WO2014091172A2 - Improved element for processing solar radiation, and a sun tracker and a solar farm equipped with such an element - Google Patents

Improved element for processing solar radiation, and a sun tracker and a solar farm equipped with such an element Download PDF

Info

Publication number
WO2014091172A2
WO2014091172A2 PCT/FR2013/053074 FR2013053074W WO2014091172A2 WO 2014091172 A2 WO2014091172 A2 WO 2014091172A2 FR 2013053074 W FR2013053074 W FR 2013053074W WO 2014091172 A2 WO2014091172 A2 WO 2014091172A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar
layer
treatment element
heat exchanger
radiation
Prior art date
Application number
PCT/FR2013/053074
Other languages
French (fr)
Other versions
WO2014091172A3 (en
Inventor
Dominique Rochier
Vincent Goetz
Xavier Py
Régis OLIVES
Gilles Flamant
Original Assignee
Exosun
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exosun, Centre National De La Recherche Scientifique filed Critical Exosun
Priority to US14/651,090 priority Critical patent/US20150308717A1/en
Publication of WO2014091172A2 publication Critical patent/WO2014091172A2/en
Publication of WO2014091172A3 publication Critical patent/WO2014091172A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0052Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using the ground body or aquifers as heat storage medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/72Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • F24S40/55Arrangements for cooling, e.g. by using external heat dissipating means or internal cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/40Casings
    • F24S80/45Casings characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to an improved solar radiation treatment element for emitting infra-red radiation. It also relates to a solar tracker comprising such an element. Finally, the invention also relates to an electrosolar concentration plant equipped with such solar trackers.
  • thermodynamic cycle implemented in a CSP plant requires the evacuation of so-called low-temperature heat production at the condenser of the plant.
  • CSP the temperature level
  • the production of heat is of the order of 2 megawatts thermal for 1 megawatt electric produced.
  • this heat extraction is carried out using wet towers consuming large quantities of water, of the order of 3.5 to 4 m 3 of water per MWhe. Such water consumption is unacceptable in arid regions likely to receive such CPS plants.
  • An alternative to using wet towers is to extract the heat by exchange with the ambient air using formed convection exchangers.
  • An object of the invention is to provide a system for solving the aforementioned problems.
  • a solar radiation treatment element comprising solar radiation treatment means forming a layer of the solar radiation treatment element, as well as a layer of emissive material of radiation, in particular infra-red radiation, covering the layer of processing means.
  • the use of a layer of emissive material of a radiation such as radiation ⁇ infra red, covering the layer of processing the processing element means provides a radiation emitter directed towards the space which acts as a cold body (because having a temperature of the order of 3 ° K, ie -270 ° C) and thus to allow the evacuation of heat by radiation from the solar radiation treatment element to the space .
  • a radiation emitter directed towards the space which acts as a cold body (because having a temperature of the order of 3 ° K, ie -270 ° C) and thus to allow the evacuation of heat by radiation from the solar radiation treatment element to the space .
  • Such calorie evacuation does not consume water for this purpose.
  • the treatment element according to the invention has at least one of the following technical characteristics:
  • the treatment element further comprises a heat exchanger layer located under and covered by the treatment means layer;
  • the treatment element further comprises an insulating lower layer
  • the heat exchanger layer comprises in a thickness a network of pipes in which circulates a heat transfer fluid and comprising a fluid inlet and a fluid outlet; _
  • the layer of emissive material is produced by a surface treatment of a surface of the layer of processing means.
  • a solar tracker comprising a structure mounted on a frame mounted in a portion of soil comprising at least one treatment element having at least one of the preceding technical characteristics.
  • the solar tracker has at least one of the following additional technical characteristics:
  • the solar tracker further comprises means for recovering trickling water on the emissive material layer of the treatment element;
  • the solar tracker is controlled by a steering system of a structure orientation, the control system is arranged to adapt the orientation of the solar element according to the weather conditions around the treatment element; and -
  • the solar tracker further comprises fluidic connection means of the heat exchanger layer with a geothermal heat exchanger buried in the soil portion.
  • an electrosolar concentration plant comprising a condenser provided with a heat exchanger, and a series of solar trackers having at least one of the preceding technical characteristics.
  • the electrosolar concentration plant has at least one of the following additional technical characteristics:
  • the treatment elements of the series of solar trackers are fluidly connected to each other at their heat exchanger layer so as to form a single cooling circuit
  • the heat exchanger of the condenser is fluidly connected to the single cooling circuit.
  • FIG. 1 is a schematic sectional view of a solar radiation treatment element 1 according to the invention.
  • FIG. 2 is a diagrammatic sectional view of a first embodiment of a solar follower according to the invention comprising processing elements of Figure 1;
  • FIG. 3 is a schematic sectional view of a second embodiment of a solar tracker according to the invention comprising a processing element according to Figure 1;
  • Figure 4 is a schematic view of an installation and a connection of at least two solar trackers of Figure 3;
  • FIG. 5 is a schematic view illustrating a cooling circuit of a CSP plant according to the invention comprising a solar tracking field of FIG. 3;
  • FIG. 6 is a schematic view illustrating a solar power station equipped with solar trackers, according to
  • the solar radiation treatment element 10 comprises means for treating a solar radiation forming a layer 2.
  • These solar radiation processing means are a reflecting mirror in the context of an application in a Concentrating electrosolar power plant.
  • the means for treating a solar radiation may be photovoltaic cells or any other device making it possible to carry out the treatment of a solar radiation received by the element for treating a solar radiation 10 according to the invention .
  • the element for treating solar radiation 10 according to the invention further comprises a layer of radiation emissive material 1.
  • This radiation emissive material layer 1 is made so as to cover the treatment medium layer 2 of the solar radiation processing element 10 according to the invention.
  • This radiation emissive material layer 1 forms a thin layer which is attached to an upper surface of the treatment medium layer 2.
  • the emissive material layer of a radiation 1 is produced by a treatment of the surface of the upper surface of the treatment medium layer 2.
  • the material or materials used to produce the emissive material layer of a radiation 1 are chosen so as to optimize the emission of radiation E R according to a certain wavelength which allows a transfer of thermal energy with space through the earth's atmosphere, once the solar radiation treatment element 10 according to the invention installed on a portion of the earth's surface.
  • the wavelength of the radiation E R allowing such a heat exchange is in the wavelengths of the infrared, in particular and preferably between 8 and 16 ⁇ m. This makes it possible to optimally implement a thermal exchange that occurs naturally between two bodies having two surfaces facing each other and whose temperatures are different. Indeed, a radiation heat exchange occurs from then on and is a function of the difference in the power of the four temperatures of the two bodies vis-à-vis.
  • the layer of emissive material of a radiation 1 can be made using a varnish or an attached plastic film, or glass. Thus it is possible to achieve a radiation heat exchange of the order of 50W / m 2 .
  • the element for treating solar radiation 10 according to the invention comprises a layer 3 forming a heat exchanger.
  • This heat exchanger layer 3 is positioned on a lower surface of the treatment means layer 2, which bottom surface is opposite to the upper surface of the treatment medium layer 2 which receives the emissive material layer of a radiation 1
  • This heat exchanger layer 3 here comprises a tubular network 5 serpentine under and in thermal contact with the lower surface of the treatment means layer 2 of the solar radiation treatment element 10 according to the invention.
  • the tubing network 5 forms a single circuit and has an inlet 7 and an outlet 6 to allow circulation of a coolant within the tubing network 5 forming the heat exchanger layer 3.
  • the tubing network 5 can be embedded in a material promoting heat exchange between the lower surface of the treatment medium layer 2 and the tubing network 5 in which the heat transfer fluid circulates between the inlet 7 and the outlet 6.
  • the treatment element a solar radiation 10 according to the invention comprises an insulating lower layer 4 positioned below the heat exchanger layer 3. This insulating lower layer 4 minimizes a heat exchange between the ground above which the element of solar radiation treatment 10 according to the invention is installed and this solar radiation treatment element 10 according to the invention.
  • this lower layer 4 makes it possible to privilege and protect heat exchange between the layer of treatment means 2 and the heat-exchange layer 3.
  • the element for treating solar radiation 10 according to the invention makes it possible to exchange calories without requiring water consumption.
  • the exchange of calories is effected by the emission of radiation E R with space.
  • the solar radiation treatment element 10 according to the invention will make it possible to maintain an optimum temperature for the operation of the solar radiation treatment means which form the layer 2 of the treatment element of a solar radiation.
  • solar radiation 10 according to the invention In the context of use in a CSP type plant, the tubing network 5 of the solar radiation processing element 10 according to the invention is fluidly connected to a heat exchanger of a condenser of the CSP plant. and will thus allow to evacuate the so-called low-temperature heat production at this condenser.
  • the structure of the solar radiation treatment element 10 according to the invention will make it possible to lower the temperature of the upper surface of the radiation emitting material layer 1 of the treatment element.
  • a radiation solar system 10 according to the invention below the dew point temperature. This will make it possible to condense, at this upper surface of the emissive material layer, a radiation 1 of the element for treating solar radiation 10 according to the invention, the humidity contained in the ambient air.
  • the water thus formed on the surface will allow to clean this surface in a natural way.
  • the production of water thus produced by condensation is important, the surplus is recovered for later recovery. This water production is of the order of 200 to 1000 liters per 500 m 2 of solar radiation treatment element surface 10 according to the invention.
  • the solar follower 20 according to the invention is here a solar parabolic follower comprising two elements for treating solar radiation 10 according to the invention which are preferably curved so as to form a parabola.
  • the radiation emitting material layer 1 of the solar radiation treatment element 10 according to the invention is located on the inside of the parabola formed by the solar radiation treatment element 10 according to the invention.
  • the insulating lower layer 4 is positioned on the outside of the solar tracker 20 according to the invention.
  • the treatment medium layer 2 here forming a mirror, the solar radiation is reflected by the solar radiation treatment element 10 according to the invention to a focal point of the parabola formed by this treatment element.
  • a solar radiation 10 according to the invention The focal point is occupied by a tubular furnace 21 in which circulates a heat transfer fluid which recovers the solar energy thus reflected by the solar radiation treatment element 10 according to the invention of the solar tracker 20 according to the invention.
  • the two solar radiation treatment elements 10 according to the invention forming the solar tracker 20 according to the invention are positioned side-by-side so as to form a bowl and are separated at a low point by a passage 23. Under this passage 23, the solar tracker 20 according to the invention comprises means for recovering dripping water 22, here in the form here of a gutter.
  • the condensation which forms on the outer surface of the radiation emitting material layer 1 of the two solar radiation treatment elements 10 according to the invention flows towards the low point, and therefore to the passage 23, then flows naturally in the gutter 22 which will allow to recover the excess runoff water to a device for upgrading this water. Moreover, during runoff, this water cleans the treatment elements of solar radiation 10 according to the invention.
  • the solar tracker 30 according to this second embodiment of the invention is here a planar solar tracker comprising a radiation treatment element.
  • solar 10 according to the invention installed on a structure 31 itself pivotally mounted on a frame 32, for example in the form of a pole, for installing the solar tracker 30 according to the invention on a portion of soil S d ' a website.
  • the solar follower 30 includes trickling water recovery means 22, again in the form of a gutter.
  • the night time operation is identical here as for the solar tracker 20 according to the invention of the first embodiment described above.
  • the follower 30 according to the invention can make an inclination suitable for this trickle flow to the solar radiation treatment element 10 according to the invention, which forms a plane here.
  • the orientation of the elements for treating solar radiation according to the invention is carried out, in a manner known per se, by a steering system of an orientation of the structure, not shown, which makes it possible to orient the structure of the solar tracker and therefore the elements for treating a solar radiation according to the invention, so that the radiation emitted by the sun during the day optimally strikes the solar radiation treatment element 10 according to the invention. This piloting is done during the daytime period.
  • the steering system of a structure orientation is used to orient the solar radiation treatment elements 10 accordingly according to the invention in order to optimize the heat exchanges, on the one hand, and above all, on the other hand, to optimize water production.
  • the steering system of an orientation of the structure directs the treatment elements of solar radiation 10 according to the invention as a function of the meteorological conditions existing around the solar radiation processing element 10 according to the invention. the invention, in particular according to the wind which tends to dry out the water obtained by the condensation.
  • the steering system of an orientation of the structure makes it possible, at regular intervals during the night period, to change suddenly the inclination of the solar radiation treatment elements 10 according to the invention, during a short period of time, so as to cause a runoff of the condensed water on the surface of the solar radiation treatment element 10 according to the invention and to ensure that this water flows to the recovery means d a dripping water 22 installed on the solar trackers controlled by the steering system of an orientation of the structure.
  • Each of the solar trackers 30 according to the invention comprises, here, within its frame 32, a geothermal heat exchanger buried in the ground S on which the solar trackers 30 according to the invention are installed.
  • This heat exchanger is optional in the arrangement of two solar trackers according to the invention.
  • the geothermal heat exchanger is made using the feet of the frame 32 which are presented in the form of two coaxial tubes 324 and 323.
  • the two tubes 323 and 324 will allow circulation of a heat transfer fluid therein and thus form a geothermal heat exchanger at a portion of the feet of the frame 32 flowing into the ground S.
  • the fluidic outlet 6 of the solar radiation processing element 10 according to the invention is connected to an input 321 of the inner tube 323 while an outlet 322 of the outer tube 324 is connected to the inlet 7 of the solar radiation treatment element 10 according to the invention.
  • the coolant circulating in the tubing network 5 of the heat exchanger layer 3 after having stored calories at the solar radiation treatment element 10 according to the invention, especially if it is of a photovoltaic cell element, will circulate in the geothermal heat exchanger within the tubes 323 and 324 and transmit these calories in the soil S through a heat exchange E s .
  • the cooled heat transfer fluid is reinjected through the inlet 7 into the solar radiation drive element 10 according to the invention.
  • the input 7 of the first solar tracker 30 according to the invention is connected to an inlet pipe 40 from another solar tracker for example.
  • the output 6 of the first solar follower 30 according to the invention is connected to the input 321 of the geothermal heat exchanger of this first solar follower 30 according to the invention.
  • the outlet 322 of the geothermal heat exchanger of the first solar follower 30 according to the invention is connected to the input of the element for treating a solar radiation 10 according to the invention of the second follower 30 according to the invention by means of a pipe 42.
  • invention of the second solar follower 30 according to the invention is connected to the tubing 43 at the inlet of the heat exchanger of the second solar follower 30 according to the invention.
  • the output of the heat exchanger of this second solar tracker 30 is connected to the next solar tracker with a tubing 44 and so on.
  • the outlet 6 of the first solar tracker 30 is directly connected to the input 7 of the second solar tracker 30.
  • a heat exchanger 100 of a condenser of a CSP type condensing electrosolar power plant is connected and comprising a solar field having elements for treating solar radiation 10 according to FIG. the invention installed on the solar trackers of the solar field of the CSP plant.
  • the various solar radiation treatment elements 10 according to the invention of the solar field are connected to each other as previously described with reference to FIG. 3.
  • outlet 6 of the heat exchanger of the last solar follower 30 is connected to an inlet of the exchanger 100 of the condenser of the CSP unit through the pipe 44 while an outlet of the exchanger 102 of the condenser of the CSP plant is fluidly connected by the pipe 40 to the inlet 7 of the first solar tracker 30 of the solar field.
  • a three-way valve 101 is installed at the inlet of the heat exchanger 100 of the condenser of the CSP plant, an output of which is connected by means of a pipe 103 to the outlet of a second three-way valve 102 installed at the outlet of the condenser exchanger of the CSP plant.
  • FIG. 6 schematically illustrates a CSP-type electro-solar condensing unit equipped with a plurality of solar radiation treatment elements 10, namely two elements in the example shown, each formed by a concentrator mirror of the radiation
  • These sensors are mounted in series and are traversed by the coolant which constitutes the hot source of the evaporator exchanger 107 of the plant.
  • This heat transfer fluid is heated by absorption of solar radiation reflected by the solar radiation treatment elements 10.
  • a pump 107 sends the heated fluid into the evaporator exchanger 107 of the plant.
  • the coolant heated by the elements 10 is used for the production of steam.
  • This steam under pressure drives the turbine generator electricity 111 from the plant.
  • the low-pressure steam at the turbine outlet 111 is then condensed through the condenser exchanger 100.
  • the circulation of the working fluid is provided by a pump 115 which enhances the pressure of the fluid in this closed circuit.
  • it is the fluid flowing under the effect of a pump 117 through the heat exchangers solar radiation treatment elements 10 which serves as a cold source in the condenser heat exchanger 100.
  • the heat absorbed during condensation is released to the outside by the solar treatment elements 10, firstly by convection, and secondly by radiation thanks to the layer of emissive materials including infrared radiation.
  • cooling circuit formed by the heat exchangers of the followers may also include support frames in the form of posts, in accordance with FIG.
  • the use of elements for treating solar radiation 10 according to the invention on the solar trackers forming the solar field of the CSP plant makes it possible to use said solar field of the plant.
  • CSP as macro-heat exchanger by combining the convective and radiative transfer previously described. Therefore, a considerable exchange surface is available, of the order of 10,000 to 13,000 square meters per MWhe, for extracting the heat of condensation from the exchanger 100 of the condenser of the plant, but also to sub-cool the thermodynamic cycle implemented by the CSP plant thus equipped and thus improve the efficiency.
  • the solar field is thus exploited not only by day, but also by night and its relative cost investment is therefore reduced by pooling.
  • the invention as described above makes it possible to satisfy the need for the evacuation of calories without any consumption of water and simultaneously makes it possible to improve the performance of thermodynamic cycles implemented by the CSP plant thus equipped. Overall, the water consumption of the CSP plant thus equipped is thus reduced by more than 90%. Because no more wet tower is needed to cool the thermodynamic cycle.
  • the use of the surfaces of the solar radiation treatment elements 10 according to the invention equipping the solar field as a radioactive exchange surface at night also makes it possible to condense the ambient humidity of the surrounding air.
  • the condensers formed flow by gravity in the means for recovering a flowing water 22 fitted to the different solar trackers of the solar field, cleaning the upper surface of the solar radiation processing elements 10 according to the invention.
  • the water thus produced is collected by the means for recovering dripping water 22 in order to be efficientlysed in a simple manner.
  • the solar field is then no longer at the origin of a water consumption but a real production of this valuable water and solar treatment elements are cleaned without any human intervention thereby.
  • the emitting layer of a radiation 1 can be arranged on a rear face of the element of
  • the solar radiation treatment element 10 does not comprise an insulating lower layer 4 since the latter is replaced by the emitting layer of radiation.
  • the emission of radiation E R occurs when the control system of the solar tracker returns said solar tracker so as to position the rear face of the solar radiation treatment element, and therefore the emitting layer of a radiation then arranged on this rear face, facing the space.
  • the tubing network 5 of the heat exchanger layer is arranged in a bearing axis of the solar radiation treatment element, generally comprising a mirror.

Abstract

The invention relates to an element for processing solar radiation (10), comprising means for processing solar radiation forming a layer (2) of the solar radiation processing element, characterised in that it also comprises a layer of radiation-emitting material (1), especially infrared radiation, covering the layer of the processing means. The sun tracker comprises at least one processing element and the solar farm comprises a series of sun trackers, each comprising a processing element.

Description

« Elément de traitement d'un rayonnement solaire amélioré ainsi qu'un suiveur solaire et une centrale solaire équipée d'un tel élément » L'invention concerne un élément de traitement d'un rayonnement solaire amélioré pour émettre un rayonnement infra-rouge. Elle concerne aussi un suiveur solaire comportant un tel élément. Enfin, l'invention concerne aussi une centrale électrosolaire à concentration équipée de tels suiveurs solaires.  The present invention relates to an improved solar radiation treatment element for emitting infra-red radiation. It also relates to a solar tracker comprising such an element. Finally, the invention also relates to an electrosolar concentration plant equipped with such solar trackers.
Dans le cadre des centrales é 1 e c t r o s o 1 a i r e s à concentration, appelées aussi centrales CSP, un cycle thermodynamique mis en œuvre dans une centrale CSP nécessite d'évacuer une production de chaleur dite fatale à bas niveau de température au niveau du condenseur de la centrale CSP. Typiquement, le niveau de température est de l'ordre de 55°C et la production de chaleur est de l'ordre de 2 mégawatts thermiques pour 1 mégawatt électrique produit. Jusqu'à ce jour, cette extraction de chaleur est réalisée à l'aide de tours humides consommant des quantités d'eau importantes, de l'ordre de 3,5 à 4 m3 d'eau par MWhe. Une telle consommation d'eau est inacceptable dans des régions arides susceptibles de recevoir de telles centrales CPS . Une alternative à l'utilisation de tours humides consiste à extraire la chaleur par échange avec l'air ambiant à l'aide d'échangeurs à convexion formée. Toutefois, l'utilisation d'échangeurs à convexion forcée est tributaire de la température ambiante proche de la température de condensation. De ce fait, elle ne permet pas de sous- refroidissement et induit une baisse du rendement thermodynamique du cycle thermodynamique mis en œuvre par la centrale CSP de l'ordre de 2 à 3%, ainsi qu'une augmentation du coût de l'électricité ainsi produite de l'ordre de 3 à 8%. D'autre part, dans les centrales CSP, le nettoyage régulier des miroirs du champ solaire est indispensable et représente un fort investissement en main d'œuvre, d'une part, et, d'autre part, nécessite l'utilisation d'eau de l'ordre de 2% de la consommation totale en eau de la centrale CSP considérée. Un but de l'invention est de fournir un système permettant de résoudre les problèmes précités. In the case of power plants, also known as CSP plants, a thermodynamic cycle implemented in a CSP plant requires the evacuation of so-called low-temperature heat production at the condenser of the plant. CSP. Typically, the temperature level is of the order of 55 ° C and the production of heat is of the order of 2 megawatts thermal for 1 megawatt electric produced. To date, this heat extraction is carried out using wet towers consuming large quantities of water, of the order of 3.5 to 4 m 3 of water per MWhe. Such water consumption is unacceptable in arid regions likely to receive such CPS plants. An alternative to using wet towers is to extract the heat by exchange with the ambient air using formed convection exchangers. However, the use of forced convection exchangers is dependent on the ambient temperature close to the condensation temperature. As a result, it does not allow subcooling and induces a decrease in the thermodynamic efficiency of the thermodynamic cycle implemented by the CSP plant in the order of 2 to 3%, as well as an increase in the cost of the electricity thus produced of the order of 3 to 8%. On the other hand, in the CSP plants, the regular cleaning of the solar field mirrors is essential and represents a strong investment in labor, on the one hand, and, on the other hand, requires the use of water approximately 2% of the total water consumption of the CSP plant in question. An object of the invention is to provide a system for solving the aforementioned problems.
A cet effet, il est prévu, selon l'invention, un élément de traitement d'un rayonnement solaire comportant des moyens de traitement d'un rayonnement solaire formant une couche de l'élément de traitement d'un rayonnement solaire, ainsi qu'une couche de matériau émissive d'un rayonnement, notamment un rayonnement infra-rouge, recouvrant la couche de moyens de traitement. For this purpose, there is provided, according to the invention, a solar radiation treatment element comprising solar radiation treatment means forming a layer of the solar radiation treatment element, as well as a layer of emissive material of radiation, in particular infra-red radiation, covering the layer of processing means.
Ainsi, l'utilisation d'une couche de matériau émissive d'un rayonnement, comme un rayonnement infra¬ rouge, recouvrant la couche de moyens de traitement de l'élément de traitement permet d'avoir une émission de rayonnement dirigée vers l'espace qui agit comme un corps froid (car ayant une température de l'ordre de 3°K, soit -270°C) et donc de permettre l'évacuation de chaleur par rayonnement depuis l'élément de traitement du rayonnement solaire vers l'espace. Une telle évacuation de calories ne consomme pas d'eau à cette fin. Avantageusement, mais facultativement, l'élément de traitement selon l'invention présente au moins l'une des caractéristiques techniques suivantes : Thus, the use of a layer of emissive material of a radiation such as radiation ¬ infra red, covering the layer of processing the processing element means provides a radiation emitter directed towards the space which acts as a cold body (because having a temperature of the order of 3 ° K, ie -270 ° C) and thus to allow the evacuation of heat by radiation from the solar radiation treatment element to the space . Such calorie evacuation does not consume water for this purpose. Advantageously, but optionally, the treatment element according to the invention has at least one of the following technical characteristics:
l'élément de traitement comporte en outre une couche formant échangeur thermique situé sous et recouverte par la couche de moyens de traitement ;  the treatment element further comprises a heat exchanger layer located under and covered by the treatment means layer;
l'élément de traitement comporte en outre une couche inférieure isolante ;  the treatment element further comprises an insulating lower layer;
la couche formant échangeur thermique comporte dans une épaisseur un réseau de tubulures dans lequel circule un fluide caloporteur et comprenant une entrée de fluide et une sortie de fluide ; _  the heat exchanger layer comprises in a thickness a network of pipes in which circulates a heat transfer fluid and comprising a fluid inlet and a fluid outlet; _
- la couche de matériau émissive est réalisée par un traitement de surface d'une surface de la couche de moyens de traitement.  the layer of emissive material is produced by a surface treatment of a surface of the layer of processing means.
Il est aussi prévu, selon l'invention, un suiveur solaire comportant une structure montée mobile sur un bâti implanté dans une portion de sol comportant au moins un élément de traitement présentant au moins l'une des caractéristiques techniques précédentes. It is also provided, according to the invention, a solar tracker comprising a structure mounted on a frame mounted in a portion of soil comprising at least one treatment element having at least one of the preceding technical characteristics.
Avantageusement, mais facultativement, le suiveur solaire présente au moins l'une des caractéristiques techniques additionnelles suivantes : Advantageously, but optionally, the solar tracker has at least one of the following additional technical characteristics:
- le suiveur solaire comporte en outre des moyens de récupération d'eau ruisselante sur la couche de matériau émissive de l'élément de traitement ;  - The solar tracker further comprises means for recovering trickling water on the emissive material layer of the treatment element;
- le suiveur solaire est piloté par un système de pilotage d'une orientation de la structure, le système de pilotage est agencé de sorte à adapter l'orientation de l'élément solaire en fonction des conditions climatiques autour de l'élément de traitement ; et - le suiveur solaire comporte en outre des moyens de connexion fluidiques de la couche formant échangeur thermique avec un échangeur géothermique enterré dans la portion de sol. - The solar tracker is controlled by a steering system of a structure orientation, the control system is arranged to adapt the orientation of the solar element according to the weather conditions around the treatment element; and - The solar tracker further comprises fluidic connection means of the heat exchanger layer with a geothermal heat exchanger buried in the soil portion.
Il est prévu, aussi selon l'invention, une centrale électrosolaire à concentration comportant un condenseur muni d'un échangeur thermique, ainsi qu'une série de suiveurs solaires présentant au moins l'une des caractéristiques techniques précédentes. It is also envisaged, according to the invention, an electrosolar concentration plant comprising a condenser provided with a heat exchanger, and a series of solar trackers having at least one of the preceding technical characteristics.
Avantageusement, mais facultativement, la centrale électrosolaire à concentration présente au moins l'une des caractéristiques techniques supplémentaires suivantes : Advantageously, but optionally, the electrosolar concentration plant has at least one of the following additional technical characteristics:
les éléments de traitements de la série de suiveurs solaires sont connectés fluidiquement l'un à l'autre au niveau de leur couche formant échangeur thermique de sorte à former un unique circuit de refroidissement ; et  the treatment elements of the series of solar trackers are fluidly connected to each other at their heat exchanger layer so as to form a single cooling circuit; and
l' échangeur thermique du condenseur est relié fluidiquement à l'unique circuit de refroidissement.  the heat exchanger of the condenser is fluidly connected to the single cooling circuit.
D'autres caractéristiques et avantages de l'invention apparaîtront lors de la description ci-après d'un mode de réalisation de l'invention. Aux dessins annexés : Other characteristics and advantages of the invention will appear in the following description of an embodiment of the invention. In the accompanying drawings:
- la figure 1 est une vue schématique en coupe d'un élément de traitement d'un rayonnement solaire selon 1 ' invention ;  - Figure 1 is a schematic sectional view of a solar radiation treatment element 1 according to the invention;
- la figure 2 est une vue schématique en coupe d'un premier mode de réalisation d'un suiveur solaire selon l'invention comportant des éléments de traitement de la figure 1 ; FIG. 2 is a diagrammatic sectional view of a first embodiment of a solar follower according to the invention comprising processing elements of Figure 1;
- la figure 3 est une vue schématique en coupe d'un deuxième mode de réalisation d'un suiveur solaire selon l'invention comportant un élément de traitement selon la figure 1 ;  - Figure 3 is a schematic sectional view of a second embodiment of a solar tracker according to the invention comprising a processing element according to Figure 1;
la figure 4 est une vue schématique d'une installation et d'une mise en relation d'au moins deux suiveurs solaires de la figure 3 ;  Figure 4 is a schematic view of an installation and a connection of at least two solar trackers of Figure 3;
- la figure 5 est une vue schématique illustrant un circuit de refroidissement d'une centrale CSP selon l'invention comportant un champ de suiveurs solaires de la figure 3 ; et  FIG. 5 is a schematic view illustrating a cooling circuit of a CSP plant according to the invention comprising a solar tracking field of FIG. 3; and
- la figure 6 est une vue schématique illustrant une centrale solaire équipée de suiveurs solaires, selon FIG. 6 is a schematic view illustrating a solar power station equipped with solar trackers, according to
1 ' invention . The invention.
En référence à la figure 1, nous allons décrire un élément de traitement d'un rayonnement solaire 10 selon l'invention. L'élément de traitement de rayonnement solaire 10 selon l'invention comporte des moyens de traitement d'un rayonnement solaire formant une couche 2. Ces moyens de traitement d'un rayonnement solaire sont un miroir réfléchissant dans le cadre d'une application dans une centrale électrosolaire à concentration. En variante de réalisation, les moyens de traitement d'un rayonnement solaire peuvent être des cellules photovoltaïques ou tout autre dispositif permettant de réaliser le traitement d'un rayonnement solaire reçu par l'élément de traitement d'un rayonnement solaire 10 selon l'invention. With reference to FIG. 1, we will describe a solar radiation processing element 10 according to the invention. The solar radiation treatment element 10 according to the invention comprises means for treating a solar radiation forming a layer 2. These solar radiation processing means are a reflecting mirror in the context of an application in a Concentrating electrosolar power plant. In an alternative embodiment, the means for treating a solar radiation may be photovoltaic cells or any other device making it possible to carry out the treatment of a solar radiation received by the element for treating a solar radiation 10 according to the invention .
L'élément de traitement d'un rayonnement solaire 10 selon 1 ' invention comporte en outre une couche de matériau émissive d'un rayonnement 1. Cette couche de matériau émissive d'un rayonnement 1 est réalisée de sorte à venir recouvrir la couche de moyen de traitement 2 de l'élément de traitement d'un rayonnement solaire 10 selon l'invention. Cette couche de matériau émissive d'un rayonnement 1 forme une couche mince qui est rapportée sur une surface supérieure de la couche de moyen de traitement 2. En variante de réalisation, la couche de matériau émissive d'un rayonnement 1 est réalisée par un traitement de surface de la surface supérieure de la couche de moyen de traitement 2. Le ou les matériaux utilisés pour réaliser la couche de matériau émissive d'un rayonnement 1 sont choisis de sorte à optimiser l'émission d'un rayonnement ER selon une certaine longueur d'ondes qui permet un transfert d'énergie thermique avec l'espace à travers l'atmosphère terrestre, une fois l'élément de traitement d'un rayonnement solaire 10 selon l'invention installé sur une portion de la surface terrestre. La longueur d'onde du rayonnement ER permettant un tel échange thermique est dans les longueurs d'ondes de l'infrarouge, en particulier et de préférence entre 8 et 16 ym. Cela permet de mettre en œuvre de manière optimale un échange thermique qui se produit de manière naturelle entre deux corps ayant deux surfaces en regard l'une de l'autre et dont les températures sont différentes. En effet, un échange thermique par rayonnement se produit dès lors et est fonction de la différence de la puissance 4 des températures des deux corps en vis-à-vis. La couche de matériau émissive d'un rayonnement 1 peut être réalisée à l'aide d'un vernis ou d'un film plastique rapporté, ou encore en verre. Ainsi il est possible de réaliser un échange thermique par rayonnement de l'ordre de 50W/m2. D'autre part, l'élément de traitement d'un rayonnement solaire 10 selon l'invention comporte une couche 3 formant échangeur thermique. Cette couche formant échangeur thermique 3 est positionnée sur une surface inférieure de la couche de moyen de traitement 2, surface inférieure qui est opposée à la surface supérieure de la couche de moyen de traitement 2 qui reçoit la couche de matériau émissive d'un rayonnement 1. Cette couche formant échangeur thermique 3 comprend ici un réseau de tubulures 5 serpentant sous et en contact thermique avec la surface inférieure de la couche de moyen de traitement 2 de l'élément de traitement d'un rayonnement solaire 10 selon l'invention. Le réseau de tubulures 5 forme un circuit unique et comporte une entrée 7 et une sortie 6 afin de permettre une circulation d'un fluide caloporteur au sein du réseau de tubulures 5 formant la couche formant échangeur thermique 3. Le réseau de tubulure 5 peut être noyé dans un matériau favorisant l'échange thermique entre la surface inférieure de la couche de moyen de traitement 2 et le réseau de tubulures 5 dans lequel circule le fluide caloporteur entre l'entrée 7 et la sortie 6. Enfin, l'élément de traitement d'un rayonnement solaire 10 selon l'invention comporte une couche inférieure isolante 4 positionnée en-dessous de la couche formant échangeur thermique 3. Cette couche inférieure isolante 4 permet de minimiser un échange thermique entre le sol au-dessus duquel l'élément de traitement d'un rayonnement solaire 10 selon l'invention est installé et cet élément de traitement d'un rayonnement solaire 10 selon l'invention. Au surplus, cette couche inférieure isolante 4, permet de privilégier et de protéger les échanges thermiques entre la couche de moyens de traitement 2 et la couche formant échangeur thermique 3 En utilisation, l'élément de traitement d'un rayonnement solaire 10 selon l'invention permet d'échanger des calories sans nécessiter de consommation d'eau. L'échange de calories s'effectue à l'aide de l'émission d'un rayonnement ER avec l'espace. D'autre part, naturellement, il existe un transfert de calories réalisé par convexion entre la surface supérieure de l'élément de traitement d'un rayonnement solaire 10 selon l'invention et l'atmosphère. Enfin, il y a échange de calories au niveau de la couche formant échangeur thermique 3. The element for treating solar radiation 10 according to the invention further comprises a layer of radiation emissive material 1. This radiation emissive material layer 1 is made so as to cover the treatment medium layer 2 of the solar radiation processing element 10 according to the invention. This radiation emissive material layer 1 forms a thin layer which is attached to an upper surface of the treatment medium layer 2. As an alternative embodiment, the emissive material layer of a radiation 1 is produced by a treatment of the surface of the upper surface of the treatment medium layer 2. The material or materials used to produce the emissive material layer of a radiation 1 are chosen so as to optimize the emission of radiation E R according to a certain wavelength which allows a transfer of thermal energy with space through the earth's atmosphere, once the solar radiation treatment element 10 according to the invention installed on a portion of the earth's surface. The wavelength of the radiation E R allowing such a heat exchange is in the wavelengths of the infrared, in particular and preferably between 8 and 16 μm. This makes it possible to optimally implement a thermal exchange that occurs naturally between two bodies having two surfaces facing each other and whose temperatures are different. Indeed, a radiation heat exchange occurs from then on and is a function of the difference in the power of the four temperatures of the two bodies vis-à-vis. The layer of emissive material of a radiation 1 can be made using a varnish or an attached plastic film, or glass. Thus it is possible to achieve a radiation heat exchange of the order of 50W / m 2 . On the other hand, the element for treating solar radiation 10 according to the invention comprises a layer 3 forming a heat exchanger. This heat exchanger layer 3 is positioned on a lower surface of the treatment means layer 2, which bottom surface is opposite to the upper surface of the treatment medium layer 2 which receives the emissive material layer of a radiation 1 This heat exchanger layer 3 here comprises a tubular network 5 serpentine under and in thermal contact with the lower surface of the treatment means layer 2 of the solar radiation treatment element 10 according to the invention. The tubing network 5 forms a single circuit and has an inlet 7 and an outlet 6 to allow circulation of a coolant within the tubing network 5 forming the heat exchanger layer 3. The tubing network 5 can be embedded in a material promoting heat exchange between the lower surface of the treatment medium layer 2 and the tubing network 5 in which the heat transfer fluid circulates between the inlet 7 and the outlet 6. Finally, the treatment element a solar radiation 10 according to the invention comprises an insulating lower layer 4 positioned below the heat exchanger layer 3. This insulating lower layer 4 minimizes a heat exchange between the ground above which the element of solar radiation treatment 10 according to the invention is installed and this solar radiation treatment element 10 according to the invention. In addition, this lower layer 4, makes it possible to privilege and protect heat exchange between the layer of treatment means 2 and the heat-exchange layer 3. In use, the element for treating solar radiation 10 according to the invention makes it possible to exchange calories without requiring water consumption. The exchange of calories is effected by the emission of radiation E R with space. On the other hand, of course, there is a heat transfer achieved by convection between the upper surface of the solar radiation treatment element 10 according to the invention and the atmosphere. Finally, there is heat exchange at the heat exchanger layer 3.
Dans la journée, l'élément de traitement d'un rayonnement solaire 10 selon l'invention va permettre de maintenir une température optimale pour le fonctionnement des moyens de traitement du rayonnement solaire qui forment la couche 2 de l'élément de traitement d'un rayonnement solaire 10 selon l'invention. Dans le cadre d'une utilisation dans une centrale de type CSP, le réseau de tubulures 5 de l'élément de traitement d'un rayonnement solaire 10 selon l'invention est connecté fluidiquement à un échangeur thermique d'un condenseur de la centrale CSP et va permettre ainsi d'évacuer la production de chaleur dite fatale à bas niveau de température au niveau de ce condenseur.  During the day, the solar radiation treatment element 10 according to the invention will make it possible to maintain an optimum temperature for the operation of the solar radiation treatment means which form the layer 2 of the treatment element of a solar radiation. solar radiation 10 according to the invention. In the context of use in a CSP type plant, the tubing network 5 of the solar radiation processing element 10 according to the invention is fluidly connected to a heat exchanger of a condenser of the CSP plant. and will thus allow to evacuate the so-called low-temperature heat production at this condenser.
Durant la nuit, la structure de l'élément de traitement d'un rayonnement solaire 10 selon l'invention va permettre d'abaisser la température de la surface supérieure de la couche de matériau émissive d'un rayonnement 1 de l'élément de traitement d'un rayonnement solaire 10 selon l'invention en-dessous de la température du point de rosée. Ceci va permettre de condenser, au niveau de cette surface supérieure de la couche de matériau émissive d'un rayonnement 1 de l'élément de traitement d'un rayonnement solaire 10 selon l'invention, l'humidité contenue dans l'air ambiant. L'eau ainsi formée à la surface va permettre de nettoyer cette surface de manière naturelle. Au surplus, si la production d'eau ainsi réalisée par condensation est importante, le surplus est récupéré pour valorisation ultérieure. Cette production d'eau est de l'ordre de 200 à 1000 litres pour 500m2 de surface d'élément de traitement d'un rayonnement solaire 10 selon l'invention. Maintenant, en référence à la figure 2, nous allons décrire un suiveur solaire selon l'invention mettant en œuvre un élément de traitement du rayonnement solaire 10 selon l'invention. Le suiveur solaire 20 selon l'invention est ici un suiveur solaire parabolique comportant deux éléments de traitement d'un rayonnement solaire 10 selon l'invention qui sont courbés de préférence afin de former une parabole. La couche de matériau émissive d'un rayonnement 1 de l'élément de traitement d'un rayonnement solaire 10 selon l'invention est situé sur l'intérieur de la parabole formée par l'élément de traitement d'un rayonnement solaire 10 selon l'invention alors que la couche inférieure isolante 4 est positionnée sur l'extérieur du suiveur solaire 20 selon l'invention. Ainsi, la couche de moyen de traitement 2 formant ici un miroir, le rayonnement solaire est réfléchi par l'élément de traitement d'un rayonnement solaire 10 selon l'invention vers un point focal de la parabole que forme cet élément de traitement d'un rayonnement solaire 10 selon l'invention. Le point focal est occupé par un four tubulaire 21 dans lequel circule un fluide caloporteur qui récupère l'énergie solaire ainsi réfléchi par l'élément de traitement d'un rayonnement solaire 10 selon l'invention du suiveur solaire 20 selon l'invention. Les deux éléments de traitement d'un rayonnement solaire 10 selon l'invention formant le suiveur solaire 20 selon l'invention sont positionnés côte-à-côte de sorte à former une cuvette et sont séparés, au niveau d'un point bas, par un passage 23. Sous ce passage 23, le suiveur solaire 20 selon l'invention comporte des moyens de récupération d'eau ruisselante 22, ici sous la forme ici d'une gouttière. Ainsi, comme indiqué précédemment, lors de la période nocturne, la condensation qui se forme sur la surface extérieure de la couche de matériau émissive d'un rayonnement 1 des deux éléments de traitement d'un rayonnement solaire 10 selon l'invention ruisselle vers le point bas, et donc vers le passage 23, puis s'écoule de manière naturelle dans la gouttière 22 qui va permettre de récupérer l'eau ruisselante excédentaire vers un dispositif de valorisation de cette eau. Au surplus, lors du ruissellement, cette eau nettoie les éléments de traitement d'un rayonnement solaire 10 selon 1 ' invention . During the night, the structure of the solar radiation treatment element 10 according to the invention will make it possible to lower the temperature of the upper surface of the radiation emitting material layer 1 of the treatment element. a radiation solar system 10 according to the invention below the dew point temperature. This will make it possible to condense, at this upper surface of the emissive material layer, a radiation 1 of the element for treating solar radiation 10 according to the invention, the humidity contained in the ambient air. The water thus formed on the surface will allow to clean this surface in a natural way. In addition, if the production of water thus produced by condensation is important, the surplus is recovered for later recovery. This water production is of the order of 200 to 1000 liters per 500 m 2 of solar radiation treatment element surface 10 according to the invention. Now, with reference to FIG. 2, we will describe a solar tracker according to the invention implementing a solar radiation processing element 10 according to the invention. The solar follower 20 according to the invention is here a solar parabolic follower comprising two elements for treating solar radiation 10 according to the invention which are preferably curved so as to form a parabola. The radiation emitting material layer 1 of the solar radiation treatment element 10 according to the invention is located on the inside of the parabola formed by the solar radiation treatment element 10 according to the invention. invention while the insulating lower layer 4 is positioned on the outside of the solar tracker 20 according to the invention. Thus, the treatment medium layer 2 here forming a mirror, the solar radiation is reflected by the solar radiation treatment element 10 according to the invention to a focal point of the parabola formed by this treatment element. a solar radiation 10 according to the invention. The focal point is occupied by a tubular furnace 21 in which circulates a heat transfer fluid which recovers the solar energy thus reflected by the solar radiation treatment element 10 according to the invention of the solar tracker 20 according to the invention. The two solar radiation treatment elements 10 according to the invention forming the solar tracker 20 according to the invention are positioned side-by-side so as to form a bowl and are separated at a low point by a passage 23. Under this passage 23, the solar tracker 20 according to the invention comprises means for recovering dripping water 22, here in the form here of a gutter. Thus, as indicated above, during the night period, the condensation which forms on the outer surface of the radiation emitting material layer 1 of the two solar radiation treatment elements 10 according to the invention flows towards the low point, and therefore to the passage 23, then flows naturally in the gutter 22 which will allow to recover the excess runoff water to a device for upgrading this water. Moreover, during runoff, this water cleans the treatment elements of solar radiation 10 according to the invention.
Maintenant, en référence à la figure 3, nous allons décrire un deuxième mode de réalisation d'un suiveur solaire selon l'invention comportant un élément de traitement d'un rayonnement solaire 10 selon l'invention. Le suiveur solaire 30 selon ce deuxième mode de réalisation de l'invention est ici un suiveur solaire plan comportant un élément de traitement d'un rayonnement solaire 10 selon l'invention installé sur une structure 31 elle-même montée pivotante sur un bâti 32, par exemple en forme d'un poteau, permettant d'installer le suiveur solaire 30 selon l'invention sur une portion de sol S d'un site. De nouveau, sur au moins un bord, le suiveur solaire 30 comporte des moyens de récupération d'eau ruisselante 22, ici encore sous la forme d'une gouttière. Le fonctionnement en période nocturne est identique ici que pour le suiveur solaire 20 selon l'invention du premier mode de réalisation précédemment décrit. Afin que l'eau ruisselle, le suiveur 30 selon l'invention peut faire prendre une inclinaison adaptée à ce ruissellement à l'élément de traitement de rayonnement solaire 10 selon l'invention qui forme ici un plan. Now, with reference to FIG. 3, we will describe a second embodiment of a solar tracker according to the invention comprising a solar radiation treatment element 10 according to the invention. The solar tracker 30 according to this second embodiment of the invention is here a planar solar tracker comprising a radiation treatment element. solar 10 according to the invention installed on a structure 31 itself pivotally mounted on a frame 32, for example in the form of a pole, for installing the solar tracker 30 according to the invention on a portion of soil S d ' a website. Again, on at least one edge, the solar follower 30 includes trickling water recovery means 22, again in the form of a gutter. The night time operation is identical here as for the solar tracker 20 according to the invention of the first embodiment described above. In order for the water to run off, the follower 30 according to the invention can make an inclination suitable for this trickle flow to the solar radiation treatment element 10 according to the invention, which forms a plane here.
Dans le cadre du suiveur solaire 20 selon le premier mode et du suiveur solaire 30 selon le deuxième mode de réalisation, l'orientation des éléments de traitement d'un rayonnement solaire selon l'invention est réalisée, de manière connue en soi, par un système de pilotage d'une orientation de la structure non représentée qui permet d'orienter la structure du suiveur solaire et donc les éléments de traitement d'un rayonnement solaire 10 selon l'invention, de sorte à ce que le rayonnement émis par le soleil au cours de la journée frappe de manière optimale l'élément de traitement d'un rayonnement solaire 10 selon l'invention. Ce pilotage s'effectue durant la période diurne. Toutefois, afin d'optimiser le fonctionnement durant la période nocturne, le système de pilotage d'une orientation de la structure est utilisé pour orienter en conséquence les éléments de traitement d'un rayonnement solaire 10 selon l'invention afin d'optimiser les échanges thermiques, d'une part, et surtout, d'autre part, d'optimiser la production d'eau. Pour cela, le système de pilotage d'une orientation de la structure oriente les éléments de traitement d'un rayonnement solaire 10 selon l'invention en fonction des conditions météorologiques existant aux alentours de l'élément de traitement d'un rayonnement solaire 10 selon l'invention, en particulier en fonction du vent qui a tendance à assécher l'eau obtenue par la condensation. D'autre part, le système de pilotage d'une orientation de la structure permet, à des intervalles réguliers durant la période nocturne, de changer brusquement l'inclinaison des éléments de traitement d'un rayonnement solaire 10 selon l'invention, durant une courte période de temps, de sorte à provoquer un ruissellement de l'eau condensée sur la surface de l'élément de traitement d'un rayonnement solaire 10 selon l'invention et de s'assurer que cette eau ruisselle vers les moyens de récupération d'une eau ruisselante 22 installés sur les suiveurs solaires pilotés par le système de pilotage d'une orientation de la structure. In the context of the solar tracker 20 according to the first mode and the solar tracker 30 according to the second embodiment, the orientation of the elements for treating solar radiation according to the invention is carried out, in a manner known per se, by a steering system of an orientation of the structure, not shown, which makes it possible to orient the structure of the solar tracker and therefore the elements for treating a solar radiation according to the invention, so that the radiation emitted by the sun during the day optimally strikes the solar radiation treatment element 10 according to the invention. This piloting is done during the daytime period. However, in order to optimize the operation during the night period, the steering system of a structure orientation is used to orient the solar radiation treatment elements 10 accordingly according to the invention in order to optimize the heat exchanges, on the one hand, and above all, on the other hand, to optimize water production. For this, the steering system of an orientation of the structure directs the treatment elements of solar radiation 10 according to the invention as a function of the meteorological conditions existing around the solar radiation processing element 10 according to the invention. the invention, in particular according to the wind which tends to dry out the water obtained by the condensation. On the other hand, the steering system of an orientation of the structure makes it possible, at regular intervals during the night period, to change suddenly the inclination of the solar radiation treatment elements 10 according to the invention, during a short period of time, so as to cause a runoff of the condensed water on the surface of the solar radiation treatment element 10 according to the invention and to ensure that this water flows to the recovery means d a dripping water 22 installed on the solar trackers controlled by the steering system of an orientation of the structure.
En référence à la figure 4, nous allons maintenant décrire un agencement de deux suiveurs solaires selon l'invention équipés d'éléments de traitement d'un rayonnement solaire 10 selon l'invention. Chacun des suiveurs solaires 30 selon l'invention comporte, ici, au sein de son bâti 32, un échangeur géothermique enterré dans le sol S sur lequel sont installés les suiveurs solaires 30 selon l'invention. Cet échangeur thermique est optionnel dans l'agencement de deux suiveurs solaires selon l'invention. Ici, l'échangeur géothermique est réalisé à l'aide des pieds du bâti 32 qui se présentent sous la forme de deux tubes coaxiaux 324 et 323. Les deux tubes 323 et 324 vont permettre une circulation d'un fluide caloporteur en leur sein et former ainsi un échangeur géothermique au niveau d'une partie des pieds du bâti 32 enfuie dans le sol S. Ainsi, lors de la mise en place du suiveur solaire 30 selon l'invention sur la portion de sol S, la sortie fluidique 6 de l'élément de traitement d'un rayonnement solaire 10 selon l'invention est connectée à une entrée 321 du tube intérieur 323 alors qu'une sortie 322 du tube externe 324 est reliée à l'entrée 7 de l'élément de traitement d'un rayonnement solaire 10 selon l'invention. Ainsi, le fluide caloporteur circulant dans le réseau de tubulures 5 de la couche formant échangeur thermique 3 après avoir emmagasiné des calories au niveau de l'élément de traitement d'un rayonnement solaire 10 selon l'invention, notamment s' il s' agit d'un élément à cellules photovoltaïques, va circuler dans l' échangeur géothermique au sein des tubes 323 et 324 et transmettre ces calories dans le sol S à travers un échange thermique Es. Ainsi, le fluide caloporteur refroidi est réinjecté à travers l'entrée 7 dans l'élément d ' entraînement d'un rayonnement solaire 10 selon l'invention. Dans le cas illustré à la figure 4, il est possible de connecter les uns aux autres les différents suiveurs solaires d'un champ solaire. Pour cela, L'entrée 7 du premier suiveur solaire 30 selon l'invention est connectée à une tubulure d'arrivée 40 provenant d'un autre suiveur solaire par exemple. La sortie 6 du premier suiveur solaire 30 selon l'invention est connectée à l'entrée 321 de l' échangeur géothermique de ce premier suiveur solaire 30 selon l'invention. La sortie 322 de l' échangeur géothermique du premier suiveur solaire 30 selon l'invention est connectée à l'entrée de l'élément de traitement d'un rayonnement solaire 10 selon l'invention du deuxième suiveur 30 selon l'invention à l'aide d'une tubulure 42. Ensuite, la sortie 6 de l'élément de traitement de rayonnement solaire 10 selon l'invention du deuxième suiveur solaire 30 selon l'invention est connectée à la tubulure 43 à l'entrée de 1 ' échangeur thermique du deuxième suiveur solaire 30 selon l'invention. La sortie de l' échangeur thermique de ce deuxième suiveur solaire 30 est connectée au suiveur solaire suivant à l'aide d'une tubulure 44 et ainsi de suite . With reference to FIG. 4, we will now describe an arrangement of two solar trackers according to the invention equipped with elements for treating solar radiation 10 according to the invention. Each of the solar trackers 30 according to the invention comprises, here, within its frame 32, a geothermal heat exchanger buried in the ground S on which the solar trackers 30 according to the invention are installed. This heat exchanger is optional in the arrangement of two solar trackers according to the invention. Here, the geothermal heat exchanger is made using the feet of the frame 32 which are presented in the form of two coaxial tubes 324 and 323. The two tubes 323 and 324 will allow circulation of a heat transfer fluid therein and thus form a geothermal heat exchanger at a portion of the feet of the frame 32 flowing into the ground S. Thus, when placing the solar tracker 30 according to the invention on the soil portion S, the fluidic outlet 6 of the solar radiation processing element 10 according to the invention is connected to an input 321 of the inner tube 323 while an outlet 322 of the outer tube 324 is connected to the inlet 7 of the solar radiation treatment element 10 according to the invention. Thus, the coolant circulating in the tubing network 5 of the heat exchanger layer 3 after having stored calories at the solar radiation treatment element 10 according to the invention, especially if it is of a photovoltaic cell element, will circulate in the geothermal heat exchanger within the tubes 323 and 324 and transmit these calories in the soil S through a heat exchange E s . Thus, the cooled heat transfer fluid is reinjected through the inlet 7 into the solar radiation drive element 10 according to the invention. In the case illustrated in Figure 4, it is possible to connect to each other the different solar trackers of a solar field. For this, the input 7 of the first solar tracker 30 according to the invention is connected to an inlet pipe 40 from another solar tracker for example. The output 6 of the first solar follower 30 according to the invention is connected to the input 321 of the geothermal heat exchanger of this first solar follower 30 according to the invention. The outlet 322 of the geothermal heat exchanger of the first solar follower 30 according to the invention is connected to the input of the element for treating a solar radiation 10 according to the invention of the second follower 30 according to the invention by means of a pipe 42. Then, the outlet 6 of the solar radiation treatment element 10 according to the invention. invention of the second solar follower 30 according to the invention is connected to the tubing 43 at the inlet of the heat exchanger of the second solar follower 30 according to the invention. The output of the heat exchanger of this second solar tracker 30 is connected to the next solar tracker with a tubing 44 and so on.
Dans la situation où les suiveurs 30 de l'agencement de suiveurs solaires selon l'invention ne comportent pas d' échangeur géothermique, la sortie 6 du premier suiveur solaire 30 est directement connectée à l'entrée 7 du deuxième suiveur solaire 30.  In the situation where the followers of the arrangement of solar trackers according to the invention do not comprise a geothermal heat exchanger, the outlet 6 of the first solar tracker 30 is directly connected to the input 7 of the second solar tracker 30.
Ce qui vient d'être décrit en relation avec un suiveur solaire 30 selon l'invention est applicable de manière identique à un ensemble de suiveurs solaires 20 selon l'invention.  What has just been described in relation to a solar tracker 30 according to the invention is applicable in an identical manner to a set of solar trackers 20 according to the invention.
En référence à la figure 5, nous allons décrire de quelle manière est connecté un échangeur 100 d'un condenseur d'une centrale électrosolaire à condensation de type CSP et comportant un champ solaire disposant d'éléments de traitement d'un rayonnement solaire 10 selon l'invention installés sur les suiveurs solaires du champ solaire de la centrale CSP. Les différents éléments de traitement d'un rayonnement solaire 10 selon l'invention du champ solaire sont reliés les uns aux autres comme précédemment décrit en référence à la figure 3. Si ce n'est que la sortie 6 de 1 ' échangeur thermique du dernier suiveur solaire 30 selon l'invention est connectée à une entrée de l'échangeur 100 du condenseur de la centrale CSP à travers la tubulure 44 alors qu'une sortie de l'échangeur 102 du condenseur de la centrale CSP est reliée fluidiquement par la tubulure 40 à l'entrée 7 du premier suiveur solaire 30 du champ solaire. Une vanne trois voies 101 est installée à l'entrée de l'échangeur 100 du condenseur de la centrale CSP dont une sortie est reliée à l'aide d'une tubulure 103 à la sortie d'une deuxième vanne trois voies 102 installée à la sortie de l'échangeur du condenseur de la centrale CSP. L'utilisation de ces vannes trois voies 101,102 et de la tubulure 103 permet d'éviter en cas de nécessité que le fluide caloporteur passe à travers l'échangeur 100, ce qui est utile lors d'un fonctionnement en période nocturne dans lequel le condenseur de la centrale CSP n'est pas en fonctionnement . With reference to FIG. 5, we will describe how a heat exchanger 100 of a condenser of a CSP type condensing electrosolar power plant is connected and comprising a solar field having elements for treating solar radiation 10 according to FIG. the invention installed on the solar trackers of the solar field of the CSP plant. The various solar radiation treatment elements 10 according to the invention of the solar field are connected to each other as previously described with reference to FIG. 3. If it is only the outlet 6 of the heat exchanger of the last solar follower 30 according to the invention is connected to an inlet of the exchanger 100 of the condenser of the CSP unit through the pipe 44 while an outlet of the exchanger 102 of the condenser of the CSP plant is fluidly connected by the pipe 40 to the inlet 7 of the first solar tracker 30 of the solar field. A three-way valve 101 is installed at the inlet of the heat exchanger 100 of the condenser of the CSP plant, an output of which is connected by means of a pipe 103 to the outlet of a second three-way valve 102 installed at the outlet of the condenser exchanger of the CSP plant. The use of these three-way valves 101, 102 and the tubing 103 makes it possible to avoid, if necessary, that the coolant passes through the heat exchanger 100, which is useful during operation in the night period in which the condenser the CSP unit is not in operation.
La figure 6 illustre, de façon schématique une centrale électro-solaire à condensation de type CSP équipée d'une pluralité d'éléments de traitement du rayonnement solaire 10, à savoir deux dans l'exemple représenté, formé chacun par un miroir concentrateur du rayonnement solaire sur un capteur tubulaire 105. Ces capteurs sont montés en série et parcourus par le fluide caloporteur qui constitue la source chaude de l'échangeur évaporateur 107 de la centrale. Ce fluide caloporteur est chauffé par absorption du rayonnement solaire reflété par les éléments de traitement du rayonnement solaire 10. Une pompe 107 envoie le fluide chauffé dans l'échangeur évaporateur 107 de la centrale. Dans l'échangeur évaporateur 107, le fluide caloporteur chauffé par les éléments 10 sert pour la production de la vapeur. Cette vapeur sous pression entraîne la turbine génératrice d'électricité 111 de la centrale. La vapeur sous faible pression en sortie de turbine 111 est ensuite condensée à travers l'échangeur condenseur 100. La circulation du fluide de travail est assurée par une pompe 115 qui rehausse la pression du fluide dans ce circuit fermé. Selon l'invention c'est le fluide s'écoulant sous l'effet d'une pompe 117 à travers les échangeurs thermiques des éléments de traitement de rayonnement solaire 10 qui sert de source froide dans l'échangeur condenseur 100. La chaleur absorbée lors de la condensation est dégagée vers l'extérieur par les éléments de traitement solaire 10, d'une part par convexion, et d'autre part par rayonnement grâce à la couche de matériaux émissifs notamment d'un rayonnement infrarouge. FIG. 6 schematically illustrates a CSP-type electro-solar condensing unit equipped with a plurality of solar radiation treatment elements 10, namely two elements in the example shown, each formed by a concentrator mirror of the radiation These sensors are mounted in series and are traversed by the coolant which constitutes the hot source of the evaporator exchanger 107 of the plant. This heat transfer fluid is heated by absorption of solar radiation reflected by the solar radiation treatment elements 10. A pump 107 sends the heated fluid into the evaporator exchanger 107 of the plant. In the evaporator exchanger 107, the coolant heated by the elements 10 is used for the production of steam. This steam under pressure drives the turbine generator electricity 111 from the plant. The low-pressure steam at the turbine outlet 111 is then condensed through the condenser exchanger 100. The circulation of the working fluid is provided by a pump 115 which enhances the pressure of the fluid in this closed circuit. According to the invention it is the fluid flowing under the effect of a pump 117 through the heat exchangers solar radiation treatment elements 10 which serves as a cold source in the condenser heat exchanger 100. The heat absorbed during condensation is released to the outside by the solar treatment elements 10, firstly by convection, and secondly by radiation thanks to the layer of emissive materials including infrared radiation.
II est à noter que le circuit de refroidissement formé par les échangeurs thermiques des suiveurs peut comporter aussi des bâtis de support en forme de poteaux, conformément à la figure 5.  It should be noted that the cooling circuit formed by the heat exchangers of the followers may also include support frames in the form of posts, in accordance with FIG.
Ainsi dans le cadre d'une centrale CSP, l'utilisation d'éléments de traitement d'un rayonnement solaire 10 selon l'invention sur les suiveurs solaires formant le champ solaire de la centrale CSP permet d'utiliser ledit champ solaire de la centrale CSP comme macro-échangeur de chaleur en associant le transfert convectif et radiatif précédemment décrit. De ce fait, une surface d'échange considérable est à disposition, de l'ordre de 10 000 à 13 000 mètres carré par MWhe, permettant d'extraire la chaleur de condensation issue de l'échangeur 100 du condenseur de la centrale, mais aussi de sous-refroidir le cycle thermodynamique mis en œuvre par la centrale CSP ainsi équipée et d'en améliorer ainsi le rendement. Le champ solaire est ainsi exploité non seulement de jour, mais aussi de nuit et son coût relatif d'investissement en est donc réduit par mutualisation . L'invention telle que précédemment décrite permet de satisfaire le besoin en évacuation de calories sans aucune consommation d'eau et simultanément permet d'améliorer les performances de cycles thermodynamiques mis en œuvre par la centrale CSP ainsi équipée. Globalement, la consommation d'eau de la centrale CSP ainsi équipée est ainsi diminuée de l'ordre de plus de 90%. Du fait que plus aucune tour humide n'est nécessaire pour refroidir le cycle thermodynamique. D'autre part, l'utilisation des surfaces des éléments de traitement de rayonnement solaires 10 selon l'invention équipant le champ solaire comme surface d'échange radioactif la nuit permet aussi de condenser l'humidité ambiante de l'air environnant. Ainsi, les condenseurs formés s'écoulent par gravité dans les moyens de récupération d'une eau ruisselante 22 équipant les différents suiveurs solaires du champ solaire, nettoyant la surface supérieure des éléments de traitement d'un rayonnement solaire 10 selon l'invention. L'eau produite ainsi est collectée par les moyens de récupération d'une eau ruisselante 22 pour être valorisés de manière simple. Le champ solaire n'est alors plus à l'origine d'une consommation d'eau mais d'une réelle production de cette eau valorisable et les éléments de traitement d'un rayonnement solaire sont nettoyés sans aucune intervention humaine de ce fait. Thus, in the context of a CSP plant, the use of elements for treating solar radiation 10 according to the invention on the solar trackers forming the solar field of the CSP plant makes it possible to use said solar field of the plant. CSP as macro-heat exchanger by combining the convective and radiative transfer previously described. Therefore, a considerable exchange surface is available, of the order of 10,000 to 13,000 square meters per MWhe, for extracting the heat of condensation from the exchanger 100 of the condenser of the plant, but also to sub-cool the thermodynamic cycle implemented by the CSP plant thus equipped and thus improve the efficiency. The solar field is thus exploited not only by day, but also by night and its relative cost investment is therefore reduced by pooling. The invention as described above makes it possible to satisfy the need for the evacuation of calories without any consumption of water and simultaneously makes it possible to improve the performance of thermodynamic cycles implemented by the CSP plant thus equipped. Overall, the water consumption of the CSP plant thus equipped is thus reduced by more than 90%. Because no more wet tower is needed to cool the thermodynamic cycle. On the other hand, the use of the surfaces of the solar radiation treatment elements 10 according to the invention equipping the solar field as a radioactive exchange surface at night also makes it possible to condense the ambient humidity of the surrounding air. Thus, the condensers formed flow by gravity in the means for recovering a flowing water 22 fitted to the different solar trackers of the solar field, cleaning the upper surface of the solar radiation processing elements 10 according to the invention. The water thus produced is collected by the means for recovering dripping water 22 in order to be valorised in a simple manner. The solar field is then no longer at the origin of a water consumption but a real production of this valuable water and solar treatment elements are cleaned without any human intervention thereby.
Bien entendu, il est possible d'apporter à l'invention de nombreuses modifications sans pour autant sortir du cadre de celle-ci. Of course, it is possible to bring to the invention many modifications without departing from the scope thereof.
En particulier :  In particular :
- la couche émissive d'un rayonnement 1 peut être aménagée sur une face arrière de l'élément de traitement d'un rayonnement solaire 10. Dans ce cas, l'élément de traitement d'un rayonnement solaire 10 ne comporte pas de couche inférieure isolante 4 puisque cette dernière est remplacée par la couche émissive d'un rayonnement. En utilisation dans un suiveur solaire de cette variante de réalisation de l'élément de traitement d'un rayonnement solaire, l'émission d'un rayonnement ER se produit lorsque le système de pilotage du suiveur solaire retourne ledit suiveur solaire de sorte à positionner la face arrière de l'élément de traitement d'un rayonnement solaire, et donc la couche émissive d'un rayonnement aménagée alors sur cette face arrière, face à l'espace. the emitting layer of a radiation 1 can be arranged on a rear face of the element of In this case, the solar radiation treatment element 10 does not comprise an insulating lower layer 4 since the latter is replaced by the emitting layer of radiation. In use in a solar tracker of this embodiment variant of the solar radiation treatment element, the emission of radiation E R occurs when the control system of the solar tracker returns said solar tracker so as to position the rear face of the solar radiation treatment element, and therefore the emitting layer of a radiation then arranged on this rear face, facing the space.
dans la cadre d'un suiveur solaire de type Fresnel linéaire, le réseau de tubulures 5 de la couche formant échangeur thermique est aménagé dans un axe porteur de l'élément de traitement d'un rayonnement solaire, généralement comportant un miroir. in the context of a linear Fresnel solar tracker, the tubing network 5 of the heat exchanger layer is arranged in a bearing axis of the solar radiation treatment element, generally comprising a mirror.

Claims

R E V E N D I C A T I O N S
1. Elément de traitement d'un rayonnement solaire (10) comportant des moyens de traitement d'un rayonnement solaire formant une couche (2) de l'élément de traitement d'un rayonnement solaire, caractérisé en ce qu'il comporte en outre une couche de matériau émissive d'un rayonnement (1), notamment un rayonnement infra-rouge, recouvrant la couche de moyens de traitement. 1. Solar radiation treatment element (10) comprising means for treating a solar radiation forming a layer (2) of the solar radiation treatment element, characterized in that it also comprises a layer of radiation emitting material (1), in particular infra-red radiation, covering the layer of processing means.
2. Elément de traitement selon la revendication 2, caractérisé en ce qu' il comporte en outre une couche formant échangeur thermique (3) situé sous et recouverte par la couche de moyens de traitement (2) . 2. Treatment element according to claim 2, characterized in that it further comprises a heat exchanger layer (3) under and covered by the layer of processing means (2).
3. Elément de traitement selon la revendication 1 ou 2, caractérisé en ce qu'il comporte en outre une couche inférieure isolante (4) . 3. treatment element according to claim 1 or 2, characterized in that it further comprises an insulating lower layer (4).
4. Elément de traitement selon la revendication 2, caractérisé en ce que la couche formant échangeur thermique (3) comporte dans une épaisseur un réseau de tubulures (5) dans lequel circule un fluide caloporteur et comprenant une entrée de fluide (7) et une sortie de fluide ( 6) . 4. treatment element according to claim 2, characterized in that the heat exchanger layer (3) comprises in a thickness a network of pipes (5) in which circulates a coolant and comprising a fluid inlet (7) and a fluid outlet (6).
5. Elément de traitement selon l'une des revendications 1 à 4, caractérisé en ce que la couche de matériau émissive (1) est réalisée par un traitement de surface d'une surface de la couche de moyens de traitement . 5. Treatment element according to one of claims 1 to 4, characterized in that the emissive material layer (1) is formed by a surface treatment of a surface of the treatment means layer.
6. Suiveur solaire (20,30) comportant une structure (31) montée mobile sur un bâti (32) implanté dans une portion de sol (S), caractérisé en ce qu'il comporte en outre au moins un élément de traitement (10) selon l'une des revendications 1 à 5 monté sur la structure (31) . 6. A solar tracker (20, 30) comprising a structure (31) movably mounted on a frame (32) implanted in a portion of soil (S), characterized in that it further comprises at least one treatment element (10). ) according to one of claims 1 to 5 mounted on the structure (31).
7. Suiveur solaire selon la revendication 6, caractérisé en ce qu' il comporte en outre des moyens de récupération (22) d'eau ruisselante sur la couche de matériau émissive de l'élément de traitement. 7. Solar follower according to claim 6, characterized in that it further comprises means (22) for recovering trickling water on the emissive material layer of the treatment element.
8. Suiveur solaire selon la revendication 6 ou 7, caractérisé en ce que, le suiveur solaire étant piloté par un système de pilotage d'une orientation de la structure, le système de pilotage est agencé de sorte à adapter l'orientation de l'élément solaire en fonction des conditions climatiques autour de l'élément de traitement . 8. solar tracker according to claim 6 or 7, characterized in that, the solar follower being controlled by a steering system of a structure orientation, the steering system is arranged to adapt the orientation of the solar element according to the climatic conditions around the treatment element.
9. Suiveur solaire selon l'une des revendications 6 à 8, caractérisé en ce qu'il comporte en outre des moyens de connexion fluidiques (41,42,43) de la couche formant échangeur thermique avec un échangeur géothermique enterré dans la portion de sol. 9. solar tracker according to one of claims 6 to 8, characterized in that it further comprises fluidic connection means (41,42,43) of the heat exchanger layer with a geothermal heat exchanger buried in the portion of ground.
10. Centrale électrosolaire à concentration comportant un condenseur muni d'un échangeur thermique ( 100 ) , caractérisé en ce qu'elle comporte une série de suiveurs solaires (20,30) selon l'un des revendications 6 à 9. 10. Concentrating electrosolar power plant comprising a condenser equipped with a heat exchanger (100), characterized in that it comprises a series of solar trackers (20,30) according to one of claims 6 to 9.
11. Centrale électrosolaire à concentration selon la revendication 10, caractérisé en ce que les éléments de traitements de la série de suiveurs solaires sont connectés fluidiquement l'un à l'autre au niveau de leur couche formant échangeur thermique de sorte à former un unique circuit de refroidissement. Electrosolar concentration plant according to claim 10, characterized in that the elements processors of the series of solar trackers are fluidly connected to each other at their heat exchanger layer so as to form a single cooling circuit.
12. Centrale électrosolaire à concentration selon la revendication 11, caractérisé en ce que l' échangeur thermique du condenseur est relié fluidiquement à l'unique circuit de refroidissement. 12. Electrosolar concentration plant according to claim 11, characterized in that the heat exchanger of the condenser is fluidly connected to the single cooling circuit.
PCT/FR2013/053074 2012-12-13 2013-12-13 Improved element for processing solar radiation, and a sun tracker and a solar farm equipped with such an element WO2014091172A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/651,090 US20150308717A1 (en) 2012-12-13 2013-12-13 Improved Element for Processing Solar Radiation, and a Sun Tracker and a Solar Farm Equipped with Such an Element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1262017 2012-12-13
FR1262017A FR2999830B1 (en) 2012-12-13 2012-12-13 ELEMENT FOR THE TREATMENT OF IMPROVED SOLAR RADIATION AND A SOLAR FOLLOWER AND A SOLAR POWER PLANT EQUIPPED WITH SUCH ELEMENT

Publications (2)

Publication Number Publication Date
WO2014091172A2 true WO2014091172A2 (en) 2014-06-19
WO2014091172A3 WO2014091172A3 (en) 2014-08-14

Family

ID=47741143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/053074 WO2014091172A2 (en) 2012-12-13 2013-12-13 Improved element for processing solar radiation, and a sun tracker and a solar farm equipped with such an element

Country Status (3)

Country Link
US (1) US20150308717A1 (en)
FR (1) FR2999830B1 (en)
WO (1) WO2014091172A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114814A1 (en) * 2015-01-15 2016-07-21 Saudi Arabian Oil Company Solar systems comprising self sustainable condensation, water collection, and cleaning subassemblies
US9705448B2 (en) * 2015-08-11 2017-07-11 James T. Ganley Dual-use solar energy conversion system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019247424A1 (en) 2018-04-04 2020-11-26 The Research Foundation For The State University Of New York Systems and methods for passive cooling and radiator for same
US11303244B2 (en) 2020-01-29 2022-04-12 Saudi Arabian Oil Company Utilization of solar systems to harvest atmospheric moisture for various applications including panel cleaning

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062489A (en) * 1976-04-21 1977-12-13 Henderson Roland A Solar-geothermal heat system
DE2618651C2 (en) * 1976-04-28 1983-04-28 Philips Patentverwaltung Gmbh, 2000 Hamburg Solar collector with an elongated absorber in an evacuated cover tube
US4081966A (en) * 1977-03-03 1978-04-04 Degeus Arie M Solar operated closed system power generator
DE2852654C2 (en) * 1978-12-06 1983-12-22 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Tower reflector for concentrating solar power plants
US4356815A (en) * 1980-08-19 1982-11-02 Owens-Illinois, Inc. Solar energy collector having an absorber element of coated foil
US4794909A (en) * 1987-04-16 1989-01-03 Eiden Glenn E Solar tracking control system
US5047654A (en) * 1990-02-05 1991-09-10 Edwin Newman Solar powered electricity mine system
DE9004423U1 (en) * 1990-04-18 1990-06-21 Baumjohann, Adolf, 8900 Augsburg, De
JP2716861B2 (en) * 1990-10-01 1998-02-18 三菱重工業株式会社 Thermoelectric converter
US5431149A (en) * 1992-07-31 1995-07-11 Fossum; Michaele J. Solar energy collector
US5575276A (en) * 1992-07-31 1996-11-19 Fossum; Richard L. Solar thermal water heating system
US5660644A (en) * 1995-06-19 1997-08-26 Rockwell International Corporation Photovoltaic concentrator system
US7296410B2 (en) * 2003-12-10 2007-11-20 United Technologies Corporation Solar power system and method for power generation
US20060162762A1 (en) * 2005-01-26 2006-07-27 Boris Gilman Self-cooled photo-voltaic device and method for intensification of cooling thereof
DE102005054366A1 (en) * 2005-11-15 2007-05-16 Durlum Leuchten Solar collector with heat engine
US20090158736A1 (en) * 2006-03-15 2009-06-25 Solar Heat And Power Pty Ltd Thermal power plant incorporating subterranean cooling of condenser coolant
ITMI20071335A1 (en) * 2007-07-05 2009-01-06 Federico Pirovano PHOTOVOLTAIC SYSTEM WITH IMPROVED EFFICIENCY AND METHOD OF INCREASING THE PRODUCTION OF ELECTRIC ENERGY OF AT LEAST ONE THERMO-PHOTOVOLTAIC SOLAR MODULE.
US20090090488A1 (en) * 2007-10-05 2009-04-09 Mcnnnac Energy Services Inc. Night sky cooling system
EP2101119A1 (en) * 2008-03-11 2009-09-16 Helianthos B.V. Roof element
WO2010149177A2 (en) * 2009-06-26 2010-12-29 Samak Nabil Mahmoud Talat Wahba Solar heat collector and heat focuser to melt sand/metal/salt or to produce methanol and to generate simultaneously electricity by the cooling methods anergy circuits
US8975505B2 (en) * 2009-09-28 2015-03-10 Daniel Ray Ladner Concentrated solar thermoelectric power system and numerical design model
US9057538B2 (en) * 2009-11-20 2015-06-16 Mark W Miles Solar flux conversion module
US20110253129A1 (en) * 2010-04-16 2011-10-20 Kerry Gordon Daly Apparatus for Conditioning Space Under Solar Collectors and Arrays Thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114814A1 (en) * 2015-01-15 2016-07-21 Saudi Arabian Oil Company Solar systems comprising self sustainable condensation, water collection, and cleaning subassemblies
US9973141B2 (en) 2015-01-15 2018-05-15 Saudi Arabian Oil Company Solar system comprising self sustainable condensation, water collection, and cleaning subassemblies
US9705448B2 (en) * 2015-08-11 2017-07-11 James T. Ganley Dual-use solar energy conversion system

Also Published As

Publication number Publication date
FR2999830A1 (en) 2014-06-20
WO2014091172A3 (en) 2014-08-14
FR2999830B1 (en) 2019-06-28
US20150308717A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
US6080927A (en) Solar concentrator for heat and electricity
US6374614B2 (en) Solar power generation and energy storage system
EP2005069B1 (en) Device for heating, cooling and producing domestic hot water using a heat pump and low-temperature heat store
KR101022367B1 (en) Sea water desalination device using solar energy
WO2010040957A2 (en) Optimal solar concentrator device and sensor comprising a plurality of such concentrator devices
EP1741927A1 (en) Solar chimney energy generator
FR2999830B1 (en) ELEMENT FOR THE TREATMENT OF IMPROVED SOLAR RADIATION AND A SOLAR FOLLOWER AND A SOLAR POWER PLANT EQUIPPED WITH SUCH ELEMENT
FR2957388A1 (en) Solar chimney for e.g. producing electricity, comprises solar air collector, envelope of collector, system for recovering condensation water, water diffusers, reservoir, device for evaporating water, water pump, and anti-fog system
WO2011098715A2 (en) Solar collector having fresnel mirrors
WO2020208542A1 (en) Autonomous growing system
US20160233829A1 (en) Solar water-collecting, air-conditioning, light-transmitting and power generating house
CN106487325A (en) A kind of electric coproduction multistage application device of groove type solar condensing thermal
US20130092214A1 (en) Efficiency restoration in a photovoltaic cell
FR2882426A1 (en) Photovoltaic and thermal hybrid solar collector chamber`s caisson for e.g. superstore, has plates provided on both sides of frame having U-shaped profile and water supply conduit emerging in solar collector via orifice provided in profile
FR2973079A1 (en) SOLAR HYBRID POWER PLANT / WIND TURBINE
Gagliano et al. Energy analysis of hybrid solar thermal plants (PV/T)
WO2014111577A2 (en) Facility and method for producing mechanical or electrical energy from a fluid at a temperature higher than ambient temperature
FR2574863A1 (en) Single-blade rotor wind generator which may be coupled to a static device for capturing solar energy
FR2896857A1 (en) Heat plant for e.g. direct solar heating system of floor, has circulator setting solar collector with respect to medium to be heated, where circulation of liquid is carried out by intermediate of heat pump when radiation is insufficient
FR2458768A1 (en) Swivelling solar heat collection module - has lens to concentrate suns rays onto conduit through with liquid flows
Rajendran et al. Introduction to Solar Energy Conversion
Radwan et al. Solar thermal energy applications
BE889441A (en) MANIFOLD FOR INSTALLATION OF THERMAL CONVERSION OF SOLAR ENERGY
HOCINE Presented with a view to obtaining the Master's degree
FR2629677A1 (en) Greenhouse installation with recuperation of solar energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13818300

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14651090

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13818300

Country of ref document: EP

Kind code of ref document: A2