WO2018110506A1 - Production device and production method for flake ice - Google Patents

Production device and production method for flake ice Download PDF

Info

Publication number
WO2018110506A1
WO2018110506A1 PCT/JP2017/044389 JP2017044389W WO2018110506A1 WO 2018110506 A1 WO2018110506 A1 WO 2018110506A1 JP 2017044389 W JP2017044389 W JP 2017044389W WO 2018110506 A1 WO2018110506 A1 WO 2018110506A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
inner cylinder
brine
peripheral surface
flake ice
Prior art date
Application number
PCT/JP2017/044389
Other languages
French (fr)
Japanese (ja)
Inventor
美雄 廣兼
Original Assignee
ブランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブランテック株式会社 filed Critical ブランテック株式会社
Publication of WO2018110506A1 publication Critical patent/WO2018110506A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • F25C1/14Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes
    • F25C1/145Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes from the inner walls of cooled bodies

Definitions

  • the present invention relates to a flake ice manufacturing apparatus and manufacturing method.
  • salt-containing ice obtained by freezing salt-containing water having a solute concentration of about 0.5 to 2.5% is formed into a slurry to be used for maintaining the freshness of fresh food.
  • salt water is prepared by adjusting the salinity of raw water such as filtered and sterilized seawater, and the salt-containing water is rapidly cooled.
  • a method for producing slurry-like salt-containing ice having a freezing point temperature of ⁇ 5 to ⁇ 1 ° C. corresponding to the solute concentration is disclosed.
  • the present invention has been made in view of such circumstances, and an object thereof is to easily produce flake ice having a substantially uniform solute concentration.
  • a flake ice manufacturing apparatus includes: A drum including an inner cylinder, an outer cylinder surrounding the inner cylinder, and a clearance formed between the inner cylinder and the outer cylinder; A refrigerant supply unit for supplying a refrigerant to the clearance; An injection unit that injects brine toward the inner peripheral surface of the inner cylinder; The brine jetted from the jetting unit adheres to the inner peripheral surface of the inner cylinder cooled by the refrigerant supplied to the clearance, and scraping unit scraping off the resulting flake ice, A drive unit that drives the scraping unit along the inner peripheral surface of the inner cylinder in the axial direction of the inner cylinder; Is provided.
  • the injection unit may further include an injection control unit that variably controls the pressure when the brine is injected.
  • outer peripheral portion of the scraping portion in contact with the inner peripheral surface of the inner cylinder may be a replaceable blade.
  • the flake ice manufacturing method of one aspect of the present invention is a manufacturing method corresponding to the above-described flake ice manufacturing apparatus of one aspect of the present invention.
  • flake ice having a substantially uniform solute concentration can be easily produced.
  • the ice of the present invention is ice (also referred to as flake ice) of an aqueous solution (also referred to as brine) containing a solute that satisfies the following conditions (a) and (b).
  • aqueous solution also referred to as brine
  • the temperature at the completion of melting is less than 0 ° C.
  • the rate of change in the solute concentration of the aqueous solution generated from the ice during the melting process is within 30%. It means a low liquid heat medium.
  • sodium chloride aqueous solution (brine) calcium chloride aqueous solution, magnesium chloride aqueous solution, ethylene glycol and the like are contained in the brine.
  • “Flake ice” means flake (flake) ice in which brine is frozen to a uniform concentration. Since flake ice has a large specific surface area, it is possible to quickly cool the object to be cooled. That is, flake ice in which brine is frozen can take away a large amount of latent heat from the surroundings when it is melted. During this time, the temperature does not increase. Therefore, it is possible to keep the object to be cooled for a long time.
  • the ice slurry includes a mixture of flake ice obtained by freezing brine and the brine, and includes sherbet-like ice. In addition, the ice slurry has features such that it can be easily filled into the gap 50 and cooling unevenness is less likely to occur than hard block-shaped ice.
  • the ice having a reduced freezing point as described above continues to be stable at a temperature below the freezing point of fresh water when melted, so that the state where cold energy is stored continues. Therefore, the cooling ability of the object to be cooled should be higher than that of ice made of fresh water.
  • the present inventors have found that the ice produced by the conventional technique does not have sufficient ability to cool the object to be cooled, for example, the temperature of the ice itself increases rapidly with time.
  • the present inventors examined the reason, and even if ice was produced from an aqueous solution containing a solute such as salt in the conventional technique, in practice, ice containing no solute was first produced before the aqueous solution was frozen. As a result, a mixture of ice and solute containing no solute is produced, or only a small amount of ice having a reduced freezing point is produced, so that ice with high cooling capacity is not produced. I found out.
  • the ice of the present invention is an aqueous solution containing a solute, the temperature of the freezing point is lower than the freezing point of fresh water (water not containing a solute). Therefore, it has the characteristic that the temperature at the time of completion of melting is less than 0 ° C.
  • “Tempering completion temperature” means that the ice of the present invention is placed in an environment above the melting point (for example, room temperature and atmospheric pressure) to start melting the ice, and all the ice melts to become water. It refers to the temperature of the water at the time.
  • the temperature at the completion of melting is not particularly limited as long as it is less than 0 ° C., and can be appropriately changed by adjusting the kind and concentration of the solute.
  • the temperature at the completion of melting is preferably lower in terms of higher cooling ability, and specifically, -1 ° C or lower (-2 ° C or lower, -3 ° C or lower, -4 ° C or lower, -5 ° C or lower, -6 ° C or lower, -7 ° C or lower, -8 ° C or lower, -9 ° C or lower, -10 ° C or lower, -11 ° C or lower, -12 ° C or lower, -13 ° C or lower, -14 ° C or lower, -15 Or less, ⁇ 16 ° C.
  • the temperature at the completion of thawing is not too high.
  • -21 ° C or higher (-20 ° C or higher, -19 ° C or higher, -18 ° C or higher, -17 ° C or higher, -16 ° C or higher, -15 ° C or higher, -14 ° C or higher, -13 ° C or higher,- 12 ° C or higher, -11 ° C or higher, -10 ° C or higher, -9 ° C or higher, -8 ° C or higher, -7 ° C or higher, -6 ° C or higher, -5 ° C or higher, -4 ° C or higher, -3 ° C or higher,- 2 ° C or higher, -1 ° C or higher, -0.5 ° C or higher, etc.).
  • the ice of the present invention has a change rate of the solute concentration of the aqueous solution generated from the ice during the melting process (hereinafter sometimes referred to as “change rate of the solute concentration” in this specification) of 30. %. Even in the method described in Patent Document 1, ice having a slightly reduced freezing point may be generated, but most of them are a mixture of water-free ice and solute crystals. Is not enough.
  • the ice of the present invention is made of ice in an aqueous solution containing a solute, it has a feature that there is little change in the elution rate of the solute during the melting process. Specifically, the change rate of the solute concentration of the aqueous solution generated from ice during the melting process is 30%.
  • the “rate of change in the solute concentration of an aqueous solution generated from ice during the melting process” means the ratio of the concentration of the aqueous solution at the completion of melting to the solute concentration in the aqueous solution generated at an arbitrary point in the melting process.
  • the “solute concentration” means the concentration of the mass of the solute in the aqueous solution.
  • the rate of change of the solute concentration in the ice of the present invention is not particularly limited as long as it is within 30%, but the smaller the rate of change, the higher the purity of the ice in the aqueous solution having a reduced freezing point, that is, higher cooling ability. Means. From this viewpoint, the change rate of solute concentration is within 25% (within 24%, within 23%, within 22%, within 21%, within 20%, within 19%, within 18%, within 17%, within 16%. Within 15%, within 14%, within 13%, within 12%, within 11%, within 10%, within 9%, within 8%, within 7%, within 6%, within 5%, within 4%, 3 %, Within 2%, within 1%, within 0.5%, etc.).
  • the change rate of the solute concentration is 0.1% or more (0.5% or more, 1% or more, 2% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8 % Or more, 9% or more, 10% or more, 11% or more, 12% or more, 13% or more, 14% or more, 15% or more, 16% or more, 17% or more, 18% or more, 19% or more, 20% or more Etc.).
  • solute The kind of solute contained in the ice of the present invention is not particularly limited as long as it is a solute when water is used as a solvent, and can be appropriately selected according to a desired freezing point, use of ice to be used, and the like.
  • the solute include solid solutes and liquid solutes, and typical solid solutes include salts (inorganic salts, organic salts, etc.).
  • salts sodium chloride (NaCl) is preferable because it does not excessively reduce the temperature of the freezing point and is suitable for cooling fresh animals and plants or a part thereof.
  • salt since salt is contained in seawater, it is also preferable in terms of easy procurement.
  • ethylene glycol etc. are mentioned as a liquid solute.
  • a solute may be contained individually by 1 type and may be contained 2 or more types.
  • the concentration of the solute contained in the ice of the present invention is not particularly limited, and can be appropriately selected according to the kind of solute, the desired freezing point, the use of the ice to be used, and the like.
  • concentration of the sodium chloride is 0.5% (w / v) or more (1% (w / v) in that the freezing point of the aqueous solution can be further lowered to obtain a high cooling capacity.
  • the ice of the present invention when used for cooling fresh animals and plants or a part thereof, it is preferable not to excessively reduce the temperature of the freezing point. From this viewpoint, it is 23% (w / v) or less (20% (W / v) or less, 19% (w / v) or less, 18% (w / v) or less, 17% (w / v) or less, 16% (w / v) or less, 15% (w / v) 14% (w / v) or less, 13% (w / v) or less, 12% (w / v) or less, 11% (w / v) or less, 10% (w / v) or less, 9% ( w / v) or less, 8% (w / v) or less, 7% (w / v) or less, 6% (w / v) or less, 5% (w / v) or less, 4% (w / / v) or
  • the ice of the present invention is excellent in cooling ability, it is suitable for use as a refrigerant for cooling an object to be cooled.
  • the low-temperature refrigerant for cooling the object to be cooled include organic solvents used as an antifreeze liquid such as ethanol in addition to ice, but ice has higher thermal conductivity and higher specific heat than these antifreeze liquids. Therefore, ice having a low freezing point by dissolving a solute such as the ice of the present invention is also useful in that the cooling ability is superior to other refrigerants of less than 0 ° C. such as antifreeze.
  • the ice of the present invention may or may not contain components other than the above solutes.
  • This invention includes the refrigerant
  • the ice of the present invention is excellent in cooling ability, it is suitable as a refrigerant for cooling an object to be cooled.
  • the refrigerant for cooling the object to be cooled is hereinafter referred to as “ice slurry”. Call it.
  • the ice slurry of the present invention may contain other components of the above-mentioned ice.
  • the ice slurry may contain water in addition to the above-mentioned ice, thereby constituting a mixture of ice and water.
  • the solute concentration in ice and the solute concentration in water are preferably close. The reason is as follows.
  • the solute concentration of ice When the solute concentration of ice is higher than the solute concentration of water, the temperature of the ice is lower than the saturation freezing point of water, so that water freezes immediately after mixing water with a low solute concentration.
  • the solute concentration of ice when the solute concentration of ice is lower than the solute concentration of water, the saturated freeze point of water is lower than the saturated freeze point of ice, so the ice melts and the temperature of the ice slurry consisting of a mixture of ice and water decreases.
  • the solute concentrations of the ice and water to be mixed are approximately the same as described above.
  • the water may be one obtained by melting the ice, or one prepared separately, but one obtained by melting the ice. It is preferable that
  • the ratio of the solute concentration in ice to the solute concentration in water is 75:25 to 20:80. More preferably, it is 70:30 to 30:70, still more preferably 60:40 to 40:60, still more preferably 55:45 to 45:55, and 52:48. Particularly preferred is ⁇ 48: 52, and most preferred is 50:50.
  • the ratio of the solute concentration in ice to the solute concentration in water is preferably within the above range.
  • the water that is the raw material for the ice of the present invention is not particularly limited, but when salt is used as the solute, it is preferably ice of seawater, seawater-added salt, or seawater-diluted water. Seawater, water obtained by adding salt to seawater, or seawater-diluted water can be easily procured, thereby reducing costs.
  • the ice slurry of the present invention may or may not contain a solid having a higher thermal conductivity than the ice of the present invention, but is preferably contained.
  • a solid with high thermal conductivity When trying to cool an object to be cooled in a short time, it can be achieved by using a solid with high thermal conductivity, but in this case, the solid itself also loses cold energy in a short time and the temperature tends to rise. Not suitable for long-time cooling.
  • a solid with high thermal conductivity is suitable for long-time cooling, it is not suitable for cooling an object to be cooled in a short time.
  • the ice of the present invention has a high cooling capacity as described above, it is useful in that it can be cooled for a long time while obtaining a cooling capacity for a short time with a solid having high thermal conductivity.
  • solids having higher thermal conductivity than ice of the present invention include metals (aluminum, silver, copper, gold, duralumin, antimony, cadmium, zinc, tin, bismuth, tungsten, titanium, iron, lead, nickel, platinum).
  • a solid having a higher thermal conductivity than ice of the present invention is a solid having a thermal conductivity of 2.3 W / m K or higher (3 W / m K or higher, 5 W / m K or higher, 8 W / m K or higher, etc.). It is preferably a solid having a thermal conductivity of 10 W / m K or higher (20 W / m K or higher, 30 W / m K or higher, 40 W / m K or higher, etc.), and a thermal conductivity of 50 W / m or higher.
  • the solid is K or higher (60 W / m K or higher, 75 W / m K or higher, 90 W / m K or higher, etc.), and the thermal conductivity is 100 W / m K or higher (125 W / m K or higher, 150 W / m or higher). K or more, 175 W / m K or more) is more preferable, and the thermal conductivity is 200 W / m K or more (250 W / m K or more, 300 W / m K or more, 350 W / m K or more, etc.).
  • Be solid Incidentally Preferably, it still preferably the thermal conductivity of 200 W / m K or more solid, it is particularly preferred thermal conductivity of solid or 400W / m K (410W / m K or more, etc.).
  • the ice slurry of the present invention contains a solid having a higher thermal conductivity than the above-described ice of the present invention, as described above, it is suitable for cooling for a long time even if it contains many solids.
  • the mass of the solid having a higher thermal conductivity than ice / the mass of the ice of the present invention contained in the ice slurry (or the total mass of the ice and the aqueous solution of the present invention contained in the ice slurry) is 1 / 100,000 or more (1 / 50000 or more, 1 / 10,000 or more, 1/5000 or more, 1/1000 or more, 1/500 or more, 1/100 or more, 1/50 or more, 1/10 or more, 1/5 or more, 1/4 or more, 1 / 3 or more, 1/2 or more, etc.).
  • the solid in the present invention may have any shape, but is preferably particulate.
  • the solid may be included in a form included in the ice of the present invention, may be included in a form included outside the ice, but is included in a form included outside the ice. Since it is easier to directly contact the object to be cooled, the cooling ability is increased. For this reason, it is preferable to be included in a form included outside the ice.
  • the ice slurry of the present invention contains the solid, it may be mixed with the solid after the ice is produced by the method for producing ice of the present invention described later, or mixed with water as a raw material in advance. And ice may be produced.
  • the aqueous solution that is atomized by injecting an aqueous solution containing a solute directly contacts the wall surface maintained at a temperature below the freezing point. This enables rapid cooling that was not possible in the past. Thereby, it is thought that the ice with high cooling ability which satisfy
  • the wall surface is, for example, the inner wall of a cylindrical structure such as the drum 11 in FIGS. 1A and 1B described later, but is not particularly limited as long as it can be maintained at a temperature below the freezing point of the aqueous solution.
  • the temperature of the wall surface is not particularly limited as long as it is maintained at a temperature lower than or equal to the freezing point of the aqueous solution.
  • the injection method is not particularly limited, for example, the injection can be performed by an injection unit such as an injection unit 13 in FIGS. 1A and 1B described later.
  • the pressure at the time of injection is, for example, 0.001 MPa or more (0.002 MPa or more, 0.005 MPa or more, 0.01 MPa or more, 0.05 MPa or more, 0.1 MPa or more, 0.2 MPa or more, etc.). 1 MPa or less (0.8 MPa or less, 0.7 MPa or less, 0.6 MPa or less, 0.5 MPa or less, 0.3 MPa or less, 0.1 MPa or less, 0.05 MPa or less, 0.01 MPa or less, etc.) There may be. Further, the pressure at the time of injection may be variably controlled.
  • This invention has the process of collect
  • the method of collecting is not particularly limited.
  • the ice on the wall surface may be scraped by means such as a blade 15 and the dropped ice may be collected.
  • the actual melting completion temperature can be adjusted by adjusting the amount of ice making heat remaining in the ice. In order to adjust the ice making heat, it can be performed by adjusting the holding time of the ice on the wall surface in the recovery step of the present invention.
  • FIG. 1A and FIG. 1B are image diagrams including a partial cross-sectional perspective view showing an outline of a flake ice manufacturing apparatus 1 according to an embodiment of the present invention.
  • FIG. 1A is a diagram illustrating a state in which a scraping portion 14 described later is located at the upper end of the inner cylinder 22.
  • the flake ice manufacturing apparatus 1 includes a drum 11, a heat protection cover 12, an injection unit 13, a scraping unit 14, a blade 15, a drive shaft 16, an upper member 17, and flakes.
  • the ice discharge port 18, the injection control unit 19, the drive control unit 20, the refrigerant supply unit 31, and the refrigerant pipe 37 are provided.
  • the drum 11 includes an inner cylinder 22, an outer cylinder 21 surrounding the inner cylinder 22, and a refrigerant clearance 23 formed between the outer cylinder 21 and the inner cylinder 22. Further, the outer peripheral surface of the drum 11 is covered with a cylindrical heat-resistant protective cover 12.
  • the material of the outer cylinder 21 and the inner cylinder 22 is not particularly limited.
  • steel is used for the outer cylinder 21 and stainless steel is used for the inner cylinder 22.
  • Refrigerant is supplied to the refrigerant clearance 23 from the refrigerant supply unit 31 via the refrigerant pipe 37. Thereby, the inner peripheral surface of the inner cylinder 22 is cooled.
  • the injection unit 13 is composed of a plurality of pipes having an injection hole 13 a at the tip part for injecting brine toward the inner peripheral surface of the inner cylinder 22.
  • the injection unit 13 is installed coaxially with the drive shaft 16, and can move in the inner cylinder 22 in the axial direction in accordance with the movement of the drive shaft 16.
  • the brine injected from the injection hole 13a adheres to the inner peripheral surface of the inner cylinder 22 cooled by the refrigerant, and freezes rapidly without giving time for separation.
  • the plurality of pipes constituting the injection unit 13 extend radially from the drive shaft 16 in the radial direction of the drum 11. Note that a spray nozzle or the like may be employed instead of the pipe.
  • the injection unit 13 can be provided with a rotating means for rotating and spraying so that ice can be made uniformly, and can perform continuous injection such as performing injection while rotating a plurality of pipes.
  • the place where the injection unit 13 is installed is not particularly limited. In the embodiment shown in FIGS. 1A and 1B and FIGS. 2A and 2B to be described later, it is installed below the scraping portion 14. Thereby, since the injection part 13 can inject a brine, moving downward with the scraping part 14, it can scrape off the ice adhering to the internal peripheral surface of the inner cylinder 22 immediately. Thereby, it becomes possible to manufacture many flake ices in a short time.
  • the scraping portion 14 is composed of a disk-shaped member that is slidably fitted on the inner peripheral surface of the inner cylinder 22, and a blade 15 that scrapes off ice adhering to the inner peripheral surface of the inner cylinder 22 is attached to the outer peripheral portion. To do.
  • the scraping portion 14 can move from the upper end to the lower end and from the lower end to the upper end of the inner cylinder 22.
  • FIG. 1A shows a state in which the scraping portion 14 is located at the upper end of the inner cylinder 22.
  • FIG. 1B shows a state in which the scraping portion 14 is located at the lower end of the inner cylinder 22.
  • the scraping unit 14 scrapes off the ice attached to the inner peripheral surface of the inner cylinder 22 while moving from the upper end to the lower end of the inner cylinder 22. Thereafter, the scraping unit 14 is returned from the lower end to the upper end position of the inner cylinder 22 by the scraping control unit 20. That is, FIG. 1A shows a state before the ice adhering to the inner peripheral surface of the inner cylinder 22 is scraped off by the scraping portion 14, and FIG. 1B shows that the ice adhering to the inner peripheral surface of the inner cylinder 22 is scraped off. The state after scraping by the part 14 is shown.
  • the size, material, and attachment method of the blade 15 attached to the outer peripheral portion of the scraping portion 14 to the scraping portion 14 are not particularly limited as long as the frozen brine can be scraped efficiently.
  • the blade 15 in this embodiment is formed of a stainless steel ring having an outer diameter slightly larger than that of the scraping portion 14, and is fitted and fixed to a groove portion provided in the outer peripheral portion of the scraping portion 14.
  • the drive shaft 16 is a shaft for slidably moving the injection unit 13 and the scraping unit 14 in the axial direction of the inner tube 22 within the inner tube 22, and the end of the drive shaft 16 is a scraping unit. 14 is pivotally supported on the bottom surface.
  • the drive shaft 16 is constituted by a mechanism (not shown) such as a motor and a rack and pinion, and moves the scraping portion 14 in the axial direction of the inner cylinder 22.
  • the upper member 17 has a shape in which the pan is inverted, and seals the upper surface of the drum 11. Since there is no obstacle under the drum 11 when the flake ice scraped by the blade 15 falls, the lower surface of the drum 11 serves as a flake ice discharge port 18 for discharging the flake ice.
  • the injection control unit 19 performs variable control of the pressure at which the injection unit 13 injects brine.
  • the pressure for injecting the brine variable, the volume of the brine adhering to the inner peripheral surface of the inner cylinder 22 can be controlled. That is, the volume of the brine adhering to the inner peripheral surface of the inner cylinder 22 is larger when the brine is jetted at a weak pressure than when the brine is jetted at a strong pressure.
  • generated by injecting a brine with a weak pressure becomes difficult to receive to the influence of the temperature in the air in the drum 11 higher than the temperature of the internal peripheral surface of the inner cylinder 22.
  • FIG. Thereby, the ice produced
  • the drive control unit 20 controls the movement speed of the injection unit 13 and the scraping unit 14.
  • the method in which the drive control part 20 controls the moving speed of the injection part 13 and the scraping part 14 is not specifically limited. Specifically, for example, a method of adjusting the rotation speed of a motor that becomes power when the injection unit 13 and the scraping unit 14 are moved by an inverter may be employed.
  • the refrigerant supply unit 31 supplies a refrigerant for cooling the inner peripheral surface of the inner cylinder 22 to the refrigerant clearance 23 via the refrigerant pipe 37.
  • coolant supply part 31 is not specifically limited, What is necessary is just to cool the internal peripheral surface of the inner cylinder 22. FIG.
  • LNG Liquid Natural Gas / liquefied natural gas
  • the refrigerant supplied to the refrigerant clearance 23 can be circulated through the refrigerant pipe 37 between the refrigerant clearance 23 and the refrigerant supply unit 31. Thereby, the refrigerant
  • coolant clearance 23 can be maintained in a state with a high cooling function.
  • FIG. 2A and 2B are image diagrams including a partial cross-sectional perspective view showing an outline of a flake ice manufacturing apparatus 2 according to another embodiment of the present invention.
  • FIG. 2A is a diagram illustrating a state in which the scraping portion 14 is located at the upper end of the inner cylinder 22.
  • the flake ice manufacturing apparatus 2 has basically the same configuration as the flake ice manufacturing apparatus 1 shown in FIG. 1A, but the direction of the drive shaft 16 that pivotally supports the scraping portion 14. Is different. That is, the end of the drive shaft 16 of the flake ice manufacturing apparatus 1 in FIG. 1A is pivotally supported by the bottom surface of the scraping unit 14, whereas the end of the drive shaft 16 of the flake ice manufacturing apparatus 2 in FIG. The shaft is pivotally supported on the upper surface of the injection unit 13 so as to penetrate the scraping unit 14. For this reason, the upper member 17 of the flake ice manufacturing apparatus 2 has a shape in which the central portion is penetrated by the drive shaft 16.
  • the scraping unit 14 of the flake ice manufacturing apparatus 2 can scrape the ice adhering to the inner peripheral surface of the inner cylinder 22 from the flake ice discharge port 18 by moving from the upper end to the lower end of the inner cylinder 22.
  • FIG. 2A shows a state in which the scraping portion 14 is located at the upper end of the inner cylinder 22.
  • FIG. 2B is a diagram illustrating a state in which the scraping portion 14 is located at the lower end of the inner cylinder 22.
  • the scraping unit 14 scrapes off the ice attached to the inner peripheral surface of the inner cylinder 22 while moving from the upper end to the lower end of the inner cylinder 22.
  • FIG. 2A shows a state before the ice adhering to the inner peripheral surface of the inner cylinder 22 is scraped by the scraping portion 14, and FIG. 2B shows that the ice adhering to the inner peripheral surface of the inner cylinder 22 is scraped off. The state after being scraped by the part 14 is shown.
  • FIG. 3 is an image diagram showing an overview of the entire flake ice production system S including the flake ice production apparatus 1 of FIGS. 1A and 1B.
  • the flake ice production system S includes a flake ice production apparatus 1, a brine storage tank 32, a pump 33, a brine pipe 34, a brine tank 35, a flake ice storage tank 36, a refrigerant pipe 37, and a freezing point adjustment unit. 38.
  • the brine storage tank 32 stores brine as a raw material for flake ice.
  • the brine stored in the brine storage tank 32 is supplied to the injection unit 13 via the brine pipe 34 by operating the pump 33.
  • the brine supplied to the injection unit 13 is a raw material for generating flake ice.
  • the brine tank 35 supplies brine to the brine storage tank 32 when the brine in the brine storage tank 32 is reduced.
  • the brine that has flowed down without freezing on the inner peripheral surface of the inner cylinder 22 is stored in the brine storage tank 32 and is supplied again to the injection unit 13 via the brine pipe 34 by operating the pump 33.
  • the flake ice storage tank 36 is disposed immediately below the flake ice manufacturing apparatus 1 and stores the flake ice that has fallen from the flake ice discharge port 18 of the flake ice manufacturing apparatus 1.
  • the freezing point adjustment unit 38 adjusts the freezing point of the brine supplied to the brine storage tank 32 by the brine tank 35.
  • the brine is salt water
  • the freezing point of the salt water varies depending on the concentration, so the freezing point adjustment unit 38 adjusts the concentration of the salt water stored in the brine storage tank 32.
  • the method for adjusting the freezing point of the brine is not particularly limited to this.
  • the following method can also be employed. That is, a plurality of brine storage tanks 32 are provided, and a plurality of types of brines having different freezing points are stored in each of several brine storage tanks 32.
  • the freezing point adjustment unit 38 selects a predetermined type of brine based on the required temperature of the flake ice (for example, the required cool temperature for the conveyed product conveyed by the flake ice), Supplied to the ice making device 1.
  • the temperature of the flake ice produced can be adjusted by adjusting the freezing point of the brine.
  • the refrigerant supply unit 31 supplies refrigerant to the refrigerant clearance 23 and sets the temperature of the inner peripheral surface of the inner cylinder 22 to be about ⁇ 10 ° C. lower than the freezing point of salt water. Thereby, the salt water adhering to the inner peripheral surface of the inner cylinder 22 can be frozen.
  • the pump 33 supplies brine, which is brine, from the brine storage tank 32 to the injection unit 13.
  • the injection unit 13 injects salt water toward the inner peripheral surface of the inner cylinder 22.
  • the salt water sprayed from the spray unit 13 comes into contact with the inner peripheral surface of the inner cylinder 22, it instantly freezes and becomes ice.
  • the ice generated on the inner peripheral surface of the inner cylinder 22 is scraped off by the scraping unit 14 that descends in the inner cylinder 22.
  • the ice scraped off by the scraping unit 14 falls from the discharge port 18 as flake ice.
  • the flake ice that has fallen from the discharge port 18 is stored in a flake ice storage tank 36 disposed immediately below the flake ice manufacturing apparatus 1.
  • the salt water that does not become ice but flows down the inner peripheral surface of the inner cylinder 22 is stored in the brine storage tank 32 and is supplied again to the injection unit 13 through the brine pipe 34 by operating the pump 33. Is done.
  • the brine tank 35 supplies the brine stored in itself to the brine storage tank 32.
  • the brine is salt water (aqueous sodium chloride solution) in the above-described embodiment, but is not particularly limited.
  • aqueous calcium chloride solution, an aqueous magnesium chloride solution, ethylene glycol, or the like can be employed.
  • a plurality of types of brines having different freezing points according to differences in solute or concentration can be prepared.
  • the thermal conductivity higher than that of ice is between the ice contained in the ice slurry and the object to be cooled. It is preferable to perform cooling so that a solid having s is present. Thereby, it is possible to cool for a long time while obtaining a cooling capability for a short time by a solid having high thermal conductivity. In such a case, another object may be interposed between ice, a solid having a higher thermal conductivity than ice, and an object to be cooled, depending on the purpose.
  • the object to be cooled in the ice slurry for example, solid (metal etc.) having a higher thermal conductivity than ice, which is not preferable to contact the object to be cooled from the viewpoint of safety
  • the ice slurry is contained, either the ice slurry or the object to be cooled may be accommodated in the bag, and the ice slurry and the object to be cooled may be cooled so as not to be in direct contact with each other.
  • the injection part 13 can also be made to adhere by making natural brine flow down to the internal peripheral surface of the inner cylinder 22, without employ
  • the volume of the brine adhering to the inner peripheral surface of the inner cylinder 22 is increased by injecting the brine as compared with the case where the brine is adhered to the inner peripheral surface of the inner cylinder 22.
  • the ice generated by the natural flow of the brine is less susceptible to the temperature in the air inside the drum 11 that is higher than the temperature of the inner peripheral surface of the inner cylinder 22. Thereby, it is possible to generate ice that is harder to melt than ice generated by the injection of brine.
  • the flake ice manufacturing apparatus to which the present invention is applied only needs to have the following configuration, and can take various embodiments. That is, the flake ice manufacturing apparatus to which the present invention is applied (for example, the flake ice manufacturing apparatus 1 in FIG. 1A)
  • An inner cylinder for example, the inner cylinder 22 in FIG. 1A
  • an outer cylinder for example, the outer cylinder 21 in FIG. 1A
  • a clearance formed between the inner cylinder and the outer cylinder for example, FIG. 1A refrigerant clearance 23
  • a refrigerant supply unit for example, the refrigerant supply unit 31 of FIG.
  • a refrigerant for example, LNG
  • An injection part for example, the injection part 13 in FIG. 1A
  • An injection part that is installed coaxially with the central axis of the drum and injects brine toward the inner peripheral surface of the inner cylinder;
  • the brine jetted from the jetting unit adheres to the inner peripheral surface of the inner cylinder cooled by the refrigerant supplied to the clearance and scrapes off the resulting flake ice (for example, Scraping part 14) of FIG. 1A
  • a drive unit for example, the drive shaft 16 in FIG. 1A
  • the injection unit The pressure at the time of injecting the brine can be variably controlled. Thereby, it is possible to generate ice that is more difficult to melt.
  • outer peripheral portion of the scraping portion in contact with the inner peripheral surface of the inner cylinder can be a replaceable blade (for example, the blade 15 in FIG. 1A).
  • SYMBOLS 1 Flakes ice production apparatus, 11: Drum, 12: Thermal protection cover, 13: Injection part, 13a: Injection hole, 14: Scraping part, 15: Blade, 16: Drive shaft, 17: Upper member, 18: Flakes Ice discharge port, 19: injection control unit, 20: drive control unit, 21: outer cylinder, 22: inner cylinder, 23: refrigerant clearance, 31: refrigerant supply unit, 32: brine storage tank, 33: pump, 34: brine Piping, 35: Brine tank, 36: Flake ice storage tank, 37: Refrigerant piping, 38: Freezing point adjustment unit, S: Flake ice production system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Provided is a means for easily producing a plurality of types of flake ice having different freezing points and roughly uniform solute concentration. In this flake ice production device 1, a drum 11 includes an inner cylinder 22, an outer cylinder 21 surrounding the inner cylinder 22, and a clearance 23 formed between the inner cylinder 22 and the outer cylinder 21, and a refrigerant supplying unit 31 supplies a refrigerant to the clearance 23. A spraying unit 13 sprays brine toward the inner peripheral surface of the inner cylinder 22. A scraping unit 14 scrapes off flake ice that is generated as a result of brine sprayed from the spraying unit 13 becoming adhered to the inner peripheral surface of the inner cylinder 22, which has been cooled by the refrigerant supplied to the clearance 23. A drive shaft 16 drives the scraping unit 14 along the internal peripheral surface of the inner cylinder 22 in the axial direction of the inner cylinder 22.

Description

フレークアイス製造装置及び製造方法Flake ice manufacturing apparatus and manufacturing method
 本発明は、フレークアイス製造装置及び製造方法に関する。 The present invention relates to a flake ice manufacturing apparatus and manufacturing method.
 従来より、生鮮海産物の鮮度や品質を保持するために、生鮮海産物を氷で冷却する方法がとられている。例えば、漁船が漁に出る際には、大量の氷を漁船に積み込み、水氷(氷と海水の混合物)を満たした容器に、捕獲した魚を入れて輸送している。
 しかしながら、真水から作った氷の場合、氷が溶けると、鮮度保持に使用している海水の溶質濃度が低下する。その結果、浸透圧により、水氷に浸している魚の体内に水が浸入して、魚の鮮度や味覚が落ちてしまうという問題がある。
 そこで、特許文献1では、生鮮食品の鮮度保持に用いるために、略0.5~2.5%の溶質濃度を有する塩含有水の凍結により得られた塩含有氷をスラリー状に形成してなる塩含有水の製氷方法において、ろ過殺菌をした海水等の原水を塩分調整して約1.0~1.5%前後の溶質濃度の塩含有水となし、該塩含有水に急速冷却を行なうことにより前記溶質濃度に対応する-5~-1℃の氷点温度を持つスラリー状塩含有氷を生成する方法が開示されている。
Conventionally, in order to maintain the freshness and quality of fresh seafood, a method of cooling fresh seafood with ice has been used. For example, when a fishing boat goes fishing, a large amount of ice is loaded onto the fishing boat and the captured fish is transported in a container filled with water ice (a mixture of ice and seawater).
However, in the case of ice made from fresh water, when the ice melts, the solute concentration of seawater used for maintaining freshness decreases. As a result, there is a problem that due to the osmotic pressure, water enters the body of the fish immersed in water ice, and the freshness and taste of the fish deteriorate.
Therefore, in Patent Document 1, salt-containing ice obtained by freezing salt-containing water having a solute concentration of about 0.5 to 2.5% is formed into a slurry to be used for maintaining the freshness of fresh food. In the salt-containing water ice making method, salt water is prepared by adjusting the salinity of raw water such as filtered and sterilized seawater, and the salt-containing water is rapidly cooled. A method for producing slurry-like salt-containing ice having a freezing point temperature of −5 to −1 ° C. corresponding to the solute concentration is disclosed.
特開2002-115945号公報JP 2002-115945 A
 しかしながら、特許文献1を含め従来の技術では、生鮮海産物中の水分は凍結すると結晶化するが、生鮮海産物中の氷の結晶が大きくなるため、生鮮海産物の細胞組織が破壊され、鮮度、味覚を維持できないという問題がある。また、特許文献1に記載されている従来方法の場合、スラリー状塩含有氷の氷点温度や浸漬液の水温がさほど低くないため、短期間しか生鮮海産物の鮮度を保持できず、被保冷物毎に要求される保冷温度に対応することができない。
 また、塩水を凍らせた氷は、凍結点の高い真水の部分から凍結し始め、最終的に凍結する部分には、少量の塩水が凍結した部分や、氷の周りに析出した塩が付着している状況となり、氷の溶質濃度は不均一となってしまう。そして、融解時には、最終的に凍結した部分が先に融解し、高濃度の塩水が出てくるため、融解水は、融解の過程で溶質濃度が大幅に変化したり、温度が0℃に向けて上昇するといった技術的な課題があった。
However, in the conventional techniques including Patent Document 1, water in fresh seafood crystallizes when frozen, but since ice crystals in fresh seafood become large, the cellular structure of fresh seafood is destroyed, and freshness and taste are reduced. There is a problem that it cannot be maintained. Further, in the case of the conventional method described in Patent Document 1, since the freezing point temperature of the slurry-like salt-containing ice and the water temperature of the immersion liquid are not so low, the freshness of the fresh seafood can be maintained only for a short period of time, It cannot cope with the cold temperature required for the
In addition, ice frozen in salt water begins to freeze from the fresh water portion with a high freezing point, and a portion where a small amount of salt water has frozen or salt deposited around the ice adheres to the portion that will eventually freeze. As a result, the solute concentration of ice becomes uneven. At the time of thawing, the part that was finally frozen thaws first, and high-concentration salt water comes out, so that the solute concentration in the melted water changes significantly during the melting process, or the temperature goes to 0 ° C. There was a technical problem of rising.
 本発明はこのような事情に鑑みてなされたものであり、溶質濃度を略均一とするフレークアイスを容易に製造することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to easily produce flake ice having a substantially uniform solute concentration.
 上記目的を達成するため、本発明の一態様のフレークアイス製造装置は、
 内筒と、当該内筒を囲繞する外筒と、当該内筒と当該外筒との間に形成されるクリアランスとを含むドラムと、
 前記クリアランスに対して冷媒を供給する冷媒供給部と、
 前記内筒の内周面に向けてブラインを噴射する噴射部と、
 前記噴射部から噴射された前記ブラインが、前記クリアランスに供給された前記冷媒により冷却された前記内筒の内周面に付着し、その結果として生成されたフレークアイスを掻き取る掻取部と、
 前記掻取部を前記内筒の内周面に沿って前記内筒の軸方向に駆動させる駆動部と、
 を備える。
In order to achieve the above object, a flake ice manufacturing apparatus according to an aspect of the present invention includes:
A drum including an inner cylinder, an outer cylinder surrounding the inner cylinder, and a clearance formed between the inner cylinder and the outer cylinder;
A refrigerant supply unit for supplying a refrigerant to the clearance;
An injection unit that injects brine toward the inner peripheral surface of the inner cylinder;
The brine jetted from the jetting unit adheres to the inner peripheral surface of the inner cylinder cooled by the refrigerant supplied to the clearance, and scraping unit scraping off the resulting flake ice,
A drive unit that drives the scraping unit along the inner peripheral surface of the inner cylinder in the axial direction of the inner cylinder;
Is provided.
 また、前記噴射部が、前記ブラインを噴射する際の圧力を可変制御する噴射制御部をさらに備えることができる。 Further, the injection unit may further include an injection control unit that variably controls the pressure when the brine is injected.
 また、前記内筒の内周面に接する前記掻取部の外周部は交換可能なブレードとすることができる。 Further, the outer peripheral portion of the scraping portion in contact with the inner peripheral surface of the inner cylinder may be a replaceable blade.
 本発明の一態様のフレークアイス製造方法は、上述の本発明の一態様のフレークアイス製造装置に対応する製造方法である。 The flake ice manufacturing method of one aspect of the present invention is a manufacturing method corresponding to the above-described flake ice manufacturing apparatus of one aspect of the present invention.
 本発明によれば、溶質濃度を略均一とするフレークアイスを容易に製造することができる。 According to the present invention, flake ice having a substantially uniform solute concentration can be easily produced.
本発明の一実施形態に係るフレークアイス製造装置の概要を示す部分断面斜視図を含むイメージ図であって、掻取部が内筒の上端に位置している状態を示している図である。It is an image figure containing the fragmentary sectional perspective view which shows the outline | summary of the flake ice manufacturing apparatus which concerns on one Embodiment of this invention, Comprising: It is a figure which shows the state in which the scraping part is located in the upper end of an inner cylinder. 本発明の一実施形態に係るフレークアイス製造装置の概要を示す部分断面斜視図を含むイメージ図であって、掻取部が内筒の下端に位置している状態を示している図である。It is an image figure containing the fragmentary sectional perspective view which shows the outline | summary of the flake ice manufacturing apparatus which concerns on one Embodiment of this invention, Comprising: It is a figure which shows the state in which the scraping part is located in the lower end of an inner cylinder. 本発明の他の実施形態に係るフレークアイス製造装置の概要を示す部分断面斜視図を含むイメージ図であって、掻取部が内筒の上端に位置している状態を示している図である。It is an image figure containing the fragmentary sectional perspective view which shows the outline | summary of the flake ice manufacturing apparatus which concerns on other embodiment of this invention, Comprising: It is a figure which shows the state in which the scraping part is located in the upper end of an inner cylinder. 本発明の他の実施形態に係るフレークアイス製造装置の概要を示す部分断面斜視図を含むイメージ図であって、掻取部が内筒の下端に位置している状態を示している図である。It is an image figure containing the fragmentary sectional perspective view which shows the outline | summary of the flake ice manufacturing apparatus which concerns on other embodiment of this invention, Comprising: It is a figure which shows the state in which the scraping part is located in the lower end of an inner cylinder. 図1A、図1Bに示すフレークアイス製造装置を含むフレークアイス製造システムの概要を示すイメージ図である。It is an image figure which shows the outline | summary of the flake ice manufacturing system containing the flake ice manufacturing apparatus shown to FIG. 1A and FIG. 1B.
 <氷>
 本発明の氷は、以下の(a)及び(b)の条件を満たす、溶質を含有する水溶液(ブラインともいう。)の氷(フレークアイスともいう。)である。
 (a)融解完了時の温度が0℃未満である
 (b)融解過程で前記氷から発生する水溶液の溶質濃度の変化率が30%以内である
 ここで、「ブライン」とは、凍結点の低い液体の熱媒体を意味する。具体的には、例えば塩化ナトリウム水溶液(塩水)や塩化カルシウム水溶液、塩化マグネシウム水溶液、エチレングリコール等がブラインに含まれる。
 また、「フレークアイス」とは、ブラインを濃度が均一になるように凍結させたフレーク(薄片)状の氷を意味する。フレークアイスは比表面積が大きいため、被保冷物を素早く冷却することができる。即ち、ブラインを凍結させたフレークアイスは、融解する際に大量の潜熱を周囲から奪うことができる。また、その間、温度が上昇することもない。従って、長時間に亘って被保冷物を保冷することができる。
 また、氷スラリーは、ブラインを凍結させたフレークアイスと、当該ブラインとの混合物を含み、シャーベット状の氷が含まれる。また、氷スラリーは、硬いブロック状の氷に比べて、空隙50への充填が容易であり、また、冷却むらが生じ難い等の特徴を有する。
<Ice>
The ice of the present invention is ice (also referred to as flake ice) of an aqueous solution (also referred to as brine) containing a solute that satisfies the following conditions (a) and (b).
(A) The temperature at the completion of melting is less than 0 ° C. (b) The rate of change in the solute concentration of the aqueous solution generated from the ice during the melting process is within 30%. It means a low liquid heat medium. Specifically, for example, sodium chloride aqueous solution (brine), calcium chloride aqueous solution, magnesium chloride aqueous solution, ethylene glycol and the like are contained in the brine.
“Flake ice” means flake (flake) ice in which brine is frozen to a uniform concentration. Since flake ice has a large specific surface area, it is possible to quickly cool the object to be cooled. That is, flake ice in which brine is frozen can take away a large amount of latent heat from the surroundings when it is melted. During this time, the temperature does not increase. Therefore, it is possible to keep the object to be cooled for a long time.
The ice slurry includes a mixture of flake ice obtained by freezing brine and the brine, and includes sherbet-like ice. In addition, the ice slurry has features such that it can be easily filled into the gap 50 and cooling unevenness is less likely to occur than hard block-shaped ice.
 水に溶質を融解した場合、その水溶液の凝固点が低下するという凝固点降下が生じることが知られている。凝固点降下の作用により、食塩等の溶質が融解した水溶液は、その凝固点が低下している。つまり、そのような水溶液からなる氷は、真水からなる氷より低い温度で凝固した氷である。
 ここで、氷が水に変化するときに必要な熱を「潜熱」というが、この潜熱は温度変化を伴わない。このような潜熱の効果により、上記のような凝固点が低下した氷は、融解時に真水の凝固点以下の温度で安定な状態が続くため、冷熱エネルギーを蓄えた状態が持続することになる。
 よって、本来であれば、被冷却物の冷却能が真水からなる氷より高くなるはずである。しかし、従来の技術によって製造された氷は、冷却の際に自身の温度が経時的に早く上がる等、被冷却物を冷却する能力が十分なものではないことを本発明者らは発見した。その理由について本発明者らは検討したところ、従来の技術では食塩等の溶質を含有する水溶液から氷を製造したとしても、実際は、水溶液が凍る前に溶質を含まない氷が先に製造されてしまい、結果として製造されるのは溶質を含まない氷と溶質との混合物となってしまうか、あるいは、凝固点の低下した氷はほんの僅かしか生成されないため、冷却能の高い氷が製造されていなかったことがわかった。
It is known that when a solute is melted in water, a freezing point depression occurs in which the freezing point of the aqueous solution is lowered. The freezing point of an aqueous solution in which a solute such as sodium chloride has been melted due to the action of lowering the freezing point is lowered. That is, ice made of such an aqueous solution is ice that has solidified at a lower temperature than ice made of fresh water.
Here, the heat required when ice changes to water is referred to as “latent heat”, but this latent heat is not accompanied by a temperature change. Due to the effect of such latent heat, the ice having a reduced freezing point as described above continues to be stable at a temperature below the freezing point of fresh water when melted, so that the state where cold energy is stored continues.
Therefore, the cooling ability of the object to be cooled should be higher than that of ice made of fresh water. However, the present inventors have found that the ice produced by the conventional technique does not have sufficient ability to cool the object to be cooled, for example, the temperature of the ice itself increases rapidly with time. The present inventors examined the reason, and even if ice was produced from an aqueous solution containing a solute such as salt in the conventional technique, in practice, ice containing no solute was first produced before the aqueous solution was frozen. As a result, a mixture of ice and solute containing no solute is produced, or only a small amount of ice having a reduced freezing point is produced, so that ice with high cooling capacity is not produced. I found out.
 しかしながら、本発明者らは、所定の方法により(詳細は後述する)、凝固点が低下した水溶液の氷を製造することに成功した。このような本発明の氷は、上述の(a)及び(b)の条件を満たすものである。以下、上述の(a)及び(b)の条件について説明する。 However, the present inventors succeeded in producing an aqueous solution ice having a reduced freezing point by a predetermined method (details will be described later). Such ice of the present invention satisfies the above conditions (a) and (b). Hereinafter, the above conditions (a) and (b) will be described.
 (融解完了時の温度)
 上記(a)に関して、本発明の氷は、溶質を含む水溶液であるため、真水(溶質を含まない水)の凝固点より凝固点の温度が低下している。そのため、融解完了時の温度が0℃未満であるという特徴を有する。「融解完了時の温度」とは、本発明の氷を融点以上の環境下(例えば、室温、大気圧下)に置くことで氷の融解を開始させ、全ての氷が融解して水になった時点におけるその水の温度のことを指す。
(Temperature at the completion of melting)
Regarding the above (a), since the ice of the present invention is an aqueous solution containing a solute, the temperature of the freezing point is lower than the freezing point of fresh water (water not containing a solute). Therefore, it has the characteristic that the temperature at the time of completion of melting is less than 0 ° C. “Tempering completion temperature” means that the ice of the present invention is placed in an environment above the melting point (for example, room temperature and atmospheric pressure) to start melting the ice, and all the ice melts to become water. It refers to the temperature of the water at the time.
 融解完了時の温度は0℃未満であれば特に限定されず、溶質の種類、濃度を調整することで適宜変更することができる。融解完了時の温度は、より冷却能が高いという点で、温度が低い方が好ましく、具体的には、-1℃以下(-2℃以下、-3℃以下、-4℃以下、-5℃以下、-6℃以下、-7℃以下、-8℃以下、-9℃以下、-10℃以下、-11℃以下、-12℃以下、-13℃以下、-14℃以下、-15℃以下、-16℃以下、-17℃以下、-18℃以下、-19℃以下、-20℃以下等)であることが好ましい。他方、凝固点を、被冷却物の凍結点に近づけた方が好ましい場合もあり(例えば、生鮮動植物の損傷を防ぐため等)、このような場合は、融解完了時の温度が高すぎない方が好ましく、例えば、-21℃以上(-20℃以上、-19℃以上、-18℃以上、-17℃以上、-16℃以上、-15℃以上、-14℃以上、-13℃以上、-12℃以上、-11℃以上、-10℃以上、-9℃以上、-8℃以上、-7℃以上、-6℃以上、-5℃以上、-4℃以上、-3℃以上、-2℃以上、-1℃以上、-0.5℃以上等)であることが好ましい。 The temperature at the completion of melting is not particularly limited as long as it is less than 0 ° C., and can be appropriately changed by adjusting the kind and concentration of the solute. The temperature at the completion of melting is preferably lower in terms of higher cooling ability, and specifically, -1 ° C or lower (-2 ° C or lower, -3 ° C or lower, -4 ° C or lower, -5 ° C or lower, -6 ° C or lower, -7 ° C or lower, -8 ° C or lower, -9 ° C or lower, -10 ° C or lower, -11 ° C or lower, -12 ° C or lower, -13 ° C or lower, -14 ° C or lower, -15 Or less, −16 ° C. or less, −17 ° C. or less, −18 ° C. or less, −19 ° C. or less, −20 ° C. or less, and the like. On the other hand, it may be preferable to bring the freezing point closer to the freezing point of the object to be cooled (for example, to prevent damage to fresh animals and plants). In such a case, it is preferable that the temperature at the completion of thawing is not too high. Preferably, for example, -21 ° C or higher (-20 ° C or higher, -19 ° C or higher, -18 ° C or higher, -17 ° C or higher, -16 ° C or higher, -15 ° C or higher, -14 ° C or higher, -13 ° C or higher,- 12 ° C or higher, -11 ° C or higher, -10 ° C or higher, -9 ° C or higher, -8 ° C or higher, -7 ° C or higher, -6 ° C or higher, -5 ° C or higher, -4 ° C or higher, -3 ° C or higher,- 2 ° C or higher, -1 ° C or higher, -0.5 ° C or higher, etc.).
 (溶質濃度の変化率)
 上記(b)に関して、本発明の氷は、融解過程で氷から発生する水溶液の溶質濃度の変化率(以下、本明細書において「溶質濃度の変化率」と略称する場合がある。)が30%以内であるという特徴を有する。特許文献1に記載されたような方法においても、わずかに凝固点の低下した氷が生じる場合もあるが、そのほとんどは溶質を含まない水の氷と溶質の結晶との混合物であるため、冷却能が十分なものでない。このように溶質を含まない水の氷と溶質の結晶との混合物が多く含まれる場合、氷を融解条件下においた場合、融解に伴う溶質の溶出速度が不安定であり、融解開始時に近い時点である程、溶質が多く溶出し、融解が進むとともに溶質の溶出する量が少なくなり、融解が完了時に近い時点程、溶質の溶出量が少なくなる。これに対し、本発明の氷は、溶質を含む水溶液の氷からなるものであるため、融解過程における溶質の溶出速度の変化が少ないという特徴を有する。具体的には、融解過程で氷から発生する水溶液の溶質濃度の変化率が30%である。なお、「融解過程で氷から発生する水溶液の溶質濃度の変化率」とは、融解過程の任意の時点での発生する水溶液における溶質濃度に対する、融解完了時における水溶液の濃度の割合を意味する。なお、「溶質濃度」とは、水溶液中の溶質の質量の濃度を意味する。
(Change rate of solute concentration)
With regard to the above (b), the ice of the present invention has a change rate of the solute concentration of the aqueous solution generated from the ice during the melting process (hereinafter sometimes referred to as “change rate of the solute concentration” in this specification) of 30. %. Even in the method described in Patent Document 1, ice having a slightly reduced freezing point may be generated, but most of them are a mixture of water-free ice and solute crystals. Is not enough. When there is a large mixture of ice and solute crystals of water that does not contain solute in this way, when the ice is placed under melting conditions, the elution rate of the solute accompanying melting is unstable, The more the solute is eluted, the more the solute is eluted, the less the amount of the solute is eluted. On the other hand, since the ice of the present invention is made of ice in an aqueous solution containing a solute, it has a feature that there is little change in the elution rate of the solute during the melting process. Specifically, the change rate of the solute concentration of the aqueous solution generated from ice during the melting process is 30%. The “rate of change in the solute concentration of an aqueous solution generated from ice during the melting process” means the ratio of the concentration of the aqueous solution at the completion of melting to the solute concentration in the aqueous solution generated at an arbitrary point in the melting process. The “solute concentration” means the concentration of the mass of the solute in the aqueous solution.
 本発明の氷における溶質濃度の変化率は30%以内であれば特に限定されないが、その変化率が少ない方が、凝固点の低下した水溶液の氷の純度が高いこと、つまり、冷却能が高いことを意味する。この観点から、溶質濃度の変化率は、25%以内(24%以内、23%以内、22%以内、21%以内、20%以内、19%以内、18%以内、17%以内、16%以内、15%以内、14%以内、13%以内、12%以内、11%以内、10%以内、9%以内、8%以内、7%以内、6%以内、5%以内、4%以内、3%以内、2%以内、1%以内、0.5%以内等)であることが好ましい。他方、溶質濃度の変化率は、0.1%以上(0.5%以上、1%以上、2%以上、3%以上、4%以上、5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、11%以上、12%以上、13%以上、14%以上、15%以上、16%以上、17%以上、18%以上、19%以上、20%以上等)であってもよい。 The rate of change of the solute concentration in the ice of the present invention is not particularly limited as long as it is within 30%, but the smaller the rate of change, the higher the purity of the ice in the aqueous solution having a reduced freezing point, that is, higher cooling ability. Means. From this viewpoint, the change rate of solute concentration is within 25% (within 24%, within 23%, within 22%, within 21%, within 20%, within 19%, within 18%, within 17%, within 16%. Within 15%, within 14%, within 13%, within 12%, within 11%, within 10%, within 9%, within 8%, within 7%, within 6%, within 5%, within 4%, 3 %, Within 2%, within 1%, within 0.5%, etc.). On the other hand, the change rate of the solute concentration is 0.1% or more (0.5% or more, 1% or more, 2% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8 % Or more, 9% or more, 10% or more, 11% or more, 12% or more, 13% or more, 14% or more, 15% or more, 16% or more, 17% or more, 18% or more, 19% or more, 20% or more Etc.).
 (溶質)
 本発明の氷に含まれる溶質の種類は、水を溶媒としたときの溶質であれば特に限定されず、所望の凝固点、使用する氷の用途等に応じて、適宜選択することができる。溶質としては、固体状の溶質、液状の溶質等が挙げられるが、代表的な固体状の溶質としては、塩類(無機塩、有機塩等)が挙げられる。特に、塩類のうち、食塩(NaCl)は、凝固点の温度を過度に下げすぎず、生鮮動植物又はその一部の冷却に適していることから好ましい。また、食塩は海水に含まれるものであるため、調達が容易であるという点でも好ましい。また、液状の溶質としては、エチレングリコール等が挙げられる。なお、溶質は1種単独で含まれてもよく、2種以上含まれてもよい。
(Solute)
The kind of solute contained in the ice of the present invention is not particularly limited as long as it is a solute when water is used as a solvent, and can be appropriately selected according to a desired freezing point, use of ice to be used, and the like. Examples of the solute include solid solutes and liquid solutes, and typical solid solutes include salts (inorganic salts, organic salts, etc.). Particularly, among salts, sodium chloride (NaCl) is preferable because it does not excessively reduce the temperature of the freezing point and is suitable for cooling fresh animals and plants or a part thereof. Moreover, since salt is contained in seawater, it is also preferable in terms of easy procurement. Moreover, ethylene glycol etc. are mentioned as a liquid solute. In addition, a solute may be contained individually by 1 type and may be contained 2 or more types.
 本発明の氷に含まれる溶質の濃度は特に限定されず、溶質の種類、所望の凝固点、使用する氷の用途等に応じて、適宜選択することができる。例えば、溶質として食塩を用いた場合は、水溶液の凝固点をより下げて、高い冷却能を得ることができる点で、食塩の濃度は0.5%(w/v)以上(1%(w/v)以上、2%(w/v)以上、3%(w/v)以上、4%(w/v)以上、5%(w/v)以上、6%(w/v)以上、7%(w/v)以上、8%(w/v)以上、9%(w/v)以上、10%(w/v)以上、11%(w/v)以上、12%(w/v)以上、13%(w/v)以上、14%(w/v)以上、15%(w/v)以上、16%(w/v)以上、17%(w/v)以上、18%(w/v)以上、19%(w/v)以上、20%(w/v)以上等)であることが好ましい。他方、本発明の氷を生鮮動植物又はその一部の冷却に用いる場合等においては、凝固点の温度を過度に下げすぎない方が好ましく、この観点で、23%(w/v)以下(20%(w/v)以下、19%(w/v)以下、18%(w/v)以下、17%(w/v)以下、16%(w/v)以下、15%(w/v)以下、14%(w/v)以下、13%(w/v)以下、12%(w/v)以下、11%(w/v)以下、10%(w/v)以下、9%(w/v)以下、8%(w/v)以下、7%(w/v)以下、6%(w/v)以下、5%(w/v)以下、4%(w/v)以下、3%(w/v)以下、2%(w/v)以下、1%(w/v)以下等)であることが好ましい。 The concentration of the solute contained in the ice of the present invention is not particularly limited, and can be appropriately selected according to the kind of solute, the desired freezing point, the use of the ice to be used, and the like. For example, when sodium chloride is used as the solute, the concentration of the sodium chloride is 0.5% (w / v) or more (1% (w / v) in that the freezing point of the aqueous solution can be further lowered to obtain a high cooling capacity. v) or more, 2% (w / v) or more, 3% (w / v) or more, 4% (w / v) or more, 5% (w / v) or more, 6% (w / v) or more, 7 % (W / v) or more, 8% (w / v) or more, 9% (w / v) or more, 10% (w / v) or more, 11% (w / v) or more, 12% (w / v) ), 13% (w / v) or more, 14% (w / v) or more, 15% (w / v) or more, 16% (w / v) or more, 17% (w / v) or more, 18% (W / v) or more, 19% (w / v) or more, 20% (w / v) or more, etc.). On the other hand, when the ice of the present invention is used for cooling fresh animals and plants or a part thereof, it is preferable not to excessively reduce the temperature of the freezing point. From this viewpoint, it is 23% (w / v) or less (20% (W / v) or less, 19% (w / v) or less, 18% (w / v) or less, 17% (w / v) or less, 16% (w / v) or less, 15% (w / v) 14% (w / v) or less, 13% (w / v) or less, 12% (w / v) or less, 11% (w / v) or less, 10% (w / v) or less, 9% ( w / v) or less, 8% (w / v) or less, 7% (w / v) or less, 6% (w / v) or less, 5% (w / v) or less, 4% (w / v) or less 3% (w / v) or less, 2% (w / v) or less, 1% (w / v) or less, etc.).
 本発明の氷は冷却能に優れるため、被保冷物を冷却させる冷媒としての使用に適している。被保冷物を冷却させる低温の冷媒としては、氷以外に、エタノール等の不凍液として使用される有機溶媒が挙げられるが、これらの不凍液より氷の方が熱伝導率が高く、比熱が高い。そのため、本発明の氷のような溶質を溶解させて凝固点が低くなった氷は、不凍液のような他の0℃未満の冷媒より、冷却能が優れている点においても有用である。 Since the ice of the present invention is excellent in cooling ability, it is suitable for use as a refrigerant for cooling an object to be cooled. Examples of the low-temperature refrigerant for cooling the object to be cooled include organic solvents used as an antifreeze liquid such as ethanol in addition to ice, but ice has higher thermal conductivity and higher specific heat than these antifreeze liquids. Therefore, ice having a low freezing point by dissolving a solute such as the ice of the present invention is also useful in that the cooling ability is superior to other refrigerants of less than 0 ° C. such as antifreeze.
 本発明の氷は、上記の溶質以外の成分を含んでもよく、含まなくてもよい。 The ice of the present invention may or may not contain components other than the above solutes.
 (被保冷物を冷却させる冷媒(氷スラリーともいう。))
 本発明は、上記の氷を含む、被保冷物を冷却させる冷媒を包含する。上記のとおり、本発明の氷は冷却能に優れるため、被保冷物を冷却させる冷媒に好適である。
 なお、被保冷物を冷却させるための冷媒と、内筒22(図3参照)を冷却させるための冷媒との混同を防ぐため、被保冷物を冷却させるための冷媒を、以下「氷スラリー」と呼ぶ。
(Refrigerant for cooling the object to be cooled (also called ice slurry))
This invention includes the refrigerant | coolant which cools to-be-cooled material containing said ice. As described above, since the ice of the present invention is excellent in cooling ability, it is suitable as a refrigerant for cooling an object to be cooled.
In order to prevent confusion between the refrigerant for cooling the object to be cooled and the refrigerant for cooling the inner cylinder 22 (see FIG. 3), the refrigerant for cooling the object to be cooled is hereinafter referred to as “ice slurry”. Call it.
 本発明の氷スラリーは、上記の氷の他の成分を含んでもよく、例えば、上記の氷以外に水を含むことで、氷と水との混合物により構成してもよい。例えば、氷に含まれる溶質と同一の溶質を含有する水をさらに含む場合、氷における溶質の濃度と、水における溶質の濃度は近い方が好ましい。その理由は、以下のとおりである。 The ice slurry of the present invention may contain other components of the above-mentioned ice. For example, the ice slurry may contain water in addition to the above-mentioned ice, thereby constituting a mixture of ice and water. For example, when it further contains water containing the same solute as that contained in ice, the solute concentration in ice and the solute concentration in water are preferably close. The reason is as follows.
 氷の溶質濃度が水の溶質濃度より高い場合、氷の温度が水の飽和凍結点より低いため、溶質濃度が低い水を混合した直後に水分が凍結する。一方、氷の溶質濃度が水の溶質濃度より低い場合、氷の飽和凍結点よりも水の飽和凍結点のほうが低いため氷が融解し、氷と水との混合物からなる氷スラリーの温度が低下する。つまり、氷と水との混合物の状態(氷スラリーの状態)を変動させないようにするためには、上述のとおり、混合する氷と水の溶質濃度を同程度とすることが好ましい。また、氷と水との混合物の状態である場合、水は、上記氷が融解してなるものであってもよく、別途調製したものであってもよいが、上記氷が融解してなるものであることが好ましい。 When the solute concentration of ice is higher than the solute concentration of water, the temperature of the ice is lower than the saturation freezing point of water, so that water freezes immediately after mixing water with a low solute concentration. On the other hand, when the solute concentration of ice is lower than the solute concentration of water, the saturated freeze point of water is lower than the saturated freeze point of ice, so the ice melts and the temperature of the ice slurry consisting of a mixture of ice and water decreases. To do. That is, in order not to change the state of the mixture of ice and water (the state of the ice slurry), it is preferable that the solute concentrations of the ice and water to be mixed are approximately the same as described above. In the case of a mixture of ice and water, the water may be one obtained by melting the ice, or one prepared separately, but one obtained by melting the ice. It is preferable that
 具体的には、本発明の氷スラリーを氷と水との混合物により構成する場合、氷における溶質の濃度と、水における溶質の濃度との比が、75:25~20:80であることがより好ましく、70:30~30:70であることがさらに好ましく、60:40~40:60であることがより一層好ましく、55:45~45:55であることがさらに一層好ましく、52:48~48:52であることが特に好ましく、50:50であることが最も好ましい。特に、溶質として食塩を用いる場合、氷における溶質の濃度と、水における溶質の濃度との比が上記範囲内にあることが好ましい。 Specifically, when the ice slurry of the present invention is composed of a mixture of ice and water, the ratio of the solute concentration in ice to the solute concentration in water is 75:25 to 20:80. More preferably, it is 70:30 to 30:70, still more preferably 60:40 to 40:60, still more preferably 55:45 to 45:55, and 52:48. Particularly preferred is ˜48: 52, and most preferred is 50:50. In particular, when salt is used as the solute, the ratio of the solute concentration in ice to the solute concentration in water is preferably within the above range.
 本発明の氷の原料となる水は、特に限定されないが、溶質として食塩を使用する場合、海水、海水に塩を追加した水、又は海水の希釈水、の氷であることが好ましい。海水、海水に塩を追加した水、又は海水の希釈水は、調達が容易であり、これによりコストの削減も可能となる。 The water that is the raw material for the ice of the present invention is not particularly limited, but when salt is used as the solute, it is preferably ice of seawater, seawater-added salt, or seawater-diluted water. Seawater, water obtained by adding salt to seawater, or seawater-diluted water can be easily procured, thereby reducing costs.
 本発明の氷スラリーは、さらに、上記の本発明の氷より高い熱伝導率を有する固体を含有してもよく、含有しなくてもよいが、含有することが好ましい。短時間で冷却対象物を冷却しようとした場合、熱伝導率の高い固体を利用することにより達成可能であるが、この場合、その固体自身も短時間で冷熱エネルギーを失い温度が上がりやすいため、長時間の冷却には不適である。他方、熱伝導率の高い固体を利用しない方が長時間の冷却に適しているが、短時間で冷却対象物を冷却するのには不適である。しかしながら、本発明の氷は、上記のように冷却能が高いため、熱伝導率の高い固体による短時間の冷却能力を得つつ、長時間の冷却も可能としている点で有用である。本発明の氷より高い熱伝導率を有する固体としては、例えば、金属(アルミニウム、銀、銅、金、ジュラルミン、アンチモン、カドミウム、亜鉛、すず、ビスマス、タングステン、チタン、鉄、鉛、ニッケル、白金、マグネシウム、モリブデン、ジルコニウム、ベリリウム、インジウム、ニオブ、クロム、コバルト、イリジウム、パラジウム)、合金(鋼(炭素鋼、クロム鋼、ニッケル鋼、クロムニッケル鋼、ケイ素鋼、タングステン鋼、マンガン鋼等)、ニッケルクロム合金、アルミ青銅、砲金、黄銅、マンガニン、洋銀、コンスタンタン、はんだ、アルメル、クロメル、モネルメタル、白金イリジウム等)、ケイ素、炭素、セラミックス(アルミナセラミックス、フォルステライトセラミックス、ステアタイトセラミックス等)、大理石、レンガ(マグネシアレンガ、コルハルトレンガ等)等であって、本発明の氷より高い熱伝導率を有するものが挙げられる。また、本発明の氷より高い熱伝導率を有する固体は、熱伝導率が2.3W/m K以上(3W/m K以上、5W/m K以上、8W/m K以上等)の固体であることが好ましく、熱伝導率が10W/m K以上(20W/m K以上、30W/m K以上、40W/m K以上等)の固体であることがより好ましく、熱伝導率が50W/m K以上(60W/m K以上、75W/m K以上、90W/m K以上等)の固体であることがさらに好ましく、熱伝導率が100W/m K以上(125W/m K以上、150W/m K以上、175W/m K以上等)の固体であることがより一層好ましく、熱伝導率が200W/m K以上(250W/m K以上、300W/m K以上、350W/m K以上等)の固体であることがなお好ましく、熱伝導率が200W/m K以上の固体であることがなお好ましく、熱伝導率が400W/m K以上(410W/m K以上等)の固体であることが特に好ましい。 The ice slurry of the present invention may or may not contain a solid having a higher thermal conductivity than the ice of the present invention, but is preferably contained. When trying to cool an object to be cooled in a short time, it can be achieved by using a solid with high thermal conductivity, but in this case, the solid itself also loses cold energy in a short time and the temperature tends to rise. Not suitable for long-time cooling. On the other hand, although not using a solid with high thermal conductivity is suitable for long-time cooling, it is not suitable for cooling an object to be cooled in a short time. However, since the ice of the present invention has a high cooling capacity as described above, it is useful in that it can be cooled for a long time while obtaining a cooling capacity for a short time with a solid having high thermal conductivity. Examples of solids having higher thermal conductivity than ice of the present invention include metals (aluminum, silver, copper, gold, duralumin, antimony, cadmium, zinc, tin, bismuth, tungsten, titanium, iron, lead, nickel, platinum). , Magnesium, molybdenum, zirconium, beryllium, indium, niobium, chromium, cobalt, iridium, palladium), alloys (steel (carbon steel, chromium steel, nickel steel, chromium nickel steel, silicon steel, tungsten steel, manganese steel, etc.), Nickel-chromium alloy, aluminum bronze, gunmetal, brass, manganin, silver, constantan, solder, alumel, chromel, monel metal, platinum iridium, etc.), silicon, carbon, ceramics (alumina ceramics, forsterite ceramics, steatite ceramics, etc.), marble Brick (magnesia bricks, Coll Hult bricks, etc.) a like, include those having a higher thermal conductivity than the ice of the present invention. In addition, a solid having a higher thermal conductivity than ice of the present invention is a solid having a thermal conductivity of 2.3 W / m K or higher (3 W / m K or higher, 5 W / m K or higher, 8 W / m K or higher, etc.). It is preferably a solid having a thermal conductivity of 10 W / m K or higher (20 W / m K or higher, 30 W / m K or higher, 40 W / m K or higher, etc.), and a thermal conductivity of 50 W / m or higher. More preferably, the solid is K or higher (60 W / m K or higher, 75 W / m K or higher, 90 W / m K or higher, etc.), and the thermal conductivity is 100 W / m K or higher (125 W / m K or higher, 150 W / m or higher). K or more, 175 W / m K or more) is more preferable, and the thermal conductivity is 200 W / m K or more (250 W / m K or more, 300 W / m K or more, 350 W / m K or more, etc.). Be solid Incidentally Preferably, it still preferably the thermal conductivity of 200 W / m K or more solid, it is particularly preferred thermal conductivity of solid or 400W / m K (410W / m K or more, etc.).
 本発明の氷スラリーが、上記の本発明の氷より高い熱伝導率を有する固体を含有する場合、上記のとおり、多くの固体を含んでも長時間の冷却に適しており、例えば、本発明の氷より高い熱伝導率を有する固体の質量/氷スラリーに含まれる本発明の氷の質量(又は氷スラリーに含まれる本発明の氷と水溶液との合計質量)は、1/100000以上(1/50000以上、1/10000以上、1/5000以上、1/1000以上、1/500以上、1/100以上、1/50以上、1/10以上、1/5以上、1/4以上、1/3以上、1/2以上等)であってもよい。 When the ice slurry of the present invention contains a solid having a higher thermal conductivity than the above-described ice of the present invention, as described above, it is suitable for cooling for a long time even if it contains many solids. The mass of the solid having a higher thermal conductivity than ice / the mass of the ice of the present invention contained in the ice slurry (or the total mass of the ice and the aqueous solution of the present invention contained in the ice slurry) is 1 / 100,000 or more (1 / 50000 or more, 1 / 10,000 or more, 1/5000 or more, 1/1000 or more, 1/500 or more, 1/100 or more, 1/50 or more, 1/10 or more, 1/5 or more, 1/4 or more, 1 / 3 or more, 1/2 or more, etc.).
 本発明における上記固体は、どのような形状であってもよいが、粒子状であることが好ましい。また、上記固体は、本発明の氷の内部に含まれた形態で含まれていてもよく、氷の外部に含まれた形態で含まれていてもよいが、氷の外部に含まれた形態で含まれていた方が冷却対象物に直接接しやすくなるため、冷却能が高くなる。このことから、氷の外部に含まれた形態で含まれていた方が好ましい。また、本発明の氷スラリーが上記固体を含有する場合、後述の本発明の氷の製造方法により氷を製造した後に上記固体と混合してもよく、あるいは、あらかじめ原料となる水に混合した状態で、氷を製造してもよい。 The solid in the present invention may have any shape, but is preferably particulate. In addition, the solid may be included in a form included in the ice of the present invention, may be included in a form included outside the ice, but is included in a form included outside the ice. Since it is easier to directly contact the object to be cooled, the cooling ability is increased. For this reason, it is preferable to be included in a form included outside the ice. In addition, when the ice slurry of the present invention contains the solid, it may be mixed with the solid after the ice is produced by the method for producing ice of the present invention described later, or mixed with water as a raw material in advance. And ice may be produced.
 以下、本発明の一実施形態を図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[フレークアイス製造装置] [Flake ice production equipment]
 容器に溜められた状態の水溶液を外部から冷却しても、本発明の氷を製造することはできない。これは、冷却速度が十分でないことに起因すると考えられる。しかしながら、本発明の一実施形態であるフレークアイス製造装置1によれば、溶質を含有する水溶液を噴射することで霧状となった水溶液が凝固点以下の温度に保持された壁面に直接接することにより、従来なかった急速な冷却を可能としている。これにより、上記(a)及び(b)の条件を満たす、冷却能の高い氷を生成することができると考えられる。 Even if the aqueous solution stored in the container is cooled from the outside, the ice of the present invention cannot be produced. This is considered to be due to the insufficient cooling rate. However, according to the flake ice manufacturing apparatus 1 that is an embodiment of the present invention, the aqueous solution that is atomized by injecting an aqueous solution containing a solute directly contacts the wall surface maintained at a temperature below the freezing point. This enables rapid cooling that was not possible in the past. Thereby, it is thought that the ice with high cooling ability which satisfy | fills the conditions of said (a) and (b) can be produced | generated.
 壁面は、例えば、後述する図1A、図1Bにおけるドラム11のような円柱型の構造物の内壁等が挙げられるが、水溶液の凝固点以下の温度に保持できるような壁面であれば特に限定されない。壁面の温度は、水溶液の凝固点以下の温度に保持されていれば特に限定されないが、上記(a)及び(b)の条件を満たす氷の純度が高い氷を製造できる点で、水溶液の凝固点より1℃以上低い温度(2℃以上低い温度、3℃以上低い温度、4℃以上低い温度、5℃以上低い温度、6℃以上低い温度、7℃以上低い温度、8℃以上低い温度、9℃以上低い温度、10℃以上低い温度、11℃以上低い温度、12℃以上低い温度、13℃以上低い温度、14℃以上低い温度、15℃以上低い温度、16℃以上低い温度、17℃以上低い温度、18℃以上低い温度、19℃以上低い温度、20℃以上低い温度、21℃以上低い温度、22℃以上低い温度、23℃以上低い温度、24℃以上低い温度、25℃以上低い温度等)に保持されることが好ましい。 The wall surface is, for example, the inner wall of a cylindrical structure such as the drum 11 in FIGS. 1A and 1B described later, but is not particularly limited as long as it can be maintained at a temperature below the freezing point of the aqueous solution. The temperature of the wall surface is not particularly limited as long as it is maintained at a temperature lower than or equal to the freezing point of the aqueous solution. 1 ° C or more lower temperature (2 ° C or more lower temperature, 3 ° C or more lower temperature, 4 ° C or more lower temperature, 5 ° C or more lower temperature, 6 ° C or more lower temperature, 7 ° C or more lower temperature, 8 ° C or more lower temperature, 9 ° C Lower temperature, lower than 10 ° C, lower than 11 ° C, lower than 12 ° C, lower than 13 ° C, lower than 14 ° C, lower than 14 ° C, lower than 15 ° C, lower than 16 ° C, lower than 17 ° C Temperature, temperature lower than 18 ° C, temperature lower than 19 ° C, temperature lower than 20 ° C, temperature lower than 21 ° C, temperature lower than 22 ° C, temperature lower than 23 ° C, temperature lower than 24 ° C, temperature lower than 25 ° C, etc. Preferred to be retained) Arbitrariness.
 噴射の方法は、特に限定されないが、例えば、後述する図1A、図1Bにおける噴射部13のような噴射手段によって噴射することができる。この場合において、噴射する際の圧力は、例えば、0.001MPa以上(0.002MPa以上、0.005MPa以上、0.01MPa以上、0.05MPa以上、0.1MPa以上、0.2MPa以上等)であってもよく、1MPa以下(0.8MPa以下、0.7MPa以下、0.6MPa以下、0.5MPa以下、0.3MPa以下、0.1MPa以下、0.05MPa以下、0.01MPa以下等)であってもよい。また、噴射する際の圧力を可変制御できるようにしてもよい。 Although the injection method is not particularly limited, for example, the injection can be performed by an injection unit such as an injection unit 13 in FIGS. 1A and 1B described later. In this case, the pressure at the time of injection is, for example, 0.001 MPa or more (0.002 MPa or more, 0.005 MPa or more, 0.01 MPa or more, 0.05 MPa or more, 0.1 MPa or more, 0.2 MPa or more, etc.). 1 MPa or less (0.8 MPa or less, 0.7 MPa or less, 0.6 MPa or less, 0.5 MPa or less, 0.3 MPa or less, 0.1 MPa or less, 0.05 MPa or less, 0.01 MPa or less, etc.) There may be. Further, the pressure at the time of injection may be variably controlled.
 (回収工程)
 本発明は、上述の氷生成工程後に、壁面上において生じた氷を回収する工程を有する。
(Recovery process)
This invention has the process of collect | recovering the ice which arose on the wall surface after the above-mentioned ice production | generation process.
 回収する方法は、特に限定されず、例えば、後述する図1A、図1Bに示すように、壁面上の氷をブレード15等の手段により掻き取り、落下した氷を回収してもよい。 The method of collecting is not particularly limited. For example, as shown in FIGS. 1A and 1B described later, the ice on the wall surface may be scraped by means such as a blade 15 and the dropped ice may be collected.
 また、氷が生成される際に、製氷熱が発生するが、この製氷熱を帯びることで、実際の融解完了温度に影響を与える可能性がある。このように、融解完了温度は、溶質の種類、濃度のみでなく、製氷熱の影響を受けると考えられる。そのため、氷に残存する製氷熱の熱量を調整することで、実際の融解完了温度を調整することができる。製氷熱を調整するためには、本発明における回収工程において、氷を壁面上の保持時間を調整することで行うことができる。 Also, when ice is generated, ice making heat is generated, but this ice making heat may affect the actual melting completion temperature. Thus, it is considered that the melting completion temperature is affected not only by the type and concentration of the solute but also by the ice making heat. Therefore, the actual melting completion temperature can be adjusted by adjusting the amount of ice making heat remaining in the ice. In order to adjust the ice making heat, it can be performed by adjusting the holding time of the ice on the wall surface in the recovery step of the present invention.
 図1A及び図1Bは、本発明の一実施形態に係るフレークアイス製造装置1の概要を示す部分断面斜視図を含むイメージ図である。
 図1Aは、後述する掻取部14が内筒22の上端に位置している状態を示す図である。
FIG. 1A and FIG. 1B are image diagrams including a partial cross-sectional perspective view showing an outline of a flake ice manufacturing apparatus 1 according to an embodiment of the present invention.
FIG. 1A is a diagram illustrating a state in which a scraping portion 14 described later is located at the upper end of the inner cylinder 22.
 図1Aに示すように、フレークアイス製造装置1は、ドラム11と、防熱保護カバー12と、噴射部13と、掻取部14と、ブレード15と、駆動軸16と、上部部材17と、フレークアイス排出口18と、噴射制御部19と、駆動制御部20と、冷媒供給部31と、冷媒配管37とを備える。
 ドラム11は、内筒22と、内筒22を囲繞する外筒21と、外筒21と内筒22との間に形成される冷媒クリアランス23とで構成される。また、ドラム11の外周面は、円筒状の防熱保護カバー12によって覆われている。外筒21及び内筒22の材質は特に限定されない。なお、本実施形態では外筒21には鋼が採用され、内筒22にはステンレスが採用されている。
 冷媒クリアランス23には、冷媒供給部31から冷媒配管37を介して冷媒が供給される。これにより内筒22の内周面が冷却される。
As shown in FIG. 1A, the flake ice manufacturing apparatus 1 includes a drum 11, a heat protection cover 12, an injection unit 13, a scraping unit 14, a blade 15, a drive shaft 16, an upper member 17, and flakes. The ice discharge port 18, the injection control unit 19, the drive control unit 20, the refrigerant supply unit 31, and the refrigerant pipe 37 are provided.
The drum 11 includes an inner cylinder 22, an outer cylinder 21 surrounding the inner cylinder 22, and a refrigerant clearance 23 formed between the outer cylinder 21 and the inner cylinder 22. Further, the outer peripheral surface of the drum 11 is covered with a cylindrical heat-resistant protective cover 12. The material of the outer cylinder 21 and the inner cylinder 22 is not particularly limited. In the present embodiment, steel is used for the outer cylinder 21 and stainless steel is used for the inner cylinder 22.
Refrigerant is supplied to the refrigerant clearance 23 from the refrigerant supply unit 31 via the refrigerant pipe 37. Thereby, the inner peripheral surface of the inner cylinder 22 is cooled.
 噴射部13は、内筒22の内周面に向けてブラインを噴射する噴射孔13aを先端部に有する複数のパイプで構成される。また、噴射部13は、駆動軸16と同軸に設置され、駆動軸16の動きに合わせ内筒22の内部を内筒22の軸方向に移動することができる。
 噴射孔13aから噴射されたブラインは、冷媒によって冷却された内筒22の内周面に付着し、分離する時間も与えられずに急速に凍結する。
 噴射部13を構成する複数のパイプは、駆動軸16からドラム11の半径方向に放射状に延出している。なお、パイプに代えてスプレーノズル等を採用してもよい。
 また、噴射部13は、均一に製氷できるように、回転噴射するための回転手段を設け、複数のパイプを回転させながら噴射を行う等の連続的な噴射を行えるようにすることもできる。
The injection unit 13 is composed of a plurality of pipes having an injection hole 13 a at the tip part for injecting brine toward the inner peripheral surface of the inner cylinder 22. The injection unit 13 is installed coaxially with the drive shaft 16, and can move in the inner cylinder 22 in the axial direction in accordance with the movement of the drive shaft 16.
The brine injected from the injection hole 13a adheres to the inner peripheral surface of the inner cylinder 22 cooled by the refrigerant, and freezes rapidly without giving time for separation.
The plurality of pipes constituting the injection unit 13 extend radially from the drive shaft 16 in the radial direction of the drum 11. Note that a spray nozzle or the like may be employed instead of the pipe.
Moreover, the injection unit 13 can be provided with a rotating means for rotating and spraying so that ice can be made uniformly, and can perform continuous injection such as performing injection while rotating a plurality of pipes.
 なお、噴射部13を設置させる場所は、特に限定されない。図1A、図1B及び後述する図2A、図2Bに示す実施形態では、掻取部14の下部に設置される。これにより、噴射部13は、掻取部14と共に下方向に移動しながらブラインを噴射することができるため、内筒22の内周面に付着した氷を直ちに掻き取ることができる。これにより、短時間で多くのフレークアイスを製造することが可能となる。 In addition, the place where the injection unit 13 is installed is not particularly limited. In the embodiment shown in FIGS. 1A and 1B and FIGS. 2A and 2B to be described later, it is installed below the scraping portion 14. Thereby, since the injection part 13 can inject a brine, moving downward with the scraping part 14, it can scrape off the ice adhering to the internal peripheral surface of the inner cylinder 22 immediately. Thereby, it becomes possible to manufacture many flake ices in a short time.
 掻取部14は、内筒22の内周面に摺動自在に嵌め込まれた円盤形状の部材で構成され、内筒22の内周面に付着した氷を掻き取るブレード15を外周部に装着する。掻取部14は、内筒22の上端から下端、及び下端から上端に向かって移動することができる。
 上述したように、図1Aは、掻取部14が内筒22の上端に位置している状態を示している。これに対して、図1Bは、掻取部14が内筒22の下端に位置している状態を示している。
 掻取部14は、内筒22の上端から下端に向かって移動しながら内筒22の内周面に付着した氷を掻き取る。その後、掻取部14は、掻取制御部20により内筒22の下端から上端の位置まで戻される。即ち、図1Aは、内筒22の内周面に付着した氷が掻取部14によって掻き取られる前の状態を示し、図1Bは、内筒22の内周面に付着した氷が掻取部14によって掻き取られた後の状態を示している。
 なお、掻取部14の外周部に装着されるブレード15の、大きさ、材質、及び掻取部14への取付方法は、特に限定されず、凍結したブラインを効率良く掻き取ることができればよい。本実施形態におけるブレード15は、掻取部14より若干大きな外径を有するステンレス製の輪で構成され、掻取部14の外周部に設けられた溝の部分に嵌合され固定されている。
The scraping portion 14 is composed of a disk-shaped member that is slidably fitted on the inner peripheral surface of the inner cylinder 22, and a blade 15 that scrapes off ice adhering to the inner peripheral surface of the inner cylinder 22 is attached to the outer peripheral portion. To do. The scraping portion 14 can move from the upper end to the lower end and from the lower end to the upper end of the inner cylinder 22.
As described above, FIG. 1A shows a state in which the scraping portion 14 is located at the upper end of the inner cylinder 22. On the other hand, FIG. 1B shows a state in which the scraping portion 14 is located at the lower end of the inner cylinder 22.
The scraping unit 14 scrapes off the ice attached to the inner peripheral surface of the inner cylinder 22 while moving from the upper end to the lower end of the inner cylinder 22. Thereafter, the scraping unit 14 is returned from the lower end to the upper end position of the inner cylinder 22 by the scraping control unit 20. That is, FIG. 1A shows a state before the ice adhering to the inner peripheral surface of the inner cylinder 22 is scraped off by the scraping portion 14, and FIG. 1B shows that the ice adhering to the inner peripheral surface of the inner cylinder 22 is scraped off. The state after scraping by the part 14 is shown.
The size, material, and attachment method of the blade 15 attached to the outer peripheral portion of the scraping portion 14 to the scraping portion 14 are not particularly limited as long as the frozen brine can be scraped efficiently. . The blade 15 in this embodiment is formed of a stainless steel ring having an outer diameter slightly larger than that of the scraping portion 14, and is fitted and fixed to a groove portion provided in the outer peripheral portion of the scraping portion 14.
 ブラインが凍結した氷は、ブレード15によって掻き取られると、フレークアイスとなり、当該フレークアイスは、フレークアイス排出口18から落下する。フレークアイス排出口18から落下したフレークアイスは、フレークアイス製造装置1の直下に配置されたフレークアイス貯留タンク36(図3)内に貯えられる。 When the ice in which the brine is frozen is scraped off by the blade 15, it becomes flake ice, and the flake ice falls from the flake ice discharge port 18. The flake ice that has fallen from the flake ice discharge port 18 is stored in a flake ice storage tank 36 (FIG. 3) disposed immediately below the flake ice production apparatus 1.
 駆動軸16は、内筒22内で、噴射部13及び掻取部14を内筒22の軸方向に摺動自在に移動させるための軸であり、駆動軸16の端部は、掻取部14の底面で軸支されている。駆動軸16は、モーターとラック・ピニオン等の機構(図示せず)によって構成され、掻取部14を内筒22の軸方向に移動させる。 The drive shaft 16 is a shaft for slidably moving the injection unit 13 and the scraping unit 14 in the axial direction of the inner tube 22 within the inner tube 22, and the end of the drive shaft 16 is a scraping unit. 14 is pivotally supported on the bottom surface. The drive shaft 16 is constituted by a mechanism (not shown) such as a motor and a rack and pinion, and moves the scraping portion 14 in the axial direction of the inner cylinder 22.
 上部部材17は、鍋を逆さにした形状からなり、ドラム11の上面を封止している。ドラム11の下方には、ブレード15によって掻き取られたフレークアイスが落下する際に障害となる物がないため、ドラム11の下面はフレークアイスを排出するフレークアイス排出口18となる。 The upper member 17 has a shape in which the pan is inverted, and seals the upper surface of the drum 11. Since there is no obstacle under the drum 11 when the flake ice scraped by the blade 15 falls, the lower surface of the drum 11 serves as a flake ice discharge port 18 for discharging the flake ice.
 噴射制御部19は、噴射部13がブラインを噴射する圧力の可変制御を実行する。ブラインを噴射する圧力を可変とすることにより、内筒22の内周面に付着するブラインの体積をコントロールすることができる。即ち、ブラインを強い圧力で噴射させた場合に比べ、ブラインを弱い圧力で噴射させた場合の方が、内筒22の内周面に付着するブラインの体積が大きくなる。このため、ブラインを弱い圧力で噴射させることにより生成される氷は、内筒22の内周面の温度よりも高いドラム11内部の空気中の温度の影響を受け難くなる。これにより、ブラインを弱い圧力で噴射させることにより生成される氷は、ブラインを強い圧力で噴射させることにより生成される氷よりも溶け難い氷となる。 The injection control unit 19 performs variable control of the pressure at which the injection unit 13 injects brine. By making the pressure for injecting the brine variable, the volume of the brine adhering to the inner peripheral surface of the inner cylinder 22 can be controlled. That is, the volume of the brine adhering to the inner peripheral surface of the inner cylinder 22 is larger when the brine is jetted at a weak pressure than when the brine is jetted at a strong pressure. For this reason, the ice produced | generated by injecting a brine with a weak pressure becomes difficult to receive to the influence of the temperature in the air in the drum 11 higher than the temperature of the internal peripheral surface of the inner cylinder 22. FIG. Thereby, the ice produced | generated by injecting a brine with a weak pressure turns into an ice which is hard to melt | dissolve than the ice produced | generated by injecting a brine with a strong pressure.
 駆動制御部20は、噴射部13及び掻取部14の移動速度の制御を実行する。なお、駆動制御部20が噴射部13及び掻取部14の移動速度の制御する手法は特に限定されない。具体的には、例えばインバータにより、噴射部13及び掻取部14を移動させる際の動力となるモーターの回転速度を調節する手法を採用してもよい。
 冷媒供給部31は、冷媒クリアランス23に対して、内筒22の内周面を冷却させるための冷媒を、冷媒配管37を介して供給する。なお、冷媒供給部31によって供給される冷媒は特に限定されず、内筒22の内周面を冷却させるものであればよい。具体的には例えば、冷媒として、LNG(Liquefied Natural Gas/液化天然ガス)を採用することができる。
 冷媒クリアランス23に供給される冷媒は、冷媒クリアランス23と冷媒供給部31との間を冷媒配管37を介して循環させることができる。これにより、冷媒クリアランス23に供給されている冷媒を冷却機能が高い状態で維持させることができる。
The drive control unit 20 controls the movement speed of the injection unit 13 and the scraping unit 14. In addition, the method in which the drive control part 20 controls the moving speed of the injection part 13 and the scraping part 14 is not specifically limited. Specifically, for example, a method of adjusting the rotation speed of a motor that becomes power when the injection unit 13 and the scraping unit 14 are moved by an inverter may be employed.
The refrigerant supply unit 31 supplies a refrigerant for cooling the inner peripheral surface of the inner cylinder 22 to the refrigerant clearance 23 via the refrigerant pipe 37. In addition, the refrigerant | coolant supplied by the refrigerant | coolant supply part 31 is not specifically limited, What is necessary is just to cool the internal peripheral surface of the inner cylinder 22. FIG. Specifically, for example, LNG (Liquid Natural Gas / liquefied natural gas) can be employed as the refrigerant.
The refrigerant supplied to the refrigerant clearance 23 can be circulated through the refrigerant pipe 37 between the refrigerant clearance 23 and the refrigerant supply unit 31. Thereby, the refrigerant | coolant currently supplied to the refrigerant | coolant clearance 23 can be maintained in a state with a high cooling function.
 図2A,図2Bは、本発明の他の実施形態に係るフレークアイス製造装置2の概要を示す部分断面斜視図を含むイメージ図である。
 図2Aは、掻取部14が内筒22の上端に位置している状態を示す図である。
2A and 2B are image diagrams including a partial cross-sectional perspective view showing an outline of a flake ice manufacturing apparatus 2 according to another embodiment of the present invention.
FIG. 2A is a diagram illustrating a state in which the scraping portion 14 is located at the upper end of the inner cylinder 22.
 図2Aに示すように、フレークアイス製造装置2は、基本的には図1Aに示すフレークアイス製造装置1と同様の構成となっているが、掻取部14を軸支する駆動軸16の向きが異なる。即ち、図1Aのフレークアイス製造装置1の駆動軸16の端部は、掻取部14の底面で軸支されるのに対し、図2Aのフレークアイス製造装置2の駆動軸16の端部は、掻取部14を貫通する形で噴射部13の上面で軸支される。このため、フレークアイス製造装置2の上部部材17は、駆動軸16により中心部が貫通されたような形状となる。 As shown in FIG. 2A, the flake ice manufacturing apparatus 2 has basically the same configuration as the flake ice manufacturing apparatus 1 shown in FIG. 1A, but the direction of the drive shaft 16 that pivotally supports the scraping portion 14. Is different. That is, the end of the drive shaft 16 of the flake ice manufacturing apparatus 1 in FIG. 1A is pivotally supported by the bottom surface of the scraping unit 14, whereas the end of the drive shaft 16 of the flake ice manufacturing apparatus 2 in FIG. The shaft is pivotally supported on the upper surface of the injection unit 13 so as to penetrate the scraping unit 14. For this reason, the upper member 17 of the flake ice manufacturing apparatus 2 has a shape in which the central portion is penetrated by the drive shaft 16.
 フレークアイス製造装置2の掻取部14は、内筒22の上端から下端に向かって移動することにより、内筒22の内周面に付着した氷をフレークアイス排出口18から掻き出すことができる。
 上述したように、図2Aは、掻取部14が内筒22の上端に位置している状態を示している。これに対して、図2Bは、掻取部14が内筒22の下端に位置している状態を示す図である。
 掻取部14は、内筒22の上端から下端に向かって移動しながら内筒22の内周面に付着した氷を掻き取る。その後、掻取部14は、掻取制御部20により内筒22の下端から上端の位置まで戻される。即ち、図2Aは、内筒22の内周面に付着した氷が掻取部14によって掻き出される前の状態を示し、図2Bは、内筒22の内周面に付着した氷が掻取部14によって掻き出された後の状態を示している。
The scraping unit 14 of the flake ice manufacturing apparatus 2 can scrape the ice adhering to the inner peripheral surface of the inner cylinder 22 from the flake ice discharge port 18 by moving from the upper end to the lower end of the inner cylinder 22.
As described above, FIG. 2A shows a state in which the scraping portion 14 is located at the upper end of the inner cylinder 22. On the other hand, FIG. 2B is a diagram illustrating a state in which the scraping portion 14 is located at the lower end of the inner cylinder 22.
The scraping unit 14 scrapes off the ice attached to the inner peripheral surface of the inner cylinder 22 while moving from the upper end to the lower end of the inner cylinder 22. Thereafter, the scraping unit 14 is returned from the lower end to the upper end position of the inner cylinder 22 by the scraping control unit 20. That is, FIG. 2A shows a state before the ice adhering to the inner peripheral surface of the inner cylinder 22 is scraped by the scraping portion 14, and FIG. 2B shows that the ice adhering to the inner peripheral surface of the inner cylinder 22 is scraped off. The state after being scraped by the part 14 is shown.
[フレークアイス製造システム]
 図3は、図1A、図1Bのフレークアイス製造装置1を含むフレークアイス製造システムSの全体の概要を示すイメージ図である。
[Flake ice production system]
FIG. 3 is an image diagram showing an overview of the entire flake ice production system S including the flake ice production apparatus 1 of FIGS. 1A and 1B.
 フレークアイス製造システムSは、フレークアイス製造装置1と、ブライン貯留タンク32と、ポンプ33と、ブライン配管34と、ブラインタンク35と、フレークアイス貯留タンク36と、冷媒配管37と、凍結点調節部38とを備える。
 ブライン貯留タンク32は、フレークアイスの原料となるブラインを貯える。ブライン貯留タンク32に貯えられたブラインは、ポンプ33を作動させることによりブライン配管34を介して噴射部13に供給される。噴射部13に供給されたブラインは、フレークアイスを生成するための原料となる。
The flake ice production system S includes a flake ice production apparatus 1, a brine storage tank 32, a pump 33, a brine pipe 34, a brine tank 35, a flake ice storage tank 36, a refrigerant pipe 37, and a freezing point adjustment unit. 38.
The brine storage tank 32 stores brine as a raw material for flake ice. The brine stored in the brine storage tank 32 is supplied to the injection unit 13 via the brine pipe 34 by operating the pump 33. The brine supplied to the injection unit 13 is a raw material for generating flake ice.
 ブラインタンク35は、ブライン貯留タンク32内のブラインが少なくなった場合に、ブライン貯留タンク32にブラインを供給する。
 なお、内筒22の内周面で凍結することなく流下したブラインは、ブライン貯留タンク32に貯えられ、ポンプ33を作動させることによりブライン配管34を介して噴射部13に再び供給される。
 フレークアイス貯留タンク36は、フレークアイス製造装置1の直下に配置され、フレークアイス製造装置1のフレークアイス排出口18から落下したフレークアイスを貯える。
The brine tank 35 supplies brine to the brine storage tank 32 when the brine in the brine storage tank 32 is reduced.
The brine that has flowed down without freezing on the inner peripheral surface of the inner cylinder 22 is stored in the brine storage tank 32 and is supplied again to the injection unit 13 via the brine pipe 34 by operating the pump 33.
The flake ice storage tank 36 is disposed immediately below the flake ice manufacturing apparatus 1 and stores the flake ice that has fallen from the flake ice discharge port 18 of the flake ice manufacturing apparatus 1.
 凍結点調節部38は、ブラインタンク35によってブライン貯留タンク32に供給されるブラインの凍結点を調節する。例えばブラインが塩水である場合には塩水の凍結点は濃度によって異なるため、凍結点調節部38は、ブライン貯留タンク32に貯えられている塩水の濃度を調節する。
 なお、ブラインの凍結点の調整手法は、特にこれに限定されない。例えば、次のような手法を採用することもできる。
 即ち、ブライン貯留タンク32を複数個設け、凍結点が異なる複数種類のブラインを、数個のブライン貯留タンク32の夫々に貯留させる。そして、凍結点調節部38は、求められるフレークアイスの温度(例えば当該フレークアイスにより搬送される搬送品に対して、求められている保冷温度)に基づいて、所定種類のブラインを選択し、フレークアイス製造装置1に供給する。
 このように、ブラインの凍結点を調節することにより、製造されるフレークアイスの温度を調節することができる。
The freezing point adjustment unit 38 adjusts the freezing point of the brine supplied to the brine storage tank 32 by the brine tank 35. For example, when the brine is salt water, the freezing point of the salt water varies depending on the concentration, so the freezing point adjustment unit 38 adjusts the concentration of the salt water stored in the brine storage tank 32.
The method for adjusting the freezing point of the brine is not particularly limited to this. For example, the following method can also be employed.
That is, a plurality of brine storage tanks 32 are provided, and a plurality of types of brines having different freezing points are stored in each of several brine storage tanks 32. Then, the freezing point adjustment unit 38 selects a predetermined type of brine based on the required temperature of the flake ice (for example, the required cool temperature for the conveyed product conveyed by the flake ice), Supplied to the ice making device 1.
Thus, the temperature of the flake ice produced can be adjusted by adjusting the freezing point of the brine.
 次に、上記構成を有するフレークアイス製造装置1を含むフレークアイス製造システムSの動作について、ブラインが塩水であるとして説明する。
 まず、冷媒供給部31は、冷媒クリアランス23に冷媒を供給し、内筒22の内周面の温度を塩水の凍結点より-10℃程度低くなるように設定する。これにより、内筒22の内周面に付着した塩水を凍結させることができる。
 内筒22の内周面が冷却されると、ポンプ33は、ブライン貯留タンク32から噴射部13にブラインである塩水を供給する。
 噴射部13に塩水が供給されると、噴射部13は、内筒22の内周面に向けて塩水を噴射する。噴射部13から噴射された塩水は、内筒22の内周面に接触すると瞬時に凍結し氷となる。
 内筒22の内周面に生成された氷は、内筒22内を下降する掻取部14によって掻き取られる。掻取部14によって掻き取られた氷は、フレークアイスとして排出口18から落下する。排出口18から落下したフレークアイスは、フレークアイス製造装置1の直下に配置されたフレークアイス貯留タンク36内に貯えられる。
 上述したように、氷とならず、内筒22の内周面を流下した塩水は、ブライン貯留タンク32に貯えられ、ポンプ33を作動させることによりブライン配管34を介して噴射部13に再び供給される。なお、ブライン貯留タンク32内の塩水が少なくなった場合は、ブラインタンク35が、自身に貯えられている塩水をブライン貯留タンク32に供給する。
Next, operation | movement of the flake ice manufacturing system S containing the flake ice manufacturing apparatus 1 which has the said structure is demonstrated on the assumption that a brine is salt water.
First, the refrigerant supply unit 31 supplies refrigerant to the refrigerant clearance 23 and sets the temperature of the inner peripheral surface of the inner cylinder 22 to be about −10 ° C. lower than the freezing point of salt water. Thereby, the salt water adhering to the inner peripheral surface of the inner cylinder 22 can be frozen.
When the inner peripheral surface of the inner cylinder 22 is cooled, the pump 33 supplies brine, which is brine, from the brine storage tank 32 to the injection unit 13.
When salt water is supplied to the injection unit 13, the injection unit 13 injects salt water toward the inner peripheral surface of the inner cylinder 22. When the salt water sprayed from the spray unit 13 comes into contact with the inner peripheral surface of the inner cylinder 22, it instantly freezes and becomes ice.
The ice generated on the inner peripheral surface of the inner cylinder 22 is scraped off by the scraping unit 14 that descends in the inner cylinder 22. The ice scraped off by the scraping unit 14 falls from the discharge port 18 as flake ice. The flake ice that has fallen from the discharge port 18 is stored in a flake ice storage tank 36 disposed immediately below the flake ice manufacturing apparatus 1.
As described above, the salt water that does not become ice but flows down the inner peripheral surface of the inner cylinder 22 is stored in the brine storage tank 32 and is supplied again to the injection unit 13 through the brine pipe 34 by operating the pump 33. Is done. In addition, when the salt water in the brine storage tank 32 decreases, the brine tank 35 supplies the brine stored in itself to the brine storage tank 32.
 以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。また本発明の要旨を逸脱しない範囲内であれば種々の変更や上記実施の形態の組み合わせを施してもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations described in the above-described embodiments, and is considered within the scope of the matters described in the claims. Other embodiments and modifications are also included. Further, various modifications and combinations of the above embodiments may be made within the scope not departing from the gist of the present invention.
 例えば、ブラインは、上述した実施形態では塩水(塩化ナトリウム水溶液)としたが、特に限定されない。具体的には、例えば塩化カルシウム水溶液、塩化マグネシウム水溶液、エチレングリコール等を採用することができる。これにより、溶質又は濃度の違いに応じた凍結点の異なる複数種類のブラインを用意することができる。 For example, the brine is salt water (aqueous sodium chloride solution) in the above-described embodiment, but is not particularly limited. Specifically, for example, an aqueous calcium chloride solution, an aqueous magnesium chloride solution, ethylene glycol, or the like can be employed. Thereby, a plurality of types of brines having different freezing points according to differences in solute or concentration can be prepared.
 また、上述の本発明の氷スラリーが氷より高い熱伝導率を有する固体を含有する場合、冷却する工程において、氷スラリーに含まれる氷と被冷却物との間に、氷より高い熱伝導率を有する固体が介在するように冷却を行うことが好ましい。これにより、熱伝導率の高い固体による短時間の冷却能力を得つつ、長時間の冷却も可能となる。かかる場合、目的に応じて、氷、氷より高い熱伝導率を有する固体、被冷却物とのぞれぞれの間に、別のものが介在していてもよい。例えば、氷スラリーの中に被冷却物と直接接するのが好ましくないもの(例えば、安全性の観点で被冷却物と接するのが好ましくない、氷より熱伝導率が高い固体(金属等)等)が含まれる場合、袋に氷スラリー又は被冷却物のいずれか一方を収容して、氷スラリーと被冷却物とが直接接しないようにして冷却してもよい。 Further, when the above-described ice slurry of the present invention contains a solid having a higher thermal conductivity than ice, in the cooling step, the thermal conductivity higher than that of ice is between the ice contained in the ice slurry and the object to be cooled. It is preferable to perform cooling so that a solid having s is present. Thereby, it is possible to cool for a long time while obtaining a cooling capability for a short time by a solid having high thermal conductivity. In such a case, another object may be interposed between ice, a solid having a higher thermal conductivity than ice, and an object to be cooled, depending on the purpose. For example, it is not preferable to directly contact the object to be cooled in the ice slurry (for example, solid (metal etc.) having a higher thermal conductivity than ice, which is not preferable to contact the object to be cooled from the viewpoint of safety) If the ice slurry is contained, either the ice slurry or the object to be cooled may be accommodated in the bag, and the ice slurry and the object to be cooled may be cooled so as not to be in direct contact with each other.
 また、噴射部13は、上述のような噴射による手法を採用することなく、内筒22の内周面にブラインを自然流下させることにより付着させることもできる。この場合、ブラインを噴射することより内筒22の内周面に付着させた場合に比べ、内筒22の内周面に付着するブラインの体積が大きくなる。このため、ブラインを自然流下させることにより生成された氷は、内筒22の内周面の温度よりも高いドラム11内部の空気中の温度の影響を受け難くなる。これにより、ブラインの噴射により生成された氷よりも溶け難い氷を生成することができる。 Moreover, the injection part 13 can also be made to adhere by making natural brine flow down to the internal peripheral surface of the inner cylinder 22, without employ | adopting the method by the above injection. In this case, the volume of the brine adhering to the inner peripheral surface of the inner cylinder 22 is increased by injecting the brine as compared with the case where the brine is adhered to the inner peripheral surface of the inner cylinder 22. For this reason, the ice generated by the natural flow of the brine is less susceptible to the temperature in the air inside the drum 11 that is higher than the temperature of the inner peripheral surface of the inner cylinder 22. Thereby, it is possible to generate ice that is harder to melt than ice generated by the injection of brine.
 以上まとめると、本発明が適用されるフレークアイス製造装置は、次のような構成を取れば足り、各種各様な実施形態を取ることができる。
 即ち、本発明が適用されるフレークアイス製造装置(例えば図1Aのフレークアイス製造装置1)は、
 内筒(例えば図1Aの内筒22)と、当該内筒を囲繞する外筒(例えば図1Aの外筒21)と、当該内筒と当該外筒との間に形成されるクリアランス(例えば図1Aの冷媒クリアランス23)とを含むドラム(例えば図1Aのドラム11)と、
 前記クリアランスに対して冷媒(例えばLNG)を供給する冷媒供給部(例えば図1Aの冷媒供給部31)と、
 前記ドラムの中心軸と同軸に設置され、前記内筒の内周面に向けてブラインを噴射する噴射部(例えば図1Aの噴射部13)と、
 前記噴射部から噴射された前記ブラインが、前記クリアランスに供給された前記冷媒により冷却された前記内筒の内周面に付着し、その結果として生成されたフレークアイスを掻き取る掻取部(例えば図1Aの掻取部14)と、
 前記掻取部を前記内筒の内周面に沿って前記内筒の軸方向に駆動させる駆動部(例えば図1Aの駆動軸16)と、
 を備える。
 これにより、ブラインを凍結させたフレークアイスを容易に製造することができる。
In summary, the flake ice manufacturing apparatus to which the present invention is applied only needs to have the following configuration, and can take various embodiments.
That is, the flake ice manufacturing apparatus to which the present invention is applied (for example, the flake ice manufacturing apparatus 1 in FIG. 1A)
An inner cylinder (for example, the inner cylinder 22 in FIG. 1A), an outer cylinder (for example, the outer cylinder 21 in FIG. 1A) surrounding the inner cylinder, and a clearance formed between the inner cylinder and the outer cylinder (for example, FIG. 1A refrigerant clearance 23) (e.g., drum 11 of FIG. 1A),
A refrigerant supply unit (for example, the refrigerant supply unit 31 of FIG. 1A) for supplying a refrigerant (for example, LNG) to the clearance;
An injection part (for example, the injection part 13 in FIG. 1A) that is installed coaxially with the central axis of the drum and injects brine toward the inner peripheral surface of the inner cylinder;
The brine jetted from the jetting unit adheres to the inner peripheral surface of the inner cylinder cooled by the refrigerant supplied to the clearance and scrapes off the resulting flake ice (for example, Scraping part 14) of FIG. 1A;
A drive unit (for example, the drive shaft 16 in FIG. 1A) that drives the scraping unit in the axial direction of the inner cylinder along the inner peripheral surface of the inner cylinder;
Is provided.
Thereby, the flake ice which frozen the brine can be manufactured easily.
 また、前記噴射部は、
 前記ブラインを噴射する際の圧力を可変制御することができる。
 これにより、より溶け難い氷を生成することができる。
In addition, the injection unit
The pressure at the time of injecting the brine can be variably controlled.
Thereby, it is possible to generate ice that is more difficult to melt.
 また、前記内筒の内周面に接する前記掻取部の外周部は交換可能なブレード(例えば図1Aのブレード15)とすることができる。 Further, the outer peripheral portion of the scraping portion in contact with the inner peripheral surface of the inner cylinder can be a replaceable blade (for example, the blade 15 in FIG. 1A).
1:フレークアイス製造装置、11:ドラム、12:防熱保護カバー、13:噴射部、13a:噴射孔、14:掻取部、15:ブレード、16:駆動軸、17:上部部材、18:フレークアイス排出口、19:噴射制御部、20:駆動制御部、21:外筒、22:内筒、23:冷媒クリアランス、31:冷媒供給部、32:ブライン貯留タンク、33:ポンプ、34:ブライン配管、35:ブラインタンク、36:フレークアイス貯留タンク、37:冷媒配管、38:凍結点調節部、S:フレークアイス製造システム DESCRIPTION OF SYMBOLS 1: Flakes ice production apparatus, 11: Drum, 12: Thermal protection cover, 13: Injection part, 13a: Injection hole, 14: Scraping part, 15: Blade, 16: Drive shaft, 17: Upper member, 18: Flakes Ice discharge port, 19: injection control unit, 20: drive control unit, 21: outer cylinder, 22: inner cylinder, 23: refrigerant clearance, 31: refrigerant supply unit, 32: brine storage tank, 33: pump, 34: brine Piping, 35: Brine tank, 36: Flake ice storage tank, 37: Refrigerant piping, 38: Freezing point adjustment unit, S: Flake ice production system

Claims (4)

  1.  内筒と、当該内筒を囲繞する外筒と、当該内筒と当該外筒との間に形成されるクリアランスとを含むドラムと、
     前記クリアランスに対して冷媒を供給する冷媒供給部と、
     前記内筒の内周面に向けてブラインを噴射する噴射部と、
     前記噴射部から噴射された前記ブラインが、前記クリアランスに供給された前記冷媒により冷却された前記内筒の内周面に付着し、その結果として生成されたフレークアイスを掻き取る掻取部と、
     前記掻取部を前記内筒の内周面に沿って前記内筒の軸方向に駆動させる駆動部と、
     を備えるフレークアイス製造装置。
    A drum including an inner cylinder, an outer cylinder surrounding the inner cylinder, and a clearance formed between the inner cylinder and the outer cylinder;
    A refrigerant supply unit for supplying a refrigerant to the clearance;
    An injection unit that injects brine toward the inner peripheral surface of the inner cylinder;
    The brine jetted from the jetting unit adheres to the inner peripheral surface of the inner cylinder cooled by the refrigerant supplied to the clearance, and scraping unit scraping off the resulting flake ice,
    A drive unit that drives the scraping unit along the inner peripheral surface of the inner cylinder in the axial direction of the inner cylinder;
    A flake ice making apparatus.
  2.  前記噴射部が、前記ブラインを噴射する際の圧力を可変制御する噴射制御部をさらに備える、
     請求項1に記載のフレークアイス製造装置。
    The injection unit further includes an injection control unit that variably controls a pressure when the brine is injected.
    The flake ice manufacturing apparatus of Claim 1.
  3.  前記内筒の内周面に接する前記掻取部の外周部は交換可能なブレードである、
     請求項1又は2に記載のフレークアイス製造装置。
    The outer peripheral part of the scraping part in contact with the inner peripheral surface of the inner cylinder is a replaceable blade,
    The flake ice manufacturing apparatus of Claim 1 or 2.
  4.  請求項1乃至3のうちいずれか1項に記載のフレークアイス製造装置を用いたフレークアイス製造方法。 A flake ice manufacturing method using the flake ice manufacturing apparatus according to any one of claims 1 to 3.
PCT/JP2017/044389 2016-12-12 2017-12-11 Production device and production method for flake ice WO2018110506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-240653 2016-12-12
JP2016240653A JP2018096599A (en) 2016-12-12 2016-12-12 Flake ice manufacturing device and manufacturing method

Publications (1)

Publication Number Publication Date
WO2018110506A1 true WO2018110506A1 (en) 2018-06-21

Family

ID=62559548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044389 WO2018110506A1 (en) 2016-12-12 2017-12-11 Production device and production method for flake ice

Country Status (2)

Country Link
JP (1) JP2018096599A (en)
WO (1) WO2018110506A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152561A1 (en) * 2019-01-21 2020-07-30 Faini Alessandro Ice flakes making machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575374A (en) * 1947-05-24 1951-11-20 Flakice Corp Ice-making machine
JPS4611239B1 (en) * 1968-09-30 1971-03-22
JPS5526278U (en) * 1978-08-03 1980-02-20
JPS5526277U (en) * 1978-08-03 1980-02-20
JPS6399474A (en) * 1986-10-15 1988-04-30 田賀 喜一 Heat exchanger for sherbet ice
JPH0656665U (en) * 1992-12-28 1994-08-05 アイスマン製氷機工業株式会社 Ice machine
US5431027A (en) * 1992-03-23 1995-07-11 Henry Vogt Machine Co. Flake ice-making apparatus
JP2004053142A (en) * 2002-07-19 2004-02-19 Toyo Eng Works Ltd Ice water producer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575374A (en) * 1947-05-24 1951-11-20 Flakice Corp Ice-making machine
JPS4611239B1 (en) * 1968-09-30 1971-03-22
JPS5526278U (en) * 1978-08-03 1980-02-20
JPS5526277U (en) * 1978-08-03 1980-02-20
JPS6399474A (en) * 1986-10-15 1988-04-30 田賀 喜一 Heat exchanger for sherbet ice
US5431027A (en) * 1992-03-23 1995-07-11 Henry Vogt Machine Co. Flake ice-making apparatus
JPH0656665U (en) * 1992-12-28 1994-08-05 アイスマン製氷機工業株式会社 Ice machine
JP2004053142A (en) * 2002-07-19 2004-02-19 Toyo Eng Works Ltd Ice water producer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152561A1 (en) * 2019-01-21 2020-07-30 Faini Alessandro Ice flakes making machine

Also Published As

Publication number Publication date
JP2018096599A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6752474B2 (en) Flake ice making equipment, flake ice making system, flake ice making method, moving body
WO2017086463A1 (en) Flake ice production device, flake ice production system, flake ice production method, and moving body
JP2018017490A (en) Flake ice manufacturing device, process of manufacture of ice, refrigerant and ice, process of manufacture of object to be cooled, process of manufacture of animal plant or object to be refrigerated for part thereof, process of manufacture of animal plant or its refrigeration agent, fresh animal plant to be frozen or its refrigeration agent, thawing object or its processed product and fresh animal plant or its freezing agent for the part thereof
WO2018212335A1 (en) State change control device and state change control method
WO2018110506A1 (en) Production device and production method for flake ice
JP7056901B2 (en) Ice and how to make ice
JP6998577B2 (en) Defrosting device and defrosting method
JP2018059694A (en) Ice making device
JP6905739B2 (en) Cooling device and cooling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17880762

Country of ref document: EP

Kind code of ref document: A1