thereafter, the planning module 22 ends the planning process.
 図11に戻り、計画処理(ステップS22)が終了すると、制御装置10は、計画処理で計画された湯の生成時刻を給湯器20に対して要求し、この要求に対する応答を受信することで湯の生成時刻を取得する。そして、制御装置10は、予測値を修正する予測修正処理を実行する(ステップS18)。この予測修正処理について、図25を用いて説明する。 Returning to FIG. 11, when the planning process (step S <b> 22) ends, the control device 10 requests the hot water generator 20 for the hot water generation time planned in the planning process and receives a response to this request to receive the hot water. Get generation time of. And the control apparatus 10 performs the prediction correction process which corrects a predicted value (step S18). This prediction correction process will be described with reference to FIG.
 予測修正処理において、制御装置10のプロセッサH1は、まず、変数aに1を代入する(ステップS181)。次に、プロセッサH1は、a番目の時間区分における沸上げ運転の有無が、制御装置10によって記憶されている給湯器20のスケジュールと異なるか否かを判定する(ステップS182)。このスケジュールは、通常、昼間に沸上げ運転を実行することなく、夜間に沸上げ運転を実行するスケジュールである。 In the prediction correction process, the processor H1 of the control device 10 first substitutes 1 for the variable a (step S181). Next, the processor H1 determines whether or not the boiling operation in the a-th time segment is different from the schedule of the water heater 20 stored by the control device 10 (step S182). This schedule is usually a schedule for performing a boiling operation at night without performing a boiling operation in the daytime.
 沸上げ運転の有無がスケジュールと異ならないと判定した場合(ステップS182;No)、プロセッサH1は、ステップS184へ処理を移行する。一方、沸上げ運転の有無がスケジュールと異なると判定した場合(ステップS182;Yes)、プロセッサH1は、a番目の時間区分における消費電力の予測値を修正する(ステップS183)。 If it is determined that the presence or absence of the boiling operation is not different from the schedule (step S182; No), the processor H1 moves the process to step S184. On the other hand, when it is determined that the presence or absence of the boiling operation is different from the schedule (step S182; Yes), the processor H1 corrects the predicted power consumption value in the a-th time segment (step S183).
 次に、プロセッサH1は、変数aが最後の値であるか否かを判定し(ステップS184)、最後の値ではないと判定した場合(ステップS184;No)、変数aの値を1だけ増加させて(ステップS185)、ステップS182以降の処理をくり返す。一方、変数aが最後の値であると判定した場合(ステップS184;Yes)、プロセッサH1は、予測修正処理を終了する。 Next, the processor H1 determines whether or not the variable a is the last value (step S184). If it is determined that the variable a is not the last value (step S184; No), the value of the variable a is increased by 1. (Step S185), and the processing after Step S182 is repeated. On the other hand, when it is determined that the variable a is the last value (step S184; Yes), the processor H1 ends the prediction correction process.
 続いて、図10に示された一連の処理のうち、昼間に実行される部分の詳細を、図26~28を用いて説明する。 Subsequently, details of the portion executed in the daytime in the series of processes shown in FIG. 10 will be described with reference to FIGS.
 図26に示されるように、昼間の湯の生成開始時刻になると、給湯器20は、湯の生成を開始する(ステップS25)。また、計測装置40は、発電電力及び消費電力の計測値をくり返し制御装置10へ送信する。 As shown in FIG. 26, when the daytime hot water generation start time comes, the water heater 20 starts generating hot water (step S25). In addition, the measurement device 40 repeatedly transmits the measurement values of the generated power and the power consumption to the control device 10.
 制御装置10は、計測値に基づいて、買電価格判定処理(ステップS191)と売電価格判定処理(ステップS195)とを順に実行する。これらの処理は、実際の余剰電力の大きさが予測された余剰電力と異なるときに、給湯器20の運転モードを変更すべきか否かを判定する処理である。以下では、これらの処理について図27,28を用いて説明する。 The control device 10 sequentially executes a power purchase price determination process (step S191) and a power sale price determination process (step S195) based on the measured value. These processes are processes for determining whether or not to change the operation mode of the water heater 20 when the actual surplus power is different from the predicted surplus power. Hereinafter, these processes will be described with reference to FIGS.
 図27には、買電価格判定処理が示されている。買電価格判定処理は、余剰電力が不足することにより生じた買電を、給湯器20の沸上げ運転を停止させることで抑えるべきか否かを判定する処理である。図27に示されるように、買電価格判定処理において、判定部14は、まず、昼間における買電価格の積算値を算出する(ステップS192)。余剰電力が予測通りに推移して昼間に沸上げ運転が実行された場合には、消費電力が発電電力を上回ることがないので、ステップS192で算出される買電価格はゼロになる。 FIG. 27 shows a power purchase price determination process. The power purchase price determination process is a process for determining whether or not the power purchase caused by the shortage of surplus power should be suppressed by stopping the boiling operation of the water heater 20. As illustrated in FIG. 27, in the power purchase price determination process, the determination unit 14 first calculates an integrated value of the power purchase price in the daytime (step S192). If the surplus power changes as predicted and the boiling operation is performed in the daytime, the power consumption does not exceed the generated power, so the power purchase price calculated in step S192 is zero.
 次に、判定部14は、算出した買電価格が、1日間における給湯器20の消費電力の買電価格の平均値より大きいか否かを判定する(ステップS193)。この平均値は、例えば、過去の一定期間における給湯器20の運転履歴から算出される。 Next, the determination unit 14 determines whether or not the calculated power purchase price is larger than the average value of the power purchase price of the power consumption of the water heater 20 in one day (step S193). This average value is calculated from, for example, the operation history of the water heater 20 in a past fixed period.
 算出した買電価格が平均値より大きくはないと判定した場合(ステップS193;No)、判定部14は、買電価格判定処理を終了する。一方、算出した買電価格が平均値より大きいと判定した場合(ステップS193;Yes)、判定部14は、運転モード変更フラグをONに設定して、昼間に生成すべき湯量を目標貯湯量に変更する(ステップS194)。その後、判定部14は、買電価格判定処理を終了する。 When it is determined that the calculated power purchase price is not greater than the average value (step S193; No), the determination unit 14 ends the power purchase price determination process. On the other hand, when it determines with the calculated electric power purchase price being larger than an average value (step S193; Yes), the determination part 14 sets an operation mode change flag to ON, and sets the hot water amount which should be produced | generated in the daytime as a target hot water storage amount. Change (step S194). Thereafter, the determination unit 14 ends the purchase price determination process.
 図28には、売電価格判定処理が示されている。売電価格判定処理は、余剰電力が過剰であって、給湯器20に代えて商用電力系統PSへ電力を供給すべきか否かを、経済効果の観点から判定する処理である。図28に示されるように、売電価格判定処理において、判定部14は、まず、現在の貯湯量が目標貯湯量より大きいか否かを判定する(ステップS196)。 FIG. 28 shows the power selling price determination process. The power selling price determination process is a process for determining whether or not surplus power is excessive and whether power should be supplied to the commercial power system PS instead of the water heater 20 from the viewpoint of economic effect. As shown in FIG. 28, in the power selling price determination process, the determination unit 14 first determines whether or not the current hot water storage amount is larger than the target hot water storage amount (step S196).
 次に、判定部14は、給湯器20が湯を生成しないときの逆潮電力の売電価格が、夜間に給湯器が消費する電力の買電価格を超えるか否かを判定する(ステップS197)。具体的には、判定部14は、現在の消費電力の計測値から給湯器20の消費電力を減じた電力を、給湯器20が湯を生成しないときの消費電力として算出し、算出した電力を現在の発電電力から減じて得た逆潮電力の売電価格を算出する。また、判定部14は、給湯器20が昼間に沸上げ運転を実行することなく夜間に沸上げ運転を実行した場合に消費される電力の買電価格を算出する。そして、判定部14は、算出した売電価格が買電価格より高いか否かを判定する。 Next, the determination unit 14 determines whether or not the power selling price of the reverse power when the water heater 20 does not generate hot water exceeds the power purchase price of the power consumed by the water heater at night (step S197). ). Specifically, the determination unit 14 calculates the power obtained by subtracting the power consumption of the water heater 20 from the current measured power consumption value as the power consumption when the water heater 20 does not generate hot water, and calculates the calculated power. Calculate the selling price of the reverse power obtained by subtracting the current generated power. Moreover, the determination part 14 calculates the electric power purchase price of the electric power consumed when the water heater 20 performs a boiling operation at night, without performing a boiling operation in the daytime. Then, the determination unit 14 determines whether or not the calculated power sale price is higher than the power purchase price.
 売電価格が買電価格を超えないと判定した場合(ステップS197;No)、判定部14は、売電価格判定処理を終了する。一方、売電価格が買電価格を超えると判定した場合(ステップS197;Yes)、判定部14は、運転モード変更フラグをONに設定して、給湯器20に沸上げ運転を停止させる(ステップS198)。その後、判定部14は、売電価格判定処理を終了する。 If it is determined that the power sale price does not exceed the power purchase price (step S197; No), the determination unit 14 ends the power sale price determination process. On the other hand, when it determines with a power sale price exceeding a power purchase price (step S197; Yes), the determination part 14 sets an operation mode change flag to ON, and makes the water heater 20 stop boiling operation (step). S198). Thereafter, the determination unit 14 ends the power sale price determination process.
 図26に戻り、売電価格判定処理(ステップS195)に続いて、制御装置10は、運転モード変更フラグがONに設定されているか否かを判定する(ステップS6)。 Referring back to FIG. 26, following the power selling price determination process (step S195), the control device 10 determines whether or not the operation mode change flag is set to ON (step S6).
 運転モード変更フラグがONに設定されていないと判定した場合(ステップS6;No)、制御装置10は、給湯器20の運転モードを変更しない。一方、運転モード変更フラグがONに設定されていると判定した場合(ステップS6;Yes)、制御装置10は、給湯器20に対して運転モードの変更を要求する(ステップS7)。 When it is determined that the operation mode change flag is not set to ON (step S6; No), the control device 10 does not change the operation mode of the water heater 20. On the other hand, when it determines with the operation mode change flag being set to ON (step S6; Yes), the control apparatus 10 requests | requires the change of an operation mode with respect to the water heater 20 (step S7).
 その後、給湯器20は、制御装置10からの要求に従って、運転モードを変更する(ステップS8)。そして、昼間の湯の生成終了時刻になり、沸上げ運転が継続されている場合には、給湯器20は、湯の生成を停止する(ステップS27)。 Thereafter, the water heater 20 changes the operation mode in accordance with a request from the control device 10 (step S8). Then, when the hot water generation end time is reached and the boiling operation is continued, the water heater 20 stops the hot water generation (step S27).
 以上、説明したように、本実施の形態に係る給湯器制御システム100では、給湯器20の制御部21は、夜間に給湯器20に通常温度の湯を生成させ、抑制指示が制御装置10の指示取得部11によって取得された場合に、抑制指示により指定された昼間の時間に給湯器20に高温の湯を生成させる。これにより、発電可能であるにも関わらず抑制指示によって発電電力が制限されることで損失する電力を減少させることができる。ひいては、電力の利用効率を向上させることができる。 As described above, in the water heater control system 100 according to the present embodiment, the control unit 21 of the water heater 20 causes the water heater 20 to generate normal temperature hot water at night, and a suppression instruction is sent to the control device 10. When acquired by the instruction acquisition unit 11, the hot water heater 20 is caused to generate hot water during the daytime specified by the suppression instruction. As a result, although the power generation is possible, the power lost due to the generated power being limited by the suppression instruction can be reduced. As a result, the utilization efficiency of electric power can be improved.
 また、給湯器制御システム100では、図21のステップS164に示されるように、昼間に給湯器20が高温の湯を生成しても消費電力が発電電力より小さいことが、第1計測値取得部41及び第2計測値取得部42によって取得された計測値から予測により示されるときに、制御部21が給湯器20に高温の湯を生成させた。これにより、新たな買電を生じさせることなく、高温の湯を生成することができる。 Further, in the water heater control system 100, as shown in step S164 of FIG. 21, even if the water heater 20 generates high-temperature hot water during the day, the first measured value acquisition unit indicates that the power consumption is smaller than the generated power. 41 and the control part 21 made the hot water heater 20 produce | generate hot water, when it shows by prediction from the measured value acquired by the 2nd measured value acquisition part 42. FIG. Thereby, hot water can be produced | generated, without producing new electric power purchase.
 また、給湯器制御システム100では、制御部21は、給湯器20に通常温度の湯を生成させてから高温の湯を生成させる。通常、沸上げた湯は貯湯タンク24の上部から貯湯タンク24内に流入するため、高温の湯を後から沸上げることで、貯湯タンク24内で通常温度の湯と高温の湯とが混合してしまうことを避けることができる。 Also, in the water heater control system 100, the control unit 21 causes the water heater 20 to generate hot water at normal temperature and then generate hot water. Normally, the hot water that has been boiled flows into the hot water storage tank 24 from the upper part of the hot water storage tank 24, so that hot water of normal temperature and hot water are mixed in the hot water storage tank 24 by boiling the hot water later. Can be avoided.
 また、給湯器制御システム100では、分散型電源30が電力線を介して蓄電装置に接続されているときには、高温の湯が生成されない。これにより、高温の湯の生成より、蓄電装置の充電処理に、余剰電力が優先して割り当てられることとなる。蓄電装置は、一般的に、蓄積したエネルギーを電力として再度供給可能であるため、利便性が高い。このため、蓄電装置に優先して余剰電力を供給することで、利便性を向上させることができる。 Further, in the water heater control system 100, when the distributed power source 30 is connected to the power storage device via the power line, hot water is not generated. Thereby, surplus electric power is preferentially assigned to the charging process of the power storage device over the generation of hot water. In general, the power storage device is highly convenient because the stored energy can be supplied again as electric power. For this reason, convenience can be improved by supplying surplus electric power preferentially to a power storage device.
 実施の形態2.
 続いて、実施の形態2について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。
Embodiment 2. FIG.
Next, the second embodiment will be described focusing on the differences from the first embodiment. In addition, about the structure which is the same as that of the said Embodiment 1, or equivalent, while using an equivalent code | symbol, the description is abbreviate | omitted or simplified.
 本実施の形態に係る給湯器制御システム101は、制御装置10を省略して構成される点で、実施の形態1に係る給湯器制御システム100と異なっている。 The water heater control system 101 according to the present embodiment is different from the water heater control system 100 according to the first embodiment in that the controller 10 is omitted.
 図29に示されるように、給湯器制御システム101では、分散型電源30、計測装置40、電気機器50が、宅内ネットワークNW2と広域ネットワークNW1とを介してデータサーバ70と通信可能となるように接続されている。また、給湯器20は、分散型電源30と通信可能となるように接続され、分散型電源30を介してデータサーバ70に接続される。 As shown in FIG. 29, in the water heater control system 101, the distributed power source 30, the measuring device 40, and the electric device 50 can communicate with the data server 70 via the home network NW2 and the wide area network NW1. It is connected. The water heater 20 is connected so as to be communicable with the distributed power source 30 and is connected to the data server 70 via the distributed power source 30.
 データサーバ70は、指示取得部11を有している。データサーバ70は、実施の形態1に係る制御装置10と同等に機能する。 The data server 70 has an instruction acquisition unit 11. The data server 70 functions in the same manner as the control device 10 according to the first embodiment.
 図30には、本実施の形態に係る給湯器制御システム101の機能的な構成が示されている。図30に示されるように、データサーバ70は、指示取得部11、余剰電力予測部13及び判定部14を有している。また、分散型電源30は、データサーバ70の判定部14と給湯器20の制御部21との通信を中継する中継部32を有している。 FIG. 30 shows a functional configuration of the water heater control system 101 according to the present embodiment. As illustrated in FIG. 30, the data server 70 includes an instruction acquisition unit 11, a surplus power prediction unit 13, and a determination unit 14. In addition, the distributed power source 30 includes a relay unit 32 that relays communication between the determination unit 14 of the data server 70 and the control unit 21 of the water heater 20.
 以上、説明したように、本実施の形態では、制御装置10を省略して給湯器制御システム101が構成された。これにより、住宅HMに設置する機器の数を減らして、給湯器制御システム101を簡便に構成することができる。 As described above, in the present embodiment, the water heater control system 101 is configured by omitting the control device 10. Thereby, the number of the apparatuses installed in the house HM can be reduced, and the water heater control system 101 can be simply configured.
 実施の形態3.
 続いて、実施の形態3について、上述の実施の形態2との相違点を中心に説明する。なお、上記実施の形態2と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。
Embodiment 3 FIG.
Subsequently, the third embodiment will be described focusing on differences from the above-described second embodiment. In addition, about the structure same or equivalent to the said Embodiment 2, while using an equivalent code | symbol, the description is abbreviate | omitted or simplified.
 本実施の形態に係る給湯器制御システム102は、図31に示されるように、給湯器20が宅内ネットワークNW2を介してデータサーバ70と通信する点で、実施の形態2に係る給湯器制御システム101と異なっている。 As shown in FIG. 31, the water heater control system 102 according to the present embodiment is a water heater control system according to the second embodiment in that the water heater 20 communicates with the data server 70 via the home network NW2. 101.
 以上、説明したように、本実施の形態では、分散型電源30がデータサーバ70と給湯器20との通信を中継する必要がないため、汎用の分散型電源30を用いて給湯器制御システム102を構成することができる。 As described above, in the present embodiment, since the distributed power source 30 does not need to relay communication between the data server 70 and the water heater 20, the water heater control system 102 using the general-purpose distributed power source 30 is used. Can be configured.
 実施の形態4.
 続いて、実施の形態4について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。
Embodiment 4 FIG.
Next, the fourth embodiment will be described focusing on the differences from the first embodiment. In addition, about the structure which is the same as that of the said Embodiment 1, or equivalent, while using an equivalent code | symbol, the description is abbreviate | omitted or simplified.
 本実施の形態に係る給湯器制御システム103は、制御装置10及びデータサーバ70を省略して構成される点で、実施の形態1に係る給湯器制御システム100と異なっている。さらに、給湯器制御システム103は、発電消費予測部71及び余剰電力予測部13を省略して構成される点で、給湯器制御システム100と異なっている。 The water heater control system 103 according to the present embodiment is different from the water heater control system 100 according to the first embodiment in that the controller 10 and the data server 70 are omitted. Further, the water heater control system 103 is different from the water heater control system 100 in that the power generation consumption prediction unit 71 and the surplus power prediction unit 13 are omitted.
 図32には、給湯器制御システム103の機能的な構成が示されている。図32に示されるように、給湯器20は、指示取得部11と、判定部14と、計測値を蓄積する記憶部19とを有している。判定部14は、実施の形態1に係る予測値に代えて、記憶部19に蓄積された発電電力及び消費電力の計測値の平均値を、昼間沸上げ判定処理及び高温沸上げ判定処理等に用いる。 FIG. 32 shows a functional configuration of the water heater control system 103. As shown in FIG. 32, the water heater 20 includes an instruction acquisition unit 11, a determination unit 14, and a storage unit 19 that accumulates measurement values. The determination unit 14 replaces the predicted value according to the first embodiment with the average value of the generated power and the measured power consumption accumulated in the storage unit 19 for the daytime boiling determination process and the high temperature boiling determination process. Use.
 以上、説明したように、本実施の形態では、制御装置10及びデータサーバ70を省略して給湯器制御システム103が構成された。これにより、給湯器制御システム103を簡便に構成することができる。 As described above, in the present embodiment, the water heater control system 103 is configured by omitting the control device 10 and the data server 70. Thereby, the water heater control system 103 can be simply configured.
 実施の形態5.
 続いて、実施の形態5について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いるとともに、その説明を省略又は簡略する。
Embodiment 5 FIG.
Next, the fifth embodiment will be described focusing on the differences from the first embodiment described above. In addition, about the structure which is the same as that of the said Embodiment 1, or equivalent, while using an equivalent code | symbol, the description is abbreviate | omitted or simplified.
 本実施の形態に係る給湯器制御システム104は、図33に示されるように、蓄電装置81及び電気自動車82を有する点で、実施の形態1に係る給湯器制御システム100と異なっている。また、給湯器制御システム104は、抑制指示に応じて昼間に稼動させる機器を、給湯器20、電気機器50、蓄電装置81及び電気自動車82から選択する点で、給湯器制御システム100と異なっている。 The water heater control system 104 according to the present embodiment is different from the water heater control system 100 according to the first embodiment in that it includes a power storage device 81 and an electric vehicle 82, as shown in FIG. Also, the water heater control system 104 is different from the water heater control system 100 in that a device to be operated during the day according to the suppression instruction is selected from the water heater 20, the electric device 50, the power storage device 81, and the electric vehicle 82. Yes.
 制御装置10は、抑制指示を取得すると、図34に示される対象機器選択処理を実行する。この対象機器選択処理は、昼間に電力を消費して稼動させる対象となる機器を選択する処理である。 When the control device 10 acquires the suppression instruction, the control device 10 executes a target device selection process shown in FIG. This target device selection process is a process of selecting a device to be operated by consuming electric power during the daytime.
 対象機器選択処理において、制御装置10のプロセッサH1は、まず、蓄電装置81又は電気自動車82が制御装置10と通信可能となるように接続されているか否かを判定する(ステップS81)。蓄電装置81又は電気自動車82が接続されていると判定した場合(ステップS81;Yes)、プロセッサH1は、接続されている蓄電装置81又は電気自動車82について、対象機器の適合条件が成立するか否かを判定する(ステップS82)。この適合条件には、例えば、ユーザの使用予定がないこと、あるいは、充電率が一定値以下であることが含まれる。 In the target device selection process, the processor H1 of the control device 10 first determines whether or not the power storage device 81 or the electric vehicle 82 is connected so as to be communicable with the control device 10 (step S81). When it is determined that the power storage device 81 or the electric vehicle 82 is connected (step S81; Yes), the processor H1 determines whether the target device conformity condition is satisfied for the connected power storage device 81 or the electric vehicle 82. Is determined (step S82). This conforming condition includes, for example, that the user does not plan to use or that the charging rate is a certain value or less.
 適合条件が成立すると判定した場合(ステップS82;Yes)、プロセッサH1は、蓄電装置81又は電気自動車82を選択する(ステップS83)。これらの機器が選択された場合に、制御装置10は、抑制指示によって指定された時間に、これらの機器に充電処理を実行させる。その後、プロセッサH1は、対象機器選択処理を終了する。 If it is determined that the conforming condition is satisfied (step S82; Yes), the processor H1 selects the power storage device 81 or the electric vehicle 82 (step S83). When these devices are selected, the control device 10 causes these devices to execute a charging process at the time designated by the suppression instruction. Thereafter, the processor H1 ends the target device selection process.
 ステップS81にて蓄電装置81又は電気自動車82が接続されていないと判定した場合(ステップS81;No)、又はステップS82にて適合条件が成立しないと判定した場合(ステップS82;No)、プロセッサH1は、給湯器20が制御装置10と通信可能に接続されているか否かを判定する(ステップS84)。 When it is determined in step S81 that the power storage device 81 or the electric vehicle 82 is not connected (step S81; No), or when it is determined in step S82 that the matching condition is not satisfied (step S82; No), the processor H1 Determines whether the water heater 20 is communicably connected to the control device 10 (step S84).
 給湯器20が接続されていると判定した場合(ステップS84;Yes)、プロセッサH1は、接続されている給湯器20について、適合条件が成立するか否かを判定する(ステップS85)。この適合条件には、例えば、ユーザの使用予定がないこと、あるいは、貯湯量が一定値以下であることが含まれる。 When it is determined that the water heater 20 is connected (step S84; Yes), the processor H1 determines whether or not a conforming condition is satisfied for the connected water heater 20 (step S85). This conforming condition includes, for example, that the user does not plan to use, or that the amount of stored hot water is a predetermined value or less.
 適合条件が成立すると判定した場合(ステップS85;Yes)、プロセッサH1は、給湯器20を選択する(ステップS86)。その後、プロセッサH1は、対象機器選択処理を終了する。 When it is determined that the conforming condition is satisfied (step S85; Yes), the processor H1 selects the water heater 20 (step S86). Thereafter, the processor H1 ends the target device selection process.
 ステップS84にて給湯器20が接続されていないと判定した場合(ステップS84;No)、又はステップS85にて適合条件が成立しないと判定した場合(ステップS85;No)、プロセッサH1は、節電機器が制御装置10と通信可能に接続されているか否かを判定する(ステップS87)。節電機器は、節電の対象となっている電気機器50を意味し、例えば、冷蔵庫又は空調機器である。 When it is determined in step S84 that the water heater 20 is not connected (step S84; No), or when it is determined in step S85 that the matching condition is not satisfied (step S85; No), the processor H1 Is determined to be communicable with the control device 10 (step S87). The power saving device means the electric device 50 that is a target of power saving, and is, for example, a refrigerator or an air conditioning device.
 節電機器が接続されていると判定した場合(ステップS87;Yes)、プロセッサH1は、接続されている節電機器について、適合条件が成立するか否かを判定する(ステップS88)。 When it is determined that the power saving device is connected (step S87; Yes), the processor H1 determines whether or not a conforming condition is satisfied for the connected power saving device (step S88).
 適合条件が成立すると判定した場合(ステップS88;Yes)、プロセッサH1は、節電機器を選択する(ステップS89)。節電機器が選択された場合に、制御装置10は、抑制指示によって指定された時間に、節電機器に課されている節電の設定を解除する。その後、プロセッサH1は、対象機器選択処理を終了する。 If it is determined that the matching condition is satisfied (step S88; Yes), the processor H1 selects a power saving device (step S89). When the power saving device is selected, the control device 10 cancels the power saving setting imposed on the power saving device at the time specified by the suppression instruction. Thereafter, the processor H1 ends the target device selection process.
 ステップS87にて節電機器が接続されていないと判定した場合(ステップS87;No)、又はステップS88にて適合条件が成立しないと判定した場合(ステップS88;No)、プロセッサH1は、対象機器を選択することなく、対象機器選択処理を終了する。 If it is determined in step S87 that the power-saving device is not connected (step S87; No), or if it is determined in step S88 that the matching condition is not satisfied (step S88; No), the processor H1 selects the target device. The target device selection process is terminated without making a selection.
 以上、説明したように、本実施の形態に係る制御装置10は、蓄電装置81又は電気自動車82、給湯器20、節電機器の順で対象機器を選択した。蓄電装置81及び電気自動車82は、蓄積するエネルギーの容量が大きく、かつ、蓄積したエネルギーを電力として再利用することができるため利便性が高い。また、給湯器20は、蓄積した熱量を電力として再利用することはできないが、蓄積するエネルギーの容量は比較的大きい。このため、利便性の高い順で適切な機器を選択することができる。 As described above, the control device 10 according to the present embodiment selects the target device in the order of the power storage device 81 or the electric vehicle 82, the water heater 20, and the power saving device. The power storage device 81 and the electric vehicle 82 are highly convenient because they have a large energy storage capacity and can reuse the stored energy as electric power. In addition, the hot water heater 20 cannot reuse the accumulated amount of heat as electric power, but the capacity of the accumulated energy is relatively large. For this reason, a suitable apparatus can be selected in order with high convenience.
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態によって限定されるものではない。 As mentioned above, although embodiment of this invention was described, this invention is not limited by the said embodiment.
 例えば、分散型電源30は、太陽光により発電する装置に限られず、風力又は水力により発電する装置であってもよいし、燃料電池を備える装置であってもよい。 For example, the distributed power source 30 is not limited to a device that generates power using sunlight, and may be a device that generates power using wind or hydraulic power, or a device including a fuel cell.
 また、補助記憶部H3に記憶されているプログラムPaを、フレキシブルディスク、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto-Optical disk)等のコンピュータ読み取り可能な記録媒体に格納して配布し、そのプログラムPaをコンピュータにインストールすることにより、上述の処理を実行する装置を構成することができる。 Further, the program Pa stored in the auxiliary storage unit H3 can be read by a computer such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and an MO (Magneto-Optical Disk). By storing and distributing in a recording medium and installing the program Pa in a computer, an apparatus for executing the above-described processing can be configured.
 また、プログラムPaをインターネットに代表される通信ネットワーク上のサーバ装置が有するディスク装置に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロードするようにしてもよい。 Further, the program Pa may be stored in a disk device included in a server device on a communication network represented by the Internet, and may be downloaded onto a computer by being superimposed on a carrier wave, for example.
 また、ネットワークを介してプログラムPaを転送しながら起動実行することによっても、上述の処理を達成することができる。 The above-described processing can also be achieved by starting and executing the program Pa while transferring it over the network.
 さらに、プログラムPaの全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムPaを実行することによっても、上述の処理を達成することができる。 Furthermore, the above-described processing can also be achieved by executing all or part of the program Pa on the server device and executing the program Pa while the computer transmits / receives information related to the processing via the communication network. .
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合には、OS以外の部分のみを媒体に格納して配布してもよく、また、コンピュータにダウンロードしてもよい。 Note that when the above functions are realized by sharing an OS (Operating System), or when the functions are realized by cooperation between the OS and an application, only the part other than the OS may be stored in a medium and distributed. It may also be downloaded to a computer.
 また、制御装置10及び給湯器20の機能を実現する手段は、ソフトウェアに限られず、その一部又は全部を専用のハードウェアによって実現してもよい。例えば、指示取得部11、余剰電力予測部13、判定部14、計画モジュール22、第1制御モジュール22a及び第2制御モジュール22bを、FPGA(Field Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)に代表される回路を用いて構成すれば、制御装置10及び給湯器20の省電力化を図ることができる。 Further, the means for realizing the functions of the control device 10 and the water heater 20 is not limited to software, and a part or all of the means may be realized by dedicated hardware. For example, the instruction acquisition unit 11, surplus power prediction unit 13, determination unit 14, planning module 22, first control module 22 a, and second control module 22 b are integrated into an FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit). If the circuit is typified, the power consumption of the control device 10 and the water heater 20 can be reduced.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本発明の給湯器制御システム、制御方法及びプログラムは、電力の効率的な利用に適している。 The water heater control system, control method, and program of the present invention are suitable for efficient use of electric power.
 10 制御装置、 11 指示取得部、 12 転送部、 13 余剰電力予測部、 14 判定部、 19 記憶部、 20 給湯器、 21 制御部、 22 計画モジュール、 22a 第1制御モジュール、 22b 第2制御モジュール、 23 ヒートポンプユニット、 24 貯湯タンク、 30 分散型電源、 31 パワーコンディショナ、 32 中継部、 40 計測装置、 41 第1計測値取得部、 42 第2計測値取得部、 50 電気機器、 60 電力サーバ、 70 データサーバ、 71 発電消費予測部、 81 蓄電装置、 82 電気自動車、 100~104 給湯器制御システム、 HM 住宅、 H1 プロセッサ、 H2 主記憶部、 H3 補助記憶部、 H4 入力部、 H5 出力部、 H6 通信部、 H7 内部バス、 L21,L22,La,Lc,Lg,Lp, 線、 NW1 広域ネットワーク、 NW2 宅内ネットワーク、 Pa プログラム、 PS 商用電力系統。 10 control device, 11 instruction acquisition unit, 12 transfer unit, 13 surplus power prediction unit, 14 determination unit, 19 storage unit, 20 water heater, 21 control unit, 22 plan module, 22a first control module, 22b second control module , 23 heat pump unit, 24 hot water storage tank, 30 distributed power source, 31 power conditioner, 32 relay unit, 40 measuring device, 41 first measurement value acquisition unit, 42 second measurement value acquisition unit, 50 second electrical device, 60 power server , 70 data server, 71 power generation consumption prediction unit, 81 power storage device, 82 electric vehicle, 100-104 water heater control system, HM housing, H1 processor, H2 main storage unit, H3 auxiliary storage unit, H4 input unit, H5 Output unit, H6 communication unit, H7 internal bus, L21, L22, La, Lc, Lg, Lp, lines, NW1 wide area network, NW2 home network, Pa program, PS commercial power system.

Claims (6)

  1.  商用電力系統と前記商用電力系統に電力を供給する分散型電源との少なくとも一方から供給される電力で湯を生成する給湯器を制御する給湯器制御システムであって、
     第1の時間における前記分散型電源から前記商用電力系統への電力の供給を抑制する指示を取得する指示取得手段と、
     前記第1の時間とは異なる第2の時間に前記給湯器に第1温度の湯を生成させ、前記指示取得手段によって前記指示が取得された場合に、前記第1の時間に前記給湯器に前記第1温度より高い第2温度の湯を生成させる制御手段と、
     を備える給湯器制御システム。
    A water heater control system that controls a water heater that generates hot water using power supplied from at least one of a commercial power system and a distributed power source that supplies power to the commercial power system,
    Instruction acquisition means for acquiring an instruction to suppress power supply from the distributed power source to the commercial power system in a first time;
    When the water heater generates hot water at the first temperature at a second time different from the first time and the instruction is acquired by the instruction acquisition means, the water heater is supplied to the water heater at the first time. Control means for generating hot water having a second temperature higher than the first temperature;
    A water heater control system.
  2.  前記分散型電源による発電電力の計測値を取得する第1計測値取得手段と、
     前記給湯器を有し、前記分散型電源と前記商用電力系統との少なくとも一方からの電力が供給される住宅で消費される消費電力の計測値を取得する第2計測値取得手段と、をさらに備え、
     前記制御手段は、
     前記指示取得手段によって前記指示が取得された場合において、前記第1の時間に前記給湯器が前記第2温度の湯を生成しても前記消費電力が前記発電電力より小さいことが、前記第1計測値取得手段によって取得された計測値と前記第2計測値取得手段によって取得された計測値とから示されるときに、前記第1の時間に前記給湯器に前記第2温度の湯を生成させる、
     請求項1に記載の給湯器制御システム。
    First measurement value acquisition means for acquiring a measurement value of power generated by the distributed power source;
    A second measurement value acquisition unit that includes the water heater, and acquires a measurement value of power consumption consumed in a house to which power from at least one of the distributed power source and the commercial power system is supplied; Prepared,
    The control means includes
    When the instruction is acquired by the instruction acquisition unit, the power consumption is smaller than the generated power even if the water heater generates hot water at the second temperature in the first time. When indicated by the measured value acquired by the measured value acquiring means and the measured value acquired by the second measured value acquiring means, the hot water heater generates hot water at the second temperature at the first time. ,
    The water heater control system according to claim 1.
  3.  前記制御手段は、前記指示取得手段によって前記指示が取得された場合において、前記第1の時間内に、前記給湯器に前記第2温度より低い第3温度の湯を生成させてから前記第2温度の湯を生成させる、
     請求項1又は2に記載の給湯器制御システム。
    When the instruction is acquired by the instruction acquisition unit, the control unit causes the water heater to generate hot water having a third temperature lower than the second temperature within the first time period, and then performs the second operation. To produce hot water of temperature,
    The water heater control system according to claim 1 or 2.
  4.  前記制御手段は、前記指示取得手段によって前記指示が取得された場合において、前記分散型電源が電力線を介して蓄電装置に接続されているときには、前記第1の時間に前記給湯器に前記第2温度の湯を生成させない、
     請求項1から3のいずれか一項に記載の給湯器制御システム。
    In the case where the instruction is acquired by the instruction acquisition unit and the distributed power source is connected to the power storage device via a power line, the control unit is configured to connect the second water heater to the water heater at the first time. Does not produce hot water of temperature,
    The water heater control system according to any one of claims 1 to 3.
  5.  商用電力系統と前記商用電力系統に電力を供給する分散型電源との少なくとも一方から供給される電力で湯を生成する給湯器を制御する制御方法であって、
     第1の時間に前記給湯器に予め定められた第1温度の湯を生成させる第1制御ステップと、
     前記第1の時間とは異なる第2の時間における前記分散型電源から前記商用電力系統への電力の供給を抑制することが指示された場合に、前記第2の時間に前記給湯器に前記第1温度より高い第2温度の湯を生成させる第2制御ステップと、
     を含む制御方法。
    A control method for controlling a water heater that generates hot water with power supplied from at least one of a commercial power system and a distributed power source that supplies power to the commercial power system,
    A first control step of causing the water heater to generate hot water having a predetermined first temperature at a first time;
    When it is instructed to suppress the supply of power from the distributed power source to the commercial power system at a second time that is different from the first time, the hot water heater is connected to the hot water heater at the second time. A second control step for generating hot water having a second temperature higher than one temperature;
    Control method.
  6.  商用電力系統と前記商用電力系統に電力を供給する分散型電源との少なくとも一方から供給される電力で湯を生成する給湯器を制御するコンピュータを、
     第1の時間に前記給湯器に予め定められた第1温度の湯を生成させる第1制御手段、
     前記第1の時間とは異なる第2の時間における前記分散型電源から前記商用電力系統への電力の供給を抑制することが指示された場合に、前記第2の時間に前記給湯器に前記第1温度より高い第2温度の湯を生成させる第2制御手段、
     として機能させるためのプログラム。
    A computer that controls a water heater that generates hot water using power supplied from at least one of a commercial power system and a distributed power source that supplies power to the commercial power system;
    First control means for generating hot water of a predetermined first temperature in the water heater at a first time;
    When it is instructed to suppress the supply of power from the distributed power source to the commercial power system at a second time that is different from the first time, the hot water heater is connected to the hot water heater at the second time. Second control means for generating hot water having a second temperature higher than one temperature;
    Program to function as.
PCT/JP2015/083223 2015-11-26 2015-11-26 Water heater control system, control method, and program WO2017090151A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/083223 WO2017090151A1 (en) 2015-11-26 2015-11-26 Water heater control system, control method, and program
JP2017552610A JP6580159B2 (en) 2015-11-26 2015-11-26 Water heater control system, control method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083223 WO2017090151A1 (en) 2015-11-26 2015-11-26 Water heater control system, control method, and program

Publications (1)

Publication Number Publication Date
WO2017090151A1 true WO2017090151A1 (en) 2017-06-01

Family

ID=58763368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083223 WO2017090151A1 (en) 2015-11-26 2015-11-26 Water heater control system, control method, and program

Country Status (2)

Country Link
JP (1) JP6580159B2 (en)
WO (1) WO2017090151A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163769A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Energy prediction system
JP2018207689A (en) * 2017-06-06 2018-12-27 積水化学工業株式会社 Power management system and power management method
JP2019113235A (en) * 2017-12-22 2019-07-11 三菱電機株式会社 Hot water storage type water heater
WO2019163140A1 (en) * 2018-02-26 2019-08-29 三菱電機株式会社 Hot-water supply system, cloud server, heating schedule creation method, and program
WO2020225905A1 (en) * 2019-05-09 2020-11-12 三菱電機株式会社 Storage type hot water supply system
JP2020202729A (en) * 2019-06-13 2020-12-17 河村電器産業株式会社 High-voltage power reception facility monitoring system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004476A (en) * 2009-06-16 2011-01-06 Tokyo Electric Power Co Inc:The Power load controller and power load control method
JP2013051833A (en) * 2011-08-31 2013-03-14 Nichicon Corp Multiple power conditioner system
JP2013074704A (en) * 2011-09-27 2013-04-22 Kyocera Corp Control device and control method
JP2013110917A (en) * 2011-11-24 2013-06-06 Panasonic Corp Power selling schedule presentation system
JP2013148287A (en) * 2012-01-20 2013-08-01 Mitsubishi Electric Corp Storage type hot water supply system
JP2014122764A (en) * 2012-12-21 2014-07-03 Mitsubishi Electric Corp Hot water storage-type water heater and solar system
JP2014166114A (en) * 2013-02-27 2014-09-08 Noritz Corp Power generation system with hot water storage function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024487A (en) * 2011-07-22 2013-02-04 Panasonic Corp Water heater, controller, and program
JP5983191B2 (en) * 2012-08-30 2016-08-31 株式会社ノーリツ Hot water storage device
JP6110228B2 (en) * 2013-06-26 2017-04-05 株式会社コロナ Heat pump hot water storage hot water supply system for solar power generation equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004476A (en) * 2009-06-16 2011-01-06 Tokyo Electric Power Co Inc:The Power load controller and power load control method
JP2013051833A (en) * 2011-08-31 2013-03-14 Nichicon Corp Multiple power conditioner system
JP2013074704A (en) * 2011-09-27 2013-04-22 Kyocera Corp Control device and control method
JP2013110917A (en) * 2011-11-24 2013-06-06 Panasonic Corp Power selling schedule presentation system
JP2013148287A (en) * 2012-01-20 2013-08-01 Mitsubishi Electric Corp Storage type hot water supply system
JP2014122764A (en) * 2012-12-21 2014-07-03 Mitsubishi Electric Corp Hot water storage-type water heater and solar system
JP2014166114A (en) * 2013-02-27 2014-09-08 Noritz Corp Power generation system with hot water storage function

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163769A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Energy prediction system
JP2018207689A (en) * 2017-06-06 2018-12-27 積水化学工業株式会社 Power management system and power management method
JP2019113235A (en) * 2017-12-22 2019-07-11 三菱電機株式会社 Hot water storage type water heater
WO2019163140A1 (en) * 2018-02-26 2019-08-29 三菱電機株式会社 Hot-water supply system, cloud server, heating schedule creation method, and program
JPWO2019163140A1 (en) * 2018-02-26 2020-12-17 三菱電機株式会社 Hot water supply system, cloud server, boiling schedule creation method and program
JP2021169927A (en) * 2018-02-26 2021-10-28 三菱電機株式会社 Hot water supply system, boiling-up schedule preparation device, boiling-up schedule preparation method and program
JP7146035B2 (en) 2018-02-26 2022-10-03 三菱電機株式会社 Hot water supply system, boiling schedule creation device, boiling schedule creation method and program
WO2020225905A1 (en) * 2019-05-09 2020-11-12 三菱電機株式会社 Storage type hot water supply system
JPWO2020225905A1 (en) * 2019-05-09 2021-11-04 三菱電機株式会社 Hot water storage type hot water supply system
JP2020202729A (en) * 2019-06-13 2020-12-17 河村電器産業株式会社 High-voltage power reception facility monitoring system

Also Published As

Publication number Publication date
JP6580159B2 (en) 2019-09-25
JPWO2017090151A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6580159B2 (en) Water heater control system, control method and program
US8676394B2 (en) Integrated demand response for energy utilization
JP6592454B2 (en) Power control system, power control method and program
US20150378381A1 (en) Systems and methods for energy cost optimization
US20160124411A1 (en) Distributed energy demand management
CN107408816A (en) It is variable to feed out energy management
Bartolucci et al. Renewable source penetration and microgrids: Effects of MILP–Based control strategies
WO2017145369A1 (en) Hot-water supply system, and control method for water heater
JP2018007536A (en) Adaptive energy management scheduling system and method for hybrid energy storage system linked with new renewable energy
Dang et al. Optimal load scheduling for residential renewable energy integration
JP6385857B2 (en) Power management apparatus and control method thereof
Ali et al. Optimal appliance management system with renewable energy integration for smart homes
JP6479212B2 (en) Water heater control system, control method and program
JP6903531B2 (en) Distributed power control device, distributed power control system and distributed power control method
JP2017163630A (en) Controller, power generator, control method and program
Khodaei et al. Optimal hourly scheduling of community-aggregated electricity consumption
JP7066948B2 (en) Storage battery control device, storage battery control program
JP6678347B2 (en) Power management system
JP6678348B2 (en) Distributed power generation system and method for providing at least part of the operation plan of the system outside the system
JP2019037041A (en) Power generation control system, program, and control method
JP2021136851A (en) Load control system, load control method, and program
JP2015119575A (en) Energy management system and energy management method
AU2022324941A1 (en) Systems and methods for connecting electrical appliances to an electrical grid
AU2021211971A1 (en) Systems and methods for connecting electrical appliances to an electrical grid
JP2017192167A (en) Photovoltaic power generation system and control unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552610

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909270

Country of ref document: EP

Kind code of ref document: A1