WO2017088223A1 - Système d'alimentation électrique de circuit de commande d'éclairage à del pour système à courant alternatif haute tension - Google Patents

Système d'alimentation électrique de circuit de commande d'éclairage à del pour système à courant alternatif haute tension Download PDF

Info

Publication number
WO2017088223A1
WO2017088223A1 PCT/CN2015/098380 CN2015098380W WO2017088223A1 WO 2017088223 A1 WO2017088223 A1 WO 2017088223A1 CN 2015098380 W CN2015098380 W CN 2015098380W WO 2017088223 A1 WO2017088223 A1 WO 2017088223A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse transformer
phase
alternating current
rectifier
isolated
Prior art date
Application number
PCT/CN2015/098380
Other languages
English (en)
Chinese (zh)
Inventor
叶阳
Original Assignee
上海泓语电气技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海泓语电气技术有限公司 filed Critical 上海泓语电气技术有限公司
Publication of WO2017088223A1 publication Critical patent/WO2017088223A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a power supply system, and more particularly to an LED illumination drive power supply system for a high voltage AC system.
  • the LED driver power supply under normal application conditions is already a mature product, and there are many types and models to choose from.
  • a general solution may not solve the problem.
  • the 480V three-phase AC system has a phase voltage of 277V and a line voltage of 480V. Such systems are generally three-phase three-wire systems, so neutral points cannot be used.
  • LED lighting is used in this system, the LED light needs to be directly connected to the 480V AC line.
  • Conventional LED driver power supplies, even for wide input power types, have an input voltage of only 305V, which is not sufficient for this particular need.
  • Option 1 The step-down method. As shown in Figure 1, a step-down transformer is first connected to the 480V system to reduce the voltage to 220V or 11V, so that the ordinary LED driver can be directly used in the latter stage. This is a relatively easy to think solution, and its shortcomings are more obvious: the addition of transformers increases costs and losses.
  • Option 2 High-voltage drive method. That is, the purchase can withstand 480V drive power, as shown in Figure 2. This allows the luminaire to be directly connected to the system without adding additional components.
  • the disadvantage is that there are few manufacturers of 480V driving power, and the selection range is limited; the power supply volume of the high voltage input is limited.
  • the weight is greater than the ordinary drive power, and the efficiency and power factor are generally not as good as the ordinary drive power; the price of the high-voltage drive power is significantly higher than the ordinary drive power of the same power.
  • the technical problem to be solved by the present invention is to provide an LED lighting driving power supply system for a high voltage alternating current system, which adopts multi-pulse transformer-rectifying technology, has high reliability, high efficiency, high power factor, low harmonic content and low cost.
  • an LED lighting driving power supply system for a high voltage alternating current system including a three-phase alternating current system, an LED lamp, a multi-pulse transformer rectifier, and a non-isolated DC/DC converter. Circuit, where:
  • the three-phase alternating current system and the non-isolated DC/DC conversion circuit are respectively connected to an input end and an output end of the multi-pulse transformer rectifier, and the multi-pulse transformer rectifier comprises an AC side three-phase filter inductor, a multi-pulse transformer, a plurality of three-phase rectifier bridges, a DC-side filter inductor, and a DC capacitor corresponding to the pulse number of the multi-pulse transformer, wherein the AC-side three-phase filter inductor is connected to an input end of the multi-pulse transformer, the three-phase rectifier The AC input end of the bridge is connected to the output end of the multi-pulse transformer, and the DC output end of the three-phase rectifier bridge is directly connected in parallel and connected to the DC side filter inductor and the DC capacitor, and the non-isolated DC/DC converter circuit further Connected to the LED luminaire.
  • the non-isolated DC/DC conversion circuit is a Buck circuit.
  • the AC/DC conversion of the present invention adopts multi-pulse transformer-rectification technology, which has high reliability, high efficiency, high power factor, low harmonic content and low cost.
  • the AC/DC conversion of the present invention adopts an isolation scheme, and the DC voltage can be freely set.
  • the DC voltage can still be set to a reasonable range (for example, 250V).
  • the DC/DC conversion on the DC side can be a non-isolated Buck circuit with high reliability, high efficiency and low cost.
  • the invention reduces costs and automatically achieves three-phase load balancing.
  • the invention is applicable not only to the 480V three-phase AC system in the United States, but also to the 380V three-phase AC system in China, as well as all other three-phase AC systems.
  • Figure 1 is a circuit diagram of a conventional step-down method.
  • FIG. 2 is a circuit diagram of a conventional high voltage driving method.
  • FIG. 3 is a schematic block diagram of an LED lighting driving power supply system for a high voltage alternating current system according to the present invention.
  • FIG. 4 is a specific circuit diagram of an LED lighting driving power supply system for a high voltage alternating current system according to the present invention.
  • Figure 5 is a schematic view showing the structure of a winding in the present invention.
  • FIG. 6 is a schematic structural view of a non-isolated DC/DC conversion circuit according to the present invention.
  • the LED lighting driving power supply system for a high voltage alternating current system includes a three-phase alternating current system (such as 480V), an LED lamp, a multi-pulse transformer rectifier, and a non-isolated DC/DC conversion circuit, wherein a three-phase alternating current system, a non-isolated DC/DC conversion circuit is respectively connected to an input end and an output end of the multi-pulse transformer rectifier, and the voltage of the three-phase alternating current system is first converted into a high voltage direct current through a multi-pulse transformer rectifier
  • the system for example, can set the DC voltage to 250V; the non-isolated DC/DC converter circuit is connected to the LED lamp, Specifically, all LED luminaires are connected to a DC bus (such as a 250V DC bus) through a non-isolated DC/DC converter circuit. Since the 250V DC is isolated from the 480V AC system, the non-isolated DC/DC converter circuit on the LED fixture can be a Buck circuit
  • the multi-pulse transformer rectifier includes an AC side three-phase filter inductor Ldm, an eighteen pulse transformer T1, a first three-phase rectifier bridge B1, a second three-phase rectifier bridge B2, and a third three-phase rectifier bridge.
  • the inductance of each phase of the three-phase filter inductor Ldm on the AC side is 2.6 mH
  • the inductance of the DC side filter inductor Ldc is 5 mH
  • the total capacitance of the DC capacitor Cdc is 550 uF
  • the DC capacitor Cdc is five.
  • the 110uF film capacitors are connected in parallel.
  • the multi-pulse transformer T1 is an eighteen-pulse transformer.
  • the multi-pulse transformer T1 can be a multiple of six pulses of a six-pulse transformer, a twelve-pulse transformer, an eighteen-pulse transformer, a twenty-four-pulse transformer, etc., and can be adjusted as needed, and the rectifier bridge corresponding to the pulse transformer The number is one, two, three, four.
  • the following is an example of an eighteen-pulse transformer.
  • the design parameters of the eighteen-pulse transformer are as follows:
  • Magnetic core silicon steel sheet material, E-type magnetic core.
  • Winding The three sets of windings are wound on three columns, one of which is taken as an example, and its structure is shown in Fig. 5.
  • the winding is divided into six layers, each layer has the same name end, and the innermost layer is the first layer. From the inside out, they are 1, 2, 3, 4, 5, and 6 windings.
  • winding 1 is the primary winding, 557 ⁇
  • winding 2 ⁇ 5 is the secondary winding.
  • the winding 2 is the secondary winding of the secondary side, 205 ⁇ ;
  • the windings 3, 4 are the second and third windings of the secondary side, each 152 ⁇ ;
  • the windings 5, 6 are the fourth and fifth windings of the secondary side, each 81 ⁇ .
  • the primary side diameter is AWG18, and all secondary side diameters are AWG16.
  • the non-isolated DC/DC converter circuit on the luminaire uses a Buck circuit for high efficiency, high reliability, and low cost.
  • the Buck circuit is shown in Figure 6.
  • the input Vin is 250V DC voltage, and the input terminal is connected in parallel with an input capacitor Cin.
  • the MOS transistor MOS1 and the diode D1 are connected in series, the cathode of the diode D1 is connected to the positive terminal of the input capacitor, the source of the MOS transistor MOS1 is connected to the negative terminal of the input capacitor, and the anode of the diode D1 is connected to the drain of the MOS transistor MOS1.
  • the anode of diode D1 is connected to an inductor L1, and the other end of the inductor is connected to the negative terminal of the output capacitor.
  • the positive terminal of the output capacitor is connected to the cathode of diode D1.
  • the voltage on the DC side can be freely set by the transformer ratio. When set below 300V, it is easier to select the protection component and design the back-end circuit.
  • the isolation scheme the efficiency of the AC/DC conversion section will be reduced by two to three percentage points compared to the non-isolation scheme; while the back-end DC/DC conversion section will be greatly simplified, and the non-isolated DC/DC can be implemented by the Buck circuit.
  • the efficiency can be as high as 97 ⁇ 98%, and the isolated DC/DC can only be 95 ⁇ 96% when using the most efficient LLC circuit. In the two stages before and after the use of isolated or non-isolated AC/DC schemes, there is basically no difference in efficiency.
  • isolated AC/DC is used, due to the low DC side voltage, it is easier to implement engineering specific problems such as line protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention concerne un système d'alimentation électrique de circuit de commande d'éclairage à DEL pour un système à courant alternatif haute tension, comprenant un système à courant alternatif triphasé, un transformateur-redresseur à impulsions multiples, et un circuit convertisseur CC/CC non isolé. Le système à courant alternatif triphasé et le circuit convertisseur CC/CC non isolé sont connectés respectivement à une extrémité d'entrée et à une extrémité de sortie du transformateur-redresseur à impulsions multiples. Le transformateur-redresseur à impulsions multiples comprend une inductance de filtre triphasé côté courant alternatif (Ldm), un transformateur à impulsions multiples (T1), plusieurs ponts de redresseur triphasé (B1, B2 et B3) correspondant au nombre d'impulsions du transformateur à impulsions multiples, une inductance de filtre côté courant continu (Ldc) et un condensateur à courant continu (Cdc). L'inductance de filtre triphasé côté courant alternatif est connectée à une extrémité d'entrée du transformateur à impulsions multiples. Les extrémités d'entrée de courant alternatif des ponts de redresseur triphasé sont connectées à une extrémité de sortie du transformateur à impulsions multiples. Les extrémités de sortie de courant continu des ponts de redresseur triphasé sont directement connectées en parallèle et connectées à l'inductance de filtre côté courant continu et au condensateur à courant continu. Le système d'alimentation électrique de circuit de commande d'éclairage à DEL utilise une technique de transformateur-redresseur à impulsions multiples, présente une fiabilité élevée, un rendement élevé, un facteur de puissance élevé, et de faibles harmoniques, et est peu coûteux.
PCT/CN2015/098380 2015-11-23 2015-12-23 Système d'alimentation électrique de circuit de commande d'éclairage à del pour système à courant alternatif haute tension WO2017088223A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510819484.7 2015-11-23
CN201510819484.7A CN105305854A (zh) 2015-11-23 2015-11-23 针对高压交流系统的led照明驱动电源系统

Publications (1)

Publication Number Publication Date
WO2017088223A1 true WO2017088223A1 (fr) 2017-06-01

Family

ID=55202727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098380 WO2017088223A1 (fr) 2015-11-23 2015-12-23 Système d'alimentation électrique de circuit de commande d'éclairage à del pour système à courant alternatif haute tension

Country Status (2)

Country Link
CN (1) CN105305854A (fr)
WO (1) WO2017088223A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107360648A (zh) * 2017-07-28 2017-11-17 株洲麦格米特电气有限责任公司 一种Buck拓扑的两路LED均流驱动电路
CN108521694A (zh) * 2018-03-29 2018-09-11 电子科技大学 一种带反馈变频恒流驱动的led半桥电路
US11741862B2 (en) 2020-11-24 2023-08-29 Samsung Electronics Co., Ltd Augmented reality wearable electronic device including camera

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201336757Y (zh) * 2009-01-22 2009-10-28 陈咸丰 用于大功率led光源的多路恒流电源
CN201708976U (zh) * 2009-12-28 2011-01-12 英飞特电子(杭州)有限公司 一种实现两路或偶数多路或奇数多路led精确恒流的驱动电路
CN202603018U (zh) * 2012-06-18 2012-12-12 胡光文 Led路灯控制柜
CN105120562A (zh) * 2015-08-31 2015-12-02 上海泓语电气技术有限公司 基于多脉冲整流的高压直流led照明驱动电路
CN205283421U (zh) * 2015-11-23 2016-06-01 上海泓语电气技术有限公司 针对高压交流系统的led照明驱动电源系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989817B (zh) * 2009-07-29 2014-12-03 通用电气公司 三相led电源
CN201758470U (zh) * 2010-01-04 2011-03-09 叶明宝 一种led路灯直流供电系统
CN102176806B (zh) * 2011-03-15 2014-03-05 谢俊国 一种多通道多相驱动的led电源
CN102438378B (zh) * 2011-12-20 2013-10-30 江苏宏微科技有限公司 Led照明智能控制系统
CN102612223A (zh) * 2012-03-02 2012-07-25 苏州浩森电子科技有限公司 一种led驱动装置及其控制方法
CN103716968A (zh) * 2014-01-09 2014-04-09 合肥云杉光电科技有限公司 三相交流市电变换直流高压直驱led道路照明方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201336757Y (zh) * 2009-01-22 2009-10-28 陈咸丰 用于大功率led光源的多路恒流电源
CN201708976U (zh) * 2009-12-28 2011-01-12 英飞特电子(杭州)有限公司 一种实现两路或偶数多路或奇数多路led精确恒流的驱动电路
CN202603018U (zh) * 2012-06-18 2012-12-12 胡光文 Led路灯控制柜
CN105120562A (zh) * 2015-08-31 2015-12-02 上海泓语电气技术有限公司 基于多脉冲整流的高压直流led照明驱动电路
CN205283421U (zh) * 2015-11-23 2016-06-01 上海泓语电气技术有限公司 针对高压交流系统的led照明驱动电源系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107360648A (zh) * 2017-07-28 2017-11-17 株洲麦格米特电气有限责任公司 一种Buck拓扑的两路LED均流驱动电路
CN108521694A (zh) * 2018-03-29 2018-09-11 电子科技大学 一种带反馈变频恒流驱动的led半桥电路
CN108521694B (zh) * 2018-03-29 2023-09-22 电子科技大学 一种带反馈变频恒流驱动的led半桥电路
US11741862B2 (en) 2020-11-24 2023-08-29 Samsung Electronics Co., Ltd Augmented reality wearable electronic device including camera

Also Published As

Publication number Publication date
CN105305854A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
CN105720840B (zh) 功率变换装置及其设置方法
US10536998B2 (en) Switching power supply having active power factor correction
CN103917017B (zh) 一种单级式无电解电容ac/dc led恒流驱动电源
Mangkalajan et al. A single-stage LED driver based on ZCDS class-E current-driven rectifier as a PFC for street-lighting applications
US11013083B2 (en) Electrolytic capacitorless, selectively dimmable LED driver
CN101873739B (zh) 多组直流负载的电流平衡供电电路
WO2010054523A1 (fr) Combinaison d'une alimentation électrique d'excitation de lampe à del haute puissance et de lampes adaptées
CN102215615A (zh) Led灯驱动电路
CN102118906A (zh) Led路灯直流供电模式
WO2017088223A1 (fr) Système d'alimentation électrique de circuit de commande d'éclairage à del pour système à courant alternatif haute tension
US7825606B2 (en) Fluorescent lamp driver power
Ma et al. A single‐stage integrated bridgeless AC/DC converter for electrolytic capacitor‐less LED lighting applications
CN104202862A (zh) 一种单级式无电解电容led驱动电源
Ryu et al. New multi-channel LEDs driving methods using current transformer in electrolytic capacitor-less AC-DC drivers
US20110216567A1 (en) Single switch inverter
JP7352327B1 (ja) 共振電流制御形直流電源
CN104507238A (zh) 一种无电解电容的led驱动电源
Gupta et al. A review and analysis of topologies of light emitting diode (LED) drivers
CN105120562A (zh) 基于多脉冲整流的高压直流led照明驱动电路
CN110299849A (zh) 一种移相控制的交错并联双管正激变换器
CN205283421U (zh) 针对高压交流系统的led照明驱动电源系统
Kang et al. High frequency AC-LED driving for street light
CN204291523U (zh) 一种无电解电容的led驱动电源
CN113689823A (zh) 一种高功率因素单开关两路不均衡输出oled驱动器
CN205029917U (zh) 基于多脉冲整流的高压直流led照明驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15909134

Country of ref document: EP

Kind code of ref document: A1