WO2017088733A1 - 一种通断装置及电子设备 - Google Patents

一种通断装置及电子设备 Download PDF

Info

Publication number
WO2017088733A1
WO2017088733A1 PCT/CN2016/106795 CN2016106795W WO2017088733A1 WO 2017088733 A1 WO2017088733 A1 WO 2017088733A1 CN 2016106795 W CN2016106795 W CN 2016106795W WO 2017088733 A1 WO2017088733 A1 WO 2017088733A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
load
module
path
blocking component
Prior art date
Application number
PCT/CN2016/106795
Other languages
English (en)
French (fr)
Inventor
李东声
Original Assignee
天地融科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天地融科技股份有限公司 filed Critical 天地融科技股份有限公司
Priority to SG11201804349TA priority Critical patent/SG11201804349TA/en
Priority to EP16867956.1A priority patent/EP3382852B1/en
Priority to US15/779,053 priority patent/US10432034B2/en
Publication of WO2017088733A1 publication Critical patent/WO2017088733A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to an on-off device and an electronic device.
  • the coil of the electronic device such as a smart card is directly connected to the chip, and the smart card is placed in the RF field, and the chip circuit of the smart card consumes field energy to communicate with the card reader (POS machine, NFC mobile phone, etc.).
  • the card reader POS machine, NFC mobile phone, etc.
  • the battery is generally not set in the smart card. Therefore, the existing smart card generally does not set the power consumption component except the chip circuit.
  • the present invention is directed to solving the above technical problems in the related art.
  • the main object of the present invention is to provide an on-off device.
  • Another object of the present invention is to provide an electronic device.
  • An aspect of the present invention provides an on-off device, including: an AC input terminal, an AC output terminal, an on-off module, a first DC blocking component, and a second DC blocking component; wherein the switching module includes: a first port, a second port, a third port, a fourth port, and a control end, wherein the third port is electrically connected to the DC power source, the fourth port is connected to the ground terminal, the control terminal is configured to receive the control signal, and the on/off module is used to control the signal Turn on or off the communication between the third port and the fourth port under the control of a path in which a path between the third port and the fourth port is turned on, a path between the first port and the second port is turned on, and a path between the third port and the fourth port is disconnected In case, the path between the first port and the second port is disconnected; the first blocking component is connected between the AC input end and the first port, wherein the first blocking component is used for blocking the first port and communicating a DC signal between the input terminals transmits an AC
  • the on/off module includes: a first load, a second load, a control module, and a first unidirectional pass module, wherein the control module is connected to the control end, and the control module is connected between the third port and the first load Or the control module is connected between the fourth port and the second load, for turning on or off the path between the third port and the fourth port under the control of the control signal; the first one-way connection module is connected Between a load and a second load, and between the first port and the second port, for conducting the path between the third port and the fourth port, turning on the first port and the second port The path between the first port and the second port is broken in the case where the path between the third port and the fourth port is disconnected.
  • Another aspect of the present invention provides another switching device, including: an AC input terminal, an AC output terminal, an on/off module, a first DC blocking component, a second DC blocking component, a third DC blocking component, and a fourth DC blocking device.
  • the AC input includes: a first end and a second end;
  • the AC output includes: a first end and a second end;
  • the on/off module includes: a first port, a second port, a third port, and a fourth port a fifth port, a sixth port, and a control end;
  • the third port is electrically connected to the DC power source;
  • the fourth port is connected to the ground end;
  • the first DC blocking component is connected between the first end of the AC input end and the first port, a DC blocking component is configured to block a DC signal between the first port and the first end of the AC input end, and transmit an AC signal between the first port and the first end of the AC input end;
  • the second DC blocking component is connected to the AC output end.
  • the second blocking component is configured to block a DC signal between the second port and the first end of the AC output, and transmit an AC signal between the second port and the first end of the AC output ;
  • third The straight component is connected between the second end and the fifth port of the AC input end, and the third DC blocking component is configured to block the DC signal between the fifth port and the second end of the AC input end, and transmit the fifth port and the AC input end
  • a fourth blocking component is connected between the second end and the sixth port of the alternating current output, and the fourth blocking component is configured to block the direct current between the sixth port and the second end of the alternating current output
  • the signal transmits an alternating current signal between the sixth port and the second end of the alternating current output;
  • the control end is configured to receive the control signal;
  • the on/off module is configured to turn on or off the third port and the fourth port under the control of the control signal a path between the first port and the second port, and between the fifth port and the sixth port, in
  • the on/off module includes: a first load, a second load, a second unidirectional pass module, a third load, a third unidirectional pass module, and a control module; wherein the control module is connected to the control end, and the control module Connected to the third port with the first Between the loads, or the control module is connected between the fourth port and the second load for turning on or off the path between the third port and the fourth port under the control of the control signal; the second one-way conduction module Connected between the first load and the third load, the third one-way pass module is connected between the third load and the second load; the first port is disposed at a connection point of the second one-way pass module and the third load, Connected to the first DC blocking component; the second port is disposed at a connection point of the first load and the second one-way conduction module, and is connected to the second DC blocking component; the fifth port is disposed at the second load and the third one-way communication The module connection point is connected to the third blocking component; the sixth port
  • the first unidirectional pass module comprises: a first PIN diode; the second unidirectional pass module comprises: a second PIN diode; and the third unidirectional pass module comprises: a third PIN diode.
  • the resistances of the first load, the second load, and the third load are the same, and the resistances of the first load, the second load, and the third load are greater than a predetermined value.
  • the first load and the second load have the same resistance value, and the resistance values of the first load and the second load are greater than a predetermined value.
  • the method further includes: a filtering component, wherein one end of the filtering component is electrically connected to a connection point of the DC power source and the third port, and the other end is grounded.
  • an electronic device includes: a coil, a chip having a non-contact function, and the above-mentioned switching device, wherein the coil is connected to an AC input end of the switching device, and the non-contact function chip and The AC output of the switching device is connected.
  • the method further includes: a rectifying device; wherein the rectifying device is electrically connected to the coil, and includes an input end and an output end, wherein the input end of the rectifying device is electrically connected to the coil for receiving the AC signal output by the coil; and the rectifying device The output is used to output electrical energy.
  • a rectifying device wherein the rectifying device is electrically connected to the coil, and includes an input end and an output end, wherein the input end of the rectifying device is electrically connected to the coil for receiving the AC signal output by the coil; and the rectifying device The output is used to output electrical energy.
  • the output of the rectifying device is electrically connected to the switching device for supplying DC power to the switching module.
  • the present invention provides an on-off device disposed between the smart card coil and the chip, and turns on or off between the DC power source and the ground through the on-off module.
  • the path of the smart card coil is turned on or off from the chip, and the radio frequency carrier between the coil and the chip is turned on and off.
  • FIG. 1 is a schematic structural view of an on-off device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of an optional on-off device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic circuit diagram of an optional on-off device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of an on-off device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of an optional on-off device according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic circuit diagram of an optional switching device according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of an electronic device according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of an electronic device according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic diagram of a circuit principle of an electronic device according to Embodiment 4 of the present invention.
  • the embodiment provides an on-off device that can be applied to an electronic device having a coil for connecting or disconnecting a coil and a certain functional module of the electronic device (for example, a chip having a non-contact function) Connection.
  • FIG. 1 is a schematic structural diagram of an on-off device according to the embodiment.
  • the on-off device mainly includes: an AC input terminal 100, an AC output terminal 110, an on-off module 120, and a first blocking component 130. And a second spacer assembly 140.
  • one end of the coil is connected to the AC input terminal 100, and the other end of the coil can be grounded, and the AC output terminal 110 can be connected to a certain functional module of the electronic device (for example, a chip having a non-contact function), and the function of the electronic device
  • the module is co-located with the coil, and the specific structure of the functional module is not limited herein.
  • the on/off module 120 may include: a first port 121 , a second port 122 , a third port 123 , a fourth port 124 , and a control terminal 125 , wherein the third port 123 and the DC power source (VCC) Electrically connected, the fourth port 124 is connected to the ground, the control terminal 125 is for receiving a control signal; the on-off module 120 is configured to turn on or off between the third port 123 and the fourth port 124 under the control of the control signal
  • the path in which the path between the third port 123 and the fourth port 124 is turned on, the path between the first port 121 and the second port 122 is turned on, thereby making The path from the AC input terminal 100 to the AC output terminal 110 is turned on, and in the case where the path between the third port 123 and the fourth port 124 is disconnected, the path between the first port 121 and the second port 122 is disconnected.
  • the on-off module 120 can include a conduction module, and the path between the third port 123 and the fourth port 124 and the path between the first port 121 and the second port 122 can share the conduction module.
  • the conduction module can be turned on when the on-off module 120 turns on the path between the third port 123 and the fourth port 124, and the passage between the third port 123 and the fourth port 124 is disconnected in the on-off module 120.
  • the on/off of the conduction module can be controlled by controlling the on/off of the path between the third port 123 and the fourth port 124, and the first port 121 and the second port are controlled by the on and off of the conduction module.
  • the first DC blocking component 130 is connected between the AC input terminal 100 and the first port 121.
  • the first blocking component 130 is configured to block a DC signal between the first port 121 and the AC input terminal 100, and transmit an AC signal between the first port 121 and the AC input terminal 100.
  • the DC signal is not transmitted to the AC input terminal 100 through the first DC blocking component 130, so that the function of the coil is not affected.
  • the second blocking assembly 140 is coupled between the AC output terminal 110 and the second port 122.
  • the second blocking component 140 is configured to block a DC signal between the second port 122 and the AC output terminal 110, and transmit an AC signal between the second port 122 and the AC output terminal 110.
  • the DC signal is not transmitted to the AC output terminal 110 through the second DC blocking component 140, so as not to affect the coil and the AC output terminal 110. Module communication.
  • the above-mentioned switching device provided by the embodiment may be disposed between the coil of the electronic device and a certain functional module, and connect or disconnect the coil and a certain functional module of the electronic device (for example, a chip having a non-contact function).
  • the connection makes the function module share the same coil with other functional modules (for example, power take-off circuits), which saves costs.
  • the on/off module 120 may further include: a first load 126, a second load 127, a control module 128, and a first unidirectional pass module 129.
  • the control module 128 is connected to the control terminal 125, and the control module 128 is connected between the third port 123 and the first load 126, or the control module 128 is connected between the fourth port 124 and the second load 127 for
  • the path between the third port 123 and the fourth port 124 is turned on or off under the control of the control signal. That is, in this embodiment, the control module 128 can be connected between the third port 123 and the first load 126 to ensure the electrical connection between the DC power source and the first load 126 (as shown in FIG. 2), or can be connected. Between the fourth port 124 and the second load 127, the electrical connection between the second load 127 and the ground is turned on and off.
  • the specific embodiment is not limited.
  • the control module 128 may include: a first connection end, a second connection end, and a control end.
  • the first connection end is electrically connected to the third port 123, and the second connection end is electrically connected to the first load 126.
  • the first connection end is electrically connected to the second load 127, and the second connection end is electrically connected to the ground.
  • the control end is configured to receive the control signal and configured to control the first connection end and the second connection end to be disconnected or turned on according to the control signal.
  • Adopt this optional implementation The solution is provided in such a manner that the control module 128 can be implemented by an existing device or by an integrated chip, and the implementation of the control module 128 is expanded.
  • control module 128 may be an NMOS transistor having a drain (D) as a first connection end of the control module 128 and a source (S) as a second of the on-off module.
  • the connection terminal has its gate (G) as the control terminal of the on/off module.
  • G the control terminal of the on/off module.
  • the control module 128 can also be a PMOS transistor, and each end thereof is connected according to a conduction condition of the reference PMOS tube, and is not limited herein.
  • the use of the MOS tube to implement the control module 128 can simplify the circuit implementation and save costs.
  • the first one-way conduction module 129 is connected between the first load 126 and the second load 127, and between the first port 121 and the second port 122 for the path between the third port 123 and the fourth port 124.
  • the path between the first port 121 and the second port 122 is turned on, and in the case where the path between the third port 123 and the fourth port 124 is disconnected, the first port 121 is disconnected.
  • the resistance value of the resistance, the AC signal input by the AC input terminal 100 can be transmitted to the AC output terminal 110 through the first DC blocking component 130, the first unidirectional conduction module 129 and the second DC blocking component 140; and when at the third port 123 In the case of disconnection from the path of the fourth port 124, the first unidirectional conduction module 129 is equivalent to a resistor having a large resistance value, which is equivalent to disconnection, and the AC signal input from the AC input terminal 100 cannot pass through the first single.
  • the pass-through module 129 is transmitted to the AC output terminal 110, that is, the path from the AC input terminal 100 to the AC output terminal 110 is disconnected.
  • the first unidirectional conduction module 129 may include: a first PIN diode. That is, the first one-way conduction module 129 can be implemented by using a PIN diode.
  • the PIN diode has a good turn-off characteristic when turned off. When disconnected, it is equivalent to a 0.2pF capacitor, which can block the AC signal between the AC input terminal 100 and the AC output terminal 110, that is, block the AC. The carrier signal from the input terminal 100 to the AC output terminal 110.
  • the PIN diode is controlled to conduct, it is equivalent to a resistor, and the resistance value is inversely proportional to the conduction current.
  • the first unidirectional conduction module 129 is implemented by using a PIN diode, has a simple circuit structure, and is relatively inexpensive.
  • the first one-way communication module 129 can be implemented in other manners, for example, by using an integrated chip, which is not limited in this embodiment.
  • the resistance values of the first load 126 and the second load 127 are the same, and the first load 126 and the second load The resistance of the load 127 is greater than a predetermined value.
  • the first load 126 and the second load 127 can be resistors.
  • the first load 126 and the second load 127 can be resistors having a resistance of 1.6K ohms.
  • the first load 126 and the second load 127 may also be other components or components having a certain resistance value, which is not limited in this embodiment.
  • the resistance values of the first load 126 and the second load 127 may be determined according to the conduction conditions of the PIN diode used by the first unidirectional conduction module 129, that is, the resistance values of the first load 126 and the second load 127 satisfy the following conditions: In the case where the path between the third port 123 and the fourth port 124 is turned on, the current that satisfies the path between the third port 123 and the fourth port 124 is not less than the PIN diode used by the first unidirectional conduction module 129. Under the condition of the on current, the resistance is the largest.
  • the apparatus may further include: a filtering component, wherein one end of the filtering component is electrically connected to a connection point of the DC power source and the third port 123, and the other end is grounded.
  • the filtering component can be a capacitor or other filterable component, which is not limited in this embodiment. The energy stored by the DC power source is stored by the filter component, and the glitch in the high-level signal of the DC power source connected from the third port 123 can be effectively removed, and the high-level signal is smoothed.
  • the first blocking component 130 and the second blocking component 140 may adopt a capacity greater than a predetermined value (ie, the predetermined value enables the capacitor to achieve a straightening function, and can conduct the connection to the two ends.
  • a capacitance of 0.2 pF is implemented.
  • other components that can isolate the DC are implemented, which is not limited in this embodiment.
  • FIG. 3 is a schematic diagram of a circuit principle of an optional switching device according to an embodiment of the present invention.
  • an AC input terminal TA and a capacitor C39, a PIN diode D29, a capacitor C40, and an AC output terminal are provided.
  • LA is connected in series, wherein the negative terminal of the PIN diode D29 is connected to the capacitor C39, and the positive electrode is connected to the capacitor C40.
  • One end of the resistor R12 is connected to the connection point of D29 and C40, the other end is connected with the DC power supply, one end of the resistor R13 is connected at the connection point of C39 and D29, and the other end is connected with the NMOS tube Q8 (the NMOS tube of the FDV301 type can be used)
  • the pole is connected, the S pole of the NMOS transistor Q8 is grounded, and the G pole of the NMOS transistor Q8 is connected to the control terminal for receiving a control signal (CTRL), and the NMOS transistor Q8 is turned on or off under the control of the control signal, thereby making the DC from The path from the power supply to ground is turned on or off.
  • CTRL control signal
  • One end of the capacitor C36 is connected to the connection point of the DC power source and the resistor R12, and the other end is connected to the ground.
  • the path from the DC power source to the ground is turned on, due to the characteristics of the PIN diode, when the control is turned on, it is equivalent to a resistor. Therefore, the AC signal input from the AC input terminal TA can be transmitted to the AC output through D29.
  • the terminal LA and because the capacitor has the function of blocking the direct communication, the DC signal from the DC power source does not flow through the capacitors C39 and C40 to the AC input terminal TA and the AC output terminal LA, thereby not affecting the transmission of the AC signal. .
  • the capacitors C36, C39, and C40 may employ a 10 nF capacitor.
  • Resistors R12 and R13 can be resistors with a resistance of 1.6K ohms. Of course, it is not limited thereto. In practical applications, other similar devices can also be used.
  • the embodiment provides an on-off device that can be applied to an electronic device having a coil for connecting or disconnecting a coil and a certain functional module of the electronic device (for example, a chip having a non-contact function) Connection.
  • the switching device provided in this embodiment is different from the switching device provided in the first embodiment in that, in the embodiment, the antenna (coil) and the functional module communicate with each other through two wires, and in the first embodiment, Communicate through a single line.
  • the on-off device mainly includes: an AC input terminal 400, an AC output terminal 410, an on-off module 420, and a first blocking component 430.
  • the AC input terminal includes 400: a first end 401 and a second end 402.
  • the AC output 410 includes a first end 411 and a second end 412.
  • the first end 401 of the AC input terminal 400 can be connected to one end of the coil
  • the second end 402 of the AC input terminal 400 can be connected to the other end of the coil
  • the second end 412 is respectively connected to an input end and an output end of a certain functional module of the electronic device (for example, a chip having a non-contact function, not shown).
  • the on/off module 420 can include a first port 421, a second port 422, a third port 423, a fourth port 424, a fifth port 425, a sixth port 426, and a control terminal 427.
  • the third port 423 is electrically connected to the DC power source, and the fourth port 424 is connected to the ground terminal.
  • the first blocking component 430 is connected between the first end 401 of the AC input terminal 400 and the first port 421.
  • the first blocking component 430 is configured to block between the first port 421 and the first end 401 of the AC input terminal 400.
  • the DC signal transmits an AC signal between the first port 421 and the first end 401 of the AC input terminal 400.
  • the first blocking component 430 when the path between the DC power source and the ground is communicated, the DC signal is not transmitted to the first end 401 of the AC input terminal 400 through the first DC blocking component 430, so that the function of the coil is not affected. .
  • the second blocking component 440 is connected between the first end 411 and the second port 422 of the AC output 410, and the second blocking component 440 is used to block between the second port 422 and the first end 411 of the AC output 410.
  • the DC signal transmits an AC signal between the second port 422 and the first end 411 of the AC output 410.
  • the second blocking component 440 When the path between the DC power source and the ground is communicated, the DC signal is not transmitted to the first end 411 of the AC output terminal 410 through the second DC blocking component 440, so that the coil and the AC are not affected. Communication of the module after output 410.
  • the third DC blocking component 450 is connected between the second end 402 and the fifth port 425 of the AC input terminal 400.
  • the third DC blocking component 450 is configured to block between the fifth port 425 and the second end 402 of the AC input terminal 400.
  • the DC signal transmits an AC signal between the fifth port 425 and the second end 402 of the AC input terminal 400.
  • the third blocking component 450 when the path between the DC power source and the ground is communicated, the DC signal is not transmitted to the second end 402 of the AC input terminal 400 through the third blocking component 450, thereby not affecting the function of the coil. .
  • the fourth blocking component 460 is connected between the second end 412 and the sixth port 426 of the AC output terminal 410, and the fourth block is straight.
  • the component 460 is configured to block a DC signal between the sixth port 426 and the second end 412 of the AC output 410, and to transmit an AC signal between the sixth port 426 and the second end 412 of the AC output 410.
  • the fourth blocking component 460 when the DC power source is connected to the ground, the DC signal is not transmitted to the second end 412 of the AC output terminal 410 through the fourth DC blocking component 460, so that the coil and the AC are not affected. Communication of the module after output 410.
  • Control terminal 427 is for receiving control signals.
  • the on-off module 420 is configured to turn on or off the path between the third port 423 and the fourth port 424 under the control of the control signal. Wherein, in the case that the path between the third port 423 and the fourth port 424 is turned on, the path between the first port 421 and the second port 422 is turned on, and the fifth port 425 and the sixth port 426 are The path between the channels is turned on. In the case of the disconnection of the path between the third port 423 and the fourth port 424, the path between the first port 421 and the second port 422 is disconnected, and between the fifth port 425 and the sixth port 426 The path is broken.
  • the on-off module 420 can include a conduction module, a path between the third port 423 and the fourth port 424, a path between the first port 421 and the second port 422, and a fifth port 425.
  • the pass between the sixth port 426 can share the pass-through module, and the pass-through module can be turned on when the on-off module 420 turns on the path between the third port 423 and the fourth port 424, and is turned off at the on-off module 420.
  • the opening and closing of the conduction module can be controlled by controlling the on/off of the path between the third port 423 and the fourth port 424.
  • the on/off of the module reaches the purpose of controlling the passage between the first port 421 and the second port 422 and the passage between the fifth port 425 and the sixth port 426.
  • the above-mentioned switching device provided by the embodiment may be disposed between the coil of the electronic device and a certain functional module, and connect or disconnect the coil and a certain functional module of the electronic device (for example, a chip having a non-contact function). Connected so that the functional module can share the same coil with other functional modules (eg, power take-off circuits).
  • a certain functional module of the electronic device for example, a chip having a non-contact function.
  • the functional module can share the same coil with other functional modules (eg, power take-off circuits).
  • the on/off module 420 may further include: a first load 4201, a second load 4202, a second unidirectional conduction module 4203, and a third load 4204.
  • the path between the third port 423 and the fourth port 424 is turned on or off under the control of the control signal.
  • control module 4206 can be connected between the third port 423 and the first load 4201, and can be connected to the electrical connection between the DC power source and the first load 4201, or can be connected to the fourth port 424 and the Between the two loads 4202, the electrical connection between the second load 4202 and the ground is turned on and off. Shown in FIG. 5 is a control module 4206 connected between the fourth port 424 and the second load 4202 to electrically connect the second load 4202 to ground.
  • the second unidirectional pass module 4203 is connected between the first load 4201 and the third load 4204, the third unidirectional pass module 4205 is connected between the third load 4204 and the second load 4202;
  • the first port 421 is set at the second The connection point of the unidirectional conduction module 4203 and the third load 4204 is connected to the first blocking component 430;
  • the second port 422 is disposed at the connection point of the first load 4201 and the second unidirectional conduction module 4203, and the second The blocking member 440 is connected;
  • the fifth port 425 The second port 4202 is disposed at a connection point of the third load 4202 and the third unidirectional conduction module 4205, and is connected to the third splicing module 450.
  • the sixth port 426 is disposed at a connection point of the third load 4204 and the third unidirectional communication module 4205.
  • the fourth unidirectional connection module 4203 is configured to turn on the first port 421 and the second port 422 in the case where the path between the third port 423 and the fourth port 424 is turned on.
  • the path between the first port 421 and the second port 422 is broken in the case where the path between the third port 423 and the fourth port 424 is broken.
  • the third unidirectional pass module 4205 is configured to turn on the path between the fifth port 425 and the sixth port 426 in the case where the path between the third port 423 and the fourth port 424 is turned on, at the third port In the case of the disconnection of the path between the 423 and the fourth port 424, the path between the fifth port 425 and the sixth port 426 is broken.
  • the second unidirectional conduction module 4202 has a function that when the path of the third port 423 and the fourth port 424 is turned on, the second unidirectional conduction module 4202 is equivalent to one having a small
  • the resistance of the resistance, the AC signal input by the first end 401 of the AC input terminal 400 can be transmitted to the first output of the AC output terminal 410 through the first DC blocking component 430, the second one-way conducting module 4202, and the second DC blocking component 440.
  • the AC signal input by the first end 401 of the 400 cannot be transmitted to the first end 411 of the AC output terminal 410 through the second unidirectional conduction module 4203, that is, the first end 401 of the AC input terminal 400 to the first end of the AC output terminal 410.
  • the path of 411 is broken.
  • the third unidirectional pass module 4205 has a function that, in the case where the paths of the third port 423 and the fourth port 424 are turned on, the third unidirectional pass module 4205 is equivalent to a resistor having a small resistance.
  • the AC signal input by the second end 402 of the AC input terminal 400 can be transmitted to the second end 412 of the AC output terminal 410 through the third DC blocking component 450, the third one-way conducting module 4205, and the fourth DC blocking component 460;
  • the third one-way conduction module 4205 is equivalent to a resistor having a large resistance value, equivalent to disconnection, and the second of the AC input terminal 400.
  • the AC signal input by the terminal 402 cannot be transmitted to the second end 412 of the AC output terminal 410 through the third unidirectional conduction module 4205, that is, the path of the second end 402 of the AC input terminal 400 to the second end 412 of the AC output terminal 410 is broken. open.
  • the second unidirectional pass module 4203 may include: a second PIN diode; and the third unidirectional pass module 4205 may include: a third PIN diode. That is, the second one-way conduction module 4203 and the third one-way conduction module 4205 can be implemented by using a PIN diode.
  • the PIN diode has a good turn-off characteristic when turned off. When disconnected, it is equivalent to a 0.2pF capacitor, which can block the AC signal between the AC input terminal 400 and the AC output terminal 410, that is, block the AC.
  • the carrier signal from input 400 to AC output 410 is equivalent to a 0.2pF capacitor
  • the PIN diode When the PIN diode is controlled to be turned on, it is equivalent to a resistor, and the resistance value is inversely proportional to the on current. The larger the on current is, the smaller the resistance is, and the AC signal can be transmitted from the AC input terminal 400 to the AC output terminal 410.
  • the second unidirectional conduction module 4203 and the third unidirectional conduction module 4205 are implemented by using a PIN diode, the circuit structure is simple, and the cost is relatively low.
  • it is not limited to the second one-way communication module 4203 and the third one-way communication module 4205, in addition to the PIN diode In addition to the tube, it can be implemented in other manners, for example, by using an integrated chip, which is not limited in this embodiment.
  • the resistance values of the first load 4201, the second load 4202, and the third load 4204 are the same, and the first The resistance of the load 4201, the second load 4202, and the third load 4204 is greater than a predetermined value.
  • the first load 4201, the second load 4202, and the third load 4204 may be resistors.
  • the first load 4201, the second load 4202, and the third load 4204 may be resistors having a resistance of 1.6K ohms.
  • the second load 4201, the second load 4202, and the third load 4204 may also be other components or components having a certain resistance value, which is not limited in this embodiment.
  • the resistance values of the first load 4201, the second load 4202, and the third load 4204 may be determined according to the conduction conditions of the PIN diodes adopted by the second unidirectional conduction module 4203 and the third unidirectional conduction module 4205, that is, the first load.
  • the resistance of the second load 4202 and the third load 4204 satisfies the following condition: in the case where the path between the third port 423 and the fourth port 424 is turned on, the third port 423 and the fourth port 424 are satisfied.
  • the current between the paths is not less than the on-current of the PIN diode used by the second one-way-pass module 4203 and the third one-way-pass module 4205, and the resistance is the largest.
  • the apparatus may further include: a filtering component, wherein one end of the filtering component is electrically connected to a connection point of the DC power source and the third port 423, and the other end is grounded.
  • the filtering component can be a capacitor or other filterable component, which is not limited in this embodiment. The glitch in the high-level signal of the DC power source connected from the third port 423 can be effectively removed by the filtering component, and the high-level signal is smoothed.
  • the first blocking member 430, the second blocking member 440, the third blocking member 450, and the fourth blocking member 460 may adopt a capacity greater than a predetermined value (ie, the predetermined value enables the capacitor to reach
  • a predetermined value ie, the predetermined value enables the capacitor to reach
  • the function of blocking is straight, and can be connected to the connection of the two ends, for example, 0.2pF).
  • other components that can isolate DC can be realized. The example is not limited.
  • FIG. 6 is a schematic diagram of a circuit principle of an optional on-off device of the on-off device according to the embodiment.
  • the first end TA of the AC input terminal and the capacitor C39 and the PIN diode D29 are shown in FIG. 6 .
  • the capacitor C40 and the first end LA of the AC output terminal are connected in series.
  • One end of the resistor R12 is connected to the connection point of D29 and C40, the other end is connected with the DC power source, and one end of the resistor R13 is connected at the connection point of C39 and D29, and the other end is connected with
  • the PIN diode D30 is connected to the connection point of the capacitor C43.
  • the cathode of the PIN diode D29 is connected to the capacitor C39, and the anode is connected to the capacitor C40.
  • the second end TB of the AC input terminal is connected in series with the capacitor C41, the PIN diode D30, the capacitor C43 and the second end LB of the AC output terminal.
  • the cathode of the PIN diode D30 is connected to the capacitor C41, and the cathode is connected to the capacitor C43.
  • NMOS tube Q8 is turned on or off under the control of the control signal, so that from DC power to ground The path is turned on or off. In the case where the path from the DC power source to the ground is turned on, due to the characteristics of the PIN diode, when the control is turned on, it is equivalent to a resistor.
  • the AC signal of the first terminal TA of the current AC input terminal is a positive half cycle.
  • the AC signal input from the first terminal TA of the AC input terminal can be transmitted to the first end LA of the AC output terminal through D29, and the AC signal returning from the second end LB of the AC output terminal can be recirculated through the D30 to the second end of the AC input terminal.
  • TB so that the entire loop from the AC input to the AC output is connected to achieve the transmission of AC signals.
  • the capacitor has a function of blocking the direct communication, the DC signal from the DC power source does not flow through the capacitors C39 and C40 to the first terminal TA of the AC input terminal and the first terminal LA of the AC output terminal, and does not pass through the capacitor.
  • C41 and C43 flow to the second end TB of the AC input and the second end LB of the AC output so as not to affect the transmission of the AC signal.
  • D29 and D30 are equivalent to a 0.2pF capacitor when disconnected, respectively, which can block the AC input terminal TA and the AC output terminal TB.
  • the alternating signal that is, the carrier signal from the AC input terminal TA to the AC output terminal LB.
  • An electronic device provided by this embodiment.
  • the electronic device provided in this embodiment may include any implementable switching device described in Embodiment 1.
  • FIG. 7 is a schematic structural diagram of an electronic device according to the embodiment.
  • the electronic device provided in this embodiment includes a coil 70, a chip 72 having a non-contact function, and a connection between the coil 70 and the chip 72.
  • Switching device 74 The coil 70 is connected to the AC input of the switching device 74, and the chip 72 having the non-contact function is connected to the AC output of the switching device 74.
  • the electronic device provided in this embodiment can control the on and off of the on/off module in the on/off device 74 by inputting a control signal, thereby enabling the on/off of the chip 72 having the non-contact function and the coil 70.
  • the electronic device provided in this embodiment may include, but is not limited to, a smart card or other electronic device having an NFC function. It can be equipped with functions such as display and key input.
  • the smart card can also include a security chip, which can be used for functions such as electronic signature, signature verification, dynamic password generation and verification;
  • the electronic device can be wirelessly (radio , NFC, etc.) communicate with other devices (such as card readers, POS machines, NFC phones, etc.); chips with non-contact functions may include, but are not limited to, smart card chips, or interface chips with non-contact functions, the interface chip It can be connected to the CPU, that is, as long as a chip having a non-contact function can be applied to the present embodiment.
  • the coil 70 may be a radio frequency coil or an NFC coil or the like, and the coil may operate at 13.56 M; the signals received by the coil 70 include, but are not limited to, NFC signals, radio frequency signals, and the like.
  • the chip 72 with non-contact function can enter NFC communication with other devices through the coil 70 in a non-connected manner. .
  • the chip 72 having the non-contact function may be a smart card chip integrated with the MCU, and directly send a control signal to the switching device 74; or the chip 72 having the non-contact function may also It is an interface chip with a non-contact function, and the interface chip can be connected to a CPU, and the CPU sends a control signal to the switching device 74 through the interface chip.
  • the control signal can be input to the switching device 74 through an input device of the electronic device, for example, a button, etc., which is not limited in this embodiment.
  • the electronic device may further include: a rectifying device 76; wherein the rectifying device 76 is electrically connected to the coil 70, including an input end and an output end, wherein the rectifying The input of device 76 is electrically coupled to coil 70 for receiving an AC signal output by coil 70; the output of rectifier device 76 is for outputting electrical energy.
  • the rectifying device 76 can share a coil with the chip 72 having the non-contact function, and can be opened or closed by controlling the switching of the switching device 74 to open or close between the coil 70 and the chip 72 having the non-contact function. The connections are such that the coil 70 can more efficiently energize the fairing 76.
  • the coil 70 can have two outputs, wherein the first output is coupled to the first input of the rectifying device 76 and the second output is coupled to the second of the rectifying device 76.
  • the input is connected; wherein the first output and the second output of the coil 76 output alternating current signals of opposite phases.
  • the coils 70 of the electronic device are respectively connected to the chip 72 having the non-contact function and the rectifying device 76, and the coil 70 is used to take the electric current to the rectifying device.
  • the 76 (ie, the power take-off circuit) supplies power and communicates with the chip 72 having the non-contact function, and the rectifying device 76 rectifies the alternating current to output a power source that can be operated by the electronic device. Therefore, the electronic device in this embodiment can also take power from the coil of the electronic device while performing near-field communication with other devices, and can work for the electronic device or charge the power source built in the electronic device, thereby improving Utilization of electronic equipment.
  • the switching device 74 is connected between the coil 70 and the chip 72 having a non-contact function, and the switching device 74 controls the communication of the coil 70 with the chip 72 having the non-contact function by the received control signal.
  • the switching device 74 opens the path between the coil 70 and the chip 72 having the non-contact function, whereby The radio frequency carrier of the chip 72 having the non-contact function and the coil 70 is disconnected, and the current of the coil 70 flows into the rectifying device 76 under the influence of the chip 72 having no non-contact function, thereby making the rectifying device 76 capable of maximum efficiency. Get the battery.
  • the rectifying device 76 may include a unidirectional conduction device such as a diode, and specifically may be a bridge circuit that is overlapped by four diodes for rectifying the electric energy outputted by the coil to output electric energy.
  • the output of the rectifying device 76 is connected to other devices of the electronic device 70 that need to be powered, such as a display screen, a button, a security chip, etc., to maintain other power supply devices of the electronic device.
  • the normal work without saving power for other power supply devices saves energy.
  • the output of the rectifying device 76 can be electrically connected to the switching device 74. Connected to provide DC power to the on-off module of the switching device 74. That is, the output end of the rectifying device 76 can be used as the DC power source described in Embodiment 1. With this alternative embodiment, the power provided by the coil 70 can be fully utilized without separately configuring the DC power supply for the switching device 74, saving the size and manufacturing cost of the electronic device.
  • the switching device 74 in this embodiment may adopt any one of the optional embodiments described in Embodiment 1. For details, refer to the description of Embodiment 1, and details are not described in this embodiment.
  • the electronic device provided in this embodiment may include any implementable switching device described in Embodiment 2.
  • FIG. 8 is a schematic structural diagram of an electronic device according to the embodiment.
  • the electronic device provided in this embodiment includes: a coil 80, a chip 82 having a non-contact function, and a coil 80 and a non-contact function.
  • the switching device 84 between the chips 82.
  • the coil 80 is connected to the AC input terminal of the switching device 84, and the chip 82 having the non-contact function is connected to the AC output terminal of the switching device 84.
  • the electronic device provided in this embodiment can control the on and off of the on/off module in the on/off device 84 by inputting a control signal, thereby enabling the on/off of the chip 82 having the non-contact function and the coil 80.
  • the electronic device provided in this embodiment is different from the electronic device provided in the third embodiment in that the electronic device in this embodiment adopts the on-off device described in Embodiment 2, that is, the coil and the present embodiment.
  • Chips with non-contact function are connected by two wires, and a loop is formed by two wires.
  • the coil and the chip having the non-contact function are connected by a single wire, and the coil and the chip having the non-contact function form a loop in common.
  • the electronic device may further include: a rectifying device 86; wherein the rectifying device 86 is electrically connected to the coil 80, including an input end and an output end, wherein the rectifying The input of device 86 is electrically coupled to coil 80 for receiving an AC signal output by coil 80; the output of rectifier device 86 is for outputting electrical energy.
  • the rectifying device 86 can share a coil with the chip 82 having the non-contact function, and can be opened or closed by controlling the switching of the switching device 84 to open or close between the coil 80 and the chip 82 having the non-contact function. The connection is such that the coil 80 can more efficiently energize the fairing 86.
  • the coil 80 can have two outputs, wherein the first output is respectively associated with the first input of the fairing 86 and the first end of the AC input of the switching device 84 Connected, the second output is respectively connected to the second input end of the rectifying device 86 and the second end of the AC input end of the switching device 84; wherein the first output end and the second output end of the coil 86 output an alternating phase signal having an opposite phase .
  • the first end of the AC output of the switching device 84 is connected to the first end of the chip 82 having a non-contact function, and the second end of the AC output is connected to the second end of the chip 82 having a non-contact function.
  • the coil 80 of the electronic device When the electronic device is placed in the radio frequency field of other devices for non-contact near field communication, the coil 80 of the electronic device is connected to the chip 82 having the non-contact function through the on/off module 84, and at the same time, the coil 80 of the electronic device is also The rectifying device 86 is connected, and the coil 80 is used to supply power to the rectifying device 86 (ie, the power taking circuit).
  • the communication is completed with the chip 82 having the non-contact function, and the rectifying device 78 rectifies the alternating current to output a power source for the electronic device to operate.
  • the electronic device in this embodiment can also take power from the coil of the electronic device while performing near-field communication with other devices, and can work for the electronic device or charge the power source built in the electronic device, thereby improving Utilization of electronic equipment.
  • the switching device 84 is coupled between the coil 80 and the chip 82 having a non-contact function, and the switching device 84 controls the passage of the coil 80 to the chip 82 having the non-contact function by the received control signal.
  • the on-off device 84 turns off the path between the coil 80 and the chip 82 having the non-contact function, whereby The radio frequency carrier of the chip 82 having the non-contact function and the coil 80 is disconnected, and the current of the coil 80 flows into the rectifying device 86 under the influence of the chip 82 having no non-contact function, thereby making the rectifying device 86 capable of maximum efficiency. Get the battery.
  • the rectifying device 86 may include a one-way device such as a diode, and specifically may be a bridge circuit that is overlapped by four diodes for rectifying the electric energy outputted by the coil to output electric energy.
  • the output of the rectifying device 86 is connected to other devices of the electronic device 80 that need to be powered, such as a display screen, a button, a security chip, etc., to maintain other power supply devices of the electronic device.
  • the normal work without saving power for other power supply devices saves energy.
  • the output of the rectifying device 86 can be electrically coupled to the switching device 84 for providing DC power to the switching module of the switching device 84. That is, the output terminal of the rectifying device 86 can be used as the DC power source described in Embodiment 2. With this alternative embodiment, the power provided by the coil 80 can be fully utilized without separately configuring the DC power supply for the switching device 84, saving the size and manufacturing cost of the electronic device.
  • the switching device 84 in this embodiment may adopt any one of the optional embodiments described in Embodiment 2. For details, refer to the description of Embodiment 2, and details are not described in this embodiment.
  • FIG. 9 is a circuit schematic diagram of an optional electronic device according to the embodiment.
  • the rectifying device 86 can adopt a “bridge” structure in which four diode ports are connected to form a full wave.
  • the rectifier circuit has one end IB connected to the first input end of the coil, and the other end IA of the diode rectifier bridge is connected to the second input end of the coil.
  • a rectifier circuit can also be used inside the chip 82 having a non-contact function.
  • the rectifier circuit uses a diode rectifier bridge similar to the rectifier 86.
  • the IA terminal of the diode rectifier bridge and the first AC output of the switching device 84 are first.
  • the terminal LA is connected, and the IB end of the diode rectifier bridge is connected to the second end LB of the AC output end of the switching device 84.
  • the first output terminal B of the coil L8 (ie, the antenna of the electronic device) is connected to the first end TB end of the AC input end of the switching device 84, and the second output terminal A of the coil L8 is connected to the switching device.
  • the second end TA end of the AC input end of the 84 is connected, and the first end LB end of the AC output end of the switching device 84 is connected to the input end LB1 end of the chip 82 having the non-contact function, and the second AC output end of the switching device 84 is connected.
  • the terminal LA terminal is connected to the input terminal LA1 of the chip 82 having the non-contact function, and the control terminal of the switching device 84 receives the control signal ANNT_CTRL.
  • the switching device 84 adopts the circuit structure as described in Embodiment 2. The specific connection of the components of the switching device and the circuit principle can be referred to. See the description of Figure 6 in Example 2.
  • the first output terminal B of the coil is at a high level
  • the second output terminal A of the coil is at a low level.
  • the working principle of the electronic device provided by the present invention is briefly described: when the control signal ANNT_CTRL output by the external control terminal is When the level is high, the N-channel MOS transistor Q8 is in an on state.
  • D29 and D30 are equivalent to two small resistors, since the first terminal TB terminal of the AC input terminal of the switching device 84 is at a high level, the second terminal TA terminal of the AC input terminal of the switching device 84 It is low level.
  • the flow direction of the AC signal is: B of the coil L8...>TB...>Capacitor C41...>PIN diode D30...>Capacitor C43...>LB...>Input of chip 82 End LB1...>(inside the chip)...>Input terminal LA1 of the chip 82...>LA...>capacitor C40...>PIN diode D29...>capacitor C39...>TA...>A of coil L8.
  • the control signal ANNT_CTRL outputted by the external control terminal is low, the N-channel MOS transistor Q8 is in an off state. At this time, it is disconnected from DC, that is, the DC power supply V_PWR...>R12...>D29...>R13...
  • D30 ...>R16...>Q8...>The GND path is disconnected.
  • D29 and D30 are equivalent to 0.2pF capacitors, which have a blocking effect on the AC signal. The AC signal cannot be transmitted from TB to LB, thus disconnecting the coil. Carrier signal between a chip with a non-contact function.
  • the first output terminal B of the coil is at a low level
  • the second output terminal A of the coil is at a high level
  • the principle is the same as the above principle, and details are not described herein again.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种通断装置及电子设备。其中,一种通断装置包括:交流输入端(100)、交流输出端(110)、通断模块(120)、第一隔直组件(130)、以及第二隔直组件(140);其中,通断模块(120)包括:第一端口(121)、第二端口(122)、第三端口(123)、第四端口(124)以及控制端(125),其中,第三端口(123)与直流电源(VCC)电连接,第四端口(124)与地端连接,控制端(125)用于接收控制信号;通断模块(120)用于在控制信号的控制下导通或断开第三端口(123)和第四端口(124)之间的通路,其中,在第三端口(123)和第四端口(124)之间的通路导通的情况下,第一端口(121)与第二端口(122)之间的通路导通,在第三端口(123)和第四端口(124)之间的通路断开的情况下,第一端口(121)与第二端口(122)之间的通路断开;第一隔直组件(130)连接在交流输入端(100)与第一端口(121)之间;第二隔直组件(140)连接在交流输出端(110)与第二端口(122)之间。

Description

一种通断装置及电子设备
相关申请的交叉引用
本申请要求天地融科技股份有限公司于2015年11月27号提交中国专利局、申请号为201510849252.6、发明名称为“一种通断装置及电子设备”的中国专利申请的优先权。
技术领域
本发明涉及一种电子技术领域,尤其涉及一种通断装置及电子设备。
背景技术
在现有技术中,智能卡等电子设备的线圈与芯片直接相连,将智能卡放置在射频场中,智能卡的芯片电路消耗场能量与读卡器(POS机、NFC手机等)进行通信。在实际应用中,为了节约智能卡的体积,一般不会在在智能卡中设置电池,因此,现有智能卡除了芯片电路一般不会设置耗电元器件。
随着智能卡的发展,在相关技术中,出现需要在智能卡中设置除芯片电路以外的其它耗电元器件。例如,在智能卡上设置显示屏,可以显示交易过程中的信息等。在这种情况下,需要给智能卡提供电能。因此,可能需要在智能卡中设置取电电路,该取电电路从线圈获取电能。在这种情况下,如果芯片电路与取电电路共用线圈则可能无法取得最佳取电效率,而增加一个取电线圈则增大电路难度和成本,同时还会影响智能卡与设备通讯。因此,通信线圈与取电线圈共用必须有效将线圈和芯片之间的射频载波断开。如何将线圈和芯片之间的射频载波断开是相关技术中需要解决的技术问题。
发明内容
本发明旨在解决相关技术中的上述技术问题。
本发明的主要目的在于提供一种通断装置。
本发明的另一目的在于提供一种电子设备。
为达到上述目的,本发明的技术方案具体是这样实现的:
本发明一方面提供了一种通断装置,包括:交流输入端、交流输出端、通断模块、第一隔直组件、以及第二隔直组件;其中,通断模块包括:第一端口、第二端口、第三端口、第四端口以及控制端,其中,第三端口与直流电源电连接,第四端口与地端连接,控制端用于接收控制信号;通断模块用于在控制信号的控制下导通或断开第三端口和第四端口之间的通 路,其中,在第三端口和第四端口之间的通路导通的情况下,第一端口与第二端口之间的通路导通,在第三端口和第四端口之间的通路断开的情况下,第一端口与第二端口之间的通路断开;第一隔直组件连接在交流输入端与第一端口之间,其中,第一隔直组件用于隔断第一端口与交流输入端之间的直流信号,传输第一端口与交流输入端之间的交流信号;第二隔直组件连接在交流输出端与第二端口之间,其中,第二隔直组件用于隔断第二端口与交流输出端之间的直流信号,传输第二端口与交流输出端之间的交流信号。
可选地,通断模块包括:第一负载、第二负载、控制模块以及第一单向导通模块,其中,控制模块与控制端连接,且控制模块连接在第三端口与第一负载之间,或者控制模块连接在第四端口与第二负载之间,用于在控制信号的控制下导通或断开第三端口和第四端口之间的通路;第一单向导通模块连接在第一负载与第二负载之间,以及第一端口与第二端口之间,用于在第三端口和第四端口之间的通路的导通的情况下,导通第一端口与第二端口之间的通路,在第三端口和第四端口之间的通路的断开的情况下,断开第一端口与第二端口之间的通路。
本发明另一方面提供另一种通断装置,包括:交流输入端、交流输出端、通断模块、第一隔直组件、第二隔直组件、第三隔直组件、以及第四隔直组件;其中,交流输入端包括:第一端和第二端;交流输出端包括:第一端和第二端;通断模块包括:第一端口、第二端口、第三端口、第四端口、第五端口、第六端口以及控制端;第三端口与直流电源电连接;第四端口与地端连接;第一隔直组件连接在交流输入端的第一端与第一端口之间,第一隔直组件用于隔断第一端口与交流输入端的第一端之间的直流信号,传输第一端口与交流输入端的第一端之间的交流信号;第二隔直组件连接在交流输出端的第一端与第二端口之间,第二隔直组件用于隔断第二端口与交流输出端的第一端之间的直流信号,传输第二端口与交流输出端的第一端之间的交流信号;第三隔直组件连接在交流输入端的第二端与第五端口之间,第三隔直组件用于隔断第五端口与交流输入端的第二端之间的直流信号,传输第五端口与交流输入端的第二端之间的交流信号;第四隔直组件连接在交流输出端的第二端与第六端口之间,第四隔直组件用于隔断第六端口与交流输出端的第二端之间的直流信号,传输第六端口与交流输出端的第二端之间的交流信号;控制端用于接收控制信号;通断模块用于在控制信号的控制下导通或断开第三端口和第四端口之间的通路,其中,在第三端口和第四端口之间的通路的导通的情况下,第一端口与第二端口之间的通路导通,且第五端口与第六端口之间的通路导通;在第三端口和第四端口之间的通路的断开的情况下,第一端口与第二端口之间的通路断开,且第五端口与第六端口之间的通路断开。
可选地,通断模块包括:第一负载、第二负载、第二单向导通模块、第三负载、第三单向导通模块和控制模块;其中,控制模块与控制端连接,且控制模块连接在第三端口与第一 负载之间,或者控制模块连接在第四端口与第二负载之间,用于在控制信号的控制下导通或断开第三端口和第四端口之间的通路;第二单向导通模块连接在第一负载和第三负载之间,第三单向导通模块连接在第三负载和第二负载之间;第一端口设置在第二单向导通模块与第三负载的连接点上,与第一隔直组件连接;第二端口设置在第一负载与第二单向导通模块的连接点上,与第二隔直组件连接;第五端口设置在第二负载与第三单向导通模块连接点上,与第三隔直组件连接;第六端口设置在第三负载与第三单向导通模块的连接点上,与第四隔直组件连接;第二单向导通模块用于在第三端口和第四端口之间的通路的导通的情况下,导通第一端口与第二端口之间的通路,在第三端口和第四端口之间的通路的断开的情况下,断开第一端口与第二端口之间的通路;第三单向导通模块用于在第三端口和第四端口之间的通路的导通的情况下,导通第五端口与第六端口之间的通路,在第三端口和第四端口之间的通路的断开的情况下,断开第五端口与第六端口之间的通路。
可选地,第一单向导通模块包括:第一PIN二极管;第二单向导通模块包括:第二PIN二极管;第三单向导通模块包括:第三PIN二极管。
可选地,第一负载、第二负载与第三负载的阻值相同,且,第一负载、第二负载和第三负载的阻值大于预定值。
可选地,第一负载与第二负载的阻值相同,且,第一负载和第二负载的阻值大于预定值。
可选地,还包括:滤波组件,其中,滤波组件的一端电连接在直流电源与第三端口的连接点,另一端接地。
本发明又一方面提供了一种电子设备,包括:线圈、具有非接触功能的芯片、以及上述的通断装置,其中,线圈与通断装置的交流输入端连接,具有非接触功能的芯片与通断装置的交流输出端连接。
可选地,还包括:整流装置;其中,整流装置与线圈电连接,包括输入端和输出端,其中,整流装置的输入端与线圈电连接,用于接收线圈输出的交流信号;整流装置的输出端用于输出电能。
可选地,整流装置的输出端与通断装置电连接,用于为通断模块提供直流电源。
由上述本发明提供的技术方案可以看出,本发明提供了一种通断装置,该通断装置设置在智能卡线圈与芯片之间,通过通断模块导通或断开直流电源与地之间的通路,从而使智能卡线圈与芯片导通或断开,实现了线圈和芯片之间的射频载波的通断。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的 普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例1提供的通断装置的结构示意图;
图2为本发明实施例1提供的一种可选通断装置的结构示意图;
图3为本发明实施例1提供的一种可选通断装置的电路原理示意图;
图4为本发明实施例2提供的通断装置的结构示意图;
图5为本发明实施例2提供的一种可选通断装置的结构示意图;
图6为本发明实施例2提供的一种可选的通断装置的电路原理示意图;
图7为本发明实施例3提供的一种电子设备的结构示意图;
图8为本发明实施例4提供的一种电子设备的结构示意图;以及
图9为本发明实施例4提供的一种电子设备的电路原理示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或数量或位置。
下面将结合附图对本发明实施例作进一步地详细描述。
实施例1
本实施例提供了一种通断装置,该通断装置可以应用在具有线圈的电子设备上,用于连通或断开线圈与电子设备的某个功能模块(例如,具有非接触功能的芯片)的连接。
图1为本实施例提供的通断装置的结构示意图,如图1所示,该通断装置主要包括:交流输入端100、交流输出端110、通断模块120、第一隔直组件130、以及第二隔直组件140。其中,线圈的一端与交流输入端100连接,而线圈的另一端可以接地,交流输出端110可以与电子设备的某个功能模块(例如,具有非接触功能的芯片)连接,电子设备的该功能模块与线圈共地,该功能模块的具体结构本申请并不作限定。
其中,如图1所示,通断模块120可以包括:第一端口121、第二端口122、第三端口123、第四端口124以及控制端125,其中,第三端口123与直流电源(VCC)电连接,第四端口124与地端连接,控制端125用于接收控制信号;通断模块120用于在控制信号的控制下导通或断开第三端口123和第四端口124之间的通路,其中,在第三端口123和第四端口124之间的通路导通的情况下,第一端口121与第二端口122之间的通路导通,从而使得 从交流输入端100到交流输出端110的通路导通,在第三端口123和第四端口124之间的通路断开的情况下,第一端口121与第二端口122之间的通路断开,从而使得从交流输入端100到交流输出端110的通路断开。在本实施例中,通断模块120可以包括一个导通模块,第三端口123和第四端口124之间的通路与第一端口121与第二端口122之间的通路可以共用该导通模块,该导通模块可以在通断模块120导通第三端口123和第四端口124之间的通路时导通,在通断模块120断开第三端口123和第四端口124之间的通路时断开,从而可以通过控制第三端口123和第四端口124之间的通路的通断控制导通模块的通断,通过该导通模块的通断达到控制第一端口121与第二端口122之间的通路的通断的目的。
第一隔直组件130连接在交流输入端100与第一端口121之间。其中,第一隔直组件130用于隔断第一端口121与交流输入端100之间的直流信号,传输第一端口121与交流输入端100之间的交流信号。通过第一隔直组件130,在直流电源到地之间的通路连通时,直流信号不会通过第一隔直组件130传输到交流输入端100,从而不会影响线圈的功能。
第二隔直组件140连接在交流输出端110与第二端口122之间。其中,第二隔直组件140用于隔断第二端口122与交流输出端110之间的直流信号,传输第二端口122与交流输出端110之间的交流信号。通过第二隔直组件140,在直流电源到地之间的通路连通时,直流信号不会通过第二隔直组件140传输到交流输出端110,从而不会影响线圈与交流输出端110之后的模块的通讯。
通过本实施例提供的上述通断装置,可以设置在电子设备的线圈与某个功能模块之间,连通或断开线圈与电子设备的某个功能模块(例如,具有非接触功能的芯片)的连接,从而使得该功能模块可以与其它功能模块(例如,取电电路)共用同一个线圈,节约成本。
在本发明实施例的一个可选实施方案中,如图2所示,通断模块120还可以包括:第一负载126、第二负载127、控制模块128以及第一单向导通模块129。
其中,控制模块128与控制端125连接,且控制模块128连接在第三端口123与第一负载126之间,或者控制模块128连接在第四端口124与第二负载127之间,用于在控制信号的控制下导通或断开第三端口123和第四端口124之间的通路。即在本实施例中,控制模块128可以连接在第三端口123与第一负载126之间,通断直流电源与第一负载126之间的电连接(如图2所示),也可以连接在第四端口124与第二负载127之间,通断第二负载127与地之间的电连接。具体本实施例不作限定。
在本发明实施例的一个可选实施方案中,控制模块128可以包括:第一连接端、第二连接端和控制端。其中,第一连接端与第三端口123电连接,第二连接端与第一负载126电连接;或者,第一连接端与第二负载127电连接,第二连接端与地电连接。控制端用于接收控制信号,并配置成根据控制信号控制第一连接端和第二连接端断开或导通。采用该可选实施 方案提供的方式,使得控制模块128即可以通过现有的器件实现,也可以通过集成芯片实现,扩展了控制模块128的实现方式。
在本发明实施例的一个可选实施方案中,控制模块128可以为NMOS管,其漏极(D)作为控制模块128的第一连接端,其源极(S)作为通断模块的第二连接端,其栅极(G)作为通断模块的控制端。在栅极(G)输入的控制信号的情况下,通断源极(S)与漏极(D)之间的电连接。当然,该控制模块128也可以为PMOS管,其各端连接参照PMOS管的导通条件来设定,这里不做限制。采用MOS管实现控制模块128,可以简化电路实现方式,节约成本。
第一单向导通模块129连接在第一负载126与第二负载127之间,以及第一端口121与第二端口122之间,用于在第三端口123和第四端口124之间的通路的导通的情况下,导通第一端口121与第二端口122之间的通路,在第三端口123和第四端口124之间的通路的断开的情况下,断开第一端口121与第二端口122之间的通路。即在本实施例中,第一单向导通模块129具有这样的功能:在第三端口123与第四端口124的通路导通的情况下,第一单向导通模块129相当于一个具有很小阻值的电阻,交流输入端100输入的交流信号可以通过第一隔直组件130、第一单向导通模块129和第二隔直组件140传输到交流输出端110;而当在第三端口123与第四端口124的通路断开的情况下,第一单向导通模块129相当于一个具有很大阻值的电阻,等效于断开,交流输入端100输入的交流信号不能通过第一单向导通模块129传输到交流输出端110,即交流输入端100到交流输出端110的通路断开。
在本实施例的一个可选实施方式中,第一单向导通模块129可以包括:第一PIN二极管。即第一单向导通模块129可以采用PIN二极管实现。PIN二极管在关断时,具有良好的关断特性,在断开时,等效为一个0.2pF电容,可以阻断交流输入端100与交流输出端110之间的交流信号,即阻断从交流输入端100到交流输出端110的载波信号。PIN二极管在控制导通时,等效为一个电阻,电阻值与导通电流成反比,导通电流越大,电阻越小,交流信号可以从交流输入端100传输到交流输出端110。在该可选实施方式中,第一单向导通模块129采用PIN二极管实现,电路结构简单,并且,成本也比较低廉。当然,并不限于,第一单向导通模块129除了可以采用PIN二极管以外,还可以采用其它方式实现,例如,采用集成芯片实现,具体本实施例不作限定。
在本发明实施例的一个可选实施方案中,为了保证交流输入端100连接的线圈的谐振Q值,第一负载126与第二负载127的阻值相同,且,第一负载126和第二负载127的阻值大于预定值。在具体应用中,第一负载126和第二负载127可以为电阻,例如,第一负载126和第二负载127可以为阻值为1.6K欧的电阻。当然,并不限于此,在实际应用中,第一负载126和第二负载127还可以为其它具有一定阻值的元器件或组件,具体本实施例不作限定。
其中,第一负载126和第二负载127的阻值可以根据第一单向导通模块129采用的PIN二极管的导通条件确定,即第一负载126和第二负载127的阻值满足以下条件:在第三端口123和第四端口124之间的通路导通的情况下,在满足第三端口123和第四端口124之间的通路的电流不小于第一单向导通模块129采用的PIN二极管的导通电流的条件下,其阻值最大。
在本发明实施例的一个可选实施方案中,该装置还可以包括:滤波组件,其中,滤波组件的一端电连接在直流电源与第三端口123的连接点,另一端接地。作为一种可选方式,滤波组件可以为电容或其他可以滤波的组件,本实施例不做限制。通过该滤波组件对直流电源提供的电能进行储能,可以有效去掉从第三端口123接入的直流电源的高电平信号中的毛刺,使高电平信号平滑。
在具体应用中,上述第一隔直组件130和第二隔直组件140可以采用容量大于预定值(即,该预定值使得该电容可以达到隔直的作用,且能导通加载到两端的连接,例如,0.2pF)的电容来实现,当然,并不限于此,在具体应用中,也可以其他可以隔离直流的组件实现,具体本实施例不作限定。
图3为本实施例提供的一种可选地通断装置的电路原理示意图,如图3所示,本实施例中,交流输入端TA与电容C39、PIN二极管D29、电容C40以及交流输出端LA依次串联,其中,PIN二极管D29的负极与电容C39连接,正极与电容C40连接。电阻R12一端连接在D29与C40的连接点上,另一端与直流电源连接,电阻R13一端连接在C39与D29的连接点上,另一端与NMOS管Q8(可以采用FDV301型号的NMOS管)的D极连接,NMOS管Q8的S极接地,NMOS管Q8的G极与控制端连接,用于接收控制信号(CTRL),NMOS管Q8在控制信号的控制下导通或断开,从而使从直流电源到地的通路导通或断开。电容C36一端连接在直流电源与电阻R12的连接点上,另一端与地连接。在从直流电源到地的通路导通的情况下,由于PIN二极管的特性,在控制导通时,等效为一个电阻,因此,从交流输入端TA输入的交流信号可以通过D29传输到交流输出端LA,而且,由于电容具有隔直通交的功能,因此,从直流电源出来的直流信号不会通过电容C39和C40流到交流输入端TA和交流输出端LA,从而不会影响交流信号的传输。在从直流电源到地的通路断开的情况下,由于PIN二极管的特性,在断开时,等效为一个0.2pF电容,可以阻断交流输入端TA与交流输出端TB之间的交流信号,即阻断从交流输入端TA到交流输出端TB的载波信号。
在上述实施例中,电容C36、C39和C40可以采用10nF的电容。电阻R12和R13可以采用阻值为1.6K欧的电阻,当然,并不限于此,在实际应用中,也可以采用其它类似的器件。
实施例2
本实施例提供了一种通断装置,该通断装置可以应用在具有线圈的电子设备上,用于连通或断开线圈与电子设备的某个功能模块(例如,具有非接触功能的芯片)的连接。
本实施例提供的通断装置与实施例1提供的通断装置的区别在于,在本实施例中,天线(线圈)与上述功能模块之间通过两线进行通讯,而实施例1中两者通过单线进行通信。
图4为本实施例提供的通断装置的结构示意图,如图4所示,该通断装置主要包括:交流输入端400、交流输出端410、通断模块420、第一隔直组件430、第二隔直组件440、第三隔直组件450、以及第四隔直组件460。
其中,如图4所示,交流输入端包括400:第一端401和第二端402。交流输出端410包括:第一端411和第二端412。在本实施例中,交流输入端400的第一端401可以与线圈的一端连接,而交流输入端400的第二端402可以与线圈的另一端可连接,交流输出端410的第一端411和第二端412分别与电子设备的某个功能模块(例如,具有非接触功能的芯片,图中未示出)的输入端和输出端连接。
如图4所示,通断模块420可以包括:第一端口421、第二端口422、第三端口423、第四端口424、第五端口425、第六端口426以及控制端427。其中,第三端口423与直流电源电连接,第四端口424与地端连接。
第一隔直组件430连接在交流输入端400的第一端401与第一端口421之间,第一隔直组件430用于隔断第一端口421与交流输入端400的第一端401之间的直流信号,传输第一端口421与交流输入端400的第一端401之间的交流信号。通过第一隔直组件430,在直流电源到地之间的通路连通时,直流信号不会通过第一隔直组件430传输到交流输入端400的第一端401,从而不会影响线圈的功能。
第二隔直组件440连接在交流输出端410的第一端411与第二端口422之间,第二隔直组件440用于隔断第二端口422与交流输出端410的第一端411之间的直流信号,传输第二端口422与交流输出端410的第一端411之间的交流信号。通过第二隔直组件440,在直流电源到地之间的通路连通时,直流信号不会通过第二隔直组件440传输到交流输出端410的第一端411,从而不会影响线圈与交流输出端410之后的模块的通讯。
第三隔直组件450连接在交流输入端400的第二端402与第五端口425之间,第三隔直组件450用于隔断第五端口425与交流输入端400的第二端402之间的直流信号,传输第五端口425与交流输入端400的第二端402之间的交流信号。通过第三隔直组件450,在直流电源到地之间的通路连通时,直流信号不会通过第三隔直组件450传输到交流输入端400的第二端402,从而不会影响线圈的功能。
第四隔直组件460连接在交流输出端410的第二端412与第六端口426之间,第四隔直 组件460用于隔断第六端口426与交流输出端410的第二端412之间的直流信号,传输第六端口426与交流输出端410的第二端412之间的交流信号。通过第四隔直组件460,在直流电源到地之间的通路连通时,直流信号不会通过第四隔直组件460传输到交流输出端410的第二端412,从而不会影响线圈与交流输出端410之后的模块的通讯。
控制端427用于接收控制信号。通断模块420用于在控制信号的控制下导通或断开第三端口423和第四端口424之间的通路。其中,在第三端口423和第四端口424之间的通路的导通的情况下,第一端口421与第二端口422之间的通路导通,且第五端口425与第六端口426之间的通路导通。在第三端口423和第四端口424之间的通路的断开的情况下,第一端口421与第二端口422之间的通路断开,且第五端口425与第六端口426之间的通路断开。
在本实施例中,通断模块420可以包括一个导通模块,第三端口423和第四端口424之间的通路与第一端口421与第二端口422之间的通路以及第五端口425与第六端口426之间的通路可以共用该导通模块,该导通模块可以在通断模块420导通第三端口423和第四端口424之间的通路时导通,在通断模块420断开第三端口423和第四端口424之间的通路时断开,从而可以通过控制第三端口423和第四端口424之间的通路的通断控制导通模块的通断,通过该导通模块的通断达到控制第一端口421与第二端口422之间的通路以及第五端口425与第六端口426之间的通路的通断的目的。
通过本实施例提供的上述通断装置,可以设置在电子设备的线圈与某个功能模块之间,连通或断开线圈与电子设备的某个功能模块(例如,具有非接触功能的芯片)的连接,从而使得该功能模块可以与其它功能模块(例如,取电电路)共用同一个线圈。
在本发明实施例的一个可选实施方案中,如图5所示,通断模块420还可以包括:第一负载4201、第二负载4202、第二单向导通模块4203、第三负载4204、第三单向导通模块4205和控制模块4206;其中,控制模块4206与控制端427连接,且控制模块4206连接在第三端口423与第一负载4201之间,或者控制模块4206连接在第四端口424与第二负载4202之间,用于在控制信号的控制下导通或断开第三端口423和第四端口424之间的通路。即在本实施例中,控制模块4206可以连接在第三端口423与第一负载4201之间,通断直流电源与第一负载4201之间的电连接,也可以连接在第四端口424与第二负载4202之间,通断第二负载4202与地之间的电连接。图5中示出的是控制模块4206连接在第四端口424与第二负载4202之间,通断第二负载4202与地之间的电连接。
第二单向导通模块4203连接在第一负载4201和第三负载4204之间,第三单向导通模块4205连接在第三负载4204和第二负载4202之间;第一端口421设置在第二单向导通模块4203与第三负载4204的连接点上,与第一隔直组件430连接;第二端口422设置在第一负载4201与第二单向导通模块4203的连接点上,与第二隔直组件440连接;第五端口425 设置在第二负载4202与第三单向导通模块4205连接点上,与第三隔直组件450连接;第六端口426设置在第三负载4204与第三单向导通模块4205的连接点上,与第四隔直组件460连接;第二单向导通模块4203用于在第三端口423和第四端口424之间的通路的导通的情况下,导通第一端口421与第二端口422之间的通路,在第三端口423和第四端口424之间的通路的断开的情况下,断开第一端口421与第二端口422之间的通路。第三单向导通模块4205用于在第三端口423和第四端口424之间的通路的导通的情况下,导通第五端口425与第六端口426之间的通路,在第三端口423和第四端口424之间的通路的断开的情况下,断开第五端口425与第六端口426之间的通路。
即在本实施例中,第二单向导通模块4202具有这样的功能:在第三端口423与第四端口424的通路导通的情况下,第二单向导通模块4202相当于一个具有很小阻值的电阻,交流输入端400的第一端401输入的交流信号可以通过第一隔直组件430、第二单向导通模块4202和第二隔直组件440传输到交流输出端410的第一端411;而当在第三端口423与第四端口424的通路断开的情况下,第二单向导通模块4202相当于一个具有很大阻值的电阻,等效于断开,交流输入端400的第一端401输入的交流信号不能通过第二单向导通模块4203传输到交流输出端410的第一端411,即交流输入端400的第一端401到交流输出端410的第一端411的通路断开。相似的,第三单向导通模块4205具有这样的功能:在第三端口423与第四端口424的通路导通的情况下,第三单向导通模块4205相当于一个具有很小阻值的电阻,交流输入端400的第二端402输入的交流信号可以通过第三隔直组件450、第三单向导通模块4205和第四隔直组件460传输到交流输出端410的第二端412;而当在第三端口423与第四端口424的通路断开的情况下,第三单向导通模块4205相当于一个具有很大阻值的电阻,等效于断开,交流输入端400的第二端402输入的交流信号不能通过第三单向导通模块4205传输到交流输出端410的第二端412,即交流输入端400的第二端402到交流输出端410的第二端412的通路断开。
在本发明实施例的一个可选实施方案中,第二单向导通模块4203可以包括:第二PIN二极管;第三单向导通模块4205可以包括:第三PIN二极管。即第二单向导通模块4203和第三单向导通模块4205可以采用PIN二极管实现。PIN二极管在关断时,具有良好的关断特性,在断开时,等效为一个0.2pF电容,可以阻断交流输入端400与交流输出端410之间的交流信号,即阻断从交流输入端400到交流输出端410的载波信号。PIN二极管在控制导通时,等效为一个电阻,电阻值与导通电流成反比,导通电流越大,电阻越小,交流信号可以从交流输入端400传输到交流输出端410。在该可选实施方式中,第二单向导通模块4203和第三单向导通模块4205采用PIN二极管实现,电路结构简单,并且,成本也比较低廉。当然,并不限于,第二单向导通模块4203和第三单向导通模块4205除了可以采用PIN二极 管以外,还可以采用其它方式实现,例如,采用集成芯片实现,具体本实施例不作限定。
在本发明实施例的一个可选实施方案中,为了保证交流输入端400连接的线圈的谐振Q值,第一负载4201、第二负载4202与第三负载4204的阻值相同,且,第一负载4201、第二负载4202和第三负载4204的阻值大于预定值。在具体应用中,第一负载4201、第二负载4202和第三负载4204可以为电阻,例如,第一负载4201、第二负载4202和第三负载4204可以为阻值为1.6K欧的电阻。当然,并不限于此,在实际应用中,第二负载4201、第二负载4202和第三负载4204还可以为其它具有一定阻值的元器件或组件,具体本实施例不作限定。
其中,第一负载4201、第二负载4202与第三负载4204的阻值可以根据第二单向导通模块4203和第三单向导通模块4205采用的PIN二极管的导通条件确定,即第一负载4201、第二负载4202与第三负载4204的阻值满足以下条件:在第三端口423和第四端口424之间的通路导通的情况下,在满足第三端口423和第四端口424之间的通路的电流不小于第二单向导通模块4203和第三单向导通模块4205采用的PIN二极管的导通电流的条件下,其阻值最大。
在本发明实施例的一个可选实施方案中,该装置还可以包括:滤波组件,其中,滤波组件的一端电连接在直流电源与第三端口423的连接点,另一端接地。作为一种可选方式,滤波组件可以为电容或其他可以滤波的组件,本实施例不做限制。通过该滤波组件可以有效去掉从第三端口423接入的直流电源的高电平信号中的毛刺,使高电平信号平滑。
在具体应用中,上述第一隔直组件430、第二隔直组件440、第三隔直组件450和第四隔直组件460可以采用容量大于预定值(即,该预定值使得该电容可以达到隔直的作用,且能导通加载到两端的连接,例如,0.2pF)的电容来实现,当然,并不限于此,在具体应用中,也可以其他可以隔离直流的组件实现,具体本实施例不作限定。
图6为本实施例提供的通断装置的一种可选地通断装置的电路原理示意图,如图6所示,本实施例中,交流输入端的第一端TA与电容C39、PIN二极管D29、电容C40以及交流输出端的第一端LA依次串联,电阻R12一端连接在D29与C40的连接点上,另一端与直流电源连接,电阻R13一端连接在C39与D29的连接点上,另一端与PIN二极管D30与电容C43的连接点连接,其中,PIN二极管D29的负极与电容C39连接,正极与电容C40连接。交流输入端的第二端TB与电容C41、PIN二极管D30、电容C43以及交流输出端的第二端LB依次串联,其中,PIN二极管D30的负极与电容C41连接,正极与电容C43连接。电阻R16的一端与电容C41与PIN二极管D30的连接点连接,另一端与NMOS管Q8的D极连接,NMOS管Q8的S极接地,NMOS管Q8的G极与控制端连接,用于接收控制信号(ANNT_CTRL),NMOS管Q8在控制信号的控制下导通或断开,从而使从直流电源到地 的通路导通或断开。在从直流电源到地的通路导通的情况下,由于PIN二极管的特性,在控制导通时,等效为一个电阻,因此,假设当前交流输入端的第一端TA的交流信号为正半周,则从交流输入端的第一端TA输入的交流信号可以通过D29传输到交流输出端的第一端LA,而从交流输出端的第二端LB回流的交流信号可以通过D30回流到交流输入端的第二端TB,从而使得从交流输入端到交流输出端的整个回路通,实现交流信号的传输。而且,由于电容具有隔直通交的功能,因此,从直流电源出来的直流信号不会通过电容C39和C40流到交流输入端的第一端TA和交流输出端的第一端LA,也不会通过电容C41和C43流到交流输入端的第二端TB和交流输出端的第二端LB,从而不会影响交流信号的传输。在从直流电源到地的通路断开的情况下,由于PIN二极管的特性,在断开时,D29和D30分别等效为一个0.2pF电容,可以阻断交流输入端TA与交流输出端TB之间的交流信号,即阻断从交流输入端TA到交流输出端LB的载波信号。
实施例3
本实施例提供的一种电子设备。
本实施例提供的电子设备可以包括实施例1所描述的任一可实施的通断装置。
图7为本实施例提供的电子设备的结构示意图,如图7所示,本实施例提供的电子设备包括:线圈70、具有非接触功能的芯片72和连接在线圈70和芯片72之间的通断装置74。其中,线圈70与通断装置74的交流输入端连接,具有非接触功能的芯片72与通断装置74的交流输出端连接。
本实施例提供的电子设备,通过输入控制信号可以控制通断装置74中的通断模块的通断,从而使得具有非接触功能的芯片72与线圈70的通断。
在本实施例提供电子设备可以包括但不限于智能卡或其他具有NFC功能的电子设备。可以带有显示、按键输入等功能,同时,该智能卡中还可以包括安全芯片,安全芯片可以用于完成电子签名、签名验证、动态密码生成和验证等功能;该电子设备可以通过无线方式(射频、NFC等)与其他设备(如读卡器、POS机、NFC手机等)进行通信;具有非接触功能的芯片可以包括但不限于智能卡芯片,或者是具有非接触功能的接口芯片,该接口芯片可以与CPU连接,即,只要具有非接触功能的芯片,均可以运用到本实施例中。
在本发明实施例的一个可选实施方案中,线圈70可以是射频线圈或NFC线圈等,该线圈可以工作在13.56M;线圈70接收到的信号包括但不限于NFC信号、射频信号等非接触信号,而非接的方式即指非接触方式,无需通过电连接就可以进行通信。电子设备进场时,(即,进入其他设备(如读卡器、手机)的射频场中)时,具有非接触功能的芯片72可以通过线圈70以非接的方式与其他设备进场NFC通讯。
在本发明实施例的一个可选实施方案中,具有非接触功能的芯片72可以是集成有MCU的智能卡芯片,直接向通断装置74发送控制信号;或者,具有非接触功能的芯片72也可以是具有非接触功能的接口芯片,该接口芯片可以连接一个CPU,由该CPU通过接口芯片向通断装置74发送控制信号。由此,可以通过具有非接触功能的芯片72实现对通断装置74的通断的控制。当然,并不限于此,在实际应用中,也可以通过电子设备的输入装置,例如,按键等,向通断装置74输入控制信号,具体本实施例不作限定。
在本发明实施例的一个可选实施方案中,如图7所示,电子设备还可以包括:整流装置76;其中,整流装置76与线圈70电连接,包括输入端和输出端,其中,整流装置76的输入端与线圈70电连接,用于接收线圈70输出的交流信号;整流装置76的输出端用于输出电能。通过该可选实施方式,整流装置76可以与具有非接触功能的芯片72共用一个线圈,通过控制通断装置74的通断可以断开或导通线圈70与具有非接触功能的芯片72之间的连接,从而使得线圈70可以更加有效的为整流装置76提供能量。
在本发明实施例的一个可选实施方案中,线圈70可以具有两个输出端,其中,第一输出端与整流装置76的第一输入端连接,第二输出端与整流装置76的第二输入端连接;其中,线圈76的第一输出端和第二输出端输出相位相反的交流信号。当将该电子设备置于其他设备的射频场中进行非接触近场通讯时,电子设备的线圈70分别与具有非接触功能的芯片72和整流装置76连接,利用该线圈70取电向整流装置76(即取电电路)供电,并与具有非接触功能的芯片72完成通信,整流装置76对交流电进行整流后输出可以供电子设备工作的电源。由此,本实施例中的电子设备在与其他设备进行近场通讯的同时,还可以从电子设备的线圈中取电,可以供电子设备工作,或对电子设备内置的电源进行充电,从而提高电子设备的利用率。在该可选实施方案中,通断装置74连接在线圈70和具有非接触功能的芯片72之间,通断装置74通过接收的控制信号来控制线圈70与具有非接触功能的芯片72的通断,当接收到表示切断线圈70和具有非接触功能的芯片72之间的通路的控制信号时,通断装置74断开线圈70和具有非接触功能的芯片72之间的通路,由此,具有非接触功能的芯片72与线圈70的射频载波被断开,在没有具有非接触功能的芯片72的影响下,线圈70的电流则全部流入整流装置76,从而使得整流装置76能够最大效率的获取电量。
在本实施例中,整流装置76可以包括二极管等单向导通器件,具体可以是由4个二极管搭接的桥电路,用于对线圈输出的电能进行整流,以输出电能。
在本发明实施例的一个可选实施方案中,整流装置76的输出端连接到该电子设备70的其他需要供电的装置,如显示屏、按键、安全芯片等,以维持电子设备其他需供电装置的正常工作,而无需为其他需供电装置再配备电能,节省了能量。
在本发明实施例的一个可选实施方案中,整流装置76的输出端可以与通断装置74电连 接,用于为通断装置74的通断模块提供直流电源。即可以将整流装置76的输出端作为实施例1中所述的直流电源。采用该可选实施方案,可以充分利用线圈70提供的电能,而无需另外为通断装置74配置直流电源,节约了电子设备的体积及制造成本。
本实施例中的通断装置74可以采用实施例1中所描述的任意一可选实施方案,具体参见实施例1的描述,本实施例中不再赘述。
实施例4
本实施例提供的电子设备可以包括实施例2所描述的任一可实施的通断装置。
图8为本实施例提供的电子设备的结构示意图,如图8所示,本实施例提供的电子设备包括:线圈80、具有非接触功能的芯片82和连接在线圈80和具有非接触功能的芯片82之间的通断装置84。其中,线圈80与通断装置84的交流输入端连接,具有非接触功能的芯片82与通断装置84的交流输出端连接。
本实施例提供的电子设备,通过输入控制信号可以控制通断装置84中的通断模块的通断,从而使得具有非接触功能的芯片82与线圈80的通断。
如图8所示,本实施例提供的电子设备与实施例3提供的电子设备的区别在于,本实施例的电子设备采用实施例2所描述的通断装置,即本实施例中,线圈与具有非接触功能的芯片之间通过两线连接,通过两线形成回路。而实施例3中线圈与具有非接触功能的芯片之间通过单线进行连接,线圈与具有非接触功能的芯片通过共地形成回路。
在本发明实施例的一个可选实施方案中,如图8所示,电子设备还可以包括:整流装置86;其中,整流装置86与线圈80电连接,包括输入端和输出端,其中,整流装置86的输入端与线圈80电连接,用于接收线圈80输出的交流信号;整流装置86的输出端用于输出电能。通过该可选实施方式,整流装置86可以与具有非接触功能的芯片82共用一个线圈,通过控制通断装置84的通断可以断开或导通线圈80与具有非接触功能的芯片82之间的连接,从而使得线圈80可以更加有效的为整流装置86提供能量。
在本发明实施例的一个可选实施方案中,线圈80可以具有两个输出端,其中,第一输出端分别与整流装置86的第一输入端以及通断装置84的交流输入端的第一端连接,第二输出端分别与整流装置86的第二输入端以及通断装置84的交流输入端的第二端连接;其中,线圈86的第一输出端和第二输出端输出相位相反的交流信号。而通断装置84的交流输出端的第一端与具有非接触功能的芯片82的第一端连接,交流输出端的第二端与具有非接触功能的芯片82的第二端连接。当将该电子设备置于其他设备的射频场中进行非接触近场通讯时,电子设备的线圈80通过通断模块84与具有非接触功能的芯片82连接,同时,电子设备的线圈80还与整流装置86连接,利用该线圈80取电向整流装置86(即取电电路)供电, 并与具有非接触功能的芯片82完成通信,整流装置78对交流电进行整流后输出可以供电子设备工作的电源。由此,本实施例中的电子设备在与其他设备进行近场通讯的同时,还可以从电子设备的线圈中取电,可以供电子设备工作,或对电子设备内置的电源进行充电,从而提高电子设备的利用率。在该可选实施方案中,通断装置84连接在线圈80和具有非接触功能的芯片82之间,通断装置84通过接收的控制信号来控制线圈80与具有非接触功能的芯片82的通断,当接收到表示切断线圈80和具有非接触功能的芯片82之间的通路的控制信号时,通断装置84断开线圈80和具有非接触功能的芯片82之间的通路,由此,具有非接触功能的芯片82与线圈80的射频载波被断开,在没有具有非接触功能的芯片82的影响下,线圈80的电流则全部流入整流装置86,从而使得整流装置86能够最大效率的获取电量。
在本实施例中,整流装置86可以包括二极管等单向导通器件,具体可以是由4个二极管搭接的桥电路,用于对线圈输出的电能进行整流,以输出电能。
在本发明实施例的一个可选实施方案中,整流装置86的输出端连接到该电子设备80的其他需要供电的装置,如显示屏、按键、安全芯片等,以维持电子设备其他需供电装置的正常工作,而无需为其他需供电装置再配备电能,节省了能量。
在本发明实施例的一个可选实施方案中,整流装置86的输出端可以与通断装置84电连接,用于为通断装置84的通断模块提供直流电源。即可以将整流装置86的输出端作为实施例2中所述的直流电源。采用该可选实施方案,可以充分利用线圈80提供的电能,而无需另外为通断装置84配置直流电源,节约了电子设备的体积及制造成本。
本实施例中的通断装置84可以采用实施例2中所描述的任意一可选实施方案,具体参见实施例2的描述,本实施例中不再赘述。
图9为本实施例提供的可选电子设备的电路原理图,如图9所示,本实施例中,整流装置86可以采用四只二极管口连接成的"桥"式结构,便具有全波整流电路,该二级管整流桥的一端IB与线圈的第一输入端连接,该二级管整流桥的另一端IA与线圈的第二输入端连接。具有非接触功能的芯片82内部也可以采用整流电路,该整流电路采用与整流装置86类似的二级管整流桥,该二级管整流桥的IA端与通断装置84的交流输出端的第一端LA连接,该二级管整流桥的IB端与通断装置84的交流输出端的第二端LB连接。
如图9所示,线圈L8(即为电子设备的天线)的第一输出端B与通断装置84的交流输入端的第一端TB端连接,线圈L8的第二输出端A与通断装置84的交流输入端的第二端TA端连接,通断装置84的交流输出端的第一端LB端与具有非接触功能的芯片82的输入端LB1端连接,通断装置84的交流输出端的第二端LA端与具有非接触功能的芯片82的输入端LA1连接,通断装置84的控制端接收控制信号ANNT_CTRL。如图9所示,通断装置84采用如实施例2中所描述的电路结构,通断装置的元器件具体连接以及电路原理可以参 见实施例2中对图6的描述。
以下,以线圈的第一输出端B为高电平,线圈的第二输出端A为低电平,对本发明提供的电子设备的工作原理进行简单说明:当外部控制端输出的控制信号ANNT_CTRL为高电平时,N沟道MOS管Q8处于导通状态,此时,从直流通路,即直流电源V_PWR……>R12……>D29……>R13……>D30……>R16……>Q8……>GND通路导通,D29和D30相当于两个小电阻,由于通断装置84的交流输入端的第一端TB端为高电平,通断装置84的交流输入端的第二端TA端为低电平,因此,此时交流信号的流向为:线圈L8的B……>TB……>电容C41……>PIN二极管D30……>电容C43……>LB……>芯片82的输入端LB1……>(芯片内部)……>芯片82的输入端LA1……>LA……>电容C40……>PIN二极管D29……>电容C39……>TA……>线圈L8的A。当外部控制端输出的控制信号ANNT_CTRL为低电平时,N沟道MOS管Q8处于断开状态,此时,从直流断开,即直流电源V_PWR……>R12……>D29……>R13……>D30……>R16……>Q8……>GND通路断开,D29和D30等效于0.2pF电容,对交流信号具有阻断作用,交流信号无法从TB传输到LB,从而断开线圈与具有非接触功能的芯片之间的载波信号。
当然,如果线圈的第一输出端B为低电平,线圈的第二输出端A为高电平,原理与上述原理相同,在此不再赘述。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。本发明的范围由所附权利要求及其等同限定。

Claims (11)

  1. 一种通断装置,其特征在于,包括:交流输入端、交流输出端、通断模块、第一隔直组件、以及第二隔直组件;
    其中,所述通断模块包括:第一端口、第二端口、第三端口、第四端口以及控制端,其中,所述第三端口与直流电源电连接,所述第四端口与地端连接,所述控制端用于接收控制信号;所述通断模块用于在所述控制信号的控制下导通或断开所述第三端口和所述第四端口之间的通路,其中,在所述第三端口和所述第四端口之间的通路导通的情况下,所述第一端口与所述第二端口之间的通路导通,在所述第三端口和所述第四端口之间的通路断开的情况下,所述第一端口与所述第二端口之间的通路断开;
    所述第一隔直组件连接在所述交流输入端与所述第一端口之间,其中,所述第一隔直组件用于隔断所述第一端口与所述交流输入端之间的直流信号,传输所述第一端口与所述交流输入端之间的交流信号;
    所述第二隔直组件连接在所述交流输出端与所述第二端口之间,其中,所述第二隔直组件用于隔断所述第二端口与所述交流输出端之间的直流信号,传输所述第二端口与所述交流输出端之间的交流信号。
  2. 根据权利要求1所述的装置,其特征在于,所述通断模块包括:第一负载、第二负载、控制模块以及第一单向导通模块,其中,
    所述控制模块与所述控制端连接,且所述控制模块连接在所述第三端口与所述第一负载之间,或者所述控制模块连接在所述第四端口与所述第二负载之间,用于在所述控制信号的控制下导通或断开所述第三端口和所述第四端口之间的通路;
    所述第一单向导通模块连接在所述第一负载与所述第二负载之间,以及所述第一端口与所述第二端口之间,用于在所述第三端口和所述第四端口之间的通路的导通的情况下,导通所述第一端口与所述第二端口之间的通路,在所述第三端口和所述第四端口之间的通路的断开的情况下,断开所述第一端口与所述第二端口之间的通路。
  3. 一种通断装置,其特征在于,包括:交流输入端、交流输出端、通断模块、第一隔直组件、第二隔直组件、第三隔直组件、以及第四隔直组件;其中,
    所述交流输入端包括:第一端和第二端;
    所述交流输出端包括:第一端和第二端;
    所述通断模块包括:第一端口、第二端口、第三端口、第四端口、第五端口、第六端口以及控制端;
    所述第三端口与直流电源电连接;所述第四端口与地端连接;
    所述第一隔直组件连接在所述交流输入端的第一端与所述第一端口之间,所述第一隔直组件用于隔断所述第一端口与所述交流输入端的第一端之间的直流信号,传输所述第一端口与所述交流输入端的第一端之间的交流信号;
    第二隔直组件连接在所述交流输出端的第一端与所述第二端口之间,所述第二隔直组件用于隔断所述第二端口与所述交流输出端的第一端之间的直流信号,传输所述第二端口与所述交流输出端的第一端之间的交流信号;
    所述第三隔直组件连接在所述交流输入端的第二端与所述第五端口之间,所述第三隔直组件用于隔断所述第五端口与所述交流输入端的第二端之间的直流信号,传输所述第五端口与所述交流输入端的第二端之间的交流信号;
    第四隔直组件连接在所述交流输出端的第二端与所述第六端口之间,所述第四隔直组件用于隔断所述第六端口与所述交流输出端的第二端之间的直流信号,传输所述第六端口与所述交流输出端的第二端之间的交流信号;
    所述控制端用于接收控制信号;
    所述通断模块用于在所述控制信号的控制下导通或断开所述第三端口和所述第四端口之间的通路,其中,在所述第三端口和所述第四端口之间的通路的导通的情况下,所述第一端口与所述第二端口之间的通路导通,且所述第五端口与所述第六端口之间的通路导通;在所述第三端口和所述第四端口之间的通路的断开的情况下,所述第一端口与所述第二端口之间的通路断开,且所述第五端口与所述第六端口之间的通路断开。
  4. 根据权利要求3所述的装置,其特征在于,所述通断模块包括:第一负载、第二负载、第二单向导通模块、第三负载、第三单向导通模块和控制模块;其中,
    所述控制模块与所述控制端连接,且所述控制模块连接在所述第三端口与所述第一负载之间,或者所述控制模块连接在所述第四端口与所述第二负载之间,用于在所述控制信号的控制下导通或断开所述第三端口和所述第四端口之间的通路;
    所述第二单向导通模块连接在所述第一负载和所述第三负载之间,所述第三单向导通模块连接在所述第三负载和所述第二负载之间;
    所述第一端口设置在所述第二单向导通模块与所述第三负载的连接点上,与所述第一隔直组件连接;
    所述第二端口设置在所述第一负载与所述第二单向导通模块的连接点上,与所述第二隔直组件连接;
    所述第五端口设置在所述第二负载与所述第三单向导通模块连接点上,与所述第三隔直组件连接;
    所述第六端口设置在所述第三负载与所述第三单向导通模块的连接点上,与所述第 四隔直组件连接;
    所述第二单向导通模块用于在所述第三端口和所述第四端口之间的通路的导通的情况下,导通所述第一端口与所述第二端口之间的通路,在所述第三端口和所述第四端口之间的通路的断开的情况下,断开所述第一端口与所述第二端口之间的通路;
    所述第三单向导通模块用于在所述第三端口和所述第四端口之间的通路的导通的情况下,导通所述第五端口与所述第六端口之间的通路,在所述第三端口和所述第四端口之间的通路的断开的情况下,断开所述第五端口与所述第六端口之间的通路。
  5. 根据权利要求2或4所述的装置,其特征在于,所述第一单向导通模块包括:第一PIN二极管;所述第二单向导通模块包括:第二PIN二极管;所述第三单向导通模块包括:第三PIN二极管。
  6. 根据权利要求4所述的装置,其特征在于,所述第一负载、所述第二负载与所述第三负载的阻值相同,且,所述第一负载、所述第二负载和所述第三负载的阻值大于预定值。
  7. 根据权利要求2、4或5所述的装置,其特征在于,所述第一负载与所述第二负载的阻值相同,且,所述第一负载和所述第二负载的阻值大于预定值。
  8. 根据权利要求1至7任一项所述的装置,其特征在于,还包括:滤波组件,其中,所述滤波组件的一端电连接在所述直流电源与所述第三端口的连接点,另一端接地。
  9. 一种电子设备,其特征在于,包括:线圈、具有非接触功能的芯片、以及如权利要求1至8中任一项所述的通断装置,其中,所述线圈与所述通断装置的交流输入端连接,所述具有非接触功能的芯片与所述通断装置的交流输出端连接。
  10. 根据权利要求9所述的电子设备,其特征在于,还包括:整流装置;其中,
    所述整流装置与所述线圈电连接,包括输入端和输出端,其中,所述整流装置的输入端与所述线圈电连接,用于接收所述线圈输出的交流信号;所述整流装置的输出端用于输出电能。
  11. 根据权利要求10所述的电子设备,其特征在于,所述整流装置的输出端与所述通断装置电连接,用于为所述通断模块提供直流电源。
PCT/CN2016/106795 2015-11-27 2016-11-22 一种通断装置及电子设备 WO2017088733A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201804349TA SG11201804349TA (en) 2015-11-27 2016-11-22 On-off apparatus and electronic device
EP16867956.1A EP3382852B1 (en) 2015-11-27 2016-11-22 On-off apparatus and electronic device
US15/779,053 US10432034B2 (en) 2015-11-27 2016-11-22 On-off apparatus and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510849252.6A CN106558923B (zh) 2015-11-27 2015-11-27 一种通断装置及电子设备
CN201510849252.6 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017088733A1 true WO2017088733A1 (zh) 2017-06-01

Family

ID=58418250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106795 WO2017088733A1 (zh) 2015-11-27 2016-11-22 一种通断装置及电子设备

Country Status (5)

Country Link
US (1) US10432034B2 (zh)
EP (1) EP3382852B1 (zh)
CN (1) CN106558923B (zh)
SG (1) SG11201804349TA (zh)
WO (1) WO2017088733A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011170525A (ja) * 2010-02-17 2011-09-01 Toshiba Corp カード基材及びこのカード基材を有するicカード
CN102723747A (zh) * 2011-03-30 2012-10-10 海洋王照明科技股份有限公司 一种电池充电电路及照明灯具
CN103384962A (zh) * 2012-03-05 2013-11-06 华为终端有限公司 天线切换电路和无线终端设备
CN104063739A (zh) * 2014-05-05 2014-09-24 苏州天趣信息科技有限公司 一种基于远程控制的射频卡
CN104682541A (zh) * 2013-11-27 2015-06-03 深圳市海洋王照明工程有限公司 一种应急灯控制电路及装置
CN205319804U (zh) * 2015-11-27 2016-06-15 天地融科技股份有限公司 一种通断装置及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101979459B1 (ko) * 2012-12-03 2019-05-16 엘에스전선 주식회사 무선 전력 전송 시스템, 무선 전력 수신 장치 및 무선 전력 수신 방법
JP6292447B2 (ja) 2013-06-07 2018-03-14 パナソニックIpマネジメント株式会社 送受信切替装置
CN204166506U (zh) * 2014-10-24 2015-02-18 韩璐 一种含非接触智能卡感应线圈的触摸屏
CN204347787U (zh) * 2014-10-24 2015-05-20 韩璐 一种含非接触智能卡功能单元的触摸屏控制芯片
CN104899635B (zh) * 2015-05-11 2018-07-20 北京握奇数据系统有限公司 一种高频和微波双频天线及智能卡

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011170525A (ja) * 2010-02-17 2011-09-01 Toshiba Corp カード基材及びこのカード基材を有するicカード
CN102723747A (zh) * 2011-03-30 2012-10-10 海洋王照明科技股份有限公司 一种电池充电电路及照明灯具
CN103384962A (zh) * 2012-03-05 2013-11-06 华为终端有限公司 天线切换电路和无线终端设备
CN104682541A (zh) * 2013-11-27 2015-06-03 深圳市海洋王照明工程有限公司 一种应急灯控制电路及装置
CN104063739A (zh) * 2014-05-05 2014-09-24 苏州天趣信息科技有限公司 一种基于远程控制的射频卡
CN205319804U (zh) * 2015-11-27 2016-06-15 天地融科技股份有限公司 一种通断装置及电子设备

Also Published As

Publication number Publication date
EP3382852B1 (en) 2020-07-29
US20180351413A1 (en) 2018-12-06
CN106558923A (zh) 2017-04-05
CN106558923B (zh) 2019-07-30
US10432034B2 (en) 2019-10-01
EP3382852A4 (en) 2019-05-22
EP3382852A1 (en) 2018-10-03
SG11201804349TA (en) 2018-06-28

Similar Documents

Publication Publication Date Title
US10033231B2 (en) System and method for providing wireless power transfer functionality to an electrical device
US20170288736A1 (en) Near-field communication (nfc) system and method for high performance nfc and wireless power transfer with small antennas
CN103051311B (zh) 近场通讯与无线充电共享感应模块的选择方法及选择电路
CN105099527B (zh) 一种具有独立能量接收天线的无源nfc通信接口
CN103699201B (zh) 一种多功能开机电路及蓝牙产品
CN105975886B (zh) 双频hf-uhf识别设备
CN104953682B (zh) 具有无线充电发射功能与无线充电接收功能的电路及其装置
US10432268B2 (en) Contactless communication and contactless charging in a system
WO2021082907A1 (zh) 无线充电系统、充电线缆、电子设备及其无线充电方法
CN105868819B (zh) 一种电子设备
Zhang et al. Design of remote control plug
CN106033975A (zh) 一种电子设备及其控制方法
CN103425220B (zh) 一种电能控制模块、装置及设备
WO2016127815A1 (zh) 电子设备
WO2017088733A1 (zh) 一种通断装置及电子设备
CN205319804U (zh) 一种通断装置及电子设备
CN209357068U (zh) Nfc电路和终端设备
CN113965513B (zh) 用于激活nfc设备的电路和方法
CN208367721U (zh) 一种基于NB-IoT的低功耗IC卡读写器
CN207588847U (zh) 数据发送电路、数据接收电路以及装置
CN207720118U (zh) 数据发送电路以及装置
CN206506524U (zh) 一种信号收发设备
CN106560977B (zh) 一种通断装置及电子设备
CN104102364A (zh) 一种usb口无线取电无线鼠标
CN110120805A (zh) 逻辑功能块、逻辑电路、集成电路及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201804349T

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016867956

Country of ref document: EP