WO2017086462A1 - Ice making device, moving body, flake ice production device, and flake ice production method - Google Patents

Ice making device, moving body, flake ice production device, and flake ice production method Download PDF

Info

Publication number
WO2017086462A1
WO2017086462A1 PCT/JP2016/084320 JP2016084320W WO2017086462A1 WO 2017086462 A1 WO2017086462 A1 WO 2017086462A1 JP 2016084320 W JP2016084320 W JP 2016084320W WO 2017086462 A1 WO2017086462 A1 WO 2017086462A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
ice making
brine
flake
inner cylinder
Prior art date
Application number
PCT/JP2016/084320
Other languages
French (fr)
Japanese (ja)
Inventor
美雄 廣兼
知昭 秋山
伊朗 井筒
Original Assignee
ブランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016132615A external-priority patent/JP6175168B1/en
Priority to CA3004252A priority Critical patent/CA3004252A1/en
Priority to AU2016358284A priority patent/AU2016358284A1/en
Priority to JP2017538270A priority patent/JP6243092B2/en
Priority to RU2018121638A priority patent/RU2695458C1/en
Priority to EP16866462.1A priority patent/EP3378320A4/en
Priority to US15/777,021 priority patent/US20180340721A1/en
Priority to KR1020187017429A priority patent/KR20180091848A/en
Application filed by ブランテック株式会社 filed Critical ブランテック株式会社
Priority to SG11201803910WA priority patent/SG11201803910WA/en
Priority to BR112018010064-1A priority patent/BR112018010064A2/en
Priority to CN201680067400.1A priority patent/CN108463111A/en
Priority to MX2018006079A priority patent/MX2018006079A/en
Publication of WO2017086462A1 publication Critical patent/WO2017086462A1/en
Priority to IL259336A priority patent/IL259336A/en
Priority to PH12018501063A priority patent/PH12018501063A1/en
Priority to ZA2018/04015A priority patent/ZA201804015B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/06Freezing; Subsequent thawing; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/02Producing natural ice, i.e. without refrigeration
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/02Preserving by means of inorganic salts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/02Preserving by means of inorganic salts
    • A23B4/027Preserving by means of inorganic salts by inorganic salts other than kitchen salt, or mixtures thereof with organic compounds, e.g. biochemical compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/06Freezing; Subsequent thawing; Cooling
    • A23B4/08Freezing; Subsequent thawing; Cooling with addition of chemicals or treatment with chemicals before or during cooling, e.g. in the form of an ice coating or frozen block
    • A23B4/09Freezing; Subsequent thawing; Cooling with addition of chemicals or treatment with chemicals before or during cooling, e.g. in the form of an ice coating or frozen block with direct contact between the food and the chemical, e.g. liquid N2, at cryogenic temperature
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/37Freezing; Subsequent thawing; Cooling with addition of or treatment with chemicals
    • A23L3/375Freezing; Subsequent thawing; Cooling with addition of or treatment with chemicals with direct contact between the food and the chemical, e.g. liquid nitrogen, at cryogenic temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • F25C1/14Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes
    • F25C1/145Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes from the inner walls of cooled bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/12Ice-shaving machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/22Distributing ice particularly adapted for household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D15/00Devices not covered by group F25D11/00 or F25D13/00, e.g. non-self-contained movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/04Stationary cabinets
    • F25D3/045Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2301/00Special arrangements or features for producing ice
    • F25C2301/002Producing ice slurries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration

Definitions

  • the present invention relates to an ice making device, a moving body, a flake ice production device, and a flake ice production method.
  • Patent Document 1 in a salt-containing water ice making method in which salt-containing ice obtained by freezing salt-containing water having a solute concentration of approximately 0.5 to 2.5% is formed into a slurry, filtration is performed. Sterilized raw water, such as seawater, is adjusted to a salt content to obtain a salt-containing water having a solute concentration of about 1.0 to 1.5%, and the salt-containing water is rapidly cooled to cope with the solute concentration- A method is disclosed for producing slurry-like salt-containing ice having a freezing point temperature of 5 to -1 ° C.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a technique for generating ice with higher efficiency and higher cooling ability.
  • the thermal conductivity of the ice making surface at 20 ° C. can be 70 W / mK or more.
  • the cooling unit further includes a refrigerant supply unit that supplies a predetermined refrigerant to cool the ice making surface.
  • a refrigerant supply unit that supplies a predetermined refrigerant to cool the ice making surface.
  • the brine supply unit The brine can be deposited by spraying onto the ice making surface.
  • the brine supply unit The brine can be adhered to the ice making surface by naturally flowing down.
  • the thermal conductivity at 20 ° C. of the ice making surface can be configured to be 70 W / mK or more.
  • the refrigerant can be LNG.
  • the ice making part Further comprising a liner covering the ice making surface,
  • the liner can be replaceable.
  • the flake ice manufacturing apparatus of one aspect of the present invention includes the ice making unit, the brine supply unit, and the recovery unit,
  • the ice making part is A drum including an inner cylinder having the ice making surface, an outer cylinder surrounding the inner cylinder, a clearance formed between the inner cylinder and the outer cylinder, and a refrigerant that supplies refrigerant to the clearance And further comprising a supply unit,
  • the brine supply unit A rotation unit that rotates around a central axis of the drum, and further includes an injection unit that injects the brine toward the ice making surface of the inner cylinder;
  • the collection unit The brine jetted from the jetting unit is further attached to the inner surface of the inner cylinder cooled by the refrigerant supplied to the clearance, and further comprises a stripping unit for stripping off the ice generated as a result,
  • the above equation (1) is established.
  • the thermal conductivity of the ice making surface at 20 ° C. can be 70 W / mK or more.
  • the ice making speed is Y and the temperature of the ice making surface is x3, it can be designed so that the above formula (3) is established.
  • the brine supply unit The brine can be adhered to the ice making surface by naturally flowing down.
  • the refrigerant can be LNG.
  • the ice making part Further comprising a liner covering the ice making surface,
  • the liner can be replaceable.
  • the flake ice manufacturing apparatus of one embodiment of the present invention can be mounted on a moving body.
  • the ice produced by the ice making device of the present invention is liquid ice containing an aqueous solution containing a solute that satisfies the following conditions (a) and (b).
  • “Flake ice” refers to ice processed into flakes.
  • the temperature at the completion of melting is less than 0 ° C.
  • the change rate of the solute concentration of the aqueous solution generated from the ice during the melting process is within 30%.
  • the ice having a reduced freezing point as described above continues to be stable at a temperature below the freezing point of fresh water when melted, so that the state where cold energy is stored continues. Therefore, the cooling ability of the object to be cooled should be higher than that of ice made of fresh water.
  • the present inventors have found that the ice produced by the conventional technique does not have sufficient ability to cool the object to be cooled, such as the temperature of the ice rising rapidly with time.
  • the present inventors examined the reason, and even if ice was produced from an aqueous solution containing a solute such as salt in the conventional technique, in practice, ice containing no solute was first produced before the aqueous solution was frozen. As a result, a mixture of ice and solute containing no solute is produced, or only a small amount of ice having a reduced freezing point is produced, so that ice with high cooling capacity is not produced. I found out.
  • the present inventors have succeeded in inventing an ice making device capable of producing liquid ice containing an aqueous solution having a reduced freezing point by a predetermined method (details will be described later).
  • the ice produced by such an ice making device of the present invention satisfies the above conditions (a) and (b).
  • the above conditions (a) and (b) will be described.
  • the temperature at the completion of melting is not particularly limited as long as it is less than 0 ° C., and can be appropriately changed by adjusting the kind and concentration of the solute.
  • the temperature at the completion of melting is preferably lower in terms of higher cooling ability, and specifically, -1 ° C or lower (-2 ° C or lower, -3 ° C or lower, -4 ° C or lower, -5 ° C or lower, -6 ° C or lower, -7 ° C or lower, -8 ° C or lower, -9 ° C or lower, -10 ° C or lower, -11 ° C or lower, -12 ° C or lower, -13 ° C or lower, -14 ° C or lower, -15 Or less, ⁇ 16 ° C.
  • the temperature at the completion of thawing is not too high.
  • -21 ° C or higher (-20 ° C or higher, -19 ° C or higher, -18 ° C or higher, -17 ° C or higher, -16 ° C or higher, -15 ° C or higher, -14 ° C or higher, -13 ° C or higher,- 12 ° C or higher, -11 ° C or higher, -10 ° C or higher, -9 ° C or higher, -8 ° C or higher, -7 ° C or higher, -6 ° C or higher, -5 ° C or higher, -4 ° C or higher, -3 ° C or higher,- 2 ° C or higher, -1 ° C or higher, -0.5 ° C or higher, etc.).
  • the ice produced by the ice making apparatus of the present invention is the rate of change in the solute concentration of the aqueous solution generated from the ice during the melting process (hereinafter referred to as the “rate of change in solute concentration” in this specification). Is) within 30%. Even with the conventional technique, ice having a slightly reduced freezing point may be generated, but most of them are a mixture of water-free ice and solute crystals, so that the cooling capacity is not sufficient.
  • the ice produced by the ice making device of the present invention is composed of liquid ice containing an aqueous solution containing a solute, and therefore has a feature that there is little change in the elution rate of the solute during the melting process. Specifically, the change rate of the solute concentration of the aqueous solution generated from ice during the melting process is 30%.
  • the “rate of change in the solute concentration of an aqueous solution generated from ice during the melting process” means the ratio of the concentration of the aqueous solution at the completion of melting to the solute concentration in the aqueous solution generated at an arbitrary point in the melting process.
  • the “solute concentration” means the concentration of the mass of the solute in the aqueous solution.
  • the rate of change of the solute concentration in the ice produced by the ice making apparatus of the present invention is not particularly limited as long as it is within 30%, but the smaller the rate of change, the higher the purity of the ice of the aqueous solution with a reduced freezing point, that is, This means that the cooling capacity is high. From this viewpoint, the change rate of solute concentration is within 25% (within 24%, within 23%, within 22%, within 21%, within 20%, within 19%, within 18%, within 17%, within 16%.
  • the change rate of the solute concentration is 0.1% or more (0.5% or more, 1% or more, 2% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8 % Or more, 9% or more, 10% or more, 11% or more, 12% or more, 13% or more, 14% or more, 15% or more, 16% or more, 17% or more, 18% or more, 19% or more, 20% or more Etc.).
  • solute The type of solute contained in the ice produced by the ice making apparatus of the present invention is not particularly limited as long as it is a solute when water is used as a solvent, and is appropriately selected depending on the desired freezing point, the intended use of the ice to be used, etc. can do.
  • the solute include solid solutes and liquid solutes, and typical solid solutes include salts (inorganic salts, organic salts, etc.). Particularly, among salts, sodium chloride (NaCl) is preferable because it does not excessively lower the temperature of the freezing point and is suitable for cooling fresh animals and plants or a part thereof.
  • salt is contained in seawater, it is also preferable in terms of easy procurement.
  • ethylene glycol etc. are mentioned as a liquid solute.
  • a solute may be contained individually by 1 type and may be contained 2 or more types.
  • the concentration of the solute contained in the ice produced by the ice making apparatus of the present invention is not particularly limited, and can be appropriately selected according to the kind of solute, the desired freezing point, the use of the ice to be used, and the like.
  • concentration of the sodium chloride is 0.5% (w / v) or more (1% (w / v) in that the freezing point of the aqueous solution can be further lowered to obtain a high cooling capacity.
  • the ice produced by the ice making apparatus of the present invention is used for cooling fresh animals or plants or a part thereof, it is preferable not to excessively reduce the temperature of the freezing point.
  • 23% (w / v) or less (20% (w / v) or less, 19% (w / v) or less, 18% (w / v) or less, 17% (w / v) or less, 16% (w / v) or less, 15 % (W / v) or less, 14% (w / v) or less, 13% (w / v) or less, 12% (w / v) or less, 11% (w / v) or less, 10% (w / v ), 9% (w / v) or less, 8% (w / v) or less, 7% (w / v) or less, 6% (w / v) or less, 5% (w / v) or less,
  • the ice produced by the ice making apparatus of the present invention is excellent in cooling ability, it is suitable for use as a refrigerant for cooling an object to be cooled.
  • the low-temperature refrigerant for cooling the object to be cooled include organic solvents used as an antifreeze liquid such as ethanol in addition to ice, but ice has higher thermal conductivity and higher specific heat than these antifreeze liquids. For this reason, ice having a low freezing point by dissolving a solute such as ice produced by the ice making apparatus of the present invention is superior in cooling ability to other refrigerants of less than 0 ° C. such as antifreeze. Useful.
  • the ice produced by the ice making apparatus of the present invention may or may not contain components other than the above solute.
  • ice refers to a frozen liquid containing an aqueous solution.
  • the ice produced by the ice making device of the present invention continues to be stable at a temperature below the freezing point of fresh water, that is, it can be kept in a state where it is not separated for a long time. Therefore, for example, as described later, when the liquid constituting the ice produced by the ice making device of the present invention is a liquid containing oil in addition to the aqueous solution containing the solute, the oil is uniform. The state lasts for a long time, that is, the state that does not separate can be maintained for a long time.
  • the liquid constituting the ice produced by the ice making device of the present invention may be a liquid containing oil in addition to the aqueous solution containing the solute.
  • liquids include raw milk and industrial waste (such as waste milk) containing water and oil.
  • waste milk industrial waste
  • the liquid is raw milk, it is preferable in terms of improving the functionality when eating the ice.
  • the reason why the functionality is improved is that oil (fat) contained in raw milk is confined in ice.
  • the ratio of water to oil in the liquid is not particularly limited, and is, for example, 1:99 to 99: 1 (10:90). To 90:10, 20:80 to 80:20, 30:80 to 80:30, 40 to 60:40 to 60, etc.).
  • the ice produced by the ice making apparatus of the present invention may be an aqueous ice containing two or more solutes having different freezing point depression degrees.
  • the ice produced by the ice making apparatus of the present invention may be a mixture of ice of an aqueous solution containing one solute and ice of an aqueous solution containing the other solute.
  • ice of an aqueous solution containing sodium chloride as a solute having a different freezing point depression degree from that of ethylene glycol to ice of an aqueous solution containing ethylene glycol as a solute, melting of the ice of the aqueous solution containing ethylene glycol can be delayed. it can.
  • generated by the ice making apparatus of this invention may be the ice of the aqueous solution which melt
  • the melting point of the ice in the salt solution can be lowered by using a solute (ethylene glycol, calcium chloride, etc.) that can lower the melting point further than the salt.
  • a temperature around -30 ° C that cannot be achieved with ice alone can be achieved.
  • the ratio of two or more solutes having different freezing point depression degrees can be appropriately changed according to the purpose.
  • the ice produced by the ice making device of the present invention can be used as a refrigerant for cooling the object to be cooled.
  • the ice produced by the ice making device of the present invention is excellent in cooling ability, and thus is suitable as a refrigerant for cooling an object to be cooled.
  • the refrigerant for cooling the object to be cooled is hereinafter referred to as “ice slurry”. Call it.
  • the ice slurry is a mixture of ice produced by the ice making device of the present invention and a liquid containing an aqueous solution.
  • the ice slurry containing the ice produced by the ice making device of the present invention may contain other components of the above ice, for example, a mixture of ice and water by containing water in addition to the above ice. May be.
  • the solute concentration in ice and the solute concentration in water are preferably close. The reason is as follows.
  • the solute concentration of ice When the solute concentration of ice is higher than the solute concentration of water, the temperature of the ice is lower than the saturation freezing point of water, so that water freezes immediately after mixing water with a low solute concentration.
  • the solute concentration of ice when the solute concentration of ice is lower than the solute concentration of water, the saturated freeze point of water is lower than the saturated freeze point of ice, so the ice melts and the temperature of the ice slurry consisting of a mixture of ice and water decreases.
  • the solute concentrations of the ice and water to be mixed are approximately the same as described above.
  • the water may be one obtained by melting the ice, or one prepared separately, but one obtained by melting the ice. It is preferable that
  • the ratio of the solute concentration in ice to the solute concentration in water is 75. : 25 to 20:80 is more preferable, 70:30 to 30:70 is further preferable, 60:40 to 40:60 is still more preferable, and 55:45 to 45:55 is used. Even more preferably, it is particularly preferably 52:48 to 48:52, and most preferably 50:50.
  • the ratio of the solute concentration in ice to the solute concentration in water is preferably within the above range.
  • the water that is the raw material of ice produced by the ice making device of the present invention is not particularly limited, but when using salt as a solute, it is ice of seawater, water obtained by adding salt to seawater, or seawater dilution water. It is preferable. Seawater, water obtained by adding salt to seawater, or seawater-diluted water can be easily procured, thereby reducing costs.
  • the ice slurry containing ice produced by the ice making device of the present invention may further contain a solid having a higher thermal conductivity than the ice produced by the above ice making device of the present invention.
  • a solid having a higher thermal conductivity than the ice produced by the above ice making device of the present invention.
  • the ice produced by the ice making apparatus of the present invention has a high cooling capacity as described above, it is possible to cool for a long time while obtaining a cooling capacity for a short time by a solid having high thermal conductivity.
  • solids having higher thermal conductivity than ice produced by the ice making apparatus of the present invention include metals (aluminum, silver, copper, gold, duralumin, antimony, cadmium, zinc, tin, bismuth, tungsten, titanium, iron , Lead, nickel, platinum, magnesium, molybdenum, zirconium, beryllium, indium, niobium, chromium, cobalt, iridium, palladium), alloy (steel (carbon steel, chromium steel, nickel steel, chromium nickel steel, silicon steel, tungsten steel) , Manganese steel, etc.), nickel-chromium alloy, aluminum bronze, gunmetal, brass, manganin, silver, constantan, solder, al
  • the solid having higher thermal conductivity than ice produced by the ice making apparatus of the present invention has a thermal conductivity of 2.3 W / m K or more (3 W / m K or more, 5 W / m K or more, 8 W / m K.
  • the ice slurry containing ice produced by the ice making apparatus of the present invention contains a solid having a higher thermal conductivity than the above-described ice of the present invention, as described above, even if it contains many solids, it is cooled for a long time.
  • the mass of ice produced by the ice making device of the present invention contained in the mass / ice slurry of solids having a higher thermal conductivity than the ice produced by the ice making device of the present invention is 1 / 100,000 or more (1/50000 or more, 1/10000 or more, 1/5000 or more, 1/1000 or more, 1/500 or more, 1 / 100 or more, 1/50 or more, 1/10 or more, 1/5 or more, 1/4 or more, 1/3 or more, 1/2 or more, and the like.
  • the solid contained in the ice slurry containing ice produced by the ice making apparatus of the present invention may have any shape, but is preferably particulate. Further, the solid may be contained in a form contained in the ice produced by the ice making apparatus of the present invention, and may be contained in a form contained outside the ice. Since it is easier to directly contact the object to be cooled if it is included in the form of being included outside, the cooling ability is increased. For this reason, it is preferable to be included in a form included outside the ice.
  • the ice slurry containing ice produced by the ice making device of the present invention contains the solid, it may be mixed with the solid after producing ice by the ice making device of the present invention described later, You may produce
  • FIG. 1 is an image diagram including a partial cross-sectional perspective view showing an outline of a flake ice manufacturing apparatus 10 according to an embodiment of the ice making apparatus of the present invention.
  • the wall surface is, for example, the wall surface of the inner wall 22 of a cylindrical structure such as the drum 11 described later, but is not particularly limited as long as it can be maintained at a temperature below the freezing point of the aqueous solution.
  • the temperature of the wall surface is not particularly limited as long as it is maintained at a temperature lower than or equal to the freezing point of the aqueous solution.
  • the wall surface temperature is higher than the freezing point of the aqueous solution in that ice having high purity of ice satisfying the above conditions (a) and (b) can be produced.
  • the injection method is not particularly limited, for example, it is possible to inject by injecting from an injection means having an injection hole 13a like an injection unit 13 described later.
  • the water pressure at the time of injection is, for example, 0.001 MPa or more (0.002 MPa or more, 0.005 MPa or more, 0.01 MPa or more, 0.05 MPa or more, 0.1 MPa or more, 0.2 MPa or more, etc.). 1 MPa or less (0.8 MPa or less, 0.7 MPa or less, 0.6 MPa or less, 0.5 MPa or less, 0.3 MPa or less, 0.1 MPa or less, 0.05 MPa or less, 0.01 MPa or less, etc.) There may be.
  • a rotating means such as a rotatable rotating shaft 12 may be provided on the center axis of the saddle drum 11 to be described later, and continuous injection such as injection while rotating may be performed.
  • the flake ice manufacturing apparatus 10 has a step of recovering the ice generated on the wall surface after the above-described ice generation step.
  • the method of collecting is not particularly limited, and for example, the ice on the wall surface may be scraped or peeled off by means such as a blade 15 described later, and the dropped ice may be collected.
  • the actual melting completion temperature can be adjusted by adjusting the amount of ice making heat remaining in the ice.
  • the ice making heat can be adjusted by adjusting the holding time of the ice on the wall surface in the ice collecting step.
  • the flake ice manufacturing apparatus 10 includes a drum 11, a rotary shaft 12, an injection unit 13, a stripping unit 14, a blade 15, a flake ice discharge port 16, and an upper bearing member 17. , A heat protection cover 19, a geared motor 20, a rotary joint 21, a refrigerant clearance 24, a bush 28, a refrigerant supply unit 29, and a rotation control unit 27.
  • the drum 11 includes an inner cylinder 22, an outer cylinder 23 surrounding the inner cylinder 22, and a refrigerant clearance 24 formed between the inner cylinder 22 and the outer cylinder 23.
  • the outer peripheral surface of the drum 11 is covered with a cylindrical heat-resistant protective cover 19.
  • the inner cylinder 22 has a wall surface, and when the wall surface is cooled, the brine attached to the wall surface is frozen and ice is generated.
  • rate can be raised by making the member which comprises the inner cylinder 22 into a member with high heat conductivity.
  • the ice making speed can be reduced by making the member constituting the inner cylinder 22 a member having low thermal conductivity.
  • a member having a higher thermal conductivity than stainless steel or iron is employed as a member constituting the wall surface of the inner cylinder 22, and more specifically, the thermal conductivity at 20 ° C.
  • the flake ice manufacturing apparatus 10 can produce a lot of ice in a shorter time than when stainless steel or iron is adopted as a member constituting the wall surface of the inner cylinder 22.
  • the wall surface of the inner cylinder 22 has a high thermal conductivity. Since the production speed of ice is increased by using the members, it is not necessary to widen the wall surface of the inner cylinder 22, and as a result, it is possible to produce ice in a relatively narrow space.
  • the member constituting the wall surface of the inner cylinder 22 is preferably a member having a high thermal conductivity, more specifically, a member having a thermal conductivity at 20 ° C. of 100 W / mK or more is more preferable.
  • a member having a thermal conductivity at 20 ° C. of 150 W / mK or more is still more preferable, a member having a thermal conductivity at 20 ° C. of 200 W / mK or more is more preferable, and a member having a thermal conductivity at 20 ° C. of 250 W / mK or more is further preferable.
  • a member having a thermal conductivity of 300 W / mK or more at 20 ° C. is particularly preferable.
  • the upper limit of the thermal conductivity is not particularly limited.
  • the thermal conductivity at 20 ° C. is 1000 W / mK or less (900 W / mK or less, 800 W / mK or less, 700 W / mK or less, 600 W / mK or less, 500 W / mK or less, 400 W / mK or less).
  • Specific examples of the members constituting the wall surface of the inner cylinder 22 include zinc, aluminum, geralumin, gold, silver, tungsten, copper, aluminum bronze, seven-three brass, naval brass, nickel (99.9%), molybdenum, palladium. , Silicon and the like.
  • the flake ice production apparatus of the present invention is suitable for production in a relatively narrow space, for example, a limited space such as the inside of a transportation device (for example, a vehicle (such as a truck) or a ship) It is suitable for manufacturing in places where there is only one.
  • a transportation device for example, a vehicle (such as a truck) or a ship
  • the relationship between the member which comprises the wall surface of the inner cylinder 22, and heat conductivity is later mentioned with reference to the specific example of the member shown in FIG.
  • the ice making speed is adjusted by adjusting the area of the portion of the wall surface of the inner cylinder 22 where the brine can be attached.
  • the material of the outer cylinder 23 is not particularly limited. In this embodiment, steel is employed. Refrigerant is supplied to the refrigerant clearance 24 from the refrigerant supply unit 29 via the refrigerant pipe 35. Thereby, the wall surface of the inner cylinder 22 is cooled.
  • the rotary shaft 12 is arranged on the central axis of the drum 11 and rotates around the material axis with the central shaft as an axis, using a geared motor 20 installed above the upper bearing member 17 as a power source.
  • the rotational speed of the geared motor 20 is controlled by a rotation control unit 27 described later.
  • a rotary joint 21 is attached to the top of the rotating shaft 12.
  • Rotary joint 21 In addition, the upper part of the rotating shaft 12 is formed with a pothole 12a extending in the material axis direction and communicating with each pipe 13 (see FIG. 3).
  • the injection unit 13 is composed of a plurality of pipes having injection holes 13 a for injecting brine toward the wall surface of the inner cylinder 22 at the tip, and rotates together with the rotating shaft 12.
  • the brine injected from the injection hole 13a adheres to the wall surface of the inner cylinder 22 cooled by the refrigerant, and freezes rapidly without giving a time for separation.
  • the plurality of pipes constituting the injection unit 13 extend radially from the rotary shaft 12 in the radial direction of the drum 11.
  • the installation height of each pipe is not particularly limited, but in this embodiment, the installation height is set at an upper position of the inner cylinder 22 of the drum 11. Note that a spray nozzle or the like may be employed instead of the pipe.
  • the flake ice manufacturing apparatus 10 can also be made to adhere by making a brine flow naturally on the wall surface of the inner cylinder 22, without employ
  • the volume of the brine adhering to the wall surface of the inner cylinder 22 is larger than the case of adhering to the wall surface of the inner cylinder 22 by injecting brine.
  • the ice generated by the natural flow of the brine is not easily affected by the temperature in the air inside the drum 11 which is higher than the temperature of the wall surface of the inner cylinder 22, and therefore melts more than the ice generated by the injection of the brine. It has the advantageous property of being difficult.
  • the stripping unit 14 is composed of a plurality of arms on which the blade 15 that strips off the ice generated on the wall surface of the inner cylinder 22 is attached to the tip.
  • the stripping part 14 extends in the radial direction of the drum 11 and rotates together with the rotating shaft 12.
  • the plurality of arms constituting the stripping portion 14 are mounted so as to be symmetric with respect to the rotation shaft 12.
  • the number of arms is not particularly limited, but in the present embodiment, the number of arms is two.
  • the size and material of the blade 15 attached to the tip of each arm are not particularly limited as long as the ice generated on the wall surface of the inner cylinder 22 can be peeled off. For example, the tip of the blade may scrape or scrape off the ice.
  • the blade 15 in the present embodiment is made of a stainless steel plate having a length substantially equal to the entire length (total height) of the inner cylinder 22, and a plurality of saw teeth 15 a are formed on the end surface facing the inner cylinder 22. .
  • a flake ice falls from the flake ice discharge port 16.
  • the flake ice that has fallen from the flake ice discharge port 16 is stored in a flake ice storage tank 34 (see FIG. 3) disposed immediately below the flake ice production apparatus 10.
  • the upper bearing member 17 has a shape in which the pan is inverted, and seals the upper surface of the drum 11.
  • a bush 24 that supports the rotating shaft 12 is fitted in the center of the upper bearing member 17.
  • the rotating shaft 12 is supported only by the upper bearing member 17, and the lower end portion of the rotating shaft 12 is not pivotally supported. That is, since there is no obstacle below the drum 11 when the flake ice peeled off by the blade 15 falls, the lower surface of the drum 11 serves as a flake ice discharge port 16 for discharging the flake ice.
  • the refrigerant supply unit 29 supplies a refrigerant for cooling the wall surface of the inner cylinder 22 to the refrigerant clearance 24 via the refrigerant pipe 35.
  • the refrigerant supplied by the refrigerant supply unit 29 is not particularly limited as long as it cools the wall surface of the inner cylinder 22.
  • LNG Liquid Natural Gas / liquefied natural gas
  • the refrigerant can be employed as the refrigerant.
  • imported LNG is stored in the LNG storage tank in a liquid state at -160 ° C.
  • the LNG at -160 ° C is vaporized until it reaches room temperature, adjusted for calorific value, and given odor. And supplied for city gas or GT power generation.
  • the heat of exhaust cooling until LNG at ⁇ 160 ° C. reaches room temperature the production of liquid oxygen and liquid nitrogen, freezing warehouses, cold power generation, seawater as the heat source
  • the technique used for the vaporization of LNG (ORV type) is used.
  • the exhaust cooling heat of LNG When the exhaust cooling heat of LNG is used for the above-described application, it has the following merits as compared with the conventional cooling method by electric power or engine drive. That is, (1) less power is required, (2) the cold energy of LNG that is not being used can be used effectively, (3) a large generator is not required, and (4) pollution factors are low. (5) It has the merit that cost is reduced.
  • the exhaust cooling heat of LNG there were the following disadvantages. In other words, the use of LNG exhaust heat is normally limited to continuous use at locations around the LNG base. This is because LNG has a risk of combustion during transportation.
  • the above-described disadvantages are eliminated. That is, by using LNG as a refrigerant in the flake ice production apparatus 10, ultra-low temperature flake ice can be produced. For this reason, if the manufactured flake ice is transported to a remote place, the waste heat of LNG can be used batchwise without transporting the LNG itself to the remote place.
  • the flake ice manufacturing apparatus 10 does not need to be fixed at a specific place, and can be mounted on a moving body such as a vehicle, a ship, an aircraft, etc., and thus has mobility. Furthermore, since there is an intermediate refrigerant called flake ice, there is no danger of direct heat exchange between the LNG and the object to be cooled.
  • the flake ice manufacturing apparatus 10 can not only supply cold heat as an alternative to a conventional refrigerator, but also can improve energy efficiency by utilizing the exhausted cold heat of LNG. That is, it is possible to construct a cogeneration system.
  • the flake ice manufacturing apparatus 10 is designed so that the following equation (3) is established when the ice making speed is Y and the temperature of the refrigerant supplied to the refrigerant clearance 24 is x3.
  • Y f (x3) (3) That is, the flake ice manufacturing apparatus 10 is designed such that the ice making speed changes according to the temperature of the refrigerant supplied to the refrigerant clearance 24 by the refrigerant supply unit 29. That is, the flake ice manufacturing apparatus 10 can freeze the brine attached to the wall surface of the inner cylinder 22 faster as the temperature of the wall surface of the inner cylinder 22 is lower.
  • the flake ice production apparatus 10 can generate more ice in a shorter time as the temperature of the refrigerant supplied to the refrigerant clearance 24 is lower. Specifically, for example, when LNG at ⁇ 160 ° C. is supplied to the refrigerant clearance 24, the temperature of the wall surface of the inner cylinder 22 rapidly decreases. For this reason, the flake ice manufacturing apparatus 10 can generate a large amount of ice up to about ⁇ 150 ° C. in a short time.
  • the refrigerant supplied to the refrigerant clearance 24 can be circulated between the refrigerant clearance 24 and the refrigerant supply unit 29 via the refrigerant pipe 35.
  • coolant clearance 24 can be maintained in a state with a high cooling function.
  • the rotation control unit 27 adjusts the rotation speed of the ejection unit 13 and the stripping unit 14 that rotate together with the rotating shaft 12 by adjusting the rotation speed of the geared motor 20.
  • the method by which the rotation control unit 27 controls the rotation speed is not particularly limited. Specifically, for example, a control method using an inverter may be employed.
  • FIG. 2 is a diagram showing the thermal conductivity of each member used on the ice making surface (for example, the wall surface of the inner cylinder 22 in FIG. 1).
  • the members constituting the ice making surface have different thermal conductivities. For this reason, the ice making speed varies depending on which member is used for the ice making surface. Specifically, for example, the thermal conductivity (W / m ⁇ K) of stainless steel is 16 when the temperature is 20 ° C. Moreover, the thermal conductivity (W / m ⁇ K) of pure iron is 67 when the temperature is 20 ° C., which is higher than that of stainless steel. Further, the thermal conductivity (W / m ⁇ K) of copper (ordinary product) is 372 when the temperature is 20 ° C., which is higher than that of pure iron.
  • the thermal conductivity (W / m ⁇ K) of silver is 418 when the temperature is 20 ° C., and is higher than copper (ordinary product). That is, the thermal conductivity of the ice-making member illustrated in FIG. 2 increases in the order of silver> copper (ordinary product)> pure iron> stainless steel under the same temperature condition. For this reason, the ice making speed also increases in the order of silver> copper (ordinary product)> pure iron> stainless steel.
  • the flake ice manufacturing apparatus 10 can adjust the ice making speed by arbitrarily changing the members constituting the wall surface of the inner cylinder 22.
  • a member having a high thermal conductivity such as silver or copper is selected as a member constituting the wall surface of the inner cylinder 22, and an ultra-low temperature refrigerant such as LNG is selected as a refrigerant for cooling the wall surface of the inner cylinder 22.
  • an ultra-low temperature refrigerant such as LNG is selected as a refrigerant for cooling the wall surface of the inner cylinder 22.
  • FIG. 3 is an image diagram showing an overview of the entire flake ice production system 60 including the flake ice production apparatus 10 of FIG.
  • the flake ice production system 60 includes a flake ice production apparatus 10, a brine storage tank 30, a pump 31, a brine pipe 32, a brine tank 33, a flake ice storage tank 34, a refrigerant pipe 35, and a freezing point adjustment unit. 36.
  • the brine storage tank 30 stores brine as a raw material for flake ice.
  • the brine stored in the brine storage tank 30 is fed to the rotary joint 21 via the brine pipe 32 by operating the pump 31, and becomes flake ice by the flake ice manufacturing apparatus 10. That is, the brine fed to the rotary joint 21 is fed to the pit hole 12 a formed in the rotary joint 21 and the rotary shaft 12, and is fed from the pit hole 12 a to each pipe constituting the injection unit 13.
  • the brine tank 33 supplies brine to the brine storage tank 30 when the brine in the brine storage tank 30 is low. Note that the brine that has flowed down without freezing on the wall surface of the inner cylinder 22 is stored in the brine storage tank 30 and is fed again to the rotary joint 21 via the brine pipe 32 by operating the pump 31.
  • the flake ice storage tank 34 is disposed immediately below the flake ice manufacturing apparatus 10 and stores the flake ice that has fallen from the flake ice discharge port 16 of the flake ice manufacturing apparatus 10.
  • the freezing point adjustment unit 36 adjusts the freezing point of the brine supplied to the brine storage tank 30 by the brine tank 33.
  • the freezing point of the salt water varies depending on the concentration, so the freezing point adjustment unit 36 adjusts the concentration of the salt water stored in the brine storage tank 30.
  • the method for adjusting the freezing point of the brine is not particularly limited to this.
  • the following method can also be employed. That is, a plurality of brine storage tanks 30 are provided, and a plurality of types of brines having different freezing points are stored in each of several brine storage tanks 30.
  • the brine freezing point adjustment unit 37 selects a predetermined type of brine based on the required temperature of the flake ice (for example, the required cool temperature for the transported product transported by the flake ice), The flake ice production apparatus 10 is supplied. Thus, the temperature of the flake ice produced can be adjusted by adjusting the freezing point of the brine.
  • the refrigerant supply unit 29 supplies the refrigerant to the refrigerant clearance 24 and sets the temperature of the wall surface of the inner cylinder 22 to be about ⁇ 10 ° C. lower than the freezing point of the salt water. Thereby, the salt water adhering to the wall surface of the inner cylinder 22 can be frozen.
  • the ice making speed in the flake ice manufacturing apparatus 10 is adjusted according to the thermal conductivity of the member employed as the wall surface of the inner cylinder 22.
  • the ice making speed in the flake ice manufacturing apparatus 10 is adjusted according to the area of the portion of the wall surface of the inner cylinder 22 where the brine may adhere. Further, the ice making speed in the flake ice manufacturing apparatus 10 is adjusted according to the temperature of the refrigerant supplied by the refrigerant supply unit 29.
  • the rotation control unit 27 drives the geared motor 20 to rotate the rotating shaft 12 around the material axis.
  • the pump 31 supplies brine that is brine into the rotary shaft 12 from the brine storage tank 30 via the rotary joint 21.
  • the injection unit 13 that rotates together with the rotating shaft 12 injects salt water toward the wall surface of the inner cylinder 22.
  • the salt water sprayed from the spray unit 13 comes into contact with the wall surface of the inner cylinder 22, it freezes instantly and ice is generated.
  • the rotation control unit 27 controls the rotation speed of the rotating shaft 12 to 2 to 4 rpm.
  • the rotation control unit 27 controls the rotation speed of the rotary shaft 12 to 10 to 15 rpm.
  • the ice generated on the wall surface of the inner cylinder 22 is peeled off by the peeling unit 14 that rotates together with the rotating shaft 12.
  • the ice peeled off by the peeling unit 14 falls from the discharge port 16 as flake ice.
  • the flake ice that has fallen from the discharge port 16 is stored in a flake ice storage tank 34 disposed immediately below the flake ice manufacturing apparatus 10.
  • the salt water that does not become ice but flows down the wall surface of the inner cylinder 22 is stored in the brine storage tank 30, and is fed again to the rotary joint 21 via the brine pipe 32 by operating the pump 31. .
  • the brine tank 33 supplies the salt water stored in itself to the brine storage tank 30.
  • the rotation control unit 27 can change the temperature of the flake ice manufactured by the flake ice manufacturing apparatus 10 by changing the rotation speed of the geared motor 20.
  • salt water is adopted as the brain.
  • the freezing point at which salt water freezes depends only on the solute concentration.
  • salt water freezes at ⁇ 1.2 ° C. in any case when the applicant adopts salt water as a brain and changes the rotation speed of the rotary shaft 12 using the flake ice production apparatus 10 of the present embodiment, flake ice produced from the same concentration of salt water is obtained.
  • the temperature of the liquid crystal changes according to the rotational speed, and in particular, the temperature decreases as the rotational speed decreases.
  • the reason for this is that the flake ice is maintained until the ice-heated state is completely melted. Thereby, the temperature of flake ice can be adjusted, fixing the density
  • the ice slurry can be manufactured according to the required cold insulation temperature and cold preservation time by using a plurality of types of brine prepared in advance. It is assumed that the brine is salt water, the to-be-cooled product is a fresh seafood, and that the frozen seafood is immediately frozen by placing the fresh to-be-cooled product directly in the ice slurry.
  • the solute concentration of salt water which is the raw material of ice slurry, is set to be significantly higher than before.
  • the theoretical saturation freezing point of salt water having a solute concentration of 13.6% is ⁇ 9.8 ° C.
  • the theoretical saturation freezing point of salt water having a solute concentration of 23.1% is ⁇ 21.2 ° C.
  • the solute concentration of salt water is less than 13.6%, the freezing rate of fresh seafood by the produced ice slurry becomes slow.
  • the solute concentration of the salt water exceeds 23.1%, the salt content is precipitated as crystals, so that the saturation freezing point of the salt water increases.
  • the solute concentrations of the flake ice and the salt water to be mixed for producing the ice slurry are approximately the same (concentration difference within several percent).
  • the solute concentration of the flake ice is higher than the solute concentration of the salt water, the temperature of the flake ice is lower than the saturation freezing point of the salt water, so that the water freezes immediately after mixing the salt water having a low solute concentration.
  • the solute concentration of the flake ice is lower than the solute concentration of the salt water, since the saturation freezing point of the salt water is lower than the saturation freezing point of the flake ice, the flake ice melts and the temperature of the ice slurry decreases. Therefore, in order not to change the state of the ice slurry, it is desirable that the solute concentrations of the flake ice and the salt water to be mixed are approximately the same.
  • the ratio of solid content will become high when the mass ratio of flake ice exceeds 75 mass%, a clearance gap will generate
  • the mass ratio of ice is less than 20% by mass, it is difficult to instantly freeze fresh seafood by the produced ice slurry.
  • An ice slurry is prepared by mixing with ⁇ 23.1% brine.
  • the temperature of the produced ice slurry is ⁇ 9.8 ° C. to ⁇ 21.2 ° C.
  • the temperature of the salt water mixed with the manufactured flake ice is set to room temperature or lower. In addition, ice-making efficiency becomes high, so that the temperature of salt water is low.
  • the concentration of the brine and the mass ratio of the mixed flake ice and brine are adjusted so that the temperature of the produced ice slurry becomes the required temperature.
  • concentration of the brine and the mass ratio of the flake ice and the brine to be mixed it is possible to produce an ice slurry having a plurality of types of temperatures.
  • the ice making device of the present invention does not need to be configured as the flake ice manufacturing device 10 shown in FIG. 1 as an embodiment, and may be an ice making device including the components of the present invention.
  • the ice produced by the ice making apparatus of the present invention is preferably liquid ice containing an aqueous solution containing a solute that satisfies the above conditions (a) and (b). Ice) that does not satisfy one or both of the conditions. That is, the object to be cooled may be kept cold using ice slurries having different solute concentrations of ice and water.
  • the flake ice manufacturing apparatus 10 according to an embodiment of the ice making apparatus of the present invention, flake ice at an arbitrary temperature can be efficiently manufactured, so the size of the flake ice manufacturing apparatus 10 itself is made more compact. Can be made.
  • the flake ice manufacturing apparatus 10 having a smaller volume than the entire volume of the cooled object to be loaded can be mounted. That is, when transporting a cold object, an ice slurry for cooling the cold object is required in proportion to the amount of the cold object to be transported. Vehicles, ships, and aircraft have maximum loading capacity.
  • the flake ice manufacturing apparatus 10 In order to maximize the load amount of the object to be cooled within the range of the maximum load amount, it is necessary to minimize the amount of ice slurry within the range in which the cooling effect can be maintained. At this time, if the flake ice manufacturing apparatus 10 is made compact, the volume of the cold-reserved object can be maximized within the range of the maximum load capacity because the volume of the ice-cold object can be smaller than that of the entire cold-retained object to be loaded. It becomes possible to make it.
  • the saw teeth 15 a touch the wall surface of the inner cylinder 22 when the ice attached to the wall surface of the inner cylinder 22 is peeled off. For this reason, the wall surface of the inner cylinder 22 is easily worn and deteriorated. In particular, when the material is softer than the saw tooth 15a such as copper, the deterioration becomes remarkable.
  • a replaceable liner can be attached to the wall surface of the inner cylinder 22. Thereby, the quality of the wall surface of the inner cylinder 22 can be maintained by replacing only the liner without performing a large-scale repair work such as replacing the inner cylinder 22 or the entire drum 11.
  • the liner is preferably made of the same material as the wall surface of the inner cylinder 22, but may not be the same material.
  • the method for attaching the liner to the wall surface of the inner cylinder 22 is not particularly limited.
  • a spiral groove is provided in each of the liner and the wall surface of the inner cylinder 22 in contact with the liner so that the liner is screwed into the drum 11 so that the liner is screwed into the drum 11. It may be attached to the wall.
  • the liner may be once cooled to shrink the volume and then attached to the wall surface of the inner cylinder 22.
  • the liner since the volume of the liner expands when the temperature of the liner returns to room temperature, the liner can be adhered and fixed to the wall surface of the inner cylinder 22.
  • a constant frictional force can be generated between the wall surface of the inner cylinder 22 and the surface where the liner is in close contact, so that it is possible to prevent an accident in which the liner slips from the wall surface of the inner cylinder 22 and falls off. it can.
  • the brine is salt water (sodium chloride aqueous solution) in the above-described embodiment, but is not particularly limited. Specifically, for example, an aqueous calcium chloride solution, an aqueous magnesium chloride solution, ethylene glycol, or the like can be employed. Thereby, a plurality of types of brines having different freezing points according to differences in solute or concentration can be prepared.
  • the ice slurry containing ice produced by the ice making device of the present invention contains a solid having a higher thermal conductivity than the ice produced by the ice making device of the present invention
  • another object may be interposed between ice, a solid having a higher thermal conductivity than ice, and an object to be cooled, depending on the purpose.
  • it is not preferable to be in direct contact with the object to be cooled in the ice slurry for example, it is not preferable to be in contact with the object to be cooled from the viewpoint of safety, a solid having a higher thermal conductivity than ice (metal such as copper) ) Etc.
  • either the ice slurry or the object to be cooled may be accommodated in the bag, and the ice slurry and the object to be cooled may be cooled so as not to be in direct contact with each other.
  • the ice generated by the flake ice manufacturing apparatus 10 can be used for the following applications in addition to cooling the object to be cooled. That is, it can also be used for freezing industrial waste liquid, freezing manure, liquefying gas, and the like.
  • the ice making apparatus to which the present invention is applied only needs to have the following configuration, and can take various embodiments. That is, the ice making device to which the present invention is applied (for example, the flake ice making device 10 in FIG. 1) It has an ice making surface (for example, the wall surface of the inner cylinder 22 in FIG. 1) and a cooling unit (for example, the inner cylinder 22 in FIG. 1) for cooling the ice making surface, and freezes the brine adhering to the cooled ice making surface.
  • An ice making part for example, the inner cylinder 22, the outer cylinder 23, and the refrigerant clearance 24 in FIG. 1 that generates ice by A brine supply unit (for example, the injection unit 13 in FIG.
  • the ice making surface can be made of copper. Thereby, ice with high cooling ability can be generated more efficiently.
  • the ice making speed is Y and the area of the ice making surface where the brine may be attached is x2, the following equation (2) can be established.
  • Y f (x2) (2)
  • the ice making speed can be adjusted by adjusting the area of the ice making surface where the brine may adhere.
  • the cooling unit further includes a refrigerant supply unit (for example, the refrigerant supply unit 29 in FIG. 1) for supplying a predetermined refrigerant to cool the ice making surface.
  • a refrigerant supply unit for example, the refrigerant supply unit 29 in FIG. 1
  • Y f (x3) (3)
  • the ice making speed can be adjusted by selecting the refrigerant and adjusting the temperature of the ice making surface.
  • the brine supply unit The brine can be deposited by spraying onto the ice making surface.
  • the brine supply unit The brine can be adhered to the ice making surface by naturally flowing down. Thereby, the ice making speed can be adjusted according to the method of attaching the brine to the ice making surface.
  • the ice making surface is made of copper,
  • the refrigerant can be LNG.
  • the ultra-low temperature ice can be efficiently generated, and therefore flake ice matched with a wide range of required cold insulation temperatures can be easily produced.
  • the ice making part Further comprising a liner covering the ice making surface,
  • the liner can be replaceable. Thereby, the quality of the ice making surface can be maintained by replacing only the liner without performing a large repair work such as replacing the entire ice making unit.
  • the flake ice manufacturing apparatus to which the present invention is applied includes the ice making unit, the brine supply unit, and the recovery unit.
  • the ice making part is A drum including an inner cylinder having the ice making surface, an outer cylinder surrounding the inner cylinder, a clearance formed between the inner cylinder and the outer cylinder, and a refrigerant that supplies refrigerant to the clearance And further comprising a supply unit,
  • the brine supply unit A rotation unit that rotates around a central axis of the drum, and further includes an injection unit that injects the brine toward the ice making surface of the inner cylinder;
  • the collection unit The brine jetted from the jetting unit is further attached to the inner surface of the inner cylinder cooled by the refrigerant supplied to the clearance, and further comprises a stripping unit for stripping off the ice generated as a result,
  • the design (1) is established.
  • the thermal conductivity at 20 ° C. of the ice making surface can be 70 W / mK or more.
  • the ice making speed is Y and the area of the ice making surface where the brine is likely to be attached is x2, it can be designed so that the formula (2) is satisfied.
  • the said ice making speed is set to Y and the temperature of the said ice making surface is set to x3, it can design so that the said Formula (3) may be formed.
  • the brine supply unit The brine can be adhered to the ice making surface by naturally flowing down.
  • the refrigerant may be LNG.
  • the ice making part Further comprising a liner covering the ice making surface, The liner can be replaceable.
  • the flake ice manufacturing apparatus of 1 aspect of this invention can be mounted in a moving body.
  • the size of flake ice manufacturing apparatus itself can be made more compact. For this reason, for example, in a vehicle, a ship, and an aircraft for transporting the object to be cooled, a flake ice manufacturing apparatus having a smaller volume than the volume of the entire cold object to be loaded can be mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Inorganic Chemistry (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

Provided is a means for more efficiently generating ice which has a high cooling capacity. A flake ice production device 10 generates ice by cooling the wall surface of an inner cylinder 22 and freezing brine that has adhered to the wall surface of the cooled inner cylinder 22. A spraying unit 13 supplies brine to the wall surface of the inner cylinder 22 by causing the brine to adhere thereto. A stripping unit 14 collects the ice generated on the wall surface of the inner cylinder 22. In addition, the flake ice production device 10 is designed such that formula (1) is satisfied when Y represents an ice making speed indicating the amount of ice generated on the wall surface of the inner cylinder 22 per unit time, and x1 represents the thermal conductance rate of the wall surface of the inner cylinder 22. Formula (1): Y = f(x1) .

Description

製氷装置、移動体、フレークアイス製造装置、フレークアイス製造方法Ice making device, moving body, flake ice production device, flake ice production method
 本発明は、製氷装置、移動体、フレークアイス製造装置、フレークアイス製造方法に関する。 The present invention relates to an ice making device, a moving body, a flake ice production device, and a flake ice production method.
 従来より、生鮮海産物等の動植物又はその部分の鮮度を保持する手法として、生鮮海産物等の動植物又はその部分を氷水で冷却する手法がとられている。しかしながら、真水から作った氷の場合、氷が溶けると、鮮度保持に使用している海水の溶質濃度が低下する。その結果、浸透圧により、水氷に浸している動植物又はその部分の体内に水が浸入して、鮮度等が落ちてしまうという問題がある。 Conventionally, as a technique for maintaining the freshness of animals and plants such as fresh seafood or parts thereof, a technique of cooling animals and plants such as fresh seafood or parts thereof with ice water has been used. However, in the case of ice made from fresh water, when the ice melts, the solute concentration of seawater used for maintaining freshness decreases. As a result, due to osmotic pressure, there is a problem that water enters the body of the animal or plant immersed in water ice or the portion thereof, and the freshness or the like falls.
 そこで、特許文献1では、略0.5~2.5%の溶質濃度を有する塩含有水の凍結により得られた塩含有氷をスラリー状に形成してなる塩含有水の製氷方法において、ろ過殺菌をした海水等の原水を塩分調整して約1.0~1.5%前後の溶質濃度の塩含有水となし、該塩含有水に急速冷却を行なうことにより前記溶質濃度に対応する-5~-1℃の氷点温度を持つスラリー状塩含有氷を生成する方法が開示されている。
 ただし、特許文献1を含め従来の技術では、生鮮海産物中の水分は凍結すると結晶化するが、生鮮海産物中の氷の結晶が大きくなるため、生鮮海産物の細胞組織が破壊され、鮮度、味覚を維持できないという問題がある。
 また、塩水を凍らせた氷は、凍結点の高い真水の部分から凍結し始め、最終的に凍結する部分には、少量の塩水が凍結した部分や、氷の周りに析出した塩が付着している状況となり、氷の溶質濃度は不均一となってしまう。そして、融解時には、最終的に凍結した部分が先に融解し、高濃度の塩水が出てくるため、融解水は、融解の過程で溶質濃度が大幅に変化したり、温度が0℃に向けて上昇するといった技術的な課題があった。
 そこで、本出願人は、冷却能に優れ、かつ、分離しない状態を長く持続させることができるフレークアイスを製造する装置について、既に特許出願をしている(特願2016-103637)。
Therefore, in Patent Document 1, in a salt-containing water ice making method in which salt-containing ice obtained by freezing salt-containing water having a solute concentration of approximately 0.5 to 2.5% is formed into a slurry, filtration is performed. Sterilized raw water, such as seawater, is adjusted to a salt content to obtain a salt-containing water having a solute concentration of about 1.0 to 1.5%, and the salt-containing water is rapidly cooled to cope with the solute concentration- A method is disclosed for producing slurry-like salt-containing ice having a freezing point temperature of 5 to -1 ° C.
However, in the conventional techniques including Patent Document 1, water in fresh seafood crystallizes when frozen, but since ice crystals in fresh seafood become large, the cellular structure of fresh seafood is destroyed, and freshness and taste are reduced. There is a problem that it cannot be maintained.
In addition, ice frozen in salt water begins to freeze from the fresh water portion with a high freezing point, and a portion where a small amount of salt water has frozen or salt deposited around the ice adheres to the portion that will eventually freeze. As a result, the solute concentration of ice becomes uneven. At the time of thawing, the part that was finally frozen thaws first, and high-concentration salt water comes out, so that the solute concentration in the melted water changes significantly during the melting process, or the temperature goes to 0 ° C. There was a technical problem of rising.
Therefore, the present applicant has already filed a patent application for an apparatus for producing flake ice that is excellent in cooling ability and can maintain a state in which it is not separated for a long time (Japanese Patent Application No. 2016-103637).
特開2002-115945号公報JP 2002-115945 A
 しかしながら、上記本出願人によって特許出願されたフレークアイスの製造装置を含む製氷装置において、より効率良く冷却能の高い氷を生成することを可能とする技術を実現させたいという要望があった。 However, in the ice making device including the flake ice manufacturing device for which a patent application has been filed by the present applicant, there has been a demand for realizing a technology that can generate ice with high cooling ability more efficiently.
 本発明はこのような状況に鑑みてなされたものであり、より効率良く冷却能の高い氷を生成する手法を提供すること目的とする。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a technique for generating ice with higher efficiency and higher cooling ability.
 上記目的を達成するため、本発明の一態様の製氷装置は、
 製氷面と、前記製氷面を冷却する冷却部とを有し、冷却された前記製氷面に付着したブラインを凍結させることにより氷を生成する製氷部と、
 前記製氷面に対し、前記ブラインを付着させることにより供給するブライン供給部と、
 前記製氷部により生成された前記氷を回収する回収部と、
 を備え、
 前記製氷部における、単位時間当たりの前記氷の生成量を示す製氷速度をYとし、前記製氷面の熱伝導率をx1としたときに、次式(1)が成り立つように設計されている。
 Y=f(x1) ・・・(1)
In order to achieve the above object, an ice making device of one embodiment of the present invention includes:
An ice making surface, and a cooling unit that cools the ice making surface; and an ice making unit that generates ice by freezing brine attached to the cooled ice making surface;
A brine supply unit for supplying the brine by attaching the brine to the ice making surface;
A recovery unit for recovering the ice generated by the ice making unit;
With
In the ice making section, when the ice making speed indicating the amount of ice produced per unit time is Y and the thermal conductivity of the ice making surface is x1, the following equation (1) is established.
Y = f (x1) (1)
 また、
 前記製氷面の20℃における熱伝導率は70W/mK以上に構成されることができる。
Also,
The thermal conductivity of the ice making surface at 20 ° C. can be 70 W / mK or more.
 また、前記製氷速度をYとし、前記製氷面のうち前記ブラインが付着される可能性がある部分の面積をx2としたときに、次式(2)が成り立つように設計されることができる。
 Y=f(x2) ・・・(2)
Further, when the ice making speed is Y and the area of the ice making surface where the brine may be attached is x2, the following equation (2) can be established.
Y = f (x2) (2)
 また、前記冷却部に対し、前記製氷面を冷却させるために、所定の冷媒を供給する冷媒供給部をさらに備え、
 前記製氷速度をYとし、前記製氷面の温度をx3としたときに、次式(3)が成り立つように設計されることができる。
 Y=f(x3) ・・・(3)
The cooling unit further includes a refrigerant supply unit that supplies a predetermined refrigerant to cool the ice making surface.
When the ice making speed is Y and the temperature of the ice making surface is x3, the following equation (3) can be established.
Y = f (x3) (3)
 また、前記ブライン供給部は、
 前記ブラインを、前記製氷面に噴射することにより付着させることができる。
The brine supply unit
The brine can be deposited by spraying onto the ice making surface.
 また、前記ブライン供給部は、
 前記ブラインを、前記製氷面に自然流下させることにより付着させることができる。
The brine supply unit
The brine can be adhered to the ice making surface by naturally flowing down.
 また、前記製氷面の20℃における熱伝導率は70W/mK以上に構成させることができる。 Also, the thermal conductivity at 20 ° C. of the ice making surface can be configured to be 70 W / mK or more.
 また、前記冷媒は、LNGとすることができる。 Further, the refrigerant can be LNG.
 また、前記製氷部は、
 前記製氷面を覆うライナーをさらに備え、
 前記ライナーは交換可能とすることができる。
In addition, the ice making part
Further comprising a liner covering the ice making surface,
The liner can be replaceable.
 本発明の一態様のフレークアイス製造装置は、前記製氷部と、前記ブライン供給部と、前記回収部とを備え、
 前記製氷部は、
 前記製氷面を有する内筒と、当該内筒を囲繞する外筒と、当該内筒と当該外筒との間に形成されるクリアランスとを含むドラムと、前記クリアランスに対して冷媒を供給する冷媒供給部をさらに備え、
 前記ブライン供給部は、
 前記ドラムの中心軸を軸として回転する回転軸と共に回転し、前記内筒の前記製氷面に向けて前記ブラインを噴射する噴射部をさらに備え、
 前記回収部は、
 前記噴射部から噴射された前記ブラインが、前記クリアランスに供給された前記冷媒により冷却された前記内筒の内面に付着し、その結果として生成された氷を剥ぎ取る剥取部をさらに備え、
 前記製氷部における、単位時間当たりの前記氷の生成量を示す生成速度をYとし、前記製氷面の熱伝導率をx1としたときに、前式(1)が成り立つように設計されることができる。
The flake ice manufacturing apparatus of one aspect of the present invention includes the ice making unit, the brine supply unit, and the recovery unit,
The ice making part is
A drum including an inner cylinder having the ice making surface, an outer cylinder surrounding the inner cylinder, a clearance formed between the inner cylinder and the outer cylinder, and a refrigerant that supplies refrigerant to the clearance And further comprising a supply unit,
The brine supply unit
A rotation unit that rotates around a central axis of the drum, and further includes an injection unit that injects the brine toward the ice making surface of the inner cylinder;
The collection unit
The brine jetted from the jetting unit is further attached to the inner surface of the inner cylinder cooled by the refrigerant supplied to the clearance, and further comprises a stripping unit for stripping off the ice generated as a result,
In the ice making section, when the production rate indicating the amount of ice produced per unit time is Y and the thermal conductivity of the ice making surface is x1, the above equation (1) is established. it can.
 また、前記製氷面の20℃における熱伝導率が70W/mK以上とすることができる。 Further, the thermal conductivity of the ice making surface at 20 ° C. can be 70 W / mK or more.
 また、前記製氷速度をYとし、前記製氷面のうち前記ブラインが付着される可能性がある部分の面積をx2としたときに、前記式(2)が成り立つように設計されることができる。 Further, when the ice making speed is Y and the area of the ice making surface where the brine may be attached is x2, the above equation (2) can be established.
 また、前記製氷速度をYとし、前記製氷面の温度をx3としたときに、前記式(3)が成り立つように設計されることができる。 Further, when the ice making speed is Y and the temperature of the ice making surface is x3, it can be designed so that the above formula (3) is established.
 また、前記ブライン供給部は、
 前記ブラインを、前記製氷面に自然流下させることにより付着させることができる。
The brine supply unit
The brine can be adhered to the ice making surface by naturally flowing down.
 また、前記冷媒は、LNGとすることができる。 Further, the refrigerant can be LNG.
 また、前記製氷部は、
 前記製氷面を覆うライナーをさらに備え、
 前記ライナーは交換可能とすることができる。
In addition, the ice making part
Further comprising a liner covering the ice making surface,
The liner can be replaceable.
 また、本発明の一態様のフレークアイス製造装置は、移動体に搭載させることができる。 Moreover, the flake ice manufacturing apparatus of one embodiment of the present invention can be mounted on a moving body.
 本発明によれば、より効率良く冷却能の高い氷を生成する手法を提供することができる。 According to the present invention, it is possible to provide a method of generating ice with higher efficiency and higher cooling ability.
本発明の製氷装置の一実施形態に係るフレークアイス製造装置の概要を示す部分断面斜視図を含むイメージ図である。It is an image figure containing the partial cross section perspective view which shows the outline | summary of the flake ice manufacturing apparatus which concerns on one Embodiment of the ice making apparatus of this invention. 図1のフレークアイス製造装置の製氷面に用いられる部材毎の熱伝導率を示す図である。It is a figure which shows the heat conductivity for every member used for the ice making surface of the flake ice manufacturing apparatus of FIG. 図1のフレークアイス製造装置を含むフレークアイス製造システムの全体の概要を示すイメージ図である。It is an image figure which shows the outline | summary of the whole flake ice manufacturing system containing the flake ice manufacturing apparatus of FIG.
 <氷>
 本発明の製氷装置により生成された氷は、以下の(a)及び(b)の条件を満たす、溶質を含有する水溶液を含む液体の氷である。なお、「フレークアイス」とは、薄片状に加工された氷のことをいう。
 (a)融解完了時の温度が0℃未満である
 (b)融解過程で前記氷から発生する水溶液の溶質濃度の変化率が30%以内である
<Ice>
The ice produced by the ice making device of the present invention is liquid ice containing an aqueous solution containing a solute that satisfies the following conditions (a) and (b). “Flake ice” refers to ice processed into flakes.
(A) The temperature at the completion of melting is less than 0 ° C. (b) The change rate of the solute concentration of the aqueous solution generated from the ice during the melting process is within 30%.
 水に溶質を融解した場合、その水溶液の凝固点が低下するという凝固点降下が生じることが知られている。凝固点降下の作用により、食塩等の溶質が融解した水溶液は、その凝固点が低下している。つまり、そのような水溶液からなる氷は、真水からなる氷より低い温度で凝固した氷である。
 ここで、氷が水に変化するときに必要な熱を「潜熱」というが、この潜熱は温度変化を伴わない。このような潜熱の効果により、上記のような凝固点が低下した氷は、融解時に真水の凝固点以下の温度で安定な状態が続くため、冷熱エネルギーを蓄えた状態が持続することになる。
 よって、本来であれば、被冷却物の冷却能が真水からなる氷より高くなるはずである。しかし、従来の技術によって生成された氷は、冷却の際に自身の温度が経時的に早く上がる等、被冷却物を冷却する能力が十分なものではないことを本発明者らは発見した。その理由について本発明者らは検討したところ、従来の技術では食塩等の溶質を含有する水溶液から氷を製造したとしても、実際は、水溶液が凍る前に溶質を含まない氷が先に製造されてしまい、結果として製造されるのは溶質を含まない氷と溶質との混合物となってしまうか、あるいは、凝固点の低下した氷はほんの僅かしか生成されないため、冷却能の高い氷が製造されていなかったことがわかった。
It is known that when a solute is melted in water, a freezing point depression occurs in which the freezing point of the aqueous solution is lowered. The freezing point of an aqueous solution in which a solute such as sodium chloride has been melted due to the action of lowering the freezing point is lowered. That is, ice made of such an aqueous solution is ice that has solidified at a lower temperature than ice made of fresh water.
Here, the heat required when ice changes to water is referred to as “latent heat”, but this latent heat is not accompanied by a temperature change. Due to the effect of such latent heat, the ice having a reduced freezing point as described above continues to be stable at a temperature below the freezing point of fresh water when melted, so that the state where cold energy is stored continues.
Therefore, the cooling ability of the object to be cooled should be higher than that of ice made of fresh water. However, the present inventors have found that the ice produced by the conventional technique does not have sufficient ability to cool the object to be cooled, such as the temperature of the ice rising rapidly with time. The present inventors examined the reason, and even if ice was produced from an aqueous solution containing a solute such as salt in the conventional technique, in practice, ice containing no solute was first produced before the aqueous solution was frozen. As a result, a mixture of ice and solute containing no solute is produced, or only a small amount of ice having a reduced freezing point is produced, so that ice with high cooling capacity is not produced. I found out.
 しかしながら、本発明者らは、所定の方法により(詳細は後述する)、凝固点が低下した水溶液を含む液体の氷を生成することができる製氷装置の発明に成功した。このような本発明の製氷装置により生成された氷は、上述の(a)及び(b)の条件を満たすものである。以下、上述の(a)及び(b)の条件について説明する。 However, the present inventors have succeeded in inventing an ice making device capable of producing liquid ice containing an aqueous solution having a reduced freezing point by a predetermined method (details will be described later). The ice produced by such an ice making device of the present invention satisfies the above conditions (a) and (b). Hereinafter, the above conditions (a) and (b) will be described.
 (融解完了時の温度)
 上記(a)に関して、本発明の製氷装置により生成された氷は、溶質を含む水溶液を含む液体の氷であるため、真水(溶質を含まない水)の凝固点より凝固点の温度が低下している。そのため、融解完了時の温度が0℃未満であるという特徴を有する。「融解完了時の温度」とは、本発明の製氷装置により生成された氷を融点以上の環境下(例えば、室温、大気圧下)に置くことで氷の融解を開始させ、全ての氷が融解して水になった時点におけるその水の温度のことを指す。
(Temperature at the completion of melting)
Regarding the above (a), since the ice produced by the ice making device of the present invention is liquid ice containing an aqueous solution containing a solute, the temperature of the freezing point is lower than the freezing point of fresh water (water containing no solute). . Therefore, it has the characteristic that the temperature at the time of completion of melting is less than 0 ° C. “Temperature at the completion of melting” means that the ice produced by the ice making apparatus of the present invention is placed in an environment above the melting point (for example, room temperature and atmospheric pressure) to start melting of the ice. It refers to the temperature of water when it melts into water.
 融解完了時の温度は0℃未満であれば特に限定されず、溶質の種類、濃度を調整することで適宜変更することができる。融解完了時の温度は、より冷却能が高いという点で、温度が低い方が好ましく、具体的には、-1℃以下(-2℃以下、-3℃以下、-4℃以下、-5℃以下、-6℃以下、-7℃以下、-8℃以下、-9℃以下、-10℃以下、-11℃以下、-12℃以下、-13℃以下、-14℃以下、-15℃以下、-16℃以下、-17℃以下、-18℃以下、-19℃以下、-20℃以下等)であることが好ましい。他方、凝固点を、被冷却物の凍結点に近づけた方が好ましい場合もあり(例えば、生鮮動植物の損傷を防ぐため等)、このような場合は、融解完了時の温度が高すぎない方が好ましく、例えば、-21℃以上(-20℃以上、-19℃以上、-18℃以上、-17℃以上、-16℃以上、-15℃以上、-14℃以上、-13℃以上、-12℃以上、-11℃以上、-10℃以上、-9℃以上、-8℃以上、-7℃以上、-6℃以上、-5℃以上、-4℃以上、-3℃以上、-2℃以上、-1℃以上、-0.5℃以上等)であることが好ましい。 The temperature at the completion of melting is not particularly limited as long as it is less than 0 ° C., and can be appropriately changed by adjusting the kind and concentration of the solute. The temperature at the completion of melting is preferably lower in terms of higher cooling ability, and specifically, -1 ° C or lower (-2 ° C or lower, -3 ° C or lower, -4 ° C or lower, -5 ° C or lower, -6 ° C or lower, -7 ° C or lower, -8 ° C or lower, -9 ° C or lower, -10 ° C or lower, -11 ° C or lower, -12 ° C or lower, -13 ° C or lower, -14 ° C or lower, -15 Or less, −16 ° C. or less, −17 ° C. or less, −18 ° C. or less, −19 ° C. or less, −20 ° C. or less, and the like. On the other hand, it may be preferable to bring the freezing point closer to the freezing point of the object to be cooled (for example, to prevent damage to fresh animals and plants). In such a case, it is preferable that the temperature at the completion of thawing is not too high. Preferably, for example, -21 ° C or higher (-20 ° C or higher, -19 ° C or higher, -18 ° C or higher, -17 ° C or higher, -16 ° C or higher, -15 ° C or higher, -14 ° C or higher, -13 ° C or higher,- 12 ° C or higher, -11 ° C or higher, -10 ° C or higher, -9 ° C or higher, -8 ° C or higher, -7 ° C or higher, -6 ° C or higher, -5 ° C or higher, -4 ° C or higher, -3 ° C or higher,- 2 ° C or higher, -1 ° C or higher, -0.5 ° C or higher, etc.).
 (溶質濃度の変化率)
 上記(b)に関して、本発明の製氷装置により生成された氷は、融解過程で氷から発生する水溶液の溶質濃度の変化率(以下、本明細書において「溶質濃度の変化率」と略称する場合がある。)が30%以内であるという特徴を有する。従来の技術によっても、わずかに凝固点の低下した氷が生じる場合もあるが、そのほとんどは溶質を含まない水の氷と溶質の結晶との混合物であるため、冷却能が十分なものでない。このように溶質を含まない水の氷と溶質の結晶との混合物が多く含まれる場合、氷を融解条件下においた場合、融解に伴う溶質の溶出速度が不安定であり、融解開始時に近い時点である程、溶質が多く溶出し、融解が進むとともに溶質の溶出する量が少なくなり、融解が完了時に近い時点程、溶質の溶出量が少なくなる。これに対し、本発明の製氷装置により生成された氷は、溶質を含む水溶液を含む液体の氷からなるものであるため、融解過程における溶質の溶出速度の変化が少ないという特徴を有する。具体的には、融解過程で氷から発生する水溶液の溶質濃度の変化率が30%である。なお、「融解過程で氷から発生する水溶液の溶質濃度の変化率」とは、融解過程の任意の時点での発生する水溶液における溶質濃度に対する、融解完了時における水溶液の濃度の割合を意味する。なお、「溶質濃度」とは、水溶液中の溶質の質量の濃度を意味する。
(Change rate of solute concentration)
Regarding the above (b), the ice produced by the ice making apparatus of the present invention is the rate of change in the solute concentration of the aqueous solution generated from the ice during the melting process (hereinafter referred to as the “rate of change in solute concentration” in this specification). Is) within 30%. Even with the conventional technique, ice having a slightly reduced freezing point may be generated, but most of them are a mixture of water-free ice and solute crystals, so that the cooling capacity is not sufficient. When there is a large mixture of ice and solute crystals of water that does not contain solute in this way, when the ice is placed under melting conditions, the elution rate of the solute accompanying melting is unstable, The more the solute is eluted, the more the solute is eluted, the less the amount of the solute is eluted. On the other hand, the ice produced by the ice making device of the present invention is composed of liquid ice containing an aqueous solution containing a solute, and therefore has a feature that there is little change in the elution rate of the solute during the melting process. Specifically, the change rate of the solute concentration of the aqueous solution generated from ice during the melting process is 30%. The “rate of change in the solute concentration of an aqueous solution generated from ice during the melting process” means the ratio of the concentration of the aqueous solution at the completion of melting to the solute concentration in the aqueous solution generated at an arbitrary point in the melting process. The “solute concentration” means the concentration of the mass of the solute in the aqueous solution.
 本発明の製氷装置により生成された氷における溶質濃度の変化率は30%以内であれば特に限定されないが、その変化率が少ない方が、凝固点の低下した水溶液の氷の純度が高いこと、つまり、冷却能が高いことを意味する。この観点から、溶質濃度の変化率は、25%以内(24%以内、23%以内、22%以内、21%以内、20%以内、19%以内、18%以内、17%以内、16%以内、15%以内、14%以内、13%以内、12%以内、11%以内、10%以内、9%以内、8%以内、7%以内、6%以内、5%以内、4%以内、3%以内、2%以内、1%以内、0.5%以内等)であることが好ましい。他方、溶質濃度の変化率は、0.1%以上(0.5%以上、1%以上、2%以上、3%以上、4%以上、5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、11%以上、12%以上、13%以上、14%以上、15%以上、16%以上、17%以上、18%以上、19%以上、20%以上等)であってもよい。 The rate of change of the solute concentration in the ice produced by the ice making apparatus of the present invention is not particularly limited as long as it is within 30%, but the smaller the rate of change, the higher the purity of the ice of the aqueous solution with a reduced freezing point, that is, This means that the cooling capacity is high. From this viewpoint, the change rate of solute concentration is within 25% (within 24%, within 23%, within 22%, within 21%, within 20%, within 19%, within 18%, within 17%, within 16%. Within 15%, within 14%, within 13%, within 12%, within 11%, within 10%, within 9%, within 8%, within 7%, within 6%, within 5%, within 4%, 3 %, Within 2%, within 1%, within 0.5%, etc.). On the other hand, the change rate of the solute concentration is 0.1% or more (0.5% or more, 1% or more, 2% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8 % Or more, 9% or more, 10% or more, 11% or more, 12% or more, 13% or more, 14% or more, 15% or more, 16% or more, 17% or more, 18% or more, 19% or more, 20% or more Etc.).
 (溶質)
 本発明の製氷装置により生成された氷に含まれる溶質の種類は、水を溶媒としたときの溶質であれば特に限定されず、所望の凝固点、使用する氷の用途等に応じて、適宜選択することができる。溶質としては、固体状の溶質、液状の溶質等が挙げられるが、代表的な固体状の溶質としては、塩類(無機塩、有機塩等)が挙げられる。特に、塩類のうち、食塩(NaCl)は、凝固点の温度を過度に下げすぎず、生鮮動植物又はその一部の冷却に適してことから好ましい。また、食塩は海水に含まれるものであるため、調達が容易であるという点でも好ましい。また、液状の溶質としては、エチレングリコール等が挙げられる。なお、溶質は1種単独で含まれてもよく、2種以上含まれてもよい。
(Solute)
The type of solute contained in the ice produced by the ice making apparatus of the present invention is not particularly limited as long as it is a solute when water is used as a solvent, and is appropriately selected depending on the desired freezing point, the intended use of the ice to be used, etc. can do. Examples of the solute include solid solutes and liquid solutes, and typical solid solutes include salts (inorganic salts, organic salts, etc.). Particularly, among salts, sodium chloride (NaCl) is preferable because it does not excessively lower the temperature of the freezing point and is suitable for cooling fresh animals and plants or a part thereof. Moreover, since salt is contained in seawater, it is also preferable in terms of easy procurement. Moreover, ethylene glycol etc. are mentioned as a liquid solute. In addition, a solute may be contained individually by 1 type and may be contained 2 or more types.
 本発明の製氷装置により生成された氷に含まれる溶質の濃度は特に限定されず、溶質の種類、所望の凝固点、使用する氷の用途等に応じて、適宜選択することができる。例えば、溶質として食塩を用いた場合は、水溶液の凝固点をより下げて、高い冷却能を得ることができる点で、食塩の濃度は0.5%(w/v)以上(1%(w/v)以上、2%(w/v)以上、3%(w/v)以上、4%(w/v)以上、5%(w/v)以上、6%(w/v)以上、7%(w/v)以上、8%(w/v)以上、9%(w/v)以上、10%(w/v)以上、11%(w/v)以上、12%(w/v)以上、13%(w/v)以上、14%(w/v)以上、15%(w/v)以上、16%(w/v)以上、17%(w/v)以上、18%(w/v)以上、19%(w/v)以上、20%(w/v)以上等)であることが好ましい。他方、本発明の製氷装置により生成された氷を生鮮動植物又はその一部の冷却に用いる場合等においては、凝固点の温度を過度に下げすぎない方が好ましく、この観点で、23%(w/v)以下(20%(w/v)以下、19%(w/v)以下、18%(w/v)以下、17%(w/v)以下、16%(w/v)以下、15%(w/v)以下、14%(w/v)以下、13%(w/v)以下、12%(w/v)以下、11%(w/v)以下、10%(w/v)以下、9%(w/v)以下、8%(w/v)以下、7%(w/v)以下、6%(w/v)以下、5%(w/v)以下、4%(w/v)以下、3%(w/v)以下、2%(w/v)以下、1%(w/v)以下等)であることが好ましい。 The concentration of the solute contained in the ice produced by the ice making apparatus of the present invention is not particularly limited, and can be appropriately selected according to the kind of solute, the desired freezing point, the use of the ice to be used, and the like. For example, when sodium chloride is used as the solute, the concentration of the sodium chloride is 0.5% (w / v) or more (1% (w / v) in that the freezing point of the aqueous solution can be further lowered to obtain a high cooling capacity. v) or more, 2% (w / v) or more, 3% (w / v) or more, 4% (w / v) or more, 5% (w / v) or more, 6% (w / v) or more, 7 % (W / v) or more, 8% (w / v) or more, 9% (w / v) or more, 10% (w / v) or more, 11% (w / v) or more, 12% (w / v) ), 13% (w / v) or more, 14% (w / v) or more, 15% (w / v) or more, 16% (w / v) or more, 17% (w / v) or more, 18% (W / v) or more, 19% (w / v) or more, 20% (w / v) or more, etc.). On the other hand, when the ice produced by the ice making apparatus of the present invention is used for cooling fresh animals or plants or a part thereof, it is preferable not to excessively reduce the temperature of the freezing point. From this viewpoint, 23% (w / v) or less (20% (w / v) or less, 19% (w / v) or less, 18% (w / v) or less, 17% (w / v) or less, 16% (w / v) or less, 15 % (W / v) or less, 14% (w / v) or less, 13% (w / v) or less, 12% (w / v) or less, 11% (w / v) or less, 10% (w / v ), 9% (w / v) or less, 8% (w / v) or less, 7% (w / v) or less, 6% (w / v) or less, 5% (w / v) or less, 4% (W / v) or less, 3% (w / v) or less, 2% (w / v) or less, 1% (w / v) or less, etc.).
 本発明の製氷装置により生成された氷は冷却能に優れるため、被保冷物を冷却させる冷媒としての使用に適している。被保冷物を冷却させる低温の冷媒としては、氷以外に、エタノール等の不凍液として使用される有機溶媒が挙げられるが、これらの不凍液より氷の方が熱伝導率が高く、比熱が高い。そのため、本発明の製氷装置により生成された氷のような溶質を溶解させて凝固点が低くなった氷は、不凍液のような他の0℃未満の冷媒より、冷却能が優れている点においても有用である。 Since the ice produced by the ice making apparatus of the present invention is excellent in cooling ability, it is suitable for use as a refrigerant for cooling an object to be cooled. Examples of the low-temperature refrigerant for cooling the object to be cooled include organic solvents used as an antifreeze liquid such as ethanol in addition to ice, but ice has higher thermal conductivity and higher specific heat than these antifreeze liquids. For this reason, ice having a low freezing point by dissolving a solute such as ice produced by the ice making apparatus of the present invention is superior in cooling ability to other refrigerants of less than 0 ° C. such as antifreeze. Useful.
 本発明の製氷装置により生成された氷は、上記の溶質以外の成分を含んでもよく、含まなくてもよい。 The ice produced by the ice making apparatus of the present invention may or may not contain components other than the above solute.
 本発明において、「氷」とは、水溶液を含む液体が凍ったものを指す。 In the present invention, “ice” refers to a frozen liquid containing an aqueous solution.
 また、本発明の製氷装置により生成された氷は、真水の凝固点以下の温度で安定な状態が続くため、すなわち、分離しない状態を長く持続させることができる。そのため、例えば、後述のとおり、本発明の製氷装置により生成された氷を構成する液体が、上記の溶質を含有する水溶液に加え、さらに、油を含む液体であった場合、該油が均一な状態が長持ちし、つまり、分離しない状態を長く持続させることができる。 Also, since the ice produced by the ice making device of the present invention continues to be stable at a temperature below the freezing point of fresh water, that is, it can be kept in a state where it is not separated for a long time. Therefore, for example, as described later, when the liquid constituting the ice produced by the ice making device of the present invention is a liquid containing oil in addition to the aqueous solution containing the solute, the oil is uniform. The state lasts for a long time, that is, the state that does not separate can be maintained for a long time.
 上述のとおり、本発明の製氷装置により生成された氷を構成する液体は、上記の溶質を含有する水溶液に加え、さらに、油を含む液体であってもよい。そのような液体としては、生乳、水と油を含む産業廃棄物(廃棄乳等)が挙げられる。液体が生乳であった場合、その氷を食したときの官能性が向上する点で好ましい。このように、官能性が向上する理由は、生乳に含まれる油(脂肪)が氷の中に閉じ込められた状態であるからと推測される。なお、本発明の製氷装置により生成された氷は、上記の溶質を含有する水溶液を凍結させたもののみから構成してもよい。 As described above, the liquid constituting the ice produced by the ice making device of the present invention may be a liquid containing oil in addition to the aqueous solution containing the solute. Examples of such liquids include raw milk and industrial waste (such as waste milk) containing water and oil. When the liquid is raw milk, it is preferable in terms of improving the functionality when eating the ice. Thus, it is estimated that the reason why the functionality is improved is that oil (fat) contained in raw milk is confined in ice. In addition, you may comprise the ice produced | generated by the ice making apparatus of this invention only from what frozen the aqueous solution containing said solute.
 本発明の製氷装置により生成された氷を構成する液体がさらに油を含む場合、液体中の水と油との比率は、特に限定されず、例えば、1:99~99:1(10:90~90:10、20:80~80:20、30:80~80:30、40~60:40~60等)の範囲で適宜選択してもよい。 When the liquid constituting the ice produced by the ice making device of the present invention further contains oil, the ratio of water to oil in the liquid is not particularly limited, and is, for example, 1:99 to 99: 1 (10:90). To 90:10, 20:80 to 80:20, 30:80 to 80:30, 40 to 60:40 to 60, etc.).
 また、本発明の製氷装置により生成された氷は、凝固点降下度の異なる2種以上の溶質を含む水溶液の氷であってもよい。この場合、本発明の製氷装置により生成された氷は、一方の溶質を含む水溶液の氷と、他方の溶質を含む水溶液の氷との混合物であってもよい。かかる場合、例えば、溶質としてエチレングリコールを含む水溶液の氷に、エチレングリコールと凝固点降下度の異なる溶質として食塩を含む水溶液の氷を加えることで、エチレングリコールを含む水溶液の氷の融解を遅らせることができる。あるいは、本発明の製氷装置により生成された氷は、2種以上の溶質を同一の水溶液に溶解した水溶液の氷であってもよい。また、凝固点降下度の異なる2種以上の溶質を併用する場合、対象となる溶質を含む水溶液の氷の融点を下げる場合においても有用である。例えば、溶質として食塩を用いる場合に、食塩よりさらに融点を下げることができる溶質(エチレングリコール、塩化カルシウム等)を併用することで、食塩水の氷の融点を下げることができ、例えば、食塩水の氷のみではなしえない-30℃近辺での温度を実現できる。凝固点降下度の異なる2種以上の溶質の比率は、目的に応じて適宜変更することができる。 Further, the ice produced by the ice making apparatus of the present invention may be an aqueous ice containing two or more solutes having different freezing point depression degrees. In this case, the ice produced by the ice making apparatus of the present invention may be a mixture of ice of an aqueous solution containing one solute and ice of an aqueous solution containing the other solute. In such a case, for example, by adding ice of an aqueous solution containing sodium chloride as a solute having a different freezing point depression degree from that of ethylene glycol to ice of an aqueous solution containing ethylene glycol as a solute, melting of the ice of the aqueous solution containing ethylene glycol can be delayed. it can. Or the ice produced | generated by the ice making apparatus of this invention may be the ice of the aqueous solution which melt | dissolved 2 or more types of solutes in the same aqueous solution. Further, when two or more kinds of solutes having different degrees of freezing point depression are used in combination, it is also useful for lowering the melting point of ice of an aqueous solution containing the target solute. For example, when salt is used as the solute, the melting point of the ice in the salt solution can be lowered by using a solute (ethylene glycol, calcium chloride, etc.) that can lower the melting point further than the salt. A temperature around -30 ° C that cannot be achieved with ice alone can be achieved. The ratio of two or more solutes having different freezing point depression degrees can be appropriately changed according to the purpose.
 (被保冷物を冷却させる冷媒)
 本発明の製氷装置により生成された氷は、被保冷物を冷却させる冷媒とすることができる。上記のとおり、本発明の製氷装置により生成された氷は冷却能に優れるため、被保冷物を冷却させる冷媒に好適である。
 なお、被保冷物を冷却させるための冷媒と、内筒22(図1参照)を冷却させるための冷媒との混同を防ぐため、被保冷物を冷却させるための冷媒を、以下「氷スラリー」と呼ぶ。氷スラリーは、本発明の製氷装置により生成された氷と、水溶液を含む液体との混合物である。
(Refrigerant that cools the object to be cooled)
The ice produced by the ice making device of the present invention can be used as a refrigerant for cooling the object to be cooled. As described above, the ice produced by the ice making device of the present invention is excellent in cooling ability, and thus is suitable as a refrigerant for cooling an object to be cooled.
In order to prevent confusion between the refrigerant for cooling the object to be cooled and the refrigerant for cooling the inner cylinder 22 (see FIG. 1), the refrigerant for cooling the object to be cooled is hereinafter referred to as “ice slurry”. Call it. The ice slurry is a mixture of ice produced by the ice making device of the present invention and a liquid containing an aqueous solution.
 本発明の製氷装置により生成された氷を含有する氷スラリーは、上記の氷の他の成分を含んでもよく、例えば、上記の氷以外に水を含むことで、氷と水との混合物により構成してもよい。例えば、氷に含まれる溶質と同一の溶質を含有する水をさらに含む場合、氷における溶質の濃度と、水における溶質の濃度は近い方が好ましい。その理由は、以下のとおりである。 The ice slurry containing the ice produced by the ice making device of the present invention may contain other components of the above ice, for example, a mixture of ice and water by containing water in addition to the above ice. May be. For example, when it further contains water containing the same solute as that contained in ice, the solute concentration in ice and the solute concentration in water are preferably close. The reason is as follows.
 氷の溶質濃度が水の溶質濃度より高い場合、氷の温度が水の飽和凍結点より低いため、溶質濃度が低い水を混合した直後に水分が凍結する。一方、氷の溶質濃度が水の溶質濃度より低い場合、氷の飽和凍結点よりも水の飽和凍結点のほうが低いため氷が融解し、氷と水との混合物からなる氷スラリーの温度が低下する。つまり、氷と水との混合物の状態(氷スラリーの状態)を変動させないようにするためには、上述のとおり、混合する氷と水の溶質濃度を同程度とすることが好ましい。また、氷と水との混合物の状態である場合、水は、上記氷が融解してなるものであってもよく、別途調製したものであってもよいが、上記氷が融解してなるものであることが好ましい。 When the solute concentration of ice is higher than the solute concentration of water, the temperature of the ice is lower than the saturation freezing point of water, so that water freezes immediately after mixing water with a low solute concentration. On the other hand, when the solute concentration of ice is lower than the solute concentration of water, the saturated freeze point of water is lower than the saturated freeze point of ice, so the ice melts and the temperature of the ice slurry consisting of a mixture of ice and water decreases. To do. That is, in order not to change the state of the mixture of ice and water (the state of the ice slurry), it is preferable that the solute concentrations of the ice and water to be mixed are approximately the same as described above. In the case of a mixture of ice and water, the water may be one obtained by melting the ice, or one prepared separately, but one obtained by melting the ice. It is preferable that
 具体的には、本発明の製氷装置により生成された氷を含有する氷スラリーを氷と水との混合物により構成する場合、氷における溶質の濃度と、水における溶質の濃度との比が、75:25~20:80であることがより好ましく、70:30~30:70であることがさらに好ましく、60:40~40:60であることがより一層好ましく、55:45~45:55であることがさらに一層好ましく、52:48~48:52であることが特に好ましく、50:50であることが最も好ましい。特に、溶質として食塩を用いる場合、氷における溶質の濃度と、水における溶質の濃度との比が上記範囲内にあることが好ましい。 Specifically, when the ice slurry containing ice produced by the ice making apparatus of the present invention is composed of a mixture of ice and water, the ratio of the solute concentration in ice to the solute concentration in water is 75. : 25 to 20:80 is more preferable, 70:30 to 30:70 is further preferable, 60:40 to 40:60 is still more preferable, and 55:45 to 45:55 is used. Even more preferably, it is particularly preferably 52:48 to 48:52, and most preferably 50:50. In particular, when salt is used as the solute, the ratio of the solute concentration in ice to the solute concentration in water is preferably within the above range.
 本発明の製氷装置により生成される氷の原料となる水は、特に限定されないが、溶質として食塩を使用する場合、海水、海水に塩を追加した水、又は海水の希釈水、の氷であることが好ましい。海水、海水に塩を追加した水、又は海水の希釈水は、調達が容易であり、これによりコストの削減も可能となる。 The water that is the raw material of ice produced by the ice making device of the present invention is not particularly limited, but when using salt as a solute, it is ice of seawater, water obtained by adding salt to seawater, or seawater dilution water. It is preferable. Seawater, water obtained by adding salt to seawater, or seawater-diluted water can be easily procured, thereby reducing costs.
 本発明の製氷装置により生成された氷を含有する氷スラリーは、さらに、上記の本発明の製氷装置により生成された氷より高い熱伝導率を有する固体を含有してもよく、含有さなくてもよいが、含有することが好ましい。短時間で冷却対象物を冷却しようとした場合、熱伝導率の高い固体を利用することにより達成可能であるが、この場合、その固体自身も短時間で冷熱エネルギーを失い温度が上がりやすいため、長時間の冷却には不適である。他方、熱伝導率の高い固体を利用しない方が長時間の冷却に適しているが、短時間で冷却対象物を冷却するのには不適である。しかしながら、本発明の製氷装置により生成された氷は、上記のように冷却能が高いため、熱伝導率の高い固体による短時間の冷却能力を得つつ、長時間の冷却も可能としている点で有用である。本発明の製氷装置により生成された氷より高い熱伝導率を有する固体としては、例えば、金属(アルミニウム、銀、銅、金、ジュラルミン、アンチモン、カドミウム、亜鉛、すず、ビスマス、タングステン、チタン、鉄、鉛、ニッケル、白金、マグネシウム、モリブデン、ジルコニウム、ベリリウム、インジウム、ニオブ、クロム、コバルト、イリジウム、パラジウム)、合金(鋼(炭素鋼、クロム鋼、ニッケル鋼、クロムニッケル鋼、ケイ素鋼、タングステン鋼、マンガン鋼等)、ニッケルクロム合金、アルミ青銅、砲金、黄銅、マンガニン、洋銀、コンスタンタン、はんだ、アルメル、クロメル、モネルメタル、白金イリジウム等)、ケイ素、炭素、セラミックス(アルミナセラミックス、フォルステライトセラミックス、ステアタイトセラミックス等)、大理石、レンガ(マグネシアレンガ、コルハルトレンガ等)等であって、本発明の製氷装置により生成された氷より高い熱伝導率を有するものが挙げられる。また、本発明の製氷装置により生成された氷より高い熱伝導率を有する固体は、熱伝導率が2.3W/m K以上(3W/m K以上、5W/m K以上、8W/m K以上等)の固体であることが好ましく、熱伝導率が10W/m K以上(20W/m K以上、30W/m K以上、40W/m K以上等)の固体であることがより好ましく、熱伝導率が50W/m K以上(60W/m K以上、75W/m K以上、90W/m K以上等)の固体であることがさらに好ましく、熱伝導率が100W/m K以上(125W/m K以上、150W/m K以上、175W/m K以上等)の固体であることがより一層好ましく、熱伝導率が200W/m K以上(250W/m K以上、300W/m K以上、350W/m K以上等)の固体であることがなお好ましく、熱伝導率が200W/m K以上の固体であることがなお好ましく、熱伝導率が400W/m K以上(410W/m K以上等)の固体であることが特に好ましい。 The ice slurry containing ice produced by the ice making device of the present invention may further contain a solid having a higher thermal conductivity than the ice produced by the above ice making device of the present invention. However, it is preferable to contain. When trying to cool an object to be cooled in a short time, it can be achieved by using a solid with high thermal conductivity, but in this case, the solid itself also loses cold energy in a short time and the temperature tends to rise. Not suitable for long-time cooling. On the other hand, although not using a solid with high thermal conductivity is suitable for long-time cooling, it is not suitable for cooling an object to be cooled in a short time. However, since the ice produced by the ice making apparatus of the present invention has a high cooling capacity as described above, it is possible to cool for a long time while obtaining a cooling capacity for a short time by a solid having high thermal conductivity. Useful. Examples of solids having higher thermal conductivity than ice produced by the ice making apparatus of the present invention include metals (aluminum, silver, copper, gold, duralumin, antimony, cadmium, zinc, tin, bismuth, tungsten, titanium, iron , Lead, nickel, platinum, magnesium, molybdenum, zirconium, beryllium, indium, niobium, chromium, cobalt, iridium, palladium), alloy (steel (carbon steel, chromium steel, nickel steel, chromium nickel steel, silicon steel, tungsten steel) , Manganese steel, etc.), nickel-chromium alloy, aluminum bronze, gunmetal, brass, manganin, silver, constantan, solder, alumel, chromel, monel metal, platinum iridium, etc.), silicon, carbon, ceramics (alumina ceramics, forsterite ceramics, steer) tight La mix, etc.), marble, brick (magnesia bricks, a Col Hult bricks, etc.) and the like, can be mentioned those having a higher thermal conductivity than generated ice by the ice making apparatus of the present invention. In addition, the solid having higher thermal conductivity than ice produced by the ice making apparatus of the present invention has a thermal conductivity of 2.3 W / m K or more (3 W / m K or more, 5 W / m K or more, 8 W / m K. Etc.), preferably a solid having a thermal conductivity of 10 W / m K or more (20 W / m K or more, 30 W / m K or more, 40 W / m K or more, etc.) It is more preferable that it is a solid having a conductivity of 50 W / m K or more (60 W / m K or more, 75 W / m K or more, 90 W / m K or more, etc.), and a thermal conductivity of 100 W / m K or more (125 W / m K or more, 150 W / m K or more, 175 W / m K or more) is more preferable, and the thermal conductivity is 200 W / m K or more (250 W / m K or more, 300 W / m K or more, 350 W / m K And the like, more preferably a solid having a thermal conductivity of 200 W / m K or more, and a solid having a thermal conductivity of 400 W / m K or more (410 W / m K or more). It is particularly preferred.
 本発明の製氷装置により生成された氷を含有する氷スラリーが、上記の本発明の氷より高い熱伝導率を有する固体を含有する場合、上記のとおり、多くの固体を含んでも長時間の冷却に適しており、例えば、本発明の製氷装置により生成された氷より高い熱伝導率を有する固体の質量/氷スラリーに含まれる本発明の製氷装置により生成された氷の質量(又は氷スラリーに含まれる本発明の氷と水溶液を含む液体との合計質量)は、1/100000以上(1/50000以上、1/10000以上、1/5000以上、1/1000以上、1/500以上、1/100以上、1/50以上、1/10以上、1/5以上、1/4以上、1/3以上、1/2以上等)であってもよい。 When the ice slurry containing ice produced by the ice making apparatus of the present invention contains a solid having a higher thermal conductivity than the above-described ice of the present invention, as described above, even if it contains many solids, it is cooled for a long time. For example, the mass of ice produced by the ice making device of the present invention contained in the mass / ice slurry of solids having a higher thermal conductivity than the ice produced by the ice making device of the present invention (or The total mass of the ice of the present invention and the liquid containing the aqueous solution is 1 / 100,000 or more (1/50000 or more, 1/10000 or more, 1/5000 or more, 1/1000 or more, 1/500 or more, 1 / 100 or more, 1/50 or more, 1/10 or more, 1/5 or more, 1/4 or more, 1/3 or more, 1/2 or more, and the like.
 本発明の製氷装置により生成された氷を含有する氷スラリーに含有される上記固体は、どのような形状であってもよいが、粒子状であることが好ましい。また、上記固体は、本発明の製氷装置により生成された氷の内部に含まれた形態で含まれていてもよく、氷の外部に含まれた形態で含まれていてもよいが、氷の外部に含まれた形態で含まれていた方が冷却対象物に直接接しやすくなるため、冷却能が高くなる。このことから、氷の外部に含まれた形態で含まれていた方が好ましい。また、本発明の製氷装置により生成された氷を含有する氷スラリーが上記固体を含有する場合、後述の本発明の製氷装置により氷を生成した後に上記固体と混合してもよく、あるいは、あらかじめ原料となる水に混合した状態で、本発明の製氷装置によって氷を生成してもよい。 The solid contained in the ice slurry containing ice produced by the ice making apparatus of the present invention may have any shape, but is preferably particulate. Further, the solid may be contained in a form contained in the ice produced by the ice making apparatus of the present invention, and may be contained in a form contained outside the ice. Since it is easier to directly contact the object to be cooled if it is included in the form of being included outside, the cooling ability is increased. For this reason, it is preferable to be included in a form included outside the ice. When the ice slurry containing ice produced by the ice making device of the present invention contains the solid, it may be mixed with the solid after producing ice by the ice making device of the present invention described later, You may produce | generate ice with the ice making apparatus of this invention in the state mixed with the water used as a raw material.
 以下、本発明の製氷装置の一実施形態に係るフレークアイス製造装置10、及び本発明の製氷装置の一実施形態に係るフレークアイス製造装置10を含む製氷システム60を図面に基づいて説明する。 Hereinafter, a flake ice manufacturing apparatus 10 according to an embodiment of the ice making apparatus of the present invention and an ice making system 60 including the flake ice manufacturing apparatus 10 according to an embodiment of the ice making apparatus of the present invention will be described with reference to the drawings.
[フレークアイス製造装置] [Flake ice production equipment]
 図1は、本発明の製氷装置の一実施形態に係るフレークアイス製造装置10の概要を示す部分断面斜視図を含むイメージ図である。 FIG. 1 is an image diagram including a partial cross-sectional perspective view showing an outline of a flake ice manufacturing apparatus 10 according to an embodiment of the ice making apparatus of the present invention.
 容器に溜められた状態の水溶液を含む液体を外部から冷却しても、フレークアイス製造装置10により生成される氷と同様の氷を生成することはできない。これは、冷却速度が十分でないことに起因すると考えられる。しかしながら、フレークアイス製造装置10によれば、溶質を含有する水溶液を含む液体(以下「ブライン」と呼ぶ)を噴射することで霧状となった水溶液が凝固点以下の温度に保持された壁面に直接接することにより、従来なかった急速な冷却を可能としている。これにより、上記(a)及び(b)の条件を満たす、冷却能の高い氷を生成することができると考えられる。 Even if the liquid containing the aqueous solution stored in the container is cooled from the outside, ice similar to the ice generated by the flake ice manufacturing apparatus 10 cannot be generated. This is considered to be due to the insufficient cooling rate. However, according to the flake ice manufacturing apparatus 10, the aqueous solution that is atomized by spraying a liquid containing an aqueous solution containing a solute (hereinafter referred to as “brine”) is directly applied to the wall surface maintained at a temperature below the freezing point. By contacting, rapid cooling that has not been possible in the past is possible. Thereby, it is thought that the ice with high cooling ability which satisfy | fills the conditions of said (a) and (b) can be produced | generated.
 壁面は、例えば、後述するドラム11のような円柱型の構造物の内壁22の壁面等が挙げられるが、水溶液の凝固点以下の温度に保持できるような壁面であれば特に限定されない。壁面の温度は、水溶液の凝固点以下の温度に保持されていれば特に限定されないが、上記(a)及び(b)の条件を満たす氷の純度が高い氷を製造できる点で、水溶液の凝固点より1℃以上低い温度(2℃以上低い温度、3℃以上低い温度、4℃以上低い温度、5℃以上低い温度、6℃以上低い温度、7℃以上低い温度、8℃以上低い温度、9℃以上低い温度、10℃以上低い温度、11℃以上低い温度、12℃以上低い温度、13℃以上低い温度、14℃以上低い温度、15℃以上低い温度、16℃以上低い温度、17℃以上低い温度、18℃以上低い温度、19℃以上低い温度、20℃以上低い温度、21℃以上低い温度、22℃以上低い温度、23℃以上低い温度、24℃以上低い温度、25℃以上低い温度等)に保持されることが好ましい。 The wall surface is, for example, the wall surface of the inner wall 22 of a cylindrical structure such as the drum 11 described later, but is not particularly limited as long as it can be maintained at a temperature below the freezing point of the aqueous solution. The temperature of the wall surface is not particularly limited as long as it is maintained at a temperature lower than or equal to the freezing point of the aqueous solution. However, the wall surface temperature is higher than the freezing point of the aqueous solution in that ice having high purity of ice satisfying the above conditions (a) and (b) can be produced. 1 ° C or more lower temperature (2 ° C or more lower temperature, 3 ° C or more lower temperature, 4 ° C or more lower temperature, 5 ° C or more lower temperature, 6 ° C or more lower temperature, 7 ° C or more lower temperature, 8 ° C or more lower temperature, 9 ° C Lower temperature, lower than 10 ° C, lower than 11 ° C, lower than 12 ° C, lower than 13 ° C, lower than 14 ° C, lower than 14 ° C, lower than 15 ° C, lower than 16 ° C, lower than 17 ° C Temperature, temperature lower than 18 ° C, temperature lower than 19 ° C, temperature lower than 20 ° C, temperature lower than 21 ° C, temperature lower than 22 ° C, temperature lower than 23 ° C, temperature lower than 24 ° C, temperature lower than 25 ° C, etc. Preferred to be retained) Arbitrariness.
 噴射の方法は、特に限定されないが、例えば、後述する噴射部13のように、噴射孔13aを備える噴射手段から、噴射することにより、噴射をすることができる。この場合において、噴射する際の水圧は、例えば、0.001MPa以上(0.002MPa以上、0.005MPa以上、0.01MPa以上、0.05MPa以上、0.1MPa以上、0.2MPa以上等)であってもよく、1MPa以下(0.8MPa以下、0.7MPa以下、0.6MPa以下、0.5MPa以下、0.3MPa以下、0.1MPa以下、0.05MPa以下、0.01MPa以下等)であってもよい。 Although the injection method is not particularly limited, for example, it is possible to inject by injecting from an injection means having an injection hole 13a like an injection unit 13 described later. In this case, the water pressure at the time of injection is, for example, 0.001 MPa or more (0.002 MPa or more, 0.005 MPa or more, 0.01 MPa or more, 0.05 MPa or more, 0.1 MPa or more, 0.2 MPa or more, etc.). 1 MPa or less (0.8 MPa or less, 0.7 MPa or less, 0.6 MPa or less, 0.5 MPa or less, 0.3 MPa or less, 0.1 MPa or less, 0.05 MPa or less, 0.01 MPa or less, etc.) There may be.
 また、後述する竪型ドラム11の中心軸上に回転可能な回転軸12を設ける等の回転手段を設け、回転させながら噴射を行う等の連続的な噴射により行ってもよい。 Alternatively, a rotating means such as a rotatable rotating shaft 12 may be provided on the center axis of the saddle drum 11 to be described later, and continuous injection such as injection while rotating may be performed.
 (回収工程)
 フレークアイス製造装置10は、上述の氷生成工程後に、壁面上において生成された氷を回収する工程を有する。
(Recovery process)
The flake ice manufacturing apparatus 10 has a step of recovering the ice generated on the wall surface after the above-described ice generation step.
 回収する方法は、特に限定されず、例えば、後述するブレード15等の手段により壁面上の氷を掻き取り、または剥がし、落下した氷を回収してもよい。 The method of collecting is not particularly limited, and for example, the ice on the wall surface may be scraped or peeled off by means such as a blade 15 described later, and the dropped ice may be collected.
 また、氷が生成される際に、製氷熱が発生するが、この製氷熱を帯びることで、実際の融解完了温度に影響を与える可能性がある。このように、融解完了温度は、溶質の種類、濃度のみでなく、製氷熱の影響を受けると考えられる。そのため、氷に残存する製氷熱の熱量を調整することで、実際の融解完了温度を調整することができる。製氷熱を調整するためには、氷の回収工程において、氷を壁面上の保持時間を調整することで行うことができる。 Also, when ice is generated, ice making heat is generated, but this ice making heat may affect the actual melting completion temperature. Thus, it is considered that the melting completion temperature is affected not only by the type and concentration of the solute but also by the ice making heat. Therefore, the actual melting completion temperature can be adjusted by adjusting the amount of ice making heat remaining in the ice. The ice making heat can be adjusted by adjusting the holding time of the ice on the wall surface in the ice collecting step.
 図1に示すように、フレークアイス製造装置10は、ドラム11と、回転軸12と、噴射部13と、剥取部14と、ブレード15と、フレークアイス排出口16と、上部軸受部材17と、防熱保護カバー19と、ギヤードモータ20と、ロータリージョイント21と、冷媒クリアランス24と、ブッシュ28と、冷媒供給部29と、回転制御部27とを備える。
 ドラム11は、内筒22と、内筒22を囲繞する外筒23と、内筒22と外筒23との間に形成される冷媒クリアランス24とで構成される。また、ドラム11の外周面は、円筒状の防熱保護カバー19によって覆われている。
As shown in FIG. 1, the flake ice manufacturing apparatus 10 includes a drum 11, a rotary shaft 12, an injection unit 13, a stripping unit 14, a blade 15, a flake ice discharge port 16, and an upper bearing member 17. , A heat protection cover 19, a geared motor 20, a rotary joint 21, a refrigerant clearance 24, a bush 28, a refrigerant supply unit 29, and a rotation control unit 27.
The drum 11 includes an inner cylinder 22, an outer cylinder 23 surrounding the inner cylinder 22, and a refrigerant clearance 24 formed between the inner cylinder 22 and the outer cylinder 23. The outer peripheral surface of the drum 11 is covered with a cylindrical heat-resistant protective cover 19.
 内筒22は、壁面を有し、壁面が冷却されることにより、壁面に付着したブラインが凍結し、氷が生成される。
 ここで、フレークアイス製造装置10は、内筒22の壁面に生成される氷の単位時間当たりの生成量を示す製氷速度をYとし、内筒22の壁面を構成する部材の熱伝導率をx1としたときに、次式(1)が成り立つように設計されている(fは関数(function)を意味する)。
 Y=f(x1) ・・・(1)
The inner cylinder 22 has a wall surface, and when the wall surface is cooled, the brine attached to the wall surface is frozen and ice is generated.
Here, the flake ice manufacturing apparatus 10 sets the ice making speed indicating the amount of ice generated per unit time generated on the wall surface of the inner cylinder 22 to Y, and sets the thermal conductivity of the members constituting the wall surface of the inner cylinder 22 to x1. , It is designed so that the following equation (1) is established (f means a function).
Y = f (x1) (1)
 つまり、ブラインが付着する内筒22の壁面の熱伝導率が高い程、内筒22の壁面を冷却する冷媒の温度が速くブラインに伝わるため、短時間で多くの氷が生成される。
 このため、内筒22を構成する部材を熱伝導率の高い部材とすることにより、製氷速度を上げることができる。また、反対に、内筒22を構成する部材を熱伝導率の低い部材とすることにより、製氷速度を下げることができる。
 本実施形態では、内筒22の壁面を構成する部材として、ステンレスや鉄よりも熱伝導率が高い部材が採用されており、より具体的には、20℃における熱伝導率が70W/mK以上の部材(例えば、銅)が採用されている。このため、フレークアイス製造装置10は、内筒22の壁面を構成する部材にステンレスや鉄を採用した場合に比べて、短時間で多くの氷を生成することができる。一般に大量に氷を製造しようとした場合、短時間で効率的に氷を製造するためには内筒22の壁面の表面積を広くする必要があるが、内筒22の壁面を熱伝導理が高い部材により構成することで氷の製造速度が上がるため、内筒22の壁面を広くする必要がなくなり、結果として比較的狭いスペースでの氷の製造も可能となる。この観点で、内筒22の壁面を構成する部材は、熱伝導率が高い部材を採用することが好ましく、より具体的には20℃における熱伝導率が100W/mK以上の部材がより好ましく、20℃における熱伝導率が150W/mK以上の部材がより一層好ましく、20℃における熱伝導率が200W/mK以上の部材がさらに好ましく、20℃における熱伝導率が250W/mK以上の部材がさらに一層好ましく、20℃における熱伝導率が300W/mK以上の部材が特に好ましい。熱伝導率の上限は特に制限されないが、例えば、20℃における熱伝導率が1000W/mK以下(900W/mK以下、800W/mK以下、700W/mK以下、600W/mK以下、500W/mK以下、400W/mK以下等)であってもよい。内筒22の壁面を構成する部材の具体例としては、亜鉛、アルミニウム、ジェラルミン、金、銀、タングステン、銅、アルミ青銅、七三黄銅、ネーバル黄銅、ニッケル(99.9%)、モリブデン、パラジウム、ケイ素等が挙げられる。また、本発明のフレークアイス製造装置は、上述のとおり、比較的狭いスペースでの製造に適しており、例えば、輸送機器(例えば、車両(トラック等)、船)内部のような限られたスペースしかないような場所における製造に適している。
 なお、内筒22の壁面を構成する部材と熱伝導率との関係は、図2に示す部材の具体例を参照して後述する。
That is, the higher the thermal conductivity of the wall surface of the inner cylinder 22 to which the brine adheres, the faster the temperature of the refrigerant that cools the wall surface of the inner cylinder 22 is transmitted to the brine, so that more ice is generated in a short time.
For this reason, the ice making speed | rate can be raised by making the member which comprises the inner cylinder 22 into a member with high heat conductivity. On the other hand, the ice making speed can be reduced by making the member constituting the inner cylinder 22 a member having low thermal conductivity.
In the present embodiment, a member having a higher thermal conductivity than stainless steel or iron is employed as a member constituting the wall surface of the inner cylinder 22, and more specifically, the thermal conductivity at 20 ° C. is 70 W / mK or more. These members (for example, copper) are employed. For this reason, the flake ice manufacturing apparatus 10 can produce a lot of ice in a shorter time than when stainless steel or iron is adopted as a member constituting the wall surface of the inner cylinder 22. Generally, when producing a large amount of ice, in order to produce ice efficiently in a short time, it is necessary to increase the surface area of the wall surface of the inner cylinder 22, but the wall surface of the inner cylinder 22 has a high thermal conductivity. Since the production speed of ice is increased by using the members, it is not necessary to widen the wall surface of the inner cylinder 22, and as a result, it is possible to produce ice in a relatively narrow space. In this respect, the member constituting the wall surface of the inner cylinder 22 is preferably a member having a high thermal conductivity, more specifically, a member having a thermal conductivity at 20 ° C. of 100 W / mK or more is more preferable. A member having a thermal conductivity at 20 ° C. of 150 W / mK or more is still more preferable, a member having a thermal conductivity at 20 ° C. of 200 W / mK or more is more preferable, and a member having a thermal conductivity at 20 ° C. of 250 W / mK or more is further preferable. A member having a thermal conductivity of 300 W / mK or more at 20 ° C. is particularly preferable. The upper limit of the thermal conductivity is not particularly limited. For example, the thermal conductivity at 20 ° C. is 1000 W / mK or less (900 W / mK or less, 800 W / mK or less, 700 W / mK or less, 600 W / mK or less, 500 W / mK or less, 400 W / mK or less). Specific examples of the members constituting the wall surface of the inner cylinder 22 include zinc, aluminum, geralumin, gold, silver, tungsten, copper, aluminum bronze, seven-three brass, naval brass, nickel (99.9%), molybdenum, palladium. , Silicon and the like. Moreover, as described above, the flake ice production apparatus of the present invention is suitable for production in a relatively narrow space, for example, a limited space such as the inside of a transportation device (for example, a vehicle (such as a truck) or a ship) It is suitable for manufacturing in places where there is only one.
In addition, the relationship between the member which comprises the wall surface of the inner cylinder 22, and heat conductivity is later mentioned with reference to the specific example of the member shown in FIG.
 また、フレークアイス製造装置10は、製氷速度をYとし、内筒22の壁面のうちブラインが付着される可能性がある部分の面積をx2としたときに、次式(2)が成り立つように設計されている。
 Y=f(x2) ・・・(2)
 即ち、内筒22の壁面のうちブラインを付着させることができる部分の面積を大きくすれば、それだけ内筒22の壁面に付着することができるブラインの量が増える。このため、結果的に内筒22の壁面に生成される氷の量も増える。反対に、内筒22の壁面のうちブラインを付着させることができる部分の面積を小さくければ、それだけ内筒22の壁面に付着することができるブラインの量が減る。このため、結果的に内筒22の壁面に生成される氷の量も減る。
 このように、内筒22の壁面のうちブラインを付着させることができる部分の面積が調節されることにより製氷速度が調節される。
Further, the flake ice manufacturing apparatus 10 is configured such that the following equation (2) is established when the ice making speed is Y and the area of the wall surface of the inner cylinder 22 where the brine may be attached is x2. Designed.
Y = f (x2) (2)
That is, if the area of the portion of the wall surface of the inner cylinder 22 where the brine can be attached is increased, the amount of brine that can be attached to the wall surface of the inner cylinder 22 increases accordingly. As a result, the amount of ice generated on the wall surface of the inner cylinder 22 also increases. On the contrary, if the area of the portion of the wall surface of the inner cylinder 22 where the brine can be attached is reduced, the amount of brine that can be attached to the wall surface of the inner cylinder 22 is reduced accordingly. As a result, the amount of ice produced on the wall surface of the inner cylinder 22 is also reduced.
In this way, the ice making speed is adjusted by adjusting the area of the portion of the wall surface of the inner cylinder 22 where the brine can be attached.
 外筒23の材質は特に限定されない。なお、本実施形態では鋼が採用されている。
 冷媒クリアランス24には、冷媒供給部29から冷媒配管35を介して冷媒が供給される。これにより内筒22の壁面が冷却される。
The material of the outer cylinder 23 is not particularly limited. In this embodiment, steel is employed.
Refrigerant is supplied to the refrigerant clearance 24 from the refrigerant supply unit 29 via the refrigerant pipe 35. Thereby, the wall surface of the inner cylinder 22 is cooled.
 回転軸12は、ドラム11の中心軸上に配置され、上部軸受部材17の上方に設置されたギヤードモータ20を動力源として、当該中心軸を軸として材軸回りに回転する。なお、ギヤードモータ20の回転速度は、後述の回転制御部27によって制御される。
 また、回転軸12の頂部にはロータリージョイント21が取り付けられている。ロータリージョイント21なお、回転軸12の上部には、材軸方向に延在し各パイプ13と連通する竪穴12aが形成されている(図3参照)。
The rotary shaft 12 is arranged on the central axis of the drum 11 and rotates around the material axis with the central shaft as an axis, using a geared motor 20 installed above the upper bearing member 17 as a power source. The rotational speed of the geared motor 20 is controlled by a rotation control unit 27 described later.
A rotary joint 21 is attached to the top of the rotating shaft 12. Rotary joint 21 In addition, the upper part of the rotating shaft 12 is formed with a pothole 12a extending in the material axis direction and communicating with each pipe 13 (see FIG. 3).
 噴射部13は、内筒22の壁面に向けてブラインを噴射する噴射孔13aを先端部に有する複数のパイプで構成され、回転軸12と共に回転する。噴射孔13aから噴射されたブラインは、冷媒によって冷却された内筒22の壁面に付着し、分離する時間も与えられずに急速に凍結する。
 噴射部13を構成する複数のパイプは、回転軸12からドラム11の半径方向に放射状に延出している。各パイプの設置高さは特に限定されないが、本実施形態では、ドラム11の内筒22高さの上部位置に設置されている。なお、パイプに代えてスプレーノズル等を採用してもよい。
The injection unit 13 is composed of a plurality of pipes having injection holes 13 a for injecting brine toward the wall surface of the inner cylinder 22 at the tip, and rotates together with the rotating shaft 12. The brine injected from the injection hole 13a adheres to the wall surface of the inner cylinder 22 cooled by the refrigerant, and freezes rapidly without giving a time for separation.
The plurality of pipes constituting the injection unit 13 extend radially from the rotary shaft 12 in the radial direction of the drum 11. The installation height of each pipe is not particularly limited, but in this embodiment, the installation height is set at an upper position of the inner cylinder 22 of the drum 11. Note that a spray nozzle or the like may be employed instead of the pipe.
 また、フレークアイス製造装置10は、上述のような噴射による手法を採用することなく、内筒22の壁面にブラインを自然流下させることにより付着させることもできる。この場合、ブラインを噴射することより内筒22の壁面に付着させた場合に比べ、内筒22の壁面に付着するブラインの体積が大きい。このため、ブラインの自然流下により生成された氷は、内筒22の壁面の温度よりも高いドラム11内部の空気中の温度の影響を受け難いため、ブラインの噴射により生成された氷よりも溶け難いという有利な性質を持つ。 Moreover, the flake ice manufacturing apparatus 10 can also be made to adhere by making a brine flow naturally on the wall surface of the inner cylinder 22, without employ | adopting the method by the above injection. In this case, the volume of the brine adhering to the wall surface of the inner cylinder 22 is larger than the case of adhering to the wall surface of the inner cylinder 22 by injecting brine. For this reason, the ice generated by the natural flow of the brine is not easily affected by the temperature in the air inside the drum 11 which is higher than the temperature of the wall surface of the inner cylinder 22, and therefore melts more than the ice generated by the injection of the brine. It has the advantageous property of being difficult.
 剥取部14は、内筒22の壁面に生成された氷を剥ぎ取るブレード15を先端部に装着する複数のアームで構成される。なお、剥取部14は、ドラム11の半径方向に延出し、回転軸12と共に回転する。
 剥取部14を構成する複数のアームは、回転軸12に関して対称となるように装着されている。アームの本数は特に限定されないが、本実施形態では、アームの本数を2本としている。各アームの先端部に装着されているブレード15の大きさ及び材質は、特に限定されず、内筒22の壁面に生成された氷を剥ぎ取ることができればよい。例えば、ブレードの先端で氷を掻き取り、または剥ぎ取ってもよい。なお、本実施形態におけるブレード15は、内筒22の全長(全高)に略等しい長さを有するステンレス製の板材からなり、内筒22に面する端面には複数の鋸歯15aが形成されている。
 内筒22の壁面に生成された氷は、ブレード15によって剥ぎ取られると、フレークアイスとなる。フレークアイスは、フレークアイス排出口16から落下する。フレークアイス排出口16から落下したフレークアイスは、フレークアイス製造装置10の直下に配置されたフレークアイス貯留タンク34(図3参照)内に貯えられる。
The stripping unit 14 is composed of a plurality of arms on which the blade 15 that strips off the ice generated on the wall surface of the inner cylinder 22 is attached to the tip. The stripping part 14 extends in the radial direction of the drum 11 and rotates together with the rotating shaft 12.
The plurality of arms constituting the stripping portion 14 are mounted so as to be symmetric with respect to the rotation shaft 12. The number of arms is not particularly limited, but in the present embodiment, the number of arms is two. The size and material of the blade 15 attached to the tip of each arm are not particularly limited as long as the ice generated on the wall surface of the inner cylinder 22 can be peeled off. For example, the tip of the blade may scrape or scrape off the ice. The blade 15 in the present embodiment is made of a stainless steel plate having a length substantially equal to the entire length (total height) of the inner cylinder 22, and a plurality of saw teeth 15 a are formed on the end surface facing the inner cylinder 22. .
When the ice generated on the wall surface of the inner cylinder 22 is peeled off by the blade 15, it becomes flake ice. The flake ice falls from the flake ice discharge port 16. The flake ice that has fallen from the flake ice discharge port 16 is stored in a flake ice storage tank 34 (see FIG. 3) disposed immediately below the flake ice production apparatus 10.
 上部軸受部材17は、鍋を逆さにした形状からなり、ドラム11の上面を封止している。上部軸受部材17の中心部には、回転軸12を支持するブッシュ24が嵌装されている。なお、回転軸12は、上部軸受部材17にのみ支持され、回転軸12の下端部は軸支されていない。
 即ち、ドラム11の下方には、ブレード15によって剥ぎ取られたフレークアイスが落下する際に障害となる物がないため、ドラム11の下面はフレークアイスを排出するフレークアイス排出口16となる。
The upper bearing member 17 has a shape in which the pan is inverted, and seals the upper surface of the drum 11. A bush 24 that supports the rotating shaft 12 is fitted in the center of the upper bearing member 17. The rotating shaft 12 is supported only by the upper bearing member 17, and the lower end portion of the rotating shaft 12 is not pivotally supported.
That is, since there is no obstacle below the drum 11 when the flake ice peeled off by the blade 15 falls, the lower surface of the drum 11 serves as a flake ice discharge port 16 for discharging the flake ice.
 冷媒供給部29は、冷媒クリアランス24に対して、内筒22の壁面を冷却させるための冷媒を、冷媒配管35を介して供給する。なお、冷媒供給部29によって供給される冷媒は特に限定されず、内筒22の壁面を冷却させるものであればよい。具体的には例えば、冷媒として、LNG(Liquefied Natural Gas/液化天然ガス)を採用することができる。 The refrigerant supply unit 29 supplies a refrigerant for cooling the wall surface of the inner cylinder 22 to the refrigerant clearance 24 via the refrigerant pipe 35. The refrigerant supplied by the refrigerant supply unit 29 is not particularly limited as long as it cools the wall surface of the inner cylinder 22. Specifically, for example, LNG (Liquid Natural Gas / liquefied natural gas) can be employed as the refrigerant.
 従来より、輸入されたLNGは、-160℃の液体の状態でLNG貯蔵タンクに格納されており、この-160℃のLNGは、常温になるまで気化させられ、熱量調整、付臭が施されて、都市ガスまたはGT発電用に供給される。例えば、LNGの排冷熱を有効活用する手法として、LNG基地では、-160℃のLNGが常温になるまでの排冷熱を、液体酸素や液体窒素の製造、冷凍倉庫、冷熱発電、海水を熱源としたLNGの気化(ORV式)に利用する手法がとられている。 Conventionally, imported LNG is stored in the LNG storage tank in a liquid state at -160 ° C. The LNG at -160 ° C is vaporized until it reaches room temperature, adjusted for calorific value, and given odor. And supplied for city gas or GT power generation. For example, as a method for effectively utilizing the exhaust heat of LNG, at the LNG terminal, the heat of exhaust cooling until LNG at −160 ° C. reaches room temperature, the production of liquid oxygen and liquid nitrogen, freezing warehouses, cold power generation, seawater as the heat source The technique used for the vaporization of LNG (ORV type) is used.
 上述した用途にLNGの排冷熱を利用した場合、電力又はエンジン駆動による従来の冷却方法と比較して以下のようなメリットを有する。即ち、(1)所要動力が少なくて済む、(2)活用されていないLNGの冷熱エネルギーを有効利用することができる、(3)大型の発電機が不要となる、(4)公害要因が低くなる、(5)コストが安くなる、等のメリットを有する。
 その一方で、LNGの排冷熱を利用しようとする場合には、以下のようなデメリットもあった。即ち、LNGの排冷熱の利用は、通常、LNG基地周辺の場所での連続的な利用に限定されていた。これは、LNGは輸送時に燃焼の危険性が伴うためである。つまり、LNGの排冷熱を利用する場合、LNGの排冷熱の供給を受ける側は、LNG基地から配管によってLNGの供給を受け、LNGの排冷熱を利用した後にガスを返送する必要があった。このため、LNG自体を遠隔地に輸送し、そこでバッチ的にLNGの排冷熱を利用できるようにすることは困難であった。
 また、LNG基地周辺の場所で連続的にLNGの排冷熱を利用するためには固定化された設備が必要となるため、長期安定的なプロジェクトでないと対応できないというデメリットもあった。さらに、LNGと被冷却物との間における直接の熱交換は危険性を伴うというデメリットもあった。
When the exhaust cooling heat of LNG is used for the above-described application, it has the following merits as compared with the conventional cooling method by electric power or engine drive. That is, (1) less power is required, (2) the cold energy of LNG that is not being used can be used effectively, (3) a large generator is not required, and (4) pollution factors are low. (5) It has the merit that cost is reduced.
On the other hand, when trying to use the exhaust cooling heat of LNG, there were the following disadvantages. In other words, the use of LNG exhaust heat is normally limited to continuous use at locations around the LNG base. This is because LNG has a risk of combustion during transportation. That is, when using the LNG exhaust cooling heat, the side that receives the LNG exhaust cooling heat needs to return the gas after receiving the LNG supply from the LNG base through the piping and using the LNG exhaust cooling heat. For this reason, it has been difficult to transport the LNG itself to a remote location, where the LNG exhaust heat can be used batchwise.
In addition, since a fixed facility is required to continuously use the exhaust heat of LNG at a location around the LNG base, there is a demerit that it can only be handled for a long-term stable project. Furthermore, there is a demerit that direct heat exchange between the LNG and the object to be cooled is dangerous.
 しかしながら、上述したフレークアイス製造装置10の冷媒としてLNGを利用した場合、上述したデメリットはなくなる。即ち、LNGをフレークアイス製造装置10の冷媒として利用することにより、超低温のフレークアイスを製造することができる。このため、製造されたフレークアイスを遠隔地に輸送すれば、LNG自体を遠隔地に輸送することなく、そこでバッチ的にLNGの排冷熱を利用することができる。
 また、フレークアイス製造装置10は、特定の場所に固定させる必要はなく、車両、船舶、航空機等の移動体に搭載させることもできるため機動性を有する。さらに、フレークアイスという中間冷媒が存在するため、危険性を伴う、LNGと被冷却物との間における直接の熱交換は行われない。
However, when LNG is used as the refrigerant of the flake ice manufacturing apparatus 10 described above, the above-described disadvantages are eliminated. That is, by using LNG as a refrigerant in the flake ice production apparatus 10, ultra-low temperature flake ice can be produced. For this reason, if the manufactured flake ice is transported to a remote place, the waste heat of LNG can be used batchwise without transporting the LNG itself to the remote place.
In addition, the flake ice manufacturing apparatus 10 does not need to be fixed at a specific place, and can be mounted on a moving body such as a vehicle, a ship, an aircraft, etc., and thus has mobility. Furthermore, since there is an intermediate refrigerant called flake ice, there is no danger of direct heat exchange between the LNG and the object to be cooled.
 また、-160度のLNGをフレークアイス製造装置10の冷媒として利用することにより、凍結点が-150度程度までのブラインを瞬間凍結させた超低温のフレークアイスを製造することできる。即ち、ブラインが塩水(塩化ナトリウム水溶液)の場合には飽和状態で-21.2℃、塩化マグネシウム水溶液の場合には飽和状態で-26.27℃のフレークアイスを製造することができるが、エチレングリコール塩水や塩化マグネシウム水溶液よりも凍結点が低く、従来より「不凍液」としてブラインに利用することができなかった物質についても瞬間凍結させることによりフレークアイスとして利用することができる。具体的には例えば、エチレングリコールをブラインとするフレークアイスを製造することもできる。 Also, by using -160 degrees LNG as a refrigerant in the flake ice production apparatus 10, it is possible to produce ultra-low temperature flake ice in which brine having a freezing point of up to about -150 degrees is instantaneously frozen. That is, when brine is salt water (sodium chloride aqueous solution), flake ice can be produced at a saturated state of -21.2 ° C, and when magnesium chloride aqueous solution is saturated at -26.27 ° C, The freezing point is lower than that of glycol salt water and magnesium chloride aqueous solution, and substances that could not be used as brine in the past as “antifreeze liquid” can also be used as flake ice by instant freezing. Specifically, for example, flake ice using ethylene glycol as a brine can be produced.
 即ち、-160度のLNGという超低温の冷媒をフレークアイス製造装置10の冷媒として利用することにより、-150℃程度の超低温のフレークアイスを製造することが可能となる。換言すると、要求される保冷温度は、被保冷物の種類に応じて個別に異なるものであり、例えば-1℃が適するものもあれば-150℃が適するものもある。つまり、内筒22の壁面を冷却させる際に、-160度のLNGという超低温の冷媒を利用することにより、幅広く要求される保冷温度にマッチさせたフレークアイスを容易に製造することができる。
 このように、フレークアイス製造装置10は、従来の冷凍機の代替として冷熱を供給することができるだけでなく、LNGの排冷熱を利用してエネルギー効率を高めることもできる。即ち、コージェネレーション(cogeneration)システムを構築することも可能となる。
That is, by using an ultra-low temperature refrigerant of -160 degrees LNG as the refrigerant of the flake ice manufacturing apparatus 10, it becomes possible to manufacture ultra-low temperature flake ice at about -150 ° C. In other words, the required cold-retention temperature varies depending on the type of the object to be cooled, and for example, -1 ° C is suitable, and -150 ° C is suitable. In other words, when the wall surface of the inner cylinder 22 is cooled, flake ice matched with a widely required cold insulation temperature can be easily manufactured by using an ultra-low temperature refrigerant of −160 degrees LNG.
Thus, the flake ice manufacturing apparatus 10 can not only supply cold heat as an alternative to a conventional refrigerator, but also can improve energy efficiency by utilizing the exhausted cold heat of LNG. That is, it is possible to construct a cogeneration system.
 また、フレークアイス製造装置10は、製氷速度をYとし、冷媒クリアランス24に対し供給される冷媒の温度をx3としたときに、次式(3)が成り立つように設計されている。
 Y=f(x3) ・・・(3)
 即ち、フレークアイス製造装置10は、冷媒供給部29により冷媒クリアランス24に対し供給される冷媒の温度に応じて製氷速度が変化するように設計されている。
 即ち、フレークアイス製造装置10は、内筒22の壁面の温度が低い程、内筒22の壁面に付着させたブラインをより速く凍結させることができる。つまり、フレークアイス製造装置10は、冷媒クリアランス24に供給される冷媒の温度が低い程、短時間で多くの氷を生成することができる。
 具体的には例えば、冷媒クリアランス24に対し-160℃のLNGが供給された場合、内筒22の壁面の温度は急激に低下する。このため、フレークアイス製造装置10は、-150℃程度までの氷を短時間で大量に生成することができる。
The flake ice manufacturing apparatus 10 is designed so that the following equation (3) is established when the ice making speed is Y and the temperature of the refrigerant supplied to the refrigerant clearance 24 is x3.
Y = f (x3) (3)
That is, the flake ice manufacturing apparatus 10 is designed such that the ice making speed changes according to the temperature of the refrigerant supplied to the refrigerant clearance 24 by the refrigerant supply unit 29.
That is, the flake ice manufacturing apparatus 10 can freeze the brine attached to the wall surface of the inner cylinder 22 faster as the temperature of the wall surface of the inner cylinder 22 is lower. That is, the flake ice production apparatus 10 can generate more ice in a shorter time as the temperature of the refrigerant supplied to the refrigerant clearance 24 is lower.
Specifically, for example, when LNG at −160 ° C. is supplied to the refrigerant clearance 24, the temperature of the wall surface of the inner cylinder 22 rapidly decreases. For this reason, the flake ice manufacturing apparatus 10 can generate a large amount of ice up to about −150 ° C. in a short time.
 本実施形態では、冷媒クリアランス24に供給される冷媒は、冷媒クリアランス24と冷媒供給部29との間を冷媒配管35を介して循環させることができる。これにより、冷媒クリアランス24に供給されている冷媒を冷却機能が高い状態で維持させることができる。
 回転制御部27は、ギヤードモータ20の回転速度を調節することにより、回転軸12と共に回転する噴射部13及び剥取部14の回転速度を調節する。なお、回転制御部27が回転速度を制御する手法は特に限定されない。具体的には、例えばインバータによる制御手法を採用してもよい。
In the present embodiment, the refrigerant supplied to the refrigerant clearance 24 can be circulated between the refrigerant clearance 24 and the refrigerant supply unit 29 via the refrigerant pipe 35. Thereby, the refrigerant | coolant currently supplied to the refrigerant | coolant clearance 24 can be maintained in a state with a high cooling function.
The rotation control unit 27 adjusts the rotation speed of the ejection unit 13 and the stripping unit 14 that rotate together with the rotating shaft 12 by adjusting the rotation speed of the geared motor 20. Note that the method by which the rotation control unit 27 controls the rotation speed is not particularly limited. Specifically, for example, a control method using an inverter may be employed.
 図2は、製氷面(例えば図1の内筒22の壁面)に用いられる部材毎の熱伝導率を示す図である。 FIG. 2 is a diagram showing the thermal conductivity of each member used on the ice making surface (for example, the wall surface of the inner cylinder 22 in FIG. 1).
 図2に示すように、製氷面を構成する部材は、夫々熱伝導率が異なる。このため、製氷面にどの部材を採用するかにより製氷速度が異なってくる。具体的には例えば、ステンレスの熱伝導率(W/m・K)は、温度が20℃のときに16である。また、純鉄の熱伝導率(W/m・K)は、温度が20℃のときに67であり、ステンレスよりも高い。また、銅(普通品)の熱伝導率(W/m・K)は、温度が20℃のときが372であり、純鉄よりもさらに高い。また、銀の熱伝導率(W/m・K)は、温度が20℃のときが418であり、銅(普通品)よりもさらに高い。即ち、図2に例示した製氷面の部材の熱伝導率は、同一の温度条件の下、銀>銅(普通品)>純鉄>ステンレスの順で高くなっている。このため、製氷速度も、銀>銅(普通品)>純鉄>ステンレスの順に高くなる。 As shown in FIG. 2, the members constituting the ice making surface have different thermal conductivities. For this reason, the ice making speed varies depending on which member is used for the ice making surface. Specifically, for example, the thermal conductivity (W / m · K) of stainless steel is 16 when the temperature is 20 ° C. Moreover, the thermal conductivity (W / m · K) of pure iron is 67 when the temperature is 20 ° C., which is higher than that of stainless steel. Further, the thermal conductivity (W / m · K) of copper (ordinary product) is 372 when the temperature is 20 ° C., which is higher than that of pure iron. In addition, the thermal conductivity (W / m · K) of silver is 418 when the temperature is 20 ° C., and is higher than copper (ordinary product). That is, the thermal conductivity of the ice-making member illustrated in FIG. 2 increases in the order of silver> copper (ordinary product)> pure iron> stainless steel under the same temperature condition. For this reason, the ice making speed also increases in the order of silver> copper (ordinary product)> pure iron> stainless steel.
 具体的には例えば、内筒22の壁面(製氷面)が銅で構成されている場合、内筒22の壁面を銅から銀に変更することにより、製氷速度を速くすることができる。一方、内筒22の壁面を銅から純鉄やステンレスに変更することにより、製氷速度を遅くすることができる。
 このように、フレークアイス製造装置10は、内筒22の壁面を構成する部材を任意に変更することにより、製氷速度を調節することができる。
Specifically, for example, when the wall surface (ice making surface) of the inner cylinder 22 is made of copper, the ice making speed can be increased by changing the wall surface of the inner cylinder 22 from copper to silver. On the other hand, the ice making speed can be reduced by changing the wall surface of the inner cylinder 22 from copper to pure iron or stainless steel.
Thus, the flake ice manufacturing apparatus 10 can adjust the ice making speed by arbitrarily changing the members constituting the wall surface of the inner cylinder 22.
 このとき、内筒22の壁面を構成する部材として銀や銅等の熱伝導率が高い部材が選択され、かつ、内筒22の壁面を冷却するための冷媒としてLNG等の超低温の冷媒が選択される場合がある。このような場合には、超低温の冷媒から供給される膨大な冷熱エネルギーが、熱伝導率が高い部材によって効率良くブラインに伝わるため、より効率の良い氷の生成を実現させることができる。 At this time, a member having a high thermal conductivity such as silver or copper is selected as a member constituting the wall surface of the inner cylinder 22, and an ultra-low temperature refrigerant such as LNG is selected as a refrigerant for cooling the wall surface of the inner cylinder 22. May be. In such a case, the enormous amount of cold energy supplied from the ultra-low temperature refrigerant is efficiently transmitted to the brine by the member having high thermal conductivity, so that more efficient generation of ice can be realized.
[フレークアイス製造システム]
 図3は、図1のフレークアイス製造装置10を含むフレークアイス製造システム60の全体の概要を示すイメージ図である。
[Flake ice production system]
FIG. 3 is an image diagram showing an overview of the entire flake ice production system 60 including the flake ice production apparatus 10 of FIG.
 フレークアイス製造システム60は、フレークアイス製造装置10と、ブライン貯留タンク30と、ポンプ31と、ブライン配管32と、ブラインタンク33と、フレークアイス貯留タンク34と、冷媒配管35と、凍結点調節部36とを備える。
 ブライン貯留タンク30は、フレークアイスの原料となるブラインを貯える。ブライン貯留タンク30に貯えられたブラインは、ポンプ31を作動させることによりブライン配管32を介してロータリージョイント21に送給され、フレークアイス製造装置10によってフレークアイスになる。即ち、ロータリージョイント21に送給されたブラインは、ロータリージョイント21及び回転軸12に形成された竪穴12aに送給され、竪穴12aから、噴射部13を構成する各パイプに送給される。
The flake ice production system 60 includes a flake ice production apparatus 10, a brine storage tank 30, a pump 31, a brine pipe 32, a brine tank 33, a flake ice storage tank 34, a refrigerant pipe 35, and a freezing point adjustment unit. 36.
The brine storage tank 30 stores brine as a raw material for flake ice. The brine stored in the brine storage tank 30 is fed to the rotary joint 21 via the brine pipe 32 by operating the pump 31, and becomes flake ice by the flake ice manufacturing apparatus 10. That is, the brine fed to the rotary joint 21 is fed to the pit hole 12 a formed in the rotary joint 21 and the rotary shaft 12, and is fed from the pit hole 12 a to each pipe constituting the injection unit 13.
 ブラインタンク33は、ブライン貯留タンク30内のブラインが少なくなった場合に、ブライン貯留タンク30にブラインを供給する。
 なお、内筒22の壁面で凍結せずに流下したブラインは、ブライン貯留タンク30に貯えられ、ポンプ31を作動させることによりブライン配管32を介してロータリージョイント21に再び送給される。
 フレークアイス貯留タンク34は、フレークアイス製造装置10の直下に配置され、フレークアイス製造装置10のフレークアイス排出口16から落下したフレークアイスを貯える。
The brine tank 33 supplies brine to the brine storage tank 30 when the brine in the brine storage tank 30 is low.
Note that the brine that has flowed down without freezing on the wall surface of the inner cylinder 22 is stored in the brine storage tank 30 and is fed again to the rotary joint 21 via the brine pipe 32 by operating the pump 31.
The flake ice storage tank 34 is disposed immediately below the flake ice manufacturing apparatus 10 and stores the flake ice that has fallen from the flake ice discharge port 16 of the flake ice manufacturing apparatus 10.
 凍結点調節部36は、ブラインタンク33によってブライン貯留タンク30に供給されるブラインの凍結点を調節する。例えばブラインが塩水である場合には塩水の凍結点は濃度によって異なるため、凍結点調節部36は、ブライン貯留タンク30に貯えられている塩水の濃度を調節する。
 なお、ブラインの凍結点の調整手法は、特にこれに限定されない。例えば、次のような手法を採用することもできる。
 即ち、ブライン貯留タンク30を複数個設け、凍結点が異なる複数種類のブラインを、数個のブライン貯留タンク30の夫々に貯留させる。そして、ブライン凍結点調整部37は、求められるフレークアイスの温度(例えば当該フレークアイスにより搬送される搬送品に対して、求められている保冷温度)に基づいて、所定種類のブラインを選択し、フレークアイス製造装置10に供給する。
 このように、ブラインの凍結点を調節することにより、製造されるフレークアイスの温度を調節することができる。
The freezing point adjustment unit 36 adjusts the freezing point of the brine supplied to the brine storage tank 30 by the brine tank 33. For example, when the brine is salt water, the freezing point of the salt water varies depending on the concentration, so the freezing point adjustment unit 36 adjusts the concentration of the salt water stored in the brine storage tank 30.
The method for adjusting the freezing point of the brine is not particularly limited to this. For example, the following method can also be employed.
That is, a plurality of brine storage tanks 30 are provided, and a plurality of types of brines having different freezing points are stored in each of several brine storage tanks 30. The brine freezing point adjustment unit 37 selects a predetermined type of brine based on the required temperature of the flake ice (for example, the required cool temperature for the transported product transported by the flake ice), The flake ice production apparatus 10 is supplied.
Thus, the temperature of the flake ice produced can be adjusted by adjusting the freezing point of the brine.
 次に、上記構成を有するフレークアイス製造装置10を含むフレークアイス製造システム60の動作について、ブラインが塩水であるとして説明する。
 まず、冷媒供給部29は、冷媒クリアランス24に冷媒を供給し、内筒22の壁面の温度を塩水の凍結点より-10℃程度低くなるように設定する。これにより、内筒22の壁面に付着した塩水が凍結させることができる。
 このとき、フレークアイス製造装置10における製氷速度は、内筒22の壁面として採用される部材の熱伝導率に応じて調節される。
 また、フレークアイス製造装置10における製氷速度は、内筒22の壁面のうちブラインが付着する可能性がある部分の面積に応じて調節される。
 また、フレークアイス製造装置10における製氷速度は、冷媒供給部29により供給される冷媒の温度に応じて調節される。
Next, operation | movement of the flake ice manufacturing system 60 containing the flake ice manufacturing apparatus 10 which has the said structure is demonstrated on the assumption that a brine is salt water.
First, the refrigerant supply unit 29 supplies the refrigerant to the refrigerant clearance 24 and sets the temperature of the wall surface of the inner cylinder 22 to be about −10 ° C. lower than the freezing point of the salt water. Thereby, the salt water adhering to the wall surface of the inner cylinder 22 can be frozen.
At this time, the ice making speed in the flake ice manufacturing apparatus 10 is adjusted according to the thermal conductivity of the member employed as the wall surface of the inner cylinder 22.
In addition, the ice making speed in the flake ice manufacturing apparatus 10 is adjusted according to the area of the portion of the wall surface of the inner cylinder 22 where the brine may adhere.
Further, the ice making speed in the flake ice manufacturing apparatus 10 is adjusted according to the temperature of the refrigerant supplied by the refrigerant supply unit 29.
 内筒22の壁面が冷却されると、回転制御部27は、ギヤードモータ20を駆動させ、回転軸12を材軸周りに回転させる。
 回転軸12が回転すると、ポンプ31は、ブライン貯留タンク30からロータリージョイント21を介して回転軸12内にブラインである塩水を供給する。
 回転軸内12に塩水が供給されると、回転軸12と共に回転する噴射部13は、内筒22の壁面に向けて塩水を噴射する。噴射部13から噴射された塩水は、内筒22の壁面に接触すると瞬時に凍結し氷が生成される。
 なお、内筒22の壁面にブラインを自然流下させることにより付着させた場合、噴射によりブラインを付着させた場合に比べて、内筒22の壁面に付着するブラインの体積が大きいため、生成される氷の体積も大きくなる。このため、内筒22の壁面に溶け難い氷を生成させることができる。
 このとき、回転制御部27は、回転軸12の回転速度を2~4rpmに制御する。なお、噴射部13の構成要素としてパイプではなくスプレーノズルを使用した場合には、回転制御部27は、回転軸12の回転速度を10~15rpmに制御する。
 内筒22の壁面に生成された氷は、回転軸12と共に回転する剥取部14によって剥ぎ取られる。剥取部14によって剥ぎ取られた氷は、フレークアイスとして排出口16から落下する。排出口16から落下したフレークアイスは、フレークアイス製造装置10の直下に配置されたフレークアイス貯留タンク34内に貯えられる。
 上述したように、氷とならず、内筒22の壁面を流下した塩水はブライン貯留タンク30に貯えられ、ポンプ31を作動させることによりブライン配管32を介してロータリージョイント21に再び送給される。なお、ブライン貯留タンク30内の塩水が少なくなった場合は、ブラインタンク33が、自身に貯えられている塩水がブライン貯留タンク30に供給する。
When the wall surface of the inner cylinder 22 is cooled, the rotation control unit 27 drives the geared motor 20 to rotate the rotating shaft 12 around the material axis.
When the rotary shaft 12 rotates, the pump 31 supplies brine that is brine into the rotary shaft 12 from the brine storage tank 30 via the rotary joint 21.
When salt water is supplied to the inside 12 of the rotating shaft, the injection unit 13 that rotates together with the rotating shaft 12 injects salt water toward the wall surface of the inner cylinder 22. When the salt water sprayed from the spray unit 13 comes into contact with the wall surface of the inner cylinder 22, it freezes instantly and ice is generated.
When the brine is attached to the wall surface of the inner cylinder 22 by naturally flowing down, it is generated because the volume of the brine attached to the wall surface of the inner cylinder 22 is larger than when the brine is attached by injection. The ice volume also increases. For this reason, it is possible to generate ice that hardly melts on the wall surface of the inner cylinder 22.
At this time, the rotation control unit 27 controls the rotation speed of the rotating shaft 12 to 2 to 4 rpm. When a spray nozzle is used instead of a pipe as a component of the injection unit 13, the rotation control unit 27 controls the rotation speed of the rotary shaft 12 to 10 to 15 rpm.
The ice generated on the wall surface of the inner cylinder 22 is peeled off by the peeling unit 14 that rotates together with the rotating shaft 12. The ice peeled off by the peeling unit 14 falls from the discharge port 16 as flake ice. The flake ice that has fallen from the discharge port 16 is stored in a flake ice storage tank 34 disposed immediately below the flake ice manufacturing apparatus 10.
As described above, the salt water that does not become ice but flows down the wall surface of the inner cylinder 22 is stored in the brine storage tank 30, and is fed again to the rotary joint 21 via the brine pipe 32 by operating the pump 31. . In addition, when the salt water in the brine storage tank 30 decreases, the brine tank 33 supplies the salt water stored in itself to the brine storage tank 30.
 ここで、回転制御部27が、ギヤードモータ20の回転速度を変化させることにより、フレークアイス製造装置10により製造されるフレークアイスの温度を変化させることができる。
 例えばブレインとして塩水が採用されているものとする。この場合、塩水が凍結する凍結点は、その溶質濃度のみに依存すると従来から考えられて来た。例えば溶質濃度が0.8%であれば、どんな場合でも-1.2℃で塩水が凍結すると従来から考えられて来た。
 しかしながら、本出願人が、ブレインとして塩水を採用して、本実施形態のフレークアイス製造装置10を用いて、回転軸12の回転速度を変化させたところ、同一濃度の塩水から製造されるフレークアイスの温度が、回転数に応じて変化すること、特に回転数が低下すると温度が低下することを発見した。
 この理由は、フレークアイスは、製氷熱を帯びた状態が融解し終わるまで維持されるためである。
 これにより、ブラインの濃度を、冷蔵、冷凍対象にあわせた所望値に固定しつつ、フレークアイスの温度を調節することができる。
Here, the rotation control unit 27 can change the temperature of the flake ice manufactured by the flake ice manufacturing apparatus 10 by changing the rotation speed of the geared motor 20.
For example, it is assumed that salt water is adopted as the brain. In this case, it has been conventionally considered that the freezing point at which salt water freezes depends only on the solute concentration. For example, it has been conventionally considered that when the solute concentration is 0.8%, salt water freezes at −1.2 ° C. in any case.
However, when the applicant adopts salt water as a brain and changes the rotation speed of the rotary shaft 12 using the flake ice production apparatus 10 of the present embodiment, flake ice produced from the same concentration of salt water is obtained. It has been found that the temperature of the liquid crystal changes according to the rotational speed, and in particular, the temperature decreases as the rotational speed decreases.
The reason for this is that the flake ice is maintained until the ice-heated state is completely melted.
Thereby, the temperature of flake ice can be adjusted, fixing the density | concentration of a brine to the desired value according to refrigeration and freezing object.
[氷スラリー製造手法]
 次に、上述したブラインとフレークアイスとを材料とする氷スラリーを製造する手法の一例を説明する。氷スラリーについては、予め用意された複数種類のブラインを材料とすることにより、要求される保冷温度と保冷時間とに対応させたもの製造することができる。
 なお、ブラインは塩水であり、被保冷物は生鮮海産物であることとし、また、氷スラリーの中に直接被保冷物である生鮮海産物を入れることにより瞬間凍結することを想定して説明する。
[Ice slurry manufacturing method]
Next, an example of a method for producing an ice slurry using the above-described brine and flake ice as materials will be described. The ice slurry can be manufactured according to the required cold insulation temperature and cold preservation time by using a plurality of types of brine prepared in advance.
It is assumed that the brine is salt water, the to-be-cooled product is a fresh seafood, and that the frozen seafood is immediately frozen by placing the fresh to-be-cooled product directly in the ice slurry.
 生鮮海産物を瞬間凍結させるためには、氷スラリーの原料である塩水の溶質濃度を従来に比べて大幅に高く設定する。なお、溶質濃度が13.6%である塩水の理論飽和凍結点は-9.8℃となり、溶質濃度が23.1%である塩水の理論飽和凍結点は-21.2℃となる。
 塩水の溶質濃度が13.6%未満の場合、製造した氷スラリーによる生鮮海産物の凍結速度は遅くなる。一方、塩水の溶質濃度が23.1%を超える場合、塩分が結晶として析出するため、塩水の飽和凍結点が上昇する。
 なお、生鮮海産物を直接氷スラリーに入れた場合、氷スラリーの溶質濃度が高くても、生鮮海産物の表面が瞬間凍結して氷結するため、生鮮海産物中に塩分が侵入することはない。
In order to instantly freeze fresh seafood, the solute concentration of salt water, which is the raw material of ice slurry, is set to be significantly higher than before. The theoretical saturation freezing point of salt water having a solute concentration of 13.6% is −9.8 ° C., and the theoretical saturation freezing point of salt water having a solute concentration of 23.1% is −21.2 ° C.
When the solute concentration of salt water is less than 13.6%, the freezing rate of fresh seafood by the produced ice slurry becomes slow. On the other hand, when the solute concentration of the salt water exceeds 23.1%, the salt content is precipitated as crystals, so that the saturation freezing point of the salt water increases.
When the fresh seafood is directly put into the ice slurry, even if the solute concentration of the ice slurry is high, the surface of the fresh seafood freezes and freezes, so that the salt does not enter the fresh seafood.
 氷スラリーを製造するために混合するフレークアイスと塩水との溶質濃度は、同程度(数%以内の濃度差)であることを好適とする。フレークアイスの溶質濃度が塩水の溶質濃度より高い場合、フレークアイスの温度が塩水の飽和凍結点より低いため、溶質濃度が低い塩水を混合した直後に水分が凍結する。一方、フレークアイスの溶質濃度が塩水の溶質濃度より低い場合、フレークアイスの飽和凍結点よりも塩水の飽和凍結点のほうが低いため、フレークアイスが融解し、氷スラリーの温度が低下する。
 従って、氷スラリーの状態を変動させないようにするためには、混合するフレークアイスと塩水の溶質濃度を同程度とすることが望ましい。
It is preferable that the solute concentrations of the flake ice and the salt water to be mixed for producing the ice slurry are approximately the same (concentration difference within several percent). When the solute concentration of the flake ice is higher than the solute concentration of the salt water, the temperature of the flake ice is lower than the saturation freezing point of the salt water, so that the water freezes immediately after mixing the salt water having a low solute concentration. On the other hand, when the solute concentration of the flake ice is lower than the solute concentration of the salt water, since the saturation freezing point of the salt water is lower than the saturation freezing point of the flake ice, the flake ice melts and the temperature of the ice slurry decreases.
Therefore, in order not to change the state of the ice slurry, it is desirable that the solute concentrations of the flake ice and the salt water to be mixed are approximately the same.
 混合するフレークアイスと塩水の質量比は、フレークアイス:塩水=75:25~20:80、好ましくはフレークアイス:塩水=60:40~50:50とする。なお、フレークアイスの質量比が75質量%を超えると、固形分の比率が高くなるため、生鮮海産物と氷スラリーとの間に隙間が発生し、生鮮海産物に氷スラリー3が密着しなくなる。一方、氷の質量比が20質量%未満であると、製造した氷スラリーによって生鮮海産物を瞬間凍結し難くなるからである。 The mass ratio of flake ice and salt water to be mixed is flake ice: salt water = 75: 25 to 20:80, preferably flake ice: salt water = 60: 40 to 50:50. In addition, since the ratio of solid content will become high when the mass ratio of flake ice exceeds 75 mass%, a clearance gap will generate | occur | produce between fresh seafood and ice slurry, and ice slurry 3 will not adhere to fresh seafood. On the other hand, when the mass ratio of ice is less than 20% by mass, it is difficult to instantly freeze fresh seafood by the produced ice slurry.
 即ち、ブラインが塩水の場合、溶質濃度(ブラインの濃度)を13.6%~23.1%とした塩水を用いてフレークアイス製造装置10により生成したフレークアイスと、溶質濃度が13.6%~23.1%である塩水とを混合して氷スラリーを製造する。
 本実施形態では、製造された氷スラリーの温度は-9.8℃~-21.2℃となる。製造されたフレークアイスと混合する塩水の温度は、常温もしくはそれを下回る温度とする。なお、塩水の温度が低い程、製氷効率は高くなる。
That is, when the brine is salt water, the flake ice produced by the flake ice manufacturing apparatus 10 using the salt water having a solute concentration (brine concentration) of 13.6% to 23.1%, and the solute concentration is 13.6%. An ice slurry is prepared by mixing with ˜23.1% brine.
In this embodiment, the temperature of the produced ice slurry is −9.8 ° C. to −21.2 ° C. The temperature of the salt water mixed with the manufactured flake ice is set to room temperature or lower. In addition, ice-making efficiency becomes high, so that the temperature of salt water is low.
 なお、ブラインが塩水以外の場合は、製造される氷スラリーの温度が、必要とされる温度となるように、ブラインの濃度や、混合するフレークアイスとブラインの質量比を調整する。
 このように、ブラインの濃度や、混合するフレークアイスとブラインの質量比を調整することにより、複数種類の温度の氷スラリーを製造することができる。
When the brine is other than salt water, the concentration of the brine and the mass ratio of the mixed flake ice and brine are adjusted so that the temperature of the produced ice slurry becomes the required temperature.
Thus, by adjusting the concentration of the brine and the mass ratio of the flake ice and the brine to be mixed, it is possible to produce an ice slurry having a plurality of types of temperatures.
 以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。また本発明の要旨を逸脱しない範囲内であれば種々の変更や上記実施の形態の組み合わせを施してもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations described in the above-described embodiments, and is considered within the scope of the matters described in the claims. Other embodiments and modifications are also included. Further, various modifications and combinations of the above embodiments may be made within the scope not departing from the gist of the present invention.
 例えば、本発明の製氷装置は、一実施形態として図1に示されるフレークアイス製造装置10のような構成をとる必要はなく、本発明の構成要素を具備する製氷装置であればよい。
 また、本発明の製氷装置により生成される氷は、上記(a)及び(b)の条件を満たす、溶質を含有する水溶液を含む液体の氷であることが望ましいが、(a)及び(b)の一方又は双方の条件を満たさない氷であってもよい。即ち、氷と水との溶質濃度が異なる氷スラリーを用いて被保冷物の保冷を行ってもよい。
For example, the ice making device of the present invention does not need to be configured as the flake ice manufacturing device 10 shown in FIG. 1 as an embodiment, and may be an ice making device including the components of the present invention.
The ice produced by the ice making apparatus of the present invention is preferably liquid ice containing an aqueous solution containing a solute that satisfies the above conditions (a) and (b). Ice) that does not satisfy one or both of the conditions. That is, the object to be cooled may be kept cold using ice slurries having different solute concentrations of ice and water.
 また、本発明の製氷装置の一実施形態に係るフレークアイス製造装置10によれば、任意の温度のフレークアイスを効率良く製造することができるため、フレークアイス製造装置10自体のサイズをよりコンパクト化させることができる。これにより、例えば被保冷物を運搬するための車両、船舶、航空機等の移動体において、積載される保冷物全体の体積に対し、少ない体積のフレークアイス製造装置10を搭載させることができる。
 即ち、被保冷物を輸送する場合には、輸送対象となる被保冷物の量に比例して被保冷物を冷却するための氷スラリーが必要となるが、当然ながら被保冷物を運搬するための車両、船舶、航空機には最大積載量が設けられている。この最大積載量の範囲内で、被保冷物の積載量を最大化させるためには、冷却効果を維持できる範囲内で、氷スラリーの量を最小化させる必要がある。このとき、コンパクト化されたフレークアイス製造装置10であれば、積載される保冷物全体の体積に対して少ない体積で済むため、最大積載量の範囲内で、被保冷物の積載量を最大化させることが可能となる。
In addition, according to the flake ice manufacturing apparatus 10 according to an embodiment of the ice making apparatus of the present invention, flake ice at an arbitrary temperature can be efficiently manufactured, so the size of the flake ice manufacturing apparatus 10 itself is made more compact. Can be made. Thereby, for example, in a moving body such as a vehicle, a ship, or an aircraft for transporting the object to be cooled, the flake ice manufacturing apparatus 10 having a smaller volume than the entire volume of the cooled object to be loaded can be mounted.
That is, when transporting a cold object, an ice slurry for cooling the cold object is required in proportion to the amount of the cold object to be transported. Vehicles, ships, and aircraft have maximum loading capacity. In order to maximize the load amount of the object to be cooled within the range of the maximum load amount, it is necessary to minimize the amount of ice slurry within the range in which the cooling effect can be maintained. At this time, if the flake ice manufacturing apparatus 10 is made compact, the volume of the cold-reserved object can be maximized within the range of the maximum load capacity because the volume of the ice-cold object can be smaller than that of the entire cold-retained object to be loaded. It becomes possible to make it.
 また、鋸歯15aは、内筒22の壁面に付着した氷を剥ぎ取る際に内筒22の壁面に触れる。このため、内筒22の壁面は摩耗し劣化し易くなる。特に銅など鋸歯15aよりも柔らかい材質の場合には劣化が顕著となる。これに対し、図示はしないが、交換可能なライナーを内筒22の壁面に装着させることもできる。これにより、内筒22あるいはドラム11全体を交換するような大掛かりな修繕作業を行うことなく、ライナーのみを交換するだけで内筒22の壁面の品質を維持させることができる。このとき、熱伝導率の均一性を考慮した場合、ライナーは内筒22の壁面と同一の素材であることが望ましいが、同一の素材でなくてもよい。
 ライナーを内筒22の壁面に装着させる方法は特に限定されない。例えばライナーと、ライナーに接する内筒22の壁面との夫々に螺旋状の溝を設け、ピッチの粗いネジのような形状とすることにより、ライナーをドラム11内にねじ込むようにして内筒22の壁面に装着させてもよい。また、ライナーを一旦冷却して体積を収縮させたうえで内筒22の壁面に装着させてもよい。この場合、ライナーの温度が常温に戻ると、ライナーの体積が膨張するため、内筒22の壁面にライナーを密着させ固定させることができる。
 なお、内筒22の壁面にライナーを装着させる構成とした場合、サンドペーパー等を用いて内筒22の壁面とライナーとが密着する面に細かい凹凸を施してもよい。これにより、内筒22の壁面とライナーとが密着する面との間に一定の摩擦力を生じさせることができるため、内筒22の壁面からライナーが滑って脱落する事故を未然に防ぐこともできる。
The saw teeth 15 a touch the wall surface of the inner cylinder 22 when the ice attached to the wall surface of the inner cylinder 22 is peeled off. For this reason, the wall surface of the inner cylinder 22 is easily worn and deteriorated. In particular, when the material is softer than the saw tooth 15a such as copper, the deterioration becomes remarkable. On the other hand, although not shown, a replaceable liner can be attached to the wall surface of the inner cylinder 22. Thereby, the quality of the wall surface of the inner cylinder 22 can be maintained by replacing only the liner without performing a large-scale repair work such as replacing the inner cylinder 22 or the entire drum 11. At this time, in consideration of the uniformity of the thermal conductivity, the liner is preferably made of the same material as the wall surface of the inner cylinder 22, but may not be the same material.
The method for attaching the liner to the wall surface of the inner cylinder 22 is not particularly limited. For example, a spiral groove is provided in each of the liner and the wall surface of the inner cylinder 22 in contact with the liner so that the liner is screwed into the drum 11 so that the liner is screwed into the drum 11. It may be attached to the wall. Alternatively, the liner may be once cooled to shrink the volume and then attached to the wall surface of the inner cylinder 22. In this case, since the volume of the liner expands when the temperature of the liner returns to room temperature, the liner can be adhered and fixed to the wall surface of the inner cylinder 22.
In addition, when it is set as the structure which attaches a liner to the wall surface of the inner cylinder 22, you may give fine unevenness | corrugation to the surface where the wall surface of the inner cylinder 22 and a liner contact | adhere using sandpaper etc. As a result, a constant frictional force can be generated between the wall surface of the inner cylinder 22 and the surface where the liner is in close contact, so that it is possible to prevent an accident in which the liner slips from the wall surface of the inner cylinder 22 and falls off. it can.
 また、ブラインは、上述した実施形態では塩水(塩化ナトリウム水溶液)としたが、特に限定されない。具体的には、例えば塩化カルシウム水溶液、塩化マグネシウム水溶液、エチレングリコール等を採用することができる。これにより、溶質又は濃度の違いに応じた凍結点の異なる複数種類のブラインを用意することができる。 In addition, the brine is salt water (sodium chloride aqueous solution) in the above-described embodiment, but is not particularly limited. Specifically, for example, an aqueous calcium chloride solution, an aqueous magnesium chloride solution, ethylene glycol, or the like can be employed. Thereby, a plurality of types of brines having different freezing points according to differences in solute or concentration can be prepared.
 また、本発明の製氷装置により生成された氷を含む氷スラリーが、本発明の製氷装置により生成された氷より高い熱伝導率を有する固体を含有する場合、被冷却物を冷却する工程において、氷スラリーに含まれる氷と被冷却物との間に、本発明の製氷装置により生成された氷より高い熱伝導率を有する固体が介在するように冷却を行うことが好ましい。これにより、熱伝導率の高い固体による短時間の冷却能力を得つつ、被冷却物の長時間の冷却も可能となる。かかる場合、目的に応じて、氷、氷より高い熱伝導率を有する固体、被冷却物とのぞれぞれの間に、別のものが介在していてもよい。例えば、氷スラリーの中に被冷却物と直接接するのが好ましくないもの(例えば、安全性の観点で被冷却物と接するのが好ましくない、氷より熱伝導率が高い固体(銅などの金属等)等)が含まれる場合、袋に氷スラリー又は被冷却物のいずれか一方を収容して、氷スラリーと被冷却物とが直接接しないようにして冷却してもよい。 In addition, when the ice slurry containing ice produced by the ice making device of the present invention contains a solid having a higher thermal conductivity than the ice produced by the ice making device of the present invention, in the step of cooling the object to be cooled, It is preferable to perform cooling so that solids having higher thermal conductivity than ice produced by the ice making device of the present invention are interposed between the ice contained in the ice slurry and the object to be cooled. Accordingly, it is possible to cool an object to be cooled for a long time while obtaining a cooling capacity for a short time by a solid having high thermal conductivity. In such a case, another object may be interposed between ice, a solid having a higher thermal conductivity than ice, and an object to be cooled, depending on the purpose. For example, it is not preferable to be in direct contact with the object to be cooled in the ice slurry (for example, it is not preferable to be in contact with the object to be cooled from the viewpoint of safety, a solid having a higher thermal conductivity than ice (metal such as copper) ) Etc.), either the ice slurry or the object to be cooled may be accommodated in the bag, and the ice slurry and the object to be cooled may be cooled so as not to be in direct contact with each other.
 このように、フレークアイス製造装置10により生成される氷は、被冷却物を冷却させる他に、例えば以下のような用途にも利用することができる。即ち、産業廃棄液の凍結、糞尿の凍結、気体の液体化等にも利用することができる。 As described above, the ice generated by the flake ice manufacturing apparatus 10 can be used for the following applications in addition to cooling the object to be cooled. That is, it can also be used for freezing industrial waste liquid, freezing manure, liquefying gas, and the like.
 以上まとめると、本発明が適用される製氷装置は、次のような構成を取れば足り、各種各様な実施形態を取ることができる。
 即ち、本発明が適用される製氷装置(例えば図1のフレークアイス製造装置10)は、
 製氷面(例えば図1の内筒22の壁面)と、前記製氷面を冷却する冷却部(例えば図1の内筒22)とを有し、冷却された前記製氷面に付着したブラインを凍結させることにより氷を生成する製氷部(例えば図1の内筒22、外筒23、及び冷媒クリアランス24)と、
 前記製氷面に対し、前記ブラインを付着させることにより供給するブライン供給部(例えば図1の噴射部13)と、
 前記製氷部により生成された前記氷を回収する回収部(例えば図1の剥取部14)と、
 を備え、
 前記製氷部における、単位時間当たりの前記氷の生成量を示す製氷速度をYとし、前記製氷面の熱伝導率をx1としたときに、次式(1)が成り立つように設計されている。
 Y=f(x1) ・・・(1)
 これにより、より効率良く冷却能の高い氷を生成することを可能とする技術を実現させることができる。
In summary, the ice making apparatus to which the present invention is applied only needs to have the following configuration, and can take various embodiments.
That is, the ice making device to which the present invention is applied (for example, the flake ice making device 10 in FIG. 1)
It has an ice making surface (for example, the wall surface of the inner cylinder 22 in FIG. 1) and a cooling unit (for example, the inner cylinder 22 in FIG. 1) for cooling the ice making surface, and freezes the brine adhering to the cooled ice making surface. An ice making part (for example, the inner cylinder 22, the outer cylinder 23, and the refrigerant clearance 24 in FIG. 1) that generates ice by
A brine supply unit (for example, the injection unit 13 in FIG. 1) that supplies the brine by attaching the brine to the ice making surface;
A collecting unit (for example, the stripping unit 14 in FIG. 1) that collects the ice generated by the ice making unit;
With
In the ice making section, when the ice making speed indicating the amount of ice produced per unit time is Y and the thermal conductivity of the ice making surface is x1, the following equation (1) is established.
Y = f (x1) (1)
As a result, it is possible to realize a technique that makes it possible to more efficiently generate ice with high cooling ability.
 また、前記製氷面は、銅で構成されることができる。
 これにより、より効率良く冷却能の高い氷を生成させることができる。
The ice making surface can be made of copper.
Thereby, ice with high cooling ability can be generated more efficiently.
 また、前記製氷速度をYとし、前記製氷面のうち前記ブラインが付着される可能性がある部分の面積をx2としたときに、次式(2)が成り立つように設計されることができる。
 Y=f(x2) ・・・(2)
 これにより、前記製氷面のうち前記ブラインが付着される可能性がある部分の面積を調節させることにより製氷速度を調節させることができる。
Further, when the ice making speed is Y and the area of the ice making surface where the brine may be attached is x2, the following equation (2) can be established.
Y = f (x2) (2)
Thus, the ice making speed can be adjusted by adjusting the area of the ice making surface where the brine may adhere.
 また、前記冷却部に対し、前記製氷面を冷却させるために、所定の冷媒を供給する冷媒供給部(例えば図1の冷媒供給部29)をさらに備え、
 前記製氷速度をYとし、前記製氷面の温度をx3としたときに、次式(3)が成り立つように設計されることができる。
 Y=f(x3) ・・・(3)
 これにより、冷媒が選択され前記製氷面の温度が調節されることにより、製氷速度を調節させることができる。
The cooling unit further includes a refrigerant supply unit (for example, the refrigerant supply unit 29 in FIG. 1) for supplying a predetermined refrigerant to cool the ice making surface.
When the ice making speed is Y and the temperature of the ice making surface is x3, the following equation (3) can be established.
Y = f (x3) (3)
Thus, the ice making speed can be adjusted by selecting the refrigerant and adjusting the temperature of the ice making surface.
 また、前記ブライン供給部は、
 前記ブラインを、前記製氷面に噴射することにより付着させることができる。
 また、前記ブライン供給部は、
 前記ブラインを、前記製氷面に自然流下させることにより付着させることができる。
 これにより、前記製氷面に前記ブラインを付着させる手法に応じて製氷速度を調節させることができる。
The brine supply unit
The brine can be deposited by spraying onto the ice making surface.
The brine supply unit
The brine can be adhered to the ice making surface by naturally flowing down.
Thereby, the ice making speed can be adjusted according to the method of attaching the brine to the ice making surface.
 また、前記製氷面は、銅で構成され、
 前記冷媒は、LNGとすることができる。
 これにより、超低温の前記氷であっても効率良く生成されることが可能となるため、幅広く要求される保冷温度にマッチさせたフレークアイスを容易に製造することができる。
The ice making surface is made of copper,
The refrigerant can be LNG.
As a result, even the ultra-low temperature ice can be efficiently generated, and therefore flake ice matched with a wide range of required cold insulation temperatures can be easily produced.
 また、前記製氷部は、
 前記製氷面を覆うライナーをさらに備え、
 前記ライナーは交換可能とすることができる。
 これにより、前記製氷部全体を交換するような大掛かりな修繕作業を行うことなく、ライナーのみを交換するだけで前記製氷面の品質を維持させることができる。
In addition, the ice making part
Further comprising a liner covering the ice making surface,
The liner can be replaceable.
Thereby, the quality of the ice making surface can be maintained by replacing only the liner without performing a large repair work such as replacing the entire ice making unit.
 また、本発明が適用されるフレークアイス製造装置は、前記製氷部と、前記ブライン供給部と、前記回収部とを備え、
 前記製氷部は、
 前記製氷面を有する内筒と、当該内筒を囲繞する外筒と、当該内筒と当該外筒との間に形成されるクリアランスとを含むドラムと、前記クリアランスに対して冷媒を供給する冷媒供給部をさらに備え、
 前記ブライン供給部は、
 前記ドラムの中心軸を軸として回転する回転軸と共に回転し、前記内筒の前記製氷面に向けて前記ブラインを噴射する噴射部をさらに備え、
 前記回収部は、
 前記噴射部から噴射された前記ブラインが、前記クリアランスに供給された前記冷媒により冷却された前記内筒の内面に付着し、その結果として生成された氷を剥ぎ取る剥取部をさらに備え、
 前記製氷部における、単位時間当たりの前記氷の生成量を示す生成速度をYとし、前記製氷面の熱伝導率をx1としたときに、前記式(1)が成り立つように設計されることができる。
 これにより、より効率良く冷却能の高い氷を生成させることができる。
The flake ice manufacturing apparatus to which the present invention is applied includes the ice making unit, the brine supply unit, and the recovery unit.
The ice making part is
A drum including an inner cylinder having the ice making surface, an outer cylinder surrounding the inner cylinder, a clearance formed between the inner cylinder and the outer cylinder, and a refrigerant that supplies refrigerant to the clearance And further comprising a supply unit,
The brine supply unit
A rotation unit that rotates around a central axis of the drum, and further includes an injection unit that injects the brine toward the ice making surface of the inner cylinder;
The collection unit
The brine jetted from the jetting unit is further attached to the inner surface of the inner cylinder cooled by the refrigerant supplied to the clearance, and further comprises a stripping unit for stripping off the ice generated as a result,
In the ice making section, when the production rate indicating the amount of ice produced per unit time is Y and the thermal conductivity of the ice making surface is x1, the design (1) is established. it can.
Thereby, ice with high cooling ability can be generated more efficiently.
 また、前記製氷面の20℃における熱伝導率が70W/mK以上とすることができる。
 また、前記製氷速度をYとし、前記製氷面のうち前記ブラインが付着される可能性がある部分の面積をx2としたときに、前記式(2)が成り立つように設計されることができる。
 また、前記製氷速度をYとし、前記製氷面の温度をx3としたときに、前記式(3)が成り立つように設計されることができる。
Further, the thermal conductivity at 20 ° C. of the ice making surface can be 70 W / mK or more.
Further, when the ice making speed is Y and the area of the ice making surface where the brine is likely to be attached is x2, it can be designed so that the formula (2) is satisfied.
Moreover, when the said ice making speed is set to Y and the temperature of the said ice making surface is set to x3, it can design so that the said Formula (3) may be formed.
 また、前記ブライン供給部は、
 前記ブラインを、前記製氷面に自然流下させることにより付着させることができる。
 また、前記冷媒は、LNGとすることができる。
 また、前記製氷部は、
 前記製氷面を覆うライナーをさらに備え、
 前記ライナーは交換可能とすることができる。
The brine supply unit
The brine can be adhered to the ice making surface by naturally flowing down.
The refrigerant may be LNG.
In addition, the ice making part
Further comprising a liner covering the ice making surface,
The liner can be replaceable.
 また、本発明の一態様のフレークアイス製造装置は、移動体に搭載させることができる。
 これにより、任意の温度のフレークアイスを効率良く製造することができるため、フレークアイス製造装置自体のサイズをよりコンパクト化させることができる。このため、例えば被保冷物を運搬するための車両、船舶、航空機において、積載される保冷物全体の体積に対し、少ない体積のフレークアイス製造装置を搭載させることができる。
Moreover, the flake ice manufacturing apparatus of 1 aspect of this invention can be mounted in a moving body.
Thereby, since flake ice of arbitrary temperature can be manufactured efficiently, the size of flake ice manufacturing apparatus itself can be made more compact. For this reason, for example, in a vehicle, a ship, and an aircraft for transporting the object to be cooled, a flake ice manufacturing apparatus having a smaller volume than the volume of the entire cold object to be loaded can be mounted.
10:フレークアイス製造装置、11:ドラム、12:回転軸、12a:竪穴、13:噴射部、13a:噴射孔、14:剥取部、15:ブレード、15a:鋸歯、16:フレークアイス排出口、17:上部軸受部材、19:防熱保護カバー、20:ギヤードモータ、21:ロータリージョイント、22;内筒、23:外筒、24:冷媒クリアランス、27:回転制御部、28:ブッシュ、29:冷媒供給部、30:ブライン貯留タンク、31:ポンプ、32:ブライン配管、33:ブラインタンク、34:フレークアイス貯留タンク、35:冷媒配管、36:凍結点調節部、60:フレークアイス製造システム DESCRIPTION OF SYMBOLS 10: Flakes ice production apparatus, 11: Drum, 12: Rotating shaft, 12a: Coffin hole, 13: Injection part, 13a: Injection hole, 14: Stripping part, 15: Blade, 15a: Saw tooth, 16: Flake ice discharge port 17: Upper bearing member, 19: Thermal protection cover, 20: Geared motor, 21: Rotary joint, 22: Inner cylinder, 23: Outer cylinder, 24: Refrigerant clearance, 27: Rotation controller, 28: Bush, 29: Refrigerant supply unit, 30: brine storage tank, 31: pump, 32: brine piping, 33: brine tank, 34: flake ice storage tank, 35: refrigerant piping, 36: freezing point adjustment unit, 60: flake ice production system

Claims (18)

  1.  製氷面と、前記製氷面を冷却する冷却部とを有し、冷却された前記製氷面に付着したブラインを凍結させることにより氷を生成する製氷部と、
     前記製氷面に対し、前記ブラインを付着させることにより供給するブライン供給部と、
     前記製氷部により生成された前記氷を回収する回収部と、
     を備え、
     前記製氷部における、単位時間当たりの前記氷の生成量を示す製氷速度をYとし、前記製氷面の熱伝導率をx1としたときに、次式(1)が成り立つように設計されている、
     製氷装置。
     Y=f(x1) ・・・(1)
    An ice making surface, and a cooling unit that cools the ice making surface; and an ice making unit that generates ice by freezing brine attached to the cooled ice making surface;
    A brine supply unit for supplying the brine by attaching the brine to the ice making surface;
    A recovery unit for recovering the ice generated by the ice making unit;
    With
    When the ice making speed indicating the amount of ice produced per unit time in the ice making unit is Y and the thermal conductivity of the ice making surface is x1, the following equation (1) is established.
    Ice making equipment.
    Y = f (x1) (1)
  2.  前記製氷面の20℃における熱伝導率が70W/mK以上である、
     請求項1に記載の製氷装置。
    The thermal conductivity at 20 ° C. of the ice making surface is 70 W / mK or more.
    The ice making device according to claim 1.
  3.  前記製氷速度をYとし、前記製氷面のうち前記ブラインが付着される可能性がある部分の面積をx2としたときに、次式(2)が成り立つように設計されている、
     請求項1または2に記載の製氷装置。
     Y=f(x2) ・・・(2)
    When the ice making speed is Y and the area of the ice making surface where the brine may be attached is x2, the following formula (2) is established.
    The ice making device according to claim 1 or 2.
    Y = f (x2) (2)
  4.  前記冷却部に対し、前記製氷面を冷却させるために、所定の冷媒を供給する冷媒供給部をさらに備え、
     前記製氷速度をYとし、前記製氷面の温度をx3としたときに、次式(3)が成り立つように設計されている、
     請求項1乃至3のうちいずれか1項に記載の製氷装置。
     Y=f(x3) ・・・(3)
    In order to cool the ice making surface to the cooling unit, further comprising a refrigerant supply unit for supplying a predetermined refrigerant,
    When the ice making speed is Y and the temperature of the ice making surface is x3, the following equation (3) is established.
    The ice making device according to any one of claims 1 to 3.
    Y = f (x3) (3)
  5.  前記ブライン供給部は、
     前記ブラインを、前記製氷面に噴射することにより付着させる、
     請求項1乃至4のうちいずれか1項に記載の製氷装置。
    The brine supply unit
    The brine is deposited by spraying on the ice making surface;
    The ice making device according to any one of claims 1 to 4.
  6.  前記ブライン供給部は、
     前記ブラインを、前記製氷面に自然流下させることにより付着させる、
     請求項1乃至4のうちいずれか1項に記載の製氷装置。
    The brine supply unit
    The brine is allowed to adhere to the ice making surface by allowing it to flow down naturally.
    The ice making device according to any one of claims 1 to 4.
  7.  前記冷媒は、LNGである、
     請求項4に記載の製氷装置。
    The refrigerant is LNG.
    The ice making device according to claim 4.
  8.  前記製氷部は、
     前記製氷面を覆うライナーをさらに備え、
     前記ライナーは交換可能である、
     請求項1乃至7のうちいずれか1項に記載の製氷装置。
    The ice making part is
    Further comprising a liner covering the ice making surface,
    The liner is replaceable,
    The ice making device according to any one of claims 1 to 7.
  9.  請求項1に記載の前記製氷部と、請求項1に記載のブライン供給部と、請求項1に記載の前記回収部とを備えるフレークアイス製造装置であって、
     前記製氷部は、
     前記製氷面を有する内筒と、当該内筒を囲繞する外筒と、当該内筒と当該外筒との間に形成されるクリアランスとを含むドラムと、前記クリアランスに対して冷媒を供給する冷媒供給部
     をさらに備え、
     前記ブライン供給部は、
     前記ドラムの中心軸を軸として回転する回転軸と共に回転し、前記内筒の前記製氷面に向けて前記ブラインを噴射する噴射部
     をさらに備え、
     前記回収部は、
     前記噴射部から噴射された前記ブラインが、前記クリアランスに供給された前記冷媒により冷却された前記内筒の内面に付着し、その結果として生成された氷を剥ぎ取る剥取部
     をさらに備え、
     前記製氷部における、単位時間当たりの前記氷の生成量を示す生成速度をYとし、前記製氷面の熱伝導率をx1としたときに、前記式(1)が成り立つように設計されている、
     フレークアイス製造装置。
    A flake ice production apparatus comprising: the ice making unit according to claim 1; the brine supply unit according to claim 1; and the recovery unit according to claim 1.
    The ice making part is
    A drum including an inner cylinder having the ice making surface, an outer cylinder surrounding the inner cylinder, a clearance formed between the inner cylinder and the outer cylinder, and a refrigerant that supplies refrigerant to the clearance A supply section,
    The brine supply unit
    An injection unit that rotates together with a rotation shaft that rotates about the central axis of the drum, and that injects the brine toward the ice making surface of the inner cylinder;
    The collection unit
    The brine jetted from the jetting unit is further attached to the inner surface of the inner cylinder cooled by the refrigerant supplied to the clearance, and further comprises a stripping unit for stripping off the ice generated as a result,
    In the ice making part, when the production rate indicating the production amount of the ice per unit time is Y and the thermal conductivity of the ice making surface is x1, the above formula (1) is established.
    Flakes ice making equipment.
  10.  前記製氷面の20℃における熱伝導率が70W/mK以上である、
     請求項9に記載のフレークアイス製造装置。
    The thermal conductivity at 20 ° C. of the ice making surface is 70 W / mK or more.
    The flake ice manufacturing apparatus of Claim 9.
  11.  前記製氷速度をYとし、前記製氷面のうち前記ブラインが付着される可能性がある部分の面積をx2としたときに、前記式(2)が成り立つように設計されている、
     請求項9または10に記載のフレークアイス製造装置。
    When the ice making speed is Y and the area of the ice making surface where the brine may be attached is x2, the above formula (2) is established.
    The flake ice manufacturing apparatus of Claim 9 or 10.
  12.  前記冷却部に対し、前記製氷面を冷却させるために、所定の冷媒を供給する冷媒供給部をさらに備え、
     前記製氷速度をYとし、前記製氷面の温度をx3としたときに、前記式(3)が成り立つように設計されている、
     請求項9乃至11のうちいずれか1項に記載のフレークアイス製造装置。
    In order to cool the ice making surface to the cooling unit, further comprising a refrigerant supply unit for supplying a predetermined refrigerant,
    When the ice making speed is Y and the temperature of the ice making surface is x3, the above formula (3) is established.
    The flake ice manufacturing apparatus of any one of Claims 9 thru | or 11.
  13.  前記ブライン供給部は、
     前記ブラインを、前記製氷面に噴射することにより付着させる、
     請求項9乃至12のうちいずれか1項に記載のフレークアイス製造装置。
    The brine supply unit
    The brine is deposited by spraying on the ice making surface;
    The flake ice manufacturing apparatus of any one of Claims 9 thru | or 12.
  14.  前記ブライン供給部は、
     前記ブラインを、前記製氷面に自然流下させることにより付着させる、
     請求項9乃至12のうちいずれか1項に記載のフレークアイス製造装置。
    The brine supply unit
    The brine is allowed to adhere to the ice making surface by allowing it to flow down naturally.
    The flake ice manufacturing apparatus of any one of Claims 9 thru | or 12.
  15.  前記冷媒は、LNGである、
     請求項9に記載のフレークアイス製造装置。
    The refrigerant is LNG.
    The flake ice manufacturing apparatus of Claim 9.
  16.  前記製氷部は、
     前記製氷面を覆うライナーをさらに備え、
     前記ライナーは交換可能である、
     請求項9乃至15のうちいずれか1項に記載のフレークアイス製造装置。
    The ice making part is
    Further comprising a liner covering the ice making surface,
    The liner is replaceable,
    The flake ice manufacturing apparatus of any one of Claims 9 thru | or 15.
  17.  請求項9乃至16のうちいずれか1項に記載のフレークアイス製造装置を用いたフレークアイス製造方法。 A flake ice production method using the flake ice production apparatus according to any one of claims 9 to 16.
  18.  請求項9乃至17のうちいずれか1項に記載のフレークアイス製造装置を搭載する移動体。 A moving body on which the flake ice manufacturing apparatus according to any one of claims 9 to 17 is mounted.
PCT/JP2016/084320 2015-11-19 2016-11-18 Ice making device, moving body, flake ice production device, and flake ice production method WO2017086462A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
MX2018006079A MX2018006079A (en) 2015-11-19 2016-11-18 Ice making device, moving body, flake ice production device, and flake ice production method.
KR1020187017429A KR20180091848A (en) 2015-11-19 2016-11-18 Deicing device, moving body, flake ice making device and flake ice making method
JP2017538270A JP6243092B2 (en) 2015-11-19 2016-11-18 Ice making device, moving body, flake ice production device, flake ice production method
RU2018121638A RU2695458C1 (en) 2015-11-19 2016-11-18 Device for production of ice, movable object, device for production of flake ice and method for production of flake ice
SG11201803910WA SG11201803910WA (en) 2015-11-19 2016-11-18 Ice making device, moving body, flake ice production device, and flake ice production method
US15/777,021 US20180340721A1 (en) 2015-11-19 2016-11-18 Ice making device, moving body, flake ice production device, and flake ice production method
AU2016358284A AU2016358284A1 (en) 2015-11-19 2016-11-18 Ice making device, moving body, flake ice production device, and flake ice production method
CA3004252A CA3004252A1 (en) 2015-11-19 2016-11-18 Ice making device, moving body, flake ice production device, and flake ice production method
EP16866462.1A EP3378320A4 (en) 2015-11-19 2016-11-18 Ice making device, moving body, flake ice production device, and flake ice production method
BR112018010064-1A BR112018010064A2 (en) 2015-11-19 2016-11-18 An ice-making device, a mobile, a flakes ice manufacture device, a flakes ice manufacturing method
CN201680067400.1A CN108463111A (en) 2015-11-19 2016-11-18 Ice maker, moving body, flake ice manufacturing device and flake ice manufacturing method
IL259336A IL259336A (en) 2015-11-19 2018-05-14 Ice making device, moving body, flake ice production device, and flake ice production method
PH12018501063A PH12018501063A1 (en) 2015-11-19 2018-05-17 Ice making device, moving body, flake ice production device, and flake ice production method
ZA2018/04015A ZA201804015B (en) 2015-11-19 2018-06-15 Ice making device, moving body, flake ice production device, and flake ice production method

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2015226589 2015-11-19
JP2015-226589 2015-11-19
JP2016-041189 2016-03-03
JP2016041189 2016-03-03
JP2016-103639 2016-05-24
JP2016103014 2016-05-24
JP2016103638 2016-05-24
JP2016-103013 2016-05-24
JP2016-103014 2016-05-24
JP2016-103638 2016-05-24
JP2016103012 2016-05-24
JP2016103640 2016-05-24
JP2016103639 2016-05-24
JP2016-103637 2016-05-24
JP2016103013 2016-05-24
JP2016103637 2016-05-24
JP2016-103012 2016-05-24
JP2016-103640 2016-05-24
JP2016132615A JP6175168B1 (en) 2015-11-19 2016-07-04 Ice, refrigerant, method for producing ice, and method for producing object to be cooled
JP2016-132615 2016-07-04

Publications (1)

Publication Number Publication Date
WO2017086462A1 true WO2017086462A1 (en) 2017-05-26

Family

ID=58718897

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2016/084322 WO2017086464A1 (en) 2015-11-19 2016-11-18 Cold storage unit, moving body, ice slurry supply system, transport system for cold storage articles, cold storage method for cold storage articles, and transport method for cold storage articles
PCT/JP2016/084320 WO2017086462A1 (en) 2015-11-19 2016-11-18 Ice making device, moving body, flake ice production device, and flake ice production method
PCT/JP2016/084319 WO2017086461A1 (en) 2015-11-19 2016-11-18 Ice, refrigerant, ice production method, method for producing cooled article, method for producing refrigerated article of plant/animal or portion thereof, refrigerating material for plant/animal or portion thereof, method for producing frozen fresh plant/animal or portion thereof, defrosted article or processed article thereof, and freezing material for fresh plant/animal or portion thereof
PCT/JP2016/084321 WO2017086463A1 (en) 2015-11-19 2016-11-18 Flake ice production device, flake ice production system, flake ice production method, and moving body

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084322 WO2017086464A1 (en) 2015-11-19 2016-11-18 Cold storage unit, moving body, ice slurry supply system, transport system for cold storage articles, cold storage method for cold storage articles, and transport method for cold storage articles

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/084319 WO2017086461A1 (en) 2015-11-19 2016-11-18 Ice, refrigerant, ice production method, method for producing cooled article, method for producing refrigerated article of plant/animal or portion thereof, refrigerating material for plant/animal or portion thereof, method for producing frozen fresh plant/animal or portion thereof, defrosted article or processed article thereof, and freezing material for fresh plant/animal or portion thereof
PCT/JP2016/084321 WO2017086463A1 (en) 2015-11-19 2016-11-18 Flake ice production device, flake ice production system, flake ice production method, and moving body

Country Status (4)

Country Link
CA (1) CA3004245C (en)
MY (1) MY187613A (en)
TW (1) TWI747517B (en)
WO (4) WO2017086464A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109479949A (en) * 2018-11-22 2019-03-19 李爱芳 Fresh aquatic product preservation method and equipment
JP2019207046A (en) * 2018-05-28 2019-12-05 ブランテック株式会社 Ice slurry manufacturing device and refrigeration system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107975994B (en) * 2017-12-25 2023-10-31 中能绿色精灵(北京)科技有限公司 Gas jet ice slurry cold accumulation device and cold accumulation method thereof
JP7153302B2 (en) * 2018-02-22 2022-10-14 ブランテックインターナショナル株式会社 flake ice making equipment
JP7148112B2 (en) * 2018-05-28 2022-10-05 ブランテックインターナショナル株式会社 Refrigeration equipment and refrigeration system
US20200033041A1 (en) * 2018-07-25 2020-01-30 James Chun Koh Apparatus for making fine ice with salinity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656665U (en) * 1992-12-28 1994-08-05 アイスマン製氷機工業株式会社 Ice machine
JP2002115945A (en) 2000-10-05 2002-04-19 Mayekawa Mfg Co Ltd Method for keeping freshness of fresh food, method for producing salty ice used therefor, and system for keeping freshness of fresh food
JP2002162136A (en) * 2000-11-24 2002-06-07 Tokyo Inst Of Technol Ice making method and ice plant
JP2003056953A (en) * 2001-08-08 2003-02-26 Hoshizaki Electric Co Ltd Ice making machine
JP2013036628A (en) * 2011-08-03 2013-02-21 Izui Tekkosho:Kk Device for making slurry ice
JP2016103637A (en) 2014-11-27 2016-06-02 ソイテック Method for laminating two substrates

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484045A (en) * 1977-12-14 1979-07-04 Seiwa Kasei Kk Freezing of brine of food
JPH0623637B2 (en) * 1985-03-11 1994-03-30 日立冷熱株式会社 Cooling room temperature control method
JPS61247337A (en) * 1985-04-25 1986-11-04 Takeshi Hayashi Method for killing and cooling live fish and apparatus therefor
JPS623736A (en) * 1985-06-29 1987-01-09 Sakai Tadaaki Method of rapid freezing of fish and shellfish
JPS63178786U (en) * 1987-05-08 1988-11-18
JPH0714747B2 (en) * 1990-05-28 1995-02-22 三井造船株式会社 Refrigerated container
JPH109734A (en) * 1996-06-25 1998-01-16 Mitsui Eng & Shipbuild Co Ltd Manufacture of spherical ice
JP2000354454A (en) 1999-06-14 2000-12-26 San Ceiling Kk Retention of freshness of fish or the like
JP2001066030A (en) * 1999-08-30 2001-03-16 Sanden Corp Cold insulation cabinet
JP2006158301A (en) 2004-12-08 2006-06-22 Marufuku Suisan Kk Method for retaining freshness of fresh fish
JP2007040548A (en) * 2005-07-29 2007-02-15 Kajima Corp Method and device for manufacturing salt water soft ice
JP4049221B2 (en) * 2005-12-02 2008-02-20 中国電機製造株式会社 Electrolytic seawater ice generation system, electrolytic seawater generation device, and fresh fish preservation method
GB2485864B (en) * 2011-07-14 2013-05-29 Ide Technologies Ltd Vacuum ice maker (vim) with an integrated water vapor depostion process
BE1020620A5 (en) * 2012-04-13 2014-02-04 Franz Colruyt Ets
WO2014174535A1 (en) * 2013-04-23 2014-10-30 Skaginn Hf. Processing under cooled whole fish

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656665U (en) * 1992-12-28 1994-08-05 アイスマン製氷機工業株式会社 Ice machine
JP2002115945A (en) 2000-10-05 2002-04-19 Mayekawa Mfg Co Ltd Method for keeping freshness of fresh food, method for producing salty ice used therefor, and system for keeping freshness of fresh food
JP2002162136A (en) * 2000-11-24 2002-06-07 Tokyo Inst Of Technol Ice making method and ice plant
JP2003056953A (en) * 2001-08-08 2003-02-26 Hoshizaki Electric Co Ltd Ice making machine
JP2013036628A (en) * 2011-08-03 2013-02-21 Izui Tekkosho:Kk Device for making slurry ice
JP2016103637A (en) 2014-11-27 2016-06-02 ソイテック Method for laminating two substrates

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207046A (en) * 2018-05-28 2019-12-05 ブランテック株式会社 Ice slurry manufacturing device and refrigeration system
WO2019230232A1 (en) * 2018-05-28 2019-12-05 ブランテック株式会社 Ice slurry manufacturing device and refigeration system
JP7370555B2 (en) 2018-05-28 2023-10-30 ブランテックインターナショナル株式会社 Ice slurry production equipment and refrigeration system
CN109479949A (en) * 2018-11-22 2019-03-19 李爱芳 Fresh aquatic product preservation method and equipment

Also Published As

Publication number Publication date
CA3004245A1 (en) 2017-05-26
CA3004245C (en) 2022-03-15
MY187613A (en) 2021-10-04
TWI747517B (en) 2021-11-21
TW202110330A (en) 2021-03-16
WO2017086461A1 (en) 2017-05-26
WO2017086463A1 (en) 2017-05-26
WO2017086464A1 (en) 2017-05-26

Similar Documents

Publication Publication Date Title
JP6243092B2 (en) Ice making device, moving body, flake ice production device, flake ice production method
WO2017086462A1 (en) Ice making device, moving body, flake ice production device, and flake ice production method
JP2018017490A (en) Flake ice manufacturing device, process of manufacture of ice, refrigerant and ice, process of manufacture of object to be cooled, process of manufacture of animal plant or object to be refrigerated for part thereof, process of manufacture of animal plant or its refrigeration agent, fresh animal plant to be frozen or its refrigeration agent, thawing object or its processed product and fresh animal plant or its freezing agent for the part thereof
CN110637203B (en) State change control device and state change control method
JP2018059694A (en) Ice making device
WO2018110506A1 (en) Production device and production method for flake ice
JP6905739B2 (en) Cooling device and cooling method
JP6998577B2 (en) Defrosting device and defrosting method
WO2019077756A1 (en) Flake-ice making device and flake-ice making method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538270

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3004252

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11201803910W

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 000969-2018

Country of ref document: PE

Ref document number: 259336

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/006079

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12018501063

Country of ref document: PH

Ref document number: 15777021

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016358284

Country of ref document: AU

Date of ref document: 20161118

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018010064

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187017429

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016866462

Country of ref document: EP

Ref document number: 1020187017429

Country of ref document: KR

Ref document number: 2018121638

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2016866462

Country of ref document: EP

Effective date: 20180619

ENP Entry into the national phase

Ref document number: 112018010064

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180517