WO2017085830A1 - Wiring forming method and baking device - Google Patents
Wiring forming method and baking device Download PDFInfo
- Publication number
- WO2017085830A1 WO2017085830A1 PCT/JP2015/082540 JP2015082540W WO2017085830A1 WO 2017085830 A1 WO2017085830 A1 WO 2017085830A1 JP 2015082540 W JP2015082540 W JP 2015082540W WO 2017085830 A1 WO2017085830 A1 WO 2017085830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring
- current
- firing
- base material
- conductive particle
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
Definitions
- the present invention relates to a wiring forming method and a baking apparatus.
- the main object of the present invention is to perform the firing of the conductive particle-containing coating more appropriately.
- the present invention adopts the following means in order to achieve the main object described above.
- the wiring forming method of the present invention includes: A wiring formation method for forming a wiring on a substrate, An application step of applying a conductive particle-containing coating film on the substrate along the wiring pattern based on pattern data describing the wiring pattern; A current application step of applying a current between two points of the conductive particle-containing coating film applied on the base material and firing the applied film; With The gist of the current application step is to apply the current after determining the magnitude of the current to be applied based on the pattern data.
- a wiring is formed by executing a coating process and a current application process.
- the coating process the conductive particle-containing coating film is coated on the substrate along the wiring pattern based on the pattern data describing the wiring pattern.
- an electric current is applied between two points of the conductive particle-containing coating film applied on the base material and fired.
- the current is applied after determining the magnitude of the current to be applied based on the pattern data. Thereby, the magnitude
- the production efficiency can be further increased.
- coated on the base material can also be provided.
- the resistance value between two points to which a current is applied in the current application step is measured, and the firing is determined to be completed when the measured resistance value becomes a specified value or less.
- An inspection step may be provided, and the firing inspection step may determine the specified value based on the pattern data. If it carries out like this, it can be determined more appropriately whether baking was completed.
- the current application step is performed by increasing the current to be applied. It can also be re-executed. In this way, firing can be performed more reliably.
- the coating step and the current application step are performed. It can also be re-executed. In this way, firing can be performed more reliably.
- a coating inspection is performed in which the substrate coated with the conductive particle-containing coating film is imaged and the coating failure of the conductive particle-containing coating film is determined based on the obtained captured image. It can also be provided with a process.
- the coating step is re-executed for a portion where it is determined that a coating failure has occurred. It can also be done.
- the current application step uses a mobile robot to bring a pair of electrodes into contact between two points of the conductive particle-containing coating film applied on the substrate. Can also be applied.
- the firing apparatus of the present invention is A firing device for firing a conductive particle-containing coating applied to a substrate based on pattern data describing a wiring pattern,
- a mobile robot capable of moving a pair of electrodes;
- a current application device capable of applying a current via the pair of electrodes;
- the mobile robot is controlled so that the pair of electrodes are in contact between two points of the conductive particle-containing coating film applied on the substrate, and the current application device is configured so that a current is applied between the two points.
- a control device to control; With The gist of the present invention is that the control device controls the mobile robot and the current application device after determining the position to apply the current and the magnitude of the applied current based on the pattern data.
- This firing apparatus of the present invention controls a mobile robot so that a pair of electrodes are in contact between two points of a conductive particle-containing coating applied on a substrate, and current is applied so that a current is applied between the two points.
- a control device for controlling the applying device is provided. The control device determines the position to apply the current and the magnitude of the applied current based on the pattern data describing the wiring pattern on which the conductive particle-containing coating is applied to the substrate, and then applies the current to the mobile robot Control the device. Thereby, the position which applies an electric current, and the magnitude
- FIG. It is a block diagram which shows the outline of a structure of the wiring base-material manufacturing apparatus 10 as one Embodiment of this invention. 4 is an explanatory diagram showing an electrical connection relationship of a control device 80.
- FIG. It is a flowchart which shows an example of a wiring formation process. It is a flowchart which shows an example of a wiring layer formation process. It is explanatory drawing which shows the mode of wiring layer formation. It is a flowchart which shows an example of an imaging test
- FIG. 1 is a configuration diagram showing an outline of a configuration of a wiring substrate manufacturing apparatus 10 as one embodiment of the present invention
- FIG. 2 is an explanatory diagram showing an electrical connection relationship of a control device 80.
- the front (front) and rear (back) directions in FIG. 1 are the X-axis direction
- the left-right direction is the Y-axis direction
- the up-down direction is the Z-axis direction.
- the wiring substrate manufacturing apparatus 10 of the present embodiment includes a stage 12, a transfer device 20, a resin layer forming unit 30, a wiring layer forming unit 40, an imaging unit 16, and a firing unit 50. And a control device 80 (see FIG. 2).
- the resin layer forming unit 30, the wiring layer forming unit 40, the imaging unit 16, and the baking unit 50 are installed side by side along the transport direction (Y-axis direction) of the stage 12.
- the stage 12 is a work table when the resin layer forming unit 30, the wiring layer forming unit 40, the imaging unit 16, and the baking unit 50 each perform work.
- the transport device 20 includes a pair of Y-axis guide rails 22 extending in the Y-axis direction and a belt driving device 24 (see FIG. 2) that drives the timing belt, and transmits the timing belt.
- the stage 12 is reciprocated along the Y-axis guide rail 22 by the motive power.
- the conveying apparatus 20 is not restricted to what uses a belt drive, It is good also as what uses a ball screw drive and a linear motor drive.
- the resin layer forming unit 30 is for forming a resin layer on the stage 12 when the stage 12 is transported into the work area of the resin layer forming unit 30.
- the resin layer forming unit 30 includes an ink head 32 that can eject UV curable resin ink, and a UV light irradiation device that can irradiate the resin ink discharged from the ink head 32 with UV light. 34.
- the ink head 32 is, for example, a line head in which a plurality of nozzles are arranged so as to cover the entire width of the printing area on the stage 12.
- the ink head 32 applies (prints) a rectangular resin layer by discharging resin ink from the nozzles while conveying the stage 12 in the Y-axis direction by the conveying device 20.
- the UV light irradiation device 34 is configured to be able to irradiate linear UV light in the X-axis direction.
- the UV light irradiation device 34 is applied by irradiating the rectangular resin layer applied to the stage 12 with line-shaped (X-axis direction) UV light while transporting the stage 12 in the Y-axis direction.
- the cured resin layers are sequentially cured.
- a mercury lamp or a metal halide lamp can be used as the UV light irradiation device 34.
- the resin layer forming unit 30 thus repeats the application of the resin layer by the ink head 32 and the curing of the resin layer by the UV light irradiation device 34 a plurality of times, thereby laminating the resin layers, and having a predetermined thickness. A resin base material is produced.
- the wiring layer forming unit 40 is for forming a wiring layer on a resin base material formed on the stage 12 when the stage 12 is transported into the work area of the wiring layer forming unit 40.
- the wiring layer forming unit 40 includes an ink head 42 that can eject conductive particle-containing ink in which conductive particles such as metal nanoparticles (for example, gold particles, silver particles, and copper particles) are dispersed in a dispersant, and an ink. And a laser irradiation device 46 that irradiates the conductive particle-containing ink ejected from the head 42 with a laser beam.
- the ink head 42 is, for example, a line head in which a plurality of nozzles are arranged so as to cover the entire width of the printing area.
- the ink head 42 applies (prints) the conductive particle-containing ink onto the base material by discharging the conductive particle-containing ink from the corresponding nozzle while the stage 12 is transported in the Y-axis direction by the transport device 20. .
- the laser irradiation device 46 is mounted on a carriage 44 that can move in the X-axis direction by driving a carriage motor 45 (see FIG. 2).
- the laser irradiation device 46 moves in the X-axis direction and the stage 12 moves in the Y-axis direction. With the movement, the laser beam is scanned along the wiring pattern (wiring layer) on the resin base material formed on the stage 12.
- the wiring layer becomes conductive by heating and decomposing the dispersant around the conductive particles by the laser beam.
- the laser irradiation device 46 performs laser scanning in the XY axis direction by the movement of the carriage 44 and the movement of the stage 12.
- the laser irradiation device 46 is not limited to this, and the laser is emitted in the XY axis direction using a galvano scanner. It may be scanned.
- the wiring layer forming unit 40 thus repeats the application of the conductive particle-containing ink by the ink head 42 and the conduction (firing) of the conductive particle-containing ink by the laser irradiation device 46 a plurality of times, so that the wiring layer is formed.
- the wiring is formed on the resin base material by laminating.
- the imaging unit 16 images the wiring layer formed on the resin base material on the stage 12 when the stage 12 is transported into the imaging area of the imaging unit 16.
- the image picked up by the image pickup unit 16 is used for determination of printing failure such as disconnection or firing failure.
- the firing unit 50 applies current between two points of the wiring pattern (wiring layer) formed on the resin base material on the stage 12 when the stage 12 is being transported into the work area of the firing unit 50. It is.
- the firing unit 50 performs firing by applying a current between two points of the wiring layer to heat the wiring layer.
- the firing unit 50 includes a current applying device 52 capable of applying a current between a pair of probes (electrodes) 54, 56, a biaxial orthogonal robot 60 capable of moving the probe 54 in two axes, the X axis direction and the Z axis direction. And a three-axis orthogonal robot 70 capable of moving the probe 56 in three axes in the X-axis direction, the Y-axis direction, and the Z-axis direction.
- the biaxial orthogonal robot 60 includes an X-axis slider 62 that can move in the X-axis direction, a Z-axis slider 66 that can move in the Z-axis direction, and a probe head 68 that is attached to the Z-axis slider 66 and holds the probe 54.
- the X-axis slider 62 moves along an X-axis guide rail provided on the pedestal 61, and the Z-axis slider 66 moves along a Z-axis guide rail provided on the X-axis slider 62.
- the X-axis slider 62 is driven by an X-axis actuator 63 (see FIG. 2), and the Z-axis slider 66 is driven by a Z-axis actuator 67 (see FIG. 2).
- the biaxial orthogonal robot 60 can move the probe 54 to any position in the X axis direction and the Z axis direction in the work area.
- the probe 54 is moved to the stage 12 by the movement of the stage 12 in the Y-axis direction and the movement of the biaxial orthogonal robot 60 in the X-axis direction and the Z-axis direction. It can be brought into contact with an arbitrary position on the (wiring substrate).
- the three-axis orthogonal robot 70 includes an X-axis slider 72 that can move in the X-axis direction, a Y-axis slider 74 that can move in the Y-axis direction, a Z-axis slider 76 that can move in the Z-axis direction, and a Z-axis slider 76. And a probe head 78 that holds the probe 56.
- the X-axis slider 72 moves along an X-axis guide rail provided on the Y-axis slider 74, and the Y-axis slider 74 moves along a Y-axis guide rail provided on the base 71. Moves along a Z-axis guide rail provided on the X-axis slider 72.
- the X-axis slider 72 is driven by an X-axis actuator 73 (see FIG. 2), the Y-axis slider 74 is driven by a Y-axis actuator 75 (see FIG. 2), and the Z-axis slider 76 is driven by a Z-axis actuator 77. (See FIG. 2).
- the three-axis orthogonal robot 70 can move the probe 56 to any position in the X-axis direction, the Y-axis direction, and the Z-axis direction within the work area. That is, the three-axis orthogonal robot 70 can bring the probe 56 into contact at an arbitrary position on the stage 12 (wiring substrate).
- the current application device 52 includes a variable current source 52a that can change a current applied between the pair of probes 54 and 56, and a voltage sensor 52b that detects a voltage between the pair of probes 54 and 56.
- the current application device 52 detects the voltage value of the load (wiring) by the voltage sensor 52b in a state where a constant current is applied to the load (wiring) by bringing the pair of probes 54 and 56 into contact with the load (wiring).
- the resistance value of the load (wiring) can be measured by dividing the measured voltage value by the applied current value.
- the control device 80 includes a CPU 81, a ROM 82, an HDD 83, a RAM 84, and an input / output interface 85, as shown in FIG. These are electrically connected via a bus 86.
- Various detection signals from a position detection sensor for detecting each position of the stage 12, the carriage 44, and the probe heads 68 and 78, a voltage sensor 52 b, and the like are input to the control device 80 via the input / output interface 85.
- the belt driving device 24 the ink head 32, the UV light irradiation device 34, the imaging unit 16, the ink head 42, the carriage motor 45, the laser irradiation device 46, the variable current source 52a, and the biaxial orthogonal robot 60.
- FIG. 3 is a flowchart illustrating an example of a wiring formation process executed by the CPU 81 of the control device 80. This process is executed after the resin base material is formed by the resin layer forming unit 30.
- the CPU 81 of the control device 80 first executes a wiring layer forming process for forming a wiring layer on the resin substrate by the wiring layer forming unit 40 (S100). Subsequently, the CPU 81 executes an imaging inspection process for imaging the wiring layer formed on the resin base material by the imaging unit 16 (S110). And CPU81 performs the electric current application process (baking process) which makes electrically conductive (baking) by applying an electric current to a wiring layer (S120), and performs the conduction resistance test process which measures the resistance value of the location which applied the electric current. This is executed (S130), and the wiring formation process is terminated.
- the wiring layer forming process of S100 is executed according to the flowchart illustrated in FIG.
- the CPU 81 first inputs CAD data of the wiring substrate (S200).
- the CAD data of the wiring substrate includes graphic data of the substrate and graphic data (wiring pattern) of the wiring.
- the graphic data of the base material may include various base material information such as the thermal conductivity of the base material and the thickness of the base material.
- the wiring graphic data is managed for each wiring. For example, when the wiring is composed of line segments, the coordinates of the start and end points of the line segments are included, and the wiring is a continuous line (polyline) in which the line segments are continuous.
- This wiring graphic data includes various wiring information such as wire number, wire length, wire width, wire thickness, wire route, type of conductive material constituting the wire, wire volume resistivity, temperature coefficient of volume resistivity, etc. It may be included.
- the CPU 81 extracts wiring graphic data from the input CAD data (S202), and converts the extracted graphic data into print data that can be printed by the ink head 42 (S204). Further, the CPU 81 extracts the wiring thickness from the graphic data, sets the number of wiring layers to be realized to the specified number Nset (S206), and initializes the execution number N to the value 1. (S208).
- the CPU 81 drives and controls the belt driving device 24 so that the stage 12 moves to the printing start position (S210). Thereafter, the CPU 81 drives and controls the belt driving device 24 so that the stage 12 moves at a predetermined speed in the Y-axis direction (S212), and the conductive particle-containing ink is ejected from the corresponding nozzle based on the print data.
- the ink head 42 is driven and controlled (S214). As a result, the conductive particle-containing ink is ejected along the wiring pattern on the resin substrate to form an ink coating film (wiring layer).
- the CPU 81 sets the laser irradiation path of the wiring layer (target wiring) to be irradiated with the laser based on the wiring graphic data (S216). Laser irradiation is executed for each wiring (for each line segment or continuous line). Therefore, the laser irradiation path is set for each wiring by switching the target wiring one after another.
- the CPU 81 drives and controls the belt driving device 24 and the carriage motor 45 so that the laser irradiation device 46 moves above the irradiation start position of the target wiring (S218).
- the CPU 81 starts irradiation of the laser spot from the laser irradiation device 46 (S220), and drives and controls the belt driving device 24 and the carriage motor 45 so that the laser spot is scanned along the set laser irradiation path ( S222). And CPU81 determines whether the laser irradiation of all the wiring layers formed on the resin base material was completed (S224). If the CPU 81 determines that the laser irradiation has not been completed, it sets the next wiring layer as the target wiring (S226), and repeats the processing of S216 to S222.
- the CPU 81 determines whether or not the execution stack number N has reached the specified stack number Nset (S228). If the CPU 81 determines that the execution stack number N has not reached the specified stack number Nset, the CPU 81 increments the execution stack number N by a value 1 (S230), and repeatedly executes the processing of S210 to S224. If it is determined that the specified number of stacked layers Nset has been reached, the wiring layer forming process is terminated.
- FIG. 5 is an explanatory diagram showing a state of execution of the wiring layer forming process.
- the wiring pattern is printed by moving the stage 12 on which the resin base material is placed in the Y-axis direction along the Y-axis guide rail 22 and corresponding nozzles of the ink head 42 according to the wiring pattern. This is performed by discharging conductive particle-containing ink from (see FIG. 5A).
- laser irradiation laser firing
- the laser 44 is moved from the laser irradiation device 46 toward the wiring, and the carriage 44 on which the laser irradiation device 46 is mounted is moved in the X-axis direction in accordance with the wiring pattern. This is performed by moving the stage 12 on which the substrate is placed in the Y-axis direction (see FIG. 5B).
- the imaging inspection process in S110 is executed according to the flowchart illustrated in FIG.
- the CPU 81 of the control device 80 first drives and controls the belt driving device 24 so that the stage 12 moves below the imaging unit 16 (S300). Thereafter, the CPU 81 images the wiring layer on the stage 12 by the imaging unit 16 (S302).
- FIG. 7 shows how the wiring layer is imaged by the imaging unit 16.
- the CPU 81 processes the captured image and determines the state of the wiring formed on the resin base material (S304). This process determines whether there is a defective wiring by comparing the wiring pattern specified from the graphic data of the wiring with the wiring pattern recognized from the captured image and determining whether or not both are substantially the same.
- the CPU 81 may also specify the type of defect such as a disconnected wire or a wire with insufficient laser firing depending on the feature of the mismatched portion when the two do not substantially match.
- the CPU 81 determines whether or not there is a disconnected wire (S306). If it is determined that there is no disconnected wire, the imaging inspection process is terminated.
- the CPU 81 determines that there is a disconnected wire (S306), the disconnected wire is set as the target wire (S308), and print data of the target wire is created (S310).
- the process of S310 can be performed by extracting the graphic data related to the target wiring from the graphic data of the wiring extracted in S202 of the wiring layer forming process of FIG. 4, and converting the extracted graphic data into print data. .
- the CPU 81 moves the stage 12 to the print start position (S312), and then moves the stage 12 in the Y-axis direction (S314), and the corresponding nozzle of the ink head 42 based on the print data of the target wiring. Then, the conductive particle-containing ink is discharged (S316).
- the CPU 81 sets the laser irradiation path of the target wiring (S318), moves the laser irradiation device 46 above the irradiation start position of the target wiring (S320), and then irradiates the laser spot from the laser irradiation device 46. Is started (S322), and the laser spot is scanned along the laser irradiation path (S324).
- the imaging inspection process repairs the disconnection by performing again the discharge (printing) of the conductive particle-containing ink and the laser irradiation (firing) on the wiring in which the disconnection occurs.
- the CPU 81 returns to S302 and images the wiring substrate again to determine whether or not the wiring state is good (S304).
- the CPU 81 repeats the processes of S302 to S324 until it determines that there is no disconnection in S306, and when it determines that there is no disconnection, the imaging inspection process ends here.
- the wiring that has been disconnected due to the imaging inspection process is repaired.
- wiring that is not sufficiently fired may be generated.
- an ink coating film containing conductive particles such as metal nanoparticles is made conductive by heating with a laser.
- the current application process of S120 is executed according to the flowchart illustrated in FIG.
- the CPU 81 determines the coordinates, the line length L [m], the line width w [m], and the line of the end points (start point and end point) of the target wiring from the graphic data of the wiring included in the CAD data.
- the thickness t [m] is extracted, and the base material thickness r 1 [m] is extracted from the graphic data of the base material included in the CAD data (S400).
- the CPU 81 also inputs other parameters for determining the applied current I (S402).
- the other parameters are the thermal conductivity ⁇ [W / mK] of the substrate, the volume resistivity ⁇ [ ⁇ m] of the wiring, the temperature coefficient ⁇ [1 / K] of the volume resistivity, and the temperature T 0 [° C.]. Is mentioned. These parameters are extracted from base material information and wiring information included in CAD data, input from an operator via an input device (not shown), or detected by a sensor (temperature sensor for detecting temperature). Is used.
- the CPU81 will set the target temperature T at the time of carrying out current baking of object wiring, if a parameter is inputted (S404).
- the target temperature T is set to a temperature of about 100 ° C. to 250 ° C. according to the type (decomposition temperature) of the dispersant contained in the conductive particle-containing ink. Then, the CPU 81 sets an applied current I necessary for firing based on the input parameters and the target temperature T (S406).
- the wiring base material when setting the applied current I, is handled as a wiring base material in which a cylindrical wiring is wrapped with a cylindrical base material.
- the temperature difference ⁇ T can be expressed by the following equation (1).
- the volume resistivity ⁇ of the wiring is a value obtained by multiplying the bulk volume resistivity of the conductive material (metal material) used for the ink coating film by a predetermined value (for example, about 2 to 3 times).
- the volume resistivity [ ⁇ m] of gold, silver, and copper as metallic materials used for the ink coating film is 2.21, 1.59, and 1.68, respectively. . Therefore, when the metal material used is gold, silver or copper, the volume resistivity ⁇ of the wiring is 4.42 to 6.63, 3.18 to 4.77, 3.36 to 5.04, respectively. can do. Further, the temperature coefficient ⁇ [1 / K] of the volume resistivity varies depending on the conductive material used. For example, in the case of gold, silver, and copper, they are 0.0040, 0.0041, and 0.0043, respectively.
- the conversion radius r 0 is a radius such that the cross-sectional areas of the wirings match before and after modeling, and the relationship of Expression (2) is established.
- Expression (4) is established by Expressions (1) to (3).
- the applied current I can be calculated by equation (4).
- the CPU 81 calculates a prescribed resistance value Rref for determining success or failure of firing of the target wiring by the following equation (5) (S408).
- Rref a prescribed resistance value
- k is a coefficient, and can be set to 0.8 or 0.9, for example.
- FIG. 10 is an explanatory diagram showing a state in which the pair of probes 54 and 56 are brought into contact with the target wiring.
- the process of S410 is performed as follows. In other words, the CPU 81 determines the belt driving device based on the Y coordinate of the end point A so that the probe 54 contacts the end point A closer to the biaxial orthogonal robot 60 among the both end points of the target wiring (front side in FIG. 10).
- the CPU 81 determines the X-axis actuator based on the XYZ coordinates of the end point B so that the probe 56 contacts the end point B closer to the 3-axis orthogonal robot 70 among the both end points of the target wiring (the back side in FIG. 10). 73, the Y-axis actuator 75 and the Z-axis actuator 77 are driven and controlled.
- the CPU 81 When the CPU 81 brings the pair of probes 54 and 56 into contact with both end points of the target wiring, the CPU 81 controls the variable current source 52a so that the applied current I set in S406 is applied to the target wiring (S412), and current application processing Exit.
- FIG. 11 is an explanatory diagram showing how the coordinates of two points to which current is applied are extracted from CAD data.
- the application of current in the current firing is performed for each wiring (wirings 1 to 3) whose unit is a line segment or continuous line.
- the wiring graphic data included in the CAD data includes the coordinates of the start point and end point of each line segment, and the coordinates of the start point, vertex, and end point of each continuous line.
- the coordinates of the two points to which the current is applied in the current firing can be extracted from the graphic data of the wiring included in the CAD data.
- some of the parameters (line length, line width, line thickness, substrate thickness) for determining the applied current I and the specified resistance value R in current firing are also included in the CAD graphic data and the substrate graphic data. It can be extracted from the figure data.
- the conduction resistance inspection process of S130 is executed according to the flowchart illustrated in FIG.
- the CPU 81 determines whether or not a current is applied to the target wiring by the current application process (S500). If the CPU 81 determines that no current is applied to the target wiring, the CPU 81 terminates the continuity resistance inspection process. If the CPU 81 determines that a current is applied to the target wiring, the CPU 81 measures the resistance value R of the target wiring (S502).
- the CPU 81 determines whether or not a predetermined time (for example, 20 seconds or 30 seconds) has elapsed since the start of the conduction resistance test process (measurement of the resistance value R) (S504), and the measured resistance value R is defined. It is determined whether or not it is equal to or less than the resistance value Rref (S506). If the CPU 81 determines that the predetermined time has not elapsed and the measured resistance value R is not less than or equal to the specified resistance value Rref, the CPU 81 returns to S502 and repeats the measurement of the resistance value R.
- a predetermined time for example, 20 seconds or 30 seconds
- the measured resistance value R is defined. It is determined whether or not it is equal to or less than the resistance value Rref (S506). If the CPU 81 determines that the predetermined time has not elapsed and the measured resistance value R is not less than or equal to the specified resistance value Rref, the CPU 81 returns to S502 and repeats the measurement of the resistance value R.
- the CPU 81 determines that the measured resistance value R has become equal to or less than the specified resistance value Rref before the predetermined time has elapsed, the CPU 81 determines that it has been completely fired, and whether there is any other wiring to be fired. Is determined (S508). If the CPU 81 determines that there is another wiring to be fired, it sets the next wiring as the target wiring (S510), returns to S400 of the current application process, and determines that there is no other wiring to be fired. Then, the conduction resistance inspection process is terminated.
- the CPU 81 determines whether or not the current increase flag F is a value 1 (S512).
- the current increase flag F indicates whether or not processing for increasing the current applied to the target wiring has been performed. If the CPU 81 determines that the current increase flag F is not 1, the CPU 81 resets the applied current I set in S406 by a predetermined current ⁇ I to a new applied current I (S514). A value of 1 is set (S516). Then, the CPU 81 returns to S416 of the current application process, and applies a current to the target wiring with the reset applied current I. As described above, when the resistance value R of the target wiring does not fall below the specified resistance value Rref and the firing is insufficient, the CPU 81 increases the applied current I and then applies the current to the target wiring.
- the current increase flag F is the value 1 Is done. If the CPU 81 determines that the current increase flag F has a value of 1, the CPU 81 returns the current increase flag F to a value of 0 (S518), and for the target wiring, similar to S310 to S324 of the imaging inspection process of FIG. 6 described above. Then, discharge (printing) of conductive particle-containing ink and laser irradiation (laser firing) are executed (S520 to S534). Then, the CPU 81 returns to S400 of the current application process and re-executes current firing on the target wiring.
- the wiring substrate manufacturing apparatus 10 of the present embodiment increases the current to be applied when the current firing is insufficient, and if the current firing is still insufficient, the conductive particles The ejection (printing) of the contained ink and the laser irradiation (laser firing) are re-executed. This makes it possible to more reliably conduct the wiring.
- the firing unit 50 of the present embodiment corresponds to the “baking apparatus” of the present invention
- the 2-axis orthogonal robot 60 and the 3-axis orthogonal robot 70 correspond to the “mobile robot”
- the pair of probes 54 and 56 are “a pair of probes”.
- the current application device 52 corresponds to the “current application device”
- the control device 80 corresponds to the “control device”.
- the wiring substrate manufacturing apparatus 10 of the present embodiment described above forms a wiring layer containing conductive particles on the substrate based on the wiring graphic data included in the CAD data. Further, the wiring substrate manufacturing apparatus 10 determines the magnitude of the applied current when applying a current by bringing a pair of probes 54 and 56 (electrodes) into contact between two points of the wiring layer formed on the substrate. Parameters for determination (line width w, line thickness t, base material thickness r 0 ) are extracted from wiring graphic data and base material graphic data included in the CAD data. Thereby, the magnitude
- the magnitude of the current applied to the target wiring can be optimized using CAD data, good conductivity can be ensured.
- the wiring layer can be designed to be thinner, and the number of laser firings can be reduced to reduce damage to the substrate (resin).
- the magnitude of the current applied to the target wiring can be optimized, application of an excessive current to the target wiring can be avoided and damage to the base material (resin) can be further reduced.
- the wiring substrate manufacturing apparatus 10 of the present embodiment measures the resistance value R of the target wiring to which the current is applied, and determines that the firing is completed when the resistance value R is equal to or less than the specified resistance value Rref.
- Conduct continuity resistance test In the conduction resistance test, parameters (line length L, line width w, line thickness t) for determining the prescribed resistance value Rref are extracted from the graphic data of the wiring included in the CAD data. Thereby, a conduction
- the wiring substrate manufacturing apparatus 10 of the present embodiment increases the current applied to the target wiring when the resistance value R of the target wiring does not fall below the specified resistance value Rref by the conduction resistance test. As a result, the target wiring can be reliably made conductive, and the yield of the wiring substrate can be improved. Moreover, when the resistance value R does not decrease to the specified resistance value Rref or less in spite of increasing the current applied to the target wiring, the wiring substrate manufacturing apparatus 10 performs conductive particles on the target wiring. The ejection (printing) of the contained ink and the laser irradiation (laser baking) are performed again. This makes it possible to more reliably conduct the target wiring and further improve the yield of the wiring substrate.
- the wiring equipment manufacturing apparatus 10 of the present embodiment performs an imaging inspection in which the formed wiring layer is imaged by the imaging unit 16 and inspected for the presence or absence of the disconnection.
- the discharge (printing) of the conductive particle-containing ink and the laser irradiation (laser firing) are performed again on the wiring determined to be generated. Thereby, inspection and correction can be appropriately performed during the production of the wiring base material, and the yield of the wiring base material can be further improved.
- the CPU 81 calculates the applied current I using Equation (4) when performing current baking.
- the applied current I can be derived based on parameters (line length, line width, line thickness, etc.) that can be extracted from the graphic data of the wiring included in the CAD data, a simplified arithmetic expression or experiment A table based on the above may be used.
- the wiring layer forming unit 40 fires the wiring layer (conductive particle-containing ink) using a laser.
- the wiring layer forming unit 40 emits pulsed light having a continuous spectral region (for example, a xenon lamp). By doing so, the wiring layer may be fired. Alternatively, the wiring layer may be fired using an electric furnace or the like.
- the current firing is performed after the laser firing is performed on the wiring layer (the conductive particle-containing ink).
- the laser firing may be omitted.
- the firing unit 50 can move the pair of probes 69 and 79 by the two-axis orthogonal robot 60 and the three-axis orthogonal robot 70, but at least one of them is configured to be movable by an articulated robot. It may be a thing.
- the firing unit 50 performs current firing on all the wirings formed on the base material.
- the disconnected wiring and laser firing in S302 of the imaging inspection process are insufficient.
- current firing may be performed only on the wiring that has been determined to be insufficient for laser firing.
- the CPU 81 performs the imaging inspection and the continuity resistance inspection as the inspection of the wiring base material, but either or both of the inspections may be omitted.
- the CPU 81 increases the current applied to the target wiring and increases the current when the resistance value R of the target wiring does not fall below the specified resistance value Rref as the conduction resistance test.
- the discharge (printing) of conductive particle-containing ink and laser irradiation (laser firing) were performed on the target wiring.
- the CPU 81 may immediately perform printing and laser firing on the target wiring.
- the CPU 81 increases the current applied to the target wiring, and even if the current is increased, the resistance value R becomes the specified resistance value Rref. If the voltage does not drop to the upper limit, the applied current may be further increased. Alternatively, the CPU 81 may output an error when the resistance value R of the target wiring does not fall below the specified resistance value Rref.
- this invention is not limited to the Example mentioned above at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.
- the present invention can be used in the manufacturing industry of baking apparatuses.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
In this invention, a wiring base material production device forms a wiring layer containing conductive particles on a base material on the basis of a wiring graphic data included in CAD data. In addition, the wiring base material production device extracts, from the wiring graphic data or the base material graphic data contained in the CAD data, parameters (such as line length, line width, line thickness and base material thickness) for determining the magnitude of the current to be applied when performing current-baking in which a current is applied by a pair of probes (electrodes) brought into contact with two points of the wiring layer formed on the base material. In this manner, the magnitude of the current to be applied in the current-baking can be determined on the basis of the CAD data, allowing the current baking to be executed efficiently.
Description
本発明は、配線形成方法および焼成装置に関する。
The present invention relates to a wiring forming method and a baking apparatus.
従来、この種の配線形成方法としては、基材上に塗布された金属粒子を含む塗布膜に所定の電流を印加することにより塗布膜を焼成し、金属粒子からなる配線を形成するものが提案されている(例えば、特許文献1参照)。
特開2014-14894号公報
Conventionally, as this type of wiring forming method, a method of firing a coating film by applying a predetermined current to a coating film containing metal particles applied on a substrate to form a wiring made of metal particles has been proposed. (For example, refer to Patent Document 1).
JP 2014-14894 A
しかしながら、上述した方法は、所定の電流を印加することにより、塗布膜にジュール熱を発生させて、焼成することについては記載されているものの、電流の大きさをどのように設定するのかについては言及されていない。このため、印加する電流の大きさによっては、十分な焼成を行うことができなかったり、基材に悪影響を及ぼしたりする場合が生じる。
However, although the method described above has been described for generating a Joule heat in the coating film by applying a predetermined current and firing, the method for setting the magnitude of the current is described. Not mentioned. For this reason, depending on the magnitude of the applied current, sufficient firing may not be performed, or the substrate may be adversely affected.
本発明は、導電性粒子含有塗膜の焼成をより適切に行うことを主目的とする。
The main object of the present invention is to perform the firing of the conductive particle-containing coating more appropriately.
本発明は、上述の主目的を達成するために以下の手段を採った。
The present invention adopts the following means in order to achieve the main object described above.
本発明の配線形成方法は、
基材に配線を形成する配線形成方法であって、
配線パターンを記述したパターンデータに基づいて導電性粒子含有塗膜を前記配線パターンに沿って前記基材上に塗布する塗布工程と、
前記基材上に塗布された導電性粒子含有塗膜の2点間に電流を印加して焼成する電流印加工程と、
を備え、
前記電流印加工程は、前記パターンデータに基づいて印加する電流の大きさを決定した上で、電流を印加する
ことを要旨とする。 The wiring forming method of the present invention includes:
A wiring formation method for forming a wiring on a substrate,
An application step of applying a conductive particle-containing coating film on the substrate along the wiring pattern based on pattern data describing the wiring pattern;
A current application step of applying a current between two points of the conductive particle-containing coating film applied on the base material and firing the applied film;
With
The gist of the current application step is to apply the current after determining the magnitude of the current to be applied based on the pattern data.
基材に配線を形成する配線形成方法であって、
配線パターンを記述したパターンデータに基づいて導電性粒子含有塗膜を前記配線パターンに沿って前記基材上に塗布する塗布工程と、
前記基材上に塗布された導電性粒子含有塗膜の2点間に電流を印加して焼成する電流印加工程と、
を備え、
前記電流印加工程は、前記パターンデータに基づいて印加する電流の大きさを決定した上で、電流を印加する
ことを要旨とする。 The wiring forming method of the present invention includes:
A wiring formation method for forming a wiring on a substrate,
An application step of applying a conductive particle-containing coating film on the substrate along the wiring pattern based on pattern data describing the wiring pattern;
A current application step of applying a current between two points of the conductive particle-containing coating film applied on the base material and firing the applied film;
With
The gist of the current application step is to apply the current after determining the magnitude of the current to be applied based on the pattern data.
この本発明の配線形成方法は、塗布工程と電流印加工程とを実行して配線を形成する。塗布工程は、配線パターンを記述したパターンデータに基づいて導電性粒子含有塗膜を配線パターンに沿って基材上に塗布する。電流印加工程は、基材上に塗布された導電性粒子含有塗膜の2点間に電流を印加して焼成する。また、電流印加工程は、上述のパターンデータに基づいて印加する電流の大きさを決定した上で、電流を印加する。これにより、印加する電流の大きさを配線パターンに合わせた適切な値とすることができ、導電性粒子含有塗膜の焼成をより適切に行うことができる。また、配線パターンを記述したパターンデータに基づいて印加する電流の大きさを決定するから、生産効率をより高めることができる。なお、電流印加工程の実行前に、基材上に塗布された導電性粒子含有塗膜の予備焼成を行う予備焼成工程を備えるものとすることもできる。
In the wiring forming method of the present invention, a wiring is formed by executing a coating process and a current application process. In the coating process, the conductive particle-containing coating film is coated on the substrate along the wiring pattern based on the pattern data describing the wiring pattern. In the current application step, an electric current is applied between two points of the conductive particle-containing coating film applied on the base material and fired. In the current application step, the current is applied after determining the magnitude of the current to be applied based on the pattern data. Thereby, the magnitude | size of the electric current to apply can be made into the appropriate value matched with the wiring pattern, and baking of an electroconductive particle containing coating film can be performed more appropriately. Further, since the magnitude of the applied current is determined based on the pattern data describing the wiring pattern, the production efficiency can be further increased. In addition, before execution of an electric current application process, the pre-baking process of pre-baking the electroconductive particle containing coating film apply | coated on the base material can also be provided.
こうした本発明の配線形成方法において、前記電流印加工程により電流を印加した2点間の抵抗値を測定し、前記測定した抵抗値が規定値以下となった場合に焼成が完了したと判定する焼成検査工程を備え、前記焼成検査工程は、前記パターンデータに基づいて前記規定値を決定するものとすることもできる。こうすれば、焼成が完了したか否かをより適切に判定することができる。
In such a wiring forming method of the present invention, the resistance value between two points to which a current is applied in the current application step is measured, and the firing is determined to be completed when the measured resistance value becomes a specified value or less. An inspection step may be provided, and the firing inspection step may determine the specified value based on the pattern data. If it carries out like this, it can be determined more appropriately whether baking was completed.
焼成検査工程を備える態様の本発明の配線形成方法において、前記焼成検査工程により測定された抵抗値が前記規定値以下とならなかった場合には、印加する電流を増大させて前記電流印加工程を再実行するものとすることもできる。こうすれば、焼成をより確実に行うことができる。
In the wiring forming method of the present invention having a firing inspection step, if the resistance value measured by the firing inspection step is not less than or equal to the specified value, the current application step is performed by increasing the current to be applied. It can also be re-executed. In this way, firing can be performed more reliably.
また、焼成検査工程を備える態様の本発明の配線形成方法において、前記焼成検査工程により測定された抵抗値が前記規定値以下とならなかった場合には、前記塗布工程と前記電流印加工程とを再実行するものとすることもできる。こうすれば、焼成をより確実に行うことができる。
Further, in the wiring formation method of the present invention including the firing inspection step, when the resistance value measured by the firing inspection step is not less than the specified value, the coating step and the current application step are performed. It can also be re-executed. In this way, firing can be performed more reliably.
さらに、本発明の配線形成方法において、前記導電性粒子含有塗膜が塗布された基材を撮像し、得られた撮像画像に基づいて前記導電性粒子含有塗膜の塗布不良を判定する塗布検査工程を備えるものとすることもできる。この態様の本発明の配線形成方法において、前記塗布検査工程により塗布不良が生じていると判定された場合には、塗布不良が生じていると判定された箇所に対して前記塗布工程を再実行するものとすることもできる。
Furthermore, in the wiring formation method of the present invention, a coating inspection is performed in which the substrate coated with the conductive particle-containing coating film is imaged and the coating failure of the conductive particle-containing coating film is determined based on the obtained captured image. It can also be provided with a process. In the wiring formation method of the present invention of this aspect, when it is determined that a coating failure has occurred in the coating inspection step, the coating step is re-executed for a portion where it is determined that a coating failure has occurred. It can also be done.
また、本発明の配線形成方法において、前記電流印加工程は、移動ロボットを用いて、前記基材上に塗布された導電性粒子含有塗膜の2点間に一対の電極を接触させることにより電流を印加するものとすることもできる。
Moreover, in the wiring formation method of the present invention, the current application step uses a mobile robot to bring a pair of electrodes into contact between two points of the conductive particle-containing coating film applied on the substrate. Can also be applied.
本発明の焼成装置は、
配線パターンを記述したパターンデータに基づいて基材に塗布された導電性粒子含有塗膜を焼成する焼成装置であって、
一対の電極を移動可能な移動ロボットと、
前記一対の電極を介して電流を印加可能な電流印加装置と、
前記基材上に塗布された導電性粒子含有塗膜の2点間に前記一対の電極が接触するよう前記移動ロボットを制御し、前記2点間に電流が印加されるよう前記電流印加装置を制御する制御装置と、
を備え、
前記制御装置は、前記パターンデータに基づいて電流を印加する位置と印加する電流の大きさとを決定した上で、前記移動ロボットと前記電流印加装置とを制御する
ことを要旨とする。 The firing apparatus of the present invention is
A firing device for firing a conductive particle-containing coating applied to a substrate based on pattern data describing a wiring pattern,
A mobile robot capable of moving a pair of electrodes;
A current application device capable of applying a current via the pair of electrodes;
The mobile robot is controlled so that the pair of electrodes are in contact between two points of the conductive particle-containing coating film applied on the substrate, and the current application device is configured so that a current is applied between the two points. A control device to control;
With
The gist of the present invention is that the control device controls the mobile robot and the current application device after determining the position to apply the current and the magnitude of the applied current based on the pattern data.
配線パターンを記述したパターンデータに基づいて基材に塗布された導電性粒子含有塗膜を焼成する焼成装置であって、
一対の電極を移動可能な移動ロボットと、
前記一対の電極を介して電流を印加可能な電流印加装置と、
前記基材上に塗布された導電性粒子含有塗膜の2点間に前記一対の電極が接触するよう前記移動ロボットを制御し、前記2点間に電流が印加されるよう前記電流印加装置を制御する制御装置と、
を備え、
前記制御装置は、前記パターンデータに基づいて電流を印加する位置と印加する電流の大きさとを決定した上で、前記移動ロボットと前記電流印加装置とを制御する
ことを要旨とする。 The firing apparatus of the present invention is
A firing device for firing a conductive particle-containing coating applied to a substrate based on pattern data describing a wiring pattern,
A mobile robot capable of moving a pair of electrodes;
A current application device capable of applying a current via the pair of electrodes;
The mobile robot is controlled so that the pair of electrodes are in contact between two points of the conductive particle-containing coating film applied on the substrate, and the current application device is configured so that a current is applied between the two points. A control device to control;
With
The gist of the present invention is that the control device controls the mobile robot and the current application device after determining the position to apply the current and the magnitude of the applied current based on the pattern data.
この本発明の焼成装置は、基材上に塗布された導電性粒子含有塗膜の2点間に一対の電極が接触するよう移動ロボットを制御し、2点間に電流が印加されるよう電流印加装置を制御する制御装置を備える。制御装置は、基材に導電性粒子含有塗膜が塗布される配線パターンを記述したパターンデータに基づいて電流を印加する位置と印加する電流の大きさとを決定した上で、移動ロボットと電流印加装置とを制御する。これにより、電流を印加する位置や印加する電流の大きさを配線パターンに合わせた適切な値とすることができ、導電性粒子含有塗膜の焼成をより適切に行うことができる。
This firing apparatus of the present invention controls a mobile robot so that a pair of electrodes are in contact between two points of a conductive particle-containing coating applied on a substrate, and current is applied so that a current is applied between the two points. A control device for controlling the applying device is provided. The control device determines the position to apply the current and the magnitude of the applied current based on the pattern data describing the wiring pattern on which the conductive particle-containing coating is applied to the substrate, and then applies the current to the mobile robot Control the device. Thereby, the position which applies an electric current, and the magnitude | size of the electric current to apply can be made into the appropriate value matched with the wiring pattern, and baking of an electroconductive particle containing coating film can be performed more appropriately.
図1は、本発明の一実施形態としての配線基材製造装置10の構成の概略を示す構成図であり、図2は、制御装置80の電気的な接続関係を示す説明図である。なお、図1中の前(手前)後(奥)方向がX軸方向であり、左右方向がY軸方向であり、上下方向がZ軸方向である。
FIG. 1 is a configuration diagram showing an outline of a configuration of a wiring substrate manufacturing apparatus 10 as one embodiment of the present invention, and FIG. 2 is an explanatory diagram showing an electrical connection relationship of a control device 80. Note that the front (front) and rear (back) directions in FIG. 1 are the X-axis direction, the left-right direction is the Y-axis direction, and the up-down direction is the Z-axis direction.
本実施形態の配線基材製造装置10は、図1に示すように、ステージ12と、搬送装置20と、樹脂層形成ユニット30と、配線層形成ユニット40と、撮像ユニット16と、焼成ユニット50と、制御装置80(図2参照)とを備える。樹脂層形成ユニット30と配線層形成ユニット40と撮像ユニット16と焼成ユニット50は、ステージ12の搬送方向(Y軸方向)に沿って並べて設置されている。
As shown in FIG. 1, the wiring substrate manufacturing apparatus 10 of the present embodiment includes a stage 12, a transfer device 20, a resin layer forming unit 30, a wiring layer forming unit 40, an imaging unit 16, and a firing unit 50. And a control device 80 (see FIG. 2). The resin layer forming unit 30, the wiring layer forming unit 40, the imaging unit 16, and the baking unit 50 are installed side by side along the transport direction (Y-axis direction) of the stage 12.
ステージ12は、樹脂層形成ユニット30と配線層形成ユニット40と撮像ユニット16と焼成ユニット50がそれぞれ作業を行う際の作業台である。
The stage 12 is a work table when the resin layer forming unit 30, the wiring layer forming unit 40, the imaging unit 16, and the baking unit 50 each perform work.
搬送装置20は、図1に示すように、Y軸方向に延びる一対のY軸ガイドレール22と、タイミングベルトを駆動するベルト駆動装置24(図2参照)とを備え、タイミングベルトを介して伝達される動力によってステージ12をY軸ガイドレール22に沿って往復動させる。なお、搬送装置20は、ベルト駆動を用いるものに限られず、ボールねじ駆動やリニアモータ駆動を用いるものとしてもよい。
As shown in FIG. 1, the transport device 20 includes a pair of Y-axis guide rails 22 extending in the Y-axis direction and a belt driving device 24 (see FIG. 2) that drives the timing belt, and transmits the timing belt. The stage 12 is reciprocated along the Y-axis guide rail 22 by the motive power. In addition, the conveying apparatus 20 is not restricted to what uses a belt drive, It is good also as what uses a ball screw drive and a linear motor drive.
樹脂層形成ユニット30は、ステージ12が樹脂層形成ユニット30の作業エリア内に搬送されているときに、ステージ12上に樹脂層を形成するものである。この樹脂層形成ユニット30は、図1に示すように、UV硬化性の樹脂インクを吐出可能なインクヘッド32と、インクヘッド32から吐出された樹脂インクにUV光を照射可能なUV光照射装置34とを備える。
The resin layer forming unit 30 is for forming a resin layer on the stage 12 when the stage 12 is transported into the work area of the resin layer forming unit 30. As shown in FIG. 1, the resin layer forming unit 30 includes an ink head 32 that can eject UV curable resin ink, and a UV light irradiation device that can irradiate the resin ink discharged from the ink head 32 with UV light. 34.
インクヘッド32は、例えば、ステージ12上の印刷領域の幅を全てカバーするように複数のノズルが配列されたラインヘッドである。このインクヘッド32は、搬送装置20によりステージ12をY軸方向に搬送しながらノズルから樹脂インクを吐出することにより、矩形形状の樹脂層を塗布(印刷)する。
The ink head 32 is, for example, a line head in which a plurality of nozzles are arranged so as to cover the entire width of the printing area on the stage 12. The ink head 32 applies (prints) a rectangular resin layer by discharging resin ink from the nozzles while conveying the stage 12 in the Y-axis direction by the conveying device 20.
UV光照射装置34は、X軸方向にライン状のUV光を照射可能に構成されている。このUV光照射装置34は、ステージ12をY軸方向に搬送しながらステージ12に塗布された矩形形状の樹脂層にライン状(X軸方向)のUV光を照射していくことにより、塗布された樹脂層を順次硬化させる。UV光照射装置34は、例えば、水銀ランプやメタルハライドランプ等を用いることができる。
The UV light irradiation device 34 is configured to be able to irradiate linear UV light in the X-axis direction. The UV light irradiation device 34 is applied by irradiating the rectangular resin layer applied to the stage 12 with line-shaped (X-axis direction) UV light while transporting the stage 12 in the Y-axis direction. The cured resin layers are sequentially cured. For example, a mercury lamp or a metal halide lamp can be used as the UV light irradiation device 34.
樹脂層形成ユニット30は、こうしてインクヘッド32による樹脂層の塗布とUV光照射装置34による樹脂層の硬化とを複数回に亘って繰り返すことで、樹脂層を積層していき、所定厚さの樹脂基材を作製する。
The resin layer forming unit 30 thus repeats the application of the resin layer by the ink head 32 and the curing of the resin layer by the UV light irradiation device 34 a plurality of times, thereby laminating the resin layers, and having a predetermined thickness. A resin base material is produced.
配線層形成ユニット40は、ステージ12が配線層形成ユニット40の作業エリア内に搬送されているときに、ステージ12上に形成された樹脂基材に配線層を形成するものである。この配線層形成ユニット40は、金属ナノ粒子(例えば、金粒子や銀粒子,銅粒子)等の導電性粒子が分散剤に分散された導電性粒子含有インクを吐出可能なインクヘッド42と、インクヘッド42から吐出された導電性粒子含有インクにレーザビームを照射するレーザ照射装置46とを備える。
The wiring layer forming unit 40 is for forming a wiring layer on a resin base material formed on the stage 12 when the stage 12 is transported into the work area of the wiring layer forming unit 40. The wiring layer forming unit 40 includes an ink head 42 that can eject conductive particle-containing ink in which conductive particles such as metal nanoparticles (for example, gold particles, silver particles, and copper particles) are dispersed in a dispersant, and an ink. And a laser irradiation device 46 that irradiates the conductive particle-containing ink ejected from the head 42 with a laser beam.
インクヘッド42は、例えば、印刷領域の幅を全てカバーするように複数のノズルが配列されたラインヘッドである。このインクヘッド42は、搬送装置20によりステージ12をY軸方向に搬送しながら対応するノズルから導電性粒子含有インクを吐出することで、基材上に導電性粒子含有インクを塗布(印刷)する。
The ink head 42 is, for example, a line head in which a plurality of nozzles are arranged so as to cover the entire width of the printing area. The ink head 42 applies (prints) the conductive particle-containing ink onto the base material by discharging the conductive particle-containing ink from the corresponding nozzle while the stage 12 is transported in the Y-axis direction by the transport device 20. .
レーザ照射装置46は、キャリッジモータ45(図2参照)の駆動によりX軸方向の移動が可能なキャリッジ44に搭載されており、レーザ照射装置46のX軸方向の移動とステージ12のY軸方向の移動とによって、ステージ12に形成された樹脂基材上の配線パターン(配線層)に沿ってレーザビームを走査する。配線層は、レーザビームによって導電性粒子の周囲の分散剤が加熱されて分解されることで、導電化する。なお、レーザ照射装置46は、キャリッジ44の移動とステージ12の移動とによってXY軸方向にレーザ走査するものとしたが、これに限定されるものではなく、ガルバノスキャナを用いてXY軸方向にレーザ走査するものとしてもよい。
The laser irradiation device 46 is mounted on a carriage 44 that can move in the X-axis direction by driving a carriage motor 45 (see FIG. 2). The laser irradiation device 46 moves in the X-axis direction and the stage 12 moves in the Y-axis direction. With the movement, the laser beam is scanned along the wiring pattern (wiring layer) on the resin base material formed on the stage 12. The wiring layer becomes conductive by heating and decomposing the dispersant around the conductive particles by the laser beam. The laser irradiation device 46 performs laser scanning in the XY axis direction by the movement of the carriage 44 and the movement of the stage 12. However, the laser irradiation device 46 is not limited to this, and the laser is emitted in the XY axis direction using a galvano scanner. It may be scanned.
配線層形成ユニット40は、こうしてインクヘッド42による導電性粒子含有インクの塗布とレーザ照射装置46による導電性粒子含有インクの導電化(焼成)とを複数回に亘って繰り返すことで、配線層を積層していき、樹脂基材上に配線を形成する。
The wiring layer forming unit 40 thus repeats the application of the conductive particle-containing ink by the ink head 42 and the conduction (firing) of the conductive particle-containing ink by the laser irradiation device 46 a plurality of times, so that the wiring layer is formed. The wiring is formed on the resin base material by laminating.
撮像ユニット16は、ステージ12が撮像ユニット16の撮像エリア内に搬送されているときに、ステージ12上の樹脂基材上に形成された配線層を撮像する。撮像ユニット16により撮像された画像は、断線などの印刷不良や焼成不良の判定に用いられる。
The imaging unit 16 images the wiring layer formed on the resin base material on the stage 12 when the stage 12 is transported into the imaging area of the imaging unit 16. The image picked up by the image pickup unit 16 is used for determination of printing failure such as disconnection or firing failure.
焼成ユニット50は、ステージ12が焼成ユニット50の作業エリア内に搬送されているときに、ステージ12上の樹脂基材に形成された配線パターン(配線層)の2点間に電流を印加するものである。この焼成ユニット50は、配線層の2点間に電流を印加して配線層を加熱することによって焼成を行う。
The firing unit 50 applies current between two points of the wiring pattern (wiring layer) formed on the resin base material on the stage 12 when the stage 12 is being transported into the work area of the firing unit 50. It is. The firing unit 50 performs firing by applying a current between two points of the wiring layer to heat the wiring layer.
焼成ユニット50は、一対のプローブ(電極)54,56間に電流を印加可能な電流印加装置52と、X軸方向とZ軸方向の2軸にプローブ54を移動可能な2軸直交ロボット60と、X軸方向とY軸方向とZ軸方向の3軸にプローブ56を移動可能な3軸直交ロボット70と、を備える。
The firing unit 50 includes a current applying device 52 capable of applying a current between a pair of probes (electrodes) 54, 56, a biaxial orthogonal robot 60 capable of moving the probe 54 in two axes, the X axis direction and the Z axis direction. And a three-axis orthogonal robot 70 capable of moving the probe 56 in three axes in the X-axis direction, the Y-axis direction, and the Z-axis direction.
2軸直交ロボット60は、X軸方向に移動可能なX軸スライダ62と、Z軸方向に移動可能なZ軸スライダ66と、Z軸スライダ66に取り付けられプローブ54を保持するプローブヘッド68とを備える。X軸スライダ62は、台座61に設けられたX軸ガイドレールに沿って移動し、Z軸スライダ66は、X軸スライダ62に設けられたZ軸ガイドレールに沿って移動する。また、X軸スライダ62は、X軸アクチュエータ63(図2参照)により駆動され、Z軸スライダ66は、Z軸アクチュエータ67(図2参照)により駆動される。これにより、2軸直交ロボット60は、作業エリア内において、プローブ54をX軸方向およびZ軸方向の任意の位置に移動できるようになっている。上述したように、ステージ12はY軸方向に移動可能であるから、ステージ12のY軸方向の移動と2軸直交ロボット60のX軸方向およびZ軸方向の移動とにより、プローブ54をステージ12(配線基材)上の任意の位置に接触させることができる。
The biaxial orthogonal robot 60 includes an X-axis slider 62 that can move in the X-axis direction, a Z-axis slider 66 that can move in the Z-axis direction, and a probe head 68 that is attached to the Z-axis slider 66 and holds the probe 54. Prepare. The X-axis slider 62 moves along an X-axis guide rail provided on the pedestal 61, and the Z-axis slider 66 moves along a Z-axis guide rail provided on the X-axis slider 62. The X-axis slider 62 is driven by an X-axis actuator 63 (see FIG. 2), and the Z-axis slider 66 is driven by a Z-axis actuator 67 (see FIG. 2). Accordingly, the biaxial orthogonal robot 60 can move the probe 54 to any position in the X axis direction and the Z axis direction in the work area. As described above, since the stage 12 is movable in the Y-axis direction, the probe 54 is moved to the stage 12 by the movement of the stage 12 in the Y-axis direction and the movement of the biaxial orthogonal robot 60 in the X-axis direction and the Z-axis direction. It can be brought into contact with an arbitrary position on the (wiring substrate).
3軸直交ロボット70は、X軸方向に移動可能なX軸スライダ72と、Y軸方向に移動可能なY軸スライダ74と、Z軸方向に移動可能なZ軸スライダ76と、Z軸スライダ76に取り付けられプローブ56を保持するプローブヘッド78とを備える。X軸スライダ72は、Y軸スライダ74に設けられたX軸ガイドレールに沿って移動し、Y軸スライダ74は、台座71に設けられたY軸ガイドレールに沿って移動し、Z軸スライダ76は、X軸スライダ72に設けられたZ軸ガイドレールに沿って移動する。また、X軸スライダ72は、X軸アクチュエータ73(図2参照)により駆動され、Y軸スライダ74は、Y軸アクチュエータ75(図2参照)により駆動され、Z軸スライダ76は、Z軸アクチュエータ77(図2参照)により駆動される。これにより、3軸直交ロボット70は、作業エリア内でプローブ56をX軸方向,Y軸方向およびZ軸方向の任意の位置に移動できるようになっている。即ち、3軸直交ロボット70は、プローブ56をステージ12(配線基材)上の任意の位置で接触させることができる。
The three-axis orthogonal robot 70 includes an X-axis slider 72 that can move in the X-axis direction, a Y-axis slider 74 that can move in the Y-axis direction, a Z-axis slider 76 that can move in the Z-axis direction, and a Z-axis slider 76. And a probe head 78 that holds the probe 56. The X-axis slider 72 moves along an X-axis guide rail provided on the Y-axis slider 74, and the Y-axis slider 74 moves along a Y-axis guide rail provided on the base 71. Moves along a Z-axis guide rail provided on the X-axis slider 72. The X-axis slider 72 is driven by an X-axis actuator 73 (see FIG. 2), the Y-axis slider 74 is driven by a Y-axis actuator 75 (see FIG. 2), and the Z-axis slider 76 is driven by a Z-axis actuator 77. (See FIG. 2). Thus, the three-axis orthogonal robot 70 can move the probe 56 to any position in the X-axis direction, the Y-axis direction, and the Z-axis direction within the work area. That is, the three-axis orthogonal robot 70 can bring the probe 56 into contact at an arbitrary position on the stage 12 (wiring substrate).
電流印加装置52は、一対のプローブ54,56間に印加する電流を変化可能な可変電流源52aと、一対のプローブ54,56間の電圧を検出する電圧センサ52bとを備える。電流印加装置52は、一対のプローブ54,56を負荷(配線)に接触させて負荷(配線)に一定の電流を印加した状態で電圧センサ52bにより負荷(配線)の電圧値を検出し、検出した電圧値を印加電流値で割ることにより、負荷(配線)の抵抗値を測定することができる。
The current application device 52 includes a variable current source 52a that can change a current applied between the pair of probes 54 and 56, and a voltage sensor 52b that detects a voltage between the pair of probes 54 and 56. The current application device 52 detects the voltage value of the load (wiring) by the voltage sensor 52b in a state where a constant current is applied to the load (wiring) by bringing the pair of probes 54 and 56 into contact with the load (wiring). The resistance value of the load (wiring) can be measured by dividing the measured voltage value by the applied current value.
制御装置80は、図2に示すように、CPU81とROM82とHDD83とRAM84と入出力インタフェース85とを備える。これらは、バス86を介して電気的に接続されている。制御装置80には、ステージ12やキャリッジ44,プローブヘッド68,78の各位置を検知する位置検知センサや電圧センサ52bなどからの各種検知信号が入出力インターフェース85を介して入力されている。また、制御装置80からは、ベルト駆動装置24やインクヘッド32,UV光照射装置34,撮像ユニット16,インクヘッド42,キャリッジモータ45,レーザ照射装置46,可変電流源52a,2軸直交ロボット60(X軸アクチュエータ63およびZ軸アクチュエータ67),3軸直交ロボット70(X軸アクチュエータ73,Y軸アクチュエータ75およびZ軸アクチュエータ77)などへの各種制御信号が入出力インタフェース85を介して出力されている。
The control device 80 includes a CPU 81, a ROM 82, an HDD 83, a RAM 84, and an input / output interface 85, as shown in FIG. These are electrically connected via a bus 86. Various detection signals from a position detection sensor for detecting each position of the stage 12, the carriage 44, and the probe heads 68 and 78, a voltage sensor 52 b, and the like are input to the control device 80 via the input / output interface 85. Further, from the control device 80, the belt driving device 24, the ink head 32, the UV light irradiation device 34, the imaging unit 16, the ink head 42, the carriage motor 45, the laser irradiation device 46, the variable current source 52a, and the biaxial orthogonal robot 60. Various control signals to the (X-axis actuator 63 and Z-axis actuator 67), the 3-axis orthogonal robot 70 (X-axis actuator 73, Y-axis actuator 75, and Z-axis actuator 77) are output via the input / output interface 85. Yes.
次に、こうして構成された実施例の配線基材製造装置10の動作、特に樹脂基材上に配線を形成する際の動作について説明する。図3は、制御装置80のCPU81により実行される配線形成処理の一例を示すフローチャートである。この処理は、樹脂層形成ユニット30により樹脂基材が形成された後に実行される。
Next, the operation of the wiring substrate manufacturing apparatus 10 of the embodiment configured in this way, particularly the operation when forming wiring on the resin substrate will be described. FIG. 3 is a flowchart illustrating an example of a wiring formation process executed by the CPU 81 of the control device 80. This process is executed after the resin base material is formed by the resin layer forming unit 30.
配線形成処理が実行されると、制御装置80のCPU81は、まず、配線層形成ユニット40により樹脂基材上に配線層を形成する配線層形成処理を実行する(S100)。続いて、CPU81は、樹脂基材上に形成された配線層を撮像ユニット16によって撮像する撮像検査処理を実行する(S110)。そして、CPU81は、配線層に電流を印加することにより導電化(焼成)させる電流印加処理(焼成処理)を実行し(S120)、電流を印加した箇所の抵抗値を測定する導通抵抗検査処理を実行して(S130)、配線形成処理を終了する。
When the wiring forming process is executed, the CPU 81 of the control device 80 first executes a wiring layer forming process for forming a wiring layer on the resin substrate by the wiring layer forming unit 40 (S100). Subsequently, the CPU 81 executes an imaging inspection process for imaging the wiring layer formed on the resin base material by the imaging unit 16 (S110). And CPU81 performs the electric current application process (baking process) which makes electrically conductive (baking) by applying an electric current to a wiring layer (S120), and performs the conduction resistance test process which measures the resistance value of the location which applied the electric current. This is executed (S130), and the wiring formation process is terminated.
S100の配線層形成処理は、図4に例示するフローチャートに従って実行される。配線層形成処理が実行されると、CPU81は、まず、配線基材のCADデータを入力する(S200)。ここで、配線基材のCADデータは、基材の図形データと配線の図形データ(配線パターン)とが含まれる。基材の図形データは、基材の熱伝導率や基材厚みなどの各種基材情報が含まれるものとしてもよい。また、配線の図形データは、配線毎に管理され、例えば、配線が線分により構成される場合、線分の始点および終点の座標が含まれ、配線が線分が連続する連続線(ポリライン)により構成される場合、連続線の始点および終点の座標と線分同士が接続される接続点(頂点)の座標とが含まれている。この配線の図形データは、線番や線長,線幅,線厚み,線経路,配線を構成する導電性材料の種類,配線の体積抵抗率,体積抵抗率の温度係数などの各種配線情報が含まれるものとしてもよい。続いて、CPU81は、入力したCADデータから配線の図形データを抽出し(S202)、抽出した図形データをインクヘッド42により印刷可能な印刷データに変換する(S204)。また、CPU81は、図形データから配線の厚みを抽出し、その厚みを実現するための配線層の積層数を規定積層数Nsetに設定し(S206)、実行積層数Nを値1に初期化する(S208)。
The wiring layer forming process of S100 is executed according to the flowchart illustrated in FIG. When the wiring layer forming process is executed, the CPU 81 first inputs CAD data of the wiring substrate (S200). Here, the CAD data of the wiring substrate includes graphic data of the substrate and graphic data (wiring pattern) of the wiring. The graphic data of the base material may include various base material information such as the thermal conductivity of the base material and the thickness of the base material. Also, the wiring graphic data is managed for each wiring. For example, when the wiring is composed of line segments, the coordinates of the start and end points of the line segments are included, and the wiring is a continuous line (polyline) in which the line segments are continuous. Are included, the coordinates of the start point and end point of the continuous line and the coordinates of the connection point (vertex) at which the line segments are connected to each other are included. This wiring graphic data includes various wiring information such as wire number, wire length, wire width, wire thickness, wire route, type of conductive material constituting the wire, wire volume resistivity, temperature coefficient of volume resistivity, etc. It may be included. Subsequently, the CPU 81 extracts wiring graphic data from the input CAD data (S202), and converts the extracted graphic data into print data that can be printed by the ink head 42 (S204). Further, the CPU 81 extracts the wiring thickness from the graphic data, sets the number of wiring layers to be realized to the specified number Nset (S206), and initializes the execution number N to the value 1. (S208).
次に、CPU81は、ステージ12が印刷開始位置へ移動するようベルト駆動装置24を駆動制御する(S210)。その後、CPU81は、ステージ12がY軸方向に所定速度で移動するようベルト駆動装置24を駆動制御すると共に(S212)、印刷データに基づいて対応するノズルから導電性粒子含有インクが吐出されるようインクヘッド42を駆動制御する(S214)。これにより、樹脂基材上に配線パターンに沿って導電性粒子含有インクが吐出されてインク塗膜(配線層)が形成されることとなる。
Next, the CPU 81 drives and controls the belt driving device 24 so that the stage 12 moves to the printing start position (S210). Thereafter, the CPU 81 drives and controls the belt driving device 24 so that the stage 12 moves at a predetermined speed in the Y-axis direction (S212), and the conductive particle-containing ink is ejected from the corresponding nozzle based on the print data. The ink head 42 is driven and controlled (S214). As a result, the conductive particle-containing ink is ejected along the wiring pattern on the resin substrate to form an ink coating film (wiring layer).
そして、CPU81は、配線の図形データに基づいてレーザの照射対象となる配線層(対象配線)のレーザ照射経路を設定する(S216)。レーザの照射は、配線毎(線分あるいは連続線毎)に実行される。したがって、レーザ照射経路は、対象配線を次々に切り替えることにより、配線毎に設定されることとなる。次に、CPU81は、レーザ照射装置46が対象配線の照射開始位置の上方へ移動するようベルト駆動装置24とキャリッジモータ45とを駆動制御する(S218)。その後、CPU81は、レーザ照射装置46からレーザスポットの照射を開始させ(S220)、レーザスポットが設定したレーザ照射経路に沿って走査されるようベルト駆動装置24とキャリッジモータ45とを駆動制御する(S222)。そして、CPU81は、樹脂基材上に形成された全ての配線層のレーザ照射が完了したか否かを判定する(S224)。CPU81は、レーザ照射が完了していないと判定すると、次の配線層を対象配線に設定して(S226)、S216~S222の処理を繰り返す。
Then, the CPU 81 sets the laser irradiation path of the wiring layer (target wiring) to be irradiated with the laser based on the wiring graphic data (S216). Laser irradiation is executed for each wiring (for each line segment or continuous line). Therefore, the laser irradiation path is set for each wiring by switching the target wiring one after another. Next, the CPU 81 drives and controls the belt driving device 24 and the carriage motor 45 so that the laser irradiation device 46 moves above the irradiation start position of the target wiring (S218). Thereafter, the CPU 81 starts irradiation of the laser spot from the laser irradiation device 46 (S220), and drives and controls the belt driving device 24 and the carriage motor 45 so that the laser spot is scanned along the set laser irradiation path ( S222). And CPU81 determines whether the laser irradiation of all the wiring layers formed on the resin base material was completed (S224). If the CPU 81 determines that the laser irradiation has not been completed, it sets the next wiring layer as the target wiring (S226), and repeats the processing of S216 to S222.
CPU81は、レーザ照射が完了したと判定すると、実行積層数Nが規定積層数Nsetに達した否かを判定する(S228)。CPU81は、実行積層数Nが規定積層数Nsetに達していないと判定すると、実行積層数Nを値1だけインクリメントして(S230)、S210~S224の処理を繰り返し実行し、実行積層数Nが規定積層数Nsetに達したと判定すると、これで配線層形成処理を終了する。
When determining that the laser irradiation has been completed, the CPU 81 determines whether or not the execution stack number N has reached the specified stack number Nset (S228). If the CPU 81 determines that the execution stack number N has not reached the specified stack number Nset, the CPU 81 increments the execution stack number N by a value 1 (S230), and repeatedly executes the processing of S210 to S224. If it is determined that the specified number of stacked layers Nset has been reached, the wiring layer forming process is terminated.
図5は、配線層形成処理の実行の様子を示す説明図である。図示するように、配線パターンの印刷は、樹脂基材が裁置されたステージ12をY軸ガイドレール22に沿ってY軸方向に移動させながら、配線パターンに合わせてインクヘッド42の対応するノズルから導電性粒子含有インクを吐出することにより行われる(図5(a)参照)。また、レーザ照射(レーザ焼成)は、レーザ照射装置46からレーザを配線に向けて照射させた状態で、配線パターンに合わせてレーザ照射装置46を搭載するキャリッジ44をX軸方向へ移動させると共に樹脂基材が裁置されたステージ12をY軸方向へ移動させることにより行われる(図5(b)参照)。
FIG. 5 is an explanatory diagram showing a state of execution of the wiring layer forming process. As shown in the drawing, the wiring pattern is printed by moving the stage 12 on which the resin base material is placed in the Y-axis direction along the Y-axis guide rail 22 and corresponding nozzles of the ink head 42 according to the wiring pattern. This is performed by discharging conductive particle-containing ink from (see FIG. 5A). In laser irradiation (laser firing), the laser 44 is moved from the laser irradiation device 46 toward the wiring, and the carriage 44 on which the laser irradiation device 46 is mounted is moved in the X-axis direction in accordance with the wiring pattern. This is performed by moving the stage 12 on which the substrate is placed in the Y-axis direction (see FIG. 5B).
S110の撮像検査処理は、図6に例示するフローチャートに従って実行される。撮像検査処理が実行されると、制御装置80のCPU81は、まず、ステージ12が撮像ユニット16の下方へ移動するようベルト駆動装置24を駆動制御する(S300)。その後、CPU81は、撮像ユニット16によってステージ12上の配線層を撮像する(S302)。なお、図7に、撮像ユニット16による配線層の撮像の様子を示す。そして、CPU81は、撮像画像を処理して樹脂基材上に形成された配線の状態を判定する(S304)。この処理は、配線の図形データから特定される配線パターンと撮像画像から認識される配線パターンとを比較して両者が略一致するか否かを判定することにより、不良配線がないかを判定する。なお、CPU81は、両者が略一致しない場合に、不一致部分の特徴によって、断線している配線やレーザ焼成が不十分な配線などの不良の種類も特定するものとしてもよい。
The imaging inspection process in S110 is executed according to the flowchart illustrated in FIG. When the imaging inspection process is executed, the CPU 81 of the control device 80 first drives and controls the belt driving device 24 so that the stage 12 moves below the imaging unit 16 (S300). Thereafter, the CPU 81 images the wiring layer on the stage 12 by the imaging unit 16 (S302). FIG. 7 shows how the wiring layer is imaged by the imaging unit 16. Then, the CPU 81 processes the captured image and determines the state of the wiring formed on the resin base material (S304). This process determines whether there is a defective wiring by comparing the wiring pattern specified from the graphic data of the wiring with the wiring pattern recognized from the captured image and determining whether or not both are substantially the same. . Note that the CPU 81 may also specify the type of defect such as a disconnected wire or a wire with insufficient laser firing depending on the feature of the mismatched portion when the two do not substantially match.
CPU81は、S304の判定の結果、断線している配線があるか否かを判定し(S306)、断線している配線がないと判定すると、これで撮像検査処理を終了する。
As a result of the determination in S304, the CPU 81 determines whether or not there is a disconnected wire (S306). If it is determined that there is no disconnected wire, the imaging inspection process is terminated.
一方、CPU81は、断線している配線があると判定すると(S306)、断線している配線を対象配線に設定し(S308)、対象配線の印刷データを作成する(S310)。S310の処理は、図4の配線層形成処理のS202で抽出された配線の図形データのうち対象配線に係る図形データを抽出し、抽出した図形データを印刷データに変換することにより行うことができる。次に、CPU81は、ステージ12を印刷開始位置へ移動させた後(S312)、ステージ12をY軸方向に移動させながら(S314)、対象配線の印刷データに基づいてインクヘッド42の対応するノズルから導電性粒子含有インクを吐出させる(S316)。そして、CPU81は、対象配線のレーザ照射経路を設定し(S318)、レーザ照射装置46を対象配線の照射開始位置の上方へ移動させた後(S320)、レーザ照射装置46からのレーザスポットの照射を開始し(S322)、レーザスポットをレーザ照射経路に沿って走査させる(S324)。このように、撮像検査処理は、断線が生じている配線に対して導電性粒子含有インクの吐出(印刷)とレーザ照射(焼成)とを再度実行することで、断線を修復するのである。
On the other hand, if the CPU 81 determines that there is a disconnected wire (S306), the disconnected wire is set as the target wire (S308), and print data of the target wire is created (S310). The process of S310 can be performed by extracting the graphic data related to the target wiring from the graphic data of the wiring extracted in S202 of the wiring layer forming process of FIG. 4, and converting the extracted graphic data into print data. . Next, the CPU 81 moves the stage 12 to the print start position (S312), and then moves the stage 12 in the Y-axis direction (S314), and the corresponding nozzle of the ink head 42 based on the print data of the target wiring. Then, the conductive particle-containing ink is discharged (S316). Then, the CPU 81 sets the laser irradiation path of the target wiring (S318), moves the laser irradiation device 46 above the irradiation start position of the target wiring (S320), and then irradiates the laser spot from the laser irradiation device 46. Is started (S322), and the laser spot is scanned along the laser irradiation path (S324). As described above, the imaging inspection process repairs the disconnection by performing again the discharge (printing) of the conductive particle-containing ink and the laser irradiation (firing) on the wiring in which the disconnection occurs.
そして、CPU81は、S302に戻って配線基材を再度撮像して配線の状態の良否を判定する(S304)。CPU81は、S306で断線が生じている配線がないと判定するまで、S302~S324の処理を繰り返し、断線が生じている配線がないと判定すると、これで撮像検査処理を終了する。
Then, the CPU 81 returns to S302 and images the wiring substrate again to determine whether or not the wiring state is good (S304). The CPU 81 repeats the processes of S302 to S324 until it determines that there is no disconnection in S306, and when it determines that there is no disconnection, the imaging inspection process ends here.
このように、本実施形態では、撮像検査処理によって断線が生じている配線を修復するが、断線がなくなっても、焼成が不十分な配線が生じることがある。レーザ焼成は、上述したように、金属ナノ粒子などの導電性粒子を含むインク塗膜をレーザによって加熱することにより導電化する。しかしながら、レーザ焼成によってバルク並みの導電性を得ることが困難である。これは、完全に焼成しようとするほど高温で長時間の加熱が必要であるが、下地の樹脂が加熱されることで樹脂が熱分解もしくは未硬化成分が蒸発して有機ガスとなり、インク塗膜の焼成が阻害されるためであると考えられる。そこで、本実施形態では、焼成が不十分な配線が存在しても、焼成をより完全なものとするために、後述する電流印加処理により電流焼成を行うこととしている。
As described above, in this embodiment, the wiring that has been disconnected due to the imaging inspection process is repaired. However, even if the disconnection disappears, wiring that is not sufficiently fired may be generated. In the laser firing, as described above, an ink coating film containing conductive particles such as metal nanoparticles is made conductive by heating with a laser. However, it is difficult to obtain the same level of bulk conductivity by laser firing. It is necessary to heat at a high temperature for a long time so that it is completely baked, but when the underlying resin is heated, the resin is thermally decomposed or the uncured components are evaporated to become an organic gas. This is thought to be due to the fact that the firing of the is inhibited. Therefore, in the present embodiment, even if there is an insufficiently fired wiring, current firing is performed by a current application process described later in order to complete firing.
S120の電流印加処理は、図8に例示するフローチャートに従って実行される。電流印加処理が実行されると、CPU81は、CADデータに含まれる配線の図形データから対象配線の両端点(始点および終点)の座標と線長L[m]と線幅w[m]と線厚みt[m]とを抽出すると共にCADデータに含まれる基材の図形データから基材厚みr1[m]を抽出する(S400)。また、CPU81は、印加電流Iを決定するための他のパラメータも入力する(S402)。ここで、他のパラメータは、基材の熱伝導率λ[W/mK]や配線の体積抵抗率ρ[Ωm],体積抵抗率の温度係数α[1/K],気温T0[℃]が挙げられる。これらのパラメータは、CADデータに含まれる基材情報や配線情報から抽出したものや、図示しない入力デバイスを介してオペレータにより入力されたもの、センサ(気温を検出する温度センサ)により検出されたものが用いられる。
The current application process of S120 is executed according to the flowchart illustrated in FIG. When the current application process is executed, the CPU 81 determines the coordinates, the line length L [m], the line width w [m], and the line of the end points (start point and end point) of the target wiring from the graphic data of the wiring included in the CAD data. The thickness t [m] is extracted, and the base material thickness r 1 [m] is extracted from the graphic data of the base material included in the CAD data (S400). The CPU 81 also inputs other parameters for determining the applied current I (S402). Here, the other parameters are the thermal conductivity λ [W / mK] of the substrate, the volume resistivity ρ [Ωm] of the wiring, the temperature coefficient α [1 / K] of the volume resistivity, and the temperature T 0 [° C.]. Is mentioned. These parameters are extracted from base material information and wiring information included in CAD data, input from an operator via an input device (not shown), or detected by a sensor (temperature sensor for detecting temperature). Is used.
CPU81は、パラメータを入力すると、対象配線を電流焼成する際の目標温度Tを設定する(S404)。目標温度Tは、導電性粒子含有インクに含まれる分散剤の種類(分解温度)に応じて100℃~250℃程度の温度に設定される。そして、CPU81は、入力したパラメータと目標温度Tとに基づいて焼成に必要な印加電流Iを設定する(S406)。
CPU81 will set the target temperature T at the time of carrying out current baking of object wiring, if a parameter is inputted (S404). The target temperature T is set to a temperature of about 100 ° C. to 250 ° C. according to the type (decomposition temperature) of the dispersant contained in the conductive particle-containing ink. Then, the CPU 81 sets an applied current I necessary for firing based on the input parameters and the target temperature T (S406).
図9に示すように、本実施形態では、印加電流Iを設定するにあたり、配線基材を、円筒形状の配線が円筒形状の基材で包まれた配線基材として扱うものとした。この場合、気温T0と目標温度Tとの温度差をΔTとし、モデル化した配線の半径(換算半径)をr0とすると、温度差ΔTは、次式(1)によって示すことができる。ここで、配線の体積抵抗率ρは、インク塗膜に使用される導電性材料(金属材料)のバルクの体積抵抗率を所定倍(例えば2~3倍程度)したものを用いるものとした。例えば、室温を20℃とした場合、インク塗膜に使用される金属材料として、金,銀,銅の体積抵抗率[μΩm]は、それぞれ、2.21,1.59,1.68となる。このため、使用される金属材料が金,銀,銅の場合、配線の体積抵抗率ρは、それぞれ4.42~6.63,3.18~4.77,3.36~5.04とすることができる。また、体積抵抗率の温度係数α[1/K]は、使用される導電性材料によって異なり、例えば、金,銀,銅の場合、それぞれ0.0040,0.0041,0.0043となる。
As shown in FIG. 9, in this embodiment, when setting the applied current I, the wiring base material is handled as a wiring base material in which a cylindrical wiring is wrapped with a cylindrical base material. In this case, if the temperature difference between the temperature T 0 and the target temperature T is ΔT, and the modeled wire radius (converted radius) is r 0 , the temperature difference ΔT can be expressed by the following equation (1). Here, the volume resistivity ρ of the wiring is a value obtained by multiplying the bulk volume resistivity of the conductive material (metal material) used for the ink coating film by a predetermined value (for example, about 2 to 3 times). For example, when the room temperature is 20 ° C., the volume resistivity [μΩm] of gold, silver, and copper as metallic materials used for the ink coating film is 2.21, 1.59, and 1.68, respectively. . Therefore, when the metal material used is gold, silver or copper, the volume resistivity ρ of the wiring is 4.42 to 6.63, 3.18 to 4.77, 3.36 to 5.04, respectively. can do. Further, the temperature coefficient α [1 / K] of the volume resistivity varies depending on the conductive material used. For example, in the case of gold, silver, and copper, they are 0.0040, 0.0041, and 0.0043, respectively.
換算半径r0は、モデル化前後で配線の断面積が一致するような半径であり、式(2)の関係が成立する。
The conversion radius r 0 is a radius such that the cross-sectional areas of the wirings match before and after modeling, and the relationship of Expression (2) is established.
また、温度差ΔTと気温T0と目標温度Tは、式(3)の関係が成立する。
Further, the temperature difference ΔT and the temperature T 0 and the target temperature T, the relationship of Equation (3) is satisfied.
式(1)~(3)により式(4)が成立する。印加電流Iは、式(4)により計算することができる。
Expression (4) is established by Expressions (1) to (3). The applied current I can be calculated by equation (4).
また、CPU81は、対象配線の焼成の成否を判定するための規定抵抗値Rrefを次式(5)により算出する(S408)。ここで、式(5)中の「k」は係数であり、例えば0.8や0.9などに定めることができる。
Further, the CPU 81 calculates a prescribed resistance value Rref for determining success or failure of firing of the target wiring by the following equation (5) (S408). Here, “k” in Equation (5) is a coefficient, and can be set to 0.8 or 0.9, for example.
そして、CPU81は、S400で抽出した対象配線の両端点(端点A,B)の座標に基づいて一対のプローブ54,56が対象配線の両端点に接触するようベルト駆動装置24と2軸直交ロボット60と3軸直交ロボット70とを駆動制御する(S410)。図10は、対象配線に一対のプローブ54,56を接触させる様子を示す説明図である。S410の処理は、具体的には、以下のようにして行われる。即ち、CPU81は、対象配線の両端点のうち2軸直交ロボット60に近い方(図10中手前側)の端点Aにプローブ54が接触するように、端点AのY座標に基づいてベルト駆動装置24を駆動制御し、端点AのXZ座標に基づいてX軸アクチュエータ63およびZ軸アクチュエータ67を駆動制御する。また、CPU81は、対象配線の両端点のうち3軸直交ロボット70に近い方(図10中奥側)の端点Bにプローブ56が接触するように、端点BのXYZ座標に基づいてX軸アクチュエータ73,Y軸アクチュエータ75およびZ軸アクチュエータ77を駆動制御する。
Then, the CPU 81 determines that the pair of probes 54 and 56 are in contact with both end points of the target wiring based on the coordinates of both end points (end points A and B) of the target wiring extracted in S400, and the biaxial orthogonal robot. 60 and the three-axis orthogonal robot 70 are driven and controlled (S410). FIG. 10 is an explanatory diagram showing a state in which the pair of probes 54 and 56 are brought into contact with the target wiring. Specifically, the process of S410 is performed as follows. In other words, the CPU 81 determines the belt driving device based on the Y coordinate of the end point A so that the probe 54 contacts the end point A closer to the biaxial orthogonal robot 60 among the both end points of the target wiring (front side in FIG. 10). 24, and the X axis actuator 63 and the Z axis actuator 67 are driven based on the XZ coordinates of the end point A. Further, the CPU 81 determines the X-axis actuator based on the XYZ coordinates of the end point B so that the probe 56 contacts the end point B closer to the 3-axis orthogonal robot 70 among the both end points of the target wiring (the back side in FIG. 10). 73, the Y-axis actuator 75 and the Z-axis actuator 77 are driven and controlled.
CPU81は、一対のプローブ54,56を対象配線の両端点に接触させると、S406で設定した印加電流Iが対象配線に印加されるよう可変電流源52aを制御して(S412)、電流印加処理を終了する。
When the CPU 81 brings the pair of probes 54 and 56 into contact with both end points of the target wiring, the CPU 81 controls the variable current source 52a so that the applied current I set in S406 is applied to the target wiring (S412), and current application processing Exit.
図11は、CADデータから電流を印加する2点の座標が抽出される様子を示す説明図である。電流焼成における電流の印加は、線分や連続線を単位とする配線(配線1~3)毎に行われる。また、CADデータに含まれる配線の図形データには、各線分の始点および終点の座標が含まれ、各連続線の始点,頂点および終点の座標が含まれている。このため、電流焼成において電流を印加する2点の座標(対象配線の両端点の座標)は、CADデータに含まれる配線の図形データから抽出することができる。また、電流焼成における印加電流Iや規定抵抗値Rを決定するためのパラメータの一部(線長や線幅,線厚み,基材厚み)も、CADデータに含まれる配線の図形データや基材の図形データから抽出することができる。
FIG. 11 is an explanatory diagram showing how the coordinates of two points to which current is applied are extracted from CAD data. The application of current in the current firing is performed for each wiring (wirings 1 to 3) whose unit is a line segment or continuous line. Also, the wiring graphic data included in the CAD data includes the coordinates of the start point and end point of each line segment, and the coordinates of the start point, vertex, and end point of each continuous line. For this reason, the coordinates of the two points to which the current is applied in the current firing (the coordinates of the end points of the target wiring) can be extracted from the graphic data of the wiring included in the CAD data. In addition, some of the parameters (line length, line width, line thickness, substrate thickness) for determining the applied current I and the specified resistance value R in current firing are also included in the CAD graphic data and the substrate graphic data. It can be extracted from the figure data.
S130の導通抵抗検査処理は、図12に例示するフローチャートに従って実行される。導通抵抗検査処理では、CPU81は、電流印加処理によって対象配線に電流が印加されているか否かを判定する(S500)。CPU81は、対象配線に電流が印加されていないと判定すると、導通抵抗検査処理を終了し、対象配線に電流が印加されていると判定すると、対象配線の抵抗値Rを測定する(S502)。
The conduction resistance inspection process of S130 is executed according to the flowchart illustrated in FIG. In the conduction resistance inspection process, the CPU 81 determines whether or not a current is applied to the target wiring by the current application process (S500). If the CPU 81 determines that no current is applied to the target wiring, the CPU 81 terminates the continuity resistance inspection process. If the CPU 81 determines that a current is applied to the target wiring, the CPU 81 measures the resistance value R of the target wiring (S502).
次に、CPU81は、導通抵抗検査処理(抵抗値Rの測定)を開始してから所定時間(例えば、20秒や30秒)が経過したか否か(S504)、測定した抵抗値Rが規定抵抗値Rref以下であるか否か(S506)、をそれぞれ判定する。CPU81は、所定時間が経過しておらず、測定した抵抗値Rが規定抵抗値Rref以下でもないと判定すると、S502に戻って、抵抗値Rの測定を繰り返す。また、CPU81は、所定時間が経過する前に、測定した抵抗値Rが規定抵抗値Rref以下となったと判定すると、完全に焼成したと判断し、他に電流焼成すべき配線があるか否かを判定する(S508)。CPU81は、他に電流焼成すべき配線があると判定すると、次の配線を対象配線に設定して(S510)、電流印加処理のS400に戻り、他に電流焼成すべき配線がないと判定すると、導通抵抗検査処理を終了する。
Next, the CPU 81 determines whether or not a predetermined time (for example, 20 seconds or 30 seconds) has elapsed since the start of the conduction resistance test process (measurement of the resistance value R) (S504), and the measured resistance value R is defined. It is determined whether or not it is equal to or less than the resistance value Rref (S506). If the CPU 81 determines that the predetermined time has not elapsed and the measured resistance value R is not less than or equal to the specified resistance value Rref, the CPU 81 returns to S502 and repeats the measurement of the resistance value R. Further, if the CPU 81 determines that the measured resistance value R has become equal to or less than the specified resistance value Rref before the predetermined time has elapsed, the CPU 81 determines that it has been completely fired, and whether there is any other wiring to be fired. Is determined (S508). If the CPU 81 determines that there is another wiring to be fired, it sets the next wiring as the target wiring (S510), returns to S400 of the current application process, and determines that there is no other wiring to be fired. Then, the conduction resistance inspection process is terminated.
一方、CPU81は、測定した抵抗値Rが規定抵抗値Rref以下となることなく、所定時間が経過したと判定すると、電流増加フラグFが値1であるか否かを判定する(S512)。ここで、電流増加フラグFは、対象配線に対して印加する電流を増加させる処理が行われたか否かを示すものである。CPU81は、電流増加フラグFが値1でないと判定すると、S406で設定した印加電流Iを所定電流ΔIだけ増加させたものを新たな印加電流Iに再設定し(S514)、電流増加フラグFに値1を設定する(S516)。そして、CPU81は、電流印加処理のS416に戻って、再設定した印加電流Iにより対象配線に電流を印加する。このように、CPU81は、対象配線の抵抗値Rが規定抵抗値Rref以下まで下がらず、焼成が不十分であるときには、印加電流Iを増加させた上で、対象配線に電流を印加させる。
On the other hand, when the CPU 81 determines that the predetermined time has elapsed without the measured resistance value R being equal to or less than the specified resistance value Rref, the CPU 81 determines whether or not the current increase flag F is a value 1 (S512). Here, the current increase flag F indicates whether or not processing for increasing the current applied to the target wiring has been performed. If the CPU 81 determines that the current increase flag F is not 1, the CPU 81 resets the applied current I set in S406 by a predetermined current ΔI to a new applied current I (S514). A value of 1 is set (S516). Then, the CPU 81 returns to S416 of the current application process, and applies a current to the target wiring with the reset applied current I. As described above, when the resistance value R of the target wiring does not fall below the specified resistance value Rref and the firing is insufficient, the CPU 81 increases the applied current I and then applies the current to the target wiring.
印加電流Iを増加させたにも拘わらず、所定時間が経過するまでに対象配線の抵抗値Rが規定抵抗値Rref以下まで下がらなかった場合、S512で電流増加フラグFが値1であると判定される。CPU81は、電流増加フラグFが値1であると判定すると、電流増加フラグFを値0に戻し(S518)、対象配線に対して、上述した図6の撮像検査処理のS310~S324と同様に、導電性粒子含有インクの吐出(印刷)とレーザ照射(レーザ焼成)とを実行する(S520~S534)。そして、CPU81は、電流印加処理のS400に戻って、対象配線に対して電流焼成を再実行する。
If the resistance value R of the target wiring does not fall below the specified resistance value Rref before the predetermined time elapses even though the applied current I is increased, it is determined in S512 that the current increase flag F is the value 1 Is done. If the CPU 81 determines that the current increase flag F has a value of 1, the CPU 81 returns the current increase flag F to a value of 0 (S518), and for the target wiring, similar to S310 to S324 of the imaging inspection process of FIG. 6 described above. Then, discharge (printing) of conductive particle-containing ink and laser irradiation (laser firing) are executed (S520 to S534). Then, the CPU 81 returns to S400 of the current application process and re-executes current firing on the target wiring.
このように、本実施形態の配線基材製造装置10は、電流焼成が不十分であった場合に、印加する電流を増加させ、それでも、電流焼成が不十分である場合には、導電性粒子含有インクの吐出(印刷)とレーザ照射(レーザ焼成)とを再実行するのである。これにより、配線の導電化をより確実に行うことができる。
Thus, the wiring substrate manufacturing apparatus 10 of the present embodiment increases the current to be applied when the current firing is insufficient, and if the current firing is still insufficient, the conductive particles The ejection (printing) of the contained ink and the laser irradiation (laser firing) are re-executed. This makes it possible to more reliably conduct the wiring.
ここで、本実施形態の主要な要素と発明の開示の欄に記載した発明の主要な要素との対応関係について説明する。即ち、本実施形態の焼成ユニット50が本発明の「焼成装置」に相当し、2軸直交ロボット60と3軸直交ロボット70が「移動ロボット」に相当し、一対のプローブ54,56が「一対の電極」に相当し、電流印加装置52が「電流印加装置」に相当し、制御装置80が「制御装置」に相当する。
Here, the correspondence between the main elements of the present embodiment and the main elements of the invention described in the disclosure section of the invention will be described. In other words, the firing unit 50 of the present embodiment corresponds to the “baking apparatus” of the present invention, the 2-axis orthogonal robot 60 and the 3-axis orthogonal robot 70 correspond to the “mobile robot”, and the pair of probes 54 and 56 are “a pair of probes”. The current application device 52 corresponds to the “current application device”, and the control device 80 corresponds to the “control device”.
以上説明した本実施形態の配線基材製造装置10は、CADデータに含まれる配線の図形データに基づいて基材上に導電性粒子を含む配線層を形成する。また、配線基材製造装置10は、基材上に形成した配線層の2点間に一対のプローブ54,56(電極)を接触させて電流を印加する場合に、印加する電流の大きさを決定するためのパラメータ(線幅wや線厚みt,基材厚みr0)をCADデータに含まれる配線の図形データや基材の図形データから抽出する。これにより、CADデータに基づいて電流焼成において印加する電流の大きさを決定することができる。この結果、電流焼成を効率よく実行することができ、配線基材の生産効率をより高めることができる。また、CADデータを用いて対象配線に印加する電流の大きさを最適化することができるため、良好な導電性を確保することができる。この場合、配線層をより薄く設計することも可能となり、レーザ焼成の回数を減らして基材(樹脂)へのダメージを低減させることができる。また、対象配線に印加する電流の大きさを最適化できるため、対象配線に対する過大な電流の印加を回避して基材(樹脂)へのダメージをより低減させることができる。
The wiring substrate manufacturing apparatus 10 of the present embodiment described above forms a wiring layer containing conductive particles on the substrate based on the wiring graphic data included in the CAD data. Further, the wiring substrate manufacturing apparatus 10 determines the magnitude of the applied current when applying a current by bringing a pair of probes 54 and 56 (electrodes) into contact between two points of the wiring layer formed on the substrate. Parameters for determination (line width w, line thickness t, base material thickness r 0 ) are extracted from wiring graphic data and base material graphic data included in the CAD data. Thereby, the magnitude | size of the electric current applied in current baking can be determined based on CAD data. As a result, current firing can be performed efficiently, and the production efficiency of the wiring substrate can be further increased. Moreover, since the magnitude of the current applied to the target wiring can be optimized using CAD data, good conductivity can be ensured. In this case, the wiring layer can be designed to be thinner, and the number of laser firings can be reduced to reduce damage to the substrate (resin). Moreover, since the magnitude of the current applied to the target wiring can be optimized, application of an excessive current to the target wiring can be avoided and damage to the base material (resin) can be further reduced.
また、本実施形態の配線基材製造装置10は、電流を印加した対象配線の抵抗値Rを測定し、抵抗値Rが規定抵抗値Rref以下となった場合に、焼成が完了したと判定する導通抵抗検査を実行する。また、導通抵抗検査において、規定抵抗値Rrefを決定するためのパラメータ(線長Lや線幅w,線厚みt)をCADデータに含まれる配線の図形データから抽出する。これにより、導通抵抗検査を効率よく実行することができ、配線基材の生産効率をより高めることができる。また、導通抵抗検査は、電流を印加している間に実行できるため、検査を効率よく行うことができる。
In addition, the wiring substrate manufacturing apparatus 10 of the present embodiment measures the resistance value R of the target wiring to which the current is applied, and determines that the firing is completed when the resistance value R is equal to or less than the specified resistance value Rref. Conduct continuity resistance test. In the conduction resistance test, parameters (line length L, line width w, line thickness t) for determining the prescribed resistance value Rref are extracted from the graphic data of the wiring included in the CAD data. Thereby, a conduction | electrical_connection resistance test | inspection can be performed efficiently and the production efficiency of a wiring base material can be improved more. In addition, since the conduction resistance test can be performed while a current is applied, the test can be performed efficiently.
さらに、本実施形態の配線基材製造装置10は、導通抵抗検査によって対象配線の抵抗値Rが規定抵抗値Rref以下まで下がらなかった場合には、対象配線に印加する電流を増加させる。これにより、対象配線の導電化を確実に行うことができ、配線基材の歩留まりを向上させることができる。しかも、配線基材製造装置10は、対象配線に印加する電流を増加させたにも拘わらず、抵抗値Rが規定抵抗値Rref以下まで下がらなかった場合には、対象配線に対して導電性粒子含有インクの吐出(印刷)とレーザ照射(レーザ焼成)とを再実行する。これにより、対象配線の導電化をより確実に行うことができ、配線基材の歩留まりをより向上させることができる。
Furthermore, the wiring substrate manufacturing apparatus 10 of the present embodiment increases the current applied to the target wiring when the resistance value R of the target wiring does not fall below the specified resistance value Rref by the conduction resistance test. As a result, the target wiring can be reliably made conductive, and the yield of the wiring substrate can be improved. Moreover, when the resistance value R does not decrease to the specified resistance value Rref or less in spite of increasing the current applied to the target wiring, the wiring substrate manufacturing apparatus 10 performs conductive particles on the target wiring. The ejection (printing) of the contained ink and the laser irradiation (laser baking) are performed again. This makes it possible to more reliably conduct the target wiring and further improve the yield of the wiring substrate.
また、本実施形態の配線機材製造装置10は、基材上に配線層を形成した後、形成した配線層を撮像ユニット16により撮像して断線の有無などを検査する撮像検査を行い、断線が生じていると判定された配線に対して導電性粒子含有インクの吐出(印刷)とレーザ照射(レーザ焼成)とを再実行する。これにより、配線基材の作製途中で適宜、検査・修正を行うことができ、配線基材の歩留まりをさらに向上させることができる。
In addition, after forming the wiring layer on the base material, the wiring equipment manufacturing apparatus 10 of the present embodiment performs an imaging inspection in which the formed wiring layer is imaged by the imaging unit 16 and inspected for the presence or absence of the disconnection. The discharge (printing) of the conductive particle-containing ink and the laser irradiation (laser firing) are performed again on the wiring determined to be generated. Thereby, inspection and correction can be appropriately performed during the production of the wiring base material, and the yield of the wiring base material can be further improved.
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
例えば、上述した実施形態では、CPU81は、電流焼成を行う場合に、式(4)を用いて印加電流Iを算出するものとした。これに対して、CADデータに含まれる配線の図形データから抽出できるパラメータ(線長や線幅,線厚みなど)に基づいて印加電流Iを導出できるものであれば、簡略化した演算式や実験などに基づくテーブルなどを用いるものとしてもよい。
For example, in the above-described embodiment, the CPU 81 calculates the applied current I using Equation (4) when performing current baking. On the other hand, if the applied current I can be derived based on parameters (line length, line width, line thickness, etc.) that can be extracted from the graphic data of the wiring included in the CAD data, a simplified arithmetic expression or experiment A table based on the above may be used.
上述した実施形態では、配線層形成ユニット40は、レーザを用いて配線層(導電性粒子含有インク)を焼成するものとしたが、連続スペクトル領域をもつパルス光(例えば、キセノンランプ)を照射することにより配線層を焼成するものとしてもよい。また、電気炉などを用いて配線層を焼成するものとしてもよい。
In the embodiment described above, the wiring layer forming unit 40 fires the wiring layer (conductive particle-containing ink) using a laser. However, the wiring layer forming unit 40 emits pulsed light having a continuous spectral region (for example, a xenon lamp). By doing so, the wiring layer may be fired. Alternatively, the wiring layer may be fired using an electric furnace or the like.
上述した実施形態では、配線層(導電性粒子含有インク)に対してレーザ焼成を行った後、電流焼成を行うものとしたが、レーザ焼成を省略するものとしてもよい。
In the embodiment described above, the current firing is performed after the laser firing is performed on the wiring layer (the conductive particle-containing ink). However, the laser firing may be omitted.
上述した実施形態では、焼成ユニット50は、2軸直交ロボット60および3軸直交ロボット70により一対のプローブ69,79を移動可能としたが、少なくとも一方を多関節ロボットによりプローブを移動可能に構成するものとしてもよい。
In the embodiment described above, the firing unit 50 can move the pair of probes 69 and 79 by the two-axis orthogonal robot 60 and the three-axis orthogonal robot 70, but at least one of them is configured to be movable by an articulated robot. It may be a thing.
上述した実施形態では、焼成ユニット50は、基材上に形成された全ての配線に対して電流焼成を行うものとしたが、撮像検査処理のS302で断線している配線やレーザ焼成が不十分な配線などの不良の種類も特定する場合には、レーザ焼成が不十分と判定された配線に対してのみ電流焼成を行うものとしてもよい。
In the above-described embodiment, the firing unit 50 performs current firing on all the wirings formed on the base material. However, the disconnected wiring and laser firing in S302 of the imaging inspection process are insufficient. When specifying the type of defect such as simple wiring, current firing may be performed only on the wiring that has been determined to be insufficient for laser firing.
上述した実施形態では、CPU81は、配線基材の検査として撮像検査と導通抵抗検査とを実行したが、いずれか一方または両方の検査を省略するものとしてもよい。
In the above-described embodiment, the CPU 81 performs the imaging inspection and the continuity resistance inspection as the inspection of the wiring base material, but either or both of the inspections may be omitted.
上述した実施形態では、CPU81は、導通抵抗検査として、対象配線の抵抗値Rが規定抵抗値Rref以下まで下がらなかった場合には、対象配線に印加する電流を増加させ、電流を増加させても、抵抗値Rが規定抵抗値Rrefまで下がらなかった場合には、対象配線に対して導電性粒子含有インクの吐出(印刷)とレーザ照射(レーザ焼成)とを行うものとした。これに対して、CPU81は、対象配線の抵抗値Rが規定抵抗値Rref以下まで下がらなかった場合には、直ちに対象配線に対して印刷とレーザ焼成とを行うものとしてもよい。また、CPU81は、対象配線の抵抗値Rが規定抵抗値Rref以下まで下がらなかった場合には、対象配線に印加する電流を増加させ、電流を増加させても、抵抗値Rが規定抵抗値Rrefまで下がらなかった場合には、印加する電流をさらに増加させてもよい。あるいは、CPU81は、対象配線の抵抗値Rが規定抵抗値Rref以下まで下がらなかった場合には、エラーを出力するものとしてもよい。
In the above-described embodiment, the CPU 81 increases the current applied to the target wiring and increases the current when the resistance value R of the target wiring does not fall below the specified resistance value Rref as the conduction resistance test. When the resistance value R did not fall to the specified resistance value Rref, the discharge (printing) of conductive particle-containing ink and laser irradiation (laser firing) were performed on the target wiring. On the other hand, when the resistance value R of the target wiring does not fall below the specified resistance value Rref, the CPU 81 may immediately perform printing and laser firing on the target wiring. In addition, when the resistance value R of the target wiring does not fall below the specified resistance value Rref, the CPU 81 increases the current applied to the target wiring, and even if the current is increased, the resistance value R becomes the specified resistance value Rref. If the voltage does not drop to the upper limit, the applied current may be further increased. Alternatively, the CPU 81 may output an error when the resistance value R of the target wiring does not fall below the specified resistance value Rref.
なお、本発明は上述した実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
In addition, this invention is not limited to the Example mentioned above at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.
本発明は、焼成装置の製造産業などに利用可能である。
The present invention can be used in the manufacturing industry of baking apparatuses.
10 配線基材製造装置、12 ステージ、16 撮像ユニット、20 搬送装置、22 Y軸ガイドレール、24 ベルト駆動装置、30 樹脂層形成ユニット、32 インクヘッド、34 UV光照射装置、40 配線層形成ユニット、42 インクヘッド、44 キャリッジ、45 キャリッジモータ、46 レーザ照射装置、50 焼成ユニット、52 電流印加装置、52a 可変電流源、52b 電圧センサ、54,56 プローブ、60 2軸直交ロボット、61 台座、62 X軸スライダ、63 X軸アクチュエータ、66 Z軸スライダ、67 Z軸アクチュエータ、68 プローブヘッド、70 3軸直交ロボット、71 台座、72 X軸スライダ、73 X軸アクチュエータ、74 Y軸スライダ、75 Y軸アクチュエータ、76 Z軸スライダ、77 Z軸アクチュエータ、78 プローブヘッド、80 制御装置、81 CPU、82 ROM、83 HDD、84 RAM、85 入出力インタフェース、86 バス。
10 Wiring substrate manufacturing equipment, 12 stages, 16 imaging units, 20 transporting devices, 22 Y-axis guide rails, 24 belt drive devices, 30 resin layer forming units, 32 ink heads, 34 UV light irradiation devices, 40 wiring layer forming units , 42 ink head, 44 carriage, 45 carriage motor, 46 laser irradiation device, 50 firing unit, 52 current application device, 52a variable current source, 52b voltage sensor, 54, 56 probe, 60 2-axis orthogonal robot, 61 pedestal, 62 X axis slider, 63 X axis actuator, 66 Z axis slider, 67 Z axis actuator, 68 probe head, 70 3 axis orthogonal robot, 71 pedestal, 72 X axis slider, 73 X axis actuator, 74 Y axis slider, 75 Y axis Actuator, 76 Z-axis slider, 77 Z-axis actuator, 78 probe head, 80 control device, 81 CPU, 82 ROM, 83 HDD, 84 RAM, 85 input-output interface, 86 bus.
Claims (8)
- 基材に配線を形成する配線形成方法であって、
配線パターンを記述したパターンデータに基づいて導電性粒子含有塗膜を前記配線パターンに沿って前記基材上に塗布する塗布工程と、
前記基材上に塗布された導電性粒子含有塗膜の2点間に電流を印加して焼成する電流印加工程と、
を備え、
前記電流印加工程は、前記パターンデータに基づいて印加する電流の大きさを決定した上で、電流を印加する
ことを特徴とする配線形成方法。 A wiring formation method for forming a wiring on a substrate,
An application step of applying a conductive particle-containing coating film on the substrate along the wiring pattern based on pattern data describing the wiring pattern;
A current application step of applying a current between two points of the conductive particle-containing coating film applied on the base material and firing the applied film;
With
In the method of forming a wiring, the current application step includes applying a current after determining a magnitude of a current to be applied based on the pattern data. - 請求項1記載の配線形成方法であって、
前記電流印加工程により電流を印加した2点間の抵抗値を測定し、前記測定した抵抗値が規定値以下となった場合に焼成が完了したと判定する焼成検査工程を備え、
前記焼成検査工程は、前記パターンデータに基づいて前記規定値を決定する
ことを特徴とする配線形成方法。 The wiring forming method according to claim 1,
Measuring a resistance value between two points to which a current is applied in the current application step, and comprising a firing inspection step for determining that firing is completed when the measured resistance value is a specified value or less,
The said baking test process determines the said prescribed value based on the said pattern data. The wiring formation method characterized by the above-mentioned. - 請求項2記載の配線形成方法であって、
前記焼成検査工程により測定された抵抗値が前記規定値以下とならなかった場合には、印加する電流を増大させて前記電流印加工程を再実行する
ことを特徴とする配線形成方法。 The wiring forming method according to claim 2,
When the resistance value measured by the firing inspection step is not less than or equal to the specified value, the current application step is re-executed by increasing the current to be applied. - 請求項2または3記載の配線形成方法であって、
前記焼成検査工程により測定された抵抗値が前記規定値以下とならなかった場合には、前記塗布工程と前記電流印加工程とを再実行する
ことを特徴とする配線形成方法。 The wiring forming method according to claim 2 or 3,
When the resistance value measured by the firing inspection step is not less than or equal to the specified value, the coating step and the current application step are re-executed. - 請求項1ないし4いずれか1項に記載の配線形成方法であって、
前記導電性粒子含有塗膜が塗布された基材を撮像し、得られた撮像画像に基づいて前記導電性粒子含有塗膜の塗布不良を判定する塗布検査工程を備える
ことを特徴とする配線形成方法。 The wiring forming method according to any one of claims 1 to 4,
Wiring formation characterized by comprising a coating inspection step of imaging a base material coated with the conductive particle-containing coating film and determining poor coating of the conductive particle-containing coating film based on the obtained captured image Method. - 請求項5記載の配線形成方法であって、
前記塗布検査工程により塗布不良が生じていると判定された場合には、塗布不良が生じていると判定された箇所に対して前記塗布工程を再実行する
ことを特徴とする配線形成方法。 The wiring forming method according to claim 5, wherein
When it is determined that a coating failure has occurred in the coating inspection step, the coating step is re-executed at a location where it is determined that a coating failure has occurred. - 請求項1ないし6いずれか1項に記載の配線形成方法であって、
前記電流印加工程は、移動ロボットを用いて、前記基材上に塗布された導電性粒子含有塗膜の2点間に一対の電極を接触させることにより電流を印加する
ことを特徴とする配線形成方法。 The wiring forming method according to any one of claims 1 to 6,
In the current application step, a current is applied by bringing a pair of electrodes into contact with each other between two points of the conductive particle-containing coating film applied on the substrate using a mobile robot. Method. - 配線パターンを記述したパターンデータに基づいて基材に塗布された導電性粒子含有塗膜を焼成する焼成装置であって、
一対の電極を移動可能な移動ロボットと、
前記一対の電極を介して電流を印加可能な電流印加装置と、
前記基材上に塗布された導電性粒子含有塗膜の2点間に前記一対の電極が接触するよう前記移動ロボットを制御し、前記2点間に電流が印加されるよう前記電流印加装置を制御する制御装置と、
を備え、
前記制御装置は、前記パターンデータに基づいて電流を印加する位置と印加する電流の大きさとを決定した上で、前記移動ロボットと前記電流印加装置とを制御する
ことを特徴とする焼成装置。 A firing device for firing a conductive particle-containing coating applied to a substrate based on pattern data describing a wiring pattern,
A mobile robot capable of moving a pair of electrodes;
A current application device capable of applying a current via the pair of electrodes;
The mobile robot is controlled so that the pair of electrodes are in contact between two points of the conductive particle-containing coating film applied on the substrate, and the current application device is configured so that a current is applied between the two points. A control device to control;
With
The said control apparatus controls the said mobile robot and the said electric current application apparatus, after determining the position which applies an electric current based on the said pattern data, and the magnitude | size of the electric current to apply. The baking apparatus characterized by the above-mentioned.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/082540 WO2017085830A1 (en) | 2015-11-19 | 2015-11-19 | Wiring forming method and baking device |
JP2017551460A JP6586176B2 (en) | 2015-11-19 | 2015-11-19 | Wiring substrate manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/082540 WO2017085830A1 (en) | 2015-11-19 | 2015-11-19 | Wiring forming method and baking device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017085830A1 true WO2017085830A1 (en) | 2017-05-26 |
Family
ID=58719152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082540 WO2017085830A1 (en) | 2015-11-19 | 2015-11-19 | Wiring forming method and baking device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6586176B2 (en) |
WO (1) | WO2017085830A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10209582A (en) * | 1997-01-20 | 1998-08-07 | Sumitomo Electric Ind Ltd | Manufacture of ceramic substrate and ceramic circuit substrate |
JP2001315310A (en) * | 2000-05-09 | 2001-11-13 | Matsushita Electric Ind Co Ltd | Screen printer |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62181490A (en) * | 1986-02-05 | 1987-08-08 | 株式会社豊田自動織機製作所 | Method and apparatus for manufacturing printed circuit boardby ink-jet method |
US5074037A (en) * | 1989-12-01 | 1991-12-24 | Oerlikon-Contraves Ag | Process for producing electrical connections on a universal substrate |
JP3789163B2 (en) * | 1996-05-13 | 2006-06-21 | Ntn株式会社 | Defect correcting method and defect correcting apparatus for continuous pattern |
JP2009004482A (en) * | 2007-06-20 | 2009-01-08 | Olympus Corp | Method for manufacturing wiring board |
JP2009200248A (en) * | 2008-02-21 | 2009-09-03 | Osaka Industrial Promotion Organization | Manufacturing method of wiring |
KR101150918B1 (en) * | 2010-12-01 | 2012-05-29 | 한국생산기술연구원 | The sintering method of the conductive pattern formed by printing techniques |
JP6073603B2 (en) * | 2012-08-31 | 2017-02-01 | 古河機械金属株式会社 | Substrate manufacturing method |
KR101396173B1 (en) * | 2013-04-02 | 2014-05-19 | 한국생산기술연구원 | Electrical sintering method using stepwise constant current |
-
2015
- 2015-11-19 WO PCT/JP2015/082540 patent/WO2017085830A1/en active Application Filing
- 2015-11-19 JP JP2017551460A patent/JP6586176B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10209582A (en) * | 1997-01-20 | 1998-08-07 | Sumitomo Electric Ind Ltd | Manufacture of ceramic substrate and ceramic circuit substrate |
JP2001315310A (en) * | 2000-05-09 | 2001-11-13 | Matsushita Electric Ind Co Ltd | Screen printer |
Also Published As
Publication number | Publication date |
---|---|
JP6586176B2 (en) | 2019-10-02 |
JPWO2017085830A1 (en) | 2018-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108724694B (en) | Nanostructures for process monitoring and feedback control | |
US20170355143A1 (en) | 3d-printing method and 3d-printing device | |
US10018570B2 (en) | Combined surface inspection using multiple scanners | |
US11257783B2 (en) | Device and method for reel-to-reel laser reflow | |
CN114012210B (en) | Deposition quality judgment system and method in electric arc additive process | |
CN117260076A (en) | System and method for automated welding | |
JP6586176B2 (en) | Wiring substrate manufacturing equipment | |
JP6615903B2 (en) | Laser irradiation device | |
JP2006261228A (en) | Wiring pattern forming apparatus for circuit substrate and method of repairing wiring pattern | |
JP6476234B2 (en) | Non-contact type circuit pattern inspection and repair device | |
WO2017221347A1 (en) | Circuit formation method and circuit formation device | |
Dellarre et al. | Qualify a NIR camera to detect thermal deviation during aluminum WAAM | |
JP2006029997A (en) | Board inspection device and board inspection method | |
JP6236073B2 (en) | Inspection device, inspection method, and control device | |
JP2006029997A5 (en) | ||
WO2018074232A1 (en) | Device for inspecting supply state of corrosion inhibitor, corrosion inhibitor supply device, and method for producing terminal-equipped wire | |
Dellarre et al. | Qualify a near-infrared camera to detect thermal deviation during aluminum alloy Wire Arc Additive Manufacturing | |
JP6996007B2 (en) | Circuit manufacturing system | |
WO2016063787A1 (en) | Substrate defect repair device and defect repair method, and structure of repaired substrate-defect section | |
Ivy et al. | Feature-based machine learning for predicting resistances in printed electronics | |
JP2009078254A (en) | Deterioration inspecting device, deterioration inspecting method and deterioration inspecting program for coating agent | |
WO2023157493A1 (en) | Defect detection method, additive manufactured article manufacturing method, defect detection device, and additive manufacturing device | |
Johnson et al. | Establishing in-process inspection requirements for material extrusion additive manufacturing [conference paper] | |
JP6670946B2 (en) | Laser irradiation device | |
Jiang et al. | In Situ Monitoring and Recognition of Printing Quality in Electrohydrodynamic Inkjet Printing via Machine Learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15908770 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017551460 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15908770 Country of ref document: EP Kind code of ref document: A1 |