WO2017086575A1 - Tire tread pattern laser engraving system - Google Patents

Tire tread pattern laser engraving system Download PDF

Info

Publication number
WO2017086575A1
WO2017086575A1 PCT/KR2016/008860 KR2016008860W WO2017086575A1 WO 2017086575 A1 WO2017086575 A1 WO 2017086575A1 KR 2016008860 W KR2016008860 W KR 2016008860W WO 2017086575 A1 WO2017086575 A1 WO 2017086575A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
engraving
data
tread pattern
tread
Prior art date
Application number
PCT/KR2016/008860
Other languages
French (fr)
Korean (ko)
Inventor
고형문
Original Assignee
주식회사 써드아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 써드아이 filed Critical 주식회사 써드아이
Priority to CN201680067487.2A priority Critical patent/CN108349183A/en
Publication of WO2017086575A1 publication Critical patent/WO2017086575A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/52Unvulcanised treads, e.g. on used tyres; Retreading
    • B29D30/68Cutting profiles into the treads of tyres

Definitions

  • the present invention relates to a tire tread pattern laser engraving system, and more particularly, to three-dimensional three-dimensional pattern image by mapping the measured current shape information of the target tire (T) and the design 3D data (DL) of the tread to be carved.
  • the present invention relates to a tire tread pattern laser engraving system, which can be used to finish a pattern tire by converting it into a laser, and then improving the accuracy and efficiency of the tread pattern formation.
  • a vehicle In general, a vehicle is a means of movement in which a mounted timer is driven by a force that causes friction with the ground, and a surface on which the tire is grounded is called a tread.
  • the tire tread is inscribed with a main groove, an auxiliary groove, and other grooves and patterns to form a pattern. This is called a tread pattern.
  • One of the most important functions of the tread pattern is drainage in rain.
  • the tread pattern formed on the tread portion of the tire smoothly induces drainage through various positive and negative structures, thereby eliminating water film phenomenon and improving traction and braking force.
  • the drainage function may not be properly exhibited, which may cause a risk of water filming, and the vehicle may fall down to the road grip and braking force.
  • the tread pattern of a tire mainly uses the method of carving in the tread part of a flat tire, and the method of manufacturing a metal mold and forming a pattern.
  • the engraving method is a method of engraving the pattern on the tread portion by using a blade or the like after fixing the tire by mounting the tire in the horizontal direction in the tire carved stand after mounting the tire on the wheel.
  • the mold method is a method of manufacturing a mold in which the tread pattern is carved, inserting a flat pattern tire into the mold and then processing to form a pattern and a groove in the tread portion.
  • the engraving method is mainly used when a small quantity needs to be produced for research purposes for an experiment or a tread test, and the mold method is used when a tread pattern is finally completed and mass production is possible.
  • Patent Document 1 Korean Patent Registration No. 10-0365962 (2002.12.11.) 'Tire tread pattern engraving device'
  • the present invention was created in view of the above-mentioned problems in the prior art, and was created to solve the problem.
  • the present shape information of the measured target tire T and the design 3D data DL of the tread to be sculpted are mapped to 3
  • the main purpose is to provide a tire tread pattern laser engraving system that can convert the pattern into a three-dimensional pattern image and then engrav it with a laser to complete the pattern tire, and improve the accuracy and efficiency of tread pattern formation. have.
  • the present invention is a means for achieving the above object, a guide rail; A stand movable along the guide rail; A fixing bracket installed to be tiltable on a vertical portion of the stand; A target tire fixed to the fixed bracket and installed to be rotatable by a motor; A shape detecting sensor installed at intervals around the processing target tire and detecting a shape of the processing target tire; A tire tread pattern laser engraving system, comprising: a processing unit for engraving a tread designed by irradiating a laser beam according to a shape of a processing target tire detected by the shape detecting sensor on a surface of the processing target tire. to provide.
  • the shape detection sensor may be installed to be protruded toward the processing target tire
  • the processing unit may be installed to be lowered toward the processing target tire.
  • the processing unit includes a DBET (Dynamic Beam Expander Transmitter) for adjusting the focus of the laser light, a galvanometer motor set for adjusting the mirror to guide the laser light reflection in the X-axis, Y-axis direction, and the laser beam It is preferable to include a telecentric lens (Telecentric Lenz) to guide the engraving area of the tire, and a control board for controlling the engraving position.
  • DBET Dynamic Beam Expander Transmitter
  • the DBET may change the focal length of the tire to be processed by adjusting the refractive angle of the laser beam.
  • control board includes a data processing unit for generating 3D data for engraving, the engraving data extracted from the engraving 3D data processed by the data processing unit, and read from the encoder mounted on the motor for rotating the processing target tire It is preferable to control the driving of the galvanometer motor set and the DBET using the current position data of the tire to be processed.
  • the mass production tires of the mold method is not applicable to the method of producing a small amount for the experiment because the mold manufacturing cost is high, the laser engraving method can reduce the mold manufacturing cost.
  • the conventional tire development requires a person to carve a tread by hand using a cutter, which requires a skilled worker, is not only time-consuming and expensive, but also inferior in precision, but using a laser saves time and requires no expert. , The precision is improved.
  • a large tire for trucks has a hard surface and a large amount to be carved, making it difficult to carve by human hands, but lasers can be easily and quickly and efficiently carved.
  • FIG. 1 is an exemplary perspective view of a tire tread pattern laser engraving system according to the present invention.
  • FIG. 2 is an exemplary configuration block diagram of a processing unit constituting the tire tread pattern laser engraving system according to the present invention.
  • Figure 3 is an exemplary view showing a tread pattern generation example when engraving using a tire tread pattern laser engraving system according to the present invention.
  • Figure 4 is an exemplary view showing a working example of engraving using a tire tread pattern laser engraving system according to the present invention.
  • FIG 5 is an exemplary view showing an example of adjusting the refractive angle of the laser beam in the tire tread pattern laser engraving system according to the present invention.
  • 6 to 7 are exemplary views showing a local processing example of the laser beam when engraving using the tire tread pattern laser engraving system according to the present invention.
  • the tire tread pattern laser engraving system includes a pair of guide rails 100.
  • the guide rail 100 is disposed (arranged in the Y-axis direction) on the bottom surface of the work space, and the stand 200 which is slidable along the guide rail 100 is seated thereon.
  • the stand 200 is a plate-like member formed in a substantially 'b' shape having a horizontal portion 202 forming an XY horizontal plane and a vertical portion 204 forming a YZ vertical plane, and is driven by a driving means (not shown).
  • the movement along the guide rail 100 is designed to be controlled.
  • a fixing bracket 210 having a substantially 'a' shape is fixed to the vertical portion 204 of the stand 200 through the bracket shaft 220.
  • a driving means such as a motor is installed on the outer surface of the vertical portion 204 of the stand 200 to rotate the bracket shaft 220, and the fixing bracket 210 is left or right. Precise control so that it can tilt.
  • the fixing bracket 210 is rotatably fixed to the processing target tire (T) by a driving means such as a motor.
  • the processing target tire T means a state in which the tire is mounted on the wheel, and the portion fixed to the shaft may be regarded as the wheel portion.
  • the processing target tire T can be moved in the longitudinal direction (Y axis) of the guide rail 100 by the stand 200 moving along the guide rail 100, and can be rotated 360 ° in place.
  • the tire can be engraved in the width direction, and in accordance with the rotational flow of the bracket shaft 210, even the edges inclined at a predetermined curvature in both width directions of the tire can be engraved.
  • the movement of the stand 200 can increase the moving width, it is easy to understand that the movement of the stand 200 is applied only to the case of a large tire, for example.
  • the shape detecting sensor 300 is provided at intervals, for example, directly above the processing target tire T.
  • the shape detecting sensor 300 is aligned with the optical axis (laser light), which is the Z axis, and is configured to be movable in the Y axis direction.
  • the optical axis laser light
  • the means for advancing the shape detecting sensor 300 can be a variety of known means, for example, may be a variety of oil, pneumatic cylinder, LM guide, ball screw and the like.
  • the shape detection sensor 300 is also a known sensor, there can be a variety of forms, one of which can illustrate a vision camera.
  • the shape detecting sensor 300 is for automatically detecting the width, curvature, etc. of the tire T, that is, the tread pattern is not formed yet, is operated before engraving, that is, measuring the appearance of the tire. When the measurement is completed, it is retracted in the Y-axis direction so as not to cover the engraving area when the laser light is irradiated.
  • the processing unit 400 is installed on the upper side of the shape detecting sensor 300 with a gap therebetween.
  • the processing unit 400 is configured to adjust the height in the vertical direction (Z axis) by using a known driving means, in particular, as shown in Figure 2, DBET (Dynamic Beam Expander Transmitter) for adjusting the focus of the laser light 410, a galvanometer motor set 420 for adjusting the laser light in the X- and Y-axis directions, a telecentric lens 430 for guiding the laser light into the engraving area, and It includes a control board 440 to accurately control the position.
  • DBET Dynamic Beam Expander Transmitter
  • the DBET 410 is a means for adjusting the focal length, that is, the distance in the Z-axis direction from the telecentric lens 430 to the surface of the tire T to be processed by adjusting the refraction angle of the laser beam.
  • the laser can be carved into the tire without modifying the tread properties of the tire, so it does not matter anything.
  • the refractive angle of the laser beam passing through the telecentric lens 430 is changed by adjusting the thickness of the laser beam through the adjustment of the DBET 410, the position of the focal point is naturally changed to be engraved on the processing target tire T. This will allow you to vary the depth of the tread.
  • FIG. 5 illustrates the case where the focal length is close
  • (c) the case where the focal length is far
  • (b) is the middle of (a) and (c).
  • the inside of the DBET 410 is provided with a fixed convex lens and a movable concave lens, as shown in (b) of FIG. 5 based on the focal point F when the concave lens and the convex lens maintain a certain distance accurately.
  • the concave lens moves toward the convex lens and moves closer to the convex lens as shown in (a)
  • the focal point F is formed close to the convex lens, and the refractive angle is rapidly increased.
  • the concave lens moves away from the convex lens, the laser beam L spreads far away, and thus the focal point F is formed far from the convex lens so that the refractive angle becomes smoothly small.
  • the galvanometer motor set 420 is a means capable of controlling a very fine distance movement or rotational movement by using a galvanometer which is a mechanism that reacts to a very small current or voltage.
  • the galvanometer motor set 420 is provided with a mirror 422, respectively, and adjusts the angle of the mirror 422 to convert the laser beam L, which goes straight in the horizontal direction, to the vertical direction to telecentric lens 430 Through) to adjust the position irradiated to the processing surface of the processing target tire (T).
  • Such adjustment of the galvanometer motor set 420 is to be finely controlled through the control board 440, the shape of the tread, especially the depth of the laser beam (L) in the shape as shown in Figure 4 By repeating this, the desired depth can be processed.
  • the DBET 410 will also be controlled by the control board 440 to vary the focus F.
  • the telecentric lens 430 is a lens that can be engraved by always irradiating the laser beam (L) in the vertical direction irrespective of the position of the lens object.
  • control board 440 is read from the engraving data extracted from the 3D data for engraving processed by the data processing unit 442, and from the encoder 444 mounted to the motor (M) for rotating the processing target tire (T).
  • the driving of the above-described galvanometer motor set 420 and DBET 410 is controlled by using the current position (rotation, direction, etc.) data of the processed tire T.
  • the data processing unit 442 maps the current shape information of the processing target tire T measured from the shape detecting sensor 300 and the design 3D data DL of the tread to be sculpted as shown in FIG. 3. 3D data PL for the tread piece is generated.
  • the control board 440 combines the current position information of the target tire T received from the encoder 444 with the 3D data PL for tread engraving. To extract the fragment data DAT required for control.
  • Ty is the y-coordinate value of the spline curve tire
  • Tz is the z-coordinate value of the spline curve tire
  • the reason why the coordinates are expressed in y-z is to match the above-described system.
  • DL is the design 3D data (DL) of the tread to be sculpted
  • the graph describes a process of creating 3D data (PL) for tread engraving by mapping it.
  • L1 is a distance from the plane to S
  • L2 is a distance equal to L1 on the curve f1 (Ty)
  • a point L2 is T.
  • the y-coordinate value for S on DL designed as a plane is Sy
  • the y-coordinate value of T in the spline curve is Ty
  • the z-coordinate value of T is Tz.
  • the present invention made up of such a configuration has the following operational relationship.
  • the design 3D data DL in which the tread is designed to engrave the tread on the tire T to be processed using a laser is loaded into the data processor 442.
  • the object to be processed tire T is mounted on the stand 200.
  • the shape detecting sensor 300 is driven to scan the processing target tire T to generate shape information such as a processing surface of the processing target tire T.
  • the generated shape information is transmitted to the data processor 442.
  • the data processing unit 442 maps the design 3D data DL and the shape information to generate 3D data PL for tread carving to be actually carved.
  • control board 440 is the processing target tire (T) rotation motor (M) and the encoder 444 installed on the stand 200 to check the position information of the processing target tire (T).
  • the current positional information of the tire to be processed T is received.
  • the tire does not rotate, it is very easy to find only the point that is mapped from the plane to the curve, but the present invention rotates at a fixed speed, so the moment the laser is irradiated to the point, the unwanted point is engraved. A problem arises. Therefore, the exact position can be engraved by irradiating the laser to reflect such rotation variables.
  • the engraving data DAT is extracted from the 3D data PL for tread carving and the current position information of the tire T to be processed.
  • each device is driven to irradiate the laser beam L to form a tread on the surface of the tire T to be processed according to the tread pattern. That is, sculpt the tread.
  • the present invention can automatically detect the current state of the tire from the design information, and then obtain the information necessary for the actual control from the combined information, so that very precise and accurate tread shapes can be engraved and mechanically performed. This is a quick and easy advantage. In particular, there is no need for a skilled sculptor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Tyre Moulding (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention relates to a tire tread pattern laser engraving system and, more specifically, to a tire tread pattern laser engraving system which can complete a patterned tire by the mapping of measured current shape information of a tire (T) to be processed and design 3D data (DL) of a tread to be engraved, performing conversion into a three-dimensional stereographic pattern image, and performing engravement with a laser, and can improve the accuracy and efficiency in tread pattern formation.

Description

타이어 트레드 패턴 레이저 조각 시스템Tire Tread Pattern Laser Engraving System
본 발명은 타이어 트레드 패턴 레이저 조각 시스템에 관한 것으로, 보다 상세하게는 측정된 가공대상 타이어(T)의 현재 형상정보와, 조각하려는 트레드의 설계 3D 데이터(DL)를 맵핑하여 3차원의 입체적 패턴이미지로 변환한 후 레이저로 조각 처리함으로써 패턴 타이어를 완성할 수 있도록 하며, 트레드 패턴 형성에 따른 정확성과 효율성을 향상시킬 수 있도록 한 타이어 트레드 패턴 레이저 조각 시스템에 관한 것이다.The present invention relates to a tire tread pattern laser engraving system, and more particularly, to three-dimensional three-dimensional pattern image by mapping the measured current shape information of the target tire (T) and the design 3D data (DL) of the tread to be carved. The present invention relates to a tire tread pattern laser engraving system, which can be used to finish a pattern tire by converting it into a laser, and then improving the accuracy and efficiency of the tread pattern formation.
일반적으로, 차량은 장착된 타이머가 지면과 마찰을 일으켜 미는 힘에 의해 추진되는 이동수단으로서, 타이어가 지면에 접지하는 면을 트레드(tread)라고 한다.In general, a vehicle is a means of movement in which a mounted timer is driven by a force that causes friction with the ground, and a surface on which the tire is grounded is called a tread.
이러한 타이어 트레드에는 주홈, 보조홈, 기타 홈과 문양이 새겨져 패턴을 형성하고 있으며, 이를 트레드 패턴(tread pattern)이라고 하는데, 트레드 패턴의 가장 중요한 기능 중 하나는 빗길에서의 배수기능이다.The tire tread is inscribed with a main groove, an auxiliary groove, and other grooves and patterns to form a pattern. This is called a tread pattern. One of the most important functions of the tread pattern is drainage in rain.
이와 같이, 타이어의 트레드부에 형성되는 트레드 패턴은 다향한 양ㆍ음각 구조를 통해 배수를 원활하게 유도하여 수막현상을 없애주고 접지력과 제동력을 향상시키는 역할을 한다.As such, the tread pattern formed on the tread portion of the tire smoothly induces drainage through various positive and negative structures, thereby eliminating water film phenomenon and improving traction and braking force.
때문에, 타이어의 트레드부가 과마모되거나 편마모되면 배수기능을 제대로 발휘할 수 없게 되므로 수막현상에 의한 위험이 초래될 수 있으며, 차량의 빗길 접지력과 제동력까지 떨어뜨리게 된다.Therefore, when the tread portion of the tire is over-weared or single-weared, the drainage function may not be properly exhibited, which may cause a risk of water filming, and the vehicle may fall down to the road grip and braking force.
한편, 타이어의 트레드 패턴은 민무늬 타이어의 트레드부에 조각(Carving)하는 방법과, 금형을 제조하여 패턴을 형성시키는 방법을 주로 사용하고 있다.On the other hand, the tread pattern of a tire mainly uses the method of carving in the tread part of a flat tire, and the method of manufacturing a metal mold and forming a pattern.
여기에서, 조각방식은 타이어를 휠에 장착 후 타이어 조각 스탠드에 수평방향으로 타이어가 조립된 휠을 장착하여 타이어를 고정한 다음 칼날 등을 이용하여 트레드부에 패턴을 조각하는 방식이다.Here, the engraving method is a method of engraving the pattern on the tread portion by using a blade or the like after fixing the tire by mounting the tire in the horizontal direction in the tire carved stand after mounting the tire on the wheel.
하지만, 이와 같은 트레드 패턴 조각방식은 정밀도가 떨어지고 시간이 많이 소요되는 문제점이 있다.However, such a tread pattern engraving method has a problem that the precision is low and takes a lot of time.
반면, 금형방식은 트레드 패턴이 조각된 금형을 제조한 후 , 금형 내에 민무늬 타이어를 삽입한 다음 가공하여 트레드부에 무늬와 홈을 형성시키는 방식이다.On the other hand, the mold method is a method of manufacturing a mold in which the tread pattern is carved, inserting a flat pattern tire into the mold and then processing to form a pattern and a groove in the tread portion.
그런데, 이 방식은 트레드 패턴의 수정이 필요한 경우, 기 설계된 금형을 폐기 처분하고 새롭게 금형을 다시 제작해야 하는 폐단, 기존 금형을 그대로 사용하더라도 설계된 패턴을 수정해야 하는 문제로 인해 제작비용이 많이 소요되고 번거로우며 시간이 많이 걸리는 문제점이 있다.However, this method requires a lot of manufacturing costs due to the problem of having to modify the designed pattern even if the existing mold is used, even if the existing mold is used. There is a troublesome and time-consuming problem.
때문에, 조각방식은 주로 실험이나 트레드 테스트를 위해 연구 목적으로 소량 생산할 필요가 있을 때 사용되며, 금형방식은 트레드 패턴이 최종 완성되어 대량생산이 가능한 상태일 때 사용된다.Therefore, the engraving method is mainly used when a small quantity needs to be produced for research purposes for an experiment or a tread test, and the mold method is used when a tread pattern is finally completed and mass production is possible.
선행기술문헌Prior art literature
특허문헌Patent Literature
(특허문헌 1) 대한민국 특허 등록번호 제10-0365962호(2002.12.11.) '타이어 트레드 패턴 조각장치'(Patent Document 1) Korean Patent Registration No. 10-0365962 (2002.12.11.) 'Tire tread pattern engraving device'
본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점들을 감안하여 이를 해결하고자 창출된 것으로, 측정된 가공대상 타이어(T)의 현재 형상정보와, 조각하려는 트레드의 설계 3D 데이터(DL)를 맵핑하여 3차원의 입체적 패턴이미지로 변환한 후 레이저로 조각 처리함으로써 패턴 타이어를 완성할 수 있도록 하며, 트레드 패턴 형성에 따른 정확성과 효율성을 향상시킬 수 있도록 한 타이어 트레드 패턴 레이저 조각 시스템을 제공함에 그 주된 목적이 있다.The present invention was created in view of the above-mentioned problems in the prior art, and was created to solve the problem. The present shape information of the measured target tire T and the design 3D data DL of the tread to be sculpted are mapped to 3 The main purpose is to provide a tire tread pattern laser engraving system that can convert the pattern into a three-dimensional pattern image and then engrav it with a laser to complete the pattern tire, and improve the accuracy and efficiency of tread pattern formation. have.
본 발명은 상기한 목적을 달성하기 위한 수단으로, 가이드레일; 상기 가이드레일을 따라 움직일 수 있는 스탠드; 상기 스탠드의 수직부에 틸팅가능하게 설치된 고정브라켓; 상기 고정브라켓에 축고정되고, 모터에 의해 자회전가능하게 설치되는 가공대상 타이어; 상기 가공대상 타이어의 주위에 간격을 두고 설치되며, 가공대상 타이어의 형상을 검출하는 형상감지센서; 상기 형상감지센서에 의해 검출된 가공대상 타이어의 형상에 맞춰 레이저빔을 조사하여 설계된 트레드를 가공대상 타이어의 표면에 조각하는 가공유닛;을 포함하여 구성되는 것을 특징으로 하는 타이어 트레드 패턴 레이저 조각 시스템을 제공한다.The present invention is a means for achieving the above object, a guide rail; A stand movable along the guide rail; A fixing bracket installed to be tiltable on a vertical portion of the stand; A target tire fixed to the fixed bracket and installed to be rotatable by a motor; A shape detecting sensor installed at intervals around the processing target tire and detecting a shape of the processing target tire; A tire tread pattern laser engraving system, comprising: a processing unit for engraving a tread designed by irradiating a laser beam according to a shape of a processing target tire detected by the shape detecting sensor on a surface of the processing target tire. to provide.
이때, 상기 형상감지센서는 가공대상 타이어를 향해 출몰가능하게 설치되고, 상기 가공유닛은 상기 가공대상 타이어를 향해 승하강 가능하게 설치될 수 있다.In this case, the shape detection sensor may be installed to be protruded toward the processing target tire, the processing unit may be installed to be lowered toward the processing target tire.
또한, 상기 가공유닛은 레이저광의 초점을 조절하는 DBET(Dynamic Beam Expander Transmitter)와, 레이저광을 반사 유도하는 미러를 X축, Y축방향으로 조정하는 갈바노미터 모터세트와, 레이저광을 가공대상 타이어의 조각영역으로 안내하는 텔레센트릭 렌즈(Telecentric Lenz)와, 조각위치를 제어하는 컨트롤보드;를 포함하는 것이 바람직하다.In addition, the processing unit includes a DBET (Dynamic Beam Expander Transmitter) for adjusting the focus of the laser light, a galvanometer motor set for adjusting the mirror to guide the laser light reflection in the X-axis, Y-axis direction, and the laser beam It is preferable to include a telecentric lens (Telecentric Lenz) to guide the engraving area of the tire, and a control board for controlling the engraving position.
또한, 상기 DBET는 레이저빔의 굴절각을 조절하여 가공대상 타이어에 맺히는 초점거리를 가변시킬 수 있다.In addition, the DBET may change the focal length of the tire to be processed by adjusting the refractive angle of the laser beam.
또한, 상기 컨트롤보드는 조각용 3D 데이터를 생성하는 데이터처리부를 포함하며, 상기 데이터처리부에서 처리된 조각용 3D 데이터로부터 추출된 조각 데이터와, 가공대상 타이어를 회전시키는 모터에 장착된 엔코더로부터 읽어들인 가공대상 타이어의 현재 위치 데이터를 이용하여 갈바노미터 모터세트 및 DBET의 구동을 제어하는 것이 바람직하다.In addition, the control board includes a data processing unit for generating 3D data for engraving, the engraving data extracted from the engraving 3D data processed by the data processing unit, and read from the encoder mounted on the motor for rotating the processing target tire It is preferable to control the driving of the galvanometer motor set and the DBET using the current position data of the tire to be processed.
본 발명에 따르면, 다음과 같은 효과를 얻을 수 있다.According to the present invention, the following effects can be obtained.
첫째, 센서를 이용하여 조각하려는 타이어의 형상을 측정한 후 최초 설계된 트레드 패턴을 타이어 형상에 맞게 변형시켜 조각하기 때문에 정밀한 트레드 조각이 가능하다.First, since the shape of the tire to be sculpted using a sensor is measured and then the first designed tread pattern is deformed and sculpted to fit the tire shape, precise tread engraving is possible.
둘째, 몰드방식의 양산 타이어는 몰드 제작비용이 많이 들어가기 때문에 실험용으로 소량 생산하는 방식에 적용할 수 없지만, 레이저를 이용한 조각방식은 몰드 제작비용을 절감할 수 있다.Secondly, the mass production tires of the mold method is not applicable to the method of producing a small amount for the experiment because the mold manufacturing cost is high, the laser engraving method can reduce the mold manufacturing cost.
셋째, 기존 방식의 타이어 개발은 사람이 커터를 이용하여 수작업으로 트레드를 조각해야 했으므로 숙련자가 필요하고 시간과 비용이 많이 들 뿐만 아니라 정밀도가 떨어지지만, 레이저를 이용하면 시간이 단축되고 숙련자가 필요없으며, 정밀도가 향상된다.Third, the conventional tire development requires a person to carve a tread by hand using a cutter, which requires a skilled worker, is not only time-consuming and expensive, but also inferior in precision, but using a laser saves time and requires no expert. , The precision is improved.
넷째, 트럭용 대형 타이어는 표면이 단단하고 조각할 양이 많아 사람 손으로 조각하기 어렵지만, 레이저를 이용하면 쉽고 빠르면서 효율적으로 조각할 수 있다.Fourth, a large tire for trucks has a hard surface and a large amount to be carved, making it difficult to carve by human hands, but lasers can be easily and quickly and efficiently carved.
도 1은 본 발명에 따른 타이어 트레드 패턴 레이저 조각 시스템의 예시적인 사시도이다.1 is an exemplary perspective view of a tire tread pattern laser engraving system according to the present invention.
도 2는 본 발명에 따른 타이어 트레드 패턴 레이저 조각 시스템을 구성하는 가공유닛의 예시적인 구성블럭도이다.2 is an exemplary configuration block diagram of a processing unit constituting the tire tread pattern laser engraving system according to the present invention.
도 3은 본 발명에 따른 타이어 트레드 패턴 레이저 조각 시스템을 이용하여 조각할 때 트레드 패턴 생성예를 보인 예시도이다.Figure 3 is an exemplary view showing a tread pattern generation example when engraving using a tire tread pattern laser engraving system according to the present invention.
도 4는 본 발명에 따른 타이어 트레드 패턴 레이저 조각 시스템을 이용하여 조각하는 작업예를 보인 예시도이다.Figure 4 is an exemplary view showing a working example of engraving using a tire tread pattern laser engraving system according to the present invention.
도 5는 본 발명에 따른 타이어 트레드 패턴 레이저 조각 시스템에서 레이저빔의 굴절각 조절예를 보인 예시도이다.5 is an exemplary view showing an example of adjusting the refractive angle of the laser beam in the tire tread pattern laser engraving system according to the present invention.
도 6 내지 도 7은 본 발명에 따른 타이어 트레드 패턴 레이저 조각 시스템을 이용하여 조각할 때 레이저 빔의 처리예를 국부적으로 보인 예시도이다.6 to 7 are exemplary views showing a local processing example of the laser beam when engraving using the tire tread pattern laser engraving system according to the present invention.
이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment according to the present invention.
본 발명 설명에 앞서, 이하의 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며, 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니된다.Prior to the description of the present invention, the following specific structures or functional descriptions are merely illustrated for the purpose of describing embodiments according to the inventive concept, and the embodiments according to the inventive concept may be implemented in various forms, It should not be construed as limited to the embodiments described herein.
또한, 본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로, 특정 실시예들은 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시 형태에 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.In addition, embodiments in accordance with the concepts of the present invention may be modified in various ways and may have various forms, specific embodiments will be illustrated in the drawings and described in detail herein. However, this is not intended to limit the embodiments in accordance with the concept of the present invention to a particular disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
도 1에 도시된 바와 같이, 본 발명에 따른 타이어 트레드 패턴 레이저 조각 시스템은 한 쌍의 가이드레일(100)을 포함한다.As shown in FIG. 1, the tire tread pattern laser engraving system according to the present invention includes a pair of guide rails 100.
상기 가이드레일(100)은 작업공간의 바닥면에 Y축 방향으로 배설(배열 설치)되며, 상기 가이드레일(100) 상에는 이를 따라 슬라이딩 가능한 스탠드(200)가 안착된다.The guide rail 100 is disposed (arranged in the Y-axis direction) on the bottom surface of the work space, and the stand 200 which is slidable along the guide rail 100 is seated thereon.
이때, 상기 스탠드(200)는 X-Y 수평면을 이루는 수평부(202)와, Y-Z 수직면을 이루는 수직부(204)를 갖는 대략 'ㄴ' 형상으로 형성된 판상의 부재이며, 도시되지 않은 구동수단에 의해 상기 가이드레일(100)을 따라 움직임이 제어될 수 있도록 설계된다.At this time, the stand 200 is a plate-like member formed in a substantially 'b' shape having a horizontal portion 202 forming an XY horizontal plane and a vertical portion 204 forming a YZ vertical plane, and is driven by a driving means (not shown). The movement along the guide rail 100 is designed to be controlled.
또한, 상기 스탠드(200)의 수직부(204)에는 대략 'ㄱ' 형상을 갖는 고정브라켓(210)이 브라켓축(220)을 통해 회전가능하게 고정된다.In addition, a fixing bracket 210 having a substantially 'a' shape is fixed to the vertical portion 204 of the stand 200 through the bracket shaft 220.
이 경우에도 도시되어 있지는 않지만, 상기 브라켓축(220)을 회전시킬 수 있도록 스탠드(200)의 수직부(204) 바깥면에는 모터와 같은 구동수단이 설치되며, 고정브라켓(210)이 좌측 혹은 우측으로 기울어질 수 있도록 정밀제어하게 된다.Although not shown in this case, a driving means such as a motor is installed on the outer surface of the vertical portion 204 of the stand 200 to rotate the bracket shaft 220, and the fixing bracket 210 is left or right. Precise control so that it can tilt.
아울러, 상기 고정브라켓(210)에는 가공대상 타이어(T)가 모터와 같은 구동수단에 의해 회전가능하게 축 고정된다.In addition, the fixing bracket 210 is rotatably fixed to the processing target tire (T) by a driving means such as a motor.
이 경우, 상기 가공대상 타이어(T)는 휠에 타이어가 장착되어 있는 상태를 의미하는 것으로 하며, 축 고정되는 부분은 휠 부분이라고 보면 된다.In this case, the processing target tire T means a state in which the tire is mounted on the wheel, and the portion fixed to the shaft may be regarded as the wheel portion.
따라서, 상기 가공대상 타이어(T)는 가이드레일(100)을 따라 움직이는 스탠드(200)에 의해 가이드레일(100)의 길이방향(Y축)으로 이동할 수 있음은 물론 제자리에서 360°자회전이 가능하여 타이어의 폭방향 조각이 가능하고, 또한 브라켓축(210)의 회전유동에 따라 타이어의 폭방향 양쪽에 일정 곡률로 경사진 모서리부분까지도 조각 가능한 상태에 놓이게 된다.Therefore, the processing target tire T can be moved in the longitudinal direction (Y axis) of the guide rail 100 by the stand 200 moving along the guide rail 100, and can be rotated 360 ° in place. Thus, the tire can be engraved in the width direction, and in accordance with the rotational flow of the bracket shaft 210, even the edges inclined at a predetermined curvature in both width directions of the tire can be engraved.
다만, 스탠드(200)의 이동은 이동폭을 크게 할 수 있으므로 움직임이 커야할 경우, 이를 테면 대형타이어 등의 경우에 한하여 적용된다고 보면 이해하기 쉽다.However, since the movement of the stand 200 can increase the moving width, it is easy to understand that the movement of the stand 200 is applied only to the case of a large tire, for example.
아울러, 상기 가공대상 타이어(T)의 주위, 예컨대 직상방에는 간격을 두고 형상감지센서(300)가 설치된다.In addition, the shape detecting sensor 300 is provided at intervals, for example, directly above the processing target tire T.
상기 형상감지센서(300)는 Z축인 광축(레이저광)에 정렬되어 있으며, Y축 방향으로 움직일 수 있도록 구성된다.The shape detecting sensor 300 is aligned with the optical axis (laser light), which is the Z axis, and is configured to be movable in the Y axis direction.
이때, 상기 형상감지센서(300)를 진퇴시키는 수단은 공지의 다양한 수단이 가능한데, 이를 테면 유ㆍ공압실린더를 비롯하여 LM가이드, 볼스크류 등 여러가지가 될 수 있다.At this time, the means for advancing the shape detecting sensor 300 can be a variety of known means, for example, may be a variety of oil, pneumatic cylinder, LM guide, ball screw and the like.
뿐만 아니라, 형상감지센서(300)도 공지된 센서로서, 다양한 형태가 있을 수 있으며, 그 중 하나로 비젼카메라를 예시할 수 있다.In addition, the shape detection sensor 300 is also a known sensor, there can be a variety of forms, one of which can illustrate a vision camera.
상기 형상감지센서(300)는 가공대상 타이어(T), 즉 트레드 패턴이 아직 형성되지 않은 타이어의 폭, 곡률 등을 자동으로 감지하기 위한 것으로, 조각 전에 동작하여 감지, 다시 말해 타이어의 외관을 측정하며, 측정이 완료되면 Y축 방향으로 후퇴되어 레이저광이 조사될 때 조각영역을 가리지 않도록 구성된다.The shape detecting sensor 300 is for automatically detecting the width, curvature, etc. of the tire T, that is, the tread pattern is not formed yet, is operated before engraving, that is, measuring the appearance of the tire. When the measurement is completed, it is retracted in the Y-axis direction so as not to cover the engraving area when the laser light is irradiated.
그리고, 상기 형상감지센서(300)의 상측에는 이와 간격을 두고 가공유닛(400)이 설치된다.In addition, the processing unit 400 is installed on the upper side of the shape detecting sensor 300 with a gap therebetween.
상기 가공유닛(400)은 공지된 구동수단을 이용하여 상하방향(Z축)으로 높낮이 조절이 가능하도록 구성되며, 특히 도 2에 도시된 바와 같이, 레이저광의 초점을 조절하는 DBET(Dynamic Beam Expander Transmitter)(410)와, 레이저광을 X축 및 Y축 방향으로 조정하는 갈바노미터 모터세트(420)와, 레이저광을 조각영역으로 안내하는 텔레센트릭 렌즈(Telecentric Lenz)(430)와, 조각위치를 정확히 제어하는 컨트롤보드(440)를 포함한다.The processing unit 400 is configured to adjust the height in the vertical direction (Z axis) by using a known driving means, in particular, as shown in Figure 2, DBET (Dynamic Beam Expander Transmitter) for adjusting the focus of the laser light 410, a galvanometer motor set 420 for adjusting the laser light in the X- and Y-axis directions, a telecentric lens 430 for guiding the laser light into the engraving area, and It includes a control board 440 to accurately control the position.
이때, 상기 DBET(410)는 레이저빔의 굴절각을 조절함으로써 초점거리, 즉 텔레센트릭 렌즈(430)로부터 가공대상 타이어(T)의 표면에 이르는 Z축 방향 거리를 조절하는 수단이다.In this case, the DBET 410 is a means for adjusting the focal length, that is, the distance in the Z-axis direction from the telecentric lens 430 to the surface of the tire T to be processed by adjusting the refraction angle of the laser beam.
여기에서, 상기 레이저는 타이어의 트레드 물성을 변성시키지 않으면서 타이어에 패턴을 조각할 수 있는 것이므로 무엇이든 상관없다.In this case, the laser can be carved into the tire without modifying the tread properties of the tire, so it does not matter anything.
이러한 DBET(410)의 조절을 통해 레이저빔의 두께가 조정됨으로써 텔레센트릭 렌즈(430)를 통과하는 레이저빔의 굴절각이 달라지기 때문에 당연하게 초점의 위치가 달라져 가공대상 타이어(T)에 조각될 트레드의 깊이를 달리할 수 있게 된다.Since the refractive angle of the laser beam passing through the telecentric lens 430 is changed by adjusting the thickness of the laser beam through the adjustment of the DBET 410, the position of the focal point is naturally changed to be engraved on the processing target tire T. This will allow you to vary the depth of the tread.
좀 더 구체적으로, 도 5의 (a)는 초점거리가 가까운 경우, (c)는 초점거리가 먼 경우, (b)는 (a)와 (c)의 중간인 경우를 예시하고 있다.More specifically, (a) of FIG. 5 illustrates the case where the focal length is close, (c) the case where the focal length is far, and (b) is the middle of (a) and (c).
예컨대, DBET(410)의 내부에는 위치고정된 볼록렌즈와 이동가능한 오목렌즈가 구비되어 도 5의 (b)와 같이 오목렌즈와 볼록렌즈가 일정거리를 정확하게 유지할 때의 초점(F)을 기준으로 (a)와 같이 오목렌즈가 볼록렌즈 쪽으로 이동하여 더 가까워지면 레이저빔(L)이 멀리 퍼지지 못하기 때문에 초점(F)이 볼록렌즈에 가깝게 형성되어 굴절각이 급격히 커지게 되며, (c)와 같이 오목렌즈가 볼록렌즈로부터 멀어지게 되면 레이저빔(L)이 멀리 퍼지기 때문에 초점(F)이 볼록렌즈로부터 멀게 형성되어 굴절각이 완만하게 작아지게 된다.For example, the inside of the DBET 410 is provided with a fixed convex lens and a movable concave lens, as shown in (b) of FIG. 5 based on the focal point F when the concave lens and the convex lens maintain a certain distance accurately. As the concave lens moves toward the convex lens and moves closer to the convex lens as shown in (a), since the laser beam L does not spread far, the focal point F is formed close to the convex lens, and the refractive angle is rapidly increased. When the concave lens moves away from the convex lens, the laser beam L spreads far away, and thus the focal point F is formed far from the convex lens so that the refractive angle becomes smoothly small.
따라서, 이러한 특성을 이용하여 굴절각을 조절함으로써 가공대상 타이어(T)에 조각될 트레드의 깊이를 달리할 수 있게 된다.Therefore, by adjusting the angle of refraction using this characteristic it is possible to vary the depth of the tread to be carved on the processing target tire (T).
뿐만 아니라, 상기 갈바노미터 모터세트(420)는 매우 작은 전류나 전압에 반응하는 기구인 갈바노미터(Galvanometer)를 이용하여 아주 미세한 거리 이동 혹은 회전 이동을 조절할 수 있는 수단이다.In addition, the galvanometer motor set 420 is a means capable of controlling a very fine distance movement or rotational movement by using a galvanometer which is a mechanism that reacts to a very small current or voltage.
이러한 갈바노미터 모터세트(420)는 각각 미러(422)를 구비하여 상기 미러(422)의 각도를 조절함으로써 수평방향으로 직진해오는 레이저빔(L)을 수직방향으로 전환시켜 텔레센트릭 렌즈(430)를 통해 가공대상 타이어(T)의 가공 표면에 조사되는 위치를 조절하게 된다.The galvanometer motor set 420 is provided with a mirror 422, respectively, and adjusts the angle of the mirror 422 to convert the laser beam L, which goes straight in the horizontal direction, to the vertical direction to telecentric lens 430 Through) to adjust the position irradiated to the processing surface of the processing target tire (T).
이와 같은 갈바노미터 모터세트(420)의 조절은 상기 컨트롤보드(440)를 통해 미세 조절되게 되며, 트레드의 형상, 특히 깊이는 도 4의 도시와 같이 레이저빔(L)이 형상 내에서 좌우왕복을 반복함으로써 원하는 깊이로 가공할 수 있게 된다.Such adjustment of the galvanometer motor set 420 is to be finely controlled through the control board 440, the shape of the tread, especially the depth of the laser beam (L) in the shape as shown in Figure 4 By repeating this, the desired depth can be processed.
물론, 이 경우 DBET(410)도 상기 컨트롤보드(440)에 의해 제어되어 초점(F)을 가변시켜야 할 것이다.Of course, in this case, the DBET 410 will also be controlled by the control board 440 to vary the focus F.
아울러, 상기 텔레센트릭 렌즈(430)는 렌즈 대상물의 위치에 상관없이 항상 수직방향으로 레이저빔(L)을 조사시켜 조각할 수 있도록 하는 렌즈이다.In addition, the telecentric lens 430 is a lens that can be engraved by always irradiating the laser beam (L) in the vertical direction irrespective of the position of the lens object.
때문에, 일반렌즈의 경우는 도 5의 예시와 같이 레이저빔(L)이 그대로 통과하기 때문에 가공대상 타이어(T)의 트레드 가공시 사각(死角)이 발생하지만, 본 발명의 텔레센트릭 렌즈(430)를 사용하게 되면 도 6과 같이 사각이 거의 발생하지 않게 된다.Therefore, in the case of a general lens, since the laser beam L passes through as shown in the example of FIG. 5, a blind spot occurs when the tread of the target tire T is processed, but the telecentric lens 430 of the present invention. ), The blind spots hardly occur as shown in FIG. 6.
이는 텔레센트릭 렌즈(430)의 특성에 의해 이 렌즈를 통과한 빛(레이저 포함)은 수직성을 갖기 때문이다.This is because the light (including the laser) passing through the lens is perpendicular due to the characteristics of the telecentric lens 430.
또한, 상기 컨트롤보드(440)는 데이터처리부(442)에서 처리된 조각용 3D 데이터로부터 추출된 조각 데이터와, 가공대상 타이어(T)를 회전시키는 모터(M)에 장착된 엔코더(444)로부터 읽어들인 가공대상 타이어(T)의 현재 위치(회전, 방향 등) 데이터를 이용하여 상술한 갈바노미터 모터세트(420) 및 DBET(410)의 구동을 제어하게 된다.In addition, the control board 440 is read from the engraving data extracted from the 3D data for engraving processed by the data processing unit 442, and from the encoder 444 mounted to the motor (M) for rotating the processing target tire (T). The driving of the above-described galvanometer motor set 420 and DBET 410 is controlled by using the current position (rotation, direction, etc.) data of the processed tire T.
이때, 상기 데이터처리부(442)는 도 3에서와 같이, 상술한 형상감지센서(300)로부터 측정된 가공대상 타이어(T)의 현재 형상정보와, 조각하려는 트레드의 설계 3D 데이터(DL)를 맵핑하여 트레드 조각용 3D 데이터(PL)를 생성하게 된다.At this time, the data processing unit 442 maps the current shape information of the processing target tire T measured from the shape detecting sensor 300 and the design 3D data DL of the tread to be sculpted as shown in FIG. 3. 3D data PL for the tread piece is generated.
이렇게 하여, 트레드 조각용 3D 데이터(PL)가 생성되면, 컨트롤보드(440)는 상기 트레드 조각용 3D 데이터(PL)와 엔코더(444)로부터 수신된 가공대상 타이어(T)의 현재 위치 정보를 조합하여 제어에 필요한 조각 데이터(DAT)를 추출하게 된다.In this manner, when the 3D data PL for tread engraving is generated, the control board 440 combines the current position information of the target tire T received from the encoder 444 with the 3D data PL for tread engraving. To extract the fragment data DAT required for control.
따라서, 상기 조각 데이터(DAT)가 추출되면 즉시 조각이 가능한 상태가 된다.Therefore, when the fragment data DAT is extracted, fragmentation is possible immediately.
이해를 돕기 위해 하기의 [참고도]를 참조하여 좀 더 구체적으로 설명하자면 다음과 같다.To better understand the present invention, the following reference is made to the following [reference].
[참고도][Reference]
Figure PCTKR2016008860-appb-I000001
Figure PCTKR2016008860-appb-I000001
먼저, T0, T1, T2, T3, T4는 가공대상 타이어(T)의 실측된 지점으로서 이들의 실측을 통해 스플라인 곡선, 즉 Tz=f1(Ty)를 얻는다. 이 경우, Ty는 스플라인곡선상 타이어의 y좌표값, Tz는 스플라인곡선상 타이어의 z좌표값이며, 좌표를 y-z로 표현한 이유는 상술한 시스템과 일치시키기 위함이다.First, T0, T1, T2, T3, and T4 are measured points of the tire T to be processed to obtain a spline curve, that is, Tz = f1 (Ty) through these measurements. In this case, Ty is the y-coordinate value of the spline curve tire, Tz is the z-coordinate value of the spline curve tire, and the reason why the coordinates are expressed in y-z is to match the above-described system.
이때, DL은 조각하려는 트레드의 설계 3D 데이터(DL)이며, 상기 그래프는 이를 맵핑하여 트레드 조각용 3D 데이터(PL)를 만드는 과정을 설명하는 것이다.In this case, DL is the design 3D data (DL) of the tread to be sculpted, and the graph describes a process of creating 3D data (PL) for tread engraving by mapping it.
그리고, S는 구하고자 하는 점이며, L1은 평면상에서 S까지의 거리, L2는 곡선 f1(Ty) 상에서 L1과 같은 거리, L2의 지점을 T라 한다.S is a point to be obtained, L1 is a distance from the plane to S, L2 is a distance equal to L1 on the curve f1 (Ty), and a point L2 is T.
또한, 평면으로 설계된 DL상의 S에 대한 y좌표값은 Sy, 스플라인곡선 중 T의 y좌표값은 Ty, T의 z좌표값은 Tz라 한다.In addition, the y-coordinate value for S on DL designed as a plane is Sy, the y-coordinate value of T in the spline curve is Ty, and the z-coordinate value of T is Tz.
L1의 Sy값과 L2의 Ty값의 관계(스플라인 곡선)를 이용하여 Ty=f2(Sy) 함수를 구한다.The function Ty = f2 (Sy) is obtained using the relationship between the Sy value of L1 and the Ty value of L2 (spline curve).
나아가, Tz=f1(Ty)의 함수를 이용하여 Ty값으로부터 Tz값을 구할 수 있으므로 T의 좌표값인 (Ty, Tz)를 구할 수 있게 된다.Furthermore, since the Tz value can be obtained from the Ty value by using a function of Tz = f1 (Ty), (Ty, Tz), which is the coordinate value of T, can be obtained.
정리하자면, Ty=f2(Sy), Tz=f1(Ty)를 통해 평면으로 설계된 3D 데이터를 실측된 조각용 3D 데이터로 맵핑시킬 수 있게 된다.To sum up, Ty = f2 (Sy) and Tz = f1 (Ty) allow mapping of 3D data designed in plane to 3D data for measured pieces.
이러한 구성으로 이루어진 본 발명은 다음과 같은 작동관계를 갖는다.The present invention made up of such a configuration has the following operational relationship.
먼저, 레이저를 이용하여 가공대상 타이어(T)에 트레드를 조각하기 위해 트레드가 설계된 설계 3D 데이터(DL)가 데이터처리부(442)로 로딩된다.First, the design 3D data DL in which the tread is designed to engrave the tread on the tire T to be processed using a laser is loaded into the data processor 442.
이 상태에서, 가공대상 타이어(T)가 스탠드(200) 상에 장착된다.In this state, the object to be processed tire T is mounted on the stand 200.
이어, 형상감지센서(300)가 구동되어 가공대상 타이어(T)를 스캔함으로써 가공대상 타이어(T)의 가공면 등 형상정보를 생성한다.Subsequently, the shape detecting sensor 300 is driven to scan the processing target tire T to generate shape information such as a processing surface of the processing target tire T.
이후, 생성된 형상정보는 데이터처리부(442)로 송신된다.Thereafter, the generated shape information is transmitted to the data processor 442.
이렇게 하여, 형상정보가 수신되면 데이터처리부(442)는 설계 3D 데이터(DL)와 형상정보를 맵핑하여 실제 조각할 트레드 조각용 3D 데이터(PL)를 생성하게 된다.In this way, when the shape information is received, the data processing unit 442 maps the design 3D data DL and the shape information to generate 3D data PL for tread carving to be actually carved.
이렇게 하여, 조각 준비가 완료되면 컨트롤보드(440)는 가공대상 타이어(T)의 위치정보를 확인하기 위해 스탠드(200)에 설치된 가공대상 타이어(T) 회전용 모터(M) 및 엔코더(444)로부터 가공대상 타이어(T)의 현재 위치정보를 수신한다.In this way, when the preparation is completed, the control board 440 is the processing target tire (T) rotation motor (M) and the encoder 444 installed on the stand 200 to check the position information of the processing target tire (T). The current positional information of the tire to be processed T is received.
타이어가 회전하지 않는 경우라면 평면에서 곡선으로 맵핑시킨 지점만 찾으면 아주 쉽게 해결되지만, 본 발명은 타이어가 정해진 속도로 회전하기 때문에 해당 지점으로 레이저를 조사하는 순간 회전되어 버리므로 원하지 않은 지점이 조각되는 문제가 발생된다. 따라서, 그러한 회전변수까지 반영하여 레이저를 조사하여 정확한 위치가 조각될 수 있게 되는 것이다.If the tire does not rotate, it is very easy to find only the point that is mapped from the plane to the curve, but the present invention rotates at a fixed speed, so the moment the laser is irradiated to the point, the unwanted point is engraved. A problem arises. Therefore, the exact position can be engraved by irradiating the laser to reflect such rotation variables.
상기 트레드 조각용 3D 데이터(PL)와 가공대상 타이어(T)의 현재 위치정보로부터 조각 데이터(DAT)를 추출한다. The engraving data DAT is extracted from the 3D data PL for tread carving and the current position information of the tire T to be processed.
조작 데이터(DAT) 추출이 완료되면, 각 장치들이 구동되면서 레이저빔(L)이 조사되면서 트레드 패턴에 맞게 가공대상 타이어(T)의 표면에 트레드를 형성한다. 즉, 트레드를 조각한다.When the extraction of the manipulation data DAT is completed, each device is driven to irradiate the laser beam L to form a tread on the surface of the tire T to be processed according to the tread pattern. That is, sculpt the tread.
이와 같이, 본 발명은 설계 정보로부터 타이어의 현재 상태까지 자동으로 검출한 후 상호 조합된 정보로부터 실제 제어에 필요한 정보를 얻기 때문에 매우 정교하고 정확한 트레드 형상을 조각할 수 있으며, 기계적으로 이루어지기 때문에 작업이 빠르고, 수월한 잇점이 있다. 특히, 숙련된 조각가를 요구하지 않아도 된다.As described above, the present invention can automatically detect the current state of the tire from the design information, and then obtain the information necessary for the actual control from the combined information, so that very precise and accurate tread shapes can be engraved and mechanically performed. This is a quick and easy advantage. In particular, there is no need for a skilled sculptor.
부호의 설명Explanation of the sign
100: 가이드레일 200: 스탠드100: guide rail 200: stand
300: 형상감지센서 400: 가공유닛300: shape detection sensor 400: processing unit

Claims (5)

  1. 가이드레일;Guide rails;
    상기 가이드레일을 따라 움직일 수 있는 스탠드;A stand movable along the guide rail;
    상기 스탠드의 수직부에 틸팅가능하게 설치된 고정브라켓;A fixing bracket installed to be tiltable on a vertical portion of the stand;
    상기 고정브라켓에 축고정되고, 모터에 의해 자회전가능하게 설치되는 가공대상 타이어;A target tire fixed to the fixed bracket and installed to be rotatable by a motor;
    상기 가공대상 타이어의 주위에 간격을 두고 설치되며, 가공대상 타이어의 형상을 검출하는 형상감지센서;A shape detecting sensor installed at intervals around the processing target tire and detecting a shape of the processing target tire;
    상기 형상감지센서에 의해 검출된 가공대상 타이어의 형상에 맞춰 레이저빔을 조사하여 설계된 트레드를 가공대상 타이어의 표면에 조각하는 가공유닛;을 포함하여 구성되는 것을 특징으로 하는 타이어 트레드 패턴 레이저 조각 시스템.And a processing unit for engraving a tread designed on the surface of the processing target tire by irradiating a laser beam according to the shape of the processing target tire detected by the shape detecting sensor.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 형상감지센서는 가공대상 타이어를 향해 출몰가능하게 설치되고, 상기 가공유닛은 상기 가공대상 타이어를 향해 승하강 가능하게 설치된 것을 특징으로 하는 타이어 트레드 패턴 레이저 조각 시스템.The shape detection sensor is installed to be protruded toward the processing target tire, the processing unit is a tire tread pattern laser engraving system, characterized in that installed to be able to move up and down toward the processing target tire.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 가공유닛은 레이저광의 초점을 조절하는 DBET(Dynamic Beam Expander Transmitter)와, 레이저광을 반사 유도하는 미러를 X,Y방향으로 조정하는 갈바노미터 모터세트와, 레이저광을 가공대상 타이어의 조각영역으로 안내하는 텔레센트릭 렌즈(Telecentric Lenz)와, 조각위치를 제어하는 컨트롤보드;를 포함하는 것을 특징으로 하는 타이어 트레드 패턴 레이저 조각 시스템.The processing unit includes a DBET (Dynamic Beam Expander Transmitter) for adjusting the focus of the laser light, a galvanometer motor set for adjusting the mirror to guide the laser light in the X, Y direction, and the laser beam engraving area of the target tire A tread pattern laser engraving system comprising: a telecentric lens (Telecentric Lenz) and a control board for controlling the engraving position.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 DBET는 레이저빔의 굴절각을 조절하여 가공대상 타이어에 맺히는 초점거리를 가변시키는 것을 특징으로 하는 타이어 트레드 패턴 레이저 조각 시스템.The DBET is a tire tread pattern laser engraving system, characterized in that for varying the focal length formed on the tire to be processed by adjusting the angle of refraction of the laser beam.
  5. 청구항 3에 있어서,The method according to claim 3,
    상기 컨트롤보드는 조각용 3D 데이터를 생성하는 데이터처리부를 포함하며, 상기 데이터처리부에서 처리된 조각용 3D 데이터로부터 추출된 조각 데이터와, 가공대상 타이어를 회전시키는 모터에 장착된 엔코더로부터 읽어들인 가공대상 타이어의 현재 위치 데이터를 이용하여 갈바노미터 모터세트 및 DBET의 구동을 제어하는 것을 특징으로 하는 타이어 트레드 패턴 레이저 조각 시스템.The control board includes a data processing unit for generating 3D data for engraving, the processing object read from the engraving data extracted from the engraving 3D data processed by the data processing unit, and the encoder mounted on the motor for rotating the processing target tire A tire tread pattern laser engraving system characterized by controlling the driving of a galvanometer motor set and a DBET using current position data of the tire.
PCT/KR2016/008860 2015-11-19 2016-08-11 Tire tread pattern laser engraving system WO2017086575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680067487.2A CN108349183A (en) 2015-11-19 2016-08-11 Tire tread pattern laser engraving system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0162544 2015-11-19
KR1020150162544A KR101803804B1 (en) 2015-11-19 2015-11-19 Tire tread pattern of laser engraving systems

Publications (1)

Publication Number Publication Date
WO2017086575A1 true WO2017086575A1 (en) 2017-05-26

Family

ID=58717490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008860 WO2017086575A1 (en) 2015-11-19 2016-08-11 Tire tread pattern laser engraving system

Country Status (3)

Country Link
KR (1) KR101803804B1 (en)
CN (1) CN108349183A (en)
WO (1) WO2017086575A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760425A1 (en) * 2019-07-02 2021-01-06 Bridgestone Europe NV/SA Process for obtaining a tread having increased drainage
CN113953675A (en) * 2021-11-08 2022-01-21 江苏金孚驰智能装备有限公司 Device for polishing tire by laser
WO2022086324A1 (en) * 2020-10-22 2022-04-28 Van Merksteijn Real Estate B.V. Method for constructing the tread of a tire, device configured for performing the method and uncured rubber strip
IT202100023492A1 (en) * 2021-09-10 2023-03-10 Rover Res S R L METHOD FOR GROOVE IN THE RUBBER OF A TIRE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111907245B (en) * 2020-08-13 2024-06-25 泰凯英(青岛)专用轮胎技术研究开发有限公司 Tire engraving system
CN114473223A (en) * 2022-01-18 2022-05-13 赛轮集团股份有限公司 Automatic engraving system and method for tire patterns

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668731A (en) * 1994-02-24 1997-09-16 Pirelli Coordinamento Pneumatici S.P.A. Method and apparatus for plotting a trace pattern on the tread band of a tire
CN2868657Y (en) * 2005-12-30 2007-02-14 北京志恒达科技有限公司 On-line tyre laser marking system
WO2012082930A2 (en) * 2010-12-17 2012-06-21 Electro Scientific Industries, Inc. Reducing back-reflection in laser micromachining systems
KR20140102230A (en) * 2011-12-22 2014-08-21 미쉐린 러쉐르슈 에 떼크니크 에스.에이. Direct address laser ablation
WO2015047734A1 (en) * 2013-09-26 2015-04-02 Compagnie Generale Des Etablissements Michelin Correction of localized tire surface anomalies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668731A (en) * 1994-02-24 1997-09-16 Pirelli Coordinamento Pneumatici S.P.A. Method and apparatus for plotting a trace pattern on the tread band of a tire
CN2868657Y (en) * 2005-12-30 2007-02-14 北京志恒达科技有限公司 On-line tyre laser marking system
WO2012082930A2 (en) * 2010-12-17 2012-06-21 Electro Scientific Industries, Inc. Reducing back-reflection in laser micromachining systems
KR20140102230A (en) * 2011-12-22 2014-08-21 미쉐린 러쉐르슈 에 떼크니크 에스.에이. Direct address laser ablation
WO2015047734A1 (en) * 2013-09-26 2015-04-02 Compagnie Generale Des Etablissements Michelin Correction of localized tire surface anomalies

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760425A1 (en) * 2019-07-02 2021-01-06 Bridgestone Europe NV/SA Process for obtaining a tread having increased drainage
WO2022086324A1 (en) * 2020-10-22 2022-04-28 Van Merksteijn Real Estate B.V. Method for constructing the tread of a tire, device configured for performing the method and uncured rubber strip
NL2026728B1 (en) * 2020-10-22 2022-06-16 Van Merksteijn Real Estate B V A tire tread building method, apparatus comprising a preferably cylindrical base and a driver configured to perform the process on a base and web of unvulcanized rubber, suitable for use in the process
IT202100023492A1 (en) * 2021-09-10 2023-03-10 Rover Res S R L METHOD FOR GROOVE IN THE RUBBER OF A TIRE
CN113953675A (en) * 2021-11-08 2022-01-21 江苏金孚驰智能装备有限公司 Device for polishing tire by laser
CN113953675B (en) * 2021-11-08 2023-05-05 江苏金孚驰智能装备有限公司 Device for polishing tires by laser

Also Published As

Publication number Publication date
KR101803804B1 (en) 2017-12-01
CN108349183A (en) 2018-07-31
KR20170058666A (en) 2017-05-29

Similar Documents

Publication Publication Date Title
WO2017086575A1 (en) Tire tread pattern laser engraving system
CN207936929U (en) A kind of aerial blade front and rear edge cross hairs laser scanning device
CN101458072A (en) Three-dimensional contour outline measuring set based on multi sensors and measuring method thereof
CN201974160U (en) Device for measuring three-dimensional shape of structured light
GB1513523A (en) Optical method and arrangement for determination of departures or changes in shape or position of a test object
CN110954024A (en) Connecting piece vision measuring device and measuring method thereof
CN101786200A (en) Method for projection-type laser etching on free curved surface
JP4255865B2 (en) Non-contact three-dimensional shape measuring method and apparatus
CN103148784A (en) Full size detection method for large vane
CN207147428U (en) A kind of axle scanning means of dot laser four
JP5001330B2 (en) Curved member measurement system and method
CN2868657Y (en) On-line tyre laser marking system
CN104913734A (en) Galvanometric line laser scanning 3D profile measurement device and method
CN1256414A (en) Surface three-dimensional appearance testing method and equipment
CN106077961A (en) A kind of laser marking machine
CN202304767U (en) Three-dimensional outline measurement device based on multiple sensors
CN101344729B (en) Method for measuring rotation degree of mask bench relative to workpiece bench
JP2000035676A5 (en)
CN104576483A (en) Silicon slice prealignment device and method
CN110091070A (en) The detection device and detection method of motor verticality
CN110231008A (en) High and pull-out value measurement mechanism and method are led based on the contact net being imaged twice
CN108709509A (en) Profile camera, the mating contactless caliper of super-large diameter revolving body workpieces and contactless revolving body measurement method
CN112146752B (en) Calibration device for measuring light intensity distribution characteristics of road traffic signal lamp
WO1990009559A1 (en) Position determination method and apparatus
CN110793442A (en) Combined type measuring device for three-dimensional coordinate measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866528

Country of ref document: EP

Kind code of ref document: A1