WO2017086317A1 - Optical shaping device - Google Patents

Optical shaping device Download PDF

Info

Publication number
WO2017086317A1
WO2017086317A1 PCT/JP2016/083842 JP2016083842W WO2017086317A1 WO 2017086317 A1 WO2017086317 A1 WO 2017086317A1 JP 2016083842 W JP2016083842 W JP 2016083842W WO 2017086317 A1 WO2017086317 A1 WO 2017086317A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
optical
modeling
internal space
resin
Prior art date
Application number
PCT/JP2016/083842
Other languages
French (fr)
Japanese (ja)
Inventor
哲夫 法貴
玉水 雅巳
保 片山
Original Assignee
株式会社写真化学
株式会社セザック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社写真化学, 株式会社セザック filed Critical 株式会社写真化学
Publication of WO2017086317A1 publication Critical patent/WO2017086317A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to an optical modeling apparatus for manufacturing a three-dimensional modeled object.
  • Stereolithography technology is known as a technology for manufacturing a three-dimensional modeled object (for example, see Patent Document 1).
  • a liquid photosensitive resin is stored in a container, and a work table is fixed immediately below the liquid surface of the photosensitive resin. Beam-like light is irradiated onto the liquid surface of the photosensitive resin from an exposure device arranged at the top of the container so that the lowermost cross-sectional figure of the three-dimensional figure to be drawn is drawn. The portion of the photosensitive resin irradiated with light is solidified.
  • Patent Document 2 describes that a fine three-dimensional model having a size of about mm or several tens of ⁇ m can be manufactured by an optical modeling technique. However, in practice, it is difficult to manufacture a modeled object with high accuracy even if light drawing is performed finely.
  • An object of the present invention is to provide an optical modeling apparatus capable of manufacturing a modeled object with high accuracy.
  • An optical modeling apparatus is an optical modeling apparatus that manufactures a three-dimensional modeled object by an optical modeling method, and a resin holding unit that holds a photocurable resin so as to have a modeling surface.
  • a gas supply unit that supplies the purified gas purified by the above.
  • the resin holding part is accommodated in the casing.
  • the photocurable resin is held by the resin holding part.
  • Clean gas by the gas supply unit is supplied to the internal space in contact with the modeling surface of the photocurable resin in the housing. In this state, light is irradiated to the modeling surface of the photocurable resin by the optical unit.
  • the optical unit is disposed above the resin holding unit, the modeling surface is the upper surface of the photocurable resin held by the resin holding unit, and the internal space is located between the optical unit and the modeling surface,
  • casing may have a side part and a gas supply part may be arrange
  • the stereolithography apparatus can be miniaturized. Moreover, it becomes easy to supply clean gas to the internal space in contact with the modeling surface. Thereby, mixing of the foreign material to a modeling surface and exhaust heat of internal space can be performed more easily.
  • the stereolithography apparatus may further include a rectifying member that guides the clean gas supplied to the internal space by the gas supply unit in the horizontal direction.
  • a rectifying member that guides the clean gas supplied to the internal space by the gas supply unit in the horizontal direction.
  • a flow of clean gas along the modeling surface of the photocurable resin can be formed.
  • the gas supply unit since clean gas can be efficiently supplied to the internal space in contact with the modeling surface, the gas supply unit does not need to supply a large amount of clean gas. Therefore, the operation cost of the optical modeling apparatus can be reduced.
  • the rectifying member may include first and second rectifying plates respectively disposed on both sides of the internal space so as to face each other. In this case, the clean gas supplied to the internal space by the gas supply unit can be easily guided in the horizontal direction by the first and second rectifying plates.
  • the rectifying member further includes a third rectifying plate disposed in an upper portion of the internal space, and the third rectifying plate has a passage portion through which light irradiated from the optical unit to the modeling surface passes. Also good. In this case, the clean gas supplied to the internal space by the gas supply unit can be easily guided in the horizontal direction by the third rectifying plate without blocking the light irradiated to the modeling surface from the optical unit.
  • the housing may be provided with a take-out portion that enables removal of the shaped object, and the take-out portion may be arranged to face the gas supply portion with the resin holding portion interposed therebetween.
  • the extraction unit since the extraction unit is located downstream of the clean gas supplied by the gas supply unit, the clean gas is supplied from the gas supply unit toward the extraction unit. Thereby, it is prevented that the foreign material which generate
  • the housing may have an opening for dissipating heat to the outside.
  • the heat generated in the internal space can be dissipated to the outside with a simple configuration.
  • a shaped article can be manufactured with high accuracy.
  • FIG. 1 is a perspective view of an optical modeling apparatus according to an embodiment of the present invention.
  • FIG. 2 is a side view of the optical modeling apparatus of FIG.
  • FIG. 3 is a schematic diagram illustrating the configuration of the resin holding portion, the clean unit, the rectifying unit, and the optical unit of FIG.
  • FIG. 4 is a diagram visually showing shape data of a model to be manufactured.
  • FIG. 5 is a diagram for explaining the operation of the resin holding unit and the optical unit.
  • FIG. 6 is a diagram for explaining the operation of the resin holding unit and the optical unit.
  • FIG. 7 is a schematic diagram showing the configuration of the optical modeling apparatus according to the first modification.
  • FIG. 8 is a schematic diagram showing a configuration of an optical modeling apparatus according to the second modification.
  • FIG. 9 is an enlarged view of a modeled object manufactured by a conventional optical modeling apparatus.
  • FIG. 1 is a perspective view of an optical modeling apparatus according to an embodiment of the present invention.
  • FIG. 2 is a side view of the optical modeling apparatus 100 of FIG.
  • FIG. 3 is a schematic diagram illustrating the configuration of the resin holding unit 30, the clean unit 40, the rectifying unit 50, and the optical unit 60 of FIG.
  • directions indicated by arrows in the horizontal plane are referred to as an X direction and a Y direction.
  • the optical modeling apparatus 100 includes a main body frame 10, a control unit 20, a resin holding unit 30, a clean unit 40, a rectifying unit 50, an optical unit 60, and a housing 70.
  • the main body frame 10, the control unit 20, the resin holding unit 30, the rectifying unit 50 and the optical unit 60 are accommodated in the housing 70.
  • the portion of the housing 70 that houses the optical unit 60 is not shown.
  • the main body frame 10 includes a bottom surface portion 11, an intermediate surface portion 12, an upper surface portion 13, a plurality of support columns 14, and a plurality of reinforcement portions 15.
  • Each of the bottom surface portion 11, the middle surface portion 12, and the top surface portion 13 has a substantially rectangular shape.
  • the bottom surface portion 11, the middle surface portion 12, and the top surface portion 13 are arranged in a horizontal posture in this order from the bottom to the top.
  • Each support column 14 extends in the vertical direction and supports the bottom surface portion 11, the middle surface portion 12, and the top surface portion 13.
  • Each reinforcing portion 15 extends in the horizontal direction and is attached between adjacent struts 14 so as to reinforce the plurality of struts 14.
  • a plurality of wheels 16 and a plurality of support portions 17 are provided on the lower surface of the bottom surface portion 11.
  • the plurality of wheels 16 and the plurality of support portions 17 protrude downward from the bottom of the housing 70.
  • the stereolithography apparatus 100 When the stereolithography apparatus 100 is moved, the plurality of wheels 16 come into contact with the installation surface, and the plurality of support portions 17 are separated from the installation surface. In this case, the optical modeling apparatus 100 can be easily moved by rolling the plurality of wheels 16 on the installation surface.
  • the stereolithography apparatus 100 is not moved, the plurality of support portions 17 are in contact with the installation surface, and the plurality of wheels 16 are separated from the installation surface. Thereby, the optical modeling apparatus 100 can be fixed so that it cannot move.
  • the control unit 20 includes, for example, a central processing unit (CPU) (not shown).
  • the control unit 20 controls the operations of the resin holding unit 30 and the optical unit 60.
  • the control unit 20 is disposed on the upper surface of the bottom surface portion 11 of the main body frame 10.
  • the resin holding unit 30 includes a storage unit 31, a stage 32, and an elevating unit 33.
  • the reservoir 31 is a container having an upper opening, and is disposed on the upper surface of the upper surface portion 13 of the main body frame 10 of FIG.
  • the storage unit 31 stores liquid (fluid) photocurable resin.
  • the stage 32 is disposed in the vicinity of the horizontal surface (upper surface) of the photocurable resin stored in the storage unit 31.
  • the upper surface of the photocurable resin is the modeling surface 34.
  • An internal space of the housing 70 is formed between the modeling surface 34 of the resin holding unit 30 and the optical unit 60. The internal space is in contact with the modeling surface 34.
  • the light is irradiated to the modeling surface 34.
  • the raising / lowering part 33 is attached to the stage 32 so that the stage 32 can be raised / lowered.
  • the layer of the photocurable resin partially cured by the light irradiation is lowered, and an uncured photocurable resin layer is formed on the processed layer.
  • the upper surface of the uncured photocurable resin becomes a new modeling surface 34.
  • the clean unit 40 includes a fan 41, a filter 42, and a power supply device 43.
  • the power supply device 43 supplies power to the fan 41.
  • the filter 42 in the present embodiment is a HEPA (High Efficiency Particulate Air) filter.
  • the opening (particle removal performance) of the filter 42 is, for example, 1 ⁇ m or more and 10 ⁇ m or less, and in this example, 10 ⁇ m.
  • the clean unit 40 is disposed on a side surface portion 72 of the casing 70 described later so as to be positioned above one end portion in the Y direction of the middle surface portion 12 of the main body frame 10 in FIG.
  • the fan 41 supplies the clean gas purified by the filter 42 to the internal space in contact with the modeling surface 34 in the Y direction.
  • the flow of clean gas is shown by the white arrows in FIG.
  • the clean gas is clean air.
  • An inert gas such as nitrogen gas purified as a clean gas may be used.
  • the rectifying unit 50 includes rectifying plates 51, 52, and 53.
  • the rectifying plates 51 and 52 are respectively arranged along both side surfaces in a portion between the middle surface portion 12 and the upper surface portion 13 of the main body frame 10 (FIG. 1). Thus, the rectifying plates 51 and 52 face each other across the internal space above the resin holding portion 30 in the X direction.
  • the rectifying plate 53 is horizontally disposed on the lower surface of the upper surface portion 13 of the main body frame 10 (FIG. 1) so as to cover the upper side of the resin holding portion 30.
  • the rectifying plate 53 is formed with a passage portion 53a that is a circular opening.
  • the passage portion 53a of the rectifying plate 53 overlaps the modeling surface 34 in the vertical direction.
  • the rectifying plates 51 to 53 rectify the clean gas supplied by the clean unit 40 in the Y direction. Thereby, the clean gas flows along the modeling surface 34.
  • the optical unit 60 is disposed on the upper surface of the upper surface portion 13 of the main body frame 10 (FIG. 1).
  • the optical unit 60 includes a light source 61, a light intensity modulator 62, a beam expander 63, a lens 64, and two galvanometer mirrors 65 and 66.
  • the light source 61 is a laser transmitter, for example, and emits laser light having a wavelength in the ultraviolet region (for example, 255 nm to 405 nm).
  • the light intensity modulator 62 modulates the intensity of light passing through the light intensity modulator 62.
  • the beam expander 63 expands the diameter of light that passes through the beam expander 63.
  • the lens 64 gives a focus to the light passing through the lens 64.
  • the galvanometer mirror 65 includes an actuator part 65a and a mirror part 65b.
  • the actuator unit 65a is a motor having a vertical rotation axis.
  • the mirror part 65b is attached to the rotating shaft of the actuator part 65a. As the actuator portion 65a rotates, the reflection angle of the light reflected by the mirror portion 65b changes in the horizontal plane.
  • the galvanometer mirror 66 has the same configuration as the galvanometer mirror 65, and includes an actuator portion 66a and a mirror portion 66b.
  • the actuator portion 66a is a motor having a horizontal rotation axis.
  • the galvanometer mirror 66 is arranged so that the rotation axis of the actuator section 66a is orthogonal to the rotation axis of the actuator section 65a of the galvanometer mirror 65 in the horizontal plane. As the actuator 66a rotates, the reflection angle of the light reflected by the mirror 66b changes in the vertical plane.
  • the light emitted from the light source 61 sequentially passes through the light intensity modulator 62, the beam expander 63, and the lens 64, is reflected by the two galvanometer mirrors 65 and 66, and passes through the passage portion 53a of the rectifying plate 53.
  • a focal point of light is formed on the modeling surface 34 by the lens 64.
  • the actuator portions 65a and 66a of the galvanometer mirrors 65 and 66 are rotated, the light is scanned on the modeling surface 34 in two directions orthogonal to each other. Thereby, an arbitrary shape can be drawn on the modeling surface 34 with light.
  • the case 70 includes a door portion 71 extending in the vertical direction and three side surface portions 72, 73, 74 extending in the vertical direction.
  • the side surface portions 72 to 74 are indicated by dotted lines, and in FIG. 2, the side surface portions 72 to 74 are not shown.
  • the door part 71 and the side part 72 are arrange
  • the door part 71 is a one-sided door configured to be openable and closable.
  • the side surface portions 73 and 74 are arranged so as to block both side surfaces of the main body frame 10 in the X direction.
  • the part of the housing 70 facing the clean unit 40 with the resin holding part 30 interposed therebetween constitutes an outlet 75 for taking out a molded article manufactured by the resin holding part 30.
  • the user can take out the manufactured shaped article from the take-out part 75 by opening the door part 71. Further, the user can operate the resin holding part 30 by opening the door part 71.
  • the door portion 71 is formed with a window portion 76 that blocks transmission of light near the photosensitive wavelength of the photocurable resin. The user can visually recognize the inside of the housing 70 through the window 76.
  • the housing 70 is a non-sealed housing and has air permeability.
  • a plurality of openings 77 are formed in the door portion 71.
  • an opening (not shown) is formed in each of the side surfaces 72 to 74.
  • FIG. 4 is a diagram visually showing shape data of a model to be manufactured.
  • FIG. 4A is three-dimensional CAD (Computer Aided Design) data indicating the three-dimensional shape of the modeled object.
  • FIG. 4B is cross-sectional data showing a cross section for each position in the vertical direction of the modeled object.
  • FIG.4 (b) the several cross section of the molded article based on several cross section data is illustrated in the state laminated
  • the model to be manufactured is a wine glass.
  • FIG. 2 acquires the three-dimensional CAD data shown in FIG. 4 (a). Moreover, the control part 20 produces
  • 5 and 6 are diagrams for explaining the operations of the resin holding unit 30 and the optical unit 60.
  • the elevating unit 33 is moved to the initial position. Thereby, the upper surface of the stage 32 is located directly under the liquid surface (modeling surface 34) of the photocurable resin stored in the storage unit 31.
  • light is irradiated from the optical unit 60 onto the surface of the photocurable resin so that the lowermost one of the plurality of cross sections shown in FIG. 4B is drawn.
  • FIG.5 (b) the part of the photocurable resin irradiated with light solidifies, and the lowest part of the molded article W is manufactured on the modeling surface 34.
  • FIG.5 (b) the part of the photocurable resin irradiated with light solidifies, and the lowest part of the molded article W is manufactured on the modeling surface 34.
  • the stage 32 is lowered by a predetermined distance.
  • the descending amount of the stage 32 is substantially equal to the interval in the vertical direction of the plurality of cross sections in FIG.
  • the modeling surface 34 is irradiated with light from the optical unit 60 so that a cross section adjacent above the lowermost part of the modeled object W is drawn.
  • Fig.6 (a) the part of the photocurable resin to which light was irradiated solidifies, and the upper part of the lowest part of the molded article W is further manufactured.
  • the stage 32 is further lowered by a predetermined distance. Moreover, light is irradiated to the modeling surface 34 from the optical unit 60 so that the cross section of the part above the already manufactured part of the molded article W is drawn. By repeating these, as shown in FIG.6 (b), the molded article W is manufactured on the modeling surface 34.
  • FIG.6 (b) the molded article W is manufactured on the modeling surface 34.
  • the user U takes out the modeling object W from the extraction unit 75.
  • the take-out part 75 and the clean unit 40 face each other across the resin holding part 30 in the Y direction.
  • the extraction unit 75 is located downstream of the clean gas supplied by the clean unit 40, so that clean gas is supplied from the clean unit 40 toward the extraction unit 75.
  • produces when the user U takes out the molded article W mixes in the storage part 31.
  • the foreign matter is prevented from adhering to the modeling surface 34.
  • the optical modeling apparatus 100 includes the rectifying plates 51 to 53, but the present invention is not limited to this.
  • the optical modeling apparatus 100 may not include some or all of the rectifying plates 51 to 53.
  • FIG. 7 is a schematic diagram illustrating a configuration of the optical modeling apparatus 100 according to the first modification. 7, illustration of the main body frame 10 and the control unit 20 of FIG. 1 is omitted. The same applies to FIG. 8 described later. As shown in FIG. 7, the optical modeling apparatus 100 according to the first modification does not include the rectifying plates 51 to 53.
  • FIG. 8 is a schematic diagram illustrating the configuration of the optical modeling apparatus 100 according to the second modification. As shown in FIG. 8, the optical modeling apparatus 100 according to the second modification is arranged so as to supply clean gas downward. Further, the optical shaping apparatus 100 according to the second modified example does not include the rectifying plates 51 to 53, but is not limited thereto, and may include a part or all of the rectifying plates 51 to 53.
  • FIG. 9 is an enlarged view of a model W manufactured by a conventional optical modeling apparatus.
  • a model W in FIG. 9 is different from the model W in FIGS. 5 and 6.
  • fine foreign matters such as lint are mixed in the modeled object W manufactured by the conventional optical modeling apparatus. In this case, the accuracy of the shaped article W is greatly reduced.
  • the clean gas from the clean unit 40 is supplied to the internal space in contact with the modeling surface 34 of the photocurable resin.
  • foreign substances are prevented from entering the modeling surface 34 of the photocurable resin by the clean gas.
  • the influence of heat on the optical unit is reduced. Thereby, light can be irradiated to the desired position of the modeling surface 34 without being influenced by heat. As a result, the shaped article W can be manufactured with high accuracy.
  • the clean unit 40 supplies clean gas from the side surface 72 of the housing 70 to the internal space.
  • the optical modeling apparatus 100 can be reduced in size.
  • the clean gas is guided in the horizontal direction by the rectifying plates 51-53.
  • a flow of clean gas along the modeling surface 34 can be formed.
  • the clean unit 40 since clean gas can be efficiently supplied to the internal space in contact with the modeling surface 34, the clean unit 40 does not need to supply a large amount of clean gas. Therefore, the operation cost of the optical modeling apparatus 100 can be reduced.
  • the photocurable resin has a liquid state, but the present invention is not limited to this.
  • the photocurable resin may have fluidity by adding a powder material such as ceramic as an additive.
  • the upper surface of the photocurable resin is the modeling surface 34, but the present invention is not limited to this.
  • the modeling surface 34 may be the other part of the photocurable resin.
  • the modeling surface 34 may be the lower surface of the photocurable resin.
  • the optical modeling apparatus 100 includes the main body frame 10, but the present invention is not limited to this.
  • the optical modeling apparatus 100 may not include the main body frame 10.
  • the casing 70 is a non-sealed casing and has air permeability, but the present invention is not limited to this.
  • the casing 70 may be a sealed casing and may not have air permeability.
  • the molded article W is an example of a molded article
  • the optical modeling apparatus 100 is an example of an optical modeling apparatus
  • the modeling surface 34 is an example of a modeling surface
  • the resin holding part 30 is a resin holding part.
  • the optical unit 60 is an example of an optical unit
  • the case 70 is an example of a case
  • the filter 42 is an example of a filter
  • the clean unit 40 is an example of a gas supply unit
  • the side part 72 is a side part.
  • the rectifying unit 50 is an example of a rectifying member
  • the rectifying plates 51 to 53 are examples of first to third rectifying plates
  • the passage portion 53a is an example of a passage portion
  • the extraction portion 75 is an example of an extraction portion.
  • the opening 77 is an example of the opening.
  • the present invention can be effectively used for an optical modeling apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

This optical shaping device is provided with a resin holding part, an optical unit, a housing, and a cleaning unit. The resin holding part is stored in the housing. The resin holding part holds a photocurable resin. The photocurable resin has a shaping surface. Clean air purified by the cleaning unit is supplied into an internal space that is in contact with the shaping surface of the photocurable resin in the housing. In this state, light is applied on the shaping surface of the photocurable resin by the optical unit. Accordingly, a three-dimensionally shaped product is produced on the shaping surface by means of stereolithography.

Description

光造形装置Stereolithography equipment
 本発明は、三次元の造形物を製造する光造形装置に関する。 The present invention relates to an optical modeling apparatus for manufacturing a three-dimensional modeled object.
 三次元の造形物を製造する技術として、光造形技術が知られている(例えば、特許文献1参照)。特許文献1記載の立体図形作成装置においては、容器に液状の感光性樹脂が貯留され、工作台が感光性樹脂の液面の直下に固定される。描きたい立体図形の最下部の断面図形が描かれるように、容器の上部に配置された露光装置からビーム状の光が感光性樹脂の液面に照射される。光が照射された感光性樹脂の部分は固化する。 Stereolithography technology is known as a technology for manufacturing a three-dimensional modeled object (for example, see Patent Document 1). In the three-dimensional figure creating apparatus described in Patent Document 1, a liquid photosensitive resin is stored in a container, and a work table is fixed immediately below the liquid surface of the photosensitive resin. Beam-like light is irradiated onto the liquid surface of the photosensitive resin from an exposure device arranged at the top of the container so that the lowermost cross-sectional figure of the three-dimensional figure to be drawn is drawn. The portion of the photosensitive resin irradiated with light is solidified.
 その後、工作台が一定量だけ沈められる。この状態で、描きたい立体図形のうち既に描かれた部分の上方の断面図形が描かれるように、露光装置からビーム状の光が感光性樹脂の表面に再度照射される。この動作が繰り返されることにより、固化した樹脂の断面が積層され、工作台上に立体図形が作成される。
特開昭56-144478号公報 特開平9-85839号公報
Thereafter, the work table is sunk by a certain amount. In this state, the exposure apparatus irradiates the surface of the photosensitive resin again with beam-like light so that a cross-sectional figure above the already drawn portion of the three-dimensional figure to be drawn is drawn. By repeating this operation, cross sections of the solidified resin are laminated, and a three-dimensional figure is created on the work table.
JP 56-144478 A JP-A-9-85839
 特許文献2には、光造形技術によりmmまたは数十μm程度の微細な三次元の造形物の製造ができると記載されている。しかしながら、実際には、たとえ光による描画を微細に行ったとしても、高い精度で造形物を製造することは困難である。 Patent Document 2 describes that a fine three-dimensional model having a size of about mm or several tens of μm can be manufactured by an optical modeling technique. However, in practice, it is difficult to manufacture a modeled object with high accuracy even if light drawing is performed finely.
 本発明の目的は、造形物を高い精度で製造することが可能な光造形装置を提供することである。 An object of the present invention is to provide an optical modeling apparatus capable of manufacturing a modeled object with high accuracy.
 (1)本発明の一局面に従う光造形装置は、光造形法により立体的な造形物を製造する光造形装置であって、造形面を有するように光硬化性樹脂を保持する樹脂保持部と、樹脂保持部により保持された光硬化性樹脂の造形面に光を照射する光学ユニットと、樹脂保持部を収容する筐体と、筐体内の光硬化性樹脂の造形面に接する内部空間にフィルタにより浄化された清浄気体を供給する気体供給部とを備える。 (1) An optical modeling apparatus according to one aspect of the present invention is an optical modeling apparatus that manufactures a three-dimensional modeled object by an optical modeling method, and a resin holding unit that holds a photocurable resin so as to have a modeling surface. An optical unit that irradiates light onto the modeling surface of the photocurable resin held by the resin holding unit, a housing that houses the resin holding unit, and a filter in an internal space that contacts the modeling surface of the photocurable resin in the housing And a gas supply unit that supplies the purified gas purified by the above.
 この光造形装置においては、樹脂保持部が筐体に収容される。光硬化性樹脂が樹脂保持部により保持される。気体供給部による清浄気体が、筐体内の光硬化性樹脂の造形面に接する内部空間に供給される。この状態で、光学ユニットにより光硬化性樹脂の造形面に光が照射される。 In this stereolithography apparatus, the resin holding part is accommodated in the casing. The photocurable resin is held by the resin holding part. Clean gas by the gas supply unit is supplied to the internal space in contact with the modeling surface of the photocurable resin in the housing. In this state, light is irradiated to the modeling surface of the photocurable resin by the optical unit.
 この構成によれば、清浄気体により光硬化性樹脂の造形面に異物が混入することが防止される。また、流動する清浄気体により熱が放散されるので、光学ユニットへの熱の影響が低減される。これにより、熱の影響を受けることなく造形面の所望の位置に光を照射することができる。その結果、造形物を高い精度で製造することができる。 According to this configuration, foreign substances are prevented from being mixed into the modeling surface of the photocurable resin by the clean gas. Moreover, since heat is dissipated by the flowing clean gas, the influence of heat on the optical unit is reduced. Thereby, light can be irradiated to the desired position of the modeling surface without being affected by heat. As a result, a modeled object can be manufactured with high accuracy.
 (2)光学ユニットは樹脂保持部の上方に配置され、造形面は樹脂保持部により保持された光硬化性樹脂の上面であり、内部空間は、光学ユニットと造形面との間に位置し、筐体は側面部を有し、気体供給部は、側面部から内部空間に清浄気体を供給するように配置されてもよい。 (2) The optical unit is disposed above the resin holding unit, the modeling surface is the upper surface of the photocurable resin held by the resin holding unit, and the internal space is located between the optical unit and the modeling surface, A housing | casing may have a side part and a gas supply part may be arrange | positioned so that clean gas may be supplied to internal space from a side part.
 この場合、光学ユニットと気体供給部とが干渉しないので、光造形装置を小型化することができる。また、造形面に接する内部空間に清浄気体を供給することが容易になる。これにより、造形面への異物の混入および内部空間の排熱をより容易に行うことができる。 In this case, since the optical unit and the gas supply unit do not interfere with each other, the stereolithography apparatus can be miniaturized. Moreover, it becomes easy to supply clean gas to the internal space in contact with the modeling surface. Thereby, mixing of the foreign material to a modeling surface and exhaust heat of internal space can be performed more easily.
 (3)光造形装置は、気体供給部により内部空間に供給された清浄気体を水平方向に案内する整流部材をさらに備えてもよい。この場合、光硬化性樹脂の造形面に沿った清浄気体の流れを形成することができる。それにより、内部空間に浮遊するパーティクルが造形面に付着することを確実に防止することができる。また、造形面に接する内部空間に清浄気体を効率よく供給することができるので、気体供給部は大量の清浄気体を供給する必要がない。そのため、光造形装置の運用コストを低減させることができる。 (3) The stereolithography apparatus may further include a rectifying member that guides the clean gas supplied to the internal space by the gas supply unit in the horizontal direction. In this case, a flow of clean gas along the modeling surface of the photocurable resin can be formed. Thereby, it can prevent reliably that the particle | grains which float in internal space adhere to a modeling surface. Moreover, since clean gas can be efficiently supplied to the internal space in contact with the modeling surface, the gas supply unit does not need to supply a large amount of clean gas. Therefore, the operation cost of the optical modeling apparatus can be reduced.
 (4)整流部材は、互いに対向するように内部空間の両側部にそれぞれ配置される第1および第2の整流板を含んでもよい。この場合、気体供給部により内部空間に供給された清浄気体を第1および第2の整流板により水平方向に容易に案内することができる。 (4) The rectifying member may include first and second rectifying plates respectively disposed on both sides of the internal space so as to face each other. In this case, the clean gas supplied to the internal space by the gas supply unit can be easily guided in the horizontal direction by the first and second rectifying plates.
 (5)整流部材は、内部空間の上部に配置される第3の整流板をさらに含み、第3の整流板は、光学ユニットから造形面に照射される光が通過する通過部を有してもよい。この場合、光学ユニットから造形面に照射される光を遮ることなく、気体供給部により内部空間に供給された清浄気体を第3の整流板により水平方向に容易に案内することができる。 (5) The rectifying member further includes a third rectifying plate disposed in an upper portion of the internal space, and the third rectifying plate has a passage portion through which light irradiated from the optical unit to the modeling surface passes. Also good. In this case, the clean gas supplied to the internal space by the gas supply unit can be easily guided in the horizontal direction by the third rectifying plate without blocking the light irradiated to the modeling surface from the optical unit.
 (6)筐体には、造形物の取り出しを可能にする取出部が設けられ、取出部は、樹脂保持部を挟んで気体供給部と対向するように配置されてもよい。この場合、取出部は気体供給部により供給される清浄気体の下流に位置するので、気体供給部から取出部に向かって清浄気体が供給される。これにより、使用者が造形物を取り出す際に発生する異物が樹脂保持部に混入することが防止される。 (6) The housing may be provided with a take-out portion that enables removal of the shaped object, and the take-out portion may be arranged to face the gas supply portion with the resin holding portion interposed therebetween. In this case, since the extraction unit is located downstream of the clean gas supplied by the gas supply unit, the clean gas is supplied from the gas supply unit toward the extraction unit. Thereby, it is prevented that the foreign material which generate | occur | produces when a user takes out a molded article mixes in a resin holding part.
 (7)筐体は、熱を外部に放散する開口部を有してもよい。この場合、内部空間で発生した熱を簡単な構成で外部に放散することができる。 (7) The housing may have an opening for dissipating heat to the outside. In this case, the heat generated in the internal space can be dissipated to the outside with a simple configuration.
 本発明によれば、造形物を高い精度で製造することができる。 According to the present invention, a shaped article can be manufactured with high accuracy.
図1は本発明の一実施の形態に係る光造形装置の斜視図である。FIG. 1 is a perspective view of an optical modeling apparatus according to an embodiment of the present invention. 図2は図1の光造形装置の側面図である。FIG. 2 is a side view of the optical modeling apparatus of FIG. 図3は図1の樹脂保持部、クリーンユニット、整流ユニットおよび光学ユニットの構成を示す模式図である。FIG. 3 is a schematic diagram illustrating the configuration of the resin holding portion, the clean unit, the rectifying unit, and the optical unit of FIG. 図4は製造したい造形物の形状データを視覚的に示す図である。FIG. 4 is a diagram visually showing shape data of a model to be manufactured. 図5は樹脂保持部および光学ユニットの動作を説明するための図である。FIG. 5 is a diagram for explaining the operation of the resin holding unit and the optical unit. 図6は樹脂保持部および光学ユニットの動作を説明するための図である。FIG. 6 is a diagram for explaining the operation of the resin holding unit and the optical unit. 図7は第1の変形例に係る光造形装置の構成を示す模式図である。FIG. 7 is a schematic diagram showing the configuration of the optical modeling apparatus according to the first modification. 図8は第2の変形例に係る光造形装置の構成を示す模式図である。FIG. 8 is a schematic diagram showing a configuration of an optical modeling apparatus according to the second modification. 図9は従来の光造形装置により製造された造形物の拡大図である。FIG. 9 is an enlarged view of a modeled object manufactured by a conventional optical modeling apparatus.
 (1)光造形装置の構成
 以下、本発明の一実施の形態に係る光造形装置について、図面を参照しながら説明する。図1は、本発明の一実施の形態に係る光造形装置の斜視図である。図2は、図1の光造形装置100の側面図である。図3は、図1の樹脂保持部30、クリーンユニット40、整流ユニット50および光学ユニット60の構成を示す模式図である。図1および図2において、矢印で示すように、水平面内で互いに直交する方向をX方向およびY方向と呼ぶ。
(1) Configuration of Stereolithography Apparatus Hereinafter, the stereolithography apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an optical modeling apparatus according to an embodiment of the present invention. FIG. 2 is a side view of the optical modeling apparatus 100 of FIG. FIG. 3 is a schematic diagram illustrating the configuration of the resin holding unit 30, the clean unit 40, the rectifying unit 50, and the optical unit 60 of FIG. In FIG. 1 and FIG. 2, directions indicated by arrows in the horizontal plane are referred to as an X direction and a Y direction.
 図1および図2に示すように、光造形装置100は、本体フレーム10、制御部20、樹脂保持部30、クリーンユニット40、整流ユニット50、光学ユニット60および筐体70を含む。筐体70内に本体フレーム10、制御部20、樹脂保持部30、整流ユニット50および光学ユニット60が収容される。なお、図1および図2においては、筐体70における光学ユニット60を収容する部分の図示を省略している。 1 and 2, the optical modeling apparatus 100 includes a main body frame 10, a control unit 20, a resin holding unit 30, a clean unit 40, a rectifying unit 50, an optical unit 60, and a housing 70. The main body frame 10, the control unit 20, the resin holding unit 30, the rectifying unit 50 and the optical unit 60 are accommodated in the housing 70. In FIGS. 1 and 2, the portion of the housing 70 that houses the optical unit 60 is not shown.
 本体フレーム10は、底面部11、中面部12、上面部13、複数の支柱14および複数の補強部15を含む。底面部11、中面部12および上面部13の各々は、略矩形状を有する。底面部11、中面部12および上面部13は、下方から上方に向かってこの順で水平姿勢で配置される。各支柱14は、垂直方向に延び、底面部11、中面部12および上面部13を支持する。各補強部15は、水平方向に延び、複数の支柱14を補強するように隣り合う支柱14間に取り付けられる。 The main body frame 10 includes a bottom surface portion 11, an intermediate surface portion 12, an upper surface portion 13, a plurality of support columns 14, and a plurality of reinforcement portions 15. Each of the bottom surface portion 11, the middle surface portion 12, and the top surface portion 13 has a substantially rectangular shape. The bottom surface portion 11, the middle surface portion 12, and the top surface portion 13 are arranged in a horizontal posture in this order from the bottom to the top. Each support column 14 extends in the vertical direction and supports the bottom surface portion 11, the middle surface portion 12, and the top surface portion 13. Each reinforcing portion 15 extends in the horizontal direction and is attached between adjacent struts 14 so as to reinforce the plurality of struts 14.
 底面部11の下面には、複数の車輪16および複数の支持部17が設けられる。複数の車輪16および複数の支持部17は、筐体70の底部から下方に突出する。光造形装置100を移動させるときには、複数の車輪16が設置面に接触するとともに、複数の支持部17が設置面から離間する。この場合、複数の車輪16を設置面上で転がすことにより、光造形装置100を容易に移動させることができる。一方、光造形装置100を移動させないときには、複数の支持部17が設置面に接触するとともに、複数の車輪16が設置面から離間する。これにより、光造形装置100を移動不可能に固定することができる。 A plurality of wheels 16 and a plurality of support portions 17 are provided on the lower surface of the bottom surface portion 11. The plurality of wheels 16 and the plurality of support portions 17 protrude downward from the bottom of the housing 70. When the stereolithography apparatus 100 is moved, the plurality of wheels 16 come into contact with the installation surface, and the plurality of support portions 17 are separated from the installation surface. In this case, the optical modeling apparatus 100 can be easily moved by rolling the plurality of wheels 16 on the installation surface. On the other hand, when the stereolithography apparatus 100 is not moved, the plurality of support portions 17 are in contact with the installation surface, and the plurality of wheels 16 are separated from the installation surface. Thereby, the optical modeling apparatus 100 can be fixed so that it cannot move.
 制御部20は、例えば図示しない中央演算処理装置(CPU;Central Processing Unit)を含む。制御部20は、樹脂保持部30および光学ユニット60の動作を制御する。図1および図2の例では、制御部20は、本体フレーム10の底面部11の上面に配置される。 The control unit 20 includes, for example, a central processing unit (CPU) (not shown). The control unit 20 controls the operations of the resin holding unit 30 and the optical unit 60. In the example of FIGS. 1 and 2, the control unit 20 is disposed on the upper surface of the bottom surface portion 11 of the main body frame 10.
 図3に示すように、樹脂保持部30は、貯留部31、ステージ32および昇降部33を含む。貯留部31は、上部が開口した容器であり、図2の本体フレーム10の上面部13の上面に配置される。貯留部31には、液状(流動性)の光硬化性樹脂が貯留される。ステージ32は、貯留部31内に貯留された光硬化性樹脂の水平な表面(上面)近傍に配置される。本実施の形態においては、光硬化性樹脂の上面が造形面34となる。樹脂保持部30の造形面34と光学ユニット60との間に筐体70の内部空間が形成される。内部空間は、造形面34に接する。 As shown in FIG. 3, the resin holding unit 30 includes a storage unit 31, a stage 32, and an elevating unit 33. The reservoir 31 is a container having an upper opening, and is disposed on the upper surface of the upper surface portion 13 of the main body frame 10 of FIG. The storage unit 31 stores liquid (fluid) photocurable resin. The stage 32 is disposed in the vicinity of the horizontal surface (upper surface) of the photocurable resin stored in the storage unit 31. In the present embodiment, the upper surface of the photocurable resin is the modeling surface 34. An internal space of the housing 70 is formed between the modeling surface 34 of the resin holding unit 30 and the optical unit 60. The internal space is in contact with the modeling surface 34.
 造形面34に光が照射される。昇降部33は、ステージ32を昇降可能にステージ32に取り付けられる。ステージ32が下降することにより光の照射により部分的に硬化した光硬化性樹脂の層が下降し、加工した層上に未硬化の光硬化性樹脂の層が形成される。未硬化の光硬化性樹脂の上面が新たな造形面34となる。この操作が繰り返されることにより立体形状の造形物が製造される。 The light is irradiated to the modeling surface 34. The raising / lowering part 33 is attached to the stage 32 so that the stage 32 can be raised / lowered. When the stage 32 is lowered, the layer of the photocurable resin partially cured by the light irradiation is lowered, and an uncured photocurable resin layer is formed on the processed layer. The upper surface of the uncured photocurable resin becomes a new modeling surface 34. By repeating this operation, a three-dimensional shaped object is manufactured.
 クリーンユニット40は、ファン41、フィルタ42および電源装置43を含む。電源装置43は、ファン41に電力を供給する。本実施の形態におけるフィルタ42は、HEPA(High Efficiency Particulate Air)フィルタである。フィルタ42の目開き(粒子除去性能)は、例えば1μm以上10μm以下であり、本例では10μmである。本実施の形態においては、クリーンユニット40は、図2の本体フレーム10の中面部12のY方向における一端部の上方に位置するように、後述する筐体70の側面部72に配置される。ファン41は、フィルタ42により浄化された清浄気体を、造形面34に接する内部空間にY方向に供給する。清浄気体の流れが、図2に白抜きの矢印で示される。本実施の形態では、清浄気体は清浄空気である。清浄気体として浄化された窒素ガス等の不活性ガスを用いてもよい。 The clean unit 40 includes a fan 41, a filter 42, and a power supply device 43. The power supply device 43 supplies power to the fan 41. The filter 42 in the present embodiment is a HEPA (High Efficiency Particulate Air) filter. The opening (particle removal performance) of the filter 42 is, for example, 1 μm or more and 10 μm or less, and in this example, 10 μm. In the present embodiment, the clean unit 40 is disposed on a side surface portion 72 of the casing 70 described later so as to be positioned above one end portion in the Y direction of the middle surface portion 12 of the main body frame 10 in FIG. The fan 41 supplies the clean gas purified by the filter 42 to the internal space in contact with the modeling surface 34 in the Y direction. The flow of clean gas is shown by the white arrows in FIG. In the present embodiment, the clean gas is clean air. An inert gas such as nitrogen gas purified as a clean gas may be used.
 整流ユニット50は、整流板51,52,53を含む。整流板51,52は、本体フレーム10(図1)の中面部12と上面部13との間の部分における両側面に沿ってそれぞれ配置される。これにより、整流板51,52は、X方向において樹脂保持部30の上方の内部空間を挟んで互いに対向する。整流板53は、樹脂保持部30の上方を覆うように、本体フレーム10(図1)の上面部13の下面に水平に配置される。整流板53には、円形の開口部である通過部53aが形成される。整流板53の通過部53aは垂直方向において造形面34と重なる。整流板51~53は、クリーンユニット40により供給される清浄気体をY方向に整流する。それにより、清浄気体が造形面34に沿って流れる。 The rectifying unit 50 includes rectifying plates 51, 52, and 53. The rectifying plates 51 and 52 are respectively arranged along both side surfaces in a portion between the middle surface portion 12 and the upper surface portion 13 of the main body frame 10 (FIG. 1). Thus, the rectifying plates 51 and 52 face each other across the internal space above the resin holding portion 30 in the X direction. The rectifying plate 53 is horizontally disposed on the lower surface of the upper surface portion 13 of the main body frame 10 (FIG. 1) so as to cover the upper side of the resin holding portion 30. The rectifying plate 53 is formed with a passage portion 53a that is a circular opening. The passage portion 53a of the rectifying plate 53 overlaps the modeling surface 34 in the vertical direction. The rectifying plates 51 to 53 rectify the clean gas supplied by the clean unit 40 in the Y direction. Thereby, the clean gas flows along the modeling surface 34.
 光学ユニット60は、本体フレーム10(図1)の上面部13の上面上に配置される。光学ユニット60は、光源61、光強度変調器62、ビームエクスパンダ63、レンズ64および2個のガルバノミラー65,66を含む。光源61は、例えばレーザ発信器であり、紫外領域(例えば255nm~405nm)の波長を有するレーザ光を出射する。光強度変調器62は、当該光強度変調器62を通過する光の強度を変調する。ビームエクスパンダ63は、当該ビームエクスパンダ63を通過する光の径を拡張する。レンズ64は、当該レンズ64を通過する光に焦点を付与する。 The optical unit 60 is disposed on the upper surface of the upper surface portion 13 of the main body frame 10 (FIG. 1). The optical unit 60 includes a light source 61, a light intensity modulator 62, a beam expander 63, a lens 64, and two galvanometer mirrors 65 and 66. The light source 61 is a laser transmitter, for example, and emits laser light having a wavelength in the ultraviolet region (for example, 255 nm to 405 nm). The light intensity modulator 62 modulates the intensity of light passing through the light intensity modulator 62. The beam expander 63 expands the diameter of light that passes through the beam expander 63. The lens 64 gives a focus to the light passing through the lens 64.
 ガルバノミラー65は、アクチュエータ部65aおよびミラー部65bを含む。アクチュエータ部65aは、垂直方向の回転軸を有するモータである。ミラー部65bは、アクチュエータ部65aの回転軸に取り付けられる。アクチュエータ部65aが回転することにより、ミラー部65bで反射される光の反射角度が水平面内で変化する。 The galvanometer mirror 65 includes an actuator part 65a and a mirror part 65b. The actuator unit 65a is a motor having a vertical rotation axis. The mirror part 65b is attached to the rotating shaft of the actuator part 65a. As the actuator portion 65a rotates, the reflection angle of the light reflected by the mirror portion 65b changes in the horizontal plane.
 ガルバノミラー66は、ガルバノミラー65と同様の構成を有し、アクチュエータ部66aおよびミラー部66bを含む。アクチュエータ部66aは、水平方向の回転軸を有するモータである。ガルバノミラー66は、水平面においてアクチュエータ部66aの回転軸がガルバノミラー65のアクチュエータ部65aの回転軸と直交するように配置される。アクチュエータ部66aが回転することにより、ミラー部66bで反射される光の反射角度が垂直面内で変化する。 The galvanometer mirror 66 has the same configuration as the galvanometer mirror 65, and includes an actuator portion 66a and a mirror portion 66b. The actuator portion 66a is a motor having a horizontal rotation axis. The galvanometer mirror 66 is arranged so that the rotation axis of the actuator section 66a is orthogonal to the rotation axis of the actuator section 65a of the galvanometer mirror 65 in the horizontal plane. As the actuator 66a rotates, the reflection angle of the light reflected by the mirror 66b changes in the vertical plane.
 光源61により出射された光は、光強度変調器62、ビームエクスパンダ63およびレンズ64を順に通過し、2個のガルバノミラー65,66で反射され、整流板53の通過部53aを通過する。ここで、レンズ64により造形面34に光の焦点が形成される。また、ガルバノミラー65,66のアクチュエータ部65a,66aが回転することにより、造形面34上で光が互いに直交する2方向に走査される。これにより、造形面34に光で任意の形状を描くことができる。 The light emitted from the light source 61 sequentially passes through the light intensity modulator 62, the beam expander 63, and the lens 64, is reflected by the two galvanometer mirrors 65 and 66, and passes through the passage portion 53a of the rectifying plate 53. Here, a focal point of light is formed on the modeling surface 34 by the lens 64. Further, when the actuator portions 65a and 66a of the galvanometer mirrors 65 and 66 are rotated, the light is scanned on the modeling surface 34 in two directions orthogonal to each other. Thereby, an arbitrary shape can be drawn on the modeling surface 34 with light.
 (2)筐体の構成
 図1に示すように、筐体70は垂直方向に延びる扉部71および垂直方向に延びる3個の側面部72,73,74を含む。図1においては側面部72~74は点線で示され、図2においては側面部72~74の図示は省略される。扉部71および側面部72は、Y方向における本体フレーム10の両側面をそれぞれ閉塞するように配置される。本例においては、扉部71は、開閉可能に構成された片開きの扉である。側面部73,74は、X方向における本体フレーム10の両側面をそれぞれ閉塞するように配置される。
(2) Configuration of Case As shown in FIG. 1, the case 70 includes a door portion 71 extending in the vertical direction and three side surface portions 72, 73, 74 extending in the vertical direction. In FIG. 1, the side surface portions 72 to 74 are indicated by dotted lines, and in FIG. 2, the side surface portions 72 to 74 are not shown. The door part 71 and the side part 72 are arrange | positioned so that both the side surfaces of the main body frame 10 in a Y direction may be obstruct | occluded, respectively. In this example, the door part 71 is a one-sided door configured to be openable and closable. The side surface portions 73 and 74 are arranged so as to block both side surfaces of the main body frame 10 in the X direction.
 樹脂保持部30を挟んでクリーンユニット40と対向する筐体70の部分は、樹脂保持部30により製造された造形物を取り出すための取出口75を構成する。使用者は、扉部71を開くことにより、製造された造形物を取出部75から取り出すことができる。また、使用者は、扉部71を開くことにより、樹脂保持部30を操作することができる。扉部71には、光硬化性樹脂の感光波長付近の光の透過を遮蔽する窓部76が形成される。使用者は、窓部76を通して筐体70の内部を視認することができる。 The part of the housing 70 facing the clean unit 40 with the resin holding part 30 interposed therebetween constitutes an outlet 75 for taking out a molded article manufactured by the resin holding part 30. The user can take out the manufactured shaped article from the take-out part 75 by opening the door part 71. Further, the user can operate the resin holding part 30 by opening the door part 71. The door portion 71 is formed with a window portion 76 that blocks transmission of light near the photosensitive wavelength of the photocurable resin. The user can visually recognize the inside of the housing 70 through the window 76.
 本実施の形態においては、筐体70は非密閉型の筐体であり、通気性を有する。図1の例では、扉部71に複数の開口部77が形成される。また、側面部72~74の各々にも、図示しない開口部が形成される。クリーンユニット40および光学ユニット60により筐体70内に熱が発生した場合でも、熱は複数の開口部77等から外部に放散される。この場合、熱を簡単な構成で外部に放散することができる。 In this embodiment, the housing 70 is a non-sealed housing and has air permeability. In the example of FIG. 1, a plurality of openings 77 are formed in the door portion 71. In addition, an opening (not shown) is formed in each of the side surfaces 72 to 74. Even when heat is generated in the housing 70 by the clean unit 40 and the optical unit 60, the heat is dissipated to the outside through the plurality of openings 77 and the like. In this case, heat can be dissipated to the outside with a simple configuration.
 (3)光造形装置の動作
 光造形装置100による造形物の製造動作の一例を説明する。図4は、製造したい造形物の形状データを視覚的に示す図である。図4(a)は、造形物の三次元形状を示す三次元CAD(Computer Aided Design)データである。図4(b)は、造形物の上下方向における位置ごとの断面を示す断面データである。図4(b)においては、複数の断面データに基づく造形物の複数の断面が上下方向に積層された状態で図示されている。図4(a),(b)の例では、製造したい造形物はワイングラスである。
(3) Operation of the optical modeling apparatus An example of the manufacturing operation of the modeled object by the optical modeling apparatus 100 will be described. FIG. 4 is a diagram visually showing shape data of a model to be manufactured. FIG. 4A is three-dimensional CAD (Computer Aided Design) data indicating the three-dimensional shape of the modeled object. FIG. 4B is cross-sectional data showing a cross section for each position in the vertical direction of the modeled object. In FIG.4 (b), the several cross section of the molded article based on several cross section data is illustrated in the state laminated | stacked on the up-down direction. In the example of FIGS. 4A and 4B, the model to be manufactured is a wine glass.
 図2の制御部20は、図4(a)の三次元CADデータを取得する。また、制御部20は、取得した三次元CADデータに基づいて図4(b)の断面データを上下方向における所定の間隔で生成する。さらに、制御部20は、生成した複数の断面データに基づいて樹脂保持部30および光学ユニット60を制御する。図5および図6は、樹脂保持部30および光学ユニット60の動作を説明するための図である。 2 acquires the three-dimensional CAD data shown in FIG. 4 (a). Moreover, the control part 20 produces | generates the cross-sectional data of FIG.4 (b) based on the acquired three-dimensional CAD data at the predetermined | prescribed space | interval in an up-down direction. Further, the control unit 20 controls the resin holding unit 30 and the optical unit 60 based on the generated plurality of cross-sectional data. 5 and 6 are diagrams for explaining the operations of the resin holding unit 30 and the optical unit 60. FIG.
 まず、図5(a)に示すように、昇降部33が初期位置に移動される。これにより、ステージ32の上面が貯留部31に貯留された光硬化性樹脂の液面(造形面34)の直下に位置する。次に、図4(b)に示される複数の断面のうち、最も下方に位置する断面が描かれるように、光学ユニット60から光が光硬化性樹脂の表面に照射される。これにより、図5(b)に示すように、光が照射された光硬化性樹脂の部分が固化し、造形物Wの最下部が造形面34上に製造される。 First, as shown in FIG. 5A, the elevating unit 33 is moved to the initial position. Thereby, the upper surface of the stage 32 is located directly under the liquid surface (modeling surface 34) of the photocurable resin stored in the storage unit 31. Next, light is irradiated from the optical unit 60 onto the surface of the photocurable resin so that the lowermost one of the plurality of cross sections shown in FIG. 4B is drawn. Thereby, as shown in FIG.5 (b), the part of the photocurable resin irradiated with light solidifies, and the lowest part of the molded article W is manufactured on the modeling surface 34. As shown in FIG.
 続いて、ステージ32が所定の距離だけ下降される。ステージ32の下降量は、図4(b)の複数の断面の上下方向における間隔と略等しい。この状態で、造形物Wの最下部の上方に隣接する断面が描かれるように、光学ユニット60から光が造形面34に照射される。これにより、図6(a)に示すように、光が照射された光硬化性樹脂の部分が固化し、造形物Wの最下部の上の部分がさらに製造される。 Subsequently, the stage 32 is lowered by a predetermined distance. The descending amount of the stage 32 is substantially equal to the interval in the vertical direction of the plurality of cross sections in FIG. In this state, the modeling surface 34 is irradiated with light from the optical unit 60 so that a cross section adjacent above the lowermost part of the modeled object W is drawn. Thereby, as shown to Fig.6 (a), the part of the photocurable resin to which light was irradiated solidifies, and the upper part of the lowest part of the molded article W is further manufactured.
 その後、ステージ32が所定の距離だけさらに下降される。また、造形物Wのうち既に製造された部分よりも上方の部分の断面が描かれるように、光学ユニット60から光が造形面34に照射される。これらが繰り返されることにより、図6(b)に示すように、造形物Wが造形面34上に製造される。 Thereafter, the stage 32 is further lowered by a predetermined distance. Moreover, light is irradiated to the modeling surface 34 from the optical unit 60 so that the cross section of the part above the already manufactured part of the molded article W is drawn. By repeating these, as shown in FIG.6 (b), the molded article W is manufactured on the modeling surface 34. FIG.
 図3に示すように、造形物Wの完成後、使用者Uは、取出部75から造形物Wを取り出す。ここで、取出部75とクリーンユニット40とは、Y方向において、樹脂保持部30を挟んで互いに対向する。この配置によれば、取出部75はクリーンユニット40により供給される清浄気体の下流に位置するので、クリーンユニット40から取出部75に向かって清浄気体が供給される。これにより、使用者Uが造形物Wを取り出す際に発生する異物が貯留部31内に混入することが防止される。また、異物が造形面34に付着することが防止される。 As shown in FIG. 3, after the modeling object W is completed, the user U takes out the modeling object W from the extraction unit 75. Here, the take-out part 75 and the clean unit 40 face each other across the resin holding part 30 in the Y direction. According to this arrangement, the extraction unit 75 is located downstream of the clean gas supplied by the clean unit 40, so that clean gas is supplied from the clean unit 40 toward the extraction unit 75. Thereby, it is prevented that the foreign material which generate | occur | produces when the user U takes out the molded article W mixes in the storage part 31. FIG. Further, the foreign matter is prevented from adhering to the modeling surface 34.
 (4)変形例
 (a)第1の変形例
 上記実施の形態において、光造形装置100は整流板51~53を含むが、本発明はこれに限定されない。光造形装置100は、整流板51~53の一部または全部を含まなくてもよい。図7は、第1の変形例に係る光造形装置100の構成を示す模式図である。図7においては、図1の本体フレーム10および制御部20の図示が省略されている。後述する図8においても同様である。図7に示すように、第1の変形例に係る光造形装置100は、整流板51~53を含まない。
(4) Modification (a) First Modification In the above embodiment, the optical modeling apparatus 100 includes the rectifying plates 51 to 53, but the present invention is not limited to this. The optical modeling apparatus 100 may not include some or all of the rectifying plates 51 to 53. FIG. 7 is a schematic diagram illustrating a configuration of the optical modeling apparatus 100 according to the first modification. 7, illustration of the main body frame 10 and the control unit 20 of FIG. 1 is omitted. The same applies to FIG. 8 described later. As shown in FIG. 7, the optical modeling apparatus 100 according to the first modification does not include the rectifying plates 51 to 53.
 (b)第2の変形例
 上記実施の形態において、クリーンユニット40は水平面に平行な方向に清浄気体を供給するように配置されるが、本発明はこれに限定されない。クリーンユニット40は、他の方向に清浄気体を供給するように配置されてもよい。図8は、第2の変形例に係る光造形装置100の構成を示す模式図である。図8に示すように、第2の変形例に係る光造形装置100は、下方に清浄気体を供給するように配置される。また、第2の変形例に係る光造形装置100は、整流板51~53を含まないが、これに限定されず、整流板51~53の一部または全部を含んでもよい。
(B) Second Modification In the above embodiment, the clean unit 40 is arranged to supply clean gas in a direction parallel to the horizontal plane, but the present invention is not limited to this. The clean unit 40 may be arranged to supply clean gas in the other direction. FIG. 8 is a schematic diagram illustrating the configuration of the optical modeling apparatus 100 according to the second modification. As shown in FIG. 8, the optical modeling apparatus 100 according to the second modification is arranged so as to supply clean gas downward. Further, the optical shaping apparatus 100 according to the second modified example does not include the rectifying plates 51 to 53, but is not limited thereto, and may include a part or all of the rectifying plates 51 to 53.
 (5)効果
 図9は、従来の光造形装置により製造された造形物Wの拡大図である。図9の造形物Wは、図5および図6の造形物Wとは異なる。図9のA部に示されるように、従来の光造形装置により製造された造形物W内には、糸くず等の微細な異物が混入する。この場合、造形物Wの精度が大きく低下する。
(5) Effect FIG. 9 is an enlarged view of a model W manufactured by a conventional optical modeling apparatus. A model W in FIG. 9 is different from the model W in FIGS. 5 and 6. As shown in part A of FIG. 9, fine foreign matters such as lint are mixed in the modeled object W manufactured by the conventional optical modeling apparatus. In this case, the accuracy of the shaped article W is greatly reduced.
 本実施の形態に係る光造形装置100においては、クリーンユニット40による清浄気体が、光硬化性樹脂の造形面34に接する内部空間に供給される。この場合、清浄気体により光硬化性樹脂の造形面34に異物が混入することが防止される。また、流動する清浄気体により熱が放散されるので、光学ユニットへの熱の影響が低減される。これにより、熱の影響を受けることなく造形面34の所望の位置に光を照射することができる。その結果、造形物Wを高い精度で製造することができる。 In the optical modeling apparatus 100 according to the present embodiment, the clean gas from the clean unit 40 is supplied to the internal space in contact with the modeling surface 34 of the photocurable resin. In this case, foreign substances are prevented from entering the modeling surface 34 of the photocurable resin by the clean gas. Moreover, since heat is dissipated by the flowing clean gas, the influence of heat on the optical unit is reduced. Thereby, light can be irradiated to the desired position of the modeling surface 34 without being influenced by heat. As a result, the shaped article W can be manufactured with high accuracy.
 また、クリーンユニット40は、筐体70の側面部72から内部空間に清浄気体を供給する。この場合、光学ユニット60とクリーンユニット40とが干渉しないので、光造形装置100を小型化することができる。また、造形面34に接する内部空間に清浄気体を供給することが容易になる。これにより、造形面34への異物の混入および内部空間の排熱をより容易に行うことができる。 Also, the clean unit 40 supplies clean gas from the side surface 72 of the housing 70 to the internal space. In this case, since the optical unit 60 and the clean unit 40 do not interfere with each other, the optical modeling apparatus 100 can be reduced in size. In addition, it becomes easy to supply clean gas to the internal space in contact with the modeling surface 34. Thereby, mixing of the foreign material into the modeling surface 34 and exhaust heat of the internal space can be performed more easily.
 さらに、清浄気体は、整流板51~53により水平方向に案内される。この場合、造形面34に沿った清浄気体の流れを形成することができる。それにより、内部空間に浮遊するパーティクルが造形面34に付着することを確実に防止することができる。また、造形面34に接する内部空間に清浄気体を効率よく供給することができるので、クリーンユニット40は大量の清浄気体を供給する必要がない。そのため、光造形装置100の運用コストを低減させることができる。 Further, the clean gas is guided in the horizontal direction by the rectifying plates 51-53. In this case, a flow of clean gas along the modeling surface 34 can be formed. Thereby, it is possible to reliably prevent particles floating in the internal space from adhering to the modeling surface 34. Moreover, since clean gas can be efficiently supplied to the internal space in contact with the modeling surface 34, the clean unit 40 does not need to supply a large amount of clean gas. Therefore, the operation cost of the optical modeling apparatus 100 can be reduced.
 (6)他の実施の形態
 (a)上記実施の形態において、光硬化性樹脂は液状を有するが、本発明はこれに限定されない。例えば、光硬化性樹脂は、添加物としてセラミック等の粉末材料が添加されることにより流動性を有してもよい。
(6) Other Embodiments (a) In the above embodiment, the photocurable resin has a liquid state, but the present invention is not limited to this. For example, the photocurable resin may have fluidity by adding a powder material such as ceramic as an additive.
 (b)上記実施の形態において、光硬化性樹脂の上面が造形面34であるが、本発明はこれに限定されない。光硬化性樹脂の他の部分が造形面34であってもよい。例えば、光硬化性樹脂の下面が造形面34であってもよい。 (B) In the above embodiment, the upper surface of the photocurable resin is the modeling surface 34, but the present invention is not limited to this. The modeling surface 34 may be the other part of the photocurable resin. For example, the modeling surface 34 may be the lower surface of the photocurable resin.
 (c)上記実施の形態において、光造形装置100は本体フレーム10を含むが、本発明はこれに限定されない。光造形装置100は本体フレーム10を含まなくてもよい。 (C) In the above embodiment, the optical modeling apparatus 100 includes the main body frame 10, but the present invention is not limited to this. The optical modeling apparatus 100 may not include the main body frame 10.
 (d)上記実施の形態において、筐体70は非密閉型の筐体であり、通気性を有するが、本発明はこれに限定されない。クリーンユニット40により供給される洗浄気体が循環される構成が筐体70に設けられる場合には、筐体70は密閉型の筐体であってもよく、通気性を有さなくてもよい。 (D) In the above embodiment, the casing 70 is a non-sealed casing and has air permeability, but the present invention is not limited to this. When the casing 70 is provided with a configuration in which the cleaning gas supplied by the clean unit 40 is circulated, the casing 70 may be a sealed casing and may not have air permeability.
 (7)請求項の各構成要素と実施の形態の各要素との対応関係
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
(7) Correspondence relationship between each constituent element of claim and each element of the embodiment Hereinafter, an example of correspondence between each constituent element of the claim and each element of the embodiment will be described. It is not limited to examples.
 上記の実施の形態では、造形物Wが造形物の例であり、光造形装置100が光造形装置の例であり、造形面34が造形面の例であり、樹脂保持部30が樹脂保持部の例である。光学ユニット60が光学ユニットの例であり、筐体70が筐体の例であり、フィルタ42がフィルタの例であり、クリーンユニット40が気体供給部の例であり、側面部72が側面部の例である。整流ユニット50が整流部材の例であり、整流板51~53がそれぞれ第1~第3の整流板の例であり、通過部53aが通過部の例であり、取出部75が取出部の例であり、開口部77が開口部の例である。 In said embodiment, the molded article W is an example of a molded article, the optical modeling apparatus 100 is an example of an optical modeling apparatus, the modeling surface 34 is an example of a modeling surface, and the resin holding part 30 is a resin holding part. It is an example. The optical unit 60 is an example of an optical unit, the case 70 is an example of a case, the filter 42 is an example of a filter, the clean unit 40 is an example of a gas supply unit, and the side part 72 is a side part. It is an example. The rectifying unit 50 is an example of a rectifying member, the rectifying plates 51 to 53 are examples of first to third rectifying plates, the passage portion 53a is an example of a passage portion, and the extraction portion 75 is an example of an extraction portion. The opening 77 is an example of the opening.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、光造形装置に有効に利用することができる。 The present invention can be effectively used for an optical modeling apparatus.

Claims (7)

  1. 光造形法により立体的な造形物を製造する光造形装置であって、
     造形面を有するように光硬化性樹脂を保持する樹脂保持部と、
     前記樹脂保持部により保持された光硬化性樹脂の前記造形面に光を照射する光学ユニットと、
     前記樹脂保持部を収容する筐体と、
     前記筐体内の光硬化性樹脂の前記造形面に接する内部空間にフィルタにより浄化された清浄気体を供給する気体供給部とを備える、光造形装置。
    An optical modeling apparatus for manufacturing a three-dimensional model by an optical modeling method,
    A resin holding part for holding a photocurable resin so as to have a modeling surface;
    An optical unit for irradiating light on the modeling surface of the photocurable resin held by the resin holding unit;
    A housing for housing the resin holding portion;
    An optical modeling apparatus comprising: a gas supply unit configured to supply a clean gas purified by a filter to an internal space of the photocurable resin in the housing that is in contact with the modeling surface.
  2. 前記光学ユニットは前記樹脂保持部の上方に配置され、
     前記造形面は前記樹脂保持部により保持された光硬化性樹脂の上面であり、
     前記内部空間は、前記光学ユニットと前記造形面との間に位置し、
     前記筐体は側面部を有し、
     前記気体供給部は、前記側面部から前記内部空間に前記清浄気体を供給するように配置される、請求項1記載の光造形装置。
    The optical unit is disposed above the resin holding portion,
    The modeling surface is an upper surface of a photocurable resin held by the resin holding portion,
    The internal space is located between the optical unit and the modeling surface,
    The housing has side portions;
    The optical modeling apparatus according to claim 1, wherein the gas supply unit is arranged to supply the clean gas from the side surface part to the internal space.
  3. 前記気体供給部により前記内部空間に供給された前記清浄気体を水平方向に案内する整流部材をさらに備える、請求項2記載の光造形装置。 The optical modeling apparatus according to claim 2, further comprising a rectifying member that guides the clean gas supplied to the internal space by the gas supply unit in a horizontal direction.
  4. 前記整流部材は、互いに対向するように前記内部空間の両側部にそれぞれ配置される第1および第2の整流板を含む、請求項3記載の光造形装置。 The stereolithography apparatus according to claim 3, wherein the rectifying member includes first and second rectifying plates respectively disposed on both side portions of the internal space so as to face each other.
  5. 前記整流部材は、前記内部空間の上部に配置される第3の整流板をさらに含み、
     前記第3の整流板は、前記光学ユニットから前記造形面に照射される光が通過する通過部を有する、請求項3または4記載の光造形装置。
    The rectifying member further includes a third rectifying plate disposed at an upper portion of the internal space,
    5. The optical modeling apparatus according to claim 3, wherein the third rectifying plate has a passage portion through which light irradiated from the optical unit to the modeling surface passes.
  6. 前記筐体には、造形物の取り出しを可能にする取出部が設けられ、
     前記取出部は、前記樹脂保持部を挟んで前記気体供給部と対向するように配置される、請求項2~5のいずれか一項に記載の光造形装置。
    The housing is provided with a take-out portion that enables removal of a shaped object,
    The stereolithography apparatus according to any one of claims 2 to 5, wherein the extraction unit is disposed so as to face the gas supply unit with the resin holding unit interposed therebetween.
  7. 前記筐体は、熱を外部に放散する開口部を有する、請求項1~6のいずれか一項に記載の光造形装置。 The stereolithography apparatus according to any one of claims 1 to 6, wherein the casing has an opening for dissipating heat to the outside.
PCT/JP2016/083842 2015-11-20 2016-11-15 Optical shaping device WO2017086317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-227924 2015-11-20
JP2015227924A JP6767007B2 (en) 2015-11-20 2015-11-20 Stereolithography equipment

Publications (1)

Publication Number Publication Date
WO2017086317A1 true WO2017086317A1 (en) 2017-05-26

Family

ID=58718804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083842 WO2017086317A1 (en) 2015-11-20 2016-11-15 Optical shaping device

Country Status (2)

Country Link
JP (1) JP6767007B2 (en)
WO (1) WO2017086317A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190251077A1 (en) * 2018-11-07 2019-08-15 Alibaba Group Holding Limited Facilitating practical byzantine fault tolerance blockchain consensus and node synchronization
CN113853264A (en) * 2019-05-15 2021-12-28 德马吉森精机株式会社 Processing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003264B2 (en) * 2018-07-05 2022-01-20 三井化学株式会社 Manufacturing method of 3D modeling device, control device, and modeled object

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505588A (en) * 1988-04-18 1992-10-01 スリーディー、システムズ、インコーポレーテッド How to form 3D objects
JPH04506110A (en) * 1988-04-18 1992-10-22 スリーディー、システムズ、インコーポレーテッド Stereolithography beam profiling method and device
JP2012501828A (en) * 2008-09-05 2012-01-26 エムティーティー テクノロジーズ リミテッド Filter assembly
WO2014164807A1 (en) * 2013-03-13 2014-10-09 United Technologies Corporation Uninteruppted filtering system for selective laser melting powder bed additive manufacturing process
JP2016006215A (en) * 2014-06-20 2016-01-14 株式会社ソディック Lamination molding device
JP2016052778A (en) * 2014-09-03 2016-04-14 エスエルエム ソルーションズ グループ アーゲー Apparatus for producing work pieces with improved gas circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4114595B2 (en) * 2003-10-30 2008-07-09 Jsr株式会社 Stereolithography method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505588A (en) * 1988-04-18 1992-10-01 スリーディー、システムズ、インコーポレーテッド How to form 3D objects
JPH04506110A (en) * 1988-04-18 1992-10-22 スリーディー、システムズ、インコーポレーテッド Stereolithography beam profiling method and device
JP2012501828A (en) * 2008-09-05 2012-01-26 エムティーティー テクノロジーズ リミテッド Filter assembly
WO2014164807A1 (en) * 2013-03-13 2014-10-09 United Technologies Corporation Uninteruppted filtering system for selective laser melting powder bed additive manufacturing process
JP2016006215A (en) * 2014-06-20 2016-01-14 株式会社ソディック Lamination molding device
JP2016052778A (en) * 2014-09-03 2016-04-14 エスエルエム ソルーションズ グループ アーゲー Apparatus for producing work pieces with improved gas circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190251077A1 (en) * 2018-11-07 2019-08-15 Alibaba Group Holding Limited Facilitating practical byzantine fault tolerance blockchain consensus and node synchronization
US10803052B2 (en) * 2018-11-07 2020-10-13 Alibaba Group Holding Limited Facilitating practical byzantine fault tolerance blockchain consensus and node synchronization
US11397725B2 (en) * 2018-11-07 2022-07-26 Advanced New Technologies Co., Ltd. Facilitating practical byzantine fault tolerance blockchain consensus and node synchronization
CN113853264A (en) * 2019-05-15 2021-12-28 德马吉森精机株式会社 Processing machine
EP3960333A4 (en) * 2019-05-15 2023-07-12 DMG Mori Co., Ltd. Processing machine
CN113853264B (en) * 2019-05-15 2024-03-08 德马吉森精机株式会社 Processing machine

Also Published As

Publication number Publication date
JP2017094563A (en) 2017-06-01
JP6767007B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
US10549346B2 (en) Three-dimensional modeling apparatus, three-dimensional model body manufacturing method, and three-dimensional modeling data
US10814546B2 (en) Linear-immersed sweeping accumulation for 3D printing
KR100257034B1 (en) Cad/cam stereolithographic data conversion
JP6930808B2 (en) Parts manufacturing system and method using solidification equipment
WO2017086317A1 (en) Optical shaping device
JP6200135B2 (en) Imprint apparatus, imprint method, and article manufacturing method
JP6233001B2 (en) Modeling apparatus and method for manufacturing modeled object
JP6670813B2 (en) Equipment for additional manufacturing of three-dimensional objects
JP5971266B2 (en) Stereolithography apparatus and stereolithography method
KR100257135B1 (en) Thermal stereolithography
US20170225393A1 (en) Apparatus and method for forming three-dimensional objects using two-photon absorption linear solidification
TWI526294B (en) Three dimensional printing apparatus
JP6058819B2 (en) 3D object production
WO2017219618A1 (en) Forming method
JP6230041B2 (en) Imprint apparatus and article manufacturing method using the same
JP2000272016A (en) Stereolithographic method and apparatus for forming three-dimensional object using multiple beams of different diameters
JP2016030389A (en) Three-dimensional molding apparatus
WO2018143917A1 (en) Topographic build plate for additive manufacturing system
US20190210151A1 (en) Systems and methods for additive manufacturing using pressurized consolidation devices
JP2010036537A (en) Photo-fabricating apparatus
JP5744593B2 (en) Metrology apparatus, lithographic apparatus, and device manufacturing method
JP5993224B2 (en) 3D modeling equipment
WO2017154489A1 (en) Device for manufacturing three-dimensional shaped object
JP4519274B2 (en) Stereolithography apparatus and stereolithography method
CN112351847B (en) System and method for additive manufacturing using walls and retainers to reduce powder bed size

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866318

Country of ref document: EP

Kind code of ref document: A1