JP2716861B2 - Thermoelectric converter - Google Patents

Thermoelectric converter

Info

Publication number
JP2716861B2
JP2716861B2 JP2260443A JP26044390A JP2716861B2 JP 2716861 B2 JP2716861 B2 JP 2716861B2 JP 2260443 A JP2260443 A JP 2260443A JP 26044390 A JP26044390 A JP 26044390A JP 2716861 B2 JP2716861 B2 JP 2716861B2
Authority
JP
Japan
Prior art keywords
temperature
thermoelectric conversion
block
solar heat
heat collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2260443A
Other languages
Japanese (ja)
Other versions
JPH04139773A (en
Inventor
山田  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2260443A priority Critical patent/JP2716861B2/en
Publication of JPH04139773A publication Critical patent/JPH04139773A/en
Application granted granted Critical
Publication of JP2716861B2 publication Critical patent/JP2716861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気象、地質など屋外でのデータシステムの
電源等に用いられる太陽熱を電気に変換する熱電変換装
置に関する。
Description: TECHNICAL FIELD The present invention relates to a thermoelectric conversion device that converts solar heat into electricity, which is used as a power source for outdoor data systems such as weather and geology.

〔従来の技術〕[Conventional technology]

従来の熱電変換装置の例を第4図に示す。 FIG. 4 shows an example of a conventional thermoelectric converter.

この熱電変換装置は、アルミニウム等で構成された黒
色の太陽熱集熱器1、同集熱器1の裏側に取付けられた
アルミニウム等で構成された温度均一化ブロック2、同
温度均一化ブロックの前記集熱器1の反対側に取付けら
れBi2Te3系の材料等で構成された熱電変換素子3、同熱
電変換素子3の前記温度均一化ブロック2の反対側に取
付けられた温度均一化ブロック4、同温度均一化ブロッ
ク4の前記熱電変換素子3の反対側に取付けられた放熱
フイン05、及び地上8への固定台7によって構成され、
太陽熱集熱器1によって得られた熱によって温度均一化
ブロック2が、放熱フイン05による熱放射が行なわれる
温度均一化ブロック4より高温となり、これによって、
熱電変換素子3による発電が行なわれる。
The thermoelectric conversion device includes a black solar heat collector 1 made of aluminum or the like, a temperature equalization block 2 made of aluminum or the like attached to the back side of the heat collector 1, and a temperature equalization block of the same. A thermoelectric conversion element 3 attached to the opposite side of the heat collector 1 and made of a Bi 2 Te 3 material or the like, and a temperature equalization block attached to the same side of the thermoelectric conversion element 3 opposite to the temperature equalization block 2. 4, a radiating fin 05 attached to the opposite side of the thermoelectric conversion element 3 of the temperature uniforming block 4 and a fixing base 7 to the ground 8;
The heat obtained by the solar heat collector 1 causes the temperature equalizing block 2 to be higher in temperature than the temperature equalizing block 4 where the heat radiation by the radiating fins 05 is performed.
Power generation is performed by the thermoelectric conversion element 3.

第5図に、前記従来の熱電変換装置の発電出力01を、
太陽集熱器1による高温化した温度均一化ブロック2の
温度02、および放熱フィン05により冷却される温度均一
化ブロック4の温度03と共に示す。同第5図によると、
高温側の温度均一化ブロック2の温度02が高くなるに従
い出力01は大きくなるが、低温側の温度均一化ブロック
4の温度03と前記温度02の温度差が小さくなるとほとん
ど発電が行なわれなくなる。従って、発電は、前記温度
差の大きい昼間にのみ行なわれている。
FIG. 5 shows the power generation output 01 of the conventional thermoelectric converter,
A temperature 02 of the temperature uniforming block 2 heated by the solar collector 1 and a temperature 03 of the temperature uniforming block 4 cooled by the radiation fins 05 are shown. According to FIG.
Although the output 01 increases as the temperature 02 of the temperature equalizing block 2 on the high temperature side increases, the power generation hardly occurs when the temperature difference between the temperature 03 of the temperature equalizing block 4 on the low temperature side and the temperature 02 decreases. Therefore, power generation is performed only in the daytime when the temperature difference is large.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の熱電変換装置では、前記のように、高温側の温
度均一化ブロックと低温側の温度均一化ブロックの温度
差が大きい昼間のみ発電が行なわれていた。
In the conventional thermoelectric conversion device, as described above, power generation is performed only during the daytime when the temperature difference between the high-temperature-side temperature uniform block and the low-temperature-side temperature uniform block is large.

本発明は、昼間と共に夜間も発電を行なうことができ
る熱電変換装置を提供しようとするものである。
An object of the present invention is to provide a thermoelectric conversion device capable of generating power at night as well as during the day.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の熱電変換装置は、太陽熱集熱器、熱電変換素
子に接して前記太陽熱集熱器側とその反対側にそれぞれ
配置された第1及び第2の温度均一化ブロック、及び前
記太陽熱集熱器の反対側の第2の温度均一化ブロックに
熱伝導部を介して接続され地中に埋設された冷却部を備
えている。
The thermoelectric conversion device according to the present invention includes a solar heat collector, first and second temperature equalizing blocks disposed in contact with the thermoelectric conversion element on the solar heat collector side and on the opposite side, respectively, and the solar heat collector A cooling unit connected to the second temperature equalizing block on the opposite side of the vessel via a heat conducting unit and buried underground is provided.

〔作用〕[Action]

本発明では、昼間においては、太陽熱集熱器から第1
の温度均一化ブロックへ熱が伝えられて、同第1の温度
均一化ブロックは高温となり、また、第2の温度均一化
ブロックは、その熱が熱伝導部を経て地中に埋設された
冷却部より放熱されて低温となり、熱電変換素子による
発電が行なわれる。
In the present invention, in the daytime, the first solar collector is used.
Is transmitted to the temperature equalizing block, the first temperature equalizing block has a high temperature, and the second temperature equalizing block has the heat buried in the ground through the heat conducting portion. The heat is radiated from the unit to a low temperature, and power is generated by the thermoelectric conversion element.

一方、夜間においては、地中に埋設された冷却部の温
度が、大気に熱を放射して冷却される太陽熱集熱器の温
度より高くなり、逆に第2の温度均一化ブロックの温度
が第1の温度均一化ブロックの温度より高くなり、熱電
変換素子において昼間と逆向きの発電が行なわれる。
On the other hand, at night, the temperature of the cooling unit buried underground becomes higher than the temperature of the solar heat collector, which is cooled by radiating heat to the atmosphere, and conversely, the temperature of the second temperature equalizing block becomes higher. The temperature becomes higher than the temperature of the first temperature equalization block, and power generation is performed in the thermoelectric conversion element in a direction opposite to that in the daytime.

このように、本発明では、昼間に止まらず夜間におい
ても発電が行なわれる。
As described above, in the present invention, power generation is performed not only during the daytime but also at night.

〔実施例〕〔Example〕

本発明の第1の実施例を、第1図に示す。本実施例に
おいて、太陽熱集熱器1、温度均一化ブロック2,4、熱
電変換素子3、地面8への固定台7は、第4図に示す従
来の装置と同じであるので、その説明を省略する。
FIG. 1 shows a first embodiment of the present invention. In this embodiment, the solar heat collector 1, the temperature equalizing blocks 2, 4, the thermoelectric conversion element 3, and the fixing base 7 to the ground 8 are the same as the conventional apparatus shown in FIG. Omitted.

本実施例では、熱電変換素子3の太陽熱集熱器1の反
対側に取付けられた温度均一化ブロック4を、地中に埋
設した冷却部6に熱伝導部5によって接続している。
In this embodiment, the temperature equalizing block 4 attached to the thermoelectric conversion element 3 on the opposite side of the solar heat collector 1 is connected to the cooling section 6 buried underground by the heat conducting section 5.

本実施例において、太陽熱集熱器1が太陽から受熱す
る昼間は、第4図に示す従来の熱電変換装置と同様に熱
電変換素子3が発電を行なう。
In the present embodiment, during the daytime when the solar heat collector 1 receives heat from the sun, the thermoelectric conversion elements 3 generate power similarly to the conventional thermoelectric conversion device shown in FIG.

一方、夜間においては、地中に埋設された冷却部6の
温度が放射冷却が行なわれる太陽熱集熱器1の温度より
高くなり、従って、熱電変換素子3においては昼間とは
逆向きの発電を行なうことができる。
On the other hand, at night, the temperature of the cooling unit 6 buried underground becomes higher than the temperature of the solar heat collector 1 in which radiant cooling is performed. Therefore, the thermoelectric conversion element 3 generates power in the direction opposite to that of daytime. Can do it.

本実施例の発電出力を第2図に示す。第2図中の記号
は第5図と同じであるのでその説明を省略する。第2図
によれば、従来の熱電変換装置は7時〜17時のみの発電
を行なうことができたのに対して、夜間においても発電
を行なうことを示している。
FIG. 2 shows the power output of this embodiment. The symbols in FIG. 2 are the same as those in FIG. FIG. 2 shows that the conventional thermoelectric converter can generate power only at 7:00 to 17:00, but also generates power at night.

本発明の第2の実施例を、第3図によって説明する。 A second embodiment of the present invention will be described with reference to FIG.

本実施例は、前記第1の実施例に示されるような熱電
変換装置の熱電変換素子を複数個直列に接続して発電出
力を大きくし、かつ、昼・夜間の極性の変換の影響をな
くする整流部を備えたものである。
In this embodiment, the power generation output is increased by connecting a plurality of thermoelectric conversion elements of the thermoelectric conversion device as shown in the first embodiment in series, and there is no influence of the polarity conversion between day and night. The rectifying unit is provided.

熱電変換素子としては、(Bi2Te30.25(Sb2Te3
0.75の組成のm個のp型のもの3p1〜3pmを、(Bi2Te3
0.8(Bi2Se30.2の組成のm個のn型のもの3n1〜3nm
それぞれ使用する。太陽熱集熱器1側とその反対側の熱
伝導部5側の温度均一化ブロック2,4の熱電変換素子を
取付ける対向する面に、それぞれ絶縁体層10,11を設け
る。絶縁体層10に分割された導電体12を、絶縁体層11に
分割された導電体13をそれぞれ取付け、これら導電体1
2,13の間に、第3図に示すように、熱電変換素子3p1,3n
2,・・・3pm,3nmを順次交互に取付けて、熱電変換素子3
p1,3n1,・・・3pm,3nmが直列に接続されるように配置す
る。熱電変換素子3p1側の導電体13のA端に配線19を接
続し、熱電変換素子3nm側の導電体12のB端に配線20を
接続し、同配線19,20間を、それぞれ第3図中に示す矢
印方向に電流を流す整流抵抗14,16及び15,17をもつ配線
21,22で接続し、同配線21,22の整流抵抗14,16及び17,15
の中間の部分に接続された蓄電池等の外部負荷17を設け
る。
(Bi 2 Te 3 ) 0.25 (Sb 2 Te 3 )
M p-type 3p 1 to 3p m having a composition of 0.75 are converted to (Bi 2 Te 3 )
0.8 (Bi 2 Se 3 ) m n-type 3n 1 to 3 nm having a composition of 0.2 are used. Insulator layers 10 and 11 are provided on opposing surfaces of the temperature equalization blocks 2 and 4 on the side of the solar heat collector 1 and on the side of the heat conducting section 5 on the opposite side, on which the thermoelectric conversion elements are mounted. The conductors 12 divided into the insulator layers 10 and the conductors 13 divided into the insulator layers 11 are attached, respectively.
As shown in FIG. 3, the thermoelectric conversion elements 3p 1 , 3n
2, ··· 3p m, mounted in sequence alternately 3n m, thermoelectric conversion element 3
p 1, 3n 1, ··· 3p m, 3n m is arranged so as to be connected in series. Connect the wire 19 to the end A of the thermoelectric conversion element 3p 1 side conductor 13 connects the thermoelectric conversion element 3n m side of the B wire to end 20 of the conductor 12, between the lines 19 and 20, the respective 3. Wiring with rectifying resistors 14, 16, and 15, 17 that allow current to flow in the direction of the arrow shown in FIG.
21, 22 and rectifier resistors 14, 16 and 17, 15
An external load 17 such as a storage battery connected to an intermediate portion between the two is provided.

なお、図示しないが、前記熱伝導部5は、第1の実施
例と同様に地中に埋設した冷却部に接続されている。
Although not shown, the heat conducting section 5 is connected to a cooling section buried underground similarly to the first embodiment.

本実施例では、太陽熱集熱器1が太陽から受熱して温
度均一化ブロック2が温度均一化ブロック4より高温に
なる昼間においては、A端は(+)、B端は(−)とな
り、蓄電池等の外部抵抗18に矢印方向に電流が流れる。
この際において、熱電変換素子3p1,3n1,・・・3pm,3nm
を複数個用いているために大きい発電出力が得られる。
In the present embodiment, in the daytime when the solar heat collector 1 receives heat from the sun and the temperature equalization block 2 becomes higher in temperature than the temperature equalization block 4, the end A is (+), the end B is (-), A current flows through the external resistor 18 such as a storage battery in the direction of the arrow.
At this time, the thermoelectric conversion elements 3p 1 , 3n 1 ,... 3p m , 3n m
, A large power output can be obtained.

また、前記第1の実施例と同様に、地中側に接続され
た温度均一化ブロック4が温度均一化ブロック2より高
温になる夜間においては、逆にA端は(−)、B端は
(+)となるが、整流抵抗14,16;15,17によって、外部
抵抗18には昼間におけると同様に矢印方向に電流が流れ
る。
In the same manner as in the first embodiment, at night when the temperature equalizing block 4 connected to the underground side is higher in temperature than the temperature equalizing block 2, the end A is (-) and the end B is reverse. (+), But current flows in the external resistor 18 in the direction of the arrow due to the rectifying resistors 14, 16;

このように、本実施例では、それぞれm個のp型とn
型の熱電変換素子3p1,・・・3pm;3n1,・・・3nmを互い
に交互に直列に配置することによって大きい発電出力を
得ることができ、また、昼夜を問わず一定方向の電流を
外部抵抗18に流すことができる。
As described above, in this embodiment, m p-types and n
.. 3 nm ; 3n 1 ,..., 3 nm are alternately arranged in series to obtain a large power generation output. Can flow through the external resistor 18.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明では太陽熱と夜間の放射
冷却を利用ですることにより、昼間のみならず夜間の発
電を行なうことができ、それにより、1日の総発電量を
従来より増加させることができる。
As described above, in the present invention, by utilizing solar heat and radiant cooling at night, power generation can be performed not only during the daytime but also at night, thereby increasing the total power generation amount per day. Can be.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例の構成図、第2図は同実
施例による発電出力を示すグラフ、第3図は本発明の第
2の実施例の構成図、第4図は従来の熱電変換装置の構
成図、第5図は同従来の熱電変換装置の発電出力を示す
グラフである。 1……太陽熱集熱器, 2,4……温度均一化ブロック, 3……熱電変換素子,5……熱伝導体, 6……冷却部, 3p1,・・・3pm,3n1,・・・3nm……熱電変換素子, 10,11……絶縁体層,12,13……電導体, 14,15,16,17……整流抵抗, 18……外部負荷。
FIG. 1 is a block diagram of a first embodiment of the present invention, FIG. 2 is a graph showing a power generation output according to the first embodiment, FIG. 3 is a block diagram of a second embodiment of the present invention, and FIG. FIG. 5 is a configuration diagram of a conventional thermoelectric converter, and FIG. 5 is a graph showing a power generation output of the conventional thermoelectric converter. 1 ...... solar heat collector, 2,4 ...... temperature equalizing block, 3 ...... thermoelectric conversion element, 5 ...... heat conductor, 6 ...... cooling unit, 3p 1, · · · 3p m, 3n 1, ... 3 nm ... thermoelectric conversion element, 10, 11 ... insulator layer, 12, 13 ... conductor, 14, 15, 16, 17 ... rectifying resistor, 18 ... external load.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】太陽熱集熱器、熱電変換素子に接して前記
太陽熱集熱器側とその反対側にそれぞれ配置された第1
及び第2の温度均一化ブロック、及び前記太陽熱集熱器
の反対側の第2の温度均一化ブロックに熱伝導部を介し
て接続され地中に埋設された冷却部を備えたことを特徴
とする熱電変換装置。
1. A solar heat collector and first thermoelectric conversion elements, which are arranged on the solar heat collector side and on the opposite side, respectively.
And a second temperature equalization block, and a cooling unit connected to the second temperature equalization block on the opposite side of the solar heat collector via a heat conducting unit and buried in the ground. Thermoelectric conversion device.
JP2260443A 1990-10-01 1990-10-01 Thermoelectric converter Expired - Fee Related JP2716861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2260443A JP2716861B2 (en) 1990-10-01 1990-10-01 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2260443A JP2716861B2 (en) 1990-10-01 1990-10-01 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JPH04139773A JPH04139773A (en) 1992-05-13
JP2716861B2 true JP2716861B2 (en) 1998-02-18

Family

ID=17348012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2260443A Expired - Fee Related JP2716861B2 (en) 1990-10-01 1990-10-01 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP2716861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550741B1 (en) * 2022-12-28 2023-07-03 알머티리얼즈 주식회사 Thermoelectric Power Generation System Using Solar Collector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5269662B2 (en) * 2009-03-19 2013-08-21 株式会社東芝 Road thermoelectric power generation unit and system
JP5664219B2 (en) * 2010-12-24 2015-02-04 三菱電機株式会社 Power generator
FR2999830B1 (en) * 2012-12-13 2019-06-28 Exosun ELEMENT FOR THE TREATMENT OF IMPROVED SOLAR RADIATION AND A SOLAR FOLLOWER AND A SOLAR POWER PLANT EQUIPPED WITH SUCH ELEMENT
DE102013218427B4 (en) * 2013-09-13 2018-02-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Process for the conversion of thermal energy of a hot water flow into electrical energy rising from an outlet of a marine hydrothermal source at the seafloor
JP7090904B2 (en) * 2018-11-27 2022-06-27 国立研究開発法人物質・材料研究機構 Power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550741B1 (en) * 2022-12-28 2023-07-03 알머티리얼즈 주식회사 Thermoelectric Power Generation System Using Solar Collector

Also Published As

Publication number Publication date
JPH04139773A (en) 1992-05-13

Similar Documents

Publication Publication Date Title
US4292579A (en) Thermoelectric generator
US4338560A (en) Albedd radiation power converter
US5936193A (en) Nighttime solar cell
US6127766A (en) Paired-tube thermoelectric couple
US20080283110A1 (en) Large scale array of thermoelectric devices for generation of electric power
JPH01501109A (en) Solar cells and solar cell arrays with both photovoltaic and thermoelectric effects
US20130291919A1 (en) Concentrated photovoltaic/quantum well thermoelectric power source
US4463214A (en) Thermoelectric generator apparatus and operation method
US20090205694A1 (en) Thermoelectric Generation Device for Energy Recovery
US20130306125A1 (en) Seebeck Solar Cell
US20060021648A1 (en) Device and method to transmit waste heat or thermal pollution into deep space
Chenlo et al. A linear concentrator photovoltaic module: analysis of non-uniform illumination and temperature effects on efficiency
US20050236028A1 (en) Heat to cooling converter
JP2716861B2 (en) Thermoelectric converter
US20010000577A1 (en) Anti-global warming device
WO2000005769A1 (en) A differential voltage cell
WO1994001893A3 (en) Thermoelectric device and method of fabrication and thermoelectric generator and vehicle
EP0020758A1 (en) Energy production and storage apparatus
CN1515066B (en) Thermoelectric effect device, direct energy conversion system, and energy conversion system
JPH05315657A (en) Thermoelectric converting element and thermoelectric converter
JP4253471B2 (en) Energy conversion system
JPS6267888A (en) Thermoelectric power generation device
KR102109486B1 (en) Multi-multi-array themoeletric generator and its generating system
JP2000183375A (en) Solar battery module having good heat radiation
JPH01105582A (en) Solar light generating element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees