WO2017086266A1 - Membrane module and water treatment system - Google Patents
Membrane module and water treatment system Download PDFInfo
- Publication number
- WO2017086266A1 WO2017086266A1 PCT/JP2016/083671 JP2016083671W WO2017086266A1 WO 2017086266 A1 WO2017086266 A1 WO 2017086266A1 JP 2016083671 W JP2016083671 W JP 2016083671W WO 2017086266 A1 WO2017086266 A1 WO 2017086266A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- tubular filtration
- water
- casing
- filtration membranes
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 230
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 187
- 238000001914 filtration Methods 0.000 claims abstract description 104
- 239000000178 monomer Substances 0.000 claims abstract description 16
- 239000002356 single layer Substances 0.000 claims abstract description 5
- 238000005192 partition Methods 0.000 claims description 41
- 238000000926 separation method Methods 0.000 claims description 21
- 239000012466 permeate Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 description 15
- 238000003780 insertion Methods 0.000 description 12
- 230000037431 insertion Effects 0.000 description 12
- 239000010802 sludge Substances 0.000 description 11
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 9
- 238000009825 accumulation Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000010800 human waste Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical group C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001546 nitrifying effect Effects 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/069—Tubular membrane modules comprising a bundle of tubular membranes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/25—Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
- B01D2311/251—Recirculation of permeate
- B01D2311/2513—Recirculation of permeate to concentrate side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/20—Specific housing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2317/00—Membrane module arrangements within a plant or an apparatus
- B01D2317/02—Elements in series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/36—Hydrophilic membranes
Definitions
- the present invention relates to a membrane module and a water treatment system for treating organic wastewater such as human waste.
- membrane separation such as MF (microfiltration) and UF (ultrafiltration) for solid-liquid separation.
- MF microfiltration
- UF ultrafiltration
- the membrane separation device a plurality of membrane modules including a cylindrical casing and a plurality of tubular filtration membranes (hollow fiber membranes) accommodated in the casing are used, and raw water is circulated inside the tubular filtration membrane.
- An apparatus using a filtration method is known (for example, see Patent Document 1).
- the permeated water that has permeated through the tubular filtration membrane is sucked by a suction pump and stored in, for example, a storage tank and used as appropriate.
- the arrangement method of the tubular filtration membranes accommodated in the casings of the plurality of membrane modules is a parallel system. That is, the water to be treated is introduced into the plurality of tubular filtration membranes via the header of the casing. In the case of such a form, since the amount of the treated water to circulate increases, there is a problem that the driving power increases. In addition, when the water to be treated is not supplied uniformly to each tubular filtration membrane, there is a problem that the membrane surface flow rate becomes non-uniform, and sludge accumulates or stagnates on the tubular filtration membrane. Due to the accumulation and stagnation of sludge, there are problems such as (1) a tubular filtration membrane that is not effectively utilized, (2) a decrease in FLUX (outflow amount), and (3) a blockage of the tubular filtration membrane.
- An object of the present invention is to provide a membrane module and a water treatment system capable of reducing the driving power of the water treatment system and suppressing sludge accumulation or stagnation on the tubular filtration membrane. To do.
- the membrane module includes a cylindrical casing having an axial line extending in the vertical direction, a hydrophilic extension extending in the casing extending direction inside the casing, A plurality of tubular filtration membranes having a single-layer structure in which a functional monomer is copolymerized, one end of the tubular filtration membrane and the other end of the tubular filtration membrane are connected in series A plurality of connecting members connected in this manner.
- the membrane module includes a plurality of through holes provided at one end in the extending direction of the casing and connected to one end (first end) of the plurality of tubular filtration membranes.
- a partition wall, and a second partition wall provided at the other end (second end) in the extending direction of the casing and having a plurality of through-holes connected to the other ends of the plurality of tubular filtration membranes,
- the connecting member may connect the plurality of through holes.
- connection member may be a membrane connection plate provided with a membrane connection groove that connects the plurality of through holes.
- the assembly process of the membrane module can be simplified. Moreover, disassembly and cleaning can be facilitated by reducing the number of parts.
- the membrane module includes a cylindrical casing and a single unit in which the hydrophilic monomer is copolymerized in the casing in the extending direction of the casing.
- a plurality of tubular filtration membranes having a layer structure, and a first partition wall provided at one end (first end) in the extending direction of the casing and having a plurality of through holes to which one ends of the plurality of tubular filtration membranes are connected
- a second partition wall having a plurality of through holes provided at the other end (second end) in the extending direction of the casing and connected to the other ends of the plurality of tubular filtration membranes, and one ends of the tubular filtration membranes
- a pair of membrane connection plates provided with membrane connection grooves that connect the other ends of the tubular filtration membranes so that the plurality of tubular filtration membranes are connected in series.
- the water treatment system contains a biological treatment water tank for treating an organic substance contained in the treatment water, and a treatment water discharged from the biological treatment water tank.
- a raw water tank, and a membrane separation apparatus that includes the membrane module according to any one of the above aspects (1) to (4) and separates the water to be treated supplied from the raw water tank into permeated water and concentrated water And a return line for returning the concentrated water to the biological treatment water tank, and the concentrated water is not returned to the raw water tank.
- the membrane separation device may include a plurality of the membrane modules connected in series to each other.
- the number of pipes connected to the membrane separation device is one, and the flow rate of water to be treated circulating in the water treatment system can be reduced. Thereby, the driving power for circulating treated water can be made small.
- the present invention it is possible to reduce the flow rate of the water to be treated flowing through the tubular filtration membrane as compared with a method of connecting a plurality of tubular filtration membranes in parallel. Thereby, the driving power for circulating treated water can be made small. In addition, since the membrane surface flow rate becomes uniform, it is possible to suppress the accumulation or stagnation of sludge on the tubular filtration membrane.
- the water treatment system 10 having the membrane module 1 of the first embodiment of the present invention is a biological treatment water tank that treats organic matter contained in the treated water W1 (first treated water, organic wastewater containing human waste and septic tank sludge). 11, raw water tank 12 in which treated water W2 (second treated water) discharged from biological treated water tank 11 is accommodated, and treated water W3 (third treated water) supplied from raw water tank 12 , Raw water) is separated into permeated water PW and concentrated water W4.
- the biological treatment water tank 11 is a device that decomposes and removes BOD, nitrogen compounds, and the like in the liquid by the action of nitrifying bacteria and denitrifying bacteria, for example.
- To-be-treated water tank 11 is supplied with treated water W ⁇ b> 1 through first pipe 15.
- the biological treatment water tank 11 and the raw water tank 12 are connected by a second pipe 16.
- the membrane separation device 13 includes a plurality of membrane modules 1.
- the plurality of membrane modules 1 are arranged in parallel.
- the plurality of membrane modules 1 are arranged vertically in the housing of the membrane separation device 13. That is, the axis A of the cylindrical casing 2 (see FIG. 2) of the membrane module 1 extends in the vertical direction.
- the membrane module 1 has a casing 2 and a plurality of tubular filtration membranes 3 arranged inside the casing 2.
- the membrane separation device 13 is a device that takes out the permeated water PW from the water to be treated W3 by using a method of filtering the water to be treated W3 while circulating it inside the tubular filtration membrane 3.
- the raw water tank 12 and the membrane separation device 13 are connected via a raw water supply pipe 17.
- a circulation pump 21 is provided in the raw water supply pipe 17.
- the treated water W3 discharged from the raw water tank 12 is supplied to the membrane separation device 13 while being pressurized by the circulation pump 21.
- the permeated water PW separated from the membrane separation device 13 is introduced into the permeated water pipe 18.
- the permeated water pipe 18 is connected to the storage tank 20. That is, the permeate outlet 9 (see FIG. 2) of the membrane module 1 is connected to the permeate pipe 18.
- a suction pump 22 is provided in the permeate water pipe 18.
- the concentrated water W4 separated from the permeated water PW and discharged from the membrane separation device 13 is returned to the biological treatment water tank 11 through the return pipe 19 (return line) except for the excess sludge. That is, the concentrated water discharge port 8 (see FIG. 2) of the membrane module 1 is connected to the return pipe 19. Therefore, the concentrated water W4 is not returned to the raw water tank 12.
- the treated water W2 discharged from the biological treatment water tank 11 returns to the biological treatment water tank 11 via the raw water tank 12 and the membrane separator 13. That is, the to-be-processed water W circulates through the piping of the water treatment system 10.
- the plurality of membrane modules 1 are arranged in parallel. Specifically, the raw water supply pipe 17, the permeate water pipe 18, and the return pipe 19 are connected to each membrane module 1.
- the membrane module 1 includes a cylindrical casing 2 and a plurality of tubular filtration membranes 3.
- the casing 2 includes a cylindrical casing body 4, a first side wall 5 that closes a lower end of the casing body 4, a second side wall 6 that closes an upper end of the casing body 4, and a processing target formed on the casing body 4. It has a water introduction port 7, a concentrated water discharge port 8 formed in the casing body 4, and a permeate discharge port 9 formed in the casing body 4.
- the membrane module 1 includes a first partition wall 30 and a second partition wall 31 that divide the inside of the casing 2 into three spaces.
- a plurality of insertion holes 32 are formed in the first partition wall 30 and the second partition wall 31.
- the insertion hole 32 is a through-hole penetrating in the plate thickness direction of the first partition wall 30 and the second partition wall 31.
- the inner diameter of the insertion hole 32 is slightly larger than the outer diameter of the tubular filtration membrane 3.
- the first partition 30 is provided at one end (first end) in the extending direction of the casing 2, and one ends of the plurality of tubular filtration membranes 3 are connected to the plurality of through holes 32 of the first partition 30.
- the second partition wall 31 is provided at the other end (second end) in the extending direction of the casing 2, and the other ends of the plurality of tubular filtration membranes 3 are connected to the plurality of through holes 32 of the second partition wall 31.
- the first partition 30 is a plate-shaped member, and is fixed below the extending direction of the casing 2 (on the first side wall 5 side).
- a space surrounded by the casing body 4, the first partition wall 30, and the first side wall 5 is a lower header space S1.
- the second partition wall 31 is a plate-shaped member, and is fixed above the extending direction of the casing 2 (on the second side wall 6 side).
- a space surrounded by the casing body 4, the second partition wall 31 and the second side wall 6 is an upper header space S2.
- a space surrounded by the casing body 4, the first partition wall 30, and the second partition wall 31 is a permeated water space S3.
- the permeated water PW taken out from the plurality of tubular filtration membranes 3 is discharged into the permeated water space S ⁇ b> 3 and then introduced into the permeated water pipe 18 through the permeated water discharge port 9.
- the treated water introduction port 7 is an opening that allows communication between the outside of the casing 2 and the lower header space S1.
- the treated water inlet 7 is formed in the casing body 4.
- the treated water introduction port 7 is provided between the first partition wall 30 and the first side wall 5 in the axis A direction of the casing 2.
- the concentrated water discharge port 8 is an opening that allows communication between the outside of the casing 2 and the upper header space S2.
- the concentrated water discharge port 8 is formed in the casing body 4.
- the concentrated water discharge port 8 is provided between the second partition wall 31 and the second side wall 6 in the axis A direction of the casing 2.
- the permeated water discharge port 9 is an opening that allows communication between the outside of the casing 2 and the permeated water space S3.
- the permeated water discharge port 9 is formed in the casing body 4.
- the permeate discharge port 9 is provided between the first partition wall 30 and the second partition wall 31 in the axis A direction of the casing 2.
- each tubular filtration membrane 3 is fixed to the inner peripheral surface of the insertion hole 32 after being inserted into the insertion hole 32 of the first partition wall 30.
- a space between the inner peripheral surface of the insertion hole 32 and the outer peripheral surface of the tubular filtration membrane 3 is sealed with a sealing material (not shown).
- a sealing material a material that has an initial viscosity and hardens with time, such as an epoxy resin or a urethane resin, is preferable.
- the other end of each tubular filtration membrane 3 is fixed to the insertion hole 32 of the second partition wall 31 in the same manner as one end of the tubular filtration membrane 3.
- the plurality of tubular filtration membranes 3 of the present embodiment are connected in series. Specifically, the membrane module 1 of the present embodiment connects one end of the tubular filtration membrane 3 and the other end of the tubular filtration membrane 3 so that a plurality of tubular filtration membranes 3 are connected in series. Yes.
- the ends of the tubular filtration membrane 3 are connected to each other by a U-shaped membrane connecting pipe 34.
- the U-shaped membrane connecting pipe 34 is a curved cylindrical connecting member formed of an engineering plastic such as POM, for example.
- the membrane connecting pipe 34 may be formed of a metal having excellent corrosion resistance such as SUS304.
- the end of the membrane connecting pipe 34 is connected to the insertion hole 32 of the partition walls 30 and 31. You may connect the edge part of the membrane connection pipe 34 to the tubular filtration membrane 3 directly.
- the tubular filtration membrane 3 has a cylindrical shape, and is formed of a polymer filtration membrane having a single layer structure in which a hydrophilic monomer is copolymerized on a single main constituent material. That is, the tubular filtration membrane 3 is formed of a single material as a main material. That the main material is formed of one kind of material means that one kind of resin occupies 50% by mass or more in the material (for example, resin) forming the tubular filtration membrane 3. The fact that the main material is formed of one kind of material means that the nature of the one kind of material dominates the nature of the constituent material. Specifically, it means a material in which one kind of resin has 50 mass% to 99 mass%.
- the main materials constituting the tubular filtration membrane 3 include polyolefin chlorides such as vinyl chloride resin, polysulfone (PS), polyvinylidene fluoride (PVDF), polyethylene (PE), polyacrylonitrile (PAN), and polyether.
- Polymer materials such as sulfone, polyvinyl alcohol (PVA), and polyimide (PI) can be used.
- a vinyl chloride resin is particularly preferable.
- vinyl chloride resins include vinyl chloride homopolymer (vinyl chloride homopolymer), a copolymer of a monomer having an unsaturated bond copolymerizable with vinyl chloride monomer and vinyl chloride monomer, and vinyl chloride monomer in the polymer.
- vinyl chloride resins include graft copolymers obtained by graft copolymerization, and (co) polymers composed of chlorinated vinyl chloride monomer units.
- hydrophilic monomers examples include: (1) A cationic group-containing vinyl monomer such as an amino group, an ammonium group, a pyridyl group, an imino group or a betaine structure and / or a salt thereof, (2) Hydrophilic nonionic group-containing vinyl monomers such as hydroxyl groups, amide groups, ester structures, ether structures, (3) Anionic group-containing vinyl monomer such as carboxyl group, sulfonic acid group, phosphoric acid group and / or salt thereof, (4) Other monomers may be mentioned.
- the tube diameter of the tubular filtration membrane can be appropriately selected depending on the properties of the water to be treated W.
- the inner diameter of the tubular filtration membrane 3 is 5 mm.
- the inner diameter of the tubular filtration membrane 3 is 5 mm-10 mm, and when the coarse fiber amount ⁇ is 500 mg / liter or more, the inner diameter of the tubular filtration membrane 3 is Can be 10 mm or more.
- the water to be treated W1 is treated in the biological treatment water tank 11. Specifically, the organic substance contained in the for-treatment water W1 is decomposed by microorganisms.
- the water to be treated W2 discharged from the biological treatment water tank 11 is stored in the raw water tank 12.
- the treated water W3 discharged from the raw water tank 12 is supplied to the membrane separation device 13 via the circulation pump 21, it is sent into the tubular filtration membrane 3 of the membrane module 1.
- the permeated water space S3 in the casing 2 of the membrane module 1 becomes a negative pressure by the operation of the suction pump 22.
- the suction pump 22 sucks in a direction substantially orthogonal to the flow of the water to be treated W3 flowing through the tubular filtration membrane 3 through the permeate discharge port 9.
- the permeated water PW permeated from the tubular filtration membrane 3 is stored in the storage tank 20 through the permeated water discharge port 9 and the permeated water pipe 18.
- the flow of the to-be-processed water W3 in the membrane module 1 is demonstrated using FIG.
- the treated water W3 flowing into the lower header space S1 is introduced into the first tubular filtration membrane 3a.
- the water to be treated W3 is introduced into the second tubular filtration membrane 3b through the membrane connection pipe 34a.
- the water to be treated W3 is introduced to the fifth tubular filtration membrane 3e via the third tubular filtration membrane 3c and the fourth tubular filtration membrane 3d.
- the treated water W3 flows into the upper header space S2 from the fifth tubular filtration membrane 3e, and is then discharged from the concentrated water discharge port 8.
- the same amount of treated water W3 always passes through all the tubular filtration membranes 3.
- the first tubular filtration membrane 3a, the treated water introduction port 7, and the fifth tubular filtration membrane 3e may be directly connected to the concentrated water discharge port 8 via the connection member 39 and the connection member 40. In this case, it is not necessary to provide the upper header space S2, and the configuration of the casing can be changed, such as eliminating the second side wall 6.
- the entire amount of the concentrated water W4 discharged from the membrane separation device 13 is returned to the biological treatment water tank 11 through the return pipe 19, and is processed again.
- the flow volume of the to-be-processed water W3 which flows through the membrane module 1 can be decreased.
- the driving power for circulating the to-be-processed water W can be made small.
- a membrane surface flow velocity can be improved. Thereby, it is possible to suppress the accumulation of sludge on the membrane surface of the tubular filtration membrane 3.
- the membrane surface flow rate becomes uniform, it is possible to suppress the accumulation or sludge of sludge on the tubular filtration membrane 3. Thereby, all the tubular filtration membranes 3 can be used effectively. Moreover, the fall of FLUX (outflow amount) can be suppressed. Further, the tubular filtration membrane 3 can be prevented from being blocked.
- the membrane surface flow rate of the water to be treated W3 can be lowered.
- the membrane surface flow velocity can be set to, for example, 0.15 m / s-0.30 m / s.
- the tubular filtration membrane 3 When the tubular filtration membrane 3 is hydrophobic, it is necessary to increase the membrane surface flow velocity (for example, 2.5 m / s). For this reason, the circulation flow rate increases, and it becomes necessary to return the concentrated water W4 discharged from the membrane separation device 13 to the raw water tank 12 and the biological treatment water tank 11.
- a distribution tank that distributes the concentrated water W4 to the raw water tank 12 and the biological treatment water tank 11 and a pipe that returns the concentrated water W4 to the raw water tank 12 are required. .
- the circulation flow rate of the water to be treated W can be reduced. Thereby, the power of the circulation pump 21 can be reduced. Further, a distribution tank that distributes the concentrated water W4 to the raw water tank 12 and the biological treatment water tank 11 and a return pump that returns the concentrated water W4 from the raw water tank 12 to the biological treatment water tank 11 are not required.
- the diameter of the pipe can be reduced by reducing the flow rate. In addition, by reducing the flow rate, it is possible to reduce equipment such as a flow meter.
- the water treatment system 10B of 2nd embodiment of this invention is demonstrated based on drawing.
- differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
- a plurality of membrane modules 1 are connected in series with each other.
- the membrane separator 13 includes three membrane modules 1
- the water to be treated W3 discharged from the raw water tank 12 is introduced only into the first membrane module 1a and discharged from the first membrane module 1a.
- the treated water is introduced only into the second membrane module 1b.
- the treated water discharged from the second membrane module 1b is introduced only into the third membrane module 1c, and the concentrated water W4 discharged from the third membrane module 1c is introduced into the return pipe 19.
- the raw water supply pipe 17 and the return pipe 19 connected to the membrane separation device 13 are each provided in one place, and the flow rate of the water to be treated W circulating in the water treatment system 10B can be reduced. Thereby, the driving power for circulating the to-be-processed water W can be made small.
- the membrane module 1C of the present embodiment includes a pair of membrane connection plates 36 (see FIGS. 4 and 5) instead of the membrane connection tube 34 (see FIG. 2) of the first embodiment. Shows one of the pair of membrane connecting plates 36).
- the membrane connecting plate 36 has a plate shape and is attached in close contact with the surface of the first partition 30 opposite to the surface facing the second partition 31.
- the membrane connecting plate 36 is also attached to the surface of the second partition wall 31 opposite to the surface facing the first partition wall 30, but the description thereof is omitted because it has the same structure.
- the membrane connecting plate 36 is connected to the first partition wall 30 so that the main surface is in close contact with the surface of the first partition wall 30 opposite to the surface facing the second partition wall 31.
- a surface of the membrane connecting plate 36 that is in close contact with the first partition wall 30 is referred to as a contact surface 36a.
- a plurality of membrane connection grooves 37 are formed in the close contact surface 36 a of the membrane connection plate 36.
- the membrane connection plate 36 is formed with a to-be-treated water insertion hole 38 penetrating the contact surface 36a and the surface on the opposite side.
- the membrane connecting groove 37 is a bottomed groove formed in the close contact surface 36 a of the membrane connecting plate 36.
- the membrane connection groove 37 has the same function as the membrane connection tube 34 of the first embodiment.
- the treated water insertion hole 38 is a hole that allows the tubular filtration membrane 3 and the header space to communicate with each other, and may be directly connected to the treated water introduction port 7 via the connection pipe 41.
- the assembly process of the membrane module can be simplified as compared with the membrane module 1 of the first embodiment using a plurality of membrane connecting pipes 34. Moreover, disassembly and cleaning can be facilitated by reducing the number of parts.
- the membrane module 1 may be placed horizontally. That is, the membrane module 1 may be arranged such that the axis A of the membrane module 1 extends in the horizontal direction. By placing the membrane module 1 horizontally, the membrane module 1 can be easily replaced even when a plurality of membrane modules 1 are arranged.
- the present invention it is possible to reduce the flow rate of the water to be treated flowing through the tubular filtration membrane as compared with a method of connecting a plurality of tubular filtration membranes in parallel. Thereby, the driving power for circulating treated water can be made small. In addition, since the membrane surface flow rate becomes uniform, it is possible to suppress the accumulation or stagnation of sludge on the tubular filtration membrane.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
A membrane module (1) according to the present invention is equipped with: a cylindrical casing (2), the axis (A) of which extends in the vertical direction; a plurality of tube-shaped filtration membranes (3) having a single-layer structure obtained by copolymerizing a hydrophilic monomer, and extending in the direction of extension of the casing (2) in the interior thereof; and a plurality of connecting members (34) for connecting ends of the tube-shaped filtration membranes (3) on one side thereof to one another and connecting the other ends of the tube-shaped filtration membranes (3) to one another in a manner such that the plurality of tube-shaped filtration membranes (3) are connected in series with one another.
Description
本発明は、し尿などの有機性廃水を処理する膜モジュール及び水処理システムに関する。
本願は、2015年11月18日に日本に出願された特願2015-225958号について優先権を主張し、その内容をここに援用する。 The present invention relates to a membrane module and a water treatment system for treating organic wastewater such as human waste.
This application claims priority on Japanese Patent Application No. 2015-225958 filed in Japan on November 18, 2015, the contents of which are incorporated herein by reference.
本願は、2015年11月18日に日本に出願された特願2015-225958号について優先権を主張し、その内容をここに援用する。 The present invention relates to a membrane module and a water treatment system for treating organic wastewater such as human waste.
This application claims priority on Japanese Patent Application No. 2015-225958 filed in Japan on November 18, 2015, the contents of which are incorporated herein by reference.
し尿などの有機性廃水を処理する場合、固液の分離にMF(精密濾過)、UF(限外濾過)などの膜分離を用いることが主流となっている。
膜分離装置としては、円筒形状のケーシングと、ケーシング内に収容された複数の管状濾過膜(中空糸膜)と、を備えた複数の膜モジュールを用い、管状濾過膜の内側に原水を循環させながら濾過する方式の装置が知られている(例えば、特許文献1参照)。管状濾過膜を透過した透過水は、吸引ポンプによって吸引されて、例えば、貯留槽に貯留されて適宜利用される。 When organic wastewater such as human waste is treated, it is the mainstream to use membrane separation such as MF (microfiltration) and UF (ultrafiltration) for solid-liquid separation.
As the membrane separation device, a plurality of membrane modules including a cylindrical casing and a plurality of tubular filtration membranes (hollow fiber membranes) accommodated in the casing are used, and raw water is circulated inside the tubular filtration membrane. An apparatus using a filtration method is known (for example, see Patent Document 1). The permeated water that has permeated through the tubular filtration membrane is sucked by a suction pump and stored in, for example, a storage tank and used as appropriate.
膜分離装置としては、円筒形状のケーシングと、ケーシング内に収容された複数の管状濾過膜(中空糸膜)と、を備えた複数の膜モジュールを用い、管状濾過膜の内側に原水を循環させながら濾過する方式の装置が知られている(例えば、特許文献1参照)。管状濾過膜を透過した透過水は、吸引ポンプによって吸引されて、例えば、貯留槽に貯留されて適宜利用される。 When organic wastewater such as human waste is treated, it is the mainstream to use membrane separation such as MF (microfiltration) and UF (ultrafiltration) for solid-liquid separation.
As the membrane separation device, a plurality of membrane modules including a cylindrical casing and a plurality of tubular filtration membranes (hollow fiber membranes) accommodated in the casing are used, and raw water is circulated inside the tubular filtration membrane. An apparatus using a filtration method is known (for example, see Patent Document 1). The permeated water that has permeated through the tubular filtration membrane is sucked by a suction pump and stored in, for example, a storage tank and used as appropriate.
従来の膜分離装置は、複数の膜モジュールのケーシングに収容された管状濾過膜の配列方法が並列方式となっている。即ち、被処理水はケーシングのヘッダを介して複数の管状濾過膜内に導入される。
このような形態の場合、循環する被処理水の量が多くなるため、運転動力が大きくなってしまうという課題があった。また、各々の管状濾過膜に被処理水が均等に供給されない場合、膜面流速が不均一になり、管状濾過膜に汚泥が堆積したり停滞したりするという課題がある。汚泥の堆積や停滞によって、(1)有効活用されない管状濾過膜が生じる、(2)FLUX(流出量)の低下、(3)管状濾過膜の閉塞、などの不具合が発生するという課題がある。 In the conventional membrane separation apparatus, the arrangement method of the tubular filtration membranes accommodated in the casings of the plurality of membrane modules is a parallel system. That is, the water to be treated is introduced into the plurality of tubular filtration membranes via the header of the casing.
In the case of such a form, since the amount of the treated water to circulate increases, there is a problem that the driving power increases. In addition, when the water to be treated is not supplied uniformly to each tubular filtration membrane, there is a problem that the membrane surface flow rate becomes non-uniform, and sludge accumulates or stagnates on the tubular filtration membrane. Due to the accumulation and stagnation of sludge, there are problems such as (1) a tubular filtration membrane that is not effectively utilized, (2) a decrease in FLUX (outflow amount), and (3) a blockage of the tubular filtration membrane.
このような形態の場合、循環する被処理水の量が多くなるため、運転動力が大きくなってしまうという課題があった。また、各々の管状濾過膜に被処理水が均等に供給されない場合、膜面流速が不均一になり、管状濾過膜に汚泥が堆積したり停滞したりするという課題がある。汚泥の堆積や停滞によって、(1)有効活用されない管状濾過膜が生じる、(2)FLUX(流出量)の低下、(3)管状濾過膜の閉塞、などの不具合が発生するという課題がある。 In the conventional membrane separation apparatus, the arrangement method of the tubular filtration membranes accommodated in the casings of the plurality of membrane modules is a parallel system. That is, the water to be treated is introduced into the plurality of tubular filtration membranes via the header of the casing.
In the case of such a form, since the amount of the treated water to circulate increases, there is a problem that the driving power increases. In addition, when the water to be treated is not supplied uniformly to each tubular filtration membrane, there is a problem that the membrane surface flow rate becomes non-uniform, and sludge accumulates or stagnates on the tubular filtration membrane. Due to the accumulation and stagnation of sludge, there are problems such as (1) a tubular filtration membrane that is not effectively utilized, (2) a decrease in FLUX (outflow amount), and (3) a blockage of the tubular filtration membrane.
この発明は、水処理システムの運転動力の低減を図るとともに、管状濾過膜に汚泥が堆積したり、停滞したりすることを抑制することができる膜モジュール及び水処理システムを提供することを目的とする。
An object of the present invention is to provide a membrane module and a water treatment system capable of reducing the driving power of the water treatment system and suppressing sludge accumulation or stagnation on the tubular filtration membrane. To do.
(1)本発明の第一の態様によれば、膜モジュールは、軸線が鉛直方向に延在する筒形状のケーシングと、前記ケーシングの内部において前記ケーシングの延在方向に延在して、親水性モノマーが共重合された単層構造を有する複数の管状濾過膜と、前記管状濾過膜の一端同士、及び前記管状濾過膜の他端同士を前記複数の管状濾過膜が直列的に接続されるように接続する複数の接続部材と、を備える。
(1) According to the first aspect of the present invention, the membrane module includes a cylindrical casing having an axial line extending in the vertical direction, a hydrophilic extension extending in the casing extending direction inside the casing, A plurality of tubular filtration membranes having a single-layer structure in which a functional monomer is copolymerized, one end of the tubular filtration membrane and the other end of the tubular filtration membrane are connected in series A plurality of connecting members connected in this manner.
このような構成によれば、複数の管状濾過膜を並列的に接続する方式と比較して、管状濾過膜を流れる被処理水の流量を少なくすることができる。これにより、被処理水を循環させるための運転動力を小さくすることができる。また、膜面流速が均一となるため、管状濾過膜に汚泥が堆積したり停滞したりするのを抑制することができる。
According to such a configuration, it is possible to reduce the flow rate of the water to be treated flowing through the tubular filtration membrane as compared with a method in which a plurality of tubular filtration membranes are connected in parallel. Thereby, the driving power for circulating treated water can be made small. In addition, since the membrane surface flow rate becomes uniform, it is possible to suppress the accumulation or stagnation of sludge on the tubular filtration membrane.
(2)上記(1)に記載の膜モジュールにおいて、前記ケーシングの延在方向の一端に設けられ、前記複数の管状濾過膜の一端(第一端)が連結された複数の貫通孔を有する第一隔壁と、前記ケーシングの延在方向の他端(第二端)に設けられ、前記複数の管状濾過膜の他端が連結された複数の貫通孔を有する第二隔壁と、を備え、前記接続部材は、前記複数の貫通孔同士を接続してよい。
(2) In the membrane module according to (1), the membrane module includes a plurality of through holes provided at one end in the extending direction of the casing and connected to one end (first end) of the plurality of tubular filtration membranes. A partition wall, and a second partition wall provided at the other end (second end) in the extending direction of the casing and having a plurality of through-holes connected to the other ends of the plurality of tubular filtration membranes, The connecting member may connect the plurality of through holes.
(3)上記(1)又は(2)に記載の膜モジュールにおいて、前記接続部材は、前記複数の貫通孔同士を接続する膜接続溝を備えた膜接続板であってよい。
(3) In the membrane module according to the above (1) or (2), the connection member may be a membrane connection plate provided with a membrane connection groove that connects the plurality of through holes.
このような構成によれば、膜モジュールの組み立て工程を簡略化することができる。また、部品点数が減ることによって、分解・清掃を容易とすることができる。
According to such a configuration, the assembly process of the membrane module can be simplified. Moreover, disassembly and cleaning can be facilitated by reducing the number of parts.
(4)本発明の第二の態様によれば、膜モジュールは、筒形状のケーシングと、前記ケーシングの内部において前記ケーシングの延在方向に延在して、親水性モノマーが共重合された単層構造を有する複数の管状濾過膜と、前記ケーシングの延在方向の一端(第一端)に設けられ、前記複数の管状濾過膜の一端が連結された複数の貫通孔を有する第一隔壁と、前記ケーシングの延在方向の他端(第二端)に設けられ、前記複数の管状濾過膜の他端が連結された複数の貫通孔を有する第二隔壁と、前記管状濾過膜の一端同士、及び前記管状濾過膜の他端同士を前記複数の管状濾過膜が直列的に接続されるように接続する膜接続溝を備えた一対の膜接続板と、を備える。
(4) According to the second aspect of the present invention, the membrane module includes a cylindrical casing and a single unit in which the hydrophilic monomer is copolymerized in the casing in the extending direction of the casing. A plurality of tubular filtration membranes having a layer structure, and a first partition wall provided at one end (first end) in the extending direction of the casing and having a plurality of through holes to which one ends of the plurality of tubular filtration membranes are connected A second partition wall having a plurality of through holes provided at the other end (second end) in the extending direction of the casing and connected to the other ends of the plurality of tubular filtration membranes, and one ends of the tubular filtration membranes And a pair of membrane connection plates provided with membrane connection grooves that connect the other ends of the tubular filtration membranes so that the plurality of tubular filtration membranes are connected in series.
(5)本発明の第三の態様によれば、水処理システムは、被処理水に含有される有機物を処理する生物処理水槽と、前記生物処理水槽から排出される被処理水が収容される原水槽と、上記(1)から(4)の態様のいずれかに記載の膜モジュールを有し、前記原水槽から供給される被処理水を透過水と濃縮水とに分離する膜分離装置と、前記濃縮水を前記生物処理水槽に返送する返送ラインと、を備え、前記原水槽には前記濃縮水を返送しない。
(5) According to the third aspect of the present invention, the water treatment system contains a biological treatment water tank for treating an organic substance contained in the treatment water, and a treatment water discharged from the biological treatment water tank. A raw water tank, and a membrane separation apparatus that includes the membrane module according to any one of the above aspects (1) to (4) and separates the water to be treated supplied from the raw water tank into permeated water and concentrated water And a return line for returning the concentrated water to the biological treatment water tank, and the concentrated water is not returned to the raw water tank.
(6)上記(5)に記載の水処理システムにおいて、前記膜分離装置は、互いに直列的に接続されている複数の前記膜モジュールを有してよい。
(6) In the water treatment system according to (5) above, the membrane separation device may include a plurality of the membrane modules connected in series to each other.
このような構成によれば、膜分離装置に接続される配管が各々1箇所になり、水処理システムを循環する被処理水の流量を少なくすることができる。これにより、被処理水を循環させるための運転動力を小さくすることができる。
According to such a configuration, the number of pipes connected to the membrane separation device is one, and the flow rate of water to be treated circulating in the water treatment system can be reduced. Thereby, the driving power for circulating treated water can be made small.
本発明によれば、複数の管状濾過膜を並列的に接続する方式と比較して、管状濾過膜を流れる被処理水の流量を少なくすることができる。これにより、被処理水を循環させるための運転動力を小さくすることができる。また、膜面流速が均一となるため、管状濾過膜に汚泥が堆積したり停滞したりするのを抑制することができる。
According to the present invention, it is possible to reduce the flow rate of the water to be treated flowing through the tubular filtration membrane as compared with a method of connecting a plurality of tubular filtration membranes in parallel. Thereby, the driving power for circulating treated water can be made small. In addition, since the membrane surface flow rate becomes uniform, it is possible to suppress the accumulation or stagnation of sludge on the tubular filtration membrane.
(第一実施形態)
以下、本発明の第一実施形態の膜モジュール1を有する水処理システム10について図面を参照して詳細に説明する。
図1に示すように、本実施形態の水処理システム10は、被処理水W1(第一被処理水であり、し尿、浄化槽汚泥を含む有機性廃水)に含まれる有機物を処理する生物処理水槽11と、生物処理水槽11から排出される被処理水W2(第二被処理水)が収容される原水槽12と、原水槽12から供給される被処理水W3(第三被処理水であり、原水)を透過水PWと濃縮水W4とに分離する膜分離装置13と、を備えている。 (First embodiment)
Hereinafter, thewater treatment system 10 having the membrane module 1 of the first embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, thewater treatment system 10 of this embodiment is a biological treatment water tank that treats organic matter contained in the treated water W1 (first treated water, organic wastewater containing human waste and septic tank sludge). 11, raw water tank 12 in which treated water W2 (second treated water) discharged from biological treated water tank 11 is accommodated, and treated water W3 (third treated water) supplied from raw water tank 12 , Raw water) is separated into permeated water PW and concentrated water W4.
以下、本発明の第一実施形態の膜モジュール1を有する水処理システム10について図面を参照して詳細に説明する。
図1に示すように、本実施形態の水処理システム10は、被処理水W1(第一被処理水であり、し尿、浄化槽汚泥を含む有機性廃水)に含まれる有機物を処理する生物処理水槽11と、生物処理水槽11から排出される被処理水W2(第二被処理水)が収容される原水槽12と、原水槽12から供給される被処理水W3(第三被処理水であり、原水)を透過水PWと濃縮水W4とに分離する膜分離装置13と、を備えている。 (First embodiment)
Hereinafter, the
As shown in FIG. 1, the
生物処理水槽11は、例えば、硝化菌と脱窒菌の作用により液中のBOD、窒素化合物等を分解除去する装置である。生物処理水槽11には、第一配管15を介して被処理水W1が供給される。生物処理水槽11と原水槽12とは第二配管16によって接続されている。
The biological treatment water tank 11 is a device that decomposes and removes BOD, nitrogen compounds, and the like in the liquid by the action of nitrifying bacteria and denitrifying bacteria, for example. To-be-treated water tank 11 is supplied with treated water W <b> 1 through first pipe 15. The biological treatment water tank 11 and the raw water tank 12 are connected by a second pipe 16.
膜分離装置13は、複数の膜モジュール1を備えている。複数の膜モジュール1は、並列に配列されている。複数の膜モジュール1は、膜分離装置13の筐体内に、縦向きで配置されている。即ち、膜モジュール1の円筒形状のケーシング2(図2参照)の軸線Aは、鉛直方向に延在している。
図2に示すように、膜モジュール1は、ケーシング2と、ケーシング2の内部に配置された複数の管状濾過膜3とを有している。膜分離装置13は、管状濾過膜3の内側に被処理水W3を循環させながら濾過する方式を用い、被処理水W3から透過水PWを取り出す装置である。 Themembrane separation device 13 includes a plurality of membrane modules 1. The plurality of membrane modules 1 are arranged in parallel. The plurality of membrane modules 1 are arranged vertically in the housing of the membrane separation device 13. That is, the axis A of the cylindrical casing 2 (see FIG. 2) of the membrane module 1 extends in the vertical direction.
As shown in FIG. 2, themembrane module 1 has a casing 2 and a plurality of tubular filtration membranes 3 arranged inside the casing 2. The membrane separation device 13 is a device that takes out the permeated water PW from the water to be treated W3 by using a method of filtering the water to be treated W3 while circulating it inside the tubular filtration membrane 3.
図2に示すように、膜モジュール1は、ケーシング2と、ケーシング2の内部に配置された複数の管状濾過膜3とを有している。膜分離装置13は、管状濾過膜3の内側に被処理水W3を循環させながら濾過する方式を用い、被処理水W3から透過水PWを取り出す装置である。 The
As shown in FIG. 2, the
原水槽12と膜分離装置13とは原水供給配管17を介して接続されている。原水供給配管17には、循環ポンプ21が設けられている。原水槽12から排出された被処理水W3は、循環ポンプ21によって加圧されながら、膜分離装置13に供給される。
膜分離装置13から分離される透過水PWは、透過水配管18に導入される。透過水配管18は、貯留槽20に接続されている。即ち、膜モジュール1の透過水排出口9(図2参照)は、透過水配管18に接続されている。透過水配管18には、吸引ポンプ22が設けられている。 Theraw water tank 12 and the membrane separation device 13 are connected via a raw water supply pipe 17. A circulation pump 21 is provided in the raw water supply pipe 17. The treated water W3 discharged from the raw water tank 12 is supplied to the membrane separation device 13 while being pressurized by the circulation pump 21.
The permeated water PW separated from themembrane separation device 13 is introduced into the permeated water pipe 18. The permeated water pipe 18 is connected to the storage tank 20. That is, the permeate outlet 9 (see FIG. 2) of the membrane module 1 is connected to the permeate pipe 18. A suction pump 22 is provided in the permeate water pipe 18.
膜分離装置13から分離される透過水PWは、透過水配管18に導入される。透過水配管18は、貯留槽20に接続されている。即ち、膜モジュール1の透過水排出口9(図2参照)は、透過水配管18に接続されている。透過水配管18には、吸引ポンプ22が設けられている。 The
The permeated water PW separated from the
透過水PWが分離されて膜分離装置13から排出される濃縮水W4は、余剰汚泥を除く全量が返送配管19(返送ライン)を介して生物処理水槽11に返送される。即ち、膜モジュール1の濃縮水排出口8(図2参照)は、返送配管19に接続されている。
よって、濃縮水W4は、原水槽12に返送されない。生物処理水槽11から排出された被処理水W2は、原水槽12、膜分離装置13を介して、生物処理水槽11に戻る。即ち、被処理水Wは、水処理システム10の配管を循環する。 The concentrated water W4 separated from the permeated water PW and discharged from themembrane separation device 13 is returned to the biological treatment water tank 11 through the return pipe 19 (return line) except for the excess sludge. That is, the concentrated water discharge port 8 (see FIG. 2) of the membrane module 1 is connected to the return pipe 19.
Therefore, the concentrated water W4 is not returned to theraw water tank 12. The treated water W2 discharged from the biological treatment water tank 11 returns to the biological treatment water tank 11 via the raw water tank 12 and the membrane separator 13. That is, the to-be-processed water W circulates through the piping of the water treatment system 10.
よって、濃縮水W4は、原水槽12に返送されない。生物処理水槽11から排出された被処理水W2は、原水槽12、膜分離装置13を介して、生物処理水槽11に戻る。即ち、被処理水Wは、水処理システム10の配管を循環する。 The concentrated water W4 separated from the permeated water PW and discharged from the
Therefore, the concentrated water W4 is not returned to the
上述したように、複数の膜モジュール1は、並列に配列されている。具体的には、原水供給配管17、透過水配管18、及び返送配管19は、各々の膜モジュール1に接続されている。
As described above, the plurality of membrane modules 1 are arranged in parallel. Specifically, the raw water supply pipe 17, the permeate water pipe 18, and the return pipe 19 are connected to each membrane module 1.
図2に示すように、膜モジュール1は、円筒形状のケーシング2と、複数の管状濾過膜3と、を備えている。
ケーシング2は、円筒形状をなすケーシング本体4と、ケーシング本体4の下端を閉鎖する第一側壁5と、ケーシング本体4の上端を閉鎖する第二側壁6と、ケーシング本体4に形成された被処理水導入口7と、ケーシング本体4に形成された濃縮水排出口8と、ケーシング本体4に形成された透過水排出口9と、を有している。 As shown in FIG. 2, themembrane module 1 includes a cylindrical casing 2 and a plurality of tubular filtration membranes 3.
Thecasing 2 includes a cylindrical casing body 4, a first side wall 5 that closes a lower end of the casing body 4, a second side wall 6 that closes an upper end of the casing body 4, and a processing target formed on the casing body 4. It has a water introduction port 7, a concentrated water discharge port 8 formed in the casing body 4, and a permeate discharge port 9 formed in the casing body 4.
ケーシング2は、円筒形状をなすケーシング本体4と、ケーシング本体4の下端を閉鎖する第一側壁5と、ケーシング本体4の上端を閉鎖する第二側壁6と、ケーシング本体4に形成された被処理水導入口7と、ケーシング本体4に形成された濃縮水排出口8と、ケーシング本体4に形成された透過水排出口9と、を有している。 As shown in FIG. 2, the
The
膜モジュール1は、ケーシング2の内部を3つの空間に分割する、第一隔壁30と第二隔壁31と、を備えている。第一隔壁30と第二隔壁31とには、複数の挿通孔32が形成されている。挿通孔32は、第一隔壁30及び第二隔壁31の板厚方向に貫通する貫通孔である。挿通孔32の内径は、管状濾過膜3の外径よりもやや大きい。
第一隔壁30は、ケーシング2の延在方向の一端(第一端)に設けられ、複数の管状濾過膜3の一端は、第一隔壁30の複数の貫通孔32に連結されている。第二隔壁31は、ケーシング2の延在方向の他端(第二端)に設けられ、複数の管状濾過膜3の他端は、第二隔壁31の複数の貫通孔32に連結されている。 Themembrane module 1 includes a first partition wall 30 and a second partition wall 31 that divide the inside of the casing 2 into three spaces. A plurality of insertion holes 32 are formed in the first partition wall 30 and the second partition wall 31. The insertion hole 32 is a through-hole penetrating in the plate thickness direction of the first partition wall 30 and the second partition wall 31. The inner diameter of the insertion hole 32 is slightly larger than the outer diameter of the tubular filtration membrane 3.
Thefirst partition 30 is provided at one end (first end) in the extending direction of the casing 2, and one ends of the plurality of tubular filtration membranes 3 are connected to the plurality of through holes 32 of the first partition 30. The second partition wall 31 is provided at the other end (second end) in the extending direction of the casing 2, and the other ends of the plurality of tubular filtration membranes 3 are connected to the plurality of through holes 32 of the second partition wall 31. .
第一隔壁30は、ケーシング2の延在方向の一端(第一端)に設けられ、複数の管状濾過膜3の一端は、第一隔壁30の複数の貫通孔32に連結されている。第二隔壁31は、ケーシング2の延在方向の他端(第二端)に設けられ、複数の管状濾過膜3の他端は、第二隔壁31の複数の貫通孔32に連結されている。 The
The
第一隔壁30は、板形状をなす部材であり、ケーシング2の延在方向の下方(第一側壁5の側)に固定されている。ケーシング本体4と、第一隔壁30と、第一側壁5とによって囲まれる空間は、下部ヘッダ空間S1である。
第二隔壁31は、板形状をなす部材であり、ケーシング2の延在方向の上方(第二側壁6の側)に固定されている。ケーシング本体4と、第二隔壁31と、第二側壁6とによって囲まれる空間は、上部ヘッダ空間S2である。
ケーシング本体4と、第一隔壁30と、第二隔壁31とによって囲まれる空間は、透過水空間S3である。複数の管状濾過膜3から取り出された透過水PWは、透過水空間S3に排出された後、透過水排出口9を介して透過水配管18に導入される。 Thefirst partition 30 is a plate-shaped member, and is fixed below the extending direction of the casing 2 (on the first side wall 5 side). A space surrounded by the casing body 4, the first partition wall 30, and the first side wall 5 is a lower header space S1.
Thesecond partition wall 31 is a plate-shaped member, and is fixed above the extending direction of the casing 2 (on the second side wall 6 side). A space surrounded by the casing body 4, the second partition wall 31 and the second side wall 6 is an upper header space S2.
A space surrounded by thecasing body 4, the first partition wall 30, and the second partition wall 31 is a permeated water space S3. The permeated water PW taken out from the plurality of tubular filtration membranes 3 is discharged into the permeated water space S <b> 3 and then introduced into the permeated water pipe 18 through the permeated water discharge port 9.
第二隔壁31は、板形状をなす部材であり、ケーシング2の延在方向の上方(第二側壁6の側)に固定されている。ケーシング本体4と、第二隔壁31と、第二側壁6とによって囲まれる空間は、上部ヘッダ空間S2である。
ケーシング本体4と、第一隔壁30と、第二隔壁31とによって囲まれる空間は、透過水空間S3である。複数の管状濾過膜3から取り出された透過水PWは、透過水空間S3に排出された後、透過水排出口9を介して透過水配管18に導入される。 The
The
A space surrounded by the
被処理水導入口7は、ケーシング2の外部と下部ヘッダ空間S1とを連通させる開口である。被処理水導入口7は、ケーシング本体4に形成されている。被処理水導入口7は、ケーシング2の軸線A方向における、第一隔壁30と、第一側壁5との間に設けられている。
濃縮水排出口8は、ケーシング2の外部と上部ヘッダ空間S2とを連通させる開口である。濃縮水排出口8は、ケーシング本体4に形成されている。濃縮水排出口8は、ケーシング2の軸線A方向における、第二隔壁31と、第二側壁6との間に設けられている。
透過水排出口9は、ケーシング2の外部と透過水空間S3とを連通させる開口である。
透過水排出口9は、ケーシング本体4に形成されている。透過水排出口9は、ケーシング2の軸線A方向における、第一隔壁30と、第二隔壁31との間に設けられている。 The treatedwater introduction port 7 is an opening that allows communication between the outside of the casing 2 and the lower header space S1. The treated water inlet 7 is formed in the casing body 4. The treated water introduction port 7 is provided between the first partition wall 30 and the first side wall 5 in the axis A direction of the casing 2.
The concentratedwater discharge port 8 is an opening that allows communication between the outside of the casing 2 and the upper header space S2. The concentrated water discharge port 8 is formed in the casing body 4. The concentrated water discharge port 8 is provided between the second partition wall 31 and the second side wall 6 in the axis A direction of the casing 2.
The permeatedwater discharge port 9 is an opening that allows communication between the outside of the casing 2 and the permeated water space S3.
The permeatedwater discharge port 9 is formed in the casing body 4. The permeate discharge port 9 is provided between the first partition wall 30 and the second partition wall 31 in the axis A direction of the casing 2.
濃縮水排出口8は、ケーシング2の外部と上部ヘッダ空間S2とを連通させる開口である。濃縮水排出口8は、ケーシング本体4に形成されている。濃縮水排出口8は、ケーシング2の軸線A方向における、第二隔壁31と、第二側壁6との間に設けられている。
透過水排出口9は、ケーシング2の外部と透過水空間S3とを連通させる開口である。
透過水排出口9は、ケーシング本体4に形成されている。透過水排出口9は、ケーシング2の軸線A方向における、第一隔壁30と、第二隔壁31との間に設けられている。 The treated
The concentrated
The permeated
The permeated
各々の管状濾過膜3の一端は、第一隔壁30の挿通孔32に挿通された上で、挿通孔32の内周面に固定されている。挿通孔32の内周面と管状濾過膜3の外周面との間は、シール材(図示せず)によってシールされている。シール材としては、エポキシ樹脂やウレタン樹脂など、初期に粘性を持ち、経時的に硬化する材料が好ましい。
各々の管状濾過膜3の他端は、管状濾過膜3の一端と同様の方法で第二隔壁31の挿通孔32に固定されている。 One end of eachtubular filtration membrane 3 is fixed to the inner peripheral surface of the insertion hole 32 after being inserted into the insertion hole 32 of the first partition wall 30. A space between the inner peripheral surface of the insertion hole 32 and the outer peripheral surface of the tubular filtration membrane 3 is sealed with a sealing material (not shown). As the sealing material, a material that has an initial viscosity and hardens with time, such as an epoxy resin or a urethane resin, is preferable.
The other end of eachtubular filtration membrane 3 is fixed to the insertion hole 32 of the second partition wall 31 in the same manner as one end of the tubular filtration membrane 3.
各々の管状濾過膜3の他端は、管状濾過膜3の一端と同様の方法で第二隔壁31の挿通孔32に固定されている。 One end of each
The other end of each
本実施形態の複数の管状濾過膜3は、直列的に接続されている。具体的には、本実施形態の膜モジュール1は、管状濾過膜3の一端同士、及び管状濾過膜3の他端同士を複数の管状濾過膜3が直列的に接続されるように接続している。
管状濾過膜3の端部同士は、U字状の膜接続管34によって接続されている。U字状の膜接続管34は、例えば、POMなどのエンジニアリングプラスチックで形成され、湾曲された円筒状の接続部材である。膜接続管34は、SUS304など耐腐食性に優れた金属で形成してもよい。膜接続管34の端部は、隔壁30,31の挿通孔32に接続されている。膜接続管34の端部を直接的に管状濾過膜3に接続してもよい。 The plurality oftubular filtration membranes 3 of the present embodiment are connected in series. Specifically, the membrane module 1 of the present embodiment connects one end of the tubular filtration membrane 3 and the other end of the tubular filtration membrane 3 so that a plurality of tubular filtration membranes 3 are connected in series. Yes.
The ends of thetubular filtration membrane 3 are connected to each other by a U-shaped membrane connecting pipe 34. The U-shaped membrane connecting pipe 34 is a curved cylindrical connecting member formed of an engineering plastic such as POM, for example. The membrane connecting pipe 34 may be formed of a metal having excellent corrosion resistance such as SUS304. The end of the membrane connecting pipe 34 is connected to the insertion hole 32 of the partition walls 30 and 31. You may connect the edge part of the membrane connection pipe 34 to the tubular filtration membrane 3 directly.
管状濾過膜3の端部同士は、U字状の膜接続管34によって接続されている。U字状の膜接続管34は、例えば、POMなどのエンジニアリングプラスチックで形成され、湾曲された円筒状の接続部材である。膜接続管34は、SUS304など耐腐食性に優れた金属で形成してもよい。膜接続管34の端部は、隔壁30,31の挿通孔32に接続されている。膜接続管34の端部を直接的に管状濾過膜3に接続してもよい。 The plurality of
The ends of the
管状濾過膜3は、円筒形状をなし、単一主要構成素材に親水性モノマーが共重合された単層構造の高分子濾過膜によって形成されている。
即ち、管状濾過膜3は、主要材料が1種類の素材によって形成されている。主要材料が1種類の素材によって形成されているということは、管状濾過膜3を形成する素材(例えば、樹脂)において、1種類樹脂が50%質量%以上を占めていることを意味する。
また、主要材料が1種類の素材によって形成されているということは、その1種類の素材の性質が構成素材の性質を支配していることを意味する。具体的には、1種類の樹脂が50質量%-99質量%を有する素材を意味する。 Thetubular filtration membrane 3 has a cylindrical shape, and is formed of a polymer filtration membrane having a single layer structure in which a hydrophilic monomer is copolymerized on a single main constituent material.
That is, thetubular filtration membrane 3 is formed of a single material as a main material. That the main material is formed of one kind of material means that one kind of resin occupies 50% by mass or more in the material (for example, resin) forming the tubular filtration membrane 3.
The fact that the main material is formed of one kind of material means that the nature of the one kind of material dominates the nature of the constituent material. Specifically, it means a material in which one kind of resin has 50 mass% to 99 mass%.
即ち、管状濾過膜3は、主要材料が1種類の素材によって形成されている。主要材料が1種類の素材によって形成されているということは、管状濾過膜3を形成する素材(例えば、樹脂)において、1種類樹脂が50%質量%以上を占めていることを意味する。
また、主要材料が1種類の素材によって形成されているということは、その1種類の素材の性質が構成素材の性質を支配していることを意味する。具体的には、1種類の樹脂が50質量%-99質量%を有する素材を意味する。 The
That is, the
The fact that the main material is formed of one kind of material means that the nature of the one kind of material dominates the nature of the constituent material. Specifically, it means a material in which one kind of resin has 50 mass% to 99 mass%.
管状濾過膜3を構成する主要材料としては、塩化ビニル系樹脂、ポリスルホン(PS)系、ポリビニリデンフルオライド(PVDF)系、ポリエチレン(PE)などのポリオレフィン系、ポリアクリロニトリル(PAN)系、ポリエーテルスルフォン系、ポリビニルアルコール(PVA)系、ポリイミド(PI)系などの高分子材料を用いることができる。
The main materials constituting the tubular filtration membrane 3 include polyolefin chlorides such as vinyl chloride resin, polysulfone (PS), polyvinylidene fluoride (PVDF), polyethylene (PE), polyacrylonitrile (PAN), and polyether. Polymer materials such as sulfone, polyvinyl alcohol (PVA), and polyimide (PI) can be used.
管状濾過膜3を構成する主要材料としては、特に塩化ビニル系樹脂が好ましい。塩化ビニル系樹脂としては、塩化ビニル単独重合体(塩化ビニルホモポリマー)、塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーと塩化ビニルモノマーとの共重合体、重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体、これらの塩化ビニルモノマー単位が塩素化されたものからなる(共)重合体などが挙げられる。
As the main material constituting the tubular filtration membrane 3, a vinyl chloride resin is particularly preferable. Examples of vinyl chloride resins include vinyl chloride homopolymer (vinyl chloride homopolymer), a copolymer of a monomer having an unsaturated bond copolymerizable with vinyl chloride monomer and vinyl chloride monomer, and vinyl chloride monomer in the polymer. Examples thereof include graft copolymers obtained by graft copolymerization, and (co) polymers composed of chlorinated vinyl chloride monomer units.
親水性モノマーとしては、例えば、
(1)アミノ基、アンモニウム基、ピリジル基、イミノ基、ベタイン構造などのカチオン性基含有ビニルモノマー及び/又はその塩、
(2)水酸基、アミド基、エステル構造、エーテル構造などの親水性の非イオン性基含有ビニルモノマー、
(3)カルボキシル基、スルホン酸基、リン酸基などのアニオン性基含有ビニルモノマー及び/又はその塩、
(4)その他のモノマー等が挙げられる。
管状濾過膜の管径は、被処理水Wの性状等によって適宜選択することができ、例えば被処理水W3における粗繊維量αが200mg/リットル以下の場合は、管状濾過膜3の内径を5mm以下、粗繊維量αが200mg/リットルより大きく500mg/リットルより小さい場合は、管状濾過膜3の内径を5mm-10mm、粗繊維量αが500mg/リットル以上の場合は、管状濾過膜3の内径を10mm以上とすることができる。管径を選択する事によって、粗繊維分による管状濾過膜3の閉塞を抑制することができる。 Examples of hydrophilic monomers include:
(1) A cationic group-containing vinyl monomer such as an amino group, an ammonium group, a pyridyl group, an imino group or a betaine structure and / or a salt thereof,
(2) Hydrophilic nonionic group-containing vinyl monomers such as hydroxyl groups, amide groups, ester structures, ether structures,
(3) Anionic group-containing vinyl monomer such as carboxyl group, sulfonic acid group, phosphoric acid group and / or salt thereof,
(4) Other monomers may be mentioned.
The tube diameter of the tubular filtration membrane can be appropriately selected depending on the properties of the water to be treated W. For example, when the amount of coarse fiber α in the water to be treated W3 is 200 mg / liter or less, the inner diameter of thetubular filtration membrane 3 is 5 mm. Hereinafter, when the coarse fiber amount α is larger than 200 mg / liter and smaller than 500 mg / liter, the inner diameter of the tubular filtration membrane 3 is 5 mm-10 mm, and when the coarse fiber amount α is 500 mg / liter or more, the inner diameter of the tubular filtration membrane 3 is Can be 10 mm or more. By selecting the tube diameter, blockage of the tubular filtration membrane 3 due to the coarse fibers can be suppressed.
(1)アミノ基、アンモニウム基、ピリジル基、イミノ基、ベタイン構造などのカチオン性基含有ビニルモノマー及び/又はその塩、
(2)水酸基、アミド基、エステル構造、エーテル構造などの親水性の非イオン性基含有ビニルモノマー、
(3)カルボキシル基、スルホン酸基、リン酸基などのアニオン性基含有ビニルモノマー及び/又はその塩、
(4)その他のモノマー等が挙げられる。
管状濾過膜の管径は、被処理水Wの性状等によって適宜選択することができ、例えば被処理水W3における粗繊維量αが200mg/リットル以下の場合は、管状濾過膜3の内径を5mm以下、粗繊維量αが200mg/リットルより大きく500mg/リットルより小さい場合は、管状濾過膜3の内径を5mm-10mm、粗繊維量αが500mg/リットル以上の場合は、管状濾過膜3の内径を10mm以上とすることができる。管径を選択する事によって、粗繊維分による管状濾過膜3の閉塞を抑制することができる。 Examples of hydrophilic monomers include:
(1) A cationic group-containing vinyl monomer such as an amino group, an ammonium group, a pyridyl group, an imino group or a betaine structure and / or a salt thereof,
(2) Hydrophilic nonionic group-containing vinyl monomers such as hydroxyl groups, amide groups, ester structures, ether structures,
(3) Anionic group-containing vinyl monomer such as carboxyl group, sulfonic acid group, phosphoric acid group and / or salt thereof,
(4) Other monomers may be mentioned.
The tube diameter of the tubular filtration membrane can be appropriately selected depending on the properties of the water to be treated W. For example, when the amount of coarse fiber α in the water to be treated W3 is 200 mg / liter or less, the inner diameter of the
次に、本実施形態の水処理システム10の作用について説明する。
まず、被処理水W1は、生物処理水槽11において処理される。具体的には被処理水W1に含まれる有機性物質が微生物によって分解される。
次いで、生物処理水槽11から排出された被処理水W2は、原水槽12に貯留される。
原水槽12から排出された被処理水W3は、循環ポンプ21を介して膜分離装置13に供給されると、膜モジュール1の管状濾過膜3内に送り込まれる。一方、膜モジュール1のケーシング2内の透過水空間S3は吸引ポンプ22の作動により、負圧となる。吸引ポンプ22は、透過水排出口9を通して管状濾過膜3を流れる被処理水W3の流れに対して略直交する方向に吸引する。管状濾過膜3から透過された透過水PWは、透過水排出口9及び透過水配管18を介して貯留槽20に貯留される。 Next, the effect | action of thewater treatment system 10 of this embodiment is demonstrated.
First, the water to be treated W1 is treated in the biologicaltreatment water tank 11. Specifically, the organic substance contained in the for-treatment water W1 is decomposed by microorganisms.
Next, the water to be treated W2 discharged from the biologicaltreatment water tank 11 is stored in the raw water tank 12.
When the treated water W3 discharged from theraw water tank 12 is supplied to the membrane separation device 13 via the circulation pump 21, it is sent into the tubular filtration membrane 3 of the membrane module 1. On the other hand, the permeated water space S3 in the casing 2 of the membrane module 1 becomes a negative pressure by the operation of the suction pump 22. The suction pump 22 sucks in a direction substantially orthogonal to the flow of the water to be treated W3 flowing through the tubular filtration membrane 3 through the permeate discharge port 9. The permeated water PW permeated from the tubular filtration membrane 3 is stored in the storage tank 20 through the permeated water discharge port 9 and the permeated water pipe 18.
まず、被処理水W1は、生物処理水槽11において処理される。具体的には被処理水W1に含まれる有機性物質が微生物によって分解される。
次いで、生物処理水槽11から排出された被処理水W2は、原水槽12に貯留される。
原水槽12から排出された被処理水W3は、循環ポンプ21を介して膜分離装置13に供給されると、膜モジュール1の管状濾過膜3内に送り込まれる。一方、膜モジュール1のケーシング2内の透過水空間S3は吸引ポンプ22の作動により、負圧となる。吸引ポンプ22は、透過水排出口9を通して管状濾過膜3を流れる被処理水W3の流れに対して略直交する方向に吸引する。管状濾過膜3から透過された透過水PWは、透過水排出口9及び透過水配管18を介して貯留槽20に貯留される。 Next, the effect | action of the
First, the water to be treated W1 is treated in the biological
Next, the water to be treated W2 discharged from the biological
When the treated water W3 discharged from the
ここで、図2を用いて膜モジュール1内における被処理水W3の流れを説明する。
複数の管状濾過膜3が直列的に接続されていることによって、下部ヘッダ空間S1に流入した被処理水W3は、第一管状濾過膜3aに導入される。次いで、被処理水W3は、膜接続管34aを介して、第二管状濾過膜3bに導入される。その後、被処理水W3は、第三管状濾過膜3c、第四管状濾過膜3dを介して、第五管状濾過膜3eに導入される。被処理水W3は、第五管状濾過膜3eから上部ヘッダ空間S2に流入した後、濃縮水排出口8から排出される。
即ち、管状濾過膜3の配列を直列方式にすることによって、必ず、全ての管状濾過膜3の内部を同量の被処理水W3が通過する。
また、第一管状濾過膜3aと被処理水導入口7、及び第五管状濾過膜3eを濃縮水排出口8とを、接続部材39及び接続部材40を介して直接に接続してもよい。この場合、上部ヘッダ空間S2を設けなくてもよく、第二側壁6をなくすなど、ケーシングの構成を変更できる。 Here, the flow of the to-be-processed water W3 in themembrane module 1 is demonstrated using FIG.
By connecting the plurality oftubular filtration membranes 3 in series, the treated water W3 flowing into the lower header space S1 is introduced into the first tubular filtration membrane 3a. Next, the water to be treated W3 is introduced into the second tubular filtration membrane 3b through the membrane connection pipe 34a. Thereafter, the water to be treated W3 is introduced to the fifth tubular filtration membrane 3e via the third tubular filtration membrane 3c and the fourth tubular filtration membrane 3d. The treated water W3 flows into the upper header space S2 from the fifth tubular filtration membrane 3e, and is then discharged from the concentrated water discharge port 8.
That is, by making the arrangement of thetubular filtration membranes 3 in series, the same amount of treated water W3 always passes through all the tubular filtration membranes 3.
Alternatively, the firsttubular filtration membrane 3a, the treated water introduction port 7, and the fifth tubular filtration membrane 3e may be directly connected to the concentrated water discharge port 8 via the connection member 39 and the connection member 40. In this case, it is not necessary to provide the upper header space S2, and the configuration of the casing can be changed, such as eliminating the second side wall 6.
複数の管状濾過膜3が直列的に接続されていることによって、下部ヘッダ空間S1に流入した被処理水W3は、第一管状濾過膜3aに導入される。次いで、被処理水W3は、膜接続管34aを介して、第二管状濾過膜3bに導入される。その後、被処理水W3は、第三管状濾過膜3c、第四管状濾過膜3dを介して、第五管状濾過膜3eに導入される。被処理水W3は、第五管状濾過膜3eから上部ヘッダ空間S2に流入した後、濃縮水排出口8から排出される。
即ち、管状濾過膜3の配列を直列方式にすることによって、必ず、全ての管状濾過膜3の内部を同量の被処理水W3が通過する。
また、第一管状濾過膜3aと被処理水導入口7、及び第五管状濾過膜3eを濃縮水排出口8とを、接続部材39及び接続部材40を介して直接に接続してもよい。この場合、上部ヘッダ空間S2を設けなくてもよく、第二側壁6をなくすなど、ケーシングの構成を変更できる。 Here, the flow of the to-be-processed water W3 in the
By connecting the plurality of
That is, by making the arrangement of the
Alternatively, the first
膜分離装置13から排出された濃縮水W4の全量は、返送配管19を介して生物処理水槽11に返送されて、再度、処理が行われる。
The entire amount of the concentrated water W4 discharged from the membrane separation device 13 is returned to the biological treatment water tank 11 through the return pipe 19, and is processed again.
上記実施形態によれば、複数の管状濾過膜3を並列的に接続する方式と比較して、膜モジュール1を流れる被処理水W3の流量を少なくすることができる。これにより、被処理水Wを循環させるための運転動力を小さくすることができる。
また、被処理水Wの流量を少なくしない場合は、膜面流速を向上させることができる。
これにより、管状濾過膜3の膜面に汚泥が堆積するのを抑制することができる。 According to the said embodiment, compared with the system which connects the sometubular filtration membrane 3 in parallel, the flow volume of the to-be-processed water W3 which flows through the membrane module 1 can be decreased. Thereby, the driving power for circulating the to-be-processed water W can be made small.
Moreover, when not reducing the flow volume of the to-be-processed water W, a membrane surface flow velocity can be improved.
Thereby, it is possible to suppress the accumulation of sludge on the membrane surface of thetubular filtration membrane 3.
また、被処理水Wの流量を少なくしない場合は、膜面流速を向上させることができる。
これにより、管状濾過膜3の膜面に汚泥が堆積するのを抑制することができる。 According to the said embodiment, compared with the system which connects the some
Moreover, when not reducing the flow volume of the to-be-processed water W, a membrane surface flow velocity can be improved.
Thereby, it is possible to suppress the accumulation of sludge on the membrane surface of the
また、膜面流速が均一となるため、管状濾過膜3に汚泥が堆積したり停滞したりするのを抑制することができる。これにより、全ての管状濾過膜3を有効活用することができる。また、FLUX(流出量)の低下を抑制することができる。さらに、管状濾過膜3が閉塞するのを抑制することができる。
Moreover, since the membrane surface flow rate becomes uniform, it is possible to suppress the accumulation or sludge of sludge on the tubular filtration membrane 3. Thereby, all the tubular filtration membranes 3 can be used effectively. Moreover, the fall of FLUX (outflow amount) can be suppressed. Further, the tubular filtration membrane 3 can be prevented from being blocked.
また、管状濾過膜3を親水性を有する材料で形成することによって、被処理水W3の膜面流速を低くすることができる。膜面流速は、例えば、0.15m/s-0.30m/sとすることができる。
Further, by forming the tubular filtration membrane 3 with a hydrophilic material, the membrane surface flow rate of the water to be treated W3 can be lowered. The membrane surface flow velocity can be set to, for example, 0.15 m / s-0.30 m / s.
管状濾過膜3が疎水性である場合、膜面流速を高くする必要がある(例えば、2.5m/s)。このため、循環流量が多くなり、膜分離装置13から排出される濃縮水W4を、原水槽12及び生物処理水槽11に返送する必要が生じる。原水槽12及び生物処理水槽11に返送するためには、濃縮水W4を原水槽12と生物処理水槽11とに分配する分配タンクや、濃縮水W4を原水槽12に返送する配管が必要となる。
When the tubular filtration membrane 3 is hydrophobic, it is necessary to increase the membrane surface flow velocity (for example, 2.5 m / s). For this reason, the circulation flow rate increases, and it becomes necessary to return the concentrated water W4 discharged from the membrane separation device 13 to the raw water tank 12 and the biological treatment water tank 11. In order to return to the raw water tank 12 and the biological treatment water tank 11, a distribution tank that distributes the concentrated water W4 to the raw water tank 12 and the biological treatment water tank 11 and a pipe that returns the concentrated water W4 to the raw water tank 12 are required. .
本実施形態の水処理システム10は、膜面流速を低くすることができるため、被処理水Wの循環流量を少なくすることができる。これにより、循環ポンプ21の動力を低減することができる。また、濃縮水W4を原水槽12と生物処理水槽11とに分配する分配タンクや、濃縮水W4を原水槽12から生物処理水槽11に返送する返送ポンプが不要となる。
また、流量が少なくなることにより、配管を小径化することができる。また、流量が少なくなることにより、流量計などの機器の削減が可能となる。 Since thewater treatment system 10 of the present embodiment can reduce the membrane surface flow velocity, the circulation flow rate of the water to be treated W can be reduced. Thereby, the power of the circulation pump 21 can be reduced. Further, a distribution tank that distributes the concentrated water W4 to the raw water tank 12 and the biological treatment water tank 11 and a return pump that returns the concentrated water W4 from the raw water tank 12 to the biological treatment water tank 11 are not required.
In addition, the diameter of the pipe can be reduced by reducing the flow rate. In addition, by reducing the flow rate, it is possible to reduce equipment such as a flow meter.
また、流量が少なくなることにより、配管を小径化することができる。また、流量が少なくなることにより、流量計などの機器の削減が可能となる。 Since the
In addition, the diameter of the pipe can be reduced by reducing the flow rate. In addition, by reducing the flow rate, it is possible to reduce equipment such as a flow meter.
(第二実施形態)
以下、本発明の第二実施形態の水処理システム10Bを図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
図3に示すように、本実施形態の水処理システム10Bは、複数の膜モジュール1が、互いに直列的に接続されている。例えば、膜分離装置13が3つの膜モジュール1を備えている場合、原水槽12から排出された被処理水W3は、第一膜モジュール1aのみに導入されて、第一膜モジュール1aから排出される被処理水は、第二膜モジュール1bのみに導入される。第二膜モジュール1bから排出される被処理水は、第三膜モジュール1cにのみ導入されて、第三膜モジュール1cから排出された濃縮水W4は、返送配管19に導入される。 (Second embodiment)
Hereinafter, thewater treatment system 10B of 2nd embodiment of this invention is demonstrated based on drawing. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
As shown in FIG. 3, in thewater treatment system 10B of the present embodiment, a plurality of membrane modules 1 are connected in series with each other. For example, when the membrane separator 13 includes three membrane modules 1, the water to be treated W3 discharged from the raw water tank 12 is introduced only into the first membrane module 1a and discharged from the first membrane module 1a. The treated water is introduced only into the second membrane module 1b. The treated water discharged from the second membrane module 1b is introduced only into the third membrane module 1c, and the concentrated water W4 discharged from the third membrane module 1c is introduced into the return pipe 19.
以下、本発明の第二実施形態の水処理システム10Bを図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
図3に示すように、本実施形態の水処理システム10Bは、複数の膜モジュール1が、互いに直列的に接続されている。例えば、膜分離装置13が3つの膜モジュール1を備えている場合、原水槽12から排出された被処理水W3は、第一膜モジュール1aのみに導入されて、第一膜モジュール1aから排出される被処理水は、第二膜モジュール1bのみに導入される。第二膜モジュール1bから排出される被処理水は、第三膜モジュール1cにのみ導入されて、第三膜モジュール1cから排出された濃縮水W4は、返送配管19に導入される。 (Second embodiment)
Hereinafter, the
As shown in FIG. 3, in the
上記実施形態によれば、膜分離装置13に接続される原水供給配管17及び返送配管19が各々1箇所になり、水処理システム10Bを循環する被処理水Wの流量を少なくすることができる。これにより、被処理水Wを循環させるための運転動力を小さくすることができる。
According to the above embodiment, the raw water supply pipe 17 and the return pipe 19 connected to the membrane separation device 13 are each provided in one place, and the flow rate of the water to be treated W circulating in the water treatment system 10B can be reduced. Thereby, the driving power for circulating the to-be-processed water W can be made small.
(第三実施形態)
以下、本発明の第三実施形態の膜モジュールを図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
図4及び図5に示すように、本実施形態の膜モジュール1Cは、第一実施形態の膜接続管34(図2参照)の代替として、一対の膜接続板36(図4及び図5には、一対の膜接続板36のうち一方を示す)を有している。膜接続板36は、板状をなし、第一隔壁30の第二隔壁31を向く面とは反対側の面に密着して取り付けられている。
なお、膜接続板36は、第二隔壁31の第一隔壁30を向く面とは反対側の面にも取り付けられているが、同様の構造であるため説明を省略する。 (Third embodiment)
Hereinafter, a membrane module according to a third embodiment of the present invention will be described with reference to the drawings. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
As shown in FIGS. 4 and 5, themembrane module 1C of the present embodiment includes a pair of membrane connection plates 36 (see FIGS. 4 and 5) instead of the membrane connection tube 34 (see FIG. 2) of the first embodiment. Shows one of the pair of membrane connecting plates 36). The membrane connecting plate 36 has a plate shape and is attached in close contact with the surface of the first partition 30 opposite to the surface facing the second partition 31.
Themembrane connecting plate 36 is also attached to the surface of the second partition wall 31 opposite to the surface facing the first partition wall 30, but the description thereof is omitted because it has the same structure.
以下、本発明の第三実施形態の膜モジュールを図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
図4及び図5に示すように、本実施形態の膜モジュール1Cは、第一実施形態の膜接続管34(図2参照)の代替として、一対の膜接続板36(図4及び図5には、一対の膜接続板36のうち一方を示す)を有している。膜接続板36は、板状をなし、第一隔壁30の第二隔壁31を向く面とは反対側の面に密着して取り付けられている。
なお、膜接続板36は、第二隔壁31の第一隔壁30を向く面とは反対側の面にも取り付けられているが、同様の構造であるため説明を省略する。 (Third embodiment)
Hereinafter, a membrane module according to a third embodiment of the present invention will be described with reference to the drawings. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
As shown in FIGS. 4 and 5, the
The
膜接続板36は、主面が第一隔壁30の第二隔壁31を向く面とは反対側の面に密着するように、第一隔壁30に接続されている。膜接続板36の第一隔壁30に密着する面を密着面36aと呼ぶ。膜接続板36の密着面36aには、複数の膜接続溝37が形成されている。また、膜接続板36には密着面36aとその反対側の面を貫通する被処理水挿通孔38が形成されている。
膜接続溝37は、膜接続板36の密着面36aに形成された有底の溝である。膜接続溝37は、第一実施形態の膜接続管34と同様の機能を有している。即ち、一の管状濾過膜3を流れる被処理水Wは、膜接続溝37を介して他の管状濾過膜3に流れる。被処理水挿通孔38は、管状濾過膜3とヘッダ空間とを連通させる孔であり、接続管41を介して被処理水導入口7に直接接続されてもよい。 Themembrane connecting plate 36 is connected to the first partition wall 30 so that the main surface is in close contact with the surface of the first partition wall 30 opposite to the surface facing the second partition wall 31. A surface of the membrane connecting plate 36 that is in close contact with the first partition wall 30 is referred to as a contact surface 36a. A plurality of membrane connection grooves 37 are formed in the close contact surface 36 a of the membrane connection plate 36. Further, the membrane connection plate 36 is formed with a to-be-treated water insertion hole 38 penetrating the contact surface 36a and the surface on the opposite side.
Themembrane connecting groove 37 is a bottomed groove formed in the close contact surface 36 a of the membrane connecting plate 36. The membrane connection groove 37 has the same function as the membrane connection tube 34 of the first embodiment. That is, the to-be-processed water W flowing through one tubular filtration membrane 3 flows to another tubular filtration membrane 3 through the membrane connection groove 37. The treated water insertion hole 38 is a hole that allows the tubular filtration membrane 3 and the header space to communicate with each other, and may be directly connected to the treated water introduction port 7 via the connection pipe 41.
膜接続溝37は、膜接続板36の密着面36aに形成された有底の溝である。膜接続溝37は、第一実施形態の膜接続管34と同様の機能を有している。即ち、一の管状濾過膜3を流れる被処理水Wは、膜接続溝37を介して他の管状濾過膜3に流れる。被処理水挿通孔38は、管状濾過膜3とヘッダ空間とを連通させる孔であり、接続管41を介して被処理水導入口7に直接接続されてもよい。 The
The
上記実施形態によれば、複数の膜接続管34を用いる第一実施形態の膜モジュール1と比較して、膜モジュールの組み立て工程を簡略化することができる。また、部品点数が減ることによって、分解・清掃を容易とすることができる。
According to the above embodiment, the assembly process of the membrane module can be simplified as compared with the membrane module 1 of the first embodiment using a plurality of membrane connecting pipes 34. Moreover, disassembly and cleaning can be facilitated by reducing the number of parts.
以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、種々の変更を加えることが可能である。
例えば、管状濾過膜3の本数に関して、図2などには5本の管状濾過膜3を示したが、管状濾過膜3の本数はこれに限ることはない。 The embodiment of the present invention has been described in detail above, but various modifications can be made without departing from the technical idea of the present invention.
For example, regarding the number of thetubular filtration membranes 3, five tubular filtration membranes 3 are shown in FIG. 2 and the like, but the number of the tubular filtration membranes 3 is not limited to this.
例えば、管状濾過膜3の本数に関して、図2などには5本の管状濾過膜3を示したが、管状濾過膜3の本数はこれに限ることはない。 The embodiment of the present invention has been described in detail above, but various modifications can be made without departing from the technical idea of the present invention.
For example, regarding the number of the
また、膜モジュール1は、横置きしてもよい。即ち、膜モジュール1を、膜モジュール1の軸線Aが水平方向に延在するように配置してもよい。膜モジュール1を横置きすることによって、膜モジュール1を複数配置する場合においても、膜モジュール1の交換を容易とすることができる。
Further, the membrane module 1 may be placed horizontally. That is, the membrane module 1 may be arranged such that the axis A of the membrane module 1 extends in the horizontal direction. By placing the membrane module 1 horizontally, the membrane module 1 can be easily replaced even when a plurality of membrane modules 1 are arranged.
本発明によれば、複数の管状濾過膜を並列的に接続する方式と比較して、管状濾過膜を流れる被処理水の流量を少なくすることができる。これにより、被処理水を循環させるための運転動力を小さくすることができる。また、膜面流速が均一となるため、管状濾過膜に汚泥が堆積したり停滞したりするのを抑制することができる。
According to the present invention, it is possible to reduce the flow rate of the water to be treated flowing through the tubular filtration membrane as compared with a method of connecting a plurality of tubular filtration membranes in parallel. Thereby, the driving power for circulating treated water can be made small. In addition, since the membrane surface flow rate becomes uniform, it is possible to suppress the accumulation or stagnation of sludge on the tubular filtration membrane.
1 膜モジュール
2 ケーシング
3 管状濾過膜
4 ケーシング本体
5 第一側壁
6 第二側壁
7 被処理水導入口
8 濃縮水排出口
9 透過水排出口
10 水処理システム
11 生物処理水槽
12 原水槽
13 膜分離装置
15 第一配管
16 第二配管
17 原水供給配管
18 透過水配管
19 返送配管(返送ライン)
20 貯留槽
21 循環ポンプ
22 吸引ポンプ
30 第一隔壁
31 第二隔壁
32 挿通孔(貫通孔)
34 膜接続管(接続部材)
36 膜接続板(接続部材)
36a 密着面
37 膜接続溝
38 被処理水挿通孔
A 軸線
PW 透過水
S1 下部ヘッダ空間
S2 上部ヘッダ空間
S3 透過水空間
W1~W3 被処理水
W4 濃縮水 DESCRIPTION OFSYMBOLS 1 Membrane module 2 Casing 3 Tubular filtration membrane 4 Casing main body 5 1st side wall 6 2nd side wall 7 To-be-processed water inlet 8 Concentrated water outlet 9 Permeated water outlet 10 Water treatment system 11 Biologically treated water tank 12 Raw water tank 13 Membrane separation Equipment 15 First piping 16 Second piping 17 Raw water supply piping 18 Permeated water piping 19 Return piping (return line)
20Reservoir 21 Circulation Pump 22 Suction Pump 30 First Bulkhead 31 Second Bulkhead 32 Insertion Hole (Through Hole)
34 Membrane connection pipe (connection member)
36 Membrane connection plate (connection member)
36a Adhesion surface 37 Membrane connection groove 38 Water to be treated insertion hole A Axis PW Permeated water S1 Lower header space S2 Upper header space S3 Permeated water space W1 to W3 Treated water W4 Concentrated water
2 ケーシング
3 管状濾過膜
4 ケーシング本体
5 第一側壁
6 第二側壁
7 被処理水導入口
8 濃縮水排出口
9 透過水排出口
10 水処理システム
11 生物処理水槽
12 原水槽
13 膜分離装置
15 第一配管
16 第二配管
17 原水供給配管
18 透過水配管
19 返送配管(返送ライン)
20 貯留槽
21 循環ポンプ
22 吸引ポンプ
30 第一隔壁
31 第二隔壁
32 挿通孔(貫通孔)
34 膜接続管(接続部材)
36 膜接続板(接続部材)
36a 密着面
37 膜接続溝
38 被処理水挿通孔
A 軸線
PW 透過水
S1 下部ヘッダ空間
S2 上部ヘッダ空間
S3 透過水空間
W1~W3 被処理水
W4 濃縮水 DESCRIPTION OF
20
34 Membrane connection pipe (connection member)
36 Membrane connection plate (connection member)
Claims (6)
- 軸線が鉛直方向に延在する筒形状のケーシングと、
前記ケーシングの内部において前記ケーシングの延在方向に延在して、親水性モノマーが共重合された単層構造を有する複数の管状濾過膜と、
前記管状濾過膜の一端同士、及び前記管状濾過膜の他端同士を前記複数の管状濾過膜が直列的に接続されるように接続する複数の接続部材と、を備える膜モジュール。 A cylindrical casing whose axis extends in the vertical direction;
A plurality of tubular filtration membranes having a single layer structure in which hydrophilic monomers are copolymerized, extending in the casing extending direction inside the casing;
A membrane module comprising: a plurality of connecting members that connect one end of the tubular filtration membrane and the other end of the tubular filtration membrane so that the plurality of tubular filtration membranes are connected in series. - 前記ケーシングの延在方向の一端に設けられ、前記複数の管状濾過膜の一端が連結された複数の貫通孔を有する第一隔壁と、
前記ケーシングの延在方向の他端に設けられ、前記複数の管状濾過膜の他端が連結された複数の貫通孔を有する第二隔壁と、を備え、
前記接続部材は、
前記複数の貫通孔同士を接続する請求項1に記載の膜モジュール。 A first partition wall provided at one end in the extending direction of the casing and having a plurality of through-holes connected to one end of the plurality of tubular filtration membranes;
A second partition wall provided at the other end in the extending direction of the casing and having a plurality of through holes to which the other ends of the plurality of tubular filtration membranes are connected,
The connecting member is
The membrane module according to claim 1, wherein the plurality of through holes are connected to each other. - 前記接続部材は、前記複数の貫通孔同士を接続する膜接続溝を備えた膜接続板である請求項1又は請求項2に記載の膜モジュール。 The membrane module according to claim 1 or 2, wherein the connection member is a membrane connection plate provided with a membrane connection groove for connecting the plurality of through holes.
- 筒形状のケーシングと、
前記ケーシングの内部において前記ケーシングの延在方向に延在して、親水性モノマーが共重合された単層構造を有する複数の管状濾過膜と、
前記ケーシングの延在方向の一端に設けられ、前記複数の管状濾過膜の一端が連結された複数の貫通孔を有する第一隔壁と、
前記ケーシングの延在方向の他端に設けられ、前記複数の管状濾過膜の他端が連結された複数の貫通孔を有する第二隔壁と、
前記管状濾過膜の一端同士、及び前記管状濾過膜の他端同士を前記複数の管状濾過膜が直列的に接続されるように接続する膜接続溝を備えた一対の膜接続板と、を備えた膜モジュール。 A cylindrical casing;
A plurality of tubular filtration membranes having a single layer structure in which hydrophilic monomers are copolymerized, extending in the casing extending direction inside the casing;
A first partition wall provided at one end in the extending direction of the casing and having a plurality of through-holes connected to one end of the plurality of tubular filtration membranes;
A second partition wall provided at the other end of the casing in the extending direction and having a plurality of through holes to which the other ends of the plurality of tubular filtration membranes are connected;
A pair of membrane connection plates provided with membrane connection grooves that connect one end of the tubular filtration membrane and the other end of the tubular filtration membrane so that the plurality of tubular filtration membranes are connected in series. Membrane module. - 被処理水に含有される有機物を処理する生物処理水槽と、
前記生物処理水槽から排出される被処理水が収容される原水槽と、
請求項1から請求項4のいずれか一項に記載の膜モジュールを有し、前記原水槽から供給される被処理水を透過水と濃縮水とに分離する膜分離装置と、
前記濃縮水を前記生物処理水槽に返送する返送ラインと、を備え、前記原水槽には前記濃縮水を返送しない水処理システム。 A biological treatment water tank for treating organic substances contained in the water to be treated;
A raw water tank in which treated water discharged from the biological treatment water tank is stored;
A membrane separation apparatus comprising the membrane module according to any one of claims 1 to 4, and separating water to be treated supplied from the raw water tank into permeate and concentrated water;
And a return line for returning the concentrated water to the biologically treated water tank, wherein the concentrated water is not returned to the raw water tank. - 前記膜分離装置は、互いに直列的に接続されている複数の前記膜モジュールを有する請求項5に記載の水処理システム。 The water treatment system according to claim 5, wherein the membrane separation device has a plurality of the membrane modules connected in series to each other.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187013003A KR102020164B1 (en) | 2015-11-18 | 2016-11-14 | Membrane Modules and Water Treatment Systems |
CN201680066489.XA CN108348862A (en) | 2015-11-18 | 2016-11-14 | Membrane module and water treatment system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015225958A JP6519874B2 (en) | 2015-11-18 | 2015-11-18 | Water treatment system |
JP2015-225958 | 2015-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017086266A1 true WO2017086266A1 (en) | 2017-05-26 |
Family
ID=58718868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/083671 WO2017086266A1 (en) | 2015-11-18 | 2016-11-14 | Membrane module and water treatment system |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6519874B2 (en) |
KR (1) | KR102020164B1 (en) |
CN (1) | CN108348862A (en) |
TW (1) | TWI648094B (en) |
WO (1) | WO2017086266A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5415039U (en) * | 1977-07-04 | 1979-01-31 | ||
JPS54107641U (en) * | 1978-01-17 | 1979-07-28 | ||
JPS56151608U (en) * | 1980-04-15 | 1981-11-13 | ||
JPS577293A (en) * | 1980-06-16 | 1982-01-14 | Nitto Electric Ind Co Ltd | Biological disposal of liquid |
JPS60189301U (en) * | 1984-05-24 | 1985-12-14 | 栗田工業株式会社 | Semipermeable membrane module |
JPH0226624A (en) * | 1988-05-27 | 1990-01-29 | Zenon Environmental Inc | Tubular film module |
JPH07144192A (en) * | 1993-11-25 | 1995-06-06 | Mitsubishi Kakoki Kaisha Ltd | Operating method of night soil treating device using filter membrane |
JP2002282657A (en) * | 2001-03-29 | 2002-10-02 | Mitsubishi Heavy Ind Ltd | Tubular membrane separator |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2370002Y (en) * | 1999-05-10 | 2000-03-22 | 浙江大学膜分离工程联合公司 | Film type biological reactor |
JP5141855B2 (en) * | 2006-03-23 | 2013-02-13 | 栗田工業株式会社 | Membrane separator |
JP5415039B2 (en) | 2008-07-29 | 2014-02-12 | ルネサスエレクトロニクス株式会社 | Boosting circuit, driver, display device, and boosting method |
TWI480231B (en) * | 2009-04-16 | 2015-04-11 | Sumitomo Electric Industries | Method for processing oil-containing waste |
JP5097298B2 (en) * | 2010-03-04 | 2012-12-12 | 積水化学工業株式会社 | Polymer water treatment membrane, method for producing the same and water treatment method |
JP5960401B2 (en) * | 2011-09-02 | 2016-08-02 | 積水化学工業株式会社 | Water treatment apparatus and water treatment method |
JP2013116461A (en) * | 2011-12-05 | 2013-06-13 | Sekisui Chem Co Ltd | Method for producing hollow fiber membrane |
CN103908896B (en) * | 2014-04-12 | 2016-08-17 | 宁波信远膜工业股份有限公司 | A kind of inwall coating cascaded structure tubular membrane component |
CN204162580U (en) * | 2014-10-31 | 2015-02-18 | 南宁市桂润环境工程有限公司 | A kind of MBR-NF system to the waste water advanced decolouring of brewed spirit and purification |
-
2015
- 2015-11-18 JP JP2015225958A patent/JP6519874B2/en active Active
-
2016
- 2016-11-14 KR KR1020187013003A patent/KR102020164B1/en active IP Right Grant
- 2016-11-14 CN CN201680066489.XA patent/CN108348862A/en active Pending
- 2016-11-14 WO PCT/JP2016/083671 patent/WO2017086266A1/en active Application Filing
- 2016-11-14 TW TW105137088A patent/TWI648094B/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5415039U (en) * | 1977-07-04 | 1979-01-31 | ||
JPS54107641U (en) * | 1978-01-17 | 1979-07-28 | ||
JPS56151608U (en) * | 1980-04-15 | 1981-11-13 | ||
JPS577293A (en) * | 1980-06-16 | 1982-01-14 | Nitto Electric Ind Co Ltd | Biological disposal of liquid |
JPS60189301U (en) * | 1984-05-24 | 1985-12-14 | 栗田工業株式会社 | Semipermeable membrane module |
JPH0226624A (en) * | 1988-05-27 | 1990-01-29 | Zenon Environmental Inc | Tubular film module |
JPH07144192A (en) * | 1993-11-25 | 1995-06-06 | Mitsubishi Kakoki Kaisha Ltd | Operating method of night soil treating device using filter membrane |
JP2002282657A (en) * | 2001-03-29 | 2002-10-02 | Mitsubishi Heavy Ind Ltd | Tubular membrane separator |
Also Published As
Publication number | Publication date |
---|---|
JP6519874B2 (en) | 2019-05-29 |
CN108348862A (en) | 2018-07-31 |
JP2017094228A (en) | 2017-06-01 |
KR102020164B1 (en) | 2019-09-09 |
TW201722543A (en) | 2017-07-01 |
TWI648094B (en) | 2019-01-21 |
KR20180052779A (en) | 2018-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5829080B2 (en) | Water treatment method | |
WO2014128851A1 (en) | Water treatment method and water treatment device | |
CN108348863B (en) | Membrane module, method for producing membrane module, and water treatment system | |
WO2017098990A1 (en) | Membrane separation device | |
JP2013052339A (en) | Water treating method | |
KR101870598B1 (en) | Biological treatment apparatus, biological treatment method, and program | |
JP6812908B2 (en) | Siphon type air diffuser, membrane separation activated sludge device, and water treatment method | |
JP2014124579A (en) | Processing apparatus of organic wastewater | |
CN108348861B (en) | Membrane module and water treatment system | |
WO2017086266A1 (en) | Membrane module and water treatment system | |
KR20160080010A (en) | Pressurized-type Hollow Fiber Membrane Module | |
JP2014100627A (en) | Membrane treatment apparatus and solid-liquid separation method | |
JP6264698B2 (en) | Biological treatment equipment | |
JP5891108B2 (en) | Water treatment method | |
US20230271140A1 (en) | Method for washing hollow fiber membrane module | |
JP2019202260A (en) | Water treatment system and water treatment method | |
JP2015182015A (en) | Apparatus and method for treating water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16866268 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187013003 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16866268 Country of ref document: EP Kind code of ref document: A1 |