WO2017088300A1 - 一种新型接触与非接触检测兼用的传感器电路 - Google Patents

一种新型接触与非接触检测兼用的传感器电路 Download PDF

Info

Publication number
WO2017088300A1
WO2017088300A1 PCT/CN2016/071582 CN2016071582W WO2017088300A1 WO 2017088300 A1 WO2017088300 A1 WO 2017088300A1 CN 2016071582 W CN2016071582 W CN 2016071582W WO 2017088300 A1 WO2017088300 A1 WO 2017088300A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
operational amplifier
circuit
contact
contact detection
Prior art date
Application number
PCT/CN2016/071582
Other languages
English (en)
French (fr)
Inventor
张丽敏
唐跃
吴绒绒
闫锋
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2017088300A1 publication Critical patent/WO2017088300A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/28Impedance matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3005Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/46One-port networks

Definitions

  • the invention relates to a sensor detection circuit for measuring low frequency voltage or electric field signals in various applications, including medical applications, environmental monitoring, navigation, ultra low frequency communication and the like, such as measurement of bioelectric signals, biochemical analysis, ultra low frequency sources Detection and positioning, long-distance cruise, etc.
  • Low-frequency (0.1Hz-10kHz) electrical signal detection methods are available in contact and non-contact.
  • Contact or non-contact detection needs to overcome the influence of source impedance variation on circuit performance such as sensitivity, detection bandwidth especially lower than 1Hz low-end cutoff frequency, etc., in order to design high input impedance detection circuit.
  • the resistance of the mega-ohm level is usually directly used to provide high input impedance.
  • the contact resistance that is, the source impedance changes, such as changing the magnitude of hundreds of ohms
  • the sensitivity and bandwidth of the detection circuit will be more obvious. Changes, especially when the contact resistance changes rapidly, will introduce a correspondingly large noise.
  • capacitive coupling is usually used for detection.
  • the input impedance is required to be higher.
  • the input impedance of the order of ohms is required, and the pico-scale input capacitance is required.
  • the contact detection circuit and the non-contact detection circuit are respectively implemented by using different circuits, and no circuit can be used for contact detection or non-contact detection.
  • the contact detection circuit and the non-contact detection circuit can be realized by one circuit, the application of the sensor will have an important propelling effect, such as a wearable device that is on the eve of the explosion.
  • the present invention proposes a novel sensor circuit which is simple in structure and can be used for contact measurement as well as for non-contact measurement.
  • a novel sensor circuit for contact and non-contact detection comprising a resistor Re, a resistor Rf, a resistor R 1 , a resistor R 2 and an operational amplifier, one end of the resistor Re being connected to the non-inverting input terminal of the operational amplifier, and the other end thereof Grounding; one end of the resistor Rf is connected to the non-inverting input terminal of the operational amplifier, and the other end is connected to the output end of the operational amplifier; one end of the resistor R 1 is connected to the inverting input terminal of the operational amplifier, and the other end thereof is grounded; One end of R 2 is connected to the inverting input of the operational amplifier, and the other end is connected to the output of the operational amplifier.
  • the circuit further includes a capacitor Cx having one end connected to the detection signal and the other end connected to the non-inverting input terminal of the operational amplifier.
  • the value of R 1 R f /R 2 is greater than the value of the resistance Re.
  • the temperature coefficients of the resistor Re, the resistor Rf, the resistor R 1 and the resistor R 2 are all less than 50 ppm/° C., or both have a positive temperature coefficient resistor and the positive temperature coefficient of the resistor R 2 is greater than the resistor Re and the resistor.
  • the positive temperature coefficient of Rf and resistor R 1 are all less than 50 ppm/° C., or both have a positive temperature coefficient resistor and the positive temperature coefficient of the resistor R 2 is greater than the resistor Re and the resistor.
  • the two ends of the resistor R 2 are connected to the capacitor Cb to achieve low-pass filtering.
  • the two ends of the resistor Re are connected to the capacitor Ce to achieve low-pass filtering.
  • both ends of the resistor R 2 are connected to the capacitor Cb, and both ends of the resistor Re are connected to the capacitor Ce to achieve low-pass filtering.
  • the detection component may use a contact electrode for contact measurement, or a capacitive coupling device may be used for non-contact measurement;
  • the gain of the circuit can be adjusted by adjusting the ratio of the resistors R 2 and R 1 ;
  • the circuit structure is simple, the filtering characteristics can be appropriately increased, and the physical achievability is good.
  • Figure 1 is a structural view of Embodiment 1 of the present invention.
  • Figure 2 is a structural view of Embodiment 2 of the present invention.
  • Figure 3 is a structural view of Embodiment 3 of the present invention.
  • Fig. 4 is a structural diagram of a fourth embodiment of the present invention.
  • the method includes: a detecting component for generating a measurement signal from the signal to be tested; a contact electrode when the contact is detected, and a capacitive coupling device for the non-contact detection; and a basic part of the circuit for realizing the ultra-high input impedance
  • a measurement signal is received as an input and a detection signal providing an amplified and filtered characteristic is provided as an output; and a circuit filtering portion is used to limit the detection signal bandwidth.
  • the electrode commonly used in the prior art can be used as the detecting component to contact the measured signal Vs, and the measurement signal is transmitted to the circuit input terminal Vi, and the equivalent circuit is Rs as shown in FIG.
  • the capacitive coupling method is adopted, and the capacitive coupling device commonly used in the prior art can be used as the detecting component to detect the measured signal Vs, and the measurement signal is transmitted to the input terminal Vi of the circuit, and the equivalent circuit is as shown in FIG. 1 .
  • Cs, Cx should be greater than the maximum Cs for this application.
  • the basic part of the circuit includes a capacitor Cx, a resistor Re, a resistor Rf, a resistor R 1 , a resistor R 2 and an operational amplifier.
  • One end of the capacitor Cx is connected to the detection signal, and the other end is connected to the non-inverting input terminal of the operational amplifier;
  • the non-inverting input of the amplifier is grounded at the other end;
  • one end of the resistor Rf is connected to the non-inverting input of the operational amplifier, and the other end is connected to the output of the operational amplifier;
  • one end of the resistor R 1 is connected to the inverting input of the operational amplifier, and the other end is connected Ground;
  • one end of resistor R 2 is connected to the inverting input of the op amp, and the other end is connected to the output of the op amp.
  • R 1 R f /R 2 and the value of the resistance Re are appropriately matched, but the value of R 1 R f /R 2 is greater than the value of the resistance Re, and an ultra-high input impedance close to infinity can be realized, thereby being effective Overcoming changes in circuit performance due to changes in contact resistance or changes in coupling capacitance, and can effectively reduce the resulting noise.
  • Capacitor Cx and the input impedance of the circuit together can form a high-frequency cut-off frequency such as high-pass filtering below 1 Hz, which can effectively filter out the near-DC interference of the source.
  • the gain of the circuit can be adjusted by adjusting the ratio of the resistors R 2 and R 1 .
  • the temperature coefficients of the resistor Re, the resistor Rf, the resistor R 1 and the resistor R 2 are all less than 50 ppm/° C., or both have positive temperature coefficient resistors, and the positive temperature coefficient of the resistor R 2 is greater than The positive temperature coefficient of the resistor Re, the resistor Rf, and the resistor R 1 .
  • a detection portion, a circuit portion, and a portion of the circuit filtering portion are included.
  • the sensing component is unchanged, and the sensing circuit is connected to the capacitor Cb at the output terminal and the resistor R 2 of the inverting input terminal of the operational amplifier on the basis of the circuit of FIG. 1 to realize low-pass filtering, limit the detection signal bandwidth, and reduce The noise floor of the circuit.
  • a detection portion, a circuit portion, and a portion of the circuit filtering portion are included.
  • the sensing detection component is unchanged, and the sensing circuit part is connected to the capacitor Ce on the resistor Re of the non-inverting input terminal of the operational amplifier on the basis of the circuit of FIG. 1 to realize low-pass filtering, limit the bandwidth of the detection signal, and reduce the circuit of the circuit. Bottom noise.
  • the value of the capacitance Cx should be greater than the maximum value of the capacitance Cs, and the value of the capacitance Ce should be smaller than the minimum value of the capacitance Cs.
  • a detection portion, a circuit portion, and a portion of the circuit filtering portion are included.
  • the sensing detection component is unchanged, and the sensing circuit part is connected to the capacitor Cb on the output terminal and the resistor R 2 of the inverting input terminal of the operational amplifier on the basis of the circuit of FIG. 1 to realize low-pass filtering, and at the same-phase input end of the operational amplifier
  • the capacitor Re on the ground is connected to the capacitor Ce, which also realizes low-pass filtering, limits the bandwidth of the detection signal, and further reduces the noise floor of the circuit.
  • the value of the capacitance Cx should be greater than the maximum value of the capacitance Cs, and the value of the capacitance Ce should be smaller than the minimum value of the capacitance Cs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种新型接触与非接触检测兼用的传感器电路,该电路包括电容Cx、电阻Re、电阻Rf、电阻R 1、电阻R 2和运算放大器A1。电容Cx的一端连接检测信号,其另一端连接运算放大器A1的同相输入端;电阻Re的一端连接运算放大器A1的同相输入端,其另一端接地;电阻Rf的一端连接运算放大器A1的同相输入端,其另一端连接运算放大器A1的输出端;电阻R 1的一端连接运算放大器A1的反相输入端,其另一端接地;电阻R 2的一端连接运算放大器A1的反相输入端,其另一端连接运算放大器A1的输出端。该传感器电路结构简单,具有接触检测和非接触检测兼用特征,可有效克服接触电阻变化或耦合电容变化引起的电路性能改变,并可有效降低由此产生的噪声。

Description

一种新型接触与非接触检测兼用的传感器电路 技术领域
本发明涉及用于在各种应用中测量低频电压或电场信号的传感器检测电路,包括医学应用、环境监测、导航、超低频通信等领域,如生物电信号的测量,生化分析,超低频信源检测与定位、长途巡航等。
背景技术
低频(0.1Hz—10kHz)电信号检测方法有接触式和非接触式两大类。接触式或非接触式检测均需要克服信源阻抗变化对电路性能如灵敏度,检测带宽尤其低于1Hz低端截止频率等的影响,为此需要设计高输入阻抗检测电路。
在接触测量中,通常直接采用兆欧姆量级的电阻来提供高输入阻抗,然而当接触电阻即信源阻抗变化时,如变化百千欧量级,检测电路的灵敏度和带宽会有较明显的变化,尤其当接触电阻变化较快时,会相应的引入较大噪声。在非接触测量中,通常采用电容耦合方式进行检测,为了能够将信号较好地耦合到电路,对输入阻抗要求更高,通常需要吉欧姆量级的输入阻抗,且需要皮法量级输入电容,为此,已有检测技术通常采用自举,有源屏蔽,中和技术来实现极高输入阻抗和低输入电容,这样的技术比较复杂,实现超低频截止频率如生物电所需的0.1Hz低频截止频率比较困难,并且当耦合电容由于相对距离变化时,会容易引起较大的灵敏度和低端截止频率变化,同时引入由此产生的噪声。为此需要一种相对简单地电路,能较好地克服接触电阻变化或耦合电容变化对电路性能的影响,从而减少其变化引入的噪声。
目前,接触检测电路和非接触检测电路是分别采用不同的电路来实现的,还没有一种电路即可用于接触检测,也可用于非接触检测。而在实际应用中,若能将接触检测电路和非接触检测电路用一种电路来实现,对传感器的应用将有重要的推进作用,如正处于爆发前夜的可穿戴设备。
发明内容
本发明为了克服上述问题,提出一种新型传感器电路,这种电路的结构简单,即可用于接触测量,也可用于非接触测量。
为实现上述发明目的,本发明采用的技术方案如下:
一种新型接触与非接触检测兼用的传感器电路,该电路包括电阻Re、电阻Rf、电阻R1、电阻R2和运算放大器,所述电阻Re的一端连接运算放大器的同相输入端,其另一端接地;所述电阻Rf的一端连接运算放大器的同相输入端,其另一端连接运算放大器的输出端;所述电阻R1的一端连接运算放大器的反相输入端,其另一端接地;所述电阻R2的一端连接运算放 大器的反相输入端,其另一端连接运算放大器的输出端。
进一步地,所述电路还包括电容Cx,所述电容Cx的一端连接检测信号,其另一端连接运算放大器的同相输入端。
进一步地,所述电路中,R1Rf/R2的值大于电阻Re的值。
进一步地,所述电路中,电阻Re、电阻Rf、电阻R1和电阻R2的温度系数均小于50ppm/℃,或者均采用正温度系数电阻且电阻R2的正温度系数大于电阻Re、电阻Rf和电阻R1的正温度系数。
进一步地,所述电阻R2的两端并接电容Cb,实现低通滤波。或者所述电阻Re的两端并接电容Ce,实现低通滤波。或者所述电阻R2的两端并接电容Cb,所述电阻Re的两端并接电容Ce,实现低通滤波。
本发明提出的新型传感器电路的显著优点在于:
(1)具有接触检测和非接触检测兼用特征,其检测部件可以采用接触电极用于接触测量,也可以采用电容耦合装置用于非接触测量;
(2)适当地匹配设置R1Rf/R2的值与电阻Re的值可实现25吉欧姆以上的超高输入阻抗;
(3)可有效克服接触电阻变化或耦合电容变化引起的电路性能改变,并可有效降低由此产生的噪声;
(4)可以通过调整电阻R2和R1的比值调整电路的增益;
(5)电路结构简单,可适当增加滤波特性,物理可实现性好。
附图说明
图1是本发明实施例1的结构图;
图2是本发明实施例2的结构图;
图3是本发明实施例3的结构图;
图4是本发明实施例4的结构图。
具体实施方式
为了加深对本发明的理解和认识,下面结合附图对本发明作进一步描述和介绍。
本发明实施例中,包括:检测部件,用于从被测信号产生测量信号;在接触检测时为接触电极,非接触检测时为电容耦合装置;电路基本部分,用于实现超高输入阻抗以接收测量信号作为输入以及提供被放大和滤波特征的检测信号作为输出;电路滤波部分,用以限制检测信号带宽。
实施例1:
参见图1,仅包括检测部分和电路基本部分。该方式在实现接触检测时,可以采用现有技术中常用的电极作为检测部件接触被测信号Vs,产生测量信号传输给电路输入端Vi,等效电路如图1所示的Rs。在实现非接触检测时,采用电容耦合方式实现,可以采用现有技术中常用的电容耦合装置作为检测部件检测被测信号Vs,产生测量信号传输给电路输入端Vi,等效电路如图1所示的Cs,该种应用时Cx应大于最大Cs。该电路基本部分包括电容Cx、电阻Re、电阻Rf、电阻R1、电阻R2和运算放大器,电容Cx的一端连接检测信号,其另一端连接运算放大器的同相输入端;电阻Re的一端连接运算放大器的同相输入端,其另一端接地;电阻Rf的一端连接运算放大器的同相输入端,其另一端连接运算放大器的输出端;电阻R1的一端连接运算放大器的反相输入端,其另一端接地;电阻R2的一端连接运算放大器的反相输入端,其另一端连接运算放大器的输出端。
其中适当地匹配设置R1Rf/R2的值与电阻Re的值,但需R1Rf/R2的值大于电阻Re的值,可以实现近似于无穷大的超高输入阻抗,从而有效克服接触电阻变化或耦合电容变化带来的电路性能改变,并可有效降低由此产生的噪声。电容Cx和电路的输入阻抗一起可以构成超低频截止频率如低于1Hz的高通滤波,可以有效滤除信源的近直流干扰。可以通过调整电阻R2和R1的比值调整电路的增益。
为保证电路输入阻抗受温度影响较小,电阻Re、电阻Rf、电阻R1和电阻R2的温度系数均小于50ppm/℃,或者均采用正温度系数电阻,且电阻R2的正温度系数大于电阻Re、电阻Rf和电阻R1的正温度系数。
实施例2:
参见图2,包括检测部分、电路基本部分和一部分电路滤波部分。传感检测部件不变,传感电路部分为在图1电路基础上在输出端和运算放大器的反相输入端的电阻R2上并接电容Cb,实现低通滤波,限制检测信号带宽,同时降低电路的本底噪声。
实施例3:
参见图3,包括检测部分、电路基本部分和一部分电路滤波部分。传感检测部件不变,传感电路部分为在图1电路基础上在运算放大器同相输入端到地的电阻Re上并接电容Ce,实现低通滤波,限制检测信号带宽,同时降低电路的本底噪声。在非接触检测应用中,若采用该方式,为保证检测灵敏度,电容Cx的值应大于电容Cs的最大值,电容Ce的值应小于电容Cs的最小值。
实施例4:
参见图4,包括检测部分、电路基本部分和一部分电路滤波部分。传感检测部件不变,传感电路部分为在图1电路基础上在输出端和运算放大器的反相输入端的电阻R2上并接电容Cb,实现低通滤波,同时在运算放大器同相输入端到地的电阻Re上并接电容Ce,也实现低通滤波,限制检测信号带宽,进一步降低电路的本底噪声。在非接触检测应用中,若采用该方式,为保证检测灵敏度,电容Cx的值应大于电容Cs的最大值,电容Ce的值应小于电容Cs的最小值。

Claims (7)

  1. 一种新型接触与非接触检测兼用的传感器电路,其特征在于,该电路包括电阻Re、电阻Rf、电阻R1、电阻R2和运算放大器,所述电阻Re的一端连接运算放大器的同相输入端,其另一端接地;所述电阻Rf的一端连接运算放大器的同相输入端,其另一端连接运算放大器的输出端;所述电阻R1的一端连接运算放大器的反相输入端,其另一端接地;所述电阻R2的一端连接运算放大器的反相输入端,其另一端连接运算放大器的输出端。
  2. 根据权利要求1所述的一种新型接触与非接触检测兼用的传感器电路,其特征在于,所述电路还包括电容Cx,所述电容Cx的一端连接检测信号,其另一端连接运算放大器的同相输入端。
  3. 根据权利要求1所述的一种新型接触与非接触检测兼用的传感器电路,其特征在于,所述电路中,R1Rf/R2的值大于电阻Re的值。
  4. 根据权利要求1所述的一种新型接触与非接触检测兼用的传感器电路,其特征在于,所述电路中,电阻Re、电阻Rf、电阻R1和电阻R2的温度系数均小于50ppm/℃,或者均采用正温度系数电阻且电阻R2的正温度系数大于电阻Re、电阻Rf和电阻R1的正温度系数。
  5. 根据权利要求1至4之一所述的一种新型接触与非接触检测兼用的传感器电路,其特征在于,所述电阻R2的两端并接电容Cb,实现低通滤波。
  6. 根据权利要求1至4之一所述的一种新型接触与非接触检测兼用的传感器电路,其特征在于,所述电阻Re的两端并接电容Ce,实现低通滤波。
  7. 根据权利要求1至4之一所述的一种新型接触与非接触检测兼用的传感器电路,其特征在于,所述电阻R2的两端并接电容Cb,所述电阻Re的两端并接电容Ce,实现低通滤波。
PCT/CN2016/071582 2015-11-25 2016-01-21 一种新型接触与非接触检测兼用的传感器电路 WO2017088300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510831425.1 2015-11-25
CN201510831425.1A CN106788327B (zh) 2015-11-25 2015-11-25 一种接触与非接触检测兼用的传感器电路

Publications (1)

Publication Number Publication Date
WO2017088300A1 true WO2017088300A1 (zh) 2017-06-01

Family

ID=58762897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071582 WO2017088300A1 (zh) 2015-11-25 2016-01-21 一种新型接触与非接触检测兼用的传感器电路

Country Status (2)

Country Link
CN (1) CN106788327B (zh)
WO (1) WO2017088300A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112869749A (zh) * 2021-01-15 2021-06-01 天津大学 一种非接触心电检测电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646598B (zh) * 2018-05-04 2022-02-08 南京大学 一种适于小型化的低阶模拟反馈控制器及其设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101433461A (zh) * 2008-12-04 2009-05-20 上海大学 脑机接口的高性能脑电信号检测电路
CN101490564A (zh) * 2006-07-18 2009-07-22 苏塞克斯大学 电位传感器
US20090309605A1 (en) * 2006-03-21 2009-12-17 University Of Sussex Electric potential sensor
CN102973261A (zh) * 2011-09-02 2013-03-20 中国科学院电子学研究所 一种用于动态心电监测的电容耦合式电场传感器
CN103505202A (zh) * 2012-06-27 2014-01-15 天津宇迪智能技术有限公司 心、脑电信号同步采集的心脑耦合系统
CN104917471A (zh) * 2015-06-29 2015-09-16 浙江大学 一种生理信号采集放大电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303179A (en) * 1992-01-03 1994-04-12 Simmonds Precision Products, Inc. Method and apparatus for electronically simulating capacitors
CN204539119U (zh) * 2015-05-21 2015-08-05 北京联合大学 一种电气信号采样隔离电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090309605A1 (en) * 2006-03-21 2009-12-17 University Of Sussex Electric potential sensor
CN101490564A (zh) * 2006-07-18 2009-07-22 苏塞克斯大学 电位传感器
CN101433461A (zh) * 2008-12-04 2009-05-20 上海大学 脑机接口的高性能脑电信号检测电路
CN102973261A (zh) * 2011-09-02 2013-03-20 中国科学院电子学研究所 一种用于动态心电监测的电容耦合式电场传感器
CN103505202A (zh) * 2012-06-27 2014-01-15 天津宇迪智能技术有限公司 心、脑电信号同步采集的心脑耦合系统
CN104917471A (zh) * 2015-06-29 2015-09-16 浙江大学 一种生理信号采集放大电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112869749A (zh) * 2021-01-15 2021-06-01 天津大学 一种非接触心电检测电路

Also Published As

Publication number Publication date
CN106788327B (zh) 2020-07-17
CN106788327A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
AU2007228660B2 (en) Electric potential sensor
US6335642B1 (en) Impedance-to-voltage converter
TW201635124A (zh) 高靈敏度的電容觸控裝置及其運作方法
KR101368971B1 (ko) 극미한 임피던스 변화 탐지기
US9274145B2 (en) Active shunt ammeter apparatus and method
CN107918062B (zh) 一种宽频域的瞬态空间电场测量系统及方法
US7928721B2 (en) Method and apparatus for amplifying a signal and test device using same
WO2017088300A1 (zh) 一种新型接触与非接触检测兼用的传感器电路
US20140266438A1 (en) Signal amplifying circuit for electromagnetic flow meter
CN104000583A (zh) 一种心电信号前置放大电路
KR101068037B1 (ko) 센서 회로
CN104076406A (zh) 用于微电阻率扫描成像的小信号处理电路
JP2014089079A (ja) 電流検出装置
WO2015083604A1 (ja) 信号増幅装置及びセンサー装置
WO2017215170A1 (zh) 一种非接触传感器电路
KR101001863B1 (ko) 비접촉식 센서 회로
CN106059510A (zh) 一种消除电容耦合放大电路输出直流漂移的装置及方法
CN220438442U (zh) 一种非接触式静电电压测试装置
JPH07120527A (ja) 部分放電検出装置
KR20100107104A (ko) 비접촉식 센서 회로
TW201328176A (zh) 壓電感測器之訊號處理電路
RU2670712C9 (ru) Устройство для измерения выходного сигнала пьезоэлектрического датчика
TW201635126A (zh) 高靈敏度的電容觸控裝置及其運作方法
RU2552585C1 (ru) Схема для обнаружения напряжения
JP2020183878A (ja) 高速高感度磁気センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867529

Country of ref document: EP

Kind code of ref document: A1