WO2017089639A1 - Non-invasive device for measuring the level of glucose in blood, and method using same - Google Patents

Non-invasive device for measuring the level of glucose in blood, and method using same Download PDF

Info

Publication number
WO2017089639A1
WO2017089639A1 PCT/ES2016/070834 ES2016070834W WO2017089639A1 WO 2017089639 A1 WO2017089639 A1 WO 2017089639A1 ES 2016070834 W ES2016070834 W ES 2016070834W WO 2017089639 A1 WO2017089639 A1 WO 2017089639A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
glucose level
blood glucose
ghz
frequency
Prior art date
Application number
PCT/ES2016/070834
Other languages
Spanish (es)
French (fr)
Inventor
José María Sabater Navarro
German TORREGROSA PENALVA
Enrique BRONCHALO BRONCHALO
Ernesto AVILA NAVARRO
Oscar MORENO PÉREZ
Original Assignee
Universidad Miguel Hernandez De Elche
Fundación Para El Fomento De La Investigación Sanitaria Y Biomédica De La Comunitat Valenciana
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Miguel Hernandez De Elche, Fundación Para El Fomento De La Investigación Sanitaria Y Biomédica De La Comunitat Valenciana filed Critical Universidad Miguel Hernandez De Elche
Publication of WO2017089639A1 publication Critical patent/WO2017089639A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Definitions

  • the invention described herein is directed to the field of blood glucose level measurements, such as so-called glucometers.
  • this device describes a device belonging to the field of dielectric characterization of biological tissues, specifically in its non-invasive mode.
  • the application of this device is framed within the non-invasive measurement of blood glucose level, and in this sense it is contextualized in technology for medicine, specifically in electronic assistive devices for the treatment of diabetes.
  • the present invention aims to provide the user with the ability to monitor their blood glucose level whenever they wish, avoiding the uncomfortable and annoying punctures necessary for blood collection required by current level measurement devices. of glucose Thus, it falls within the field of non-invasive blood glucose level measurement.
  • One of the first works in this context is found in a device in contact with the eye responsible for detecting various physical and chemical parameters of the body and non-invasively supply different compounds according to the measurements obtained (US 7,403,805 B2).
  • the first non-invasive glucose level measurement systems are found in a device based on the transmission and reflection of ultrasound pulses (US 9,167,993 B2), as well as another one with similar characteristics that uses optical emitters and receivers ( US 7,251, 516 B2).
  • the present invention consists of a non-invasive device for measuring blood glucose level, a device that is based on an electronic sensor capable of determining the blood glucose level of an individual in a non-invasive manner.
  • the sensor is able to determine the level of blood glucose without coming into contact with the blood, and therefore without the need to extract any amount of blood from the individual himself.
  • the sensor consists of two resonating antennas at differentiated microwave frequencies, which act at different frequencies. Measuring frequencies are set within the microwave range, between 1 and 3 GHz.
  • the operation is based on the simultaneous measurement of the resonance frequency of both antennas, a frequency that varies according to the dielectric permittivity of the medium adjacent to the antenna.
  • the antennas are placed on a biological tissue, such as a user's tongue, their resonance frequencies will be affected by the permittivity of that language.
  • a biological tissue such as a user's tongue
  • their resonance frequencies will be affected by the permittivity of that language.
  • the dielectric permittivity of biological tissues is affected by the level of blood glucose.
  • both antennas are brought closer to the tongue, their resonance frequencies will change depending on the dielectric permittivity of the tongue, which in turn will be affected by the level of blood glucose (blood glucose).
  • the sensor is responsible for obtaining the two resonance frequencies of the resonant antennas and identifying in each of them the variation that has occurred with respect to the vacuum resonance frequency.
  • the antennas are developed using microstrip technology, which produces a fast and accurate response that is easily integrated with the rest of the electronics.
  • this technology allows to implement the antennas in a small size and suitable for a portable system that fits the dimensions necessary for a personal and portable system.
  • Figure 1.- Shows a flow chart of a possible mode of operation of the device object of the invention.
  • Figure 2. Shows a flow chart of a possible alternative mode of operation of the device object of the invention.
  • Figure 3. Shows an illustration showing the placement of the antennae with respect to the tongue to carry out the glucose measurement.
  • Figure 4.- Shows a perspective view of the device object of the invention where the antennas and the screen thereof are appreciated.
  • the means where the measurements are made is a biological tissue (4) of a user whose glucose level is to be determined.
  • the biological tissue (4) is tissue comprised in the language of the user whose glucose level is to be measured; the reasons for this selection are justified by various factors, on the one hand, its low fat content is very beneficial, since fat is an element with a greater presence in other parts of the body that hinders the variations of dielectric permittivity while on the other On the other hand, the low influence of saliva on the permittivity of the tongue, which allows the measures to be associated only with the permittivity of the blood circulating through the tongue.
  • the tongue comprises the appropriate biological tissue (4) because it is a very vascularized area that notably accuses the changes of permittivity in the blood.
  • the thermal stability that it usually enjoys is a new point in favor that indicates it as one of the ideal areas to perform this type of measurement, since the dielectric permittivity is severely affected by sudden changes in temperature.
  • a non-invasive device (1) for measuring blood glucose level which allows measurements to be made by at least two resonator antennas (21, 22) to microwave frequencies and developed in microstrip technology corresponding to the Antenna 1 and Antenna 2 blocks of figures 1 and 2, the biological tissue (4) of the user whose glucose level is to be measured is placed between both resonator antennas (21, 22) , the first antenna (21) being able to remain above the biological tissue (4) and the second antenna (22) below the biological tissue (4) but always at least partially opposite each other, also in this preferred embodiment each of the resonator antennas (21, 22) would be placed above and below the tongue respectively.
  • each of the resonator antennas (21, 22) can be measured separately as can be seen in Figures 1 and 2, but both perform it in the same medium and at the same time.
  • the two resonant antennas (21, 22) are placed opposite each other in a structure so that the biological tissue (4) of the user whose glucose level is to be measured can be placed between them, and remains as one of the antennas (21, 22) on the biological tissue (4) and the other below it have been described before, and they are operated simultaneously at frequencies between 1GHz and 3 GHz.
  • the resonant antennas (21, 22) are connected to a process unit (not shown in the figures) that contains a control electronics and a variable frequency signal generator (not shown in the figures) that scans in a frequency range between 1 GHz and 3 GHz, preferably 1 GHz centered on the resonant frequency of each antenna (21, 22), that is, from a frequency located 0.5 GHz below the resonant frequency to a situated 0.5 GHz above, for each of the resonant antennas (21, 22).
  • the response of the resonant antennas (21, 22) to this scan is also captured by the control electronics of the process unit and is subsequently sent to a processing electronics of the process unit, which will digitize the signals and process them for extract various parameters such as the resonant frequency of each of the resonant antennas (21, 22), the maximum amplitude of each signal or its mid-bandwidth (FWHM).
  • FWHM mid-bandwidth
  • the processing electronics proceed to calculate the blood glucose level of the individual.
  • the variations in the resonance frequencies in the resonator antennas (21, 22) produced by the changes in the dielectric permittivity of the medium are measured, and subsequently extracted from them the user's blood glucose level by correlation between changes and amount of glucose, all in a non-invasive way for it.
  • the responses are measured and analyzed in differential mode, not only taking into account the shifts of the resonance frequencies near the user with respect to those of the vacuum, but also the differences between the displacements observed in each of the antennas ( 21, 22) resonators.
  • the device (1) possess temperature and / or pressure sensors to be able to consider these data in the calculations.
  • the result of the measurement is visualized by means of a digital display (3).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The invention relates to a device and a method using said device for measuring levels of glucose in blood in a non-invasive manner. For this purpose, resonator microwave antennae are used which are disposed opposite one another with the tongue of the user, whose glucose level is to be measured, positioned between the two antennae. The variations in resonant frequencies in the antennae produced by the changes in the relative permittivity of the medium, the tongue, permit the level of glucose in the user, whose glucose level is to be measured, to be determined on the basis thereof, such that the responses to the changes can be processed via correlation in order to determine said glucose levels.

Description

DISPOSITIVO NO INVASIVO PARA MEDIR NIVEL DE GLUCOSA EN SANGRE Y NON-INVASIVE DEVICE FOR MEASURING GLUCOSE LEVEL IN BLOOD AND
MÉTODO QUE HACE USO DEL MISMO METHOD THAT MAKES SAME USE
D E S C R I P C I Ó N D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La invención aquí descrita va dirigida al campo de medidas de nivel de glucosa en sangre, como los denominados glucómetros. The invention described herein is directed to the field of blood glucose level measurements, such as so-called glucometers.
Más concretamente se describe en este documento un dispositivo perteneciente al campo de la caracterización dieléctrica de tejidos biológicos, concretamente en su modalidad no invasiva. La aplicación de este dispositivo se enmarca dentro de la medición no invasiva del nivel de glucosa en sangre, y en este sentido se contextualiza en la tecnología para medicina, concretamente en los dispositivos electrónicos de asistencia para el tratamiento de la diabetes. More specifically, this device describes a device belonging to the field of dielectric characterization of biological tissues, specifically in its non-invasive mode. The application of this device is framed within the non-invasive measurement of blood glucose level, and in this sense it is contextualized in technology for medicine, specifically in electronic assistive devices for the treatment of diabetes.
ANTECEDENTES DE LA INVENCIÓN La presente invención tiene como objetivo dotar al usuario de la capacidad de monitorizar siempre que lo desee su nivel de glucosa en sangre evitando los incómodos y molestos pinchazos necesarios para la extracción de la sangre que requieren los dispositivos actuales de medición del nivel de glucosa. Así, se enmarca dentro del campo de la medición no invasiva del nivel de glucosa en sangre. BACKGROUND OF THE INVENTION The present invention aims to provide the user with the ability to monitor their blood glucose level whenever they wish, avoiding the uncomfortable and annoying punctures necessary for blood collection required by current level measurement devices. of glucose Thus, it falls within the field of non-invasive blood glucose level measurement.
Uno de los primeros trabajos en este contexto lo encontramos en un dispositivo en contacto con el ojo encargado de detectar diversos parámetros tanto físicos como químicos del cuerpo y suministrar de manera no invasiva diferentes compuestos de acuerdo a las medidas obtenidas (US 7,403,805 B2). Sin embargo, los primeros sistemas de medida no invasiva del nivel de glucosa los encontramos en un dispositivo basado en la transmisión y la reflexión de pulsos de ultrasonidos (US 9,167,993 B2), así como en otro de características similares que emplea emisores y receptores ópticos (US 7,251 ,516 B2). Ejemplos posteriores contemplaron electrónicas de control para diversos tipos de dispositivos para el monitorizado de más componentes (además de la glucosa) en el torrente sanguíneo, tanto humano como animal (WO 2010131029 A1). Más adelante, sistemas de medida no invasiva de glucosa más precisos fueron desarrollados gracias a las amplias posibilidades que ofrecen las antenas resonadoras a frecuencias de microondas (CN 103298399 A, CN 103298399 B). En este tipo de dispositivos se empleó la idea de medir la frecuencia de resonancia al acercar la antena resonadora al tejido biológico, y observar los cambios en la misma y relacionarlos con el nivel de glucosa en sangre. One of the first works in this context is found in a device in contact with the eye responsible for detecting various physical and chemical parameters of the body and non-invasively supply different compounds according to the measurements obtained (US 7,403,805 B2). However, the first non-invasive glucose level measurement systems are found in a device based on the transmission and reflection of ultrasound pulses (US 9,167,993 B2), as well as another one with similar characteristics that uses optical emitters and receivers ( US 7,251, 516 B2). Later examples contemplated control electronics for various types of devices for monitoring more components (in addition to glucose) in the bloodstream, both human and animal (WO 2010131029 A1). Later, more precise non-invasive glucose measurement systems were developed thanks to the wide possibilities offered by resonator antennas at microwave frequencies (CN 103298399 A, CN 103298399 B). In this type of devices, the idea of measuring the resonance frequency was used by bringing the resonator antenna closer to the biological tissue, and observing the changes in it and relating them to the blood glucose level.
También se ha explorado en campo de la transmisión de señales a través de los vasos sanguíneos y la monitorización de las variaciones en sucesivas transmisiones debidas a cambios en la composición química de la sangre (US 9,119,580 B2). Por otro lado, el campo de los soportes para este tipo de dispositivos también ha sido abordado mediante invenciones de estructuras para alojar de manera correcta los dispositivos y proporcionar soporte para actuar en consecuencia a las medidas obtenidas (US 8,328,420 B2). It has also been explored in the field of signal transmission through blood vessels and the monitoring of variations in successive transmissions due to changes in the chemical composition of blood (US 9,119,580 B2). On the other hand, the field of supports for this type of devices has also been addressed through inventions of structures to correctly house the devices and provide support to act accordingly to the measures obtained (US 8,328,420 B2).
Por último, cabe destacar que también se ha trabajado en el campo del calibrado de este tipo de dispositivos, así como la caracterización precisa de las propiedades dieléctricas de la sangre y su alteración por acción de la glucosa, sobre todo empleando tecnologías basadas en guías de ondas (CN 103558155 A). Finally, it should be noted that work has also been done in the field of calibration of this type of devices, as well as the precise characterization of the dielectric properties of blood and its alteration by glucose action, especially using technologies based on guidelines waves (CN 103558155 A).
DESCRIPCIÓN DE LA INVENCIÓN La presente invención consiste en un dispositivo no invasivo para medir nivel de glucosa en sangre, dispositivo que está basado en un sensor electrónico capaz de determinar el nivel de glucosa en sangre de un individuo de manera no invasiva. En otras palabras, el sensor es capaz de determinar el nivel de glucosa en sangre sin llegar a estar en contacto con la sangre, y por lo tanto sin existir la necesidad de extraer ninguna cantidad de sangre del propio individuo. El sensor se compone de dos antenas resonadoras a frecuencias de microondas diferenciadas, que actúan a frecuencias diferentes. Las frecuencias de medida se establecen dentro del rango de las microondas, entre 1 y 3 GHz. De este modo, el funcionamiento se basa en la medida simultánea de la frecuencia de resonancia de ambas antenas, frecuencia que varía en función de la permitividad dieléctrica del medio colindante a la antena. Si las antenas son colocadas sobre un tejido biológico, como por ejemplo la lengua de un usuario, sus frecuencias de resonancia se verán afectadas por la permitividad de dicha lengua. Estudios previos han demostrado que la permitividad dieléctrica de los tejidos biológicos (como es en este caso la lengua) se ve afectada por el nivel de glucosa en sangre. Así, al acercar ambas antenas a la lengua sus frecuencias de resonancia cambiarán en función de la permitividad dieléctrica de la misma, la cual a su vez se verá afectada por el nivel de glucosa en sangre (glucemia). DESCRIPTION OF THE INVENTION The present invention consists of a non-invasive device for measuring blood glucose level, a device that is based on an electronic sensor capable of determining the blood glucose level of an individual in a non-invasive manner. In other words, the sensor is able to determine the level of blood glucose without coming into contact with the blood, and therefore without the need to extract any amount of blood from the individual himself. The sensor consists of two resonating antennas at differentiated microwave frequencies, which act at different frequencies. Measuring frequencies are set within the microwave range, between 1 and 3 GHz. Thus, the operation is based on the simultaneous measurement of the resonance frequency of both antennas, a frequency that varies according to the dielectric permittivity of the medium adjacent to the antenna. If the antennas are placed on a biological tissue, such as a user's tongue, their resonance frequencies will be affected by the permittivity of that language. Previous studies have shown that the dielectric permittivity of biological tissues (as in this case the tongue) is affected by the level of blood glucose. Thus, when both antennas are brought closer to the tongue, their resonance frequencies will change depending on the dielectric permittivity of the tongue, which in turn will be affected by the level of blood glucose (blood glucose).
El sensor se encarga de obtener las dos frecuencias de resonancia de las antenas resonadoras e identificar en cada una de ellas la variación que se ha producido con respecto a la frecuencia de resonancia en vacío. Al caracterizar los desplazamientos frecuenciales que sufren las respuestas espectrales de las antenas y obtener una comparación diferencial (es decir, comprobar cuánto se ha alejado una respuesta de una antena de la respuesta en vacío con respecto a cuánto lo ha hecho la otra antena) es posible inferir la permitividad dieléctrica del tejido biológico en ese determinado instante mediante el algoritmo numérico de inferencia reivindicado en esta patente, y a partir de este parámetro el sensor obtiene el nivel de glucemia instantáneo mediante el algoritmo de calibración reivindicado en esta patente. The sensor is responsible for obtaining the two resonance frequencies of the resonant antennas and identifying in each of them the variation that has occurred with respect to the vacuum resonance frequency. By characterizing the frequency shifts that the spectral responses of the antennas undergo and obtaining a differential comparison (that is, checking how much an answer has moved away from an antenna of the empty response with respect to how much the other antenna has done it) it is possible infer the dielectric permittivity of the biological tissue at that particular moment by means of the numerical inference algorithm claimed in this patent, and from this parameter the sensor obtains the instantaneous blood glucose level by means of the calibration algorithm claimed in this patent.
Por motivos de integración del sistema, velocidad de procesado y facilidad de uso del dispositivo, las antenas se desarrollan utilizando tecnología microstrip, la cual produce una respuesta rápida y precisa que es fácilmente integrable con el resto de la electrónica. Además, esta tecnología permite implementar las antenas en un tamaño reducido y adecuado para un sistema portable que se ajuste a las dimensiones necesarias para un sistema personal y portable. For reasons of system integration, processing speed and ease of use of the device, the antennas are developed using microstrip technology, which produces a fast and accurate response that is easily integrated with the rest of the electronics. In addition, this technology allows to implement the antennas in a small size and suitable for a portable system that fits the dimensions necessary for a personal and portable system.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical realization thereof, it is accompanied as an integral part of Said description, a set of drawings where, for illustrative and non-limiting purposes, the following has been represented:
Figura 1.- Muestra un diagrama de flujo de un posible modo de funcionamiento del dispositivo objeto de la invención. Figure 1.- Shows a flow chart of a possible mode of operation of the device object of the invention.
Figura 2.- Muestra un diagrama de flujo de un posible modo alternativo de funcionamiento del dispositivo objeto de la invención. Figura 3.- Muestra una ilustración donde se aprecia la colocación de las antenas con respecto de la lengua para llevar a cabo la medida de glucosa. Figure 2.- Shows a flow chart of a possible alternative mode of operation of the device object of the invention. Figure 3.- Shows an illustration showing the placement of the antennae with respect to the tongue to carry out the glucose measurement.
Figura 4.- Muestra una vista en perspectiva del dispositivo objeto de la invención donde se aprecian las antenas y la pantalla del mismo. Figure 4.- Shows a perspective view of the device object of the invention where the antennas and the screen thereof are appreciated.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
En un posible modo de realización de la invención, el medio donde realizar las medidas es un tejido biológico (4) de un usuario cuyo nivel de glucosa se quiere determinar. En una realización preferente, el tejido biológico (4) es tejido comprendido en la lengua del usuario cuyo nivel de glucosa se quiere medir; las razones de esta selección vienen justificadas por diversos factores, por un lado, es muy beneficioso su bajo contenido en grasa, pues la grasa es un elemento con mayor presencia en otras partes del cuerpo que dificulta las variaciones de la permitividad dieléctrica mientras que por otro lado, la escasa influencia de la saliva en la permitividad de la lengua, cosa que permite asociar las medidas únicamente a la permitividad de la sangre circulante por la lengua. En este sentido, la lengua comprende el tejido biológico (4) adecuado porque es una zona muy vascularizada que acusa notablemente los cambios de permitividad en la sangre. Además, la estabilidad térmica de la que suele gozar es un nuevo punto a favor que la señala como una de las zonas idóneas para realizar este tipo de medidas, pues la permitividad dieléctrica se ve afectada severamente por cambios bruscos en la temperatura. Tal y como se aprecia en la figura 3, donde se puede ver una realización preferente de un dispositivo (1) no invasivo para medir nivel de glucosa en sangre el cual permite realizar las medidas mediante al menos dos antenas (21 ,22) resonadoras a frecuencias de microondas y desarrolladas en tecnología microstrip correspondientes a los bloques Antena 1 y Antena 2 de las figuras 1 y 2, el tejido biológico (4) del usuario cuyo nivel de glucosa se quiere medir se coloca entre ambas antenas (21 ,22) resonadoras, pudiendo quedar la primera antena (21) por encima del tejido biológico (4) y la segunda antena (22) por debajo del tejido biológico (4) pero siempre opuestas entre sí al menos de forma parcial, asimismo en este ejemplo de realización preferente cada una de las antenas (21 , 22) resonadoras se situaría encima y debajo de la lengua respectivamente. De este modo cada una de las antenas (21 , 22) resonadoras puede realizar su medida por separado como se aprecia en las figuras 1 y 2, pero ambas la realizan en el mismo medio y en el mismo instante. Para realizar la medida se colocan opuestas entre ellas las dos antenas (21 ,22) resonadoras en una estructura de manera que el tejido biológico (4) del usuario cuyo nivel de glucosa se quiere medir se pueda colocar entre ellas, y quede tal y como se ha descrito antes una de las antenas (21 ,22) sobre el tejido biológico (4) y la otra debajo de él, y se hacen actuar simultáneamente en frecuencias comprendidas entre 1GHz y 3 GHz. In a possible embodiment of the invention, the means where the measurements are made is a biological tissue (4) of a user whose glucose level is to be determined. In a preferred embodiment, the biological tissue (4) is tissue comprised in the language of the user whose glucose level is to be measured; the reasons for this selection are justified by various factors, on the one hand, its low fat content is very beneficial, since fat is an element with a greater presence in other parts of the body that hinders the variations of dielectric permittivity while on the other On the other hand, the low influence of saliva on the permittivity of the tongue, which allows the measures to be associated only with the permittivity of the blood circulating through the tongue. In this sense, the tongue comprises the appropriate biological tissue (4) because it is a very vascularized area that notably accuses the changes of permittivity in the blood. In addition, the thermal stability that it usually enjoys is a new point in favor that indicates it as one of the ideal areas to perform this type of measurement, since the dielectric permittivity is severely affected by sudden changes in temperature. As can be seen in Figure 3, where a preferred embodiment of a non-invasive device (1) for measuring blood glucose level can be seen which allows measurements to be made by at least two resonator antennas (21, 22) to microwave frequencies and developed in microstrip technology corresponding to the Antenna 1 and Antenna 2 blocks of figures 1 and 2, the biological tissue (4) of the user whose glucose level is to be measured is placed between both resonator antennas (21, 22) , the first antenna (21) being able to remain above the biological tissue (4) and the second antenna (22) below the biological tissue (4) but always at least partially opposite each other, also in this preferred embodiment each of the resonator antennas (21, 22) would be placed above and below the tongue respectively. In this way, each of the resonator antennas (21, 22) can be measured separately as can be seen in Figures 1 and 2, but both perform it in the same medium and at the same time. To perform the measurement, the two resonant antennas (21, 22) are placed opposite each other in a structure so that the biological tissue (4) of the user whose glucose level is to be measured can be placed between them, and remains as one of the antennas (21, 22) on the biological tissue (4) and the other below it have been described before, and they are operated simultaneously at frequencies between 1GHz and 3 GHz.
Se recomienda el empleo de una estructura tipo pinza con diferentes niveles graduables de presión que aloje las antenas (21 ,22) resonadoras para que la presión que ejerza la estructura tipo pinza se transmita a las antenas (21 ,22) resonadoras y la presión que éstas, al estar alojadas en la estructura tipo pinza, ejerzan sobre el tejido biológico (4) sea siempre la misma. The use of a clamp type structure with different adjustable levels of pressure to accommodate the resonator antennas (21, 22) is recommended so that the pressure exerted by the clamp structure is transmitted to the resonator antennas (21, 22) and the pressure that these, being housed in the clamp-like structure, exert on the biological tissue (4) always be the same.
Las antenas (21 ,22) resonadoras se encuentran conectadas a una unidad de proceso (no mostrada en las figuras) que contiene una electrónica de control y a un generador de señales de frecuencia variable (no mostrado en las figuras) que realiza un barrido en un rango de frecuencias de entre 1 GHz y 3 GHz, preferentemente 1 GHz centrado en la frecuencia de resonancia de cada una de las antena (21 ,22), es decir, desde una frecuencia situada 0.5 GHz por debajo de la frecuencia de resonancia hasta una situada 0.5 GHz por encima, para cada una de las antenas (21 ,22) resonadoras. La respuesta de las antenas (21 ,22) resonadoras a este barrido también es capturada por la electrónica de control de la unidad de proceso y es posteriormente enviada a una electrónica de procesado de la unidad de proceso, que digitalizará las señales y las procesará para extraer diversos parámetros como puede ser la frecuencia de resonancia de cada una de las antenas (21 ,22) resonadoras, la amplitud máxima de cada señal o su ancho de banda a media altura (FWHM). The resonant antennas (21, 22) are connected to a process unit (not shown in the figures) that contains a control electronics and a variable frequency signal generator (not shown in the figures) that scans in a frequency range between 1 GHz and 3 GHz, preferably 1 GHz centered on the resonant frequency of each antenna (21, 22), that is, from a frequency located 0.5 GHz below the resonant frequency to a situated 0.5 GHz above, for each of the resonant antennas (21, 22). The response of the resonant antennas (21, 22) to this scan is also captured by the control electronics of the process unit and is subsequently sent to a processing electronics of the process unit, which will digitize the signals and process them for extract various parameters such as the resonant frequency of each of the resonant antennas (21, 22), the maximum amplitude of each signal or its mid-bandwidth (FWHM).
A partir de estos parámetros la electrónica de procesado procede a calcular el nivel de glucosa en sangre del individuo. Para ello, se procede a medir las variaciones en las frecuencias de resonancia en las antenas (21 ,22) resonadoras producidas por los cambios en la permitividad dieléctrica del medio, para posteriormente extraer a partir de ellas el nivel de glucosa en sangre del usuario mediante correlación entre los cambios y cantidad de glucosa, todo ello de manera no invasiva para el mismo. Cabe destacar que las respuestas son medidas y analizadas en modo diferencial, no solo teniendo en cuenta los desplazamientos de las frecuencias de resonancia cerca del usuario con respecto a las del vacío, sino también las diferencias entre los desplazamientos observados en cada una de las antenas (21 ,22) resonadoras. From these parameters, the processing electronics proceed to calculate the blood glucose level of the individual. To do this, the variations in the resonance frequencies in the resonator antennas (21, 22) produced by the changes in the dielectric permittivity of the medium are measured, and subsequently extracted from them the user's blood glucose level by correlation between changes and amount of glucose, all in a non-invasive way for it. It should be noted that the responses are measured and analyzed in differential mode, not only taking into account the shifts of the resonance frequencies near the user with respect to those of the vacuum, but also the differences between the displacements observed in each of the antennas ( 21, 22) resonators.
En una posible realización alternativa y para mayor precisión se recomienda que el dispositivo (1) posea sensores de temperatura y/o presión para poder considerar estos datos en los cálculos. Por último, el resultado de la medida se visualiza mediante una pantalla digital (3). In a possible alternative embodiment and for greater precision it is recommended that the device (1) possess temperature and / or pressure sensors to be able to consider these data in the calculations. Finally, the result of the measurement is visualized by means of a digital display (3).

Claims

R E I V I N D I C A C I O N E S
1. Dispositivo (1 ) no invasivo para medir nivel de glucosa en sangre caracterizado por que comprende: 1. Non-invasive device (1) for measuring blood glucose level characterized by comprising:
• una unidad de proceso,  • a process unit,
• un generador de señales de frecuencia variable, y  • a variable frequency signal generator, and
• al menos dos antenas (21 ,22) resonadoras a frecuencias de microondas adaptadas para funcionar simultáneamente y conectadas a la unidad de proceso y al generador de señales de frecuencia variable,  • at least two antennas (21, 22) resonators at microwave frequencies adapted to operate simultaneously and connected to the process unit and the variable frequency signal generator,
donde las dos antenas (21 ,22) resonadoras se encuentran dispuestas opuestas distanciadas entre sí de tal manera que un tejido biológico (4) de un usuario cuyo nivel de glucosa se quiere medir quede situada entre las dos antenas (21 ,22) resonadoras. where the two resonator antennas (21, 22) are arranged opposite each other in such a way that a biological tissue (4) of a user whose glucose level is to be measured is located between the two resonator antennas (21, 22).
2. Dispositivo (1) no invasivo para medir nivel de glucosa en sangre según reivindicación 1 caracterizado por que el generador de señales de frecuencia variable se encuentra adaptado para emitir frecuencias comprendidas entre 1 GHz y 3 GHz. 2. Non-invasive device (1) for measuring blood glucose level according to claim 1 characterized in that the variable frequency signal generator is adapted to emit frequencies between 1 GHz and 3 GHz.
3. Dispositivo (1) no invasivo para medir nivel de glucosa en sangre según reivindicación 1 ó 2 caracterizado por que las antenas (21 ,22) resonadoras son tipo microstrip. 3. Non-invasive device (1) for measuring blood glucose level according to claim 1 or 2 characterized in that the resonator antennas (21, 22) are microstrip type.
4. Dispositivo (1) no invasivo para medir nivel de glucosa en sangre según una cualquiera de las reivindicaciones 1 a 3 caracterizado por que adicionalmente comprende sensores de temperatura y/o presión. 4. Non-invasive device (1) for measuring blood glucose level according to any one of claims 1 to 3 characterized in that it additionally comprises temperature and / or pressure sensors.
5. Dispositivo (1) no invasivo para medir nivel de glucosa en sangre según una cualquiera de las reivindicaciones 1 a 4 caracterizado por que adicionalmente comprende una estructura tipo pinza con diferentes niveles graduables de presión destinada a alojar las antenas (21 ,22) resonadoras de tal manera que la presión que ejerzan las antenas (21 ,22) resonadoras, al estar alojadas en la estructura tipo pinza, sobre el tejido biológico (4) sea siempre la misma. 5. Non-invasive device (1) for measuring blood glucose level according to any one of claims 1 to 4 characterized in that it additionally comprises a clamp-type structure with different adjustable levels of pressure intended to accommodate the resonant antennas (21, 22) in such a way that the pressure exerted by the resonant antennas (21, 22), being housed in the clamp-like structure, on the biological tissue (4) is always the same.
6. Método no invasivo para medir nivel de glucosa en sangre que hace uso del dispositivo (1) descrito en una cualquiera de las reivindicaciones 1 a 5 caracterizado por que comprende: 6. Non-invasive method for measuring blood glucose level using the device (1) described in any one of claims 1 to 5 characterized in that it comprises:
• realizar un barrido mediante el generador de señales de frecuencia variable en un rango de frecuencias de entre 1 GHz y 3 GHz,  • sweep through the variable frequency signal generator in a frequency range between 1 GHz and 3 GHz,
• medir variaciones en frecuencias de resonancia en las antenas (21 ,22) resonadoras producidas por los cambios en la permitividad dieléctrica del tejido biológico (4) en respuesta al barrido, y  • measure variations in resonance frequencies in the resonator antennas (21, 22) produced by changes in the dielectric permittivity of the biological tissue (4) in response to scanning, and
• extraer a partir de las variaciones en frecuencias de resonancia en las antenas (21 ,22) resonadoras el nivel de glucosa en sangre del usuario mediante correlación entre los cambios y cantidad de glucosa.  • extracting from the variations in resonance frequencies in the antennas (21, 22) resonators the level of blood glucose of the user by correlation between changes and amount of glucose.
7. Método no invasivo para medir nivel de glucosa en sangre según reivindicación 6 caracterizado por que el rango de frecuencias se encuentra comprendido en un rango centrado en la frecuencia de resonancia de cada una de las antenas (21 ,22) resonadoras y que va desde una frecuencia situada 0.5 GHz por debajo de la frecuencia de resonancia para para cada una de las antenas (21 ,22) resonadoras hasta una frecuencia situada 0.5 GHz por encima de la frecuencia de resonancia para cada una de las antenas (21 ,22) resonadoras. 7. Non-invasive method for measuring blood glucose level according to claim 6 characterized in that the frequency range is in a range centered on the resonance frequency of each of the resonator antennas (21, 22) and ranging from a frequency located 0.5 GHz below the resonant frequency for each of the resonating antennas (21, 22) up to a frequency located 0.5 GHz above the resonant frequency for each of the resonant antennas (21, 22) .
8. Método según reivindicación según una cualquiera de las reivindicaciones 6 a 7 caracterizado por que variaciones en frecuencias de resonancia en las antenas (21 ,22) resonadoras producidas por los cambios en la permitividad dieléctrica del tejido biológico (4), comprenden al menos uno de: frecuencia de resonancia de cada una de las antenas (21 ,22) resonadoras, amplitud máxima de cada señal y ancho de banda a media altura (FWHM). Method according to claim according to any one of claims 6 to 7, characterized in that variations in resonance frequencies in the resonator antennas (21, 22) produced by the changes in the dielectric permittivity of the biological tissue (4), comprise at least one of: resonance frequency of each of the resonant antennas (21, 22), maximum amplitude of each signal and mid-bandwidth (FWHM).
9. Método según reivindicación según una cualquiera de las reivindicaciones 6 a 8 caracterizado por que el tejido biológico (4) corresponde a tejido de la lengua del usuario cuyo nivel de glucosa se quiere medir. 9. Method according to claim according to any one of claims 6 to 8 characterized in that the biological tissue (4) corresponds to tissue of the user's tongue whose glucose level is to be measured.
PCT/ES2016/070834 2015-11-24 2016-11-23 Non-invasive device for measuring the level of glucose in blood, and method using same WO2017089639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201531702 2015-11-24
ES201531702A ES2621006B1 (en) 2015-11-24 2015-11-24 NON-INVASIVE DEVICE FOR MEASURING GLUCOSE LEVEL IN BLOOD AND METHOD THAT MAKES SAME USE

Publications (1)

Publication Number Publication Date
WO2017089639A1 true WO2017089639A1 (en) 2017-06-01

Family

ID=58763063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070834 WO2017089639A1 (en) 2015-11-24 2016-11-23 Non-invasive device for measuring the level of glucose in blood, and method using same

Country Status (2)

Country Link
ES (1) ES2621006B1 (en)
WO (1) WO2017089639A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245376A1 (en) * 2020-06-02 2021-12-09 Applied Monitoring Limited Device for non-invasive substance detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069791A1 (en) * 2001-03-06 2002-09-12 Pendragon Medical Ltd. Method and device for determining the concentration of a substance in body liquid
US20080319285A1 (en) * 2005-07-06 2008-12-25 Ferlin Medical Ltd. Apparatus and Method for Measuring Constituent Concentrations within a Biological Tissue Structure
WO2012059741A1 (en) * 2010-11-01 2012-05-10 University College Cardiff Consultants Limited In-vivo monitoring with microwaves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069791A1 (en) * 2001-03-06 2002-09-12 Pendragon Medical Ltd. Method and device for determining the concentration of a substance in body liquid
US20080319285A1 (en) * 2005-07-06 2008-12-25 Ferlin Medical Ltd. Apparatus and Method for Measuring Constituent Concentrations within a Biological Tissue Structure
WO2012059741A1 (en) * 2010-11-01 2012-05-10 University College Cardiff Consultants Limited In-vivo monitoring with microwaves

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245376A1 (en) * 2020-06-02 2021-12-09 Applied Monitoring Limited Device for non-invasive substance detection

Also Published As

Publication number Publication date
ES2621006A1 (en) 2017-06-30
ES2621006B1 (en) 2018-04-10

Similar Documents

Publication Publication Date Title
US20130018240A1 (en) Body measurement and imaging with a mobile device
AU2016377259B2 (en) A non-invasive sensing system
ES2662711T3 (en) Microwave in vivo surveillance
WO2017141024A3 (en) Apparatus for measuring the concentration of target substances in blood
ES2525582T3 (en) Apparatus and method for measuring the concentrations of the constituents of a biological tissue structure
JP6727203B2 (en) A wearable ultrasound device that signals changes in the human or animal body
US9198607B2 (en) Armband for a detection device for the detection of a blood count parameter
ES2556929T3 (en) Procedures and devices for the evaluation of a mechanical resonator
US8185341B2 (en) Surface temperature profile
EP3152556B1 (en) Apparatus and methods that use magnetic induction spectroscopy to monitor tissue fluid content
KR20200135833A (en) Blood sugar tracking system
RU2014133616A (en) Device for non-invasive glucose measurement
JP2016537069A (en) Photophysiological sensor and assembly method
US9028408B2 (en) Detection device for the detection of a blood count parameter
US20130172696A1 (en) Medical hand-held measuring device with exchangeable probe
US20110109329A1 (en) Physiological Measurement Instrument
Das et al. Antenna evaluation of a non-contact vital signs sensor for continuous heart and respiration rate monitoring
ES2621006B1 (en) NON-INVASIVE DEVICE FOR MEASURING GLUCOSE LEVEL IN BLOOD AND METHOD THAT MAKES SAME USE
CN107997769A (en) A kind of microwave time delay Woundless blood sugar Concentration Testing method based on Ear lobe blood liquid layer
Sarvazyan et al. Acoustical method of whole-body hydration status monitoring
US20200011811A1 (en) Resonant sensing device
MX2013007890A (en) Sensor device for sensing body fluid density and/or membrane resistance.
CN112957072A (en) Wearable ultrasonic monitoring system for bladder urine volume
CN106214153A (en) A kind of infrared ray upper-arm circumference measuring instrument
US11045164B2 (en) Noninvasive fluid and electrolyte balance monitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868076

Country of ref document: EP

Kind code of ref document: A1