WO2017090127A1 - Torque sensor - Google Patents

Torque sensor Download PDF

Info

Publication number
WO2017090127A1
WO2017090127A1 PCT/JP2015/083080 JP2015083080W WO2017090127A1 WO 2017090127 A1 WO2017090127 A1 WO 2017090127A1 JP 2015083080 W JP2015083080 W JP 2015083080W WO 2017090127 A1 WO2017090127 A1 WO 2017090127A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
torque
detection element
shield member
rotating member
Prior art date
Application number
PCT/JP2015/083080
Other languages
French (fr)
Japanese (ja)
Inventor
隆徳 小室
伸幸 北井
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to PCT/JP2015/083080 priority Critical patent/WO2017090127A1/en
Priority to JP2017552591A priority patent/JP6551538B2/en
Publication of WO2017090127A1 publication Critical patent/WO2017090127A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • the present invention relates to a torque sensor.
  • an electric power steering device for a vehicle is provided with a torque sensor capable of detecting a steering torque (see, for example, Patent Document 1).
  • the torque sensor is configured to detect the steering torque by detecting the twist angle of the torsion bar that connects the input shaft and the output shaft of the steering shaft.
  • an annular ring magnet having a plurality of magnetic poles having different polarities along the circumferential direction is provided on the input shaft, and the relative angle between the output shaft and the ring magnet changes according to the twist of the torsion bar.
  • the torsion angle of the torsion bar i.e., the steering torque, can be detected by collecting and collecting the magnetic flux between the magnetic flux collecting rings.
  • an object of the present invention is to provide a torque sensor capable of suppressing the influence of external magnetic field noise and measuring torque with high accuracy.
  • the present invention provides a torque sensor disposed at a connecting portion between a first rotating member and a second rotating member connected by a torsion bar, the first rotating member and the first rotating member.
  • a plurality of magnetic poles having different polarities are formed along a circumferential direction around the rotation axis of the two-rotating member, an annular ring magnet that rotates together with the first rotating member, and the magnetic pole according to the twist of the torsion bar
  • the plurality of magnetic path forming members configured to change the positional magnetic fluxes to be transmitted, a pair of magnetic flux collecting rings for collecting the magnetic fluxes of the magnetic path forming members, and the pair of magnetic flux collecting rings
  • a magnetic detection element for torque detection capable of detecting the strength of the magnetic field between the pair of magnetism collecting rings, the annular portion arranged coaxially with the ring magnet, and the same circumferential direction of the annular portion Place Projecting outward in the radial direction from each other, and facing portions provided so as to face each
  • FIG. 1 is a schematic diagram illustrating an electric power steering apparatus to which a torque steering angle sensor as a torque sensor according to an embodiment of the present invention is applied. It is a side view which shows a torque steering angle sensor. It is a bottom view of FIG. 2A. It is a perspective view which shows the structure of a torque detection part. It is a perspective view which shows a 1st magnetic yoke. It is a perspective view which shows a 2nd magnetic yoke. It is a graph which shows the simulation result of the influence of external magnetic field noise when changing the length Ls along the radial direction of a shield member.
  • FIG. 1 is a schematic diagram showing an electric power steering apparatus 1 to which a torque steering angle sensor 2 according to the present embodiment is applied.
  • the torque steering angle sensor 2 is an aspect of the torque sensor of the present invention.
  • the electric power steering apparatus 1 includes a steering shaft 11 connected to a steering wheel 10, an intermediate shaft 13 connected to the steering shaft 11 via a universal joint 12, and an intermediate shaft 13 via a universal joint 14. Steering according to the steering torque applied to the steering shaft 11 when the steering wheel 10 is steered, and the rack shaft 16 formed with the rack teeth 160 meshing with the pinion teeth 150 of the pinion shaft 15.
  • a steering assist mechanism 17 that generates an assist force and a torque steering angle sensor 2 that detects the steering angle and steering torque of the steering wheel 10 are provided.
  • the rack shaft 16 is supported by a rack housing (not shown) and moves in the vehicle width direction according to the steering operation of the steering wheel 10.
  • the left and right front wheels 19L and 19R, which are steered wheels, and the rack shaft 16 are connected by left and right tie rods 18L and 18R.
  • the rack shaft 16 and the pinion shaft 15 constitute a rack and pinion type steering mechanism.
  • the steering assist mechanism 17 is a rack assist type steering assist mechanism that applies a steering assist force to the rack shaft 16, and the rotational force of the electric motor 170 is converted into a linear moving force by, for example, a ball screw mechanism. Then, it is applied to the rack shaft 16 as a steering assist force.
  • the steering assist mechanism 17 is provided on a steering column that supports the steering shaft 11, and is a column assist type that decelerates the rotational force of the electric motor 170 by, for example, a worm gear mechanism and applies the steering assist force to the steering shaft 11. It may be.
  • the steering assist mechanism 17 is supplied with a motor current from the control device 20 and generates a steering assist force corresponding to the motor current.
  • the control device 20 includes a steering torque calculation unit 21a and a steering angle calculation unit 21b, which will be described later, and a torque / steering angle calculation unit 21 that calculates a steering torque and a steering angle based on an output signal of the torque steering angle sensor 2.
  • a steering assist force calculator 22 that calculates a steering assist force to be applied based on the calculation result of the steering angle calculator 21 and a motor current corresponding to the steering assist force calculated by the steering assist force calculator 22 are output.
  • a motor drive circuit 23 for driving the electric motor 170 of the steering assist mechanism 17.
  • the steering assist force calculating unit 22 increases the steering assist force applied to the steering mechanism by the steering assist mechanism 17 as the steering torque increases and as the steering speed calculated based on the temporal change in the steering angle increases.
  • the operation is performed as follows.
  • the steering angle calculated by the torque / steering angle calculation unit 21 is also used for control in, for example, a vehicle skid prevention device (ESCES: Electronic Stability Control).
  • the steering shaft 11 includes a first rotating member 111 on the steering wheel 10 side and a second rotating member 112 on the intermediate shaft 13 side, and the first rotating member 111 and the second rotating member 112 are not illustrated. It is connected by a torsion bar.
  • the torque steering angle sensor 2 is disposed at a connecting portion between the first rotating member 111 and the second rotating member 112. In the present embodiment, the torque steering angle sensor 2 is disposed on the steering shaft 11. However, the present invention is not limited to this, and the torque steering angle sensor 2 may be disposed on the pinion shaft 15, for example.
  • FIG. 2A is a side view showing the torque steering angle sensor 2
  • FIG. 2B is a bottom view thereof.
  • the first rotating member 111 and the second rotating member 112 of the steering shaft 11 share the rotation axis O and rotate together with the steering wheel 10.
  • the first rotating member 111 and the second rotating member 112 are connected by a torsion bar (not shown) that generates a twist angle according to the steering torque of the steering wheel 10.
  • One end of the torsion bar in the axial direction is coupled to the first rotating member 111 so as not to be relatively rotatable, and the other end is coupled to the second rotating member 112 so as not to be relatively rotatable.
  • the torque steering angle sensor 2 is disposed at a connecting portion between the first rotating member 111 and the second rotating member 112.
  • the torque steering angle sensor 2 includes a torque detection unit 2a for detecting the steering torque and a steering angle detection unit 2b for detecting the steering angle, and a column housing (not configured) that holds the steering shaft 11 so that the tilt adjustment is possible. (Shown).
  • the column housing is an aspect of the “non-rotating member” of the present invention that does not rotate by the rotation of the first rotating member 111.
  • FIG. 3A is a perspective view showing the configuration of the torque detector 2a
  • FIG. 3B is a perspective view showing the first magnetic yoke
  • FIG. 3B is a perspective view showing the second magnetic yoke.
  • the torque detector 2a includes an annular ring magnet 31 that rotates together with the first rotating member 111, and a plurality of magnetic paths that form a magnetic path of magnetic flux by the ring magnet 31.
  • a pair of magnetic flux collectors that collect the magnetic fluxes of the first magnetic yoke 41 and the second magnetic yoke 42, and the first magnetic yoke 41 and the second magnetic yoke 42 as the forming member (retractor).
  • a first magnetic detection element 61 capable of detecting the strength of the magnetic field between the pair of magnetism collecting rings 51 and 52, and based on the strength of the magnetic field detected by the first magnetic detection element 61. Further, the steering torque of the steering wheel 10 is calculated.
  • the first magnetic detection element 61 is an aspect of the torque detection magnetic detection element of the present invention.
  • the ring magnet 31 is formed with a plurality of magnetic poles having different magnetism along the circumferential direction around the rotation axis O.
  • eight magnetic poles including four N poles 311 and four S poles 312 are formed on the ring magnet 31.
  • the magnetism collecting rings 51 and 52 are arranged at a position (here, below) shifted from the ring magnet 31 in the axial direction (rotational axis direction).
  • the magnetic flux collecting rings 51 and 52 include a first magnetic flux collecting ring 51 and a second magnetic flux collecting ring 52 disposed above the first magnetic flux collecting ring 51, and more than both the magnetic flux collecting rings 51 and 52. Further, a ring magnet 31 is disposed above. Both the magnetism collecting rings 51 and 52 are provided apart from the rotating members 111 and 112 so as not to rotate with the rotation of the rotating members 111 and 112, and are fixed to a non-rotating member such as a column housing. ing.
  • the magnetism collecting rings 51 and 52 are formed in a cylindrical shape in which the axial width is larger than the radial thickness, and the annular portions 511 and 521 arranged coaxially with the ring magnet 31, and the circumferences of the annular portions 511 and 521 And opposing portions 513 and 523 provided so as to protrude radially outward from the same position in the direction and to face each other in the axial direction.
  • the connecting portion 512 is integrally provided so as to extend upward from the upper end portion of the annular portion 511 of the first magnetism collecting ring 51, and the facing portion 513 is protruded radially outward from the connecting portion 512. It is provided integrally.
  • a connecting portion 522 is integrally provided so as to extend downward from the lower end portion of the annular portion 521, and the facing portion 523 is protruded radially outward from the connecting portion 522. It is provided integrally.
  • Both facing parts 513 and 523 are provided so as to face each other in the axial direction at a predetermined interval. Between the facing parts 513 and 523, a first magnetic sensing element 61 as a torque sensing magnetic sensing element is disposed. ing.
  • the first magnetic detection element 61 is, for example, a Hall IC that detects the strength of the magnetic field using the Hall effect.
  • the output signal of the first magnetic detection element 61 is output to the torque / steering angle calculation unit 21 of the control device 20.
  • the first magnetic yoke 41 and the second magnetic yoke 42 as magnetic path forming members are held by a holding member (not shown) made of resin or the like and are fixed to the second rotating member 112, and rotate together with the second rotating member 112. It is provided to do.
  • the first magnetic yoke 41 is configured to magnetically couple the ring magnet 31 and the first magnetism collecting ring 51, and the second magnetic yoke 42 magnetically couples the ring magnet 31 and the second magnetism collecting ring 52. It is comprised so that it may couple
  • the first magnetic yoke 41 includes a facing piece 411 facing in parallel with the axial end surface of the ring magnet 31, a delivery part 413 that delivers magnetic flux between the annular part 511 of the first magnetic flux collecting ring 51, and a facing piece 411. And a transfer portion 412 that transmits magnetic flux between the transfer portion 413 and the transfer portion 413.
  • the transmission unit 412 includes an axial transmission unit 412a parallel to the rotation axis O, a radial transmission unit 412b extending radially from the lower end of the axial transmission unit 412a toward the annular portion 511 of the first magnetic flux collecting ring 51, and Consists of.
  • the delivery part 413 is formed in a plate shape that faces the inner peripheral surface 511 a of the annular part 511 of the first magnetic flux collecting ring 51 in the radial direction.
  • the second magnetic yoke 42 includes a counter piece 421 that faces the end face in the axial direction of the ring magnet 31 in parallel, a transfer portion 423 that transfers magnetic flux between the annular portion 521 of the second magnetism collecting ring 52, and a counter piece 421. And a transfer part 422 that transmits magnetic flux between the transfer part 423 and the transfer part 423.
  • the transmission part 422 and the transfer part 423 are made of a single flat plate, of which the part facing the inner peripheral surface 521a of the annular part 521 of the second magnetism collecting ring 52 is the transfer part 423, which is more than the transfer part 423.
  • a portion on the ring magnet 31 side is a transmission portion 422. That is, the transfer part 423 is formed in a plate shape that faces the inner peripheral surface 521a of the annular part 521 of the second magnetism collecting ring 52 in the radial direction.
  • both the magnetic yokes 41 and 42 are such that the central portions of the facing pieces 411 and 421 face the boundary between the N pole 311 and the S pole 312 of the ring magnet 31. Is provided. In this state, the intensity of the magnetic field detected by the first magnetic detection element 61 is substantially zero.
  • the ring magnet 31 and the first and second magnetic yokes 41 and 42 are relatively rotated by the twist, and the magnetic pole ( The opposing positions of the opposing pieces 411 and 421 of the first and second magnetic yokes 41 and 42 with respect to the N pole 311 and the S pole 312 are shifted in the circumferential direction of the ring magnet 31.
  • the ring magnet 31 rotates with respect to the first and second magnetic yokes 41 and 42 by a predetermined angle (for example, 5 °) in the direction of arrow A in FIG.
  • the ratio of the N pole 311 to the magnetic poles of the ring magnet 31 facing the S is higher than that of the S pole 312.
  • the proportion of the S pole 312 in the magnetic poles of the ring magnet 31 facing the opposing piece 421 of the second magnetic yoke 42 in the axial direction is higher than that of the N pole 311.
  • the ring magnet 31 rotates in the direction opposite to the arrow A direction with respect to the first and second magnetic yokes 41 and 42, the ring magnet that faces the opposing piece 411 of the first magnetic yoke 41 in the axial direction.
  • the ratio of the S pole 312 is higher than that of the N pole 311, and the ratio of the N pole 311 among the magnetic poles of the ring magnet 31 that axially opposes the facing piece 421 of the second magnetic yoke 42. Becomes higher than the S pole 312.
  • the magnetic flux passes through the first magnetic detection element 61 in the direction opposite to the above.
  • the strength (absolute value) of the magnetic field detected by the first magnetic detection element 61 increases as the torsion amount of the torsion bar, that is, the relative angle between the ring magnet 31 and the magnetic yokes 41 and 42 (hereinafter referred to as a reluctor angle) increases. Become stronger.
  • the reluctance angle changes according to the twist of the torsion bar, and the positional relationship between the magnetic yokes 41 and 42 and the magnetic poles 311 and 312 changes according to the change of the reluctance angle.
  • the magnetic flux transmitted to is changed.
  • the intensity of the magnetic field detected by the first magnetic detection element 61 changes, and the direction of the magnetic field is switched according to the twisting direction of the torsion bar.
  • the torque / steering angle calculator 21 is a reactor angle that is a relative angle between the ring magnet 31 and the magnetic path forming members (magnetic yokes 41 and 42) based on the strength of the magnetic field detected by the first magnetic detection element 61. And the steering torque of the steering wheel 10 is calculated based on the determined reactor angle.
  • the shield member 63 is provided so as to cover the first magnetic detection element 61 and the opposing portions 513 and 523. Details of the shield member 63 will be described later.
  • the steering angle detection unit 2 b includes a ring magnet 31, a second magnetic detection element 62 that is fixed to the substrate 82 at a position where the magnetic field from the ring magnet 31 is received, and a second magnetic detection element 62.
  • a slide magnet 32 that generates a magnetic field in a direction different from that of the ring magnet 31 in the magnetic detection element 62, and the slide magnet 32 approaches and separates from the second magnetic detection element 62 as the first rotation member 111 rotates.
  • the slide mechanism 7 that moves in the direction and the steering angle calculation unit 21b that calculates the steering angle of the steering wheel 10 based on the strength of the magnetic field detected by the second magnetic detection element 62 are provided.
  • the ring magnet 31 is a component of the torque detector 2a and a component of the steering angle detector 2b.
  • the second magnetic detection element 62 is disposed on a non-rotating member that does not rotate by the rotation of the first rotating member 111 so as to face the outer peripheral surface of the ring magnet 31.
  • As the second magnetic detection element 62 there are 3 in the radial direction (X direction) of the ring magnet 31, an axial direction parallel to the rotation axis O (Y direction), and a tangential direction (Z direction) perpendicular to the radial direction and the axial direction.
  • a triaxial magnetic detection element capable of detecting the strength of the magnetic field in the direction is used.
  • the distance (distance along the radial direction) between the second magnetic detection element 62 and the ring magnet 31 is, for example, 15 mm.
  • the second magnetic detection element 62 can detect the magnetic field received from the ring magnet 31 by detecting the magnetic field in the X direction and the Z direction.
  • the second magnetic detection element 62 can detect the strength of the magnetic field received from the slide magnet 32 by detecting the magnetic field in the Y direction parallel to the rotation axis O.
  • the second magnetic detection element 62 is, for example, a Hall IC that detects the strength of the magnetic field using the Hall effect.
  • the output signal of the second magnetic detection element 62 is output to the torque / steering angle calculation unit 21 of the control device 20.
  • the slide magnet 32 is arranged to face the second magnetic detection element 62 in the axial direction (Y direction).
  • the slide magnet 32 has a magnetization direction parallel to the rotation axis O, and magnetic poles (N pole 321 and S pole 322) having different polarities are formed along the axial direction (Y direction).
  • the slide magnet 32 is configured to suppress the magnetic field generated in the X direction and the Z direction with respect to the second magnetic detection element 62.
  • the slide magnet 32 is arranged such that the N pole 321 faces the second magnetic detection element 62.
  • the slide magnet 32 and the second magnetic detection element 62 are arranged so as to sandwich the rotation axis O between the first magnetic detection element 61. Thereby, it is suppressed that the magnetic field of the slide magnet 32 affects the detection result of the magnetic field intensity by the first magnetic detection element 61.
  • the slide mechanism 7 moves the slide magnet 32 along the axial direction (Y direction) as the first rotating member 111 rotates.
  • the slide mechanism 7 slides as an annular member that rotates together with the slider 71 as a support member that supports the slide magnet 32 and the first rotating member 111 and has a meshing portion 700 that meshes with the slider 71 on the outer peripheral surface.
  • Drive member 70 may include a guide member that is fixed to a non-rotating member such as a column housing and guides the slider 71 in parallel with the rotation axis O.
  • the slide drive member 70 and the slider 71 are made of a nonmagnetic material such as a nonmagnetic metal such as aluminum or austenitic stainless steel or a hard resin.
  • the slide driving member 70 is formed in a cylindrical shape into which the first rotating member 111 is inserted, and is fixed to the first rotating member 111.
  • the ring magnet 31 is fixed to the lower end portion of the slide drive member 70 by, for example, adhesion.
  • the slide drive member 70 is formed such that the outer diameter of the lower end portion thereof is smaller than the outer diameter of the meshing portion 700, and the ring magnet 31 is fitted on the outer peripheral surface of the lower end portion.
  • the meshing portion 700 is formed by providing a single spiral groove on the outer peripheral surface of the slide drive member 70. Even when the steering wheel 10 is steered to the maximum left and right steering angles, the meshing part 700 moves the slide magnet 32 in the direction of approaching and separating from the second magnetic detection element 62 by meshing with the slider 71. It is formed in a possible range.
  • the slider 71 includes an annular ring portion 711 in which a slider-side engagement portion (not shown) that engages with the engagement portion 700 of the slide drive member 70 is formed on the inner peripheral surface, and a radial direction from a part of the ring portion 711 in the circumferential direction. And a support portion 712 that is provided so as to protrude outward and supports the slide magnet 32.
  • the steering angle detection unit 2 b when the slide magnet 32 supported by the slider 71 moves downward together with the slider 71, the distance between the slide magnet 32 and the second magnetic detection element 62 is shortened and detected by the second magnetic detection element 62. The strength of the magnetic field in the Y direction is increased. On the other hand, when the slide magnet 32 moves upward together with the slider 71, the distance between the slide magnet 32 and the second magnetic detection element 62 increases, and the strength of the magnetic field in the Y direction detected by the second magnetic detection element 62 decreases. .
  • the second magnetic detection element 62 is disposed so as to face the outer peripheral surface of the ring magnet 31, when the ring magnet 31 rotates, the N pole 311 and the S pole 312 of the ring magnet 31 alternate with each other. It faces the magnetic detection element 62. Thereby, the intensity of the magnetic field in the X direction and the Z direction changes periodically.
  • the change period of the intensity of the magnetic field in the X direction and the Z direction is 90 ° ( ⁇ 45 °).
  • the torque / steering angle calculation unit 21 calculates the ring magnet 31 within an arbitrary period from the intensity of the magnetic field in the X direction and the Z direction based on the intensity of the magnetic field in the three directions detected by the second magnetic detection element 62.
  • the relative rotation angle (hereinafter referred to as the ring angle) is obtained, and the periodic change of the cycle from the reference position based on the strength of the magnetic field in the Y direction (hereinafter referred to as the rotation cycle).
  • the steering angle from the reference position is obtained as an absolute angle from the obtained ring angle and rotation period.
  • shield member 63 (Description of shield member 63) Now, in the torque steering angle sensor 2 according to the present embodiment, a part of the magnetic flux generated by the ring magnet 31 and external magnetic field noise such as magnetic flux generated by an external device are caused by the magnetic field strength of the first magnetic detection element 61. A shield member 63 is provided to prevent the detection result from being affected.
  • the shield member 63 is formed in a cylindrical shape having openings in the radial direction of the annular portions 511 and 521 of the magnetism collecting rings 51 and 52, and covers the first magnetic detection element 61 and the opposing portions 513 and 523.
  • the magnetic rings 51 and 52 are spaced apart from each other.
  • a member made of a ferromagnetic material can be used.
  • a member made of a soft magnetic material such as iron or permalloy can be used.
  • a shield member 63 made of iron is used.
  • the shield member 63 is formed in a rectangular tube shape, but the shape of the shield member 63 is not limited to this, and may be formed in a cylindrical shape, for example.
  • the shield member 63 is attached to the magnetism collecting rings 51 and 52 by a support member (not shown) made of a nonmagnetic material such as a nonmagnetic metal such as aluminum or austenitic stainless steel or a nonmagnetic material such as a hard resin. Supported and fixed.
  • the shield member 63 is provided so as not to protrude outward in the radial direction from the first magnetic detection element 61.
  • the shield member 63 is provided so as to protrude radially outward from the first magnetic detection element 61, the effect of suppressing the external magnetic field noise by the shield member 63 is reduced. This is because they have found out.
  • a shield member 63 made of an iron square tube having an outer diameter in the axial direction of 7 mm, an inner diameter of 5 mm, an outer diameter in the direction perpendicular to the axial direction (tangential direction) of 8 mm, and an inner diameter of 6 mm is used.
  • 63 when the distance D (hereinafter referred to as end surface distance) D between the base end surface, which is the end surface on the annular portion 511, 521 side, and the rotation axis O is 19.4 mm, the length along the radial direction of the shield member 63 ( FIG. 4 shows a simulation result of the influence of external magnetic field noise when Ls (hereinafter simply referred to as the length of the shield member 63) is changed.
  • the vertical axis in FIG. 4 represents the magnetic flux density detected by the first magnetic detection element 61 due to the influence of external magnetic field noise (in this case, mainly the influence of the ring magnet 31), and the horizontal axis represents the rotation angle (ring of the ring magnet 31). Angle).
  • the distance d along the radial direction of the base end face of the shield member 63 and the annular portions 511 and 521 when the end face distance D is 19.4 mm is 1.5 mm.
  • the protruding lengths (lengths along the radial direction) of the facing portions 513 and 523 and the first magnetic detection element 61 from the annular portions 511 and 521 are 2 mm, and the length Ls of the shield member 63 is 2.5 mm or more. If it is larger, it means that the shield member 63 protrudes radially outward from the first magnetic detection element 61.
  • FIG. 5 shows the relationship between the angle error obtained by converting the magnetic flux density detected by the first magnetic detection element 61 into the reluctator angle due to the influence of the external magnetic field and the length Ls of the shield member 63. 4 and 5 also show the simulation results when the shield member 63 is not provided (no shield).
  • the length Ls of the shield member 63 is set to 2.5 mm or less so that the shield member 63 does not protrude outward in the radial direction from the first magnetic detection element 61. It can be seen that the influence of noise is greatly suppressed and the angle error is also reduced. In the case where the shield member 63 is not provided, the influence of external magnetic field noise is larger and the angle error is larger than in the case where the shield member 63 is provided.
  • the magnetic flux from the ring magnet 31 is the shield member 63. And are discharged to the inner side (hollow part) of the shield member 63.
  • the magnetic flux emitted from the shield member 63 at the portion protruding radially outward from the first magnetic detection element 61 to the inside of the shield member 63 is directed toward the first magnetic detection element 61. Therefore, it is considered that the magnetic flux density detected by the first magnetic detection element 61, that is, the magnetic flux density detected by the influence of external magnetic field noise is increased.
  • the length Ls of the shield member 63 is shortened to 0.5 mm so that the shield member 63 does not protrude outward in the radial direction from the first magnetic detection element 61.
  • the magnetic flux emitted from the shield member 63 to the inside of the shield member 63 and directed to the first magnetic detection element 61 is reduced, and the influence of external magnetic field noise is suppressed.
  • the shield member 63 so as not to protrude outward in the radial direction from the first magnetic detection element 61, it is possible to suppress the influence of external magnetic field noise and perform torque measurement with high accuracy.
  • the length Ls of the shield member 63 is made shorter than the length in the radial direction of the first magnetic detection element 61 and the opposing portions 513 and 523, and the first magnetic detection element 61 and the opposing portions 513 and 523 are
  • the shield member 63 By adopting a configuration in which a part is exposed (protruded) from the shield member 63, compared with the case where the entire first magnetic detection element 61 and both opposing portions 513 and 523 are covered with the shield member 63, external magnetic field noise is reduced. The influence can be further suppressed.
  • first magnetic detection element 61 and the opposing portions 513 and 523 are configured to protrude radially outward from the shield member 63, so that the first magnetic detection element 61 is emitted from the shield member 63 to the inside of the shield member 63.
  • the magnetic flux toward the first magnetic detection element 61 can be reduced, and the influence of external magnetic field noise can be further suppressed.
  • the amplitude of the magnetic flux density detected by the first magnetic detection element 61 due to the influence of the external magnetic field noise when the length Ls of the shield member 63 is changed was obtained by simulation. The simulation results are summarized in FIG.
  • the length Ls of the shield member 63 is desirably 0.5 mm or more. Therefore, it can be said that the end face distance D is more preferably 18.9 mm or less (d ⁇ 1 mm) that minimizes the influence of the external magnetic field noise when the length Ls of the shield member 63 is 0.5 mm or more.
  • the torque steering angle sensor 2 is formed of a ferromagnetic material and is formed in a cylindrical shape having openings in the radial direction of the annular portions 511 and 521, and the first magnetic detection
  • the shield member 63 is provided so as to be separated from the magnetism collecting rings 51 and 52 so as to cover the element 61 and the opposing portions 513 and 523, and the shield member 63 is radially outward from the first magnetic detection element 61. Is provided so as not to protrude.
  • the shield member 63 By providing the shield member 63, it is possible to suppress the magnetic flux generated from the magnetic flux generation source such as the ring magnet 31 or an external device from affecting the first magnetic detection element 61. Further, by providing the shield member 63 so as not to protrude outward in the radial direction from the first magnetic detection element 61, it is possible to suppress the magnetic flux emitted from the shield member 63 from passing through the first magnetic detection element 61. it can. As a result, the influence of external magnetic field noise can be suppressed and torque can be measured with high accuracy.
  • the shield angle 63 is included to configure the steering angle detection unit 2b. It is also possible to suppress a member such as the slide magnet 32 to adversely affect the torque measurement.
  • Magnetic sensing element for detection (61), and the pair of magnetism collecting rings (51, 52) includes an annular portion (511.521) disposed coaxially with the ring magnet (31), and the annular portions (511, 521). ) Projecting radially outward from the same position in the circumferential direction and facing portions (513, 523) provided so as to face each other in the axial direction, and the torque detecting magnetic sensing element (61) , Arranged between the opposing portions (513, 523), made of a ferromagnetic material, and formed in a cylindrical shape having an opening in the radial direction of the annular portion (511, 521), and the torque A shield member (63) disposed apart from the magnetism collecting ring (51, 52) so as to cover the detection magnetic detection element (61) and the opposing portions (513, 523); (63) is the torque Than that of the magnetic detecting element for output (61) is provided so as not to protrude radially outward, the torque sensor (2).
  • the shield member (63) is configured to cover only part of the torque detection magnetic detection element (61) and the opposing portions (513, 523) in the radial direction. 1] The torque sensor (2).
  • the torque detection magnetic detection element (61) and the opposing portions (513, 523) are configured to protrude radially outward from the shield member (63). ]
  • a non-rotating member that is not rotated by the rotation of the first rotating member (111) is disposed to face the outer peripheral surface of the ring magnet (31), and the radial direction of the ring magnet (31), the rotation axis,
  • a second magnetic detection element (62) capable of detecting magnetic field strength in three directions of a parallel axial direction and a tangential direction perpendicular to the radial direction and the axial direction; the second magnetic detection element (62);
  • a slide magnet (32) disposed opposite to the axial direction, and a slide mechanism (7) for moving the slide magnet (32) in the axial direction as the first rotating member (111) rotates.
  • the torque sensor (2) according to any one of [1] to [3], further provided.
  • the torque steering angle sensor 2 including the torque detection unit 2a and the steering angle detection unit 2b has been described.
  • the steering angle detection unit 2b is omitted and only torque measurement is possible. Also good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Controls (AREA)

Abstract

[Problem] To provide a torque sensor whereby the effect of external magnetic field noise can be suppressed, and torque can be measured with good precision. [Solution] The present invention is provided with: a ring magnet 31 in which a plurality of magnetic poles 311, 312 having different polarities are formed along the circumferential direction, the ring magnet 31 rotating together with a first rotary member 111; magnetic yokes 41, 42 configured so that the positional relationship thereof with the magnetic poles 311, 312 changes and the transmitted magnetic flux changes in response to twisting of a torsion bar; magnetism collecting rings 51, 52 for collecting the magnetic flux of the magnetic yokes 41, 42, the magnetism collecting rings 51, 52 having opposing parts 513, 523 protruding outward in the radial direction from annular parts 511, 521; a first magnetism detecting element 61 disposed between the opposing parts 513, 523; and a shield member 63 for covering the first magnetism detecting element 61 and the opposing parts 513, 523, the shield member 63 being formed in a cylindrical shape having an opening in the radial direction; the shield member 63 being provided so as to protrude outward in the radial direction further than the first magnetism detecting element 61.

Description

トルクセンサTorque sensor
 本発明は、トルクセンサに関する。 The present invention relates to a torque sensor.
 従来、車両の電動パワーステアリング装置には、操舵トルクを検出可能なトルクセンサが設けられている(例えば、特許文献1参照)。 Conventionally, an electric power steering device for a vehicle is provided with a torque sensor capable of detecting a steering torque (see, for example, Patent Document 1).
 トルクセンサは、ステアリングシャフトの入力軸と出力軸とを連結するトーションバーの捩れ角度を検出することで、操舵トルクを検出するように構成されている。例えば、入力軸に周方向に沿って極性の異なる複数の磁極が形成された環状のリング磁石を設けると共に、出力軸にトーションバーの捩じれ応じてリング磁石との相対的な角度が変化し、当該相対的な角度の変化に伴って磁極との位置関係が変化し伝達する磁束が変化するように構成された磁路形成部材を設け、磁路形成部材により導かれた磁束を一対の集磁リングで集め、集磁リング間の磁束の変化を磁気検出素子で検出するように構成することで、トーションバーの捩れ角度、すなわち操舵トルクを検出することができる。 The torque sensor is configured to detect the steering torque by detecting the twist angle of the torsion bar that connects the input shaft and the output shaft of the steering shaft. For example, an annular ring magnet having a plurality of magnetic poles having different polarities along the circumferential direction is provided on the input shaft, and the relative angle between the output shaft and the ring magnet changes according to the twist of the torsion bar. Provided with a magnetic path forming member configured such that the positional relationship with the magnetic pole changes and the transmitted magnetic flux changes according to the change in relative angle, and the magnetic flux guided by the magnetic path forming member is used as a pair of magnetic flux collecting rings The torsion angle of the torsion bar, i.e., the steering torque, can be detected by collecting and collecting the magnetic flux between the magnetic flux collecting rings.
特許第5193110号公報Japanese Patent No. 5193110
 しかしながら、上述のような従来のトルクセンサでは、リング磁石で発生する磁束の一部や、外部機器で発生した磁束等(以下、外部磁界ノイズと呼称する)が、磁路形成部材や集磁リングを介さずに磁気検出素子に到達してしまい、トルク測定時の誤差の要因となってしまうという課題がある。 However, in the conventional torque sensor as described above, a part of the magnetic flux generated by the ring magnet, the magnetic flux generated by an external device (hereinafter referred to as external magnetic field noise) or the like is generated by the magnetic path forming member or the magnetic flux collecting ring. There is a problem in that the magnetic sensor element is reached without going through and causes an error in torque measurement.
 そこで、本発明は、外部磁界ノイズの影響を抑制し、精度よくトルクを測定することが可能なトルクセンサを提供することを目的とする。 Therefore, an object of the present invention is to provide a torque sensor capable of suppressing the influence of external magnetic field noise and measuring torque with high accuracy.
 本発明は、上記課題を解決することを目的として、トーションバーによって連結された第1回転部材と第2回転部材の連結部に配置されたトルクセンサであって、前記第1回転部材及び前記第2回転部材の回転軸線を中心とした周方向に沿って極性の異なる複数の磁極が形成され、前記第1回転部材と共に回転する環状のリング磁石と、前記トーションバーの捩じれに応じて前記磁極との位置関係が変化し伝達する磁束が変化するように構成された複数の磁路形成部材と、前記複数の磁路形成部材の磁束を集める一対の集磁リングと、前記一対の集磁リングの間の磁界の強度を検出可能なトルク検出用磁気検出素子と、を備え、前記一対の集磁リングは、前記リング磁石と同軸上に配置された環状部と、前記環状部の周方向における同じ位置から径方向外方に突出し、軸方向に対向するように設けられた対向部と、をそれぞれ有し、前記トルク検出用磁気検出素子は、前記両対向部の間に配置されており、強磁性体から構成されると共に、前記環状部の径方向に開口を有する筒状に形成され、前記トルク検出用磁気検出素子と前記両対向部とを覆うように前記集磁リングと離間して配置されるシールド部材を備え、前記シールド部材は、前記トルク検出用磁気検出素子よりも径方向外方に突出しないように設けられている、トルクセンサを提供する。 In order to solve the above-described problems, the present invention provides a torque sensor disposed at a connecting portion between a first rotating member and a second rotating member connected by a torsion bar, the first rotating member and the first rotating member. A plurality of magnetic poles having different polarities are formed along a circumferential direction around the rotation axis of the two-rotating member, an annular ring magnet that rotates together with the first rotating member, and the magnetic pole according to the twist of the torsion bar Of the plurality of magnetic path forming members configured to change the positional magnetic fluxes to be transmitted, a pair of magnetic flux collecting rings for collecting the magnetic fluxes of the magnetic path forming members, and the pair of magnetic flux collecting rings A magnetic detection element for torque detection capable of detecting the strength of the magnetic field between the pair of magnetism collecting rings, the annular portion arranged coaxially with the ring magnet, and the same circumferential direction of the annular portion Place Projecting outward in the radial direction from each other, and facing portions provided so as to face each other in the axial direction, and the torque detecting magnetic detection element is disposed between the both facing portions, And is formed in a cylindrical shape having an opening in the radial direction of the annular portion, and is spaced apart from the magnetism collecting ring so as to cover the torque detection magnetic detection element and the opposing portions. And providing a torque sensor provided so that the shield member does not protrude outward in the radial direction from the magnetic detection element for torque detection.
 本発明によれば、外部磁界ノイズの影響を抑制し、精度よくトルクを測定することが可能なトルクセンサを提供できる。 According to the present invention, it is possible to provide a torque sensor that can suppress the influence of external magnetic field noise and accurately measure torque.
本発明の一実施の形態に係るトルクセンサとしてのトルク操舵角センサが適用された電動パワーステアリング装置を示す模式図である。1 is a schematic diagram illustrating an electric power steering apparatus to which a torque steering angle sensor as a torque sensor according to an embodiment of the present invention is applied. トルク操舵角センサを示す側面図である。It is a side view which shows a torque steering angle sensor. 図2Aの下面図である。It is a bottom view of FIG. 2A. トルク検出部の構成を示す斜視図である。It is a perspective view which shows the structure of a torque detection part. 第1磁気ヨークを示す斜視図である。It is a perspective view which shows a 1st magnetic yoke. 第2磁気ヨークを示す斜視図である。It is a perspective view which shows a 2nd magnetic yoke. シールド部材の径方向に沿った長さLsを変化させたときの外部磁界ノイズの影響のシミュレーション結果を示すグラフ図である。It is a graph which shows the simulation result of the influence of external magnetic field noise when changing the length Ls along the radial direction of a shield member. 外部磁界の影響により第1磁気検出素子で検出される磁束密度をリラクタ角度に換算した角度誤差と、シールド部材の長さLsとの関係を示すグラフ図である。It is a graph which shows the relationship between the angle error which converted the magnetic flux density detected by the 1st magnetic detection element into the reluctator angle by the influence of an external magnetic field, and length Ls of a shield member. シールド部材の長さLsを8mmとした場合において、磁束解析によって得た磁束の向きを示す模式図である。It is a schematic diagram which shows the direction of the magnetic flux obtained by magnetic flux analysis, when length Ls of a shield member is 8 mm. シールド部材の長さLsを0.5mmとした場合において、磁束解析によって得た磁束の向きを示す模式図である。It is a schematic diagram which shows the direction of the magnetic flux obtained by magnetic flux analysis, when length Ls of a shield member is 0.5 mm. 端面距離Dとシールド部材の長さLsを変化させたとき、外部磁界ノイズの影響により第1磁気検出素子で検出される磁束密度の振幅のシミュレーション結果を示すグラフ図である。It is a graph which shows the simulation result of the amplitude of the magnetic flux density detected with a 1st magnetic detection element by the influence of an external magnetic field noise when the end surface distance D and the length Ls of a shield member are changed.
[実施の形態]
 以下、本発明の実施の形態を添付図面にしたがって説明する。
[Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(電動ステアリング装置の構成)
 図1は、本実施の形態に係るトルク操舵角センサ2が適用された電動パワーステアリング装置1を示す模式図である。なお、トルク操舵角センサ2は、本発明のトルクセンサの一態様である。
(Configuration of electric steering device)
FIG. 1 is a schematic diagram showing an electric power steering apparatus 1 to which a torque steering angle sensor 2 according to the present embodiment is applied. The torque steering angle sensor 2 is an aspect of the torque sensor of the present invention.
 電動パワーステアリング装置1は、ステアリングホイール10に連結されたステアリングシャフト11と、ステアリングシャフト11に自在継手12を介して連結されたインタミディエイトシャフト13と、インタミディエイトシャフト13に自在継手14を介して連結されたピニオンシャフト15と、ピニオンシャフト15のピニオン歯150と噛み合うラック歯160が形成されたラック軸16と、ステアリングホイール10の操舵操作に際してステアリングシャフト11に付与される操舵トルクに応じて操舵補助力を発生させる操舵補助機構17と、ステアリングホイール10の操舵角及び操舵トルクを検出するトルク操舵角センサ2と、を有している。 The electric power steering apparatus 1 includes a steering shaft 11 connected to a steering wheel 10, an intermediate shaft 13 connected to the steering shaft 11 via a universal joint 12, and an intermediate shaft 13 via a universal joint 14. Steering according to the steering torque applied to the steering shaft 11 when the steering wheel 10 is steered, and the rack shaft 16 formed with the rack teeth 160 meshing with the pinion teeth 150 of the pinion shaft 15. A steering assist mechanism 17 that generates an assist force and a torque steering angle sensor 2 that detects the steering angle and steering torque of the steering wheel 10 are provided.
 ラック軸16は、図略のラックハウジングに支持され、ステアリングホイール10の操舵操作に応じて車幅方向に移動する。転舵輪である左右前輪19L,19Rとラック軸16とは、左右のタイロッド18L,18Rによって連結されている。ラック軸16及びピニオンシャフト15は、ラックアンドピニオン式の操舵機構を構成する。 The rack shaft 16 is supported by a rack housing (not shown) and moves in the vehicle width direction according to the steering operation of the steering wheel 10. The left and right front wheels 19L and 19R, which are steered wheels, and the rack shaft 16 are connected by left and right tie rods 18L and 18R. The rack shaft 16 and the pinion shaft 15 constitute a rack and pinion type steering mechanism.
 本実施の形態では、操舵補助機構17がラック軸16に操舵補助力を付与するラックアシスト式の操舵補助機構であり、電動モータ170の回転力が例えばボールねじ機構によって直線方向の移動力に変換され、操舵補助力としてラック軸16に付与される。ただし、操舵補助機構17としては、ステアリングシャフト11を支持するステアリングコラムに設けられ、電動モータ170の回転力を例えばウォームギヤ機構によって減速し、操舵補助力としてステアリングシャフト11に付与するコラムアシスト式のものであってもよい。 In the present embodiment, the steering assist mechanism 17 is a rack assist type steering assist mechanism that applies a steering assist force to the rack shaft 16, and the rotational force of the electric motor 170 is converted into a linear moving force by, for example, a ball screw mechanism. Then, it is applied to the rack shaft 16 as a steering assist force. However, the steering assist mechanism 17 is provided on a steering column that supports the steering shaft 11, and is a column assist type that decelerates the rotational force of the electric motor 170 by, for example, a worm gear mechanism and applies the steering assist force to the steering shaft 11. It may be.
 操舵補助機構17は、制御装置20からモータ電流の供給を受け、このモータ電流に応じた操舵補助力を発生させる。制御装置20は、後述する操舵トルク演算部21aと操舵角演算部21bとからなりトルク操舵角センサ2の出力信号に基づいて操舵トルク及び操舵角を演算するトルク・操舵角演算部21と、トルク・操舵角演算部21の演算結果に基づいて付与すべき操舵補助力を演算する操舵補助力演算部22と、操舵補助力演算部22で演算された操舵補助力に応じたモータ電流を出力し、操舵補助機構17の電動モータ170を駆動するモータ駆動回路23とを有している。 The steering assist mechanism 17 is supplied with a motor current from the control device 20 and generates a steering assist force corresponding to the motor current. The control device 20 includes a steering torque calculation unit 21a and a steering angle calculation unit 21b, which will be described later, and a torque / steering angle calculation unit 21 that calculates a steering torque and a steering angle based on an output signal of the torque steering angle sensor 2. A steering assist force calculator 22 that calculates a steering assist force to be applied based on the calculation result of the steering angle calculator 21 and a motor current corresponding to the steering assist force calculated by the steering assist force calculator 22 are output. And a motor drive circuit 23 for driving the electric motor 170 of the steering assist mechanism 17.
 操舵補助力演算部22は、操舵トルクが大きいほど、また操舵角の時間的な変化に基づいて演算される操舵速度が高いほど、操舵補助機構17によって操舵機構に付与される操舵補助力が大きくなるように演算を行う。また、トルク・操舵角演算部21で演算された操舵角は、例えば車両の横滑り防止装置(ESC : Electronic Stability Control)等における制御にも用いられる。 The steering assist force calculating unit 22 increases the steering assist force applied to the steering mechanism by the steering assist mechanism 17 as the steering torque increases and as the steering speed calculated based on the temporal change in the steering angle increases. The operation is performed as follows. The steering angle calculated by the torque / steering angle calculation unit 21 is also used for control in, for example, a vehicle skid prevention device (ESCES: Electronic Stability Control).
 ステアリングシャフト11は、ステアリングホイール10側の第1回転部材111と、インタミディエイトシャフト13側の第2回転部材112とを有し、第1回転部材111と第2回転部材112とが、図示しないトーションバーによって連結されている。トルク操舵角センサ2は、第1回転部材111と第2回転部材112との連結部に配置されている。なお、本実施の形態では、トルク操舵角センサ2がステアリングシャフト11に配置されているが、これに限らず、例えばピニオンシャフト15にトルク操舵角センサ2を配置してもよい。 The steering shaft 11 includes a first rotating member 111 on the steering wheel 10 side and a second rotating member 112 on the intermediate shaft 13 side, and the first rotating member 111 and the second rotating member 112 are not illustrated. It is connected by a torsion bar. The torque steering angle sensor 2 is disposed at a connecting portion between the first rotating member 111 and the second rotating member 112. In the present embodiment, the torque steering angle sensor 2 is disposed on the steering shaft 11. However, the present invention is not limited to this, and the torque steering angle sensor 2 may be disposed on the pinion shaft 15, for example.
(トルク操舵角センサの構成)
 次に、トルク操舵角センサ2の構成について説明する。なお、以下では、説明の便宜上、ステアリングシャフト11の軸方向におけるステアリングホイール10側を「上」とし、その反対側(インタミディエイトシャフト13側)を「下」として説明するが、この「上」又は「下」は、電動パワーステアリング装置1の使用状態における鉛直方向の上下を限定するものではない。
(Configuration of torque steering angle sensor)
Next, the configuration of the torque steering angle sensor 2 will be described. In the following description, for convenience of explanation, the steering wheel 10 side in the axial direction of the steering shaft 11 is described as “up” and the opposite side (intermediate shaft 13 side) is described as “down”. Alternatively, “down” does not limit the vertical direction in the usage state of the electric power steering apparatus 1.
 図2Aはトルク操舵角センサ2を示す側面図、図2Bはその下面図である。 FIG. 2A is a side view showing the torque steering angle sensor 2, and FIG. 2B is a bottom view thereof.
 ステアリングシャフト11の第1回転部材111及び第2回転部材112は、回転軸線Oを共有し、ステアリングホイール10と共に回転する。第1回転部材111と第2回転部材112とは、ステアリングホイール10の操舵トルクに応じて捩れ角度を生じるトーションバー(不図示)によって連結されている。トーションバーは、その軸方向における一方の端部が第1回転部材111に相対回転不能に連結され、他方の端部が第2回転部材112に相対回転不能に連結されている。トルク操舵角センサ2は、第1回転部材111と第2回転部材112の連結部に配置されている。 The first rotating member 111 and the second rotating member 112 of the steering shaft 11 share the rotation axis O and rotate together with the steering wheel 10. The first rotating member 111 and the second rotating member 112 are connected by a torsion bar (not shown) that generates a twist angle according to the steering torque of the steering wheel 10. One end of the torsion bar in the axial direction is coupled to the first rotating member 111 so as not to be relatively rotatable, and the other end is coupled to the second rotating member 112 so as not to be relatively rotatable. The torque steering angle sensor 2 is disposed at a connecting portion between the first rotating member 111 and the second rotating member 112.
 トルク操舵角センサ2は、操舵トルクを検出するためのトルク検出部2a、及び操舵角を検出するための操舵角検出部2bを有し、ステアリングシャフト11をチルト調整可能に保持するコラムハウジング(不図示)に収容されている。コラムハウジングは、第1回転部材111の回転によって回転しない本発明の「非回転部材」の一態様である。 The torque steering angle sensor 2 includes a torque detection unit 2a for detecting the steering torque and a steering angle detection unit 2b for detecting the steering angle, and a column housing (not configured) that holds the steering shaft 11 so that the tilt adjustment is possible. (Shown). The column housing is an aspect of the “non-rotating member” of the present invention that does not rotate by the rotation of the first rotating member 111.
(トルク検出部2aの構成)
 図3Aは、トルク検出部2aの構成を示す斜視図、図3Bはその第1磁気ヨークを示す斜視図、図3Bは、その第2磁気ヨークを示す斜視図である。
(Configuration of the torque detector 2a)
3A is a perspective view showing the configuration of the torque detector 2a, FIG. 3B is a perspective view showing the first magnetic yoke, and FIG. 3B is a perspective view showing the second magnetic yoke.
 図2A,Bおよび図3A~Cに示すように、トルク検出部2aは、第1回転部材111と共に回転する環状のリング磁石31と、リング磁石31による磁束の磁路を形成する複数の磁路形成部材(リラクタ)としての第1磁気ヨーク(第1リラクタ)41及び第2磁気ヨーク(第2リラクタ)42と、第1磁気ヨーク41及び第2磁気ヨーク42の磁束を集める1対の集磁リング51,52と、一対の集磁リング51,52の間の磁界の強度を検出可能な第1磁気検出素子61と、を有し、第1磁気検出素子61が検出した磁界の強度を基にステアリングホイール10の操舵トルクを演算するように構成されている。第1磁気検出素子61は、本発明のトルク検出用磁気検出素子の一態様である。 As shown in FIGS. 2A and 2B and FIGS. 3A to 3C, the torque detector 2a includes an annular ring magnet 31 that rotates together with the first rotating member 111, and a plurality of magnetic paths that form a magnetic path of magnetic flux by the ring magnet 31. A pair of magnetic flux collectors that collect the magnetic fluxes of the first magnetic yoke 41 and the second magnetic yoke 42, and the first magnetic yoke 41 and the second magnetic yoke 42 as the forming member (retractor). And a first magnetic detection element 61 capable of detecting the strength of the magnetic field between the pair of magnetism collecting rings 51 and 52, and based on the strength of the magnetic field detected by the first magnetic detection element 61. Further, the steering torque of the steering wheel 10 is calculated. The first magnetic detection element 61 is an aspect of the torque detection magnetic detection element of the present invention.
 リング磁石31には、回転軸線Oを中心とした周方向に沿って磁性の異なる複数の磁極が形成されている。本実施の形態では、4つのN極311及び4つのS極312からなる8つの磁極がリング磁石31に形成されている。 The ring magnet 31 is formed with a plurality of magnetic poles having different magnetism along the circumferential direction around the rotation axis O. In the present embodiment, eight magnetic poles including four N poles 311 and four S poles 312 are formed on the ring magnet 31.
 集磁リング51,52は、リング磁石31から軸方向(回転軸線方向)にずれた位置(ここでは下方)に配置されている。集磁リング51,52は、第1集磁リング51と、第1集磁リング51よりも上方に配置された第2集磁リング52と、を有し、両集磁リング51,52よりもさらに上方に、リング磁石31が配置されている。両集磁リング51,52は、両回転部材111,112の回転に伴って回転しないように、両回転部材111,112と離間して設けられており、コラムハウジング等の非回転部材に固定されている。 The magnetism collecting rings 51 and 52 are arranged at a position (here, below) shifted from the ring magnet 31 in the axial direction (rotational axis direction). The magnetic flux collecting rings 51 and 52 include a first magnetic flux collecting ring 51 and a second magnetic flux collecting ring 52 disposed above the first magnetic flux collecting ring 51, and more than both the magnetic flux collecting rings 51 and 52. Further, a ring magnet 31 is disposed above. Both the magnetism collecting rings 51 and 52 are provided apart from the rotating members 111 and 112 so as not to rotate with the rotation of the rotating members 111 and 112, and are fixed to a non-rotating member such as a column housing. ing.
 集磁リング51,52は、軸方向の幅が径方向の厚みよりも大きい円筒状に形成され、リング磁石31と同軸上に配置された環状部511,521と、環状部511,521の周方向における同じ位置から径方向外方に突出し、軸方向に対向するように設けられた対向部513,523と、を有している。 The magnetism collecting rings 51 and 52 are formed in a cylindrical shape in which the axial width is larger than the radial thickness, and the annular portions 511 and 521 arranged coaxially with the ring magnet 31, and the circumferences of the annular portions 511 and 521 And opposing portions 513 and 523 provided so as to protrude radially outward from the same position in the direction and to face each other in the axial direction.
 ここでは、第1集磁リング51の環状部511の上端部から上方に延在するように連結部512が一体に設けられ、連結部512から径方向外方に突出するように対向部513が一体に設けられている。また、第2集磁リング52では、環状部521の下端部から下方に延在するように連結部522が一体に設けられ、連結部522から径方向外方に突出するように対向部523が一体に設けられている。両対向部513,523は、所定の間隔で軸方向に対向するように設けられており、両対向部513,523間に、トルク検出用磁気検出素子としての第1磁気検出素子61が配置されている。 Here, the connecting portion 512 is integrally provided so as to extend upward from the upper end portion of the annular portion 511 of the first magnetism collecting ring 51, and the facing portion 513 is protruded radially outward from the connecting portion 512. It is provided integrally. Further, in the second magnetism collecting ring 52, a connecting portion 522 is integrally provided so as to extend downward from the lower end portion of the annular portion 521, and the facing portion 523 is protruded radially outward from the connecting portion 522. It is provided integrally. Both facing parts 513 and 523 are provided so as to face each other in the axial direction at a predetermined interval. Between the facing parts 513 and 523, a first magnetic sensing element 61 as a torque sensing magnetic sensing element is disposed. ing.
 第1磁気検出素子61は、例えばホール効果を利用して磁界の強度を検出するホールICである。第1磁気検出素子61の出力信号は、制御装置20のトルク・操舵角演算部21に出力される。 The first magnetic detection element 61 is, for example, a Hall IC that detects the strength of the magnetic field using the Hall effect. The output signal of the first magnetic detection element 61 is output to the torque / steering angle calculation unit 21 of the control device 20.
 磁路形成部材としての第1磁気ヨーク41及び第2磁気ヨーク42は、樹脂等からなる保持部材(不図示)により保持され第2回転部材112に固定されており、第2回転部材112と共に回転するように設けられている。 The first magnetic yoke 41 and the second magnetic yoke 42 as magnetic path forming members are held by a holding member (not shown) made of resin or the like and are fixed to the second rotating member 112, and rotate together with the second rotating member 112. It is provided to do.
 第1磁気ヨーク41は、リング磁石31と第1集磁リング51とを磁気的に結合させるように構成され、第2磁気ヨーク42は、リング磁石31と第2集磁リング52とを磁気的に結合させるように構成されている。 The first magnetic yoke 41 is configured to magnetically couple the ring magnet 31 and the first magnetism collecting ring 51, and the second magnetic yoke 42 magnetically couples the ring magnet 31 and the second magnetism collecting ring 52. It is comprised so that it may couple | bond with.
 第1磁気ヨーク41は、リング磁石31の軸方向端面に平行に対向する対向片411と、第1集磁リング51の環状部511との間で磁束を受け渡しする受け渡し部413と、対向片411と受け渡し部413との間で磁束を伝達する伝達部412とを有している。伝達部412は、回転軸線Oと平行な軸方向伝達部412aと、軸方向伝達部412aの下端部から第1集磁リング51の環状部511に向かって径方向に延びる径方向伝達部412bとからなる。受け渡し部413は、第1集磁リング51の環状部511の内周面511aと径方向に対向する板状に形成されている。 The first magnetic yoke 41 includes a facing piece 411 facing in parallel with the axial end surface of the ring magnet 31, a delivery part 413 that delivers magnetic flux between the annular part 511 of the first magnetic flux collecting ring 51, and a facing piece 411. And a transfer portion 412 that transmits magnetic flux between the transfer portion 413 and the transfer portion 413. The transmission unit 412 includes an axial transmission unit 412a parallel to the rotation axis O, a radial transmission unit 412b extending radially from the lower end of the axial transmission unit 412a toward the annular portion 511 of the first magnetic flux collecting ring 51, and Consists of. The delivery part 413 is formed in a plate shape that faces the inner peripheral surface 511 a of the annular part 511 of the first magnetic flux collecting ring 51 in the radial direction.
 第2磁気ヨーク42は、リング磁石31の軸方向端面に平行に対向する対向片421と、第2集磁リング52の環状部521との間で磁束を受け渡しする受け渡し部423と、対向片421と受け渡し部423との間で磁束を伝達する伝達部422とを有している。伝達部422と受け渡し部423とは、一枚の平板からなり、このうち第2集磁リング52の環状部521の内周面521aと対向する部分が受け渡し部423であり、受け渡し部423よりもリング磁石31側の部分が伝達部422である。つまり、受け渡し部423は、第2集磁リング52の環状部521の内周面521aと径方向に対向する板状に形成されている。 The second magnetic yoke 42 includes a counter piece 421 that faces the end face in the axial direction of the ring magnet 31 in parallel, a transfer portion 423 that transfers magnetic flux between the annular portion 521 of the second magnetism collecting ring 52, and a counter piece 421. And a transfer part 422 that transmits magnetic flux between the transfer part 423 and the transfer part 423. The transmission part 422 and the transfer part 423 are made of a single flat plate, of which the part facing the inner peripheral surface 521a of the annular part 521 of the second magnetism collecting ring 52 is the transfer part 423, which is more than the transfer part 423. A portion on the ring magnet 31 side is a transmission portion 422. That is, the transfer part 423 is formed in a plate shape that faces the inner peripheral surface 521a of the annular part 521 of the second magnetism collecting ring 52 in the radial direction.
 両磁気ヨーク41,42は、ステアリングシャフト11に操舵トルクが付与されていないときに、対向片411,421の中央部が、リング磁石31のN極311とS極312との境界部に向かい合うように設けられている。この状態では、第1磁気検出素子61で検出される磁界の強度は実質的にゼロとなる。 When the steering torque is not applied to the steering shaft 11, both the magnetic yokes 41 and 42 are such that the central portions of the facing pieces 411 and 421 face the boundary between the N pole 311 and the S pole 312 of the ring magnet 31. Is provided. In this state, the intensity of the magnetic field detected by the first magnetic detection element 61 is substantially zero.
 ここで、ステアリングシャフト11に操舵トルクが付与されてトーションバーが捩じれると、この捩じれによって、リング磁石31と第1及び第2磁気ヨーク41,42とが相対回転し、リング磁石31の磁極(N極311及びS極312)に対する第1及び第2磁気ヨーク41,42の対向片411,421の対向位置がリング磁石31の周方向にずれる。 Here, when a steering torque is applied to the steering shaft 11 and the torsion bar is twisted, the ring magnet 31 and the first and second magnetic yokes 41 and 42 are relatively rotated by the twist, and the magnetic pole ( The opposing positions of the opposing pieces 411 and 421 of the first and second magnetic yokes 41 and 42 with respect to the N pole 311 and the S pole 312 are shifted in the circumferential direction of the ring magnet 31.
 例えばリング磁石31が第1及び第2磁気ヨーク41,42に対して図3(a)の矢印A方向に所定角度(例えば5°)回転すると、第1磁気ヨーク41の対向片411と軸方向に対向するリング磁石31の磁極のうち、N極311が占める割合がS極312よりも高くなる。また、第2磁気ヨーク42の対向片421と軸方向に対向するリング磁石31の磁極のうち、S極312が占める割合がN極311よりも高くなる。これにより、N極311から放出される磁束の一部が第1磁気ヨーク41及び第1集磁リング51を経て第1磁気検出素子61を通過し、第2集磁リング52及び第2磁気ヨーク42を経てS極312に戻る。 For example, when the ring magnet 31 rotates with respect to the first and second magnetic yokes 41 and 42 by a predetermined angle (for example, 5 °) in the direction of arrow A in FIG. The ratio of the N pole 311 to the magnetic poles of the ring magnet 31 facing the S is higher than that of the S pole 312. The proportion of the S pole 312 in the magnetic poles of the ring magnet 31 facing the opposing piece 421 of the second magnetic yoke 42 in the axial direction is higher than that of the N pole 311. As a result, a part of the magnetic flux emitted from the N pole 311 passes through the first magnetic detection element 61 via the first magnetic yoke 41 and the first magnetic flux collecting ring 51, and the second magnetic flux collecting ring 52 and the second magnetic yoke. After 42, return to the S pole 312.
 一方、リング磁石31が第1及び第2磁気ヨーク41,42に対して矢印A方向とは逆方向に回転した場合には、第1磁気ヨーク41の対向片411と軸方向に対向するリング磁石31の磁極のうち、S極312が占める割合がN極311よりも高くなり、第2磁気ヨーク42の対向片421と軸方向に対向するリング磁石31の磁極のうち、N極311が占める割合がS極312よりも高くなる。これにより、第1磁気検出素子61を上記とは逆方向に磁束が通過する。 On the other hand, when the ring magnet 31 rotates in the direction opposite to the arrow A direction with respect to the first and second magnetic yokes 41 and 42, the ring magnet that faces the opposing piece 411 of the first magnetic yoke 41 in the axial direction. Of the 31 magnetic poles, the ratio of the S pole 312 is higher than that of the N pole 311, and the ratio of the N pole 311 among the magnetic poles of the ring magnet 31 that axially opposes the facing piece 421 of the second magnetic yoke 42. Becomes higher than the S pole 312. Thereby, the magnetic flux passes through the first magnetic detection element 61 in the direction opposite to the above.
 第1磁気検出素子61で検出される磁界の強度(絶対値)は、トーションバーの捩じれ量、すなわちリング磁石31と磁気ヨーク41,42の相対的な角度(以下、リラクタ角度という)が大きくなるほど強くなる。このように、トーションバーの捩じれに応じてリラクタ角度が変化し、当該リラクタ角度の変化に伴って、磁気ヨーク41,42の磁極311,312との位置関係が変化し、集磁リング51,52に伝達する磁束が変化する。その結果、第1磁気検出素子61で検出される磁界の強度が変化し、その磁界の方向がトーションバーの捩じれ方向に応じて切り替わることになる。 The strength (absolute value) of the magnetic field detected by the first magnetic detection element 61 increases as the torsion amount of the torsion bar, that is, the relative angle between the ring magnet 31 and the magnetic yokes 41 and 42 (hereinafter referred to as a reluctor angle) increases. Become stronger. As described above, the reluctance angle changes according to the twist of the torsion bar, and the positional relationship between the magnetic yokes 41 and 42 and the magnetic poles 311 and 312 changes according to the change of the reluctance angle. The magnetic flux transmitted to is changed. As a result, the intensity of the magnetic field detected by the first magnetic detection element 61 changes, and the direction of the magnetic field is switched according to the twisting direction of the torsion bar.
 トルク・操舵角演算部21は、第1磁気検出素子61が検出した磁界の強度を基に、リング磁石31と磁路形成部材(磁気ヨーク41,42)との相対的な角度であるリアクタ角度を求め、求めたリアクタ角度を基に、ステアリングホイール10の操舵トルクを演算するように構成される。 The torque / steering angle calculator 21 is a reactor angle that is a relative angle between the ring magnet 31 and the magnetic path forming members (magnetic yokes 41 and 42) based on the strength of the magnetic field detected by the first magnetic detection element 61. And the steering torque of the steering wheel 10 is calculated based on the determined reactor angle.
 また、本実施の形態では、第1磁気検出素子61と両対向部513,523とを覆うように、シールド部材63が設けられている。シールド部材63の詳細については後述する。 In the present embodiment, the shield member 63 is provided so as to cover the first magnetic detection element 61 and the opposing portions 513 and 523. Details of the shield member 63 will be described later.
(操舵角検出部2bの構成)
 図2に示すように、操舵角検出部2bは、リング磁石31と、リング磁石31からの磁界を受ける位置に、基板82に固定して配置された第2磁気検出素子62と、第2の磁気検出素子62にリング磁石31とは異なる方向の磁界を生じさせるスライド磁石32と、第1回転部材111の回転に伴ってスライド磁石32を第2の磁気検出素子62に対して接近及び離間する方向に移動させるスライド機構7と、第2磁気検出素子62が検出した磁界の強度を基に、ステアリングホイール10の操舵角を演算する操舵角演算部21bと、を備えている。なお、リング磁石31は、トルク検出部2aの構成要素であると共に、操舵角検出部2bの構成要素でもある。
(Configuration of Steering Angle Detection Unit 2b)
As shown in FIG. 2, the steering angle detection unit 2 b includes a ring magnet 31, a second magnetic detection element 62 that is fixed to the substrate 82 at a position where the magnetic field from the ring magnet 31 is received, and a second magnetic detection element 62. A slide magnet 32 that generates a magnetic field in a direction different from that of the ring magnet 31 in the magnetic detection element 62, and the slide magnet 32 approaches and separates from the second magnetic detection element 62 as the first rotation member 111 rotates. The slide mechanism 7 that moves in the direction and the steering angle calculation unit 21b that calculates the steering angle of the steering wheel 10 based on the strength of the magnetic field detected by the second magnetic detection element 62 are provided. The ring magnet 31 is a component of the torque detector 2a and a component of the steering angle detector 2b.
 第2磁気検出素子62は、第1回転部材111の回転によって回転しない非回転部材にリング磁石31の外周面に対向して配置されている。第2磁気検出素子62としては、リング磁石31の径方向(X方向)、回転軸線Oと平行な軸方向(Y方向)、および径方向と軸方向に垂直な接線方向(Z方向)の3方向における磁界の強度を検出可能な3軸の磁気検出素子が用いられる。第2磁気検出素子62とリング磁石31との距離(径方向に沿った距離)は、例えば15mmである。 The second magnetic detection element 62 is disposed on a non-rotating member that does not rotate by the rotation of the first rotating member 111 so as to face the outer peripheral surface of the ring magnet 31. As the second magnetic detection element 62, there are 3 in the radial direction (X direction) of the ring magnet 31, an axial direction parallel to the rotation axis O (Y direction), and a tangential direction (Z direction) perpendicular to the radial direction and the axial direction. A triaxial magnetic detection element capable of detecting the strength of the magnetic field in the direction is used. The distance (distance along the radial direction) between the second magnetic detection element 62 and the ring magnet 31 is, for example, 15 mm.
 第2磁気検出素子62は、X方向及びZ方向の磁界を検出可能であることにより、リング磁石31から受ける磁界を検出可能である。また、第2磁気検出素子62は、回転軸線Oと平行なY方向の磁界を検出可能であることにより、スライド磁石32から受ける磁界の強度を検出可能である。 The second magnetic detection element 62 can detect the magnetic field received from the ring magnet 31 by detecting the magnetic field in the X direction and the Z direction. The second magnetic detection element 62 can detect the strength of the magnetic field received from the slide magnet 32 by detecting the magnetic field in the Y direction parallel to the rotation axis O.
 第2磁気検出素子62は、例えばホール効果を利用して磁界の強度を検出するホールICである。第2磁気検出素子62の出力信号は、制御装置20のトルク・操舵角演算部21に出力される。 The second magnetic detection element 62 is, for example, a Hall IC that detects the strength of the magnetic field using the Hall effect. The output signal of the second magnetic detection element 62 is output to the torque / steering angle calculation unit 21 of the control device 20.
 スライド磁石32は、第2磁気検出素子62と軸方向(Y方向)に対向して配置されている。スライド磁石32は、その磁化方向が回転軸線Oと平行であり、軸方向(Y方向)に沿って極性の異なる磁極(N極321およびS極322)が形成されている。これにより、スライド磁石32は、第2磁気検出素子62に対し、X方向及びZ方向に発生する磁界を抑制するように構成されている。本実施の形態では、スライド磁石32は、N極321が第2磁気検出素子62に対向するように配置されている。 The slide magnet 32 is arranged to face the second magnetic detection element 62 in the axial direction (Y direction). The slide magnet 32 has a magnetization direction parallel to the rotation axis O, and magnetic poles (N pole 321 and S pole 322) having different polarities are formed along the axial direction (Y direction). Thereby, the slide magnet 32 is configured to suppress the magnetic field generated in the X direction and the Z direction with respect to the second magnetic detection element 62. In the present embodiment, the slide magnet 32 is arranged such that the N pole 321 faces the second magnetic detection element 62.
 また、スライド磁石32と第2磁気検出素子62は、第1磁気検出素子61との間に回転軸線Oを挟むように配置されている。これにより、スライド磁石32の磁界が第1磁気検出素子61による磁界強度の検出結果に影響を与えてしまうことが抑制されている。 Further, the slide magnet 32 and the second magnetic detection element 62 are arranged so as to sandwich the rotation axis O between the first magnetic detection element 61. Thereby, it is suppressed that the magnetic field of the slide magnet 32 affects the detection result of the magnetic field intensity by the first magnetic detection element 61.
 スライド機構7は、第1回転部材111の回転に伴ってスライド磁石32を軸方向(Y方向)に沿って移動させるものである。スライド機構7は、スライド磁石32を支持する支持部材としてのスライダ71と、第1回転部材111と共に回転し、外周面にスライダ71と噛み合う噛み合い部700が螺旋状に形成された環状部材としてのスライド駆動部材70と、を有している。図示していないが、スライド機構7は、コラムハウジング等の非回転部材に固定され、スライダ71を回転軸線Oと平行に案内するガイド部材を有してもよい。スライド駆動部材70およびスライダ71は、例えばアルミニウムやオーステナイト系ステンレス等の非磁性金属もしくは硬質樹脂等の非磁性体からなる。 The slide mechanism 7 moves the slide magnet 32 along the axial direction (Y direction) as the first rotating member 111 rotates. The slide mechanism 7 slides as an annular member that rotates together with the slider 71 as a support member that supports the slide magnet 32 and the first rotating member 111 and has a meshing portion 700 that meshes with the slider 71 on the outer peripheral surface. Drive member 70. Although not shown, the slide mechanism 7 may include a guide member that is fixed to a non-rotating member such as a column housing and guides the slider 71 in parallel with the rotation axis O. The slide drive member 70 and the slider 71 are made of a nonmagnetic material such as a nonmagnetic metal such as aluminum or austenitic stainless steel or a hard resin.
 スライド駆動部材70は、その内部に第1回転部材111が挿入される円筒状に形成され、第1回転部材111に固定されている。スライド駆動部材70の下端部には、リング磁石31が例えば接着によって固定されている。スライド駆動部材70は、その下端部の外径が噛み合い部700の外径よりも小さく形成され、この下端部における外周面にリング磁石31が嵌着されている。 The slide driving member 70 is formed in a cylindrical shape into which the first rotating member 111 is inserted, and is fixed to the first rotating member 111. The ring magnet 31 is fixed to the lower end portion of the slide drive member 70 by, for example, adhesion. The slide drive member 70 is formed such that the outer diameter of the lower end portion thereof is smaller than the outer diameter of the meshing portion 700, and the ring magnet 31 is fitted on the outer peripheral surface of the lower end portion.
 噛み合い部700は、スライド駆動部材70その外周面に一条の螺旋状の溝を設けることで形成されている。噛み合い部700は、ステアリングホイール10が左右の最大舵角まで操舵された場合にも、スライダ71との噛み合いによりスライド磁石32を第2の磁気検出素子62に対して接近及び離間させる方向に移動させることが可能な範囲に形成されている。 The meshing portion 700 is formed by providing a single spiral groove on the outer peripheral surface of the slide drive member 70. Even when the steering wheel 10 is steered to the maximum left and right steering angles, the meshing part 700 moves the slide magnet 32 in the direction of approaching and separating from the second magnetic detection element 62 by meshing with the slider 71. It is formed in a possible range.
 スライダ71は、スライド駆動部材70の噛み合い部700と噛み合うスライダ側噛み合い部(不図示)が内周面に形成された円環状のリング部711と、リング部711の周方向の一部から径方向外方に突出するように設けられ、スライド磁石32を支持する支持部712と、を有している。スライド駆動部材70が第1回転部材111と共に回転すると、噛み合い部700とスライダ側噛み合い部の噛み合いにより、スライダ71が上下に移動する。 The slider 71 includes an annular ring portion 711 in which a slider-side engagement portion (not shown) that engages with the engagement portion 700 of the slide drive member 70 is formed on the inner peripheral surface, and a radial direction from a part of the ring portion 711 in the circumferential direction. And a support portion 712 that is provided so as to protrude outward and supports the slide magnet 32. When the slide drive member 70 rotates together with the first rotating member 111, the slider 71 moves up and down due to the meshing between the meshing portion 700 and the slider-side meshing portion.
 操舵角検出部2bでは、スライダ71に支持されたスライド磁石32がスライダ71と共に下方に移動すると、スライド磁石32と第2磁気検出素子62との距離が短くなり、第2磁気検出素子62で検出されるY方向の磁界の強度が強くなる。一方、スライド磁石32がスライダ71と共に上方に移動すると、スライド磁石32と第2磁気検出素子62との距離が長くなり、第2磁気検出素子62で検出されるY方向の磁界の強度が弱くなる。 In the steering angle detection unit 2 b, when the slide magnet 32 supported by the slider 71 moves downward together with the slider 71, the distance between the slide magnet 32 and the second magnetic detection element 62 is shortened and detected by the second magnetic detection element 62. The strength of the magnetic field in the Y direction is increased. On the other hand, when the slide magnet 32 moves upward together with the slider 71, the distance between the slide magnet 32 and the second magnetic detection element 62 increases, and the strength of the magnetic field in the Y direction detected by the second magnetic detection element 62 decreases. .
 他方、第2磁気検出素子62は、リング磁石31の外周面に対向して配置されているため、リング磁石31が回転すると、リング磁石31のN極311及びS極312が交互に第2の磁気検出素子62に向かい合う。これにより、X方向とZ方向の磁界の強度が周期的に変化する。ここでは、リング磁石31においてN極311とS極312が4対設けられているため、X方向とZ方向の磁界の強度の変化周期は90°(±45°)となる。 On the other hand, since the second magnetic detection element 62 is disposed so as to face the outer peripheral surface of the ring magnet 31, when the ring magnet 31 rotates, the N pole 311 and the S pole 312 of the ring magnet 31 alternate with each other. It faces the magnetic detection element 62. Thereby, the intensity of the magnetic field in the X direction and the Z direction changes periodically. Here, since four pairs of the N pole 311 and the S pole 312 are provided in the ring magnet 31, the change period of the intensity of the magnetic field in the X direction and the Z direction is 90 ° (± 45 °).
 そこで、トルク・操舵角演算部21は、第2磁気検出素子62が検出した3方向の磁界の強度を基に、X方向とZ方向の磁界の強度から、任意の周期内でのリング磁石31の相対的な回転角度(以下、リング角度と呼称する)を求め、かつ、Y方向の磁界の強度から、基準位置から何周期目の周期的変化であるか(以下、回転周期と呼称する)を求め、求めたリング角度と回転周期とから、基準位置からの操舵角を絶対角度として求めるように構成されている。 Therefore, the torque / steering angle calculation unit 21 calculates the ring magnet 31 within an arbitrary period from the intensity of the magnetic field in the X direction and the Z direction based on the intensity of the magnetic field in the three directions detected by the second magnetic detection element 62. The relative rotation angle (hereinafter referred to as the ring angle) is obtained, and the periodic change of the cycle from the reference position based on the strength of the magnetic field in the Y direction (hereinafter referred to as the rotation cycle). The steering angle from the reference position is obtained as an absolute angle from the obtained ring angle and rotation period.
(シールド部材63の説明)
 さて、本実施の形態に係るトルク操舵角センサ2では、リング磁石31で発生する磁束の一部や、外部機器で発生した磁束等の外部磁界ノイズが、第1磁気検出素子61による磁界強度の検出結果に影響を与えてしまうことを抑制するためのシールド部材63が備えられている。
(Description of shield member 63)
Now, in the torque steering angle sensor 2 according to the present embodiment, a part of the magnetic flux generated by the ring magnet 31 and external magnetic field noise such as magnetic flux generated by an external device are caused by the magnetic field strength of the first magnetic detection element 61. A shield member 63 is provided to prevent the detection result from being affected.
 シールド部材63は、集磁リング51,52の環状部511,521の径方向に開口を有する筒状に形成され、第1磁気検出素子61と両対向部513,523とを覆うように、集磁リング51,52と離間して配置されている。 The shield member 63 is formed in a cylindrical shape having openings in the radial direction of the annular portions 511 and 521 of the magnetism collecting rings 51 and 52, and covers the first magnetic detection element 61 and the opposing portions 513 and 523. The magnetic rings 51 and 52 are spaced apart from each other.
 シールド部材63としては、強磁性体からなるものを用いることができ、例えば、鉄やパーマロイ等の軟磁性体からなるものを用いることができる。本実施の形態では、鉄からなるシールド部材63を用いた。 As the shield member 63, a member made of a ferromagnetic material can be used. For example, a member made of a soft magnetic material such as iron or permalloy can be used. In the present embodiment, a shield member 63 made of iron is used.
 ここでは、シールド部材63を角筒状に形成したが、シールド部材63の形状はこれに限定されず、例えば円筒状に形成されていてもよい。シールド部材63は、例えばアルミニウムやオーステナイト系ステンレス等の非磁性金属もしくは硬質樹脂等の非磁性体からなる硬質樹脂等の非磁性体からなる支持部材(不図示)により、集磁リング51,52に支持され固定されている。 Here, the shield member 63 is formed in a rectangular tube shape, but the shape of the shield member 63 is not limited to this, and may be formed in a cylindrical shape, for example. The shield member 63 is attached to the magnetism collecting rings 51 and 52 by a support member (not shown) made of a nonmagnetic material such as a nonmagnetic metal such as aluminum or austenitic stainless steel or a nonmagnetic material such as a hard resin. Supported and fixed.
 本実施の形態では、シールド部材63は、第1磁気検出素子61よりも径方向外方に突出しないように設けられている。これは、本発明者らが検討したところ、シールド部材63を第1磁気検出素子61よりも径方向外方に突出するように設けると、シールド部材63による外部磁界ノイズの抑制効果が小さくなってしまうことを見出したためである。 In the present embodiment, the shield member 63 is provided so as not to protrude outward in the radial direction from the first magnetic detection element 61. As a result of studies by the present inventors, when the shield member 63 is provided so as to protrude radially outward from the first magnetic detection element 61, the effect of suppressing the external magnetic field noise by the shield member 63 is reduced. This is because they have found out.
 一例として、軸方向における外径を7mm、内径を5mmとし、軸方向と垂直方向(接線方向)における外径を8mm、内径を6mmとした鉄製の角筒状のシールド部材63を用い、シールド部材63の環状部511,521側の端面である基端面と回転軸線Oとの距離(以下、端面距離という)Dを19.4mmとした場合において、シールド部材63の径方向に沿った長さ(以下、単にシールド部材63の長さという)Lsを変化させたときの外部磁界ノイズの影響のシミュレーション結果を図4に示す。図4における縦軸は、外部磁界ノイズの影響(ここでは主にリング磁石31による影響)により第1磁気検出素子61で検出される磁束密度を表し、横軸はリング磁石31の回転角度(リング角度)を表している。 As an example, a shield member 63 made of an iron square tube having an outer diameter in the axial direction of 7 mm, an inner diameter of 5 mm, an outer diameter in the direction perpendicular to the axial direction (tangential direction) of 8 mm, and an inner diameter of 6 mm is used. 63, when the distance D (hereinafter referred to as end surface distance) D between the base end surface, which is the end surface on the annular portion 511, 521 side, and the rotation axis O is 19.4 mm, the length along the radial direction of the shield member 63 ( FIG. 4 shows a simulation result of the influence of external magnetic field noise when Ls (hereinafter simply referred to as the length of the shield member 63) is changed. The vertical axis in FIG. 4 represents the magnetic flux density detected by the first magnetic detection element 61 due to the influence of external magnetic field noise (in this case, mainly the influence of the ring magnet 31), and the horizontal axis represents the rotation angle (ring of the ring magnet 31). Angle).
 なお、端面距離Dを19.4mmとした場合におけるシールド部材63の基端面と環状部511,521の径方向に沿った距離dは1.5mmである。また、対向部513,523および第1磁気検出素子61の環状部511,521からの突出長(径方向に沿った長さ)は2mmであり、シールド部材63の長さLsが2.5mmより大きいと、シールド部材63が第1磁気検出素子61よりも径方向外方に突出していることを表している。 The distance d along the radial direction of the base end face of the shield member 63 and the annular portions 511 and 521 when the end face distance D is 19.4 mm is 1.5 mm. Further, the protruding lengths (lengths along the radial direction) of the facing portions 513 and 523 and the first magnetic detection element 61 from the annular portions 511 and 521 are 2 mm, and the length Ls of the shield member 63 is 2.5 mm or more. If it is larger, it means that the shield member 63 protrudes radially outward from the first magnetic detection element 61.
 また、外部磁界の影響により第1磁気検出素子61で検出される磁束密度をリラクタ角度に換算した角度誤差と、シールド部材63の長さLsとの関係を図5に示す。なお、図4および図5では、シールド部材63を設けない場合(シールド無し)のシミュレーション結果も併せて示している。 Further, FIG. 5 shows the relationship between the angle error obtained by converting the magnetic flux density detected by the first magnetic detection element 61 into the reluctator angle due to the influence of the external magnetic field and the length Ls of the shield member 63. 4 and 5 also show the simulation results when the shield member 63 is not provided (no shield).
 図4および図5に示すように、シールド部材63の長さLsを長くするほど、外部磁界ノイズの影響(ここではリング磁石31による影響)が大きくなり、角度誤差も大きくなっていることが分かる。また、図4および図5より、シールド部材63の長さLsを2.5mm以下とし、シールド部材63が第1磁気検出素子61よりも径方向外方に突出しないようにすることで、外部磁界ノイズの影響が大きく抑制され、角度誤差も小さくなっていることが分かる。なお、シールド部材63を設けない場合については、シールド部材63を設けた場合と比較して外部磁界ノイズの影響が大きく、角度誤差も大きくなっている As shown in FIGS. 4 and 5, it can be seen that the longer the length Ls of the shield member 63, the greater the influence of external magnetic field noise (in this case, the influence of the ring magnet 31), and the greater the angular error. . 4 and 5, the length Ls of the shield member 63 is set to 2.5 mm or less so that the shield member 63 does not protrude outward in the radial direction from the first magnetic detection element 61. It can be seen that the influence of noise is greatly suppressed and the angle error is also reduced. In the case where the shield member 63 is not provided, the influence of external magnetic field noise is larger and the angle error is larger than in the case where the shield member 63 is provided.
 シールド部材63の長さLsを8mmおよび0.5mmとしたそれぞれの場合において、磁束解析によって得た磁束の向きを模式的に図6および図7に示す。 The direction of the magnetic flux obtained by the magnetic flux analysis in each case where the length Ls of the shield member 63 is 8 mm and 0.5 mm is schematically shown in FIGS.
 図6に示すように、シールド部材63の長さLsを8mmとして、シールド部材63を第1磁気検出素子61よりも径方向外方に突出させた場合、リング磁石31からの磁束はシールド部材63の外側に集まり、シールド部材63の内側(中空部)へと放出されている。このうち、第1磁気検出素子61よりも径方向外方に突出した部分のシールド部材63からシールド部材63の内側へと放出された磁束が、第1磁気検出素子61へと向かっており、これにより第1磁気検出素子61で検出される磁束密度、すなわち外部磁界ノイズの影響により検出される磁束密度が大きくなっていると考えられる。 As shown in FIG. 6, when the length Ls of the shield member 63 is 8 mm and the shield member 63 protrudes radially outward from the first magnetic detection element 61, the magnetic flux from the ring magnet 31 is the shield member 63. And are discharged to the inner side (hollow part) of the shield member 63. Among these, the magnetic flux emitted from the shield member 63 at the portion protruding radially outward from the first magnetic detection element 61 to the inside of the shield member 63 is directed toward the first magnetic detection element 61. Therefore, it is considered that the magnetic flux density detected by the first magnetic detection element 61, that is, the magnetic flux density detected by the influence of external magnetic field noise is increased.
 これに対して、図7に示すように、シールド部材63の長さLsを0.5mmと短くして、シールド部材63を第1磁気検出素子61よりも径方向外方に突出させないようにした場合、シールド部材63からシールド部材63の内側へと放出され第1磁気検出素子61へと向かう磁束が低減され、外部磁界ノイズの影響が抑制されている。 On the other hand, as shown in FIG. 7, the length Ls of the shield member 63 is shortened to 0.5 mm so that the shield member 63 does not protrude outward in the radial direction from the first magnetic detection element 61. In this case, the magnetic flux emitted from the shield member 63 to the inside of the shield member 63 and directed to the first magnetic detection element 61 is reduced, and the influence of external magnetic field noise is suppressed.
 このように、シールド部材63を第1磁気検出素子61よりも径方向外方に突出しないように設けることで、外部磁界ノイズの影響が抑制し、精度よくトルク測定を行うことが可能である。 Thus, by providing the shield member 63 so as not to protrude outward in the radial direction from the first magnetic detection element 61, it is possible to suppress the influence of external magnetic field noise and perform torque measurement with high accuracy.
 さらに、シールド部材63の長さLsを短くし、径方向において、第1磁気検出素子61と両対向部513,523の一部のみを覆うようにシールド部材63を設けることで、外部磁界ノイズの影響をより抑制することが可能である。換言すれば、シールド部材63の長さLsを、第1磁気検出素子61と両対向部513,523の径方向の長さよりも短くし、第1磁気検出素子61と両対向部513,523の一部がシールド部材63から露出(突出)した構成とすることで、第1磁気検出素子61と両対向部513,523の全体をシールド部材63で覆った場合と比較して、外部磁界ノイズの影響をより抑制することが可能になる。 Furthermore, by reducing the length Ls of the shield member 63 and providing the shield member 63 so as to cover only a part of the first magnetic detection element 61 and the opposing portions 513 and 523 in the radial direction, external magnetic field noise can be reduced. It is possible to further suppress the influence. In other words, the length Ls of the shield member 63 is made shorter than the length in the radial direction of the first magnetic detection element 61 and the opposing portions 513 and 523, and the first magnetic detection element 61 and the opposing portions 513 and 523 are By adopting a configuration in which a part is exposed (protruded) from the shield member 63, compared with the case where the entire first magnetic detection element 61 and both opposing portions 513 and 523 are covered with the shield member 63, external magnetic field noise is reduced. The influence can be further suppressed.
 また、第1磁気検出素子61と両対向部513,523とが、シールド部材63よりも径方向外方に突出するように構成することで、シールド部材63からシールド部材63の内側へと放出され第1磁気検出素子61へと向かう磁束を低減でき、外部磁界ノイズの影響をより抑制することが可能である。 Further, the first magnetic detection element 61 and the opposing portions 513 and 523 are configured to protrude radially outward from the shield member 63, so that the first magnetic detection element 61 is emitted from the shield member 63 to the inside of the shield member 63. The magnetic flux toward the first magnetic detection element 61 can be reduced, and the influence of external magnetic field noise can be further suppressed.
 次に、端面距離Dを18.4mm(d=0.5mm)、18.9mm(d=1.0mm)、19.4mm(d=1.5mm)、19.9mm(d=1.5mm)としたそれぞれの場合について、シールド部材63の長さLsを変化させたときの外部磁界ノイズの影響により第1磁気検出素子61で検出される磁束密度の振幅をシミュレーションにより求めた。シミュレーション結果を図8にまとめて示す。 Next, the end face distance D is 18.4 mm (d = 0.5 mm), 18.9 mm (d = 1.0 mm), 19.4 mm (d = 1.5 mm), 19.9 mm (d = 1.5 mm). In each case, the amplitude of the magnetic flux density detected by the first magnetic detection element 61 due to the influence of the external magnetic field noise when the length Ls of the shield member 63 is changed was obtained by simulation. The simulation results are summarized in FIG.
 図8に示すように、端面距離Dを18.4mmとした場合には、シールド部材63の長さLsを0.9mmとしたときに外部磁界ノイズの影響が最少となる。同様に、端面距離Dを18.9mmとした場合にはLs=0.6mm、端面距離Dを19.4mmとした場合にはLs=0.4mm、端面距離Dを19.9mmとした場合にはLs=0.3mmとすることで、外部磁界ノイズの影響を最少とすることができる。 As shown in FIG. 8, when the end face distance D is 18.4 mm, the influence of external magnetic field noise is minimized when the length Ls of the shield member 63 is 0.9 mm. Similarly, when the end face distance D is 18.9 mm, Ls = 0.6 mm, when the end face distance D is 19.4 mm, Ls = 0.4 mm, and when the end face distance D is 19.9 mm. By setting Ls = 0.3 mm, the influence of external magnetic field noise can be minimized.
 図8のシミュレーション結果より、端面距離Dを大きくするほど(シールド部材63を環状部511,521から離して配置するほど)シールド部材63の長さLsを短くすることで、外部磁界ノイズの影響をより抑制可能となることが分かる。すなわち、端面距離D(あるいはシールド部材63の基端と環状部511,521との径方向に沿った距離d)に応じて、シールド部材63の長さLsを適宜選択することで、外部磁界ノイズの影響を最少とすることが可能になる。 From the simulation result of FIG. 8, the longer the end face distance D is (the more the shield member 63 is arranged away from the annular portions 511 and 521), the shorter the length Ls of the shield member 63 is, so that the influence of external magnetic field noise is reduced. It turns out that it becomes possible to suppress more. That is, by appropriately selecting the length Ls of the shield member 63 according to the end face distance D (or the distance d along the radial direction between the base end of the shield member 63 and the annular portions 511 and 521), the external magnetic field noise Can be minimized.
 シールド部材63の長さLsが短すぎると、シールド部材63を精度良く製造することが困難となるため、シールド部材63の長さLsは0.5mm以上とすることが望ましい。そのため、端面距離Dについては、シールド部材63の長さLsが0.5mm以上で外部磁界ノイズの影響を最少となる18.9mm以下(d≦1mm)とすることがより望ましいといえる。 If the length Ls of the shield member 63 is too short, it is difficult to manufacture the shield member 63 with high accuracy. Therefore, the length Ls of the shield member 63 is desirably 0.5 mm or more. Therefore, it can be said that the end face distance D is more preferably 18.9 mm or less (d ≦ 1 mm) that minimizes the influence of the external magnetic field noise when the length Ls of the shield member 63 is 0.5 mm or more.
(実施の形態の作用及び効果)
 以上説明したように、本実施の形態に係るトルク操舵角センサ2では、強磁性体から構成されると共に、環状部511,521の径方向に開口を有する筒状に形成され、第1磁気検出素子61と両対向部513,523とを覆うように集磁リング51,52と離間して配置されるシールド部材63を備え、シールド部材63は、第1磁気検出素子61よりも径方向外方に突出しないように設けられている。
(Operation and effect of the embodiment)
As described above, the torque steering angle sensor 2 according to the present embodiment is formed of a ferromagnetic material and is formed in a cylindrical shape having openings in the radial direction of the annular portions 511 and 521, and the first magnetic detection The shield member 63 is provided so as to be separated from the magnetism collecting rings 51 and 52 so as to cover the element 61 and the opposing portions 513 and 523, and the shield member 63 is radially outward from the first magnetic detection element 61. Is provided so as not to protrude.
 シールド部材63を備えることで、リング磁石31や外部機器等の磁束発生源から発生する磁束が第1磁気検出素子61に影響を及ぼしてしまうことを抑制できる。また、シールド部材63を第1磁気検出素子61よりも径方向外方に突出しないように設けることで、シールド部材63から放出された磁束が第1磁気検出素子61を通過してしまうことを抑制できる。その結果、外部磁界ノイズの影響を抑制し、精度よくトルクを測定することが可能になる。 By providing the shield member 63, it is possible to suppress the magnetic flux generated from the magnetic flux generation source such as the ring magnet 31 or an external device from affecting the first magnetic detection element 61. Further, by providing the shield member 63 so as not to protrude outward in the radial direction from the first magnetic detection element 61, it is possible to suppress the magnetic flux emitted from the shield member 63 from passing through the first magnetic detection element 61. it can. As a result, the influence of external magnetic field noise can be suppressed and torque can be measured with high accuracy.
 また、本実施の形態では、トルク検出部2aに加えて操舵角検出部2bを備えたトルク操舵角センサ2を構成しているため、シールド部材63を備えることで、操舵角検出部2bを構成するスライド磁石32等の部材がトルク測定に悪影響を及ぼすことも抑制可能である。 In the present embodiment, since the torque steering angle sensor 2 including the steering angle detection unit 2b in addition to the torque detection unit 2a is configured, the shield angle 63 is included to configure the steering angle detection unit 2b. It is also possible to suppress a member such as the slide magnet 32 to adversely affect the torque measurement.
 本実施の形態によれば、シールド部材63の長さLsとシールド部材63を搭載する位置(端面距離D)を調整するのみで、外部磁界ノイズの影響を抑制可能であり、簡単な構造で高精度なトルク測定を実現できる。 According to the present embodiment, it is possible to suppress the influence of external magnetic field noise only by adjusting the length Ls of the shield member 63 and the position (end surface distance D) where the shield member 63 is mounted. Accurate torque measurement can be realized.
(実施の形態のまとめ)
 次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号等は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of embodiment)
Next, the technical idea grasped from the embodiment described above will be described with reference to the reference numerals in the embodiment. However, the reference numerals and the like in the following description do not limit the constituent elements in the claims to members or the like specifically shown in the embodiment.
[1]トーションバーによって連結された第1回転部材(111)と第2回転部材(112)の連結部に配置されたトルクセンサ(2)であって、前記第1回転部材(111)及び前記第2回転部材(112)の回転軸線を中心とした周方向に沿って極性の異なる複数の磁極(311,312)が形成され、前記第1回転部材(111)と共に回転する環状のリング磁石(31)と、前記トーションバーの捩じれに応じて前記磁極(311,312)との位置関係が変化し伝達する磁束が変化するように構成された複数の磁路形成部材(41,42)と、前記複数の磁路形成部材(41,42)の磁束を集める一対の集磁リング(51,52)と、前記一対の集磁リング(51,52)の間の磁界の強度を検出可能なトルク検出用磁気検出素子(61)と、を備え、前記一対の集磁リング(51,52)は、前記リング磁石(31)と同軸上に配置された環状部(511.521)と、前記環状部(511,521)の周方向における同じ位置から径方向外方に突出し、軸方向に対向するように設けられた対向部(513,523)と、をそれぞれ有し、前記トルク検出用磁気検出素子(61)は、前記両対向部(513,523)の間に配置されており、強磁性体から構成されると共に、前記環状部(511,521)の径方向に開口を有する筒状に形成され、前記トルク検出用磁気検出素子(61)と前記両対向部(513,523)とを覆うように前記集磁リング(51,52)と離間して配置されるシールド部材(63)を備え、前記シールド部材(63)は、前記トルク検出用磁気検出素子(61)よりも径方向外方に突出しないように設けられている、トルクセンサ(2)。 [1] A torque sensor (2) disposed in a connecting portion between a first rotating member (111) and a second rotating member (112) connected by a torsion bar, the first rotating member (111) and the A plurality of magnetic poles (311 and 312) having different polarities are formed along a circumferential direction around the rotation axis of the second rotating member (112), and an annular ring magnet that rotates together with the first rotating member (111) ( 31) and a plurality of magnetic path forming members (41, 42) configured to change the positional relationship between the magnetic poles (311, 312) and the transmitted magnetic flux according to the twist of the torsion bar, Torque capable of detecting the strength of the magnetic field between the pair of magnetic flux collecting rings (51, 52) collecting magnetic fluxes of the plurality of magnetic path forming members (41, 42) and the pair of magnetic flux collecting rings (51, 52). Magnetic sensing element for detection (61), and the pair of magnetism collecting rings (51, 52) includes an annular portion (511.521) disposed coaxially with the ring magnet (31), and the annular portions (511, 521). ) Projecting radially outward from the same position in the circumferential direction and facing portions (513, 523) provided so as to face each other in the axial direction, and the torque detecting magnetic sensing element (61) , Arranged between the opposing portions (513, 523), made of a ferromagnetic material, and formed in a cylindrical shape having an opening in the radial direction of the annular portion (511, 521), and the torque A shield member (63) disposed apart from the magnetism collecting ring (51, 52) so as to cover the detection magnetic detection element (61) and the opposing portions (513, 523); (63) is the torque Than that of the magnetic detecting element for output (61) is provided so as not to protrude radially outward, the torque sensor (2).
[2]前記シールド部材(63)は、前記径方向において、前記トルク検出用磁気検出素子(61)と前記両対向部(513,523)の一部のみを覆うように構成されている、[1]に記載のトルクセンサ(2)。 [2] The shield member (63) is configured to cover only part of the torque detection magnetic detection element (61) and the opposing portions (513, 523) in the radial direction. 1] The torque sensor (2).
[3]前記トルク検出用磁気検出素子(61)と前記両対向部(513,523)とが、前記シールド部材(63)よりも径方向外方に突出するように構成されている、[2]に記載のトルクセンサ(2)。 [3] The torque detection magnetic detection element (61) and the opposing portions (513, 523) are configured to protrude radially outward from the shield member (63). ] The torque sensor (2) described in the above.
[4]前記第1回転部材(111)の回転によって回転しない非回転部材に前記リング磁石(31)の外周面に対向して配置され、前記リング磁石(31)の径方向、前記回転軸線と平行な軸方向、および前記径方向と前記軸方向に垂直な接線方向の3方向における磁界の強度を検出可能な第2磁気検出素子(62)と、前記第2磁気検出素子(62)と前記軸方向に対向して配置されるスライド磁石(32)と、前記第1回転部材(111)の回転に伴って前記スライド磁石(32)を前記軸方向に移動させるスライド機構(7)と、をさらに備えた、[1]乃至[3]の何れか1項に記載のトルクセンサ(2)。 [4] A non-rotating member that is not rotated by the rotation of the first rotating member (111) is disposed to face the outer peripheral surface of the ring magnet (31), and the radial direction of the ring magnet (31), the rotation axis, A second magnetic detection element (62) capable of detecting magnetic field strength in three directions of a parallel axial direction and a tangential direction perpendicular to the radial direction and the axial direction; the second magnetic detection element (62); A slide magnet (32) disposed opposite to the axial direction, and a slide mechanism (7) for moving the slide magnet (32) in the axial direction as the first rotating member (111) rotates. The torque sensor (2) according to any one of [1] to [3], further provided.
 以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 As mentioned above, although embodiment of this invention was described, embodiment described above does not limit the invention which concerns on a claim. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.
 本発明は、その趣旨を逸脱しない範囲で適宜変形して実施することが可能である。 The present invention can be appropriately modified and implemented without departing from the spirit of the present invention.
 例えば、上記実施の形態では、トルク検出部2aと操舵角検出部2bとを備えたトルク操舵角センサ2について説明したが、操舵角検出部2bを省略しトルク測定のみが可能に構成されていてもよい。 For example, in the above embodiment, the torque steering angle sensor 2 including the torque detection unit 2a and the steering angle detection unit 2b has been described. However, the steering angle detection unit 2b is omitted and only torque measurement is possible. Also good.
111…第1回転部材
112…第2回転部材
2…トルク操舵角センサ(トルクセンサ)
31…リング磁石
311…N極(磁極)
312…S極(磁極)
41…第1磁気ヨーク(磁路形成部材)
42…第2磁気ヨーク(磁路形成部材)
51…第1集磁リング(集磁リング)
52…第2集磁リング(集磁リング)
511,521…環状部
513,523…対向部
61…第1磁気検出素子(トルク検出用磁気検出素子)
63…シールド部材
111 ... 1st rotation member 112 ... 2nd rotation member 2 ... Torque steering angle sensor (torque sensor)
31 ... Ring magnet 311 ... N pole (magnetic pole)
312 ... S pole (magnetic pole)
41 ... 1st magnetic yoke (magnetic path formation member)
42. Second magnetic yoke (magnetic path forming member)
51 ... 1st magnetism collection ring (magnetism collection ring)
52. Second magnetism collecting ring (magnetizing ring)
511, 521 ... annular portion 513, 523 ... opposing portion 61 ... first magnetic detection element (magnetic detection element for torque detection)
63 ... Shield member

Claims (4)

  1.  トーションバーによって連結された第1回転部材と第2回転部材の連結部に配置されたトルクセンサであって、
     前記第1回転部材及び前記第2回転部材の回転軸線を中心とした周方向に沿って極性の異なる複数の磁極が形成され、前記第1回転部材と共に回転する環状のリング磁石と、
     前記トーションバーの捩じれに応じて前記磁極との位置関係が変化し伝達する磁束が変化するように構成された複数の磁路形成部材と、
     前記複数の磁路形成部材の磁束を集める一対の集磁リングと、
     前記一対の集磁リングの間の磁界の強度を検出可能なトルク検出用磁気検出素子と、を備え、
     前記一対の集磁リングは、前記リング磁石と同軸上に配置された環状部と、前記環状部の周方向における同じ位置から径方向外方に突出し、軸方向に対向するように設けられた対向部と、をそれぞれ有し、
     前記トルク検出用磁気検出素子は、前記両対向部の間に配置されており、
     強磁性体から構成されると共に、前記環状部の径方向に開口を有する筒状に形成され、前記トルク検出用磁気検出素子と前記両対向部とを覆うように前記集磁リングと離間して配置されるシールド部材を備え、
     前記シールド部材は、前記トルク検出用磁気検出素子よりも径方向外方に突出しないように設けられている、
     トルクセンサ。
    A torque sensor disposed at a connecting portion between the first rotating member and the second rotating member connected by a torsion bar,
    A plurality of magnetic poles having different polarities along a circumferential direction around a rotation axis of the first rotating member and the second rotating member, and an annular ring magnet that rotates together with the first rotating member;
    A plurality of magnetic path forming members configured such that the positional relationship with the magnetic poles changes and the magnetic flux to be transmitted changes according to the twist of the torsion bar;
    A pair of magnetic flux collecting rings for collecting magnetic fluxes of the plurality of magnetic path forming members;
    A torque detecting magnetic sensing element capable of detecting the strength of the magnetic field between the pair of magnetism collecting rings,
    The pair of magnetism collecting rings includes an annular portion arranged coaxially with the ring magnet, and an opposing portion provided so as to protrude radially outward from the same position in the circumferential direction of the annular portion and to face the axial direction. Each of which has
    The torque detection magnetic detection element is disposed between the opposing portions,
    It is made of a ferromagnetic material, is formed in a cylindrical shape having an opening in the radial direction of the annular portion, and is separated from the magnetism collecting ring so as to cover the torque detection magnetic detection element and the opposing portions. Including a shield member to be disposed;
    The shield member is provided so as not to protrude outward in the radial direction from the magnetic detection element for torque detection.
    Torque sensor.
  2.  前記シールド部材は、前記径方向において、前記トルク検出用磁気検出素子と前記両対向部の一部のみを覆うように構成されている、
     請求項1に記載のトルクセンサ。
    The shield member is configured to cover only a part of the magnetism detecting element for torque detection and the opposing portions in the radial direction.
    The torque sensor according to claim 1.
  3.  前記トルク検出用磁気検出素子と前記両対向部とが、前記シールド部材よりも径方向外方に突出するように構成されている、
     請求項2に記載のトルクセンサ。
    The magnetic detection element for torque detection and the opposing portions are configured to protrude radially outward from the shield member.
    The torque sensor according to claim 2.
  4.  前記第1回転部材の回転によって回転しない非回転部材に前記リング磁石の外周面に対向して配置され、前記リング磁石の径方向、前記回転軸線と平行な軸方向、および前記径方向と前記軸方向に垂直な接線方向の3方向における磁界の強度を検出可能な第2磁気検出素子と、
     前記第2磁気検出素子と前記軸方向に対向して配置されるスライド磁石と、
     前記第1回転部材の回転に伴って前記スライド磁石を前記軸方向に移動させるスライド機構と、をさらに備えた、
     請求項1乃至3の何れか1項に記載のトルクセンサ。
    A non-rotating member that is not rotated by the rotation of the first rotating member is disposed to face the outer peripheral surface of the ring magnet, and the radial direction of the ring magnet, the axial direction parallel to the rotational axis, and the radial direction and the shaft A second magnetic sensing element capable of detecting the strength of a magnetic field in three directions tangential to the direction;
    A slide magnet disposed opposite to the second magnetic detection element in the axial direction;
    A slide mechanism that moves the slide magnet in the axial direction along with the rotation of the first rotating member;
    The torque sensor according to any one of claims 1 to 3.
PCT/JP2015/083080 2015-11-25 2015-11-25 Torque sensor WO2017090127A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/083080 WO2017090127A1 (en) 2015-11-25 2015-11-25 Torque sensor
JP2017552591A JP6551538B2 (en) 2015-11-25 2015-11-25 Torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083080 WO2017090127A1 (en) 2015-11-25 2015-11-25 Torque sensor

Publications (1)

Publication Number Publication Date
WO2017090127A1 true WO2017090127A1 (en) 2017-06-01

Family

ID=58763871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083080 WO2017090127A1 (en) 2015-11-25 2015-11-25 Torque sensor

Country Status (2)

Country Link
JP (1) JP6551538B2 (en)
WO (1) WO2017090127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518743A (en) * 2019-02-25 2021-10-19 移动磁体技术公司 Position sensor, in particular designed for detecting torsion in a steering column

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125717A (en) * 2002-10-07 2004-04-22 Denso Corp Torque sensor
JP2005265593A (en) * 2004-03-18 2005-09-29 Favess Co Ltd Torque detecting apparatus
JP2006071326A (en) * 2004-08-31 2006-03-16 Favess Co Ltd Torque detection device
JP2011089890A (en) * 2009-10-22 2011-05-06 Jtekt Corp Torque detector
JP2015081880A (en) * 2013-10-24 2015-04-27 日立金属株式会社 Vehicle detection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102120313B1 (en) * 2013-09-27 2020-06-16 엘지이노텍 주식회사 Torque index sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125717A (en) * 2002-10-07 2004-04-22 Denso Corp Torque sensor
JP2005265593A (en) * 2004-03-18 2005-09-29 Favess Co Ltd Torque detecting apparatus
JP2006071326A (en) * 2004-08-31 2006-03-16 Favess Co Ltd Torque detection device
JP2011089890A (en) * 2009-10-22 2011-05-06 Jtekt Corp Torque detector
JP2015081880A (en) * 2013-10-24 2015-04-27 日立金属株式会社 Vehicle detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518743A (en) * 2019-02-25 2021-10-19 移动磁体技术公司 Position sensor, in particular designed for detecting torsion in a steering column
CN113518743B (en) * 2019-02-25 2024-03-19 移动磁体技术公司 Position sensor, in particular designed for detecting torsion in a steering column

Also Published As

Publication number Publication date
JP6551538B2 (en) 2019-07-31
JPWO2017090127A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6330178B2 (en) Torque steering angle sensor
US10073010B2 (en) Torque steering angle sensor and method for correcting the same
KR101913858B1 (en) The Torque sensor for measuring torsion of the steering column
JP2013246035A (en) Torque sensor
EP2511683B1 (en) Torque sensor
US20100289485A1 (en) System including a magnet and first and second concentrators
JP5589458B2 (en) Rotation angle / torque detection device
US10753812B2 (en) Magnetic torque detector
WO2008075620A1 (en) Rotation angle detection device
KR20210127756A (en) Position sensor specifically designed for torsion detection of steering column
WO2017090127A1 (en) Torque sensor
JP4971805B2 (en) Torque sensor
JP6691500B2 (en) Torque detector
JP2013195361A (en) Torque sensor
JP2008203176A (en) Torque sensor and electric power steering apparatus using the same
JP2019120544A (en) Torque sensor
JP2016142713A (en) Torque/steering angle sensor
JP2018179841A (en) Torque detector and ring magnet
JP2013195288A (en) Torque sensor
JP5031672B2 (en) Torque sensor assembly method
JP5808846B2 (en) Torque sensor
JP2003315092A (en) Rotation angle sensor and torque sensor
JP6201629B2 (en) Vehicle detection device
JP6350233B2 (en) Vehicle detection device
JPH03137530A (en) Displacement sensor and torque sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552591

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909246

Country of ref document: EP

Kind code of ref document: A1