WO2017088893A1 - Station for producing water via condensation by means of renewable energy - Google Patents

Station for producing water via condensation by means of renewable energy Download PDF

Info

Publication number
WO2017088893A1
WO2017088893A1 PCT/DZ2016/050001 DZ2016050001W WO2017088893A1 WO 2017088893 A1 WO2017088893 A1 WO 2017088893A1 DZ 2016050001 W DZ2016050001 W DZ 2016050001W WO 2017088893 A1 WO2017088893 A1 WO 2017088893A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
station
water
production
tunnel
Prior art date
Application number
PCT/DZ2016/050001
Other languages
French (fr)
Inventor
Tarek TIDJANI
Original Assignee
Tidjani Tarek
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tidjani Tarek filed Critical Tidjani Tarek
Publication of WO2017088893A1 publication Critical patent/WO2017088893A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/28Methods or installations for obtaining or collecting drinking water or tap water from humid air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a water production station in a natural way (renewable energy) condensing the relative humidity of the air, and the water vapor transpired by the soil.
  • the station uses solar radiation as a source of thermodynamic energy to turn the cycle that will allow the production of water.
  • the object of the invention is to produce a water production station with renewable energy in an ecological and economical manner, eliminating the charges and the cost of the cubic meter produced.
  • a station that can be installed anywhere in the world even in inaccessible areas, poor areas or without any other source of drinking water.
  • the production of water corresponds to the action to produce water from natural water with costs that vary greatly depending on the technique used, which have a yield obstacle and the energy cost that has been washed out (coagulation and flocculation). , decantation, filtration, disinfection, boiling, distillation, reverse osmosis, ion exchange demineralization, electrodialysis)
  • the condensation which is the technique of the present invention, and for an example cited, there are techniques such as wind turbines generating water, which have a handicap with regard to the mode of aspiration of the ambient air for the production and in addition the multiplication of intermediate position which will definitely impede the yield.
  • the electrical energy is used for the operation of the refrigeration compressor and in addition to supply another electric motor of the turbine to suck ambient air in order to condense some gram of water per cubic meter.
  • FIG. 1 is a global view of the station and its Primordial elements.
  • Fig. 4a is an enlargement showing the elongate bearing-like evaporators.
  • -fig.6 is a perspective section showing the cooling by the repressed air.
  • FIG. 7 is a section above showing the cooling by the cold air cleared.
  • the station shown in fig.l its operation is provided by three Primordial elements, the tunnel clamp 1 which has three roles, the first is to warm the air, and the second is to suck the ambient air of the outside and third, and favored the vaporization of water transpired by the soil of the greenhouse itself and which will be transported by rising air.
  • the collector 2 serves to send the spiral air into the nozzle 3 (the production unit).
  • the collector fig.3 In the collector fig.3 the latter is provided with pillars in the form of blades positioned in a circular manner 1, and a position to allow (the venturi effect ) the passage sections (a) narrowed causing an increase in the speed of the growing air towards the zones (b). And in the zone (c) Creyant thus a whirlwind of air that will spiral upwards in the nozzle
  • each bearing consists of several evaporators elongated in a circular manner in several stages located in the second stream 6, (or enlargement fîg.4a), so to distribute the heat absorption evenly over the entire circumference of the second flow equally, subsequently the air will end up in the loosening zone 7, the air which is in the second flow 2, provided with a thermal insulation cools shrinks, its density increases so it will go down by canceling the potential energy term of the rising air, and by this convection has created a hot-cold cyclic motor, noted that e the downward cold air will act as the counterweight of an elevator to
  • a circular basin conceived as a gutter 1, to receive the produced water, then to improve the profitability, and by gravity the cold water is evacuated by pipes 2 (example of a single output), which passes in exchanger of the capacitors of the refrigerant circuit 3 for cooling by water, and finally, the water exits via a channel 4 at an ambient temperature, which is connected to a circular collection pipeline 5, for the delivery of water to storage basins, in the case agri irrigation school and industry, or to a post treatment to make drinking water.
  • the station is equipped with the second cooling mode of the refrigeration capacitors in order to add one more to the profitability fIg.6 and fIg.7 the fresh air is evacuated from the second flow by lateral openings all around the circumference 1, (example of a output) which will then be deflected by deflectors 2, to force the air to pass between the fins of the capacitors 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

The present invention relates to natural production of water by condensing the relative humidity of the air. The station uses solar radiation as a thermodynamic source to set in motion the cycle that enables water production. The operation is ensured by means of tunnel greenhouses (1) for heating the air via solar radiation. The heated air rises upward while drawing in ambient air from outside and behind, which is in turn heated in order to create a totally natural air intake in a cyclical manner. The collector (2) sends the air into the first (central) stream of the nozzle (3) that holds a turbine therein for converting the kinetic energy of the ascending air into mechanical energy so as to actuate the refrigeration compressor after passing through a multiplier intended for cooling the second stream and having a plurality of evaporator bearings as well as other bottom bearings that act as condensation cores for capturing water molecules in order to assist the water production. Finally, the water produced and the air held back pass through the capacitors of the cooling circuit so as to improve the output.

Description

BREVET
Figure imgf000003_0001
INVENTION
PATENT
Figure imgf000003_0001
INVENTION
Déposant : TIDJANI TARER Submitter: TIDJANI TARER
Titre de l'invention : Title of the invention:
Station de production d'eau par condensation avec l'énergie renouvelable Condensing water production station with renewable energy
Mémoire descriptif Titre de l'invention Descriptive memory Title of the invention
Station de production d'eau par condensation avec l'énergie renouvelable Domaine technique auquel se rapporte l'invention  Condensing water production plant with renewable energy Technical field to which the invention relates
La présente invention concerne une station de production d'eau de façon naturelle (énergie renouvelable) on condensant l'humidité relative de l'air, et la vapeur d'eau transpiré par le sol.  The present invention relates to a water production station in a natural way (renewable energy) condensing the relative humidity of the air, and the water vapor transpired by the soil.
La station utilise le rayonnement solaire comme une source d'énergie thermodynamique pour faire tourner le cycle qui permettra la production d'eau.  The station uses solar radiation as a source of thermodynamic energy to turn the cycle that will allow the production of water.
But de l'invention Purpose of the invention
L'invention a pour objet de réaliser une station de production d'eau avec de l'énergie renouvelable de façon écologique et économique, on éliminant les charges et le coût du mètre cube produit. En plus, une station qu'on peut installer partout dans le monde même dans les zones inaccessibles, les régions pauvres ou sans aucune autre ressource en eau potable.  The object of the invention is to produce a water production station with renewable energy in an ecological and economical manner, eliminating the charges and the cost of the cubic meter produced. In addition, a station that can be installed anywhere in the world even in inaccessible areas, poor areas or without any other source of drinking water.
Etat de la technique antérieure State of the art
La production d'eau correspond à l'action permettant de produire de l'eau à partir d'eau naturelle avec des coûts variant beaucoup selon la technique utilisé qui ont un obstacle du rendement et le cout énergétique élavés,(La coagulation et la floculation, la décantation, filtration, désinfection, ébullition, distillation, osmose inverse, déminéralisation par échange d'ions, électrodialyse) La condensation qui est la technique de la présente invention, et pour cité un exemple, il ya des techniques comme des éoliennes productrices d'eau, qui ont un handicape en ce qui concerne le mode d'aspiration de l'air ambiant pour la production et en plus la multiplication de poste intermédiaire qui vont nuire nettement le rendement. C'est-à-dire ; l'énergie cinétique du vent transformé en énergie mécanique ensuite électrique, l'énergie électrique est utilisée pour le fonctionnement du compresseur frigorifique et en plus pour alimenter un autre moteur électrique de la turbine pour aspirer de l'air ambiant afin de condenser quelque gramme d'eau par mètre cube.  The production of water corresponds to the action to produce water from natural water with costs that vary greatly depending on the technique used, which have a yield obstacle and the energy cost that has been washed out (coagulation and flocculation). , decantation, filtration, disinfection, boiling, distillation, reverse osmosis, ion exchange demineralization, electrodialysis) The condensation which is the technique of the present invention, and for an example cited, there are techniques such as wind turbines generating water, which have a handicap with regard to the mode of aspiration of the ambient air for the production and in addition the multiplication of intermediate position which will definitely impede the yield. That is to say ; the kinetic energy of the wind transformed into mechanical energy then electrical, the electrical energy is used for the operation of the refrigeration compressor and in addition to supply another electric motor of the turbine to suck ambient air in order to condense some gram of water per cubic meter.
Enoncé des figures Statement of Figures
De toute façon, l'invention sera bien comprise à l'aide de la description qui suit, en référence au dessin schématique annexé, représentant a titre d'exemples non limitatifs plusieurs formes d'exécution de cette station : -fig. 1 est une vue globale de la station et ses éléments Primordiaux. In any case, the invention will be better understood with the aid of the description which follows, with reference to the appended schematic drawing, representing by way of nonlimiting examples several embodiments of this station: -Fig. 1 is a global view of the station and its Primordial elements.
-fig.2 vue en coupe de la serre-tunnel. -fig.2 sectional view of the tunnel greenhouse.
-fig.3 vue en coupe au-dessus du collecteur qui présente comment la masse d'air chaude est envoyée vers le haut.  -fig.3 sectional view above the collector showing how the hot air mass is sent upwards.
-fig.4 vue en coupe de face de la tuyère montrant les différents éléments de la production.  -fig.4 view in front section of the nozzle showing the different elements of the production.
-fig.4a est un agrandissement montrant les évaporateurs allongés sou forme de paliers. Fig. 4a is an enlargement showing the elongate bearing-like evaporators.
-fig.5 coupe en face montrant la réception d'eau et le système de refroidissement par eau des condensateurs frigorifiques. -fig.5 sectional view showing water reception and water cooling system of refrigeration capacitors.
-fig.6 est une coupe en perspective montrant le refroidissement par l'air refoulé.  -fig.6 is a perspective section showing the cooling by the repressed air.
-fig. 7 est une coupe au-dessus montrant le refroidissement par l'air froid dégagé.  -Fig. 7 is a section above showing the cooling by the cold air cleared.
Présentation de Γ essence (la substance) de V invention et son mode de réalisationPresentation of the essence (the substance) of the invention and its embodiment
La station représenté a la fig.l son fonctionnement est assuré par trois éléments Primordiaux, la serre-tunnel 1 qui a trois rôles, le premier est de réchauffé l'air, et le second est d'aspirer l'air ambiant de l'extérieur et le troisième, et de favorisé la vaporisation d'eau transpirée par le sol de la serre elle-même et qui sera transporté par l'air ascendant. Le collecteur 2, sert à envoyer l'air en spirale dans la tuyère 3, (l'unité de production). Dans la serre-tunnel fig.2 en double parois 1, en verre ou en plexiglas pour assuré une bonne isolation thermique afin de réchauffer l'air par le rayonnement solaire le jour et par le rayonnement du sol (infra rouge) la nuit, pour créer une ascendance thermique de l'air, la serre-tunnel à deux paramètres ; sa longueur et son ongle qui doit être positionné vers le bas para port au collecteur 2, (plus ces derniers sont importants, plus c'est rentable). Une fois l'air chauffé se déplacera vers le haut a cause de leur différance de densités ( la poussé d'Archimède), donc il va se déplacer on aspirant derrière lui de l'air ambiant de l'extérieur qui va se réchauffer a son tour et ainsi de suite comme un aspirateur d'air naturel , qui a pour but d'aspiré des volumes d'air importantes pour condensé le taux d'humidité relative qui contient. Ensuite, le déplacement de l'air sera recueilli par le collecteur 2. Dans le collecteur fig.3 ce dernier est doté de piliers sous forme d'aubes positionnées de façon circulaire 1, et d'une position à permettre (l'effet venturi) les sections de passages (a) se rétrécies provoquant une augmentation de la vitesse de l'air en croissance vers les zones (b). Et dans la zone (c) Creyant ainsi un tourbillon d'air qui s'échappera en spirale vers le haut dans la tuyèreThe station shown in fig.l its operation is provided by three Primordial elements, the tunnel clamp 1 which has three roles, the first is to warm the air, and the second is to suck the ambient air of the outside and third, and favored the vaporization of water transpired by the soil of the greenhouse itself and which will be transported by rising air. The collector 2 serves to send the spiral air into the nozzle 3 (the production unit). In tunnel greenhouse fig.2 double wall 1, made of glass or Plexiglas to ensure good thermal insulation to heat the air by solar radiation during the day and by the radiation of the ground (infrared) at night, for create a thermal air lift, the two-parameter tunnel clamp; its length and its fingernail, which must be positioned downwards to the collector 2, (the more important these are, the more profitable it is). Once the heated air will move upwards because of their density difference (Archimedean thrust), so it will move, sucking behind it ambient air from outside that will warm up to its tower and so on as a natural air aspirator, which aims to suck up large volumes of air to condensed the relative humidity that contains. Then, the displacement of the air will be collected by the collector 2. In the collector fig.3 the latter is provided with pillars in the form of blades positioned in a circular manner 1, and a position to allow (the venturi effect ) the passage sections (a) narrowed causing an increase in the speed of the growing air towards the zones (b). And in the zone (c) Creyant thus a whirlwind of air that will spiral upwards in the nozzle
(Le modèle vertical de Bernoulli) avec une augmentation de vitesse pour une deuxième accélération de l'air mais verticalement cette fois ci. Et dans la tuyère fig.4 qui se compose de deux flux let 2, la masse d'air ascendante passe par le premier flux axial 1, pour faire tourner le rotor 3, qui va entraîner le compresseur frigorifique à rotation axial 4, par l'intermédiaire d'un multiplicateur de vitesse, pour la compression de fluide frigorifiques des circuits 5, ensuite chaque palier se compose de plusieurs évaporateurs allongés de façon circulaire en plusieurs étages situer dans le deuxième flux 6,(voire agrandissement fîg.4a), afin de bien répartir l'absorption de chaleur sur toute la circonférence du deuxième flux de façon égale, en suite l'air va se retrouver dans la zone de relâchement 7, l'air qui se trouve dans le deuxième flux 2, doté d'une isolation thermique se refroidit se contracte, sa masse volumique augmente donc ce dernier va descendre vers le bas en annulant le terme d'énergie potentielle de l'air ascendant, et par cette convection s'est créé un moteur cyclique chaud- froid, a noté que l'air froid descendant va jouer le rôle du contrepoids d'un ascenseur pour contrebalancé la masse d'air entre les deux flux afin d'améliorer le rendement. Ensuit l'air est obligé de passer entre les ailettes d évaporateurs 6, fig4 pour que la condensation débute. Et sous les paliers doté de circuits frigorifique se trouve d'autres paliers sans circuit cette fois-ci, car ils seront refroidies uniquement par le passage de l'air et l'eau froid qui s'est condensée entre les ailettes des étages supérieurs , et ces paliers servent également de noyaux de condensation qui vont capter les molécules d'eau 8, (voire agrandissement fîg.4a) .Ensuite fîg.5 sur la base et juste sous le deuxième flux de la production se trouve un bassin circulaire conçu comme une gouttière 1, pour recevez l'eau produite, ensuite pour amélioré la rentabilité, et par la pesanteur l'eau froide est évacuait par des canalisations 2 (exemple d'une seul sortie), qui passe dans échangeur des condensateurs du circuit frigorifique 3 pour un refroidissement par eau , et enfin, l'eau sort par un canal 4 a une température ambiante, qui est relié a un pipeline de collecte circulaire 5, pour l'acheminement de l'eau vers des bassins de stockage, dans le cas d'irrigation agricole et industrie, ou bien vers un poste traitement pour rendre l'eau potable . La station est dotée du deuxième mode de refroidissement des condensateurs frigorifiques pour rajouter un plus à la rentabilité fîg.6 et fîg.7 l'air frais est évacué du deuxième flux par des ouvertures latéraux sur toute la circonférence 1, (exemple d'une sortie) qui ensuite, sera dévier par des déflecteurs 2, pour obliger l'air de passer entre les ailettes des condensateurs 3. (The Bernoulli vertical model) with a speed increase for a second acceleration of the air but vertically this time. And in the nozzle fig.4 which is composed of two flows let 2, the ascending air mass passes through the first axial flow 1, to rotate the rotor 3, which will drive the refrigerant compressor with axial rotation 4, by l intermediate of a speed multiplier, for the compression of refrigerant of the circuits 5, then each bearing consists of several evaporators elongated in a circular manner in several stages located in the second stream 6, (or enlargement fîg.4a), so to distribute the heat absorption evenly over the entire circumference of the second flow equally, subsequently the air will end up in the loosening zone 7, the air which is in the second flow 2, provided with a thermal insulation cools shrinks, its density increases so it will go down by canceling the potential energy term of the rising air, and by this convection has created a hot-cold cyclic motor, noted that e the downward cold air will act as the counterweight of an elevator to counterbalance the air mass between the two streams to improve efficiency. Then the air is forced to pass between the evaporator fins 6, fig4 for condensation to begin. And under the bearings with refrigerant circuits are other bearings without circuit this time, because they will be cooled only by the passage of air and cold water that has condensed between the fins of the upper floors, and these bearings also serve as condensation nuclei which will capture the molecules of water 8, (or even enlargement, Fig. 4a). Next, on the basis and just under the second flow of production, is a circular basin conceived as a gutter 1, to receive the produced water, then to improve the profitability, and by gravity the cold water is evacuated by pipes 2 (example of a single output), which passes in exchanger of the capacitors of the refrigerant circuit 3 for cooling by water, and finally, the water exits via a channel 4 at an ambient temperature, which is connected to a circular collection pipeline 5, for the delivery of water to storage basins, in the case agri irrigation school and industry, or to a post treatment to make drinking water. The station is equipped with the second cooling mode of the refrigeration capacitors in order to add one more to the profitability fIg.6 and fIg.7 the fresh air is evacuated from the second flow by lateral openings all around the circumference 1, (example of a output) which will then be deflected by deflectors 2, to force the air to pass between the fins of the capacitors 3.

Claims

Revendications claims
1. -la station de production d'eau caractérisée par trois éléments primordiaux, le premier (serre-tunnel) vise à réchauffer l'air ambiant par le rayonnement solaire ou d'autre source thermique et le deuxième rôle est d'aspirer l'air, par le fait que l'air chaud par son déplacement vers le haut va aspirer de l'air ambiant de l'extérieur comme un aspirateur. Le deuxième élément (le collecteur) son rôle est d'envoyer l'air en spirale vers la turbine. Le troisième élément (la tuyère) se caractérise par son double flux, le premier axiale pour la masse d'air montante, logeant une turbine qui entraine un compresseur frigorifique qui peut être associer à un générateur électrique, et le deuxième flux radiale doté d'une isolation thermique et de paliers frigorifier à plusieurs étages dans le but de favoriser la condensation.  1. -The water production station characterized by three essential elements, the first (tunnel greenhouse) aims to heat the ambient air by solar radiation or other heat source and the second role is to suck the air, by the fact that the hot air by its upward movement will suck ambient air from the outside as a vacuum cleaner. The second element (the collector) its role is to send air spiral to the turbine. The third element (the nozzle) is characterized by its double flow, the first axial for the rising air mass, housing a turbine which drives a refrigeration compressor which can be associated with an electric generator, and the second radial flow provided with thermal insulation and bearings multi-stage refrigeration in order to promote condensation.
2. -selon la revendication 1 le collecteur peut être conçu de façon à recevoir plusieurs serre-tunnels de façon circulaire ou bien linaire pour l'optimisation du rendement. 2. -according to claim 1 the collector can be designed to receive several tunnel clamps circularly or linearly for the optimization of yield.
3. - selon la revendication 1 pour une grande production la station peut être conçue en plusieurs unités reliées par un pipeline. 3. - According to claim 1 for a large production station can be designed in several units connected by a pipeline.
4. - selon les revendications 1 et 2 la station peut être réalisé en plusieurs dimensions pour les petites agricultures, maison, hôtel dont la serre-tunnel sera fixe aux façades a la vertical et la tuyère sur la toiture.  4. - according to claims 1 and 2 the station can be made in several sizes for small farms, house, hotel whose tunnel greenhouse will be fixed to the facades in the vertical and the nozzle on the roof.
5. -la station peut être équipé d'une éolienne verticale qui prend en charge le refroidissement du deuxième flux avec l'énergie cinétique du vent, et les serres- tunnels servent uniquement pour l'aspiration de l'air par la thermodynamique.  5. The station can be equipped with a vertical wind turbine which supports the cooling of the second stream with the kinetic energy of the wind, and the tunnel clamps are only used for the aspiration of air by thermodynamics.
6. -La station peut être transformée pour la production d'eau et l'électricité on raccorde une génératrice électrique.  6. -The station can be transformed for the production of water and electricity is connected to an electric generator.
PCT/DZ2016/050001 2015-11-25 2016-01-05 Station for producing water via condensation by means of renewable energy WO2017088893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DZ150719 2015-11-25
DZ150719 2015-11-25

Publications (1)

Publication Number Publication Date
WO2017088893A1 true WO2017088893A1 (en) 2017-06-01

Family

ID=58763041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DZ2016/050001 WO2017088893A1 (en) 2015-11-25 2016-01-05 Station for producing water via condensation by means of renewable energy

Country Status (1)

Country Link
WO (1) WO2017088893A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080186A (en) * 1977-01-07 1978-03-21 Ockert Carl E Device for extracting energy, fresh water and pollution from moist air
DE4132916A1 (en) * 1991-10-04 1993-04-08 Richard Schaenzlin Up-wind power plant with solar collectors - and heat exchanger for mechanical energy and drinking water prodn.
WO2007025344A1 (en) * 2005-09-01 2007-03-08 Hydrotower Pty Limited Solar atmospheric water harvester
DE102005043257A1 (en) * 2005-09-09 2007-03-15 Logos-Innovationen Gmbh Device for production of brine solution with hygroscopic salt from atmospheric air with fluid adsorbent and/or absorbent for adsorption and/or absorption of the water, has wind guiding device for leading wind to absorption distance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080186A (en) * 1977-01-07 1978-03-21 Ockert Carl E Device for extracting energy, fresh water and pollution from moist air
DE4132916A1 (en) * 1991-10-04 1993-04-08 Richard Schaenzlin Up-wind power plant with solar collectors - and heat exchanger for mechanical energy and drinking water prodn.
WO2007025344A1 (en) * 2005-09-01 2007-03-08 Hydrotower Pty Limited Solar atmospheric water harvester
DE102005043257A1 (en) * 2005-09-09 2007-03-15 Logos-Innovationen Gmbh Device for production of brine solution with hygroscopic salt from atmospheric air with fluid adsorbent and/or absorbent for adsorption and/or absorption of the water, has wind guiding device for leading wind to absorption distance

Similar Documents

Publication Publication Date Title
Santosh et al. Technological advancements in solar energy driven humidification-dehumidification desalination systems-A review
CN203934432U (en) A kind of wind light mutual complementing air condensed water automatic irrigation device
Prakash et al. Parameters influencing the productivity of solar stills–A review
Kalogirou Seawater desalination using renewable energy sources
US10603603B2 (en) System, and associated method, for recovering water from air
US20080314058A1 (en) Solar Atmospheric Water Harvester
Khechekhouche et al. Seasonal effect on solar distillation in the El-Oued region of south-east Algeria
US6116034A (en) System for producing fresh water from atmospheric air
CN203878656U (en) Water making device through solar energy and air
CN104528853B (en) A kind of embedded pair of chimney type solar seawater desalination system and desalination method thereof
US20200036324A1 (en) Methods of Producing Multiple Output Solar and Water Generator and Radiant Heater
Deniz Solar-powered desalination
Al-Dabbas et al. Productivity enhancement of the solar still by using water cooled finned condensing pipe
Wang et al. Thermodynamic and economic analysis of a solar hydroponic planting system with multi-stage interfacial distillation units
CN110485509A (en) A kind of bionical water fetching device for desert water-deficient area
JP5692557B1 (en) Solar heat exchanger
WO2017088893A1 (en) Station for producing water via condensation by means of renewable energy
WO2014091172A2 (en) Improved element for processing solar radiation, and a sun tracker and a solar farm equipped with such an element
WO2021218677A1 (en) Nursery shed capable of automatic water extraction in desert and automatic water extraction method
Abd Elkader Solar seawater desalination using a multi-stage multi-effect humidification (Meh)-dehumidification system with energy storage
Nema et al. A comprehensive review on the productivity enhancement of a solar desalination system through parameters and techniques
CN1772634A (en) Shed curtain type multifuctional solar sea water desalting plant
Firozuddin et al. Thermal Performance on Single Basin Solar Still with Evacuated Tubes Solar Collector–A Review
DE202007013079U1 (en) Solar seawater desalination plant with power plant
Ahmed et al. A review of vacuum solar desalination powered by renewable energy: Recent trends

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868067

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16868067

Country of ref document: EP

Kind code of ref document: A1