WO2017086512A1 - 열적 안전성을 고려한 배터리의 급속 충전 시스템 및 방법 - Google Patents

열적 안전성을 고려한 배터리의 급속 충전 시스템 및 방법 Download PDF

Info

Publication number
WO2017086512A1
WO2017086512A1 PCT/KR2015/012526 KR2015012526W WO2017086512A1 WO 2017086512 A1 WO2017086512 A1 WO 2017086512A1 KR 2015012526 W KR2015012526 W KR 2015012526W WO 2017086512 A1 WO2017086512 A1 WO 2017086512A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
secondary battery
charging
battery
constant current
Prior art date
Application number
PCT/KR2015/012526
Other languages
English (en)
French (fr)
Inventor
허권
Original Assignee
주식회사 투엠아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 투엠아이 filed Critical 주식회사 투엠아이
Priority to US15/316,276 priority Critical patent/US10135277B2/en
Publication of WO2017086512A1 publication Critical patent/WO2017086512A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to the rapid charging of the battery used in mobile phones, smartphones, laptops, tablets, small power tools for mobile, in particular, thermally for rapid charging in consideration of thermal safety of batteries used in smartphones and tablets A quick charging system and method considering safety.
  • lithium ion batteries and lithium polymer batteries occupy most of the mobile small secondary battery market.
  • Lithium ion batteries and lithium polymer batteries have higher voltage and energy density than other batteries.
  • lithium ion batteries use lithium metal oxides at the positive electrode and carbon metal at the negative electrode.
  • the lithium ions in the battery move between the positive and negative electrodes during charging or discharging.
  • Such mobile secondary batteries may be embedded or removable in a device.
  • Battery chargers for charging such batteries use a constant current-constant voltage (CC-CV) charging method.
  • CC-CV constant current-constant voltage
  • the battery is charged with a constant current for a certain period of time, and then the battery is charged with a constant voltage when the battery reaches a constant charging level.
  • the charger is typically switched to low current charging.
  • the lower current charge varies with the SOC of the battery.
  • the lithium ion battery is adjusted at this charging rate so that the battery voltage does not exceed a predetermined voltage value.
  • Lithium-ion batteries are typically charged using the CC-CV method.
  • the CC-CV method algorithm charges the battery with a fixed current up to a predetermined voltage. Once the predetermined voltage is reached, the charger switches to slow current charging current with constant current charging. Thereafter, the predetermined voltage to charge is generally selected by the manufacturer.
  • 1 is a diagram easily expressing the influence of the factors affecting the performance degradation of the battery.
  • the state of charge also becomes unstable and may be overcharged or overdischarged.
  • the CC-CV charging method which was generally adopted at the time of commercialization of lithium ion batteries, had advantages such as low capacity reduction, fast charging time, ease of operation, and low internal resistance to long life.
  • the CC-CV charging method when the CC-CV charging method is adopted, instability occurs at the positive and negative electrodes inside the battery.
  • the increase in current no longer reduces the charging time, worsens the lithium plating, and increases the CV charging time.
  • the decrease in battery temperature further exacerbated lithium plating.
  • CC-CV charging maintains the CV condition until the upper limit voltage (4.1-4.2V) is reached with CC until a predetermined low current value is reached.
  • the CV condition can significantly prolong the charging time. That is, the diffusion of lithium ions in the electrode during charging becomes a rate step, which inevitably causes concentration polarization as the diffusion is prolonged. Since the upper limit voltage is rapidly reached during rapid charging, the current may drop to a preset limit value even before the active material is completely consumed.
  • Lithium ion battery charging time of more than 2 hours is generally related to the safety and life of the battery, and when it is out of this, side reactions occur inside the battery, and it is known that the stability by deterioration is inhibited.
  • MCC-CV constant current-constant voltage
  • Li-ion cells are involved in polarization phenomena associated with the internal resistance (ohmic polarization) of the cell and the charge transfer between the electrode / electrolyte interface upon charging. Formation of overvoltage due to internal resistance and activation polarization, ion conductivity is lower than electron conductivity, impurities may be included in the electrode material, and lithium ion concentration per electrode site is different due to the difference in lithium ion diffusion rate between the electrode material surface and inside. Differences are induced, leading to polarization.
  • the fast charging method is CC-CV (constant current-constant voltage) method, which affects aging and stability of the battery by lithum plating and side reaction when the current is increased higher than the existing current.
  • CC-CV constant current-constant voltage
  • the voltage-based SOC the method of predicting the state of charge based on the voltage of the battery
  • the technical problem to be achieved by the present invention is to solve the conventional problems, by determining the charging current according to the battery environment and the battery state to charge the battery rapidly, and to prevent deterioration due to the charging efficiency and the reaction heat of the battery
  • the present invention provides a fast charging system and method that considers thermal safety to prevent shortening of the battery life, high charging efficiency, and short charging time.
  • the technical problem to be achieved by the present invention is to determine the charging current corresponding to the temperature by measuring the temperature to charge the battery rapidly, to prevent deterioration due to the charging efficiency and the reaction heat of the battery to prevent shortening the life of the battery It is to provide a fast charging system and method in consideration of thermal safety with high charging efficiency, reducing the charging time.
  • the voltage of the secondary battery is greater than or equal to a first voltage, determining whether the voltage of the secondary battery is less than a second voltage higher than the first voltage;
  • the first voltage is 4.1V
  • the second voltage is 4.15V
  • the third voltage is 4.2V
  • the first constant current is 7 ⁇ 6A
  • the second constant current is 5 ⁇ 4A
  • the third constant current is characterized in that 2 ⁇ 1A.
  • the temperature compensating element may reduce the first constant current to the third constant current by multiplying the temperature compensating element when the temperature is below zero or more than 60 ° C.
  • a power supply unit supplying power for charging the secondary battery
  • a charging unit connected to the power supply unit to charge the secondary battery
  • a voltage detector detecting and outputting voltage information of the secondary battery
  • a controller configured to control the charging unit to charge the secondary battery by determining a charging current according to the temperature detected by the temperature sensor and the voltage information detected by the voltage detector.
  • the memory device may further include a memory configured to store a compensation element for compensating the charging current in response to a temperature, wherein the controller compares the voltage information provided by the voltage detector with preset values, and compares the compensation element with the charging current determined according to the comparison result. It is characterized in that to reflect the secondary battery.
  • the control unit controls the driving unit
  • the secondary battery When the voltage of the secondary battery is less than the first voltage, the secondary battery is charged with a first constant current,
  • the secondary battery When the voltage of the secondary battery is greater than or equal to the first voltage and less than the second voltage, the secondary battery is charged with a second constant current.
  • the secondary battery When the voltage of the secondary battery is greater than or equal to the second voltage and less than the third voltage, the secondary battery is charged with a third constant current
  • the temperature compensating element may be applied to the first constant current to the third constant current.
  • the first voltage is 4.1V
  • the second voltage is 4.15V
  • the third voltage is 4.2V
  • the first constant current is 7-6A
  • the second constant current is 5-4A
  • the third constant current is 2-1A.
  • the charging current is determined according to the battery environment and the state of the battery, thereby rapidly charging the battery, and preventing deterioration due to the charging efficiency and the heat of reaction of the battery, thereby preventing shortening of battery life and charging efficiency. It is possible to provide a fast charging system and method that takes into account thermal safety that is high and reduces charging time.
  • the embodiment of the present invention has a high charging efficiency in a faster time than the conventional charging method and the rapid charging system considering the thermal safety that can prevent the battery life due to overcharge and reaction heat due to the charging of the battery and It may provide a method.
  • 1 is a diagram illustrating the performance reduction of a lithium secondary battery due to deterioration.
  • FIG. 2 is a block diagram of a quick charging system in consideration of thermal safety according to an embodiment of the present invention.
  • FIG 3 is a view showing a rapid charging method considering the thermal safety according to an embodiment of the present invention.
  • FIG. 4 is a view illustrating a temperature compensation factor applied to a rapid charging system considering thermal safety according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining a method for placing a voltage limit to ensure stability in the fast charging system considering the thermal stability according to an embodiment of the present invention.
  • FIG. 6 is a view showing the maximum allowable charging current according to the SOC applied in the fast charging system considering the thermal safety according to an embodiment of the present invention.
  • FIG. 7 is a view showing the maximum allowable charging current and the maximum charging current considering the safety according to the SOC applied in the rapid charging system considering the thermal safety according to an embodiment of the present invention.
  • FIG. 8 is a view showing an example of a charging method considering stability when charging with a charger capable of up to 6A in a fast charging system considering thermal safety according to an embodiment of the present invention.
  • FIG. 9 is a view showing an example of a charging method considering the stability when charging with a charger capable of up to 7A in the fast charging system considering the thermal safety according to an embodiment of the present invention.
  • FIG 10 and 11 are views comparing the charging time and the charging rate with other charging methods using the fast charging system in consideration of thermal safety according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a quick charging system in consideration of thermal safety according to an embodiment of the present invention.
  • a rapid charging system considering thermal safety includes a temperature sensing unit 110, a power supply unit 140, a charging unit 130, a voltage detecting unit 120, and a memory 160. And a controller 150.
  • the temperature sensor 110 detects a temperature, and specifically, may be implemented as a temperature sensor that measures an external temperature of the secondary battery 200.
  • the power supply unit 140 supplies power for charging the secondary battery 200.
  • the charging unit 130 charges the secondary battery 200 by using the power supplied from the power supply unit.
  • a voltage detector 120 The voltage information of the secondary battery 200 is detected and output to the controller 150.
  • the memory 160 stores a compensation element for compensating the charging current according to the temperature, and specifically, stores the temperature compensation element in the form of a table or graph in FIG. 4.
  • the controller 150 determines the charging current according to the temperature detected by the temperature detector 110 and the voltage information detected by the voltage detector to control the charger 130 to charge the secondary battery 200.
  • the controller 150 compares the voltage information provided by the voltage detector 120 with preset values and charges the secondary battery 200 by reflecting the compensation factor in the charging current determined according to the comparison result. .
  • the controller 150 controls the controller 150,
  • the secondary battery 200 When the voltage of the secondary battery 200 is less than the first voltage, the secondary battery 200 is charged with a first constant current. When the voltage of the secondary battery 200 is greater than or equal to the second voltage and is less than the second voltage, the second constant current is charged. The secondary battery 200 is charged, and when the voltage of the secondary battery 200 is greater than or equal to the second voltage and less than the third voltage, the secondary battery 200 is charged with a third constant current, and the voltage of the secondary battery 200 is reduced. If the voltage is equal to or greater than the third voltage, the charging of the secondary battery 200 is terminated, and the temperature compensation element is applied to the first to third constant currents.
  • the first voltage is 4.1V
  • the second voltage is 4.15V
  • the third voltage is 4.2V
  • the first constant current is 7-6A
  • the second constant current is 5-4A
  • the third constant current is 2- It is characterized by 1A.
  • FIG. 3 is a view showing a fast charging method considering the thermal safety according to an embodiment of the present invention
  • Figure 4 illustrates a temperature compensation factor (Factor) applied to the fast charging system considering the thermal safety according to an embodiment of the present invention
  • 5 is a view illustrating a method for placing a voltage limit to secure stability in a fast charging system considering thermal safety according to an embodiment of the present invention
  • FIG. 6 is a thermal safety according to an embodiment of the present invention.
  • Figure 7 is the maximum allowable charging current and safety according to the SOC applied in the fast charging system considering the thermal safety according to an embodiment of the present invention Is a view showing a charging maximum current in consideration of
  • Figure 8 is a rapid charging in consideration of the thermal safety according to an embodiment of the present invention
  • Figure 6 is a view showing an example of a charging method considering the stability when charging with a charger capable of up to 6A
  • Figure 9 is a charging considering the stability when charging with a charger capable of up to 7A in a fast charging system considering the thermal safety according to an embodiment of the present invention
  • 10 and 11 are diagrams illustrating a charging time and a charging rate using another fast charging method using a rapid charging system considering thermal safety according to an exemplary embodiment of the present invention.
  • the temperature sensor 110 detects a temperature and outputs the temperature to the controller 150.
  • the temperature is the external temperature of the battery, the temperature of the environment.
  • the voltage detector 120 detects the voltage of the secondary battery 200 and outputs the voltage to the controller 150 (S300).
  • the controller 150 determines the temperature compensation element corresponding to the temperature with reference to the memory 160. At this time, the temperature compensation element for compensating the charging current for each temperature is stored in the memory 160 in advance.
  • the controller 150 determines the first charging current corresponding to the voltage (S301).
  • the first charging current is an initial rapid charging current
  • the state of the secondary battery 200 is regarded as a state requiring charging and is determined.
  • the controller 150 determines the charging current to be charged by the charging unit 130 by multiplying the first charging current by the temperature compensation element according to the temperature (S302).
  • the controller 150 determines whether the voltage of the secondary battery 200 detected by the voltage detector 120 is less than 4.1 V (S303). This determination process is a process for determining the state of charge of the secondary battery 200 and charging with a different charging current when the voltage is 4.1V or higher.
  • the controller 150 rapidly charges the secondary battery 200 with the charging current determined in the process of reflecting the temperature compensation element in the first constant current (S302).
  • the controller 150 determines whether the voltage of the secondary battery 200 is less than 4.15V (S305).
  • the controller 150 recognizes the state of the secondary battery 200 as a voltage different from 4.1V and 4.15V.
  • the controller 150 controls the charging unit 130 to reflect the temperature compensation element in the second constant current to charge the secondary battery 200 (S304).
  • the controller 150 determines whether the voltage of the secondary battery 200 is less than 4.2V (S307). This determination process is a process for determining the state of charge of the secondary battery 200 to terminate the charge in the case of more than the voltage (4.2V).
  • the controller 150 reflects the temperature compensation element in the third constant current and controls the charging unit 130 to charge the secondary battery 200 (S306). .
  • each process is shown for convenience and the order may be changed, and the process may be performed while charging with the first to third charging currents as necessary.
  • the determination step (S303, S305) is 4.1V or more than 4.15V
  • the following determination step may be performed while charging with the second charging current or the third charging current.
  • the first voltage is 4.1V
  • the second voltage is 4.15V
  • the third voltage is 4.2V.
  • the first voltage may be modified according to the type of the secondary battery or the charging voltage, and the first constant current may be 7-V. 6A, the second constant current is 5-4A, and the third constant current is described as 2-1A, but this can also be modified.
  • the temperature is measured in consideration of thermal stability, and the temperature compensation element for compensating the charging current according to the temperature is multiplied by the charging current, and the temperature compensation method may be variously modified.
  • the temperature compensating element reduces the first constant current to the third constant current when the temperature is below zero or 60 ° C., thereby securing stability of the secondary battery 200.
  • the temperature compensation factor is 60%, which reduces the charging current determined by the voltage of the secondary battery 200 by 40%.
  • the temperature compensation factor is 90%, and the charging current determined corresponding to the voltage of the secondary battery 200 is reduced by 10%.
  • the temperature compensation element may increase the charging current by 10% when the temperature is 60 ° C or less.
  • the graph of FIG. 4 may be changed according to the type of the secondary battery or the surrounding environment.
  • FIG 5 is a view for explaining a method for placing a voltage limit in order to ensure the stability of the secondary battery 200 in the embodiment of the present invention.
  • the red line is the maximum voltage that is less likely to form a lithium plate, and until this time, the maximum allowable current is charged, thereby maximizing the aging of the battery.
  • the blue line is the maximum allowable voltage of the cell.
  • the lithium current should be reduced by reducing the charging current. (4.2V standard; when the maximum allowable charging voltage is 4.3V, it moves by 0.1V.)
  • FIG. 6 shows the maximum allowable charging current according to the SOC in the embodiment of the present invention, and shows an experimental value and a trend line.
  • FIG. 7 illustrates the maximum allowable charging current and the maximum charging current in consideration of safety in the embodiment of the present invention.
  • rapid charging considering safety and in the case of the second charging current and the third charging current, is made to the maximum allowable current line, and this method may be modified as necessary. .
  • FIG. 8 is a view showing a charging method considering the stability when charging with a charger capable of up to 6A by using a method of determining the charging current according to the temperature and the state of the battery according to an embodiment of the present invention.
  • the battery is charged at 6A until the maximum allowable current of the charger meets the charging maximum current in consideration of safety according to the state of the battery (SOC: 30%).
  • CC-CV charging is performed with a default value of 2A (up to 4.2V). This current value can be modified as necessary.
  • FIG. 9 An example of modifying such a charging current is shown in FIG. 9.
  • the battery is charged at 7A until the maximum allowable current of the charger meets the maximum charging current considering the safety of the battery state (SOC: 30%).
  • CC-CV charging is performed with 2A current (up to 4.2V) which is the default value.
  • FIG 10 and 11 are views comparing the charging time and the charging rate with another charging method using an embodiment of the present invention.
  • the embodiment of the present invention can rapidly charge stably because the charging rate is increased in a fast time.
  • the charging current is determined according to the battery environment and the state of the battery, thereby rapidly charging the battery, and preventing deterioration due to the charging efficiency and the heat of reaction of the battery, thereby preventing shortening of the battery life and charging efficiency. Is high and charging time can be reduced.
  • the embodiment of the present invention has a high charging efficiency in a faster time than the conventional charging method, it is possible to prevent the battery life shortening due to overcharge and reaction heat due to the charging of the battery.
  • the charging current is determined according to the battery environment and the state of the battery, thereby rapidly charging the battery, and preventing deterioration due to the charging efficiency and the heat of reaction of the battery, thereby preventing shortening of battery life and charging efficiency. It is possible to provide a fast charging system and method that takes into account thermal safety that is high and reduces charging time.
  • the embodiment of the present invention has a high charging efficiency in a faster time than the conventional charging method and the rapid charging system considering the thermal safety that can prevent the battery life due to overcharge and reaction heat due to the charging of the battery and It may provide a method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 열적 안전성을 고려한 배터리 급속 충전 시스템 및 방법에 관한 것으로, 본 발명에 따르면 배터리의 환경과 배터리의 상태에 따라 충전 전류를 결정하여 배터리를 급속하게 충전하고, 충전 효율 및 배터리의 반응열로 인한 열화를 방지하여 배터리의 수명은 단축을 방지하여 배터리의 수명은 단축을 방지하고 충전효율은 높고, 충전시간은 줄일 수 있다.

Description

열적 안전성을 고려한 배터리의 급속 충전 시스템 및 방법
본 발명은 모바일용 핸드폰, 스마트폰, 노트북, 테블릿, 소형 전동 툴에 사용되는 배터리의 급속 충전에 관한 것으로, 특히 스마트폰 및 테블릿 등에 사용되는 배터리를 열적 안전성을 고려하여 급속 충전하기 위한 열적 안전성을 고려한 급속 충전 시스템 및 방법에 관한 것이다.
일반적으로, 모바일용 소형 2차 전지 시장의 대부분은 리튬이온전지 및 리튬폴리머전지가 점유하고 있다.
리튬이온전지 및 리튬폴리머전지는 여타 전지에 비하여 높은 전압과 에너지밀도를 가지고 있다. 이 중 리튬이온전지는 양극에서는 리튬금속산화물을 이용하고, 음극에서는 탄소금속을 이용한다.
그리고 배터리내의 리튬이온은 충전 또는 방전을 하는 동안 양극과 음극의 전극 사이를 이동한다.
이러한 모바일용 2차 전지는 디바이스에 내장형이거나 탈착형으로 사용 가능할 수 있다.
이러한 배터리를 충전하는 배터리 충전기는 정전류-정전압(CC-CV)충전 방법을 많이 이용하고 있다. 이러한 방법에서는 일정 시간 주기 동안 정전류로 배터리를 충전하다가 배터리가 일정전압의 충전레벨에 도달하면 정전압 충전을 한다.
대부분의 급속충전시스템은 배터리가 일정한 전압(CC-CV)에 도달하는 시점에 충전이 종료된다.
이 시점에서 충전기는 낮은 전류의 충전으로 전환되는 것이 전형적이다.
더 낮은 전류의 충전은 배터리의 SOC에 따라 변한다. 이 때, 리튬이온 배터리는 배터리 전압이 소정의 전압 값을 초과하지 않도록 이러한 충전 속도로 조정된다.
이것은 CC-CV 프로파일의 정전압충전으로 알려져 있다.
리튬이온 배터리는 전형적으로 CC-CV 방법을 이용하여 충전된다.
CC-CV 방법 알고리즘은 배터리를 소정 전압까지 고정 전류로 충전한다. 일단 소정 전압에 도달하면, 충전기는 정전류 충전으로 느린 속도의 충전 전류로 전환한다. 이후에, 충전하는 소정전압은 일반적으로 제조업체에 의해 선택된다.
그런데 종래의 CC-CV를 이용한 급속충전시스템의 경우는 정전류 충전의 전류를 크게 하는 경우, 충전 효율 및 배터리의 발열반응으로 인한 배터리의 열화가 급속하게 되므로 배터리 제조업체는 낮은 전류(5W)의 충전을 대부분 사용한다.
그러나 현재의 스마트폰용 디스플레이의 크기가 기존의 3인치 대에서 5인치 이상으로 대 면적화가 되면서 에너지 소모가 크게 발생되고 있고, 또한, 멀티태스킹이 가능한 서비스와 LTE/3G/Wifi 등의 통신을 다중으로 이용하므로 그에 따라 필요한 에너지가 증가되면서, 스마트폰 사용자는 배터리를 자주 충전하게 되었다.
현재 상용화 되어 있는 모바일기기의 경우 배터리팩(battery pack)을 완전 충전하는데 짧게는 약 2시간 정도가 걸린다. 한번 충전 후 파워유저의 경우 하루에 2-3회 정도를 충전해서 사용하기 때문에 급속 충전을 필요로 하게 된다.
급속 충전은 일반 충전에 비하여 높은 전류를 인가하기 때문에, 전극 내 리튬 이온의 인터칼레이션(intercalation)과 디인터칼레이션(deintercalation) 속도가 인가된 전류를 충분히 따라가지 못한다. 이로 인해 전극물질을 열화(degradation)시키는 부반응(side reaction) 속도를 높임으로써 리튬 이차전지의 저항(resistance)을 증가시키고, 충전 시 온도가 과도하게 상승하게 되어 리튬 이차전지의 사이클 수명이 상대적으로 급격히 감소하게 된다.
따라서, 리튬 이차전지의 온도상승을 줄이며 충전시간을 단축할 수 있는 최적 충전 조건 연구는 실제 사용되는 모든 분야에서 리튬 이차전지의 수명을 최대화하기 위하여 반드시 필요하다
도 1은 전지의 성능감소에 영향을 끼치는 요소들의 영향을 쉽게 표현한 그림이다.
도 1을 참조하면, 충전시에 전극물질이 열화(degradation)되는 온도 제어를 원활하게 되면 안전하다.
그러나, 열화에 대해 온도가 불안정하면, 충전상태도 불안정해지고, 과충전이나 과방전이 될 수 있다.
그리고 열화는 리튬 이차전지의 저항(resistance)을 증가시키고, 충전 시 온도가 과도하게 상승하게 되어 리튬 이차전지의 사이클 수명이 상대적으로 급격히 감소하게 된다.
따라서 온도상승을 줄이며 충전시간을 줄일 수 있는 최적 충전 조건 연구는 실제 충전기 분야에서 리튬 이차전지의 수명을 최대화하기 위하여 필수적이다.
한편, 리튬이온전지가 상용화되던 시기에 보편적으로 채택됐던 정류-정전압(CC-CV) 충전 방식은 낮은 용량감소, 빠른 충전시간, 작동 편이성, 긴 수명에 대한 낮은 내부저항 등과 같은 장점을 갖고 있었다. 그러나 이 CC-CV 충전방식을 채택했을 경우 전지 내부의 양극과 음극에서는 비안전성이 발생했다.
인조흑연 음극, Li 양극을 선택했을 때 CC-CV 충전한 결과 대부분의 충전조건, 특히 고전류와 저온에서 리튬 도금(Lithium Plating)이 발생했다. CC 충전범위에서조차 흑연음극의 전위가 0V이하로 떨어졌다. 리튬 도금과 도금된 리튬이 흑연 속으로 재삽입되는 과정이 함께 일어나면서 낮은 충전용량을 나타냈다.
전류가 일정 수준을 넘을 경우, 전류 증가는 더 이상 충전시간을 줄이지 못하며 리튬 도금을 악화시킬 뿐만 아니라 CV 충전시간이 길어졌다. 게다가 전지온도의 감소는 리튬도금을 더욱 악화시켰다.
CC-CV 충전은 CC로 상한전압(4.1-4.2V)에 도달한 후 미리 설정한 낮은 전류 값에 도달할 때까지 CV 조건을 유지한다. 이 때, CV 조건은 충전시간을 심각하게 연장시킬 수 있다. 즉 충전 시의 전극 내 리튬이온 확산이 율속단계로 되는데, 장시간 확산됨에 따라 필연적으로 농도분극을 야기한다. 급속 충전 시 급속히 상한전압에 도달하므로 활물질이 완전히 소비되기도 전에 전류가 미리 설정한 한계 값으로 떨어질 수 있는 것이다.
2시간이 넘는 리튬이온전지 충전시간은 일반적으로 전지의 안전성 및 수명과 관련이 있으며 여기서 벗어나면 전지 내부에서 부반응이 일어나 열화에 의한 안정성이 저해하는 것으로 알려져 있었다.
이를 해결하기 위하여 리튬이온전지의 고속충전과 사이클 안정성을 동시에 확보하기 위해 최적의 충전 방식이 요구됨에 따라 개발된 것이 다단계(multistage) 정전류-정전압(MCC-CV) 충전법이다.
리튬이온전지는 충전 시에 전지의 내부 저항(ohmic 분극) 및 전극/전해질 계면사이서의 전하 이동과 연관된 분극(polarization)현상에 관련되어 있다. 내부저항과 활성화 분극에 따른 과전압의 형성과, 이온전도가 전자전도보다 낮으며, 전극 재료에 불순물이 포함될 수 있고, 전극 재료 표면과 내부에서의 리튬 이온 확산 속도의 차이로 전극 부위별 리튬이온 농도 차이가 유발되어 분극현상을 유발한다.
모바일용 전지의 경우 급속 충전 방식은 CC-CV(정전류-정전압)방식으로 전류를 기존의 전류에 비하여 높여 진행하는 경우 Lithum plating 및 Side reaction에 의하여 배터리의 노화와 안정성에 영향을 미치며, 충전 효율의 경우 전압 기반의 SOC(배터리의 전압으로 충전상태를 예측하는 방식)은 높으나 실제의 충전전류에 의한 전압상승에 의하여 수치가 높게 나타나지만 실제의 충전량은 발열 및 전류의 의한 전압상승분이므로 실제 OCV의 경우는 실제의 값 보다는 낮은 충전 효율을 가진다.
그리고, 모바일용 전지의 경우 충전에 있어서 온도의 영향이 매우 크게 존재한다.
특히, 고온 60℃ 이상의 경우 배터리의 노화가 가속되어 수명이 급격히 감소하게 되고 저온의 경우에도 급속충전을 하는 경우 Lithum plating이 급격히 발생하게 된다.
따라서 온도에 따른 충전 방법의 최적화가 필요하다.
[선행기술문헌]
[특허문헌]
한국공개특허 2015-0033126호(공개일자: 2015.04.01. 제목: 배터리팩 온도조절장치)
본 발명이 이루고자 하는 기술적 과제는 종래의 문제점을 해결하고자 하는 것으로, 배터리의 환경과 배터리의 상태에 따라 충전 전류를 결정하여 배터리를 급속하게 충전하고, 충전 효율 및 배터리의 반응열로 인한 열화를 방지하여 배터리의 수명은 단축을 방지하고 충전효율은 높고, 충전시간은 줄이는 열적 안전성을 고려한 급속 충전 시스템 및 방법을 제공하는 것이다.
또한, 본 발명이 이루고자 하는 기술적 과제는 온도를 측정하여 온도에 대응하는 충전전류를 결정하여 배터리를 급속하게 충전하고, 충전 효율 및 배터리의 반응열로 인한 열화를 방지하여 배터리의 수명은 단축을 방지하고 충전효율은 높고, 충전시간은 줄이는 열적 안전성을 고려한 급속 충전 시스템 및 방법을 제공하는 것이다.
이러한 과제를 해결하기 위한 본 발명의 특징에 따른 열적 안전성을 고려한 급속 충전 방법은,
온도 감지부가 온도를 감지하는 단계;
전압 검출부가 이차전지의 전압을 검출하는 단계;
제어부가 상기 전지 검출부를 통해 검출된 상기 이차전지의 전압이 제1 전압 미만인 지 판단하는 단계;
상기 이차전지의 전압이 제1 전압 미만이면, 상기 제어부가 제1 정전류에 온도보상요소를 반영하여 상기 이차전지를 급속히 1차 충전시키는 단계와;
상기 이차전지의 전압이 제1 전압 이상이면, 상기 제어부가 상기 이차전지의 전압이 상기 제1 전압보다 높은 제2 전압 미만인지 판단하는 단계;
상기 이차전지의 전압이 상기 제2 전압 미만이면, 상기 제어부가 제2 정전류에 온도보상요소를 반영하여 이차전지를 충전시키는 단계;
상기 이차전지의 전압이 상기 제2 전압 이상이면, 상기 제어부가 상기 이차전지의 전압이 제3 전압 미만인지가 판단하는 단계;
상기 이차전지의 전압이 상기 제3 전압 미만이면, 상기 제어부가 제3 정전류에 온도보상요소를 반영하여 이차전지를 충전시키는 단계;
상기 이차전지의 전압이 상기 제3 전압 이상이면, 충전을 종료하는 단계를 포함한다.
상기 제1 전압은 4.1V이고, 제2 전압은 4.15V이고, 제3전압은 4.2V이며,
상기 제1 정전류는 7~6A이고, 제2 정전류는 5~4A이고, 제3 정전류는 2~1A인 것을 특징으로 한다.
상기 온도보상요소는 온도가 영하 또는 섭씨 60℃ 이상인 경우에 상기 제1 정전류 내지 제3 정전류를 상기 온도 보상요소를 곱하여 감소시키는 것을 특징으로 한다.
이러한 과제를 해결하기 위한 본 발명의 특징에 따른 열적 안전성을 고려한 급속 충전 시스템은,
온도를 검출하기 위한 온도 감지부;
이차전지를 충전하기 위한 전원을 공급하는 전원 공급부;
상기 전원공급부에 연결되어 상기 이차전지를 충전하기 위한 충전부;
상기 이차전지의 전압정보를 검출하여 출력하는 전압검출부와;
상기 온도 감지부에서 감지된 온도와 상기 전압 검출부에서 검출된 전압정보에 따라 충전전류를 결정하여 상기 충전부가 상기 이차전지를 충전하도록 제어하는 제어부를 포함한다.
온도에 대응하여 충전전류를 보상하는 보상요소를 저장하는 메모리를 더 포함하며, 상기 제어부는 상기 전압검출부에서 제공된 전압정보를 기 설정된 값들과 비교하고, 그 비교결과에 따라 결정된 충전전류에 상기 보상요소를 반영하여 상기 이차전지를 충전하도록 하는 것을 특징으로 한다.
상기 제어부는,
상기 이차전지의 전압이 제1 전압 미만이면 제1 정전류로 상기 이차전지를 충전하고,
상기 이차전지의 전압이 제1 전압 이상 제2 전압 미만이면 제2 정전류로 상기 이차전지를 충전하며,
상기 이차전지의 전압이 제2 전압 이상 제3 전압 미만이면 제3 정전류로 상기 이차전지를 충전하고,
상기 이차전지의 전압이 제3 전압 이상이면 상기 이차전지의 충전을 종료하며,
상기 제1 정전류 내지 제3 정전류에 대해 상기 온도보상요소를 적용하는 것을 특징으로 한다.
상기 제1 전압은 4.1V이고, 제2 전압은 4.15V이고, 제3전압은 4.2V이며,
상기 제1 정전류는 7-6A이고, 제2 정전류는 5-4A이고, 제3 정전류는 2-1A인 것을 특징으로 한다.
본 발명의 실시 예에서는 배터리의 환경과 배터리의 상태에 따라 충전 전류를 결정하여 배터리를 급속하게 충전하고, 충전 효율 및 배터리의 반응열로 인한 열화를 방지하여 배터리의 수명은 단축을 방지하고 충전효율은 높고, 충전시간은 줄이는 열적 안전성을 고려한 급속 충전 시스템 및 방법을 제공할 수 있다.
또한, 본 발명의 실시예에서는 온도를 측정하여 온도에 대응하는 충전전류를 결정하여 배터리를 급속하게 충전하고, 충전 효율 및 배터리의 반응열로 인한 열화를 방지하여 배터리의 수명은 단축을 방지하고 충전효율은 높고, 충전시간은 줄이는 열적 안전성을 고려한 급속 충전 시스템 및 방법을 제공할 수 있다.
또한, 본 발명의 실시예에서는 기존의 충전방법에 비하여 보다 빠른 시간에 높은 충전효율을 가지게 되고 배터리의 충전에 따른 과충전 및 반응열에 의한 배터리 수명단축을 방지 할 수 있는 열적 안전성을 고려한 급속 충전 시스템 및 방법을 제공할 수 있다.
도 1은 열화에 의한 리튬 이차 전지의 성능 감소를 도식화한 도면이다.
도 2는 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템의 구성도이다.
도 3은 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 방법을 나타낸 도면이다.
도 4는 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에 적용되는 온도보상요소(Factor)를 설명한 도면이다.
도 5는 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에서 안정성을 확보하기 위해 전압에 제한을 두기 위한 방법을 설명한 도면이다.
도 6은 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에 서 적용되는 SOC에 따른 최대 허용 충전 전류를 나타낸 도면이다.
도 7은 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에서 적용되는 SOC에 따른 최대 허용 충전 전류와 안전성을 고려한 충전 최대전류를 나타낸 도면이다.
도 8은 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에서 6A까지 가능한 충전기로 충전시 안정성을 고려한 충전 방법의 예를 나타낸 도면이다.
도 9는 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에서 7A까지 가능한 충전기로 충전시 안정성을 고려한 충전 방법의 예를 나타낸 도면이다.
도 10 및 도 11은 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템을 이용하여 충전한 시간과 충전률을 다른 충전 방법과 비교한 도면이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 2는 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템의 구성도이다.
도 2를 참조하면, 본 발명의 실시 예에 따른 열적 안전성을 고려한 급속 충전 시스템은, 온도 감지부(110), 전원 공급부(140), 충전부(130), 전압검출부(120), 메모리(160), 제어부(150)를 포함한다.
온도 감지부(110)는 온도를 검출하며, 구체적으로 이차전지(200)의 외부 온도를 측정하는 온도 센서로 구현할 수 있다.
전원 공급부(140)는 이차전지(200)를 충전하기 위한 전원을 공급한다.
충전부(130)는 상기 전원공급부에서 공급되는 전원을 이용하여 이차전지(200)를 충전한다.
전압검출부(120)와; 상기 이차전지(200)의 전압정보를 검출하여 제어부(150)로 출력한다.
메모리(160)는 온도에 대응하여 충전전류를 보상하는 보상요소를 저장하며, 구체적으로는 도 4와 같은 형태의 온도보상요소를 테이블 형태 또는 그래프 형태로 저장한다.
제어부(150)는 상기 온도 감지부(110)에서 감지된 온도와 상기 전압 검출부에서 검출된 전압정보에 따라 충전전류를 결정하여 상기 충전부(130)가 상기 이차전지(200)를 충전하도록 제어한다.
또한, 제어부(150)는 상기 전압검출부(120)에서 제공된 전압정보를 기 설정된 값들과 비교하고, 그 비교결과에 따라 결정된 충전전류에 상기 보상요소를 반영하여 상기 이차전지(200)를 충전하도록 한다.
상기 제어부(150)는,
상기 이차전지(200)의 전압이 제1 전압 미만이면 제1 정전류로 상기 이차전지(200)를 충전하고, 상기 이차전지(200)의 전압이 제1 전압 이상 제2 전압 미만이면 제2 정전류로 상기 이차전지(200)를 충전하며, 상기 이차전지(200)의 전압이 제2 전압 이상 제3 전압 미만이면 제3 정전류로 상기 이차전지(200)를 충전하고, 상기 이차전지(200)의 전압이 제3 전압 이상이면 상기 이차전지(200)의 충전을 종료하며, 상기 제1 정전류 내지 제3 정전류에 대해 상기 온도보상요소를 적용하는 것을 특징으로 한다.
상기 제1 전압은 4.1V이고, 제2 전압은 4.15V이고, 제3전압은 4.2V이며, 상기 제1 정전류는 7-6A이고, 제2 정전류는 5-4A이고, 제3 정전류는 2-1A인 것을 특징으로 한다.
이러한 구성을 가진 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템의 동작에 관하여 설명하면 다음과 같다.
도 3은 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 방법을 나타낸 도면이고, 도 4는 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에 적용되는 온도보상요소(Factor)를 설명한 도면이고, 도 5는 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에서 안정성을 확보하기 위해 전압에 제한을 두기 위한 방법을 설명한 도면이고, 도 6은 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에 서 적용되는 SOC에 따른 최대 허용 충전 전류를 나타낸 도면이고, 도 7은 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에서 적용되는 SOC에 따른 최대 허용 충전 전류와 안전성을 고려한 충전 최대전류를 나타낸 도면이고, 도 8은 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에서 6A까지 가능한 충전기로 충전시 안정성을 고려한 충전 방법의 예를 나타낸 도면이고, 도 9는 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템에서 7A까지 가능한 충전기로 충전시 안정성을 고려한 충전 방법의 예를 나타낸 도면이고, 도 10 및 도 11은 본 발명의 실시예에 따른 열적 안전성을 고려한 급속 충전 시스템을 이용하여 충전한 시간과 충전률을 다른 충전 방법과 비교한 도면이다.
도 3을 참조하면, 먼저, 온도 감지부(110)가 온도를 감지하여 제어부(150)로 출력한다. 이때 온도는 배터리의 외부 온도이며, 주위환경의 온도이다.
그리고, 전압 검출부(120)가 이차전지(200)의 전압을 검출하여 제어부(150)로 출력한다(S300).
그러면, 제어부(150)는 메모리(160)를 참조하여 온도에 대응하는 온도보상요소를 결정한다. 이때 메모리(160)에는 온도별로 충전전류를 보상하는 온도 보상요소가 미리 저장되어 있다.
그리고 제어부(150)가 전압에 대응하는 제1 충전전류를 결정하게 된다(S301). 여기서 제1 충전전류는 초기 급속 충전전류로서 이차전지(200)의 상태가 충전이 필요한 상태로 간주하고 결정한다.
다음, 제어부(150)는 온도에 따라 제1 충전전류에 온도보상요소를 곱하여 충전부(130)가 충전해야할 충전전류를 결정하게 된다(S302).
그리고, 제어부(150)가 상기 전압 검출부(120)를 통해 검출된 상기 이차전지(200)의 전압이 4.1V 미만인지 판단한다(S303). 이 판단 과정은 이차전지(200)의 충전상태를 판단하여 4.1V 이상의 전압인 경우 다른 충전전류로 충전하기 위한 과정이다.
상기 이차전지(200)의 전압이 4.1V 미만이면, 상기 제어부(150)가 제1 정전류에 온도보상요소를 반영한 상기 과정에서 결정된 충전전류로 이차전지(200)를 급속히 충전시킨다(S302).
한편, 상기 이차전지(200)의 전압이 4.1V 이상이면, 상기 제어부(150)가 상기 이차전지(200)의 전압이 4.15V 미만인지 판단한다(S305).
상기 이차전지(200)의 전압이 4.15V 미만이면, 상기 제어부(150)가 상기 이차전지(200의 상태를 4.1V와 4.15V 상이의 전압으로 인식한다.
그리고 나서 제어부(150)는 제2 정전류에 온도보상요소를 반영하여 충전부(130)를 제어하여 이차전지(200)를 충전시킨다(S304).
상기 이차전지(200)의 전압이 4.15V 이상이면, 상기 제어부(150)가 상기 이차전지(200)의 전압이 4.2V 미만인지 판단한다(S307). 이 판단과정은 이차전지(200)의 충전상태를 판단하여 그 이상의 전압(4.2V)인 경우 충전을 종료하기 위한 과정이다.
판단결과 상기 이차전지(200)의 전압이 4.2V 미만이면, 상기 제어부(150)가 제3 정전류에 온도보상요소를 반영하고 충전부(130)를 제어하여 이차전지(200)를 충전시킨다(S306).
판단결과 상기 이차전지(200)의 전압이 4.2V 이상이면, 충전을 종료한다.
상기 과정에서 각 과정은 편의상 순서를 도시한 것으로서 그 순서는 변경이 가능하고, 필요에 따라 제1 충전전류 내지 제3 충전전류로 충전을 하면서 상기 과정을 수행할 수 있다.
또한, 상기 판단단계(S303, S305)에서 4.1V 또는 4.15V 이상인 경우, 제2 충전전류 또는 제3 충전전류로 충전을 하면서 아래 판단단계를 수행할 수도 있다.
그리고 상기 과정에서 제1 전압은 4.1V이고, 제2 전압은 4.15V이고, 제3전압은 4.2V로 설명하였으나 이차전지의 종류나 충전 전압에 따라 변형이 가능하고, 상기 제1 정전류는 7-6A이고, 제2 정전류는 5-4A이고, 제3 정전류는 2-1A로 설명하였으나 이 또한 변형이 가능하다.
이상의 본 발명의 실시예에서는 열적 안정성을 고려하여 온도를 측정하고, 온도에 따른 충전 전류를 보상하는 온도보상요소를 충전전류에 곱하게 되며, 이러한 온도 보상 방법은 다양하게 변형될 수 있다.
도 4를 참조하면, 온도보상요소는 온도가 영하 또는 섭씨 60℃ 이상인 경우에 상기 제1 정전류 내지 제3 정전류를 감소시키게 되며, 이로 인해 이차전지(200)의 안정성을 확보한다.
예를 들어, 온도가 영하 40℃인 경우, 온도 보상 요소가 60%로서, 이차전지(200)의 전압에 대응하여 결정된 충전전류를 40% 줄이게 된다.
그리고 온도가 70℃인 경우에도 온도 보상 요소가 90%로서, 이차전지(200)의 전압에 대응하여 결정된 충전전류를 10% 줄이게 된다.
그리고 필요에 따라 온도보상요소는 온도가 영상이면서 섭씨 60℃ 이하인 경우 충전전류를 10% 증가시킬 수도 있다.
이러한 도 4의 그래프는 이차전지의 종류나 주위환경에 따라 변경이 가능하다.
도 5는 본 발명의 실시예에서 이차전지(200)의 안정성을 확보하기 위하여 전압에 제한을 두기 위한 방법을 설명한 그림이다.
빨간색 선은 리튬 플레이트(Lithium plate)가 생길 수 있는 가능성이 적은 최대전압이며, 이때까지는 최대 허용 전류를 충전을 하더라고, 전지의 노화를 최대한 억제할 수 있다.
파란색 선은 전지의 최대 허용 전압이다. 이때는 충전 전류를 줄여 리튬 플레이팅(Li-plating)을 줄여야 한다. (4.2V기준; 최대 허용 충전 전압이 4.3V일 경우 0.1V씩 이동한다.)
도 6은 본 발명에 실시 예에서 SOC에 따른 최대 허용 충전 전류를 나타낸 것으로서, 실험값과 추세선을 나타내었다.
도 6을 참조하면, 실험값과 추세선을 비교해 보면, 실험값이 추세선 근방에 있는 것을 확인 할 수 있다.
도 7은 본 발명에 실시예에서 SOC에 따른 최대 허용 충전 전류와 안전성을 고려한 충전 최대전류를 나타내었다. 본 발명의 실시예에서는 제1 충전전류의 경우에는 안전성을 고려한 급속충전을 하고, 제2 충전전류와 제3 충전전류의 경우 최대 허용전류선에 맞추게 되는데, 이러한 방법은 필요에 따라 변형이 가능하다.
도 8은 본 발명의 실시예에 따라 온도와 배터리의 상태에 따른 충전 전류를 결정하는 방법을 이용하여 6A까지 가능한 충전기로 충전시 안정성을 고려한 충전 방법을 보인 도면이다.
도 8을 참조하면, 충전기의 최대 허용 전류와 배터리의 상태에 따른 안전성을 고려한 충전 최대전류 만나는 시점까지 6A로 충전을 한다(SOC:30%).
그리고 다음 스텝에서는 4A가 허용하는 최대전류 시점(4.15V)까지 충전을 한다(SOC:70%).
그리고 나머지에서는 디폴트(Defaut)값인 2A 전류로(4.2V까지) CC-CV충전을 진행한다. 이러한 전류값은 필요에 따라 변형이 가능하다.
이러한 충전전류를 변형한 예를 도 9에 도시하였다.
도 9를 참조하면, 충전기의 최대 허용 전류와 배터리의 상태에 따른 안전성을 고려한 충전 최대전류 만나는 시점까지 7A로 충전을 한다(SOC:30%).
그리고 다음 스텝에서는 5A가 허용하는 최대전류 시점(4.15V)까지 충전을 한다(SOC:70%).
그리고 나머지에서는 Defaut값인 2A 전류로(4.2V까지) CC-CV충전을 진행한다.
도 10 및 도 11은 본 발명의 실시예를 이용하여 충전한 시간과 충전률을 다른 충전 방법과 비교한 도면이다.
도 10을 참조하면, 본 발명의 실시예에서는 충전률이 올라가도 온도가 크게 증가하지 않아 열적으로 안정화가 된 것을 알 수 있다.
그리고 도 11을 참조하면 본 발명의 실시예는 빠른 시간에 충전률이 올라가므로 안정하게 급속한 충전이 가능한 것을 알 수 있다.
이상의 본 발명의 실시 예에서는 배터리의 환경과 배터리의 상태에 따라 충전 전류를 결정하여 배터리를 급속하게 충전하고, 충전 효율 및 배터리의 반응열로 인한 열화를 방지하여 배터리의 수명은 단축을 방지하고 충전효율은 높고, 충전시간은 줄일 수 있다.
또한, 본 발명의 실시예에서는 온도를 측정하여 온도에 대응하는 충전전류를 결정하여 배터리를 급속하게 충전하고, 충전 효율 및 배터리의 반응열로 인한 열화를 방지하여 배터리의 수명은 단축을 방지하고 충전효율은 높고, 충전시간을 줄일 수 있다.
또한, 본 발명의 실시예에서는 기존의 충전방법에 비하여 보다 빠른 시간에 높은 충전효율을 가지게 되고 배터리의 충전에 따른 과충전 및 반응열에 의한 배터리 수명단축을 방지 할 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술 분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명의 실시 예에서는 배터리의 환경과 배터리의 상태에 따라 충전 전류를 결정하여 배터리를 급속하게 충전하고, 충전 효율 및 배터리의 반응열로 인한 열화를 방지하여 배터리의 수명은 단축을 방지하고 충전효율은 높고, 충전시간은 줄이는 열적 안전성을 고려한 급속 충전 시스템 및 방법을 제공할 수 있다.
또한, 본 발명의 실시예에서는 온도를 측정하여 온도에 대응하는 충전전류를 결정하여 배터리를 급속하게 충전하고, 충전 효율 및 배터리의 반응열로 인한 열화를 방지하여 배터리의 수명은 단축을 방지하고 충전효율은 높고, 충전시간은 줄이는 열적 안전성을 고려한 급속 충전 시스템 및 방법을 제공할 수 있다.
또한, 본 발명의 실시예에서는 기존의 충전방법에 비하여 보다 빠른 시간에 높은 충전효율을 가지게 되고 배터리의 충전에 따른 과충전 및 반응열에 의한 배터리 수명단축을 방지 할 수 있는 열적 안전성을 고려한 급속 충전 시스템 및 방법을 제공할 수 있다.

Claims (7)

  1. 온도 감지부가 온도를 감지하는 단계;
    전압 검출부가 이차전지의 전압을 검출하는 단계;
    제어부가 상기 전지 검출부를 통해 검출된 상기 이차전지의 전압이 제1 전압 미만인 지 판단하는 단계;
    상기 이차전지의 전압이 제1 전압 미만이면, 상기 제어부가 제1 정전류에 온도보상요소를 반영하여 상기 이차전지를 급속히 1차 충전시키는 단계와;
    상기 이차전지의 전압이 제1 전압 이상이면, 상기 제어부가 상기 이차전지의 전압이 상기 제1 전압보다 높은 제2 전압 미만인지 판단하는 단계;
    상기 이차전지의 전압이 상기 제2 전압 미만이면, 상기 제어부가 제2 정전류에 온도보상요소를 반영하여 이차전지를 충전시키는 단계;
    상기 이차전지의 전압이 상기 제2 전압 이상이면, 상기 제어부가 상기 이차전지의 전압이 제3 전압 미만인지가 판단하는 단계;
    상기 이차전지의 전압이 상기 제3 전압 미만이면, 상기 제어부가 제3 정전류에 온도보상요소를 반영하여 이차전지를 충전시키는 단계;
    상기 이차전지의 전압이 상기 제3 전압 이상이면, 충전을 종료하는 단계를 포함하는 열적 안전성을 고려한 배터리 급속 충전 방법.
  2. 제1항에 있어서,
    상기 제1 전압은 4.1V이고, 제2 전압은 4.15V이고, 제3전압은 4.2V이며,
    상기 제1 정전류는 7-6A이고, 제2 정전류는 5-4A이고, 제3 정전류는 2-1A인 것을 특징으로 하는 열적 안전성을 고려한 배터리 급속 충전 방법.
  3. 제1항에 있어서,
    상기 온도보상요소는 온도가 영하 또는 섭씨 60℃ 이상인 경우에 상기 제1 정전류 내지 제3 정전류를 상기 온도 보상요소를 곱하여 감소시키는 것을 특징으로 하는 열적 안전성을 고려한 배터리 급속 충전 방법.
  4. 온도를 검출하기 위한 온도 감지부;
    이차전지를 충전하기 위한 전원을 공급하는 전원 공급부;
    상기 전원공급부에 연결되어 상기 이차전지를 충전하기 위한 충전부;
    상기 이차전지의 전압정보를 검출하여 출력하는 전압검출부와;
    상기 온도 감지부에서 감지된 온도와 상기 전압 검출부에서 검출된 전압정보에 따라 충전전류를 결정하여 상기 충전부가 상기 이차전지를 충전하도록 제어하는 제어부를 포함하는 열적 안전성을 고려한 배터리 급속 충전 시스템.
  5. 제4항에 있어서,
    온도에 대응하여 충전전류를 보상하는 보상요소를 저장하는 메모리를 더 포함하며, 상기 제어부는 상기 전압검출부에서 제공된 전압정보를 기 설정된 값들과 비교하고, 그 비교결과에 따라 결정된 충전전류에 상기 보상요소를 반영하여 상기 이차전지를 충전하도록 하는 것을 특징으로 하는 열적 안전성을 고려한 배터리 급속 충전 시스템.
  6. 제5항에 있어서,
    상기 제어부는,
    상기 이차전지의 전압이 제1 전압 미만이면 제1 정전류로 상기 이차전지를 충전하고,
    상기 이차전지의 전압이 제1 전압 이상 제2 전압 미만이면 제2 정전류로 상기 이차전지를 충전하며,
    상기 이차전지의 전압이 제2 전압 이상 제3 전압 미만이면 제3 정전류로 상기 이차전지를 충전하고,
    상기 이차전지의 전압이 제3 전압 이상이면 상기 이차전지의 충전을 종료하며,
    상기 제1 정전류 내지 제3 정전류에 대해 상기 온도보상요소를 적용하는 것을 특징으로 하는 열적 안전성을 고려한 배터리 급속 충전 시스템.
  7. 제5항 또는 제6항에 있어서,
    상기 제1 전압은 4.1V이고, 제2 전압은 4.15V이고, 제3전압은 4.2V이며,
    상기 제1 정전류는 7-6A이고, 제2 정전류는 5-4A이고, 제3 정전류는 2-1A인 것을 특징으로 하는 열적 안전성을 고려한 배터리 급속 충전 시스템.
PCT/KR2015/012526 2015-11-16 2015-11-20 열적 안전성을 고려한 배터리의 급속 충전 시스템 및 방법 WO2017086512A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/316,276 US10135277B2 (en) 2015-11-16 2015-11-20 System and method for rapidly charging battery while considering thermal stability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150160094A KR101683181B1 (ko) 2015-11-16 2015-11-16 열적 안전성을 고려한 배터리의 급속 충전 시스템 및 방법
KR10-2015-0160094 2015-11-16

Publications (1)

Publication Number Publication Date
WO2017086512A1 true WO2017086512A1 (ko) 2017-05-26

Family

ID=57576751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012526 WO2017086512A1 (ko) 2015-11-16 2015-11-20 열적 안전성을 고려한 배터리의 급속 충전 시스템 및 방법

Country Status (3)

Country Link
US (1) US10135277B2 (ko)
KR (1) KR101683181B1 (ko)
WO (1) WO2017086512A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2896245T3 (es) * 2016-01-05 2022-02-24 Guangdong Oppo Mobile Telecommunications Corp Ltd Método de carga rápida, terminal móvil y adaptador de corriente
CN107204493B (zh) * 2017-04-28 2020-09-29 宁德时代新能源科技股份有限公司 电池充电方法、装置和设备
CN107612075A (zh) * 2017-09-27 2018-01-19 宁德时代新能源科技股份有限公司 电池充电方法、装置、设备和存储介质
US10678314B2 (en) 2018-05-14 2020-06-09 Microsoft Technology Licensing, Llc Dynamic thermal management for optimal battery charging
KR102405514B1 (ko) * 2018-12-06 2022-06-03 주식회사 엘지에너지솔루션 이차 전지의 충전 장치 및 방법
KR102392399B1 (ko) 2018-12-21 2022-04-28 주식회사 엘지에너지솔루션 이차 전지의 스텝 충전 제어 장치 및 방법
JP2021164302A (ja) * 2020-03-31 2021-10-11 パナソニックIpマネジメント株式会社 充電システム、充電方法、及びプログラム
US11777330B2 (en) * 2020-07-22 2023-10-03 Microsoft Technology Licensing, Llc Common charge controller for electronic devices with multiple batteries
KR20220023244A (ko) * 2020-08-20 2022-03-02 주식회사 엘지에너지솔루션 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
KR20230056220A (ko) 2021-10-20 2023-04-27 에스케이온 주식회사 급속 충전 성능이 개선된 이차전지용 전극, 이의 제조방법 및 이를 포함하는 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100230586B1 (ko) * 1992-03-16 1999-11-15 스튜어트 닐 시몬즈 니켈-카드뮴 배터리의 고속 충전 장치 및 고속 충전 방법
US20010006338A1 (en) * 1999-12-27 2001-07-05 Takahiro Yamashita Method of fast-charging of a rechargeable battery
US20100156356A1 (en) * 2007-03-07 2010-06-24 Jun Asakura Method of quick charging lithium-based secondary battery and electronic device using same
KR20120005368A (ko) * 2010-07-08 2012-01-16 삼성에스디아이 주식회사 급속 충전 기능을 갖는 배터리 팩 및 그 충전 방법
US20120098481A1 (en) * 2010-10-22 2012-04-26 Nucleus Scientific, Inc. Apparatus and Method for Rapidly Charging Batteries

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795664A (en) * 1995-12-05 1998-08-18 Norand Corporation Rechargeable battery system having intelligent temperature control
US20010001533A1 (en) * 1998-03-24 2001-05-24 Chartec Laboratories A/S Method and apparatus for charging a rechargeable battery with monitoring of battery temperature rate of change
JP4272387B2 (ja) * 2002-05-22 2009-06-03 パナソニック株式会社 組電池の冷却装置
US7076375B2 (en) * 2002-06-27 2006-07-11 Spx Corporation Apparatus and method for incorporating the use of a processing device into a battery charger and tester
JP5310026B2 (ja) * 2009-01-26 2013-10-09 株式会社リコー 二次電池の充電装置
KR20150011651A (ko) 2013-07-23 2015-02-02 주식회사 케이티 스토리텔링 컨텐츠를 제작하는 장치 및 방법
KR20160109171A (ko) 2015-03-10 2016-09-21 주식회사 에스앤에스텍 플라즈마 세정 장치 및 이를 이용한 블랭크 마스크용 기판의 세정 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100230586B1 (ko) * 1992-03-16 1999-11-15 스튜어트 닐 시몬즈 니켈-카드뮴 배터리의 고속 충전 장치 및 고속 충전 방법
US20010006338A1 (en) * 1999-12-27 2001-07-05 Takahiro Yamashita Method of fast-charging of a rechargeable battery
US20100156356A1 (en) * 2007-03-07 2010-06-24 Jun Asakura Method of quick charging lithium-based secondary battery and electronic device using same
KR20120005368A (ko) * 2010-07-08 2012-01-16 삼성에스디아이 주식회사 급속 충전 기능을 갖는 배터리 팩 및 그 충전 방법
US20120098481A1 (en) * 2010-10-22 2012-04-26 Nucleus Scientific, Inc. Apparatus and Method for Rapidly Charging Batteries

Also Published As

Publication number Publication date
KR101683181B1 (ko) 2016-12-08
US20170271887A1 (en) 2017-09-21
US10135277B2 (en) 2018-11-20

Similar Documents

Publication Publication Date Title
WO2017086512A1 (ko) 열적 안전성을 고려한 배터리의 급속 충전 시스템 및 방법
WO2018230812A1 (ko) 배터리 팩 온도 제어 방법 및 장치
WO2019212128A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 상기 배터리 관리 장치를 포함하는 에너지 저장 시스템
WO2019088440A1 (ko) 배터리의 내부 저항을 최적화하기 위한 배터리 관리 시스템 및 방법
WO2019172527A1 (ko) Soc-ocv 프로파일 추정 방법 및 장치
WO2017030309A1 (ko) 전지 충전 한계 예측 방법과 이를 이용한 전지 급속 충전 방법 및 장치
US8344700B2 (en) Charging method and charger
WO2018143562A1 (ko) 배터리 팩 및 배터리 팩의 충전 제어 방법
WO2018124514A1 (ko) 배터리 관리 장치 및 이를 이용한 리튬인산철 셀의 과전압 보호 방법
KR102633756B1 (ko) 배터리 팩 및 배터리 팩의 충전 방법
WO2019124738A1 (ko) 배터리 충전관리 장치 및 방법
WO2021080358A1 (ko) 병렬 연결된 배터리 팩의 밸런싱 장치 및 방법
WO2019098722A1 (ko) 배터리 저항 추정 장치 및 방법
WO2017043723A1 (ko) 과열 상태 배터리 냉각 충전 장치 및 방법
WO2013051863A2 (ko) 배터리 충전 장치 및 방법
KR20180066292A (ko) 이차전지의 수명 단축 및 폭발 방지를 위한 배터리의 급속 충전 시스템 및 방법
WO2021141249A1 (en) Aerosol generating device
WO2021118049A1 (ko) 전극의 상대적 퇴화도를 이용한 이차 전지의 동작 제어 장치 및 방법
WO2020130430A1 (ko) 이차 전지 팩의 충전 제어 장치 및 방법
WO2021256638A1 (ko) 배터리의 충방전 특성을 사용하여 배터리를 전기 에너지를 저장하기 위한 ess 시스템
WO2018199437A1 (ko) 방전 제어 장치 및 방법
WO2018135735A1 (ko) 배터리 충전 방법 및 충전 시스템
WO2019093625A1 (ko) 충전 제어 장치 및 방법
CN101278458A (zh) 用于监视对电池供电的系统和方法
KR101443902B1 (ko) 멀티스테이지를 이용한 모바일용 리튬이온전지의 급속 충전시스템 및 그 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15316276

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908858

Country of ref document: EP

Kind code of ref document: A1