WO2017085433A1 - Enthalpy exchange device - Google Patents

Enthalpy exchange device Download PDF

Info

Publication number
WO2017085433A1
WO2017085433A1 PCT/FR2016/053031 FR2016053031W WO2017085433A1 WO 2017085433 A1 WO2017085433 A1 WO 2017085433A1 FR 2016053031 W FR2016053031 W FR 2016053031W WO 2017085433 A1 WO2017085433 A1 WO 2017085433A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
media
transfer
exchange
transfer medium
Prior art date
Application number
PCT/FR2016/053031
Other languages
French (fr)
Inventor
Alain Fernandez De Grado
Philippe HAFFNER
Original Assignee
Haffner Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haffner Energy filed Critical Haffner Energy
Publication of WO2017085433A1 publication Critical patent/WO2017085433A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents
    • F28G9/005Cleaning by flushing or washing, e.g. with chemical solvents of regenerative heat exchanger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/343Heat recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/02Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using granular particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/001Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • F28C3/14Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material moving by gravity, e.g. down a tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D13/00Heat-exchange apparatus using a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to the field of thermal energy exchange between a hot fluid and a cold fluid, particularly in the energy process industry.
  • heat exchangers In order to proceed with an exchange of thermal energy between a hot fluid, whether it is gas or liquid, and a so-called cold fluid that will heat up in thermal contact with the hot fluid, it is common to use heat exchangers.
  • the superheating temperature of the steam produced is generally limited to less than 420 ° C. in order to maintain a temperature below 500 ° C. on the walls of the superheating tubes, which greatly degrades the electrical efficiencies with respect to an installation which would produce steam under improved conditions at about 520 ° C.
  • Static installations are facilities that are difficult to clean after fouling and that it is expensive to replace when the exchange surfaces are corroded by attacks of high temperature chlorine.
  • the hot fluid is a gas having a very low thermal conductivity, generally less than 0.05 W / mK.
  • the consequence is a high nip between the supply fluid and the calorie-receiving fluid, that is to say that there remains a high temperature difference between the two fluids, even in the context of a countercurrent exchange despite important trading surfaces. In a biomass steam boiler, this nip often exceeds 100 ° C.
  • the present invention relates to the field of thermal energy exchange between a hot fluid and a cold fluid, particularly in the energy process industry.
  • the same invention can be used to transfer cold between fluids.
  • the invention also relates to the latent heat exchange when at least one fluid undergoes a change of state which releases or absorbs latent heat, in addition to the sensible heat. This is why the invention relates to the exchange of total enthalpy (sensible heat plus latent heat) between fluids.
  • the present invention aims to overcome the drawbacks of the state of the art by providing an exchange device between at least one fluid A and at least one fluid B, comprising an enclosure, comprising a fluid outlet A, an inlet fluid A, a fluid outlet B, a fluid inlet B, characterized in that the position of the fluid inlets and outlets A and B define two distinct zones in the chamber, a first fluid action zone A between the fluid inlet and outlet A and a second fluid action zone B between the inlet and the fluid outlet B and in that independent solid particles forming a mobile transfer medium are placed in a pile in the enclosure, in the fluid action zone A and in the fluid action zone B and in that a media inlet is placed at one end of the enclosure and in that a media outlet is placed at the other end of the enclosure and that means for transferring the media is interposed between the media output and the media input providing the media loop.
  • the term "enclosure” means a structure in which said transfer medium is present in a packed form.
  • the horizontal section of said enclosure is constant between the transfer media input and the transfer media output. So, the transfer of the transfer medium is homogeneous regardless of the position of the solid particles constituting it.
  • the term “heap” means that throughout the enclosure, the transfer medium forms a homogeneous granular stack and that inside the enclosure there is there is no empty volume separating it from different discrete transfer media areas and that the weight of the transfer medium present in the highest fluid action zone is applied in whole or in part to the transfer media present in the area of lowest fluid action.
  • the present invention therefore does not relate to devices or methods in which the transfer medium is in the form of a fluidized bed.
  • the term “exchange” means an exchange of materials and advantageously an exchange of dust or any other undesirable element present in the fluid A.
  • the term “exchange” also means an energy exchange and advantageously an enthalpy exchange.
  • zone intends to designate a portion of the interior volume of the chamber in which a single fluid will circulate and which will constitute a direct or indirect contact zone between said fluid and the transfer medium.
  • zones can be defined structurally, in the case where a fluid will flow between its inlet and its outlet, inside the enclosure, in a heat exchanger.
  • an area will be defined by the position of the fluid inlet and outlet.
  • an inlet and a fluid outlet placed on either side of the enclosure will define an area that corresponds to the portion of the enclosure disposed between said inlet and said outlet.
  • the person skilled in the art is able to determine the ideal position of each inlet and outlet, particularly as a function of the physico-chemical nature of the fluid and its speed. of circulation.
  • said enclosure is sealed. This means in particular that it does not include any opening to the outside other than those mentioned specifically.
  • the media transfer means may be interposed within the enclosure between the media output and the media input.
  • the media output is also connected to the media input via the outside of the enclosure to allow loop circulation of said media.
  • the media transfer means is interposed between the media output and the media input outside the enclosure.
  • the axis passing between said input and said transfer media output has an inclination of at least 45 ° relative to the horizontal.
  • the transfer medium has a void ratio of at least 20%.
  • the independent solid particles are spheres with a diameter of between 3 mm and 100 mm.
  • the independent solid particles are solid bodies pierced with at least two through holes.
  • the media transfer means of the media is placed outside the enclosure and comprises an Archimedean screw.
  • the media transfer means of the media is placed outside the enclosure and comprises transport buckets driven by an elevating mechanism.
  • the media transfer means of the media is placed outside the enclosure and comprises a plate driven by a jack.
  • the media transfer means of the media is placed outside or inside the enclosure and comprises an internal ascending asymmetric drag lift means.
  • means for regulating the flow rate of at least one of the fluids is associated with the inlet and / or the outlet of said fluid.
  • the device further comprises means for controlling the transfer rate of the particles of the media.
  • said device further comprises a means for cleaning the particles of the transfer medium.
  • said device further comprises a condensate cleaning means.
  • said device further comprises a means for screening the particles of the media ensuring among other things the elimination of broken or agglomerated elements.
  • said device further comprises a condensate recovery means.
  • said device is an enthalpy exchange device and comprises at least one sealed heat exchanger placed inside said enclosure in contact with said transfer medium, and connected to said input and at said output of one of said fluids.
  • the independent solid particles constituting the transfer medium consist of a material of thermal conductivity greater than 0.2 W / mK.
  • the independent solid particles consist of two different materials and one of the materials constitutes the outer shell of the particle and the other material constitutes the core of the particle and has a temperature less melting than the material constituting the outer casing.
  • said device further comprises a heat pump connected to the fluid outlet B.
  • the present invention also relates to a remarkable exchange process in that it comprises a step of circulating a transfer medium, composed of heap-independent solid particles in the same chamber, between a first action zone A in which circulates a fluid A and an action zone B in which a fluid B circulates, characterized in that said transfer medium is sent to the action zone A after having circulated in the action zone B.
  • said method comprises a step of collecting the condensates formed in contact with one of the fluids and said transfer medium.
  • the fluid A is hotter than the fluid B.
  • the fluid A is less hot than the fluid B.
  • the fluid A is a hot gas that circulates through the transfer medium
  • the fluid B is liquid water and / or water vapor that circulates in a heat exchanger of heat and the transfer medium flows between the zone A and the zone B, so that the enthalpy of the fluid A is transmitted to the fluid B.
  • the flows of the fluids A and B are regulated so that the flow rate of one of the fluids, considered clean, is greater than 1% more than the flow rate of the other fluid, considered dirty, leaking clean fluid to the dirty fluid and preventing the reverse.
  • the fluid A is a gas and the fluid B is cooled by a heat pump, after passing on said transfer medium, and is then used to condense the condensable vapor contained in the gas A.
  • the transfer medium collects the undesirable elements of the fluid A in the zone A and the said transfer medium is washed by the fluid B in the zone B.
  • said transfer medium also circulates in a zone C, in the middle of a fluid C comprising a collecting agent able to improve the collection capacity of said media of transfer.
  • the hottest fluid has an inlet temperature in the enclosure greater than 150 ° C., still more preferably at 400 ° C. and quite preferably above 600 ° C. vs.
  • the method according to the invention implements a device according to the invention.
  • One of the advantages of the invention is that the high thermal inertia of the mobile heat transfer medium, associated with its high thermal conductivity and diffusivity, makes it possible to reduce the thermal nip between the supply and the enthalpy receiver fluids, respectively.
  • the heat capacity of the mobile heat transfer medium can be defined in such a way that the enthalpy transfer takes place at the temperatures required for the enthalpy receiving fluid, and that this makes it possible in particular to recover all or part of the heat transfer medium. the latent heat of the enthalpy-introducing fluid that would otherwise be lost.
  • Another advantage is that the high thermal inertia of the mobile heat transfer medium dampens the enthalpy variations of the heat transfer fluid introducing enthalpy, thus allowing a more stable transfer of enthalpy.
  • Another advantage is that the speed of movement of the heat transfer medium can be adjusted in real time according to the required enthalpy exchange power, thus making it possible to adjust, for example, the parameters of the peripheral processes using the fluids heat transfer agents involved in the exchange of enthalpy through the invention, for example combustion or gasification processes.
  • Another advantage is that the exchange of enthalpy takes place in the same enclosure, thus avoiding the use of an auxiliary heating furnace which should ensure the temperature rise of balls or any other moving mass and also avoiding constraints related to very high temperature transfers.
  • Another advantage is that the heap displacement of said transfer medium ensures a homogeneous transfer of the particles in the chamber and therefore an optimal transfer of the enthalpy from one action zone to another.
  • the flow of the fluid and / or the transfer medium is a piston flow.
  • piston flow is defined a unidirectional flow in which in a plane perpendicular to the flow, all the nets move with a uniform velocity and all the physical quantities are identical. In such a flow, the recovery of the enthalpy is optimal.
  • Another advantage is that it is possible to choose a heat transfer media insensitive to acid attacks, for example alumina balls (AL203), which allows a low thermal pinch and improves the performance of the heat exchange between the fluids at play .
  • a heat transfer media insensitive to acid attacks for example alumina balls (AL203)
  • AL203 alumina balls
  • Another advantage is that depending on the type of heat transfer medium chosen, it is possible to work with very hot fluids (greater than 150 ° C, 400 ° C, see 600 ° C).
  • the mobile heat transfer medium can be set in motion slowly, which is good less energy intensive than a sand fluidization movement in a combustion or gasification furnace.
  • Another advantage is that the invention makes it possible to carry out a condensation of vapors contained in the hot gaseous fluid, without requiring the use of a separate flue gas condenser, unlike conventional installations of flue gas condensers.
  • Another advantage is that the mobile media does not have to be cleaned in situ, unlike traditional fixed-fill condensation plants which, by their nature, can not easily be removed from the reactor for cleaning.
  • Another advantage is that the heat transfer fluids charged with dust are partly freed of their dust by collecting them on the surface of the elements of the mobile heat transfer medium, thus facilitating subsequent processing steps.
  • FIG. 1 diagrammatically represents the device of the invention according to a version with two zones of circulation of fluid through the mobile medium.
  • FIG. 2 represents a variant of the invention in which one of the exchange zones comprises a sealed heat exchanger and thermal fins.
  • FIG. 3 represents a variant of the invention in which a media transfer means of the media is represented in downward movement.
  • FIG. 4 represents a variant of the invention in which a means for transferring particles from the media is represented in upward motion.
  • FIG. 5 represents a variant of the invention in which a means for condensing the vapors contained in a cooled gas is represented.
  • FIG. 6 represents a variant of the invention in which another means of condensing the vapors contained in a cooled gas is represented.
  • the present invention relates to an enthalpy exchange device between two fluids, mainly in an energy production process. It is particularly useful in the case of cogeneration with steam production by combustion of raw material to produce electricity using a steam turbine, and the heat discharged into a heat network. It is also useful in the case of the production of synthetic gas called Syngaz by a process of pyrolysis, thermolysis and / or gasification of organic raw material. Obviously, any other process involving enthalpy exchange can usefully utilize the invention.
  • the fluids can be in gaseous or liquid or mixed form if the conditions of temperature and pressure allow a biphasic state.
  • enthalpy encompasses the sensible heat of fluids and the latent heat which can also be exchanged in case of phase change during heat exchange.
  • the enthalpy involved during a phase change (so - called latent heat) is often very large and can represent 2 to 10 times more energy than the enthalpy at play during the temperature rise before or after the change of temperature. phase (called sensible heat).
  • an intermediate solid mass is put into play to ensure an exchange of enthalpy between two fluids.
  • the fluids that come into play in the device will be called fluid A and fluid B.
  • the solid mass consists of a set of individual solid particles which are used without cohesion between them. This gives a mass of particles whose size and shape allow a natural flow by the effect of gravity.
  • the mass is intermediate because it plays a role of media that will constantly warm up and cool under the influence of the fluids involved.
  • the invention relates indifferently to both agents.
  • the solid mass serves as a medium for the transfer of enthalpy.
  • the media will capture the enthalpy of the fluid A, possibly store it and then transmit it to the fluid B, while preventing or limiting the mixing between the fluids, because the objective of the invention is to exchange the heat without exchanging fluids.
  • the storage of heat or thermal inertia is one of the characteristics of the invention.
  • the transfer media has a mass that allows to accumulate enthalpy under the effect of its rise in temperature and according to its specific thermal capacity expressed in the unit J / (kg.K).
  • the total enthalpy contained in the media represents at least 2 times the enthalpy that the fluid A will bring to the fluid B.
  • the transfer medium may contain a material which changes phase during its use so as to also benefit from the latent heat of phase change of this material, which also makes it possible to have a more great thermal inertia.
  • a hollow refractory molybdenum steel ball whose melting temperature exceeds 2600 ° C., filled with an aluminum alloy whose melting point is 600 ° C., can store, during the solid-liquid phase change of aluminum at this fixed temperature of 600 ° C, more than 370kJ / kg of aluminum is the equivalent of the sensible heat of a kg of aluminum heating up to 400 ° C.
  • the thermal inertia of the media is sought because it ensures a storage of the enthalpy that stabilizes the heat exchange between the fluids. Indeed, the thermal capacity of a particular fluid and especially a gas is, except exception, lower than that of a solid. Thus, in the event of a slight variation in the temperature of the fluid A, in the absence of inertia by the media, the temperature of the fluid B would also vary. Due to the inertia of the media, the fluid B follows a much more uniform temperature evolution during its progression in the device according to the invention.
  • the enthalpy storage allows a discontinuous mode of operation: in a first step, the fluid A brings its enthalpy to the transfer medium without the fluid B circulating, then in a second time, the fluid B circulates in the device and collects the stored enthalpy.
  • the thermal inertia makes it possible to operate continuously, with a heat exchange power of the fluid A to the transfer medium that is different from that between the transfer medium and the fluid B.
  • a heat exchange power of the fluid A to the transfer medium that is different from that between the transfer medium and the fluid B.
  • the transfer medium can provide a high-power heat exchange, both for the transfer from the fluid A and for the transfer to the fluid B.
  • This result is obtained by the use of a media having numerous cavities easily traversed by the fluid.
  • a media consisting of balls perforated on 25% of their volume guarantees a porosity (ratio of the volume of vacuum to the total volume of solid + vacuum) of more than 50% and therefore a good circulation of the fluid in all the zone of enthalpy exchange. This is important if the fluid that passes through the media carries "clogging" particles that can settle in the media and cause a gradual clogging of cavities in which the fluid flows.
  • the exchange power is improved if the media has a good diffusivity, that is to say if the material has a strong ability to transfer heat.
  • the geometry of the media elements is preferably defined to ensure the presence of a large developed area swept by the delivery fluid or enthalpy sensor, said surface being the seat of the heat exchange.
  • the media elements have a large developed surface and a low material thickness in order to facilitate the enthalpy exchanges.
  • the preferred compactness parameter defined as the ratio of the developed surface area to the solid volume, is greater than 3 m 2 / m 3 , which corresponds, for example, to ball-shaped particles 30 mm in diameter and pierced by 2 orthogonal holes with a diameter of 10 mm.
  • the exchange power is improved if the flows of fluid through the transfer media are in a hydraulic or aeraulic regime at high speed or turbulent which enhances the performance of convective heat exchange on the surface of the transfer medium.
  • the dimensioning of the device will ensure a fluid flow rate at a speed greater than 1 m / s for liquid and greater than 3 m / s for gas.
  • the transfer medium must withstand the operating constraints provided by the fluids used.
  • the transfer media must withstand such a temperature, and it can not be composed of aluminum that melts at 660 ° C.
  • a recommended solution is to use molded spheres composed of alumina ceramics. The temperature resistance thus reaches limits greater than 1100 ° C. or even 1800 ° C. depending on the purity of the alumina.
  • a refractory metal of the alloy molybdenum type makes it possible to have a material whose melting point is greater than 2200 ° C and whose mechanical strength is greater than that of an alumina ceramic.
  • the fluid A is a smoke containing sulfur or chlorine and moisture
  • sulfuric acid or Hydrochloric acid can form and rapidly corrode the transfer media.
  • the material constituting it must be chosen so as to withstand a pH generally less than 3.
  • the fluids may contain suspended elements that may be deposited on the transfer medium and thus lead to its fouling.
  • flue gas combustion boiler contain dust that may deposit on any available solid surface, so the transfer media with the potential to gradually reduce the porosity of the latter. The circulation of fluids and the efficiency of thermal exchanges would then be degraded.
  • the device according to the invention advantageously comprises a washing means of the transfer media, regular or continuous. This is described below.
  • the transfer medium is set in circulation movement inside the enclosure of the exchanger which assumes that the transfer medium is composed of individual particles that can be moved without bonding between they and without mechanical blocking that would create a single block impossible to move. It is also advantageous that the elements constituting the transfer medium have sufficient mechanical strength to support the weight of the stacking, especially in the lower part. It is also better that the eventual movement of these elements does not break them or abrase them too quickly, so as not to have to replace them too often, due to unavoidable wear.
  • the heat transfer transfer medium is composed of individual particles which may be balls or individual elements of Raschig ring type, Perl saddle, ... which are placed in a pile in the enclosure of the exchanger.
  • the elements are of globally spherical shape.
  • the spherical shape facilitates the circulation of the elements in the enclosure without a particle blocking effect between them can occur.
  • the elements may be provided with one or more perforations. These perforations are intended to facilitate the flow of fluids through the bed of particles, thanks to the high porosity thus obtained.
  • the stack of the transfer medium is preferably ially mechanically resistant, porous for the circulation of the fluid, massive to improve the thermal inertia, having a large surface developed to ensure a high-power heat exchange and conductivity thermal system to accelerate heat transfer.
  • the general architecture of the device 1 shown in FIG. 1 comprises an enclosure 2 in which the transfer medium 5 is discharged, an inlet 31 of fluid A, an outlet 32 of fluid A, an inlet 41 of fluid B and an output 42 of fluid B.
  • the portion of the enclosure between the inlet 31 and the outlet 32 defines a first zone 21, and the part of the enclosure between the inlet 41 and the outlet 42 defines a second zone 22
  • the transfer media 5 is discharged from a media inlet 51 and is evacuated from the enclosure 2 by a media outlet 52.
  • the transfer media 5 flows between the inlet and the outlet. If the enclosure 2 is generally vertical, the flow can be from top to bottom or from bottom to top. If the circulation is carried out from top to bottom in the enclosure 2, it is necessary to have an external means 8 for transferring the media from the bottom to the top, in order to reinject the media into the enclosure 2 from above . If the circulation is opposite, the external transfer means 8 from top to bottom may be a simple conduit in which the media falls by gravity. But the flow of the transfer media from bottom to top in the chamber 2 must be assisted by an internal transfer means 9 described below.
  • the external transfer means 8 can be integrated in the enclosure 2 of the device according to the invention, in a reserved zone which does not have the main function of ensuring the exchanges of enthalpy between the fluids.
  • the enclosure 2 is preferably of a stretched shape, that is to say that among its three characteristic dimensions (height, length, width), one of the dimensions is large compared to the others, in order to promote the implementation. place a fluid flow from their entry to their exit, so that all the fluid portions that arrive in the enclosure 2 stay there for an equivalent period and circulate in the media along the same path.
  • a more compact form of enclosure (the three dimensions having about the same value) would be less efficient, because some portions of the fluid could stay less for a long time by following short circuits in the media, to the detriment of efficiency and homogeneity of transfers.
  • the enclosure 2 may consist of a set of separate channels placed side by side, each channel being equipped with a specific inlet and a fluid outlet, so that each channel can be seen as a specific enclosure used of the same way as the overall speaker described here.
  • the enclosure 2 is insulated so as to minimize thermal leakage that could affect the performance of the heat exchange.
  • the fluid A in the first zone of action 21 of the fluid A, the fluid A is introduced into the chamber 2 through the inlet 31, circulates in the transfer medium, provides it with caloric energy (or removes heat energy in the symmetrical cooling version as indicated at the beginning of the description of the invention) and is discharged through the outlet 32.
  • the fluid A cools and can even reach its maximum temperature. condensing temperature which allows to transmit to the media all or part of the latent heat of the fluid A.
  • the fluid B On its side, in its second zone of action 22, the fluid B is introduced into the chamber 2 from the inlet 41 to the outlet 42. It circulates in the media and captures the heat of the media through.
  • the transfer medium circulates continuously or discontinuously between the two zones of action, which allows it to ensure an enthalpy transfer from the zone A to the zone B. If the circulation is discontinuous, the transfer is done in two stages: first the fluids circulate and exchange enthalpy with the immobile media present in each zone of action up to to reach its saturation in enthalpy, then the media is set in motion to change zone, then it is again immobilized. Then the fluids exchange enthalpy again with new media items that have just arrived in their respective area of action.
  • Continuous circulation is more preferred because it makes the exchanges more regular, but the management of the flow of circulation is more complex and requires a more elaborate regulation device.
  • An advantage of the invention is that the change in the flow rate of the transfer media allows adjustment of the power of the enthalpy exchange. Moreover, thanks to the circulation of fluids in the heart of the circulating media, the enthalpic exchange is very efficient and results in a small temperature difference (or nip) between the fluids (generally less than 50 ° C), where a traditional plate heat exchanger could not have a nip less than 100 ° C, especially if the fluids are very high temperature gases.
  • a mixture between the fluids A and B flowing freely in the transfer medium 5 can occur at the boundary between the two action zones. This can be problematic, for example, if one of the fluids is considered dirty with respect to the other.
  • the mixing is limited by the use of a regulation of the fluid flow rates A and B, so that the flow rate of one of the fluids, considered clean, is greater by more than 1% at the flow rate of the other fluid, considered dirty, ensuring leakage of the clean fluid to the dirty fluid and preventing the reverse.
  • the mixture is limited by the installation of an obstacle to the exchange of fluids by means of a separating plate 7.
  • plate 7 is advantageously calibrated to generate a pressure drop of more than 10 Pa, thus limiting the exchange of fluid at the border.
  • this plate has one or more openings 71 and is rotated by a motor equipment not shown. The rotation of the openings allows communication between the zones of action and therefore the transfer of particles from the media.
  • the mixing of fluids between zones can also be limited by the installation of a bottleneck in the enclosure in place of the separating plate 7, leaving for example a section of free passage between the two zones of 30 % of the total section in each area.
  • the fluid B circulates separately in a sealed circuit 6 of coil type or exchanger plate.
  • This sealed circuit is placed at the periphery of the enclosure 2 and / or internally distributed throughout the second zone of action 22, to facilitate the transfer of enthalpy from the media to this circuit.
  • the sealed circuit is traversed from an inlet 61 to an outlet 62 by the fluid B.
  • the fluid B may have a pressure different from that prevailing in the enclosure.
  • Another advantage is that the mixing between the fluids A and B is then impossible.
  • the fluid A can circulate in a sealed circuit and the fluid B freely pass through the transfer medium.
  • the media of Transfer 5 crosses successively three zones of heat exchange, each zone being traversed by a specific fluid, named for description A, B and C.
  • a specific fluid named for description A, B and C.
  • this organization makes it possible to ensure a heat exchange between an enthalpy-introducing fluid. and two fluids B and C enthalpy receptors.
  • This third fluid makes it possible to extract the residual enthalpy at a temperature lower than that of the fluid B.
  • the transfer of enthalpy is advantageously improved thanks to the installation of fins 63 in the heart of the enclosure 2, constructed of heat-conducting material, such as for example refractory steel. Any material with the ability to transmit heat is suitable. Typically a material having a lambda thermal conductivity of more than 0.2 W / mK is suitable.
  • the transfer medium 5 When the transfer medium 5 is out of the chamber 2, it should be moved from the withdrawal port 52 to the reintroduction port 51.
  • vertical elevation conveying is required. This can be done by archimedes screw, treadmill, bucket elevator, elevator cylinder or any other mechanical means allowing vertical conveying.
  • the transfer medium, at its outlet from the chamber, is cooled by the enthalpy receiving fluid, which limits the mechanical and constructive stresses of the vertical conveying mechanism of said media.
  • an asymmetric drag lifting means 9 is used.
  • This means comprises an axle 91 to which a pivot 93 and two pallets 92 are attached.
  • the pivot 93 allows the pallets to be closed under the effect of the resistance of the transfer medium 5, and the assembly 9 sinks into the media 5.
  • the shaft 91 is pulled up, the pallets open and cause some particles of the transfer media.
  • the output of the media of the enclosure 2 allows him to provide specific treatments.
  • the particles of the transfer media 5 are cleaned in order to separate and discharge fouling deposits received during the transfer of the media 5 in the chamber of the device 1.
  • This cleaning can be carried out in a bath of pure water or additive d. cleaning agents such as surfactants, or in a bath of solvent, or in a shower of water or solvent, or under a jet of cleaning gas or steam, such as water vapor.
  • a cleaning variant may use a vibration cleaning device, in particular to separate dust adhered to the media particles by circulating them on a vibrating screen, or a high frequency vibration cleaning device, such as ultrasound in a bath of cleaning liquid.
  • This screening operation can be combined with the cleaning operation of the particles of the transfer media.
  • any other treatment is possible, such as an incineration operation of organic deposits at very high temperature, or a mixing operation with additives promoting the proper functioning of the device, for example a mixture of media elements with lime which allows of capturing chemical elements present in the fluid, or a heating operation of the transfer media particles 5 in order to reduce the risk of thermal shock that they could undergo when they are reintroduced into the chamber 2. Note that such This heating is not intended to heat the fluid B, but just to attenuate the temperature differences for the media particles 5.
  • the flow rate of the transfer media particles 5 and their reheat temperature thus represents a thermal power of less than 30% of the enthalpy exchange power effected by the device which is the subject of the invention, and can not replace the enthalpy Incipale brought by the fluid A.
  • a feature of the invention is to allow the recovery of latent heat. For this, when a hot gas cools below the dew point, it appears a condensation of liquid at the heart of the transfer media.
  • This condensation causes the production of a quantity of liquid that has to be evacuated from the enclosure.
  • a condensate collection area is installed in the enclosure.
  • the condensing zone consists of a condensate collector connected to a low evacuation.
  • condensation zone 10 is required. for example in the form of an inclined channel.
  • the fluid that exits the enclosure through the outlet 32 cools in contact with the incoming media through the inlet 51, generates condensates 11 which flow towards the bottom of the channel 12.
  • a collection means as shown in FIG. 6 comprises a sheet of tubes 13 arranged horizontally inside the enclosure 2. These tubes have a closed bottom part and an upper part opened by perforations 14, which are sufficiently small. so that elements of the transfer media 5 can not enter it.
  • the condensates 11 flow vertically, pass through the perforations 14 and are collected by the tubes 13 and discharged through a channel collector 12 which connects the tubes 13 to a general evacuation.
  • the condensation also provides an internal washing function of the media elements. For example, if it is smoke or synthesis gas from a gasification, it is possible to collect dust, ammonia (NH3), hydrochloric acid (HCL), sulfuric acid (SO2) and most volatile organic compounds that are soluble or captured by condensates.
  • NH3 ammonia
  • HCL hydrochloric acid
  • SO2 sulfuric acid
  • the effectiveness of the washing may in certain cases be such that the means of treatment and filtration of the supply media can be greatly reduced.
  • the condensates thus loaded with undesirable elements will require treatment before their evacuation of the process.
  • this recycling of treated condensates in the condensing zone allows to dilute the acids and the other pollutants, to stimulate the condensation, to improve the washing of the bringing media, and especially, by the control of the temperature of the condensates recycled, to make evolve the point of dew.
  • the invention also relates to an enthalpy exchange process using the devices and configurations described above.
  • An additional advantage is that it is thus possible to increase the superheat temperature of the vapor as fluid B, while benefiting from an upper enthalpy range for steam production by recovering a portion of latent heat, and more sensible heat. It is thus possible to obtain an enthalpy supplement greater than 6% with respect to conventional solutions.
  • fluid A intended to supply thermal energy to the process, and in particular a step of pyrolysis or thermolysis upstream, for example, by circulating the fluid in a pipe network surrounding the enclosure of the device implemented.
  • It can also heat air or other fluid to reduce the moisture content of the inputs intended to supply the gasification process, for example by means of a heating means. he can finally, transmitting the additional energy to any process external to said gasification process, so that the efficiency of the process is maximized.
  • the fluid B may be a heat transfer liquid, a thermal oil, a molten salt, a molten metal or water that can be selected according to the required temperature range.
  • a fluid B as cold as possible in order to capture as much as possible enthalpy of the fluid A.
  • a heat pump that processes the fluid B which leaves the enthalpy exchange device after having sensed the enthalpy of the fluid A, as a hot source, makes it possible on the one hand to extract the enthalpy of the fluid B, to restore it to higher temperature to an auxiliary fluid as a cold source, and also to further cool the fluid A upon return of the cooled fluid B in the enthalpy exchange device 1.
  • the exchange of enthalpy is advantageous but not essential for the purpose of carrying out a fluid purification.
  • the invention is used in the following way: the fluid A flows through the voids of a collection and transfer media . During this crossing, undesirable elements touch the walls of the elements of the media and are captured. When the media is moved to the fluid B action zone, a portion of the unwanted elements are driven with. The fluid B is then used as a cleaning fluid because crossing the media, it will proceed to its washing. The clean media is then returned to the fluid A action zone. According to a variant of the invention, an additional cleaning of the media is performed outside the enclosure 2, during the transfer of the media out of the enclosure 2.
  • the fluid A is combustion process fumes of biomass in a cogeneration boiler, comprising suspended dusts to be separated.
  • the media is austenitic steel balls coated with a collection agent layer such as water with surfactant added.
  • Fluid B is wash water. The media is injected into the chamber 2 in admixture with the collection agent so that the entire surface of the media is covered. During the circulation of fluid A, the dust is collected and stick to the surface of the balls. When the balls move in the area of action of the fluid B, they cause the dusts which are then washed by the fluid B.
  • This purification can be improved by triggering the condensation of the water vapor contained in the fluid A.
  • the media is voluntarily cooled below the dew point temperature of the fluid A, or by the fluid B in its zone. action, or by another fluid C in a third zone of action.
  • the purification effect improved by the condensation will be further improved by proceeding to the recirculation of a portion of the condensate in the fluid A, after specific cleaning treatment of these condensates.
  • the rate of condensable vapor present in the fluid A is increased and the phenomenon of condensation, thus of purification, will be more intense.
  • the collecting agent is a melting agent, such as alkaline salts, which is introduced in admixture with the cold transfer medium.
  • Fluid A is a calorie builder so that the melting agent melts and forms a sticky and collecting layer on the media particles.
  • the fluid B is a gas loaded with undesirable elements which are collected by the surfaces of the media and the fluid B is thus purified during its passage in its zone of action. The media is then evacuated and undergoes a cleaning step.
  • the purification of the fluid A may correspond to the following situation: the fluid A is a gas loaded with undesirable chemical elements, such as gaseous sulfurous hydrogen, hypochlorous acid or heavy metals .
  • the media is activated carbon whose role is to capture the unwanted vapors by adsorption, when the fluid A passes through. Then the media is moved in the action zone of a hot fluid B, which will heat the media and ensure the desorption of the adsorbed elements then discharged with the fluid B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Device (1) for exchanging between at least a fluid A and at least a fluid B, comprising a chamber (2), comprising an outlet (32) for fluid A, an inlet (31) for fluid A, an outlet (42) for fluid B, an inlet (41) for fluid B, characterized in that the position of the inlets and outlets for fluid A and B define two distinct zones within the chamber, a first zone of action of fluid A (21) between the inlet and outlet for fluid A and a second zone of action for fluid B (22) between the inlet and outlet for fluid B, and in that independent solid particles (5) forming a mobile transfer medium are placed in a heap inside the chamber (2), in the zone of action of fluid A (21) and in the zone of action of fluid B (22), and in that an inlet (51) for the said transfer medium is placed at one end of the chamber (2) and in that an outlet (52) for the said medium (52) is placed at the other end of the chamber (2), and in that a means (8) of transferring the said transfer medium is interposed between the said medium outlet (52) and the said medium inlet (51) ensuring that the said medium circulates in a loop, and in that it further comprises a condensate collection means (10).

Description

DISPOSITIF D'ECHANGE D'ENTHALPIE  ENTHALPY EXCHANGE DEVICE
Domaine de l'invention Field of the invention
La présente invention concerne le domaine de l'échange d'énergie thermique entre un fluide chaud et un fluide froid, particulièrement dans l'industrie des procédés énergétiques.  The present invention relates to the field of thermal energy exchange between a hot fluid and a cold fluid, particularly in the energy process industry.
Etat de la technique State of the art
Afin de procéder à un échange d'énergie thermique entre un fluide chaud, qu'il s'agisse de gaz ou de liquide, et un fluide dit froid qui va se réchauffer au contact thermique du fluide chaud, il est fréquent d'utiliser des échangeurs thermiques.  In order to proceed with an exchange of thermal energy between a hot fluid, whether it is gas or liquid, and a so-called cold fluid that will heat up in thermal contact with the hot fluid, it is common to use heat exchangers.
La plupart des échangeurs, qu'il s'agisse d'échangeurs à plaques, d'échangeurs à serpentins ou d'échangeurs tubulaires sont dits statiques et sont sujet à des encrassements, à des phénomènes de corrosion ou encore d'abrasion, si l'un des fluides caloporteurs comprend des éléments indésirables corrosifs ou abrasifs.  Most exchangers, whether they are plate heat exchangers, coil heat exchangers or tubular heat exchangers, are said to be static and are subject to fouling, corrosion or abrasion, if one of the heat transfer fluids comprises corrosive or abrasive undesirable elements.
Tel est le cas, par exemple, dans les installations de combustion ou d'incinération, où le fluide chaud est de la fumée non encore filtrée, ou bien encore dans les installations de gazéification, où le fluide chaud est du syngaz brut non filtré dont on souhaite récupérer l'énergie. Souvent les conditions de fonctionnement sont très exigeantes, notamment en termes de température élevée (plus de 600°C) ou d'encrassement par des poussières dont la capacité à adhérer aux parois des équipements est renforcée par la haute température. Afin de pallier les problèmes de corrosion dans les incinérateurs pour la cogénération ou la production de vapeur surchauffée, du fait d'une présence souvent importante de fumées acides, „ This is the case, for example, in combustion or incineration plants, where the hot fluid is smoke not yet filtered, or even in the gasification plants, where the hot fluid is unfiltered raw syngas we want to recover the energy. Often the operating conditions are very demanding, especially in terms of high temperature (more than 600 ° C) or fouling by dust whose ability to adhere to the walls of equipment is enhanced by the high temperature. In order to overcome the problems of corrosion in incinerators for cogeneration or the production of superheated steam, due to the often important presence of acid fumes, "
- 2 - la température de surchauffe de la vapeur produite est généralement limitée à moins de 420°C afin de maintenir une température inférieure à 500°C sur les parois des tubes de surchauffe, ce qui dégrade fortement les rendements électriques par rapport à une installation qui produirait de la vapeur dans des conditions améliorées que l'on situe aux environs de 520°C.  The superheating temperature of the steam produced is generally limited to less than 420 ° C. in order to maintain a temperature below 500 ° C. on the walls of the superheating tubes, which greatly degrades the electrical efficiencies with respect to an installation which would produce steam under improved conditions at about 520 ° C.
Les installations statiques sont des installations qu'il est difficile de nettoyer après encrassement et qu'il est coûteux de remplacer lorsque les surfaces d'échange sont corrodées par les attaques à haute température du chlore.  Static installations are facilities that are difficult to clean after fouling and that it is expensive to replace when the exchange surfaces are corroded by attacks of high temperature chlorine.
De plus, dans de nombreux cas, le fluide chaud est un gaz ayant une très faible conductivité thermique, en général inférieure à 0.05 W/mK. La conséquence est un pincement élevé entre le fluide apporteur et le fluide récepteur de calorie, c'est-à-dire qu'il demeure un écart de température élevé entre les deux fluides, même dans le cadre d'un échange à contre-courant, et ce malgré des surfaces d'échange importantes. Dans une chaudière biomasse à vapeur, ce pincement dépasse souvent 100°C.  In addition, in many cases, the hot fluid is a gas having a very low thermal conductivity, generally less than 0.05 W / mK. The consequence is a high nip between the supply fluid and the calorie-receiving fluid, that is to say that there remains a high temperature difference between the two fluids, even in the context of a countercurrent exchange despite important trading surfaces. In a biomass steam boiler, this nip often exceeds 100 ° C.
Description de l'invention Description of the invention
La présente invention concerne le domaine de l'échange d'énergie thermique entre un fluide chaud et un fluide froid, particulièrement dans l'industrie des procédés énergétiques.  The present invention relates to the field of thermal energy exchange between a hot fluid and a cold fluid, particularly in the energy process industry.
Par exemple, lors de la production d'énergie par combustion, il est nécessaire de refroidir les fumées en transférant la chaleur contenue dans les fumées vers un fluide froid à l'aide d'un échangeur de chaleur. For example, when producing energy by combustion, it is necessary to cool the fumes by transferring the heat contained in the fumes to a cold fluid using a heat exchanger.
Réciproquement la même invention peut servir à transférer du froid entre fluides. L'invention concerne aussi l'échange de chaleur latente lorsqu'au moins un fluide subit un changement d'état qui libère ou absorbe de la chaleur latente, en sus de la chaleur sensible. C'est pourquoi l'invention concerne l'échange d'enthalpie totale (chaleur sensible plus chaleur latente) entre fluides. Conversely, the same invention can be used to transfer cold between fluids. The invention also relates to the latent heat exchange when at least one fluid undergoes a change of state which releases or absorbs latent heat, in addition to the sensible heat. This is why the invention relates to the exchange of total enthalpy (sensible heat plus latent heat) between fluids.
La présente invention a pour but de pallier les inconvénients de l'état de la technique en proposant un dispositif d'échange entre au moins un fluide A et au moins un fluide B, comprenant une enceinte, comprenant une sortie de fluide A, une entrée de fluide A, une sortie de fluide B, une entrée de fluide B, remarquable en ce que la position des entrées et sorties de fluide A et B définissent deux zones distinctes dans l'enceinte, une première zone d'action de fluide A entre l'entrée et la sortie de fluide A et une seconde zone d'action de fluide B entre l'entrée et la sortie de fluide B et en ce que des particules solides indépendantes formant un média de transfert mobile sont placées en tas dans l'enceinte, dans la zone d'action de fluide A et dans la zone d'action de fluide B et en ce qu'une entrée de média est placée à une extrémité de l'enceinte et en ce qu'une sortie de média est placée à l'autre extrémité de l'enceinte et en ce qu'un moyen de transfert du média est intercalé entre la sortie de média et l'entrée de média assurant la circulation en boucle du média.  The present invention aims to overcome the drawbacks of the state of the art by providing an exchange device between at least one fluid A and at least one fluid B, comprising an enclosure, comprising a fluid outlet A, an inlet fluid A, a fluid outlet B, a fluid inlet B, characterized in that the position of the fluid inlets and outlets A and B define two distinct zones in the chamber, a first fluid action zone A between the fluid inlet and outlet A and a second fluid action zone B between the inlet and the fluid outlet B and in that independent solid particles forming a mobile transfer medium are placed in a pile in the enclosure, in the fluid action zone A and in the fluid action zone B and in that a media inlet is placed at one end of the enclosure and in that a media outlet is placed at the other end of the enclosure and that means for transferring the media is interposed between the media output and the media input providing the media loop.
Dans le cadre de la présente invention, le terme « enceinte » entend désigner une structure, dans laquelle ledit média de transfert est présent sous une forme entassée.  In the context of the present invention, the term "enclosure" means a structure in which said transfer medium is present in a packed form.
Avantageusement, la section horizontale de ladite enceinte est constante entre l'entrée de média de transfert et la sortie de média de transfert. Ainsi, le déplacement du média de transfert se fait de façon homogène quelle que soit la position des particules solides le constituant. Advantageously, the horizontal section of said enclosure is constant between the transfer media input and the transfer media output. So, the transfer of the transfer medium is homogeneous regardless of the position of the solid particles constituting it.
Dans le cadre de la présente invention, le terme « en tas » entend signifier que dans l'ensemble de l'enceinte, le média de transfert forme un empilement granulaire homogène et qu'à l'intérieur de l'enceinte il n'y a pas de volume vide sa séparant différentes zones distinctes de média de transfert et que le poids du média de transfert présent dans la zone d'action de fluide la plus haute s'applique en tout ou partie sur le média de transfert présent dans la zone d'action de fluide la plus basse. Par souci de clarté, il est précisé que la présente invention ne concerne donc pas des dispositifs ou des procédés dans lequel le média de transfert est sous la forme d'un lit fluidisé. Dans le cadre de la présente invention, le terme « échange » entend désigner un échange de matières et avantageusement un échange de poussières ou de tout autre élément indésirable présent dans le fluide A. Le terme « échange » entend également désigner un échange d'énergie et avantageusement un échange d'enthalpie.  In the context of the present invention, the term "heap" means that throughout the enclosure, the transfer medium forms a homogeneous granular stack and that inside the enclosure there is there is no empty volume separating it from different discrete transfer media areas and that the weight of the transfer medium present in the highest fluid action zone is applied in whole or in part to the transfer media present in the area of lowest fluid action. For the sake of clarity, it is pointed out that the present invention therefore does not relate to devices or methods in which the transfer medium is in the form of a fluidized bed. In the context of the present invention, the term "exchange" means an exchange of materials and advantageously an exchange of dust or any other undesirable element present in the fluid A. The term "exchange" also means an energy exchange and advantageously an enthalpy exchange.
Dans le cadre de la présente invention, le terme « zone » ou « zone d'action » entend désigner une partie du volume intérieur de l'enceinte dans laquelle va circuler un seul fluide et qui va constituer une zone de contact direct ou indirect entre ledit fluide et le média de transfert. Ces zones peuvent être délimitées structurellement , dans le cas où un fluide va circuler entre son entrée et sa sortie, à l'intérieur de l'enceinte, dans un échangeur de chaleur. Alternativement, une zone va être définie par la position de l'entrée et de la sortie du fluide. Par exemple, une entrée et une sortie de fluide placées de part et d'autre de l'enceinte vont définir une zone qui correspond à la partie de l'enceinte disposée entre ladite entrée et ladite sortie. Afin d'éviter que deux zones d'actions ne se superposent, l'homme du métier est à même de déterminer la position idéale de chaque entrée et de chaque sortie, notamment en fonction de la nature physico/chimique du fluide et de sa vitesse de circulation. In the context of the present invention, the term "zone" or "zone of action" intends to designate a portion of the interior volume of the chamber in which a single fluid will circulate and which will constitute a direct or indirect contact zone between said fluid and the transfer medium. These zones can be defined structurally, in the case where a fluid will flow between its inlet and its outlet, inside the enclosure, in a heat exchanger. Alternatively, an area will be defined by the position of the fluid inlet and outlet. For example, an inlet and a fluid outlet placed on either side of the enclosure will define an area that corresponds to the portion of the enclosure disposed between said inlet and said outlet. In order to prevent two zones of action from being superimposed, the person skilled in the art is able to determine the ideal position of each inlet and outlet, particularly as a function of the physico-chemical nature of the fluid and its speed. of circulation.
Selon un mode de réalisation préféré de l'invention, ladite enceinte est étanche. Ceci entend notamment signifier qu'elle ne comprend aucune ouverture vers l'extérieur autre que celles mentionnées spécifiquement.  According to a preferred embodiment of the invention, said enclosure is sealed. This means in particular that it does not include any opening to the outside other than those mentioned specifically.
Dans le cadre de la présente invention, le moyen de transfert du média peut être intercalé à l'intérieur de l'enceinte entre la sortie de média et l'entrée de média. Dans ce cas, la sortie de média est également reliée à l'entrée de média via l'extérieur de l'enceinte afin de permettre une circulation en boucle dudit média. Alternativement ou de façon complémentaire, le moyen de transfert du média est intercalé entre la sortie de média et l'entrée de média à l'extérieur de l'enceinte.  In the context of the present invention, the media transfer means may be interposed within the enclosure between the media output and the media input. In this case, the media output is also connected to the media input via the outside of the enclosure to allow loop circulation of said media. Alternatively or in a complementary manner, the media transfer means is interposed between the media output and the media input outside the enclosure.
Selon un mode de réalisation préféré de l'invention, l'axe passant entre ladite entrée et ladite sortie de média de transfert présente une inclinaison d'au moins 45° par rapport à l'horizontale.  According to a preferred embodiment of the invention, the axis passing between said input and said transfer media output has an inclination of at least 45 ° relative to the horizontal.
Selon un mode de réalisation préféré de l'invention, le média de transfert présente un taux de vide d'au moins 20%.  According to a preferred embodiment of the invention, the transfer medium has a void ratio of at least 20%.
Selon un mode de réalisation préféré de l'invention, les particules solides indépendantes sont des sphères de diamètre compris entre 3mm et 100mm  According to a preferred embodiment of the invention, the independent solid particles are spheres with a diameter of between 3 mm and 100 mm.
Selon un mode de réalisation préféré de l'invention, les particules solides indépendantes sont des corps pleins percés d'au moins deux trous traversants. r According to a preferred embodiment of the invention, the independent solid particles are solid bodies pierced with at least two through holes. r
- 6 -  - 6 -
Selon un mode de réalisation préféré de l'invention, le moyen de transfert des particules du média est placé à l'extérieur de l'enceinte et comporte une vis d'Archimède. According to a preferred embodiment of the invention, the media transfer means of the media is placed outside the enclosure and comprises an Archimedean screw.
Selon un mode de réalisation préféré de l'invention, le moyen de transfert des particules du média est placé à l'extérieur de l'enceinte et comporte des godets de transport entraînés par un mécanisme d'élévation.  According to a preferred embodiment of the invention, the media transfer means of the media is placed outside the enclosure and comprises transport buckets driven by an elevating mechanism.
Selon un mode de réalisation préféré de l'invention, le moyen de transfert des particules du média est placé à l'extérieur de l'enceinte et comporte un plateau entraîné par un vérin.  According to a preferred embodiment of the invention, the media transfer means of the media is placed outside the enclosure and comprises a plate driven by a jack.
Selon un mode de réalisation préféré de l'invention, le moyen de transfert des particules du média est placé à l'extérieur ou à l'intérieur de l'enceinte et comporte un moyen d'élévation interne à traînée asymétrique ascendante .  According to a preferred embodiment of the invention, the media transfer means of the media is placed outside or inside the enclosure and comprises an internal ascending asymmetric drag lift means.
Selon un mode de réalisation préféré de l'invention, un moyen de régulation du débit d'au moins un des fluides est associé à l'entrée et/ou à la sortie dudit fluide.  According to a preferred embodiment of the invention, means for regulating the flow rate of at least one of the fluids is associated with the inlet and / or the outlet of said fluid.
Selon un mode de réalisation préféré de l'invention, le dispositif comprend en outre un moyen de régulation du débit de transfert des particules du média.  According to a preferred embodiment of the invention, the device further comprises means for controlling the transfer rate of the particles of the media.
Selon un mode de réalisation préféré de l'invention, ledit dispositif comprend en outre un moyen de nettoyage des particules du média de transfert.  According to a preferred embodiment of the invention, said device further comprises a means for cleaning the particles of the transfer medium.
Selon un mode de réalisation préféré de l'invention, ledit dispositif comprend en outre un moyen de nettoyage des condensats. Selon un mode de réalisation préféré de l'invention, ledit dispositif comprend en outre un moyen de criblage des particules du média assurant entre autre l'élimination des éléments brisés ou agglomérés. Selon un mode de réalisation préféré de l'invention, ledit dispositif comprend en outre un moyen de récupération des condensats. According to a preferred embodiment of the invention, said device further comprises a condensate cleaning means. According to a preferred embodiment of the invention, said device further comprises a means for screening the particles of the media ensuring among other things the elimination of broken or agglomerated elements. According to a preferred embodiment of the invention, said device further comprises a condensate recovery means.
Selon un mode de réalisation préféré de l'invention, ledit dispositif est un dispositif d'échange d'enthalpie et comprend au moins un échangeur de chaleur étanche placé à l'intérieur de ladite enceinte au contact dudit média de transfert, et raccordé à ladite entrée et à ladite sortie d'un desdits fluides.  According to a preferred embodiment of the invention, said device is an enthalpy exchange device and comprises at least one sealed heat exchanger placed inside said enclosure in contact with said transfer medium, and connected to said input and at said output of one of said fluids.
Selon un mode de réalisation préféré de l'invention, les particules solides indépendantes constituant le média de transfert sont constituées d'un matériau de conductivité thermique supérieure à 0.2 W/mK.  According to a preferred embodiment of the invention, the independent solid particles constituting the transfer medium consist of a material of thermal conductivity greater than 0.2 W / mK.
Selon un mode de réalisation préféré de l'invention, les particules solides indépendantes sont constituées de deux matériaux différents et l'un des matériaux constitue l'enveloppe extérieure de la particule et l'autre matériau constitue le cœur de la particule et présente une température de fusion inférieure à celle du matériau constituant l'enveloppe extérieure.  According to a preferred embodiment of the invention, the independent solid particles consist of two different materials and one of the materials constitutes the outer shell of the particle and the other material constitutes the core of the particle and has a temperature less melting than the material constituting the outer casing.
Selon un mode de réalisation préféré de l'invention, ledit dispositif comprend en outre une pompe à chaleur connectée à la sortie de fluide B.  According to a preferred embodiment of the invention, said device further comprises a heat pump connected to the fluid outlet B.
La présente invention concerne également un procédé d'échange remarquable en ce qu'il comprend une étape consistant à faire circuler un média de transfert, composé de particules solides indépendantes en tas dans une même enceinte, entre une première zone d'action A dans laquelle circule un fluide A et une zone d'action B dans laquelle circule un fluide B, caractérisée en ce que ledit média de transfert est envoyé dans la zone d'action A après avoir circulé dans la zone d'action B.  The present invention also relates to a remarkable exchange process in that it comprises a step of circulating a transfer medium, composed of heap-independent solid particles in the same chamber, between a first action zone A in which circulates a fluid A and an action zone B in which a fluid B circulates, characterized in that said transfer medium is sent to the action zone A after having circulated in the action zone B.
Selon un mode de réalisation préféré de l'invention ledit procédé comprend une étape de recueil des condensats formé au contact d'un des fluides et dudit média de transfert . According to a preferred embodiment of the invention said method comprises a step of collecting the condensates formed in contact with one of the fluids and said transfer medium.
Selon un mode de réalisation préféré de l'invention, le fluide A est plus chaud que le fluide B.  According to a preferred embodiment of the invention, the fluid A is hotter than the fluid B.
Selon un autre mode de réalisation préféré de l'invention, le fluide A est moins chaud que le fluide B.  According to another preferred embodiment of the invention, the fluid A is less hot than the fluid B.
Selon un mode de réalisation préféré de l'invention, le fluide A est un gaz chaud qui circule à travers le média de transfert, le fluide B est de l'eau liquide et/ou de la vapeur d'eau qui circule dans un échangeur de chaleur et le média de transfert circule entre la zone A et la zone B, de sorte que l'enthalpie du fluide A est transmise au fluide B.  According to a preferred embodiment of the invention, the fluid A is a hot gas that circulates through the transfer medium, the fluid B is liquid water and / or water vapor that circulates in a heat exchanger of heat and the transfer medium flows between the zone A and the zone B, so that the enthalpy of the fluid A is transmitted to the fluid B.
Selon un mode de réalisation préféré de l'invention, les débits des fluides A et B sont régulés de sorte que le débit d'un des fluides, considéré propre, est supérieur de plus de 1% au débit de l'autre fluide, considéré sale, assurant une fuite du fluide propre vers le fluide sale et empêchant l'inverse.  According to a preferred embodiment of the invention, the flows of the fluids A and B are regulated so that the flow rate of one of the fluids, considered clean, is greater than 1% more than the flow rate of the other fluid, considered dirty, leaking clean fluid to the dirty fluid and preventing the reverse.
Selon un mode de réalisation préféré de l'invention, le fluide A est un gaz et le fluide B est refroidi par une pompe à chaleur, après son passage sur ledit média de transfert, et est ensuite utilisé pour condenser la vapeur condensable contenue dans le gaz A.  According to a preferred embodiment of the invention, the fluid A is a gas and the fluid B is cooled by a heat pump, after passing on said transfer medium, and is then used to condense the condensable vapor contained in the gas A.
Selon un mode de réalisation préféré de l'invention, le média de transfert collecte les éléments indésirables du fluide A dans la zone A et ledit média de transfert est lavé par le fluide B dans la zone B.  According to a preferred embodiment of the invention, the transfer medium collects the undesirable elements of the fluid A in the zone A and the said transfer medium is washed by the fluid B in the zone B.
Selon un mode de réalisation préféré de l'invention, ledit média de transfert circule également dans une zone C, au milieu d'un fluide C comprenant un agent collecteur apte à améliorer la capacité de collecte dudit média de transfert . According to a preferred embodiment of the invention, said transfer medium also circulates in a zone C, in the middle of a fluid C comprising a collecting agent able to improve the collection capacity of said media of transfer.
Selon un mode de réalisation préféré de l'invention, le fluide le plus chaud a une température d'entrée dans l'enceinte supérieure à 150°C, encore plus préfèrent iellement à 400°C et tout à fait préfèrent iellement supérieure à 600°C.  According to a preferred embodiment of the invention, the hottest fluid has an inlet temperature in the enclosure greater than 150 ° C., still more preferably at 400 ° C. and quite preferably above 600 ° C. vs.
Selon un mode de réalisation préféré de l'inention, le procédé selon l'invention met en œuvre un dispositif selon l'invention.  According to a preferred embodiment of the invention, the method according to the invention implements a device according to the invention.
Avantages de l'invention Advantages of the invention
Un des avantages de l'invention est que la forte inertie thermique du média caloporteur mobile, associée à sa conductivité et à sa diffusivité thermique élevées, permettent de réduire le pincement thermique entre les fluides respectivement apporteur et récepteur d'enthalpie.  One of the advantages of the invention is that the high thermal inertia of the mobile heat transfer medium, associated with its high thermal conductivity and diffusivity, makes it possible to reduce the thermal nip between the supply and the enthalpy receiver fluids, respectively.
Un autre avantage est que la capacité thermique du média caloporteur mobile peut être définie de manière à ce que le transfert d'enthalpie se fasse aux températures requises pour le fluide récepteur d'enthalpie, et que cela rende notamment possible la récupération de tout ou partie de la chaleur latente du fluide apporteur d'enthalpie qui serait autrement perdue.  Another advantage is that the heat capacity of the mobile heat transfer medium can be defined in such a way that the enthalpy transfer takes place at the temperatures required for the enthalpy receiving fluid, and that this makes it possible in particular to recover all or part of the heat transfer medium. the latent heat of the enthalpy-introducing fluid that would otherwise be lost.
Un autre avantage est que la grande inertie thermique du média caloporteur mobile amortit les variations d'enthalpie du fluide caloporteur apporteur d'enthalpie, permettant de ce fait un transfert plus stable d ' enthalpie .  Another advantage is that the high thermal inertia of the mobile heat transfer medium dampens the enthalpy variations of the heat transfer fluid introducing enthalpy, thus allowing a more stable transfer of enthalpy.
Un autre avantage est que la vitesse de déplacement du média caloporteur peut être ajustée en temps réel en fonction de la puissance d'échange d'enthalpie requise, permettant ainsi d'ajuster, par exemple, les paramètres des procédés périphériques mettant en œuvre les fluides caloporteurs impliqués dans l'échange d'enthalpie grâce à l'invention, par exemple des procédés de combustion ou de gazéification . Another advantage is that the speed of movement of the heat transfer medium can be adjusted in real time according to the required enthalpy exchange power, thus making it possible to adjust, for example, the parameters of the peripheral processes using the fluids heat transfer agents involved in the exchange of enthalpy through the invention, for example combustion or gasification processes.
Un autre avantage est que l'échange d'enthalpie s'effectue dans une même enceinte, évitant ainsi l'usage d'un four de chauffage auxiliaire qui devrait assurer la montée en température de boulets ou tout autre masse en mouvement et évitant aussi les contraintes liées aux transferts à très haute température.  Another advantage is that the exchange of enthalpy takes place in the same enclosure, thus avoiding the use of an auxiliary heating furnace which should ensure the temperature rise of balls or any other moving mass and also avoiding constraints related to very high temperature transfers.
Un autre avantage est que le déplacement en tas dudit média de transfert assure un transfert homogène des particules dans l'enceinte et par conséquent un transfert optimal de l'enthalpie d'une zone d'action à l'autre.  Another advantage is that the heap displacement of said transfer medium ensures a homogeneous transfer of the particles in the chamber and therefore an optimal transfer of the enthalpy from one action zone to another.
Ainsi, l'écoulement du fluide et/ou du média de transfert est un écoulement piston. Par «écoulement piston», on définit un écoulement unidirectionnel dans lequel dans un plan perpendiculaire à l'écoulement, tous les filets se déplacent avec une vitesse uniforme et toutes les grandeurs physiques y sont identiques. Dans un tel écoulement, la récupération de l'enthalpie est optimal .  Thus, the flow of the fluid and / or the transfer medium is a piston flow. By "piston flow" is defined a unidirectional flow in which in a plane perpendicular to the flow, all the nets move with a uniform velocity and all the physical quantities are identical. In such a flow, the recovery of the enthalpy is optimal.
Un autre avantage est qu'il est possible de choisir un média caloporteur mobile insensible aux attaques acides, par exemple des billes en alumine (AL203), qui permet un faible pincement thermique et améliore la performance de l'échange thermique entre les fluides en jeu .  Another advantage is that it is possible to choose a heat transfer media insensitive to acid attacks, for example alumina balls (AL203), which allows a low thermal pinch and improves the performance of the heat exchange between the fluids at play .
Un autre avantage est que selon le type de média caloporteur choisi, il est possible de travailler avec des fluides très chauds (supérieur à 150°C, 400°C, voir 600°C) .  Another advantage is that depending on the type of heat transfer medium chosen, it is possible to work with very hot fluids (greater than 150 ° C, 400 ° C, see 600 ° C).
Un autre avantage est que le média caloporteur mobile peut être mis en mouvement lentement, ce qui est bien moins énergivore qu'un mouvement de fluidisation à sable dans un foyer de combustion ou de gazéification. Another advantage is that the mobile heat transfer medium can be set in motion slowly, which is good less energy intensive than a sand fluidization movement in a combustion or gasification furnace.
Un autre avantage est que l'invention permet de procéder à une condensation de vapeurs contenues dans le fluide chaud gazeux, sans nécessiter l'emploi d'un condenseur de fumées séparé, à la différence des installations traditionnelles de condenseurs de fumées.  Another advantage is that the invention makes it possible to carry out a condensation of vapors contained in the hot gaseous fluid, without requiring the use of a separate flue gas condenser, unlike conventional installations of flue gas condensers.
Un autre avantage est que le média mobile n'a pas à être nettoyé in situ, à la différence des installations traditionnelles de condensation par garnissage fixe qui, par nature, ne peut être aisément évacué du réacteur pour nettoyage .  Another advantage is that the mobile media does not have to be cleaned in situ, unlike traditional fixed-fill condensation plants which, by their nature, can not easily be removed from the reactor for cleaning.
Un autre avantage est que les fluides caloporteurs chargés de poussières sont en partie débarrassés de leurs poussières par collecte de celles-ci à la surface des éléments du média caloporteur mobile, facilitant ainsi les étapes ultérieures de traitement.  Another advantage is that the heat transfer fluids charged with dust are partly freed of their dust by collecting them on the surface of the elements of the mobile heat transfer medium, thus facilitating subsequent processing steps.
D'autres avantages et caractéristiques de l'invention sont décrits ci-après selon les modes possibles de réalisation de l'invention.  Other advantages and characteristics of the invention are described below according to the possible embodiments of the invention.
Les descriptions font référence aux figures suivantes en annexe :  The descriptions refer to the following figures in the appendix:
la figure 1 représente schémat iquement le dispositif de l'invention selon une version à deux zones de circulation de fluide à travers le média mobile.  FIG. 1 diagrammatically represents the device of the invention according to a version with two zones of circulation of fluid through the mobile medium.
- la figure 2 représente une variante de l'invention dans laquelle une des zones d'échange comprend un échangeur de chaleur étanche et des ailettes thermiques.  FIG. 2 represents a variant of the invention in which one of the exchange zones comprises a sealed heat exchanger and thermal fins.
- la figure 3 représente une variante de l'invention dans laquelle un moyen de transfert des particules du média est représenté en mouvement descendant.  FIG. 3 represents a variant of the invention in which a media transfer means of the media is represented in downward movement.
- la figure 4 représente une variante de l'invention dans laquelle un moyen de transfert des particules du média est représenté en mouvement ascendant. FIG. 4 represents a variant of the invention in which a means for transferring particles from the media is represented in upward motion.
- la figure 5 représente une variante de l'invention dans laquelle un moyen de condensation des vapeurs contenues dans un gaz refroidi est représenté.  FIG. 5 represents a variant of the invention in which a means for condensing the vapors contained in a cooled gas is represented.
- la figure 6 représente une variante de l'invention dans laquelle un autre moyen de condensation des vapeurs contenues dans un gaz refroidi est représenté.  FIG. 6 represents a variant of the invention in which another means of condensing the vapors contained in a cooled gas is represented.
Exposé d'un mode de réalisation Presentation of an embodiment
La présente invention concerne un dispositif d'échange d'enthalpie entre deux fluides, principalement dans un procédé de production énergétique. Elle est notamment utile dans le cas de la cogénération avec production de vapeur par combustion de matière première afin de produire de l'électricité à l'aide d'une turbine à vapeur, et de la chaleur évacuée dans un réseau de chaleur. Elle est aussi utile dans le cas de la production de gaz synthétique dit Syngaz par un procédé de pyrolyse, thermolyse et/ou gazéification de matière première organique. Evidemment tout autre procédé impliquant un échange d'enthalpie peut utilement utiliser l'invention.  The present invention relates to an enthalpy exchange device between two fluids, mainly in an energy production process. It is particularly useful in the case of cogeneration with steam production by combustion of raw material to produce electricity using a steam turbine, and the heat discharged into a heat network. It is also useful in the case of the production of synthetic gas called Syngaz by a process of pyrolysis, thermolysis and / or gasification of organic raw material. Obviously, any other process involving enthalpy exchange can usefully utilize the invention.
Les fluides peuvent être sous forme gazeuse ou liquide ou mixte si les conditions de température et de pression permettent un état biphasique.  The fluids can be in gaseous or liquid or mixed form if the conditions of temperature and pressure allow a biphasic state.
La notion d'enthalpie englobe la chaleur sensible des fluides et la chaleur latente qui peut être aussi échangée en cas de changement de phase durant l'échange de chaleur. L' enthalpie en jeu lors d'un changement de phase (dite chaleur latente) est souvent très grande et peut représenter 2 à 10 fois plus d'énergie que l 'enthalpie en jeu lors de la montée en température avant ou après le changement de phase (dite chaleur sensible) .  The notion of enthalpy encompasses the sensible heat of fluids and the latent heat which can also be exchanged in case of phase change during heat exchange. The enthalpy involved during a phase change (so - called latent heat) is often very large and can represent 2 to 10 times more energy than the enthalpy at play during the temperature rise before or after the change of temperature. phase (called sensible heat).
C'est, par exemple, le cas si un fluide liquide devient gazeux durant l'opération, ou si un fluide gazeux se condense durant l'opération. Ainsi, des fumées issues de la combustion de matière première dans une chaudière contiennent de la vapeur d'eau qui peut avantageusement être condensée en fin de traitement des fumées, avant leur sortie dans l'atmosphère. La chaleur latente ainsi récupérée, au moins partiellement, peut être réutilisée dans un réseau de chaleur. Dans le cadre de l'invention, il s'agit donc de faire monter en température un fluide froid à partir d'un fluide chaud ou réciproquement, mais aussi éventuellement d'échanger toute ou partie de la chaleur latente des fluides. Dans le reste de la description, cet échange sera dénommé échange d' enthalpie, concernant un échange de chaleur sensible seule, ou de chaleur latente seule, ou des deux. This is, for example, the case if a liquid fluid becomes gaseous during the operation, or if a gaseous fluid condenses during the operation. Thus, fumes from the combustion of raw material in a boiler contain water vapor which can advantageously be condensed at the end of the fumes treatment, before their exit into the atmosphere. The latent heat thus recovered, at least partially, can be reused in a heat network. In the context of the invention, it is therefore a question of increasing the temperature of a cold fluid from a hot fluid or vice versa, but also possibly of exchanging all or part of the latent heat of the fluids. In the remainder of the description, this exchange will be called the exchange of enthalpy, concerning an exchange of sensible heat alone, or of latent heat alone, or both.
Selon l'invention, une masse solide intermédiaire est mise en jeu afin d'assurer un échange d'enthalpie entre deux fluides. Pour simplifier la description de l'invention, les fluides qui entrent en jeu dans le dispositif seront appelés fluide A et fluide B.  According to the invention, an intermediate solid mass is put into play to ensure an exchange of enthalpy between two fluids. To simplify the description of the invention, the fluids that come into play in the device will be called fluid A and fluid B.
La masse solide est constituée d'un ensemble de particules individuelles solides qui sont utilisées sans cohésion entre elles. On obtient ainsi un amas de particules dont la taille et la forme permettent un écoulement naturel par l'effet de la gravité.  The solid mass consists of a set of individual solid particles which are used without cohesion between them. This gives a mass of particles whose size and shape allow a natural flow by the effect of gravity.
La masse est intermédiaire car elle joue un rôle de média qui va constamment se réchauffer et se refroidir sous l'influence des fluides en jeu.  The mass is intermediate because it plays a role of media that will constantly warm up and cool under the influence of the fluids involved.
Par commodité, la description ci-après s'attache à l'objectif d'échanger de la chaleur depuis un fluide A de plus haute température vers un fluide B de plus basse température. Toutefois, le raisonnement peut être renversé en considérant que le fluide A a une température , For convenience, the following description focuses on the goal of exchanging heat from a higher temperature fluid A to a lower temperature fluid B. However, the reasoning can be reversed by considering that the fluid A has a temperature ,
- 14 - inférieure à celle du fluide B et que l'objectif est d'échanger de la chaleur de B vers A.  - 14 - less than that of fluid B and that the objective is to exchange heat from B to A.
L'invention concerne indifféremment les deux o ectifs .  The invention relates indifferently to both agents.
Dans le principe de fonctionnement de l'invention, la masse solide sert de média au transfert d'enthalpie. Le média va capter l'enthalpie du fluide A, la stocker éventuellement puis la transmettre au fluide B, tout en empêchant ou en limitant le mélange entre les fluides, car l'objectif de l'invention est bien d'échanger la chaleur sans échanger les fluides.  In the operating principle of the invention, the solid mass serves as a medium for the transfer of enthalpy. The media will capture the enthalpy of the fluid A, possibly store it and then transmit it to the fluid B, while preventing or limiting the mixing between the fluids, because the objective of the invention is to exchange the heat without exchanging fluids.
Le stockage de chaleur ou inertie thermique est une des caractéristiques de l'invention. En effet, le média de transfert dispose d'une masse qui permet d'accumuler de l'enthalpie sous l'effet de sa montée en température et selon sa capacité thermique massique exprimée dans l'unité J/ (kg.K) . Ainsi, il est nécessaire de disposer d'un média de grande masse et/ou de grande capacité thermique massique qui présente une grande inertie thermique. Concrètement, pour garantir une bonne stabilité des échanges thermiques, il est préférable que l'enthalpie totale contenue dans le média représente au moins 2 fois l'enthalpie que le fluide A va apporter au fluide B.  The storage of heat or thermal inertia is one of the characteristics of the invention. Indeed, the transfer media has a mass that allows to accumulate enthalpy under the effect of its rise in temperature and according to its specific thermal capacity expressed in the unit J / (kg.K). Thus, it is necessary to have a high mass media and / or high thermal mass capacity which has a high thermal inertia. Concretely, to guarantee a good stability of the thermal exchanges, it is preferable that the total enthalpy contained in the media represents at least 2 times the enthalpy that the fluid A will bring to the fluid B.
Selon une variante de l'invention, le média de transfert peut contenir une matière qui change de phase durant son utilisation de façon à profiter aussi de la chaleur latente de changement de phase de cette matière, ce qui permet de disposer aussi d'une plus grande inertie thermique .  According to a variant of the invention, the transfer medium may contain a material which changes phase during its use so as to also benefit from the latent heat of phase change of this material, which also makes it possible to have a more great thermal inertia.
Par exemple, une bille d'acier au molybdène réfractaire creuse dont la température de fusion dépasse 2600°C, remplie d'un alliage d'aluminium dont la température de fusion est de 600°C, peut stocker, lors du changement de phase solide-liquide de l'aluminium à cette température fixe de 600°C, plus de 370kJ/kg d'aluminium soit l'équivalent de la chaleur sensible d'un kg d'aluminium s'échauffant de 400°C. For example, a hollow refractory molybdenum steel ball whose melting temperature exceeds 2600 ° C., filled with an aluminum alloy whose melting point is 600 ° C., can store, during the solid-liquid phase change of aluminum at this fixed temperature of 600 ° C, more than 370kJ / kg of aluminum is the equivalent of the sensible heat of a kg of aluminum heating up to 400 ° C.
L'inertie thermique du média est recherchée car elle assure un stockage de l'enthalpie qui stabilise les échanges thermiques entre les fluides. En effet, la capacité thermique massique d'un fluide et notamment d'un gaz est, sauf exception, plus faible que celle d'un solide. Ainsi, en cas de légère variation de la température du fluide A, en absence d'inertie par le média, la température du fluide B varierait aussi. Grâce à l'inertie du média, le fluide B suit une évolution de température beaucoup plus régulière lors de sa progression dans le dispositif selon l'invention.  The thermal inertia of the media is sought because it ensures a storage of the enthalpy that stabilizes the heat exchange between the fluids. Indeed, the thermal capacity of a particular fluid and especially a gas is, except exception, lower than that of a solid. Thus, in the event of a slight variation in the temperature of the fluid A, in the absence of inertia by the media, the temperature of the fluid B would also vary. Due to the inertia of the media, the fluid B follows a much more uniform temperature evolution during its progression in the device according to the invention.
De plus, selon une variante de l'invention, le stockage d'enthalpie permet un mode de fonctionnement discontinu : dans un premier temps, le fluide A apporte son enthalpie au média de transfert sans que le fluide B ne circule, puis dans un deuxième temps, le fluide B circule dans le dispositif et collecte l'enthalpie stockée .  In addition, according to a variant of the invention, the enthalpy storage allows a discontinuous mode of operation: in a first step, the fluid A brings its enthalpy to the transfer medium without the fluid B circulating, then in a second time, the fluid B circulates in the device and collects the stored enthalpy.
De façon préférée, l'inertie thermique permet de fonctionner de façon continue, avec une puissance d'échange thermique du fluide A vers le média de transfert différente de celle entre le média de transfert et le fluide B. Ainsi, il est possible de prélever beaucoup d'enthalpie depuis le fluide A et d'en restituer peu, le solde étant stocké dans le média ; ou inversement d'en prélever peu et d'en restituer plus vers le fluide B, le solde étant déstocké du média de transfert. Evidemment, il est nécessaire que le bilan s'équilibre à terme.  Preferably, the thermal inertia makes it possible to operate continuously, with a heat exchange power of the fluid A to the transfer medium that is different from that between the transfer medium and the fluid B. Thus, it is possible to collect a lot of enthalpy from the fluid A and to return little, the balance being stored in the media; or conversely to take little and recover more towards the fluid B, the balance being removed from the transfer media. Obviously, it is necessary that the balance equilibrium in the long term.
Selon une variante de l'invention, il est possible de gérer un déséquilibre entre l' enthalpie apportée par le fluide A et celle reçue par le fluide B en utilisant un moyen auxiliaire de chauffage ou refroidissement du média. According to a variant of the invention, it is possible to managing an imbalance between the enthalpy provided by the fluid A and that received by the fluid B by using an auxiliary means for heating or cooling the media.
Un autre avantage de l'invention est que le média de transfert peut assurer un échange thermique de grande puissance, à la fois pour le transfert depuis le fluide A et pour le transfert vers le fluide B. Ce résultat est obtenu par l'utilisation d'un média présentant de nombreuses cavités facilement traversées par le fluide. Par exemple, un média constitué de billes perforées sur 25% de leur volume garantit une porosité (ratio du volume de vide sur le volume total solide + vide) de plus de 50% et donc une bonne circulation du fluide dans toute la zone d'échange d'enthalpie. Cela est important si le fluide qui traverse le média transporte des particules « encrassantes » qui peuvent se déposer dans le média et causer un bouchage progressif des cavités dans lesquelles circule le fluide.  Another advantage of the invention is that the transfer medium can provide a high-power heat exchange, both for the transfer from the fluid A and for the transfer to the fluid B. This result is obtained by the use of a media having numerous cavities easily traversed by the fluid. For example, a media consisting of balls perforated on 25% of their volume guarantees a porosity (ratio of the volume of vacuum to the total volume of solid + vacuum) of more than 50% and therefore a good circulation of the fluid in all the zone of enthalpy exchange. This is important if the fluid that passes through the media carries "clogging" particles that can settle in the media and cause a gradual clogging of cavities in which the fluid flows.
Selon une variante de l'invention, il est possible d'utiliser de simples sphères, dont l'entassement dans un volume donné permet de conserver des porosités entre les sphères, laissant un passage libre pour un fluide traversant .  According to a variant of the invention, it is possible to use simple spheres, the packing of which in a given volume makes it possible to preserve porosities between the spheres, leaving a free passage for a fluid passing through.
De plus, la puissance d'échange est améliorée si le média présente une bonne diffusivité, c'est-à-dire si le matériau présente une forte capacité à transférer de la chaleur. Le coefficient de diffusivité défini par D = lambda / ro / C (où lambda = conductivité thermique, ro = masse volumique et C = capacité thermique massique) est préfèrent iellement supérieur à 0.2 10~6 m2/s. In addition, the exchange power is improved if the media has a good diffusivity, that is to say if the material has a strong ability to transfer heat. The diffusivity coefficient defined by D = lambda / ro / C (where lambda = thermal conductivity, ro = density and C = specific heat capacity) is preferably greater than 0.2 10 ~ 6 m 2 / s.
De plus, la géométrie des éléments de média est préfèrent iellement définie afin de s'assurer de la présence d'une grande surface développée balayée par le fluide apporteur ou capteur d'enthalpie, ladite surface étant le siège de l'échange de chaleur. Ainsi, il est avantageux que les éléments de média présentent une surface développée importante et une épaisseur de matière faible afin de faciliter les échanges d'enthalpie. Le paramètre de compacité préféré, défini comme le ratio de la surface développée sur le volume solide, est supérieur à 3 m2/m3 ce qui correspond, par exemple, à des particules en forme de bille de diamètre 30 mm et percée de 2 trous orthogonaux de diamètre 10 mm. In addition, the geometry of the media elements is preferably defined to ensure the presence of a large developed area swept by the delivery fluid or enthalpy sensor, said surface being the seat of the heat exchange. Thus, it is advantageous that the media elements have a large developed surface and a low material thickness in order to facilitate the enthalpy exchanges. The preferred compactness parameter, defined as the ratio of the developed surface area to the solid volume, is greater than 3 m 2 / m 3 , which corresponds, for example, to ball-shaped particles 30 mm in diameter and pierced by 2 orthogonal holes with a diameter of 10 mm.
Enfin, la puissance d'échange est améliorée si les écoulements de fluide à travers le média de transfert se font selon un régime hydraulique ou aéraulique à grande vitesse ou turbulent qui accentue la performance des échanges thermiques par convection en surface du média de transfert. Par exemple, selon une solution préférée, le dimensionnement du dispositif veillera à garantir une vitesse d'écoulement de fluide à une vitesse supérieure à 1 m/ s pour du liquide et supérieure à 3 m/ s pour du gaz.  Finally, the exchange power is improved if the flows of fluid through the transfer media are in a hydraulic or aeraulic regime at high speed or turbulent which enhances the performance of convective heat exchange on the surface of the transfer medium. For example, according to a preferred solution, the dimensioning of the device will ensure a fluid flow rate at a speed greater than 1 m / s for liquid and greater than 3 m / s for gas.
Toujours selon l'invention, le média de transfert doit supporter les contraintes de fonctionnement apportées par les fluides utilisés.  Still according to the invention, the transfer medium must withstand the operating constraints provided by the fluids used.
Par exemple, si le fluide A a une température supérieure à 1200°C, il faut que le média de transfert supporte une telle température, et il ne pourra pas être composé d'aluminium qui fond à 660°C. Une solution recommandée consiste à utiliser des sphères moulées composées de céramique d'alumine. La résistance à la température atteint ainsi des limites supérieures à 1100°C voire 1800°C en fonction de la pureté de l'alumine.  For example, if fluid A has a temperature above 1200 ° C, the transfer media must withstand such a temperature, and it can not be composed of aluminum that melts at 660 ° C. A recommended solution is to use molded spheres composed of alumina ceramics. The temperature resistance thus reaches limits greater than 1100 ° C. or even 1800 ° C. depending on the purity of the alumina.
Par un autre exemple, l'utilisation d'un métal réfractaire du type alliage au molybdène permet de disposer d'une matière dont le point de fusion est supérieur à 2200°C et dont la résistance mécanique est supérieure à celle d'une céramique d'alumine. By another example, the use of a refractory metal of the alloy molybdenum type makes it possible to have a material whose melting point is greater than 2200 ° C and whose mechanical strength is greater than that of an alumina ceramic.
De plus, si le fluide A est une fumée contenant du soufre ou du chlore et de l'humidité, en cas de condensation de vapeur d'eau durant l'échange de chaleur et le refroidissement de ces fumées, de l'acide sulfurique ou chlorhydrique peut se former et corroder rapidement le média de transfert. Dans ce cas, le matériau le constituant doit être choisi de façon à résister à un pH généralement inférieur à 3.  In addition, if the fluid A is a smoke containing sulfur or chlorine and moisture, in case of condensation of water vapor during the heat exchange and cooling of these fumes, sulfuric acid or Hydrochloric acid can form and rapidly corrode the transfer media. In this case, the material constituting it must be chosen so as to withstand a pH generally less than 3.
Par ailleurs, les fluides peuvent contenir des éléments en suspension susceptibles de se déposer sur le média de transfert et mener ainsi à son encrassement. Par exemple, les gaz de fumées de combustion en chaudière contiennent des poussières qui risquent de se déposer sur toute surface solide disponible, donc sur le média de transfert avec la conséquence potentielle de réduire progressivement la porosité de ce dernier. La circulation des fluides et l'efficacité des échanges thermiques en seraient alors dégradées. Pour résoudre ce problème, le dispositif selon l'invention comprend avantageusement un moyen de lavage du média de transfert, régulier ou continu. Ceci fait l'objet d'une description infra.  Furthermore, the fluids may contain suspended elements that may be deposited on the transfer medium and thus lead to its fouling. For example, flue gas combustion boiler contain dust that may deposit on any available solid surface, so the transfer media with the potential to gradually reduce the porosity of the latter. The circulation of fluids and the efficiency of thermal exchanges would then be degraded. To solve this problem, the device according to the invention advantageously comprises a washing means of the transfer media, regular or continuous. This is described below.
Enfin, selon l'invention, le média de transfert est mis en mouvement de circulation à l'intérieur de l'enceinte de l'échangeur ce qui suppose que le média de transfert est bien composé de particules individuelles qui peuvent être déplacées sans collage entre elles et sans blocage mécanique qui créerait un seul bloc impossible à déplacer. Il est aussi avantageux que les éléments constituant le média de transfert aient une résistance mécanique suffisante pour supporter le poids de l'empilage effectué, surtout en partie basse. Il est aussi préférable que la mise en mouvement éventuelle de ces éléments ne les brise ni ne les abrase trop vite, afin de ne pas devoir les remplacer trop souvent, suite à une usure inévitable. Finally, according to the invention, the transfer medium is set in circulation movement inside the enclosure of the exchanger which assumes that the transfer medium is composed of individual particles that can be moved without bonding between they and without mechanical blocking that would create a single block impossible to move. It is also advantageous that the elements constituting the transfer medium have sufficient mechanical strength to support the weight of the stacking, especially in the lower part. It is also better that the eventual movement of these elements does not break them or abrase them too quickly, so as not to have to replace them too often, due to unavoidable wear.
Ainsi, le média de transfert échangeur de chaleur est composé de particules individuelles qui peuvent être des billes ou des éléments individuels de type anneau de Raschig, selle de Perl, ... qui sont placés en tas dans l'enceinte de l' échangeur.  Thus, the heat transfer transfer medium is composed of individual particles which may be balls or individual elements of Raschig ring type, Perl saddle, ... which are placed in a pile in the enclosure of the exchanger.
De façon avantageuse, les éléments sont de forme globalement sphérique. La forme sphérique facilite la circulation des éléments dans l'enceinte sans qu'un effet de blocage de particules entre elles ne puisse advenir.  Advantageously, the elements are of globally spherical shape. The spherical shape facilitates the circulation of the elements in the enclosure without a particle blocking effect between them can occur.
D'autres formes sont aussi envisageables, du moment qu'elles respectent le cahier des charges décrit supra.  Other forms are also possible, as long as they comply with the specifications described above.
Par exemple, les éléments peuvent être munis d'une ou plusieurs perforations. Ces perforations ont pour objet de faciliter la circulation des fluides à travers le lit de particules, grâce à la forte porosité ainsi obtenue.  For example, the elements may be provided with one or more perforations. These perforations are intended to facilitate the flow of fluids through the bed of particles, thanks to the high porosity thus obtained.
Ainsi, l'empilage du média de transfert est préfèrent iellement mécaniquement résistant, poreux pour la circulation du fluide, massif pour améliorer l'inertie thermique, disposant d'une grande surface développée pour garantir un échange thermique de grande puissance et d'une conductivité thermique permettant d'accélérer les transferts thermiques.  Thus, the stack of the transfer medium is preferably ially mechanically resistant, porous for the circulation of the fluid, massive to improve the thermal inertia, having a large surface developed to ensure a high-power heat exchange and conductivity thermal system to accelerate heat transfer.
Selon l'invention, l'architecture générale du dispositif 1 représenté en figure 1 comporte une enceinte 2 dans laquelle le média de transfert 5 est déversé, une entrée 31 de fluide A, une sortie 32 de fluide A, une entrée 41 de fluide B et une sortie 42 de fluide B. La partie de l'enceinte comprise entre l'entrée 31 et la sortie 32 définit une première zone 21, et la partie de l'enceinte comprise entre l'entrée 41 et la sortie 42 définit une deuxième zone 22 According to the invention, the general architecture of the device 1 shown in FIG. 1 comprises an enclosure 2 in which the transfer medium 5 is discharged, an inlet 31 of fluid A, an outlet 32 of fluid A, an inlet 41 of fluid B and an output 42 of fluid B. The portion of the enclosure between the inlet 31 and the outlet 32 defines a first zone 21, and the part of the enclosure between the inlet 41 and the outlet 42 defines a second zone 22
Le média de transfert 5 est déversé à partir d'une entrée de média 51 et est évacué de l'enceinte 2 par une sortie de média 52. Le média de transfert 5 circule entre l'entrée et la sortie. Si l'enceinte 2 est globalement verticale, la circulation peut se faire de haut en bas ou de bas en haut. Si la circulation est effectuée de haut en bas dans l'enceinte 2, il est nécessaire de disposer d'un moyen extérieur 8 de transfert du média depuis le bas vers le haut, afin de réinjecter le média dans l'enceinte 2 par le haut. Si la circulation est inverse, le moyen extérieur de transfert 8 de haut en bas peut être un simple conduit dans lequel le média tombe par gravité. Mais la circulation du média de transfert de bas en haut dans l'enceinte 2 doit être assistée par un moyen de transfert interne 9 décrit plus loin.  The transfer media 5 is discharged from a media inlet 51 and is evacuated from the enclosure 2 by a media outlet 52. The transfer media 5 flows between the inlet and the outlet. If the enclosure 2 is generally vertical, the flow can be from top to bottom or from bottom to top. If the circulation is carried out from top to bottom in the enclosure 2, it is necessary to have an external means 8 for transferring the media from the bottom to the top, in order to reinject the media into the enclosure 2 from above . If the circulation is opposite, the external transfer means 8 from top to bottom may be a simple conduit in which the media falls by gravity. But the flow of the transfer media from bottom to top in the chamber 2 must be assisted by an internal transfer means 9 described below.
Selon une variante de l'invention le moyen extérieur de transfert 8 peut être intégré dans l'enceinte 2 du dispositif selon l'invention, dans une zone réservée qui n'a pas pour fonction principale d'assurer les échanges d'enthalpie entre les fluides.  According to one variant of the invention, the external transfer means 8 can be integrated in the enclosure 2 of the device according to the invention, in a reserved zone which does not have the main function of ensuring the exchanges of enthalpy between the fluids.
L'enceinte 2 est préfèrent iellement d'une forme étirée, c'est-à-dire que parmi ses trois dimensions caractéristiques (hauteur, longueur, largeur), une des dimensions est grande par rapport aux autres, afin de favoriser la mise en place d'un cheminement des fluides depuis leur entrée jusqu'à leur sortie, de sorte que toutes les portions de fluide qui arrivent dans l'enceinte 2 y séjournent pour une durée équivalente et circulent dans le média selon le même cheminement. Une forme d'enceinte plus compacte (les trois dimensions ayant à peu près la même valeur) serait moins performante, car certaines portions du fluide pourraient séjourner moins longtemps en suivant des court-circuits dans le média, au détriment du rendement et de l'homogénéité des transferts. The enclosure 2 is preferably of a stretched shape, that is to say that among its three characteristic dimensions (height, length, width), one of the dimensions is large compared to the others, in order to promote the implementation. place a fluid flow from their entry to their exit, so that all the fluid portions that arrive in the enclosure 2 stay there for an equivalent period and circulate in the media along the same path. A more compact form of enclosure (the three dimensions having about the same value) would be less efficient, because some portions of the fluid could stay less for a long time by following short circuits in the media, to the detriment of efficiency and homogeneity of transfers.
L'enceinte 2 peut être constituée d'un ensemble de canaux distincts placés côte à côte, chaque canal étant équipé d'une entrée et d'une sortie de fluide spécifiques, de sorte que chaque canal puisse être vu comme une enceinte spécifique utilisée de la même façon que l'enceinte globale décrite ici.  The enclosure 2 may consist of a set of separate channels placed side by side, each channel being equipped with a specific inlet and a fluid outlet, so that each channel can be seen as a specific enclosure used of the same way as the overall speaker described here.
De façon avantageuse, l'enceinte 2 est calorifugée de façon à minimiser les fuites thermiques qui pourraient affecter la performance de l'échange de chaleur.  Advantageously, the enclosure 2 is insulated so as to minimize thermal leakage that could affect the performance of the heat exchange.
Selon un mode de réalisation de l'invention, dans la première zone d'action 21 du fluide A, le fluide A est introduit dans l'enceinte 2 par l'entrée 31, circule dans le média de transfert, lui apporte de l'énergie calorique (ou lui retire de l'énergie calorique dans la version symétrique de refroidissement comme indiqué au début de la description de l'invention) et est évacué par la sortie 32. Durant son trajet, le fluide A refroidit et peut même atteindre sa température de condensation ce qui permet de transmettre au média tout ou partie de la chaleur latente du fluide A.  According to one embodiment of the invention, in the first zone of action 21 of the fluid A, the fluid A is introduced into the chamber 2 through the inlet 31, circulates in the transfer medium, provides it with caloric energy (or removes heat energy in the symmetrical cooling version as indicated at the beginning of the description of the invention) and is discharged through the outlet 32. During its journey, the fluid A cools and can even reach its maximum temperature. condensing temperature which allows to transmit to the media all or part of the latent heat of the fluid A.
De son coté, dans sa seconde zone d'action 22, le fluide B est introduit dans l'enceinte 2 depuis l'entrée 41 jusqu'à la sortie 42. Il circule dans le média et capte la chaleur du média traversé.  On its side, in its second zone of action 22, the fluid B is introduced into the chamber 2 from the inlet 41 to the outlet 42. It circulates in the media and captures the heat of the media through.
De plus, le média de transfert circule de façon continue ou discontinue entre les deux zones d'action, ce qui lui permet d'assurer un transfert d'enthalpie de la zone A vers la zone B. Si la circulation est discontinue, le transfert se fait en deux temps : d'abord les fluides circulent et échangent de l'enthalpie avec le média immobile présent dans chaque zone d'action jusqu'à atteindre sa saturation en enthalpie, puis le média est mis en mouvement pour changer de zone, puis il est à nouveau immobilisé. Alors les fluides échangent à nouveau de l' enthalpie avec les nouveaux éléments de média qui viennent d'arriver dans leur zone d'action respective. In addition, the transfer medium circulates continuously or discontinuously between the two zones of action, which allows it to ensure an enthalpy transfer from the zone A to the zone B. If the circulation is discontinuous, the transfer is done in two stages: first the fluids circulate and exchange enthalpy with the immobile media present in each zone of action up to to reach its saturation in enthalpy, then the media is set in motion to change zone, then it is again immobilized. Then the fluids exchange enthalpy again with new media items that have just arrived in their respective area of action.
Une circulation continue est plus préférée car elle rend les échanges plus réguliers, mais la gestion du débit de circulation est plus complexe et requiert un dispositif de régulation plus élaboré.  Continuous circulation is more preferred because it makes the exchanges more regular, but the management of the flow of circulation is more complex and requires a more elaborate regulation device.
Un avantage de l'invention est que le changement du débit de circulation du média de transfert permet un ajustement de la puissance de l'échange d' enthalpie. De plus, grâce à la circulation des fluides au cœur du média circulant, l'échange enthalpique est très performant et se traduit par un écart de température (ou pincement) faible entre les fluides (en général moins de 50°C), là où un échangeur traditionnel à plaques ne pourrait pas avoir un pincement inférieur à 100°C, notamment si les fluides sont des gaz à très haute température.  An advantage of the invention is that the change in the flow rate of the transfer media allows adjustment of the power of the enthalpy exchange. Moreover, thanks to the circulation of fluids in the heart of the circulating media, the enthalpic exchange is very efficient and results in a small temperature difference (or nip) between the fluids (generally less than 50 ° C), where a traditional plate heat exchanger could not have a nip less than 100 ° C, especially if the fluids are very high temperature gases.
Un mélange entre les fluides A et B qui circulent librement dans le média de transfert 5 peut advenir à la frontière entre les deux zones d'action. Ceci peut être problématique, par exemple, si l'un des fluides est considéré sale par rapport à l'autre.  A mixture between the fluids A and B flowing freely in the transfer medium 5 can occur at the boundary between the two action zones. This can be problematic, for example, if one of the fluids is considered dirty with respect to the other.
Selon une variante de l'invention, le mélange est limité grâce à l'utilisation d'une régulation des débits de fluide A et B, de sorte que le débit d'un des fluides, considéré propre, est supérieur de plus de 1% au débit de l'autre fluide, considéré sale, assurant une fuite du fluide propre vers le fluide sale et empêchant l'inverse.  According to a variant of the invention, the mixing is limited by the use of a regulation of the fluid flow rates A and B, so that the flow rate of one of the fluids, considered clean, is greater by more than 1% at the flow rate of the other fluid, considered dirty, ensuring leakage of the clean fluid to the dirty fluid and preventing the reverse.
Selon une autre variante de l'invention, le mélange est limité par l'installation d'un obstacle à l'échange des fluides grâce à une plaque de séparation 7. Cette plaque 7 est avantageusement calibrée pour générer une perte de charge de plus de 10 Pa, limitant ainsi les échanges de fluide à la frontière. Afin de permettre la circulation du média, cette plaque présente une ou plusieurs ouvertures 71 et est mue en rotation par un équipement moteur non représenté. La rotation des ouvertures permet une communication entre les zones d'action et donc le transfert de particules du média. According to another variant of the invention, the mixture is limited by the installation of an obstacle to the exchange of fluids by means of a separating plate 7. plate 7 is advantageously calibrated to generate a pressure drop of more than 10 Pa, thus limiting the exchange of fluid at the border. In order to allow the circulation of the media, this plate has one or more openings 71 and is rotated by a motor equipment not shown. The rotation of the openings allows communication between the zones of action and therefore the transfer of particles from the media.
Le mélange des fluides entre zones peut aussi être limité par l'installation d'un goulot d'étranglement dans l'enceinte en lieu et place de la plaque de séparation 7, laissant par exemple une section de passage libre entre les 2 zones valant 30% de la section totale dans chaque zone .  The mixing of fluids between zones can also be limited by the installation of a bottleneck in the enclosure in place of the separating plate 7, leaving for example a section of free passage between the two zones of 30 % of the total section in each area.
Selon une variante de l'invention, comme indiqué en figure 2, le fluide B circule séparément dans un circuit étanche 6 de type serpentin ou plaque d'échangeur. Ce circuit étanche est placé en périphérie de l'enceinte 2 et/ou à l'intérieur de façon répartie dans toute la seconde zone d'action 22, afin de faciliter le transfert d'enthalpie depuis le média vers ce circuit. Le circuit étanche est parcouru depuis une entrée 61 jusqu'à une sortie 62 par le fluide B. Un des avantages est que le fluide B peut présenter une pression différente de celle régnant dans l'enceinte. Un autre avantage est que le mélange entre les fluides A et B est alors impossible.  According to a variant of the invention, as indicated in FIG. 2, the fluid B circulates separately in a sealed circuit 6 of coil type or exchanger plate. This sealed circuit is placed at the periphery of the enclosure 2 and / or internally distributed throughout the second zone of action 22, to facilitate the transfer of enthalpy from the media to this circuit. The sealed circuit is traversed from an inlet 61 to an outlet 62 by the fluid B. One of the advantages is that the fluid B may have a pressure different from that prevailing in the enclosure. Another advantage is that the mixing between the fluids A and B is then impossible.
De façon réciproque, le fluide A peut circuler dans un circuit étanche et le fluide B traverser librement le média de transfert.  Conversely, the fluid A can circulate in a sealed circuit and the fluid B freely pass through the transfer medium.
Le scénario des deux fluides circulant dans un circuit étanche avec le média de transfert 5 servant d'intermédiaire est aussi possible.  The scenario of the two fluids circulating in a sealed circuit with the transfer medium 5 serving as an intermediate is also possible.
Selon une variante de l'invention, le média de transfert 5 traverse successivement trois zones d'échange calorique, chaque zone étant parcourue par un fluide spécifique, nommé pour la description A, B et C. Par exemple, cette organisation permet d'assurer un échange thermique entre un fluide A apporteur d'enthalpie et deux fluides B et C récepteurs d'enthalpie. Dans un tel cas, il sera possible d'avoir une première zone d'échange où le fluide A circule librement dans le média de transfert 5, puis une seconde zone d'échange où le fluide B circule librement dans le média de transfert 5 et récupère de l'enthalpie du média 5, tel que décrit supra, puis une troisième zone d'échange avec circulation séparée du second fluide récepteur C, dans un circuit étanche. Ce troisième fluide permet de soutirer l'enthalpie résiduelle à une température inférieure à celle du fluide B. According to a variant of the invention, the media of Transfer 5 crosses successively three zones of heat exchange, each zone being traversed by a specific fluid, named for description A, B and C. For example, this organization makes it possible to ensure a heat exchange between an enthalpy-introducing fluid. and two fluids B and C enthalpy receptors. In such a case, it will be possible to have a first exchange zone where the fluid A flows freely in the transfer medium 5, then a second exchange zone where the fluid B circulates freely in the transfer medium 5 and recovering from the enthalpy of the medium 5, as described above, then a third exchange zone with separate circulation of the second receiving fluid C, in a sealed circuit. This third fluid makes it possible to extract the residual enthalpy at a temperature lower than that of the fluid B.
D'autres combinaisons selon cette logique de plusieurs étages sont possibles, selon la nature, la température et la pression des fluides en jeu.  Other combinations according to this logic of several stages are possible, depending on the nature, the temperature and the pressure of the fluids involved.
Le transfert d'enthalpie est avantageusement amélioré grâce à l'installation d'ailettes 63 au cœur de l'enceinte 2, construites en matériau conducteur de chaleur, comme par exemple en acier réfractaire. Tout matériau présentant une capacité à transmettre de la chaleur convient. Typiquement un matériau ayant une conductivité thermique lambda de plus de 0.2 W/mK convient.  The transfer of enthalpy is advantageously improved thanks to the installation of fins 63 in the heart of the enclosure 2, constructed of heat-conducting material, such as for example refractory steel. Any material with the ability to transmit heat is suitable. Typically a material having a lambda thermal conductivity of more than 0.2 W / mK is suitable.
Lorsque le média de transfert 5 est sorti de l'enceinte 2, il convient de le mouvoir depuis l'orifice de soutirage 52 vers l'orifice de réintroduction 51. A cette fin, lorsque le mouvement du média de transfert 5 est de haut en bas dans l'enceinte 2, un convoyage vertical d'élévation est requis. Celui-ci pourra se faire par vis d'archimède, tapis roulant, élévateur à godets, vérin ascenseur ou tout autre moyen mécanique permettant un convoyage vertical. Le média de transfert, à sa sortie de l'enceinte, est refroidi par le fluide récepteur d'enthalpie, ce qui limite les contraintes mécaniques et construct ives du mécanisme de convoyage vertical dudit média. When the transfer medium 5 is out of the chamber 2, it should be moved from the withdrawal port 52 to the reintroduction port 51. For this purpose, when the movement of the transfer medium 5 is high, down in enclosure 2, vertical elevation conveying is required. This can be done by archimedes screw, treadmill, bucket elevator, elevator cylinder or any other mechanical means allowing vertical conveying. The transfer medium, at its outlet from the chamber, is cooled by the enthalpy receiving fluid, which limits the mechanical and constructive stresses of the vertical conveying mechanism of said media.
Selon une variante de l'invention, comme représenté en figure 3 et 4, afin de permettre un transfert du média de transfert du bas vers le haut à 1 ' intérieur de l'enceinte, un moyen d'élévation à traînée asymétrique 9 est utilisé. Ce moyen comprend un axe 91 auquel est attaché un pivot 93 et deux palettes 92. Lorsque l'axe 91 est poussé vers le bas, le pivot 93 autorise la fermeture des palettes sous l'effet de la résistance du média de transfert 5, et l'ensemble 9 s'enfonce dans le média 5. Lorsque l'axe 91 est tiré vers le haut, les palettes s'ouvrent et entraînent quelques particules du média de transfert .  According to a variant of the invention, as represented in FIGS. 3 and 4, in order to allow transfer of the transfer medium from the bottom upwards to the inside of the enclosure, an asymmetric drag lifting means 9 is used. . This means comprises an axle 91 to which a pivot 93 and two pallets 92 are attached. When the axle 91 is pushed downwards, the pivot 93 allows the pallets to be closed under the effect of the resistance of the transfer medium 5, and the assembly 9 sinks into the media 5. When the shaft 91 is pulled up, the pallets open and cause some particles of the transfer media.
Avantageusement la sortie du média de l'enceinte 2 permet de lui prodiguer des traitements spécifiques.  Advantageously the output of the media of the enclosure 2 allows him to provide specific treatments.
Par exemple, les particules du média de transfert 5 sont nettoyées afin de séparer et évacuer des dépôts encrassants reçus durant le transfert du média 5 dans l'enceinte du dispositif 1. Ce nettoyage peut être effectué dans un bain d'eau pure ou additivée d'agents de nettoyage tels des surfactants, ou dans un bain de solvant, ou sous une douche d'eau ou de solvant, ou sous un jet de gaz de nettoyage ou de vapeur, telle de la vapeur d'eau.  For example, the particles of the transfer media 5 are cleaned in order to separate and discharge fouling deposits received during the transfer of the media 5 in the chamber of the device 1. This cleaning can be carried out in a bath of pure water or additive d. cleaning agents such as surfactants, or in a bath of solvent, or in a shower of water or solvent, or under a jet of cleaning gas or steam, such as water vapor.
Une variante de nettoyage peut utiliser un dispositif de nettoyage par vibrations, notamment afin de séparer des poussières collées sur les particules de média en les faisant circuler sur un tamis vibrant, ou un dispositif de nettoyage par vibrations à haute fréquence, tels des ultrasons dans un bain de liquide nettoyant. A cleaning variant may use a vibration cleaning device, in particular to separate dust adhered to the media particles by circulating them on a vibrating screen, or a high frequency vibration cleaning device, such as ultrasound in a bath of cleaning liquid.
Il convient aussi de séparer les particules de média de transfert 5 en bon état de celles qui sont usées, cassées et qui ne peuvent plus remplir leur fonction. Pour cela, le passage des particules de média 5 dans un moyen de criblage de type tamis vibrant ou tambour rotatif est avantageux .  It is also necessary to separate the transfer media particles 5 in good condition from those that are worn, broken and can no longer fulfill their function. For this, the passage of the media particles 5 in a screen sieve type vibrating screen or rotating drum is advantageous.
Cette opération de criblage peut être combinée à l'opération de nettoyage des particules du média de transfert.  This screening operation can be combined with the cleaning operation of the particles of the transfer media.
Enfin tout autre traitement est possible, comme une opération d'incinération des dépôts organiques à très haute température, ou une opération de mélange avec des additifs favorisant le bon fonctionnement du dispositif, par exemple un mélange des éléments de média avec de la chaux qui permet de capter des éléments chimiques présents dans le fluide, ou une opération de réchauffage des particules de média de transfert 5 afin de réduire le risque de choc thermique qu'elles pourraient subir lors de leur réintroduction dans l'enceinte 2. Notons qu'un tel réchauffement n'a pas vocation à réchauffer le fluide B, mais juste d'atténuer les écarts de température pour les particules de média 5. Le débit de particules de média de transfert 5 et leur température de réchauffage représente ainsi une puissance thermique valant moins de 30% de la puissance d'échange d'enthalpie effectuée par le dispositif objet de l'invention, et ne peut se substituer à l'enthalpie principale apportée par le fluide A.  Finally any other treatment is possible, such as an incineration operation of organic deposits at very high temperature, or a mixing operation with additives promoting the proper functioning of the device, for example a mixture of media elements with lime which allows of capturing chemical elements present in the fluid, or a heating operation of the transfer media particles 5 in order to reduce the risk of thermal shock that they could undergo when they are reintroduced into the chamber 2. Note that such This heating is not intended to heat the fluid B, but just to attenuate the temperature differences for the media particles 5. The flow rate of the transfer media particles 5 and their reheat temperature thus represents a thermal power of less than 30% of the enthalpy exchange power effected by the device which is the subject of the invention, and can not replace the enthalpy Incipale brought by the fluid A.
Selon l'invention, il est avantageux de disposer d'une zone spéciale de condensation. En effet, une particularité de l'invention est de permettre la récupération de la chaleur latente. Pour cela, lorsqu'un gaz chaud refroidit en deçà du point de rosée, il apparaît une condensation de liquide au cœur du média de transfert.According to the invention, it is advantageous to have a special zone of condensation. Indeed, a feature of the invention is to allow the recovery of latent heat. For this, when a hot gas cools below the dew point, it appears a condensation of liquid at the heart of the transfer media.
Cette condensation cause la production d'une quantité de liquide qu'il s'agit d'évacuer de l'enceinte. A cette fin, une zone de collecte des condensats est installée dans l'enceinte. This condensation causes the production of a quantity of liquid that has to be evacuated from the enclosure. To this end, a condensate collection area is installed in the enclosure.
Si la condensation s'effectue en partie basse de l'enceinte, la zone de condensation consiste en un collecteur de condensât relié à une évacuation basse.  If condensation occurs in the lower part of the enclosure, the condensing zone consists of a condensate collector connected to a low evacuation.
Si la condensation s'effectue en partie haute de l'enceinte, comme indiqué en figure 5, c'est à dire si le fluide refroidit en même temps qu'il monte dans l'enceinte, une zone de condensation 10 spécifique est requise, par exemple sous la forme d'un chenal incliné. Ainsi le fluide qui sort de l'enceinte par la sortie 32 refroidit au contact du média entrant par l'entrée 51, génère des condensats 11 qui s'écoulent vers le fond du chenal 12.  If the condensation takes place in the upper part of the chamber, as indicated in FIG. 5, ie if the fluid cools while it is rising in the chamber, a specific condensation zone 10 is required. for example in the form of an inclined channel. Thus the fluid that exits the enclosure through the outlet 32 cools in contact with the incoming media through the inlet 51, generates condensates 11 which flow towards the bottom of the channel 12.
Toute autre solution de collecte est évidemment possible. Par exemple, un moyen de collecte tel que représenté en figure 6 comprend une nappe de tubes 13 disposés horizontalement à l'intérieur de l'enceinte 2. Ces tubes présentent une partie inférieure fermée et une partie supérieure ouverte par des perforations 14, suffisamment petites pour que des éléments du média de transfert 5 ne puissent pas y rentrer. Les condensats 11 s'écoulent verticalement, passent dans les perforations 14 et sont collectés par les tubes 13 et évacués par un collecteur chenal 12 qui relie les tubes 13 vers une évacuation générale.  Any other collection solution is obviously possible. For example, a collection means as shown in FIG. 6 comprises a sheet of tubes 13 arranged horizontally inside the enclosure 2. These tubes have a closed bottom part and an upper part opened by perforations 14, which are sufficiently small. so that elements of the transfer media 5 can not enter it. The condensates 11 flow vertically, pass through the perforations 14 and are collected by the tubes 13 and discharged through a channel collector 12 which connects the tubes 13 to a general evacuation.
Si la zone de collecte ne permet pas la récupération intégrale des condensats, certains condensats retombent dans la zone principale où ils sont revaporisés par le fait de la plus haute température régnant dans la zone inférieure. Les vapeurs sont alors entraînées par le fluide qui monte, refroidissent à nouveau, condensent et ont une nouvelle chance d'être collectées. Cela entraine une augmentation du taux de vapeur ou gaz condensable ce qui augmente le débit de condensats et la probabilité pour ceux-ci d'être collectés et évacués de l'enceinte 2. Ainsi, la solution est efficace même si tous les condensats ne sont pas captés au premier passage. If the collection area does not allow the full recovery of the condensates, some condensates fall back into the main zone where they are revaporized due to the higher temperature prevailing in the area. lower. The vapors are then driven by the rising fluid, cool again, condense and have a new chance of being collected. This results in an increase in the vapor or condensable gas content which increases the condensate flow and the probability for them to be collected and evacuated from the chamber 2. Thus, the solution is effective even if all the condensates are not not captured on the first pass.
La condensation assure aussi une fonction de lavage interne des éléments de média. Par exemple, s'il s'agit de fumée ou de gaz de synthèse issu d'une gazéification, il est possible de collecter des poussières, de l'ammoniac (NH3), de l'acide chlorydrique (HCL) , de l'acide sulfurique (S02) et la plupart des composés organiques volatils qui sont solubles ou captés par les condensats. L'efficacité du lavage peut dans certains cas être telle que les moyens de traitement et de filtration du média apporteur pourront être fortement réduits. Les condensats ainsi chargés d'éléments indésirables nécessiteront un traitement avant leur évacuation du procédé.  The condensation also provides an internal washing function of the media elements. For example, if it is smoke or synthesis gas from a gasification, it is possible to collect dust, ammonia (NH3), hydrochloric acid (HCL), sulfuric acid (SO2) and most volatile organic compounds that are soluble or captured by condensates. The effectiveness of the washing may in certain cases be such that the means of treatment and filtration of the supply media can be greatly reduced. The condensates thus loaded with undesirable elements will require treatment before their evacuation of the process.
Selon une variante de l'invention, il est avantageux de recycler les condensats. Ce recyclage des condensats traités dans la zone de condensation permet de diluer les acides et les autres polluants, stimuler la condensation, améliorer le lavage du média apporteur, et surtout, par le contrôle de la température des condensats recyclés, à faire évoluer le point de rosée.  According to a variant of the invention, it is advantageous to recycle the condensates. This recycling of treated condensates in the condensing zone allows to dilute the acids and the other pollutants, to stimulate the condensation, to improve the washing of the bringing media, and especially, by the control of the temperature of the condensates recycled, to make evolve the point of dew.
L'invention concerne également un procédé d'échange d'enthalpie utilisant les dispositifs et les configurations décrits ci-dessus.  The invention also relates to an enthalpy exchange process using the devices and configurations described above.
Dans le cas d'un cycle de cogénération chaleur et électricité à base d'un cycle de Rankine avec vapeur d'eau ou de tout fluide organique alternatif, il est avantageux d'utiliser l'invention pour récupérer l'enthalpie des fumées de combustion en tant que fluide A que l'on fait circuler librement dans le média de transfert, afin de chauffer et de vaporiser de l'eau en tant que fluide B qui circule dans un échangeur étanche baigné par le média circulant. Tous les avantages de l'invention sont ainsi obtenus . In the case of a heat and electricity cogeneration cycle based on a Rankine cycle with steam or any other organic fluid, it is advantageous to use the invention to recover the enthalpy of combustion fumes as a fluid A which is circulated freely in the transfer media, in order to heat and vaporize water as fluid B circulates in a watertight exchanger bathed by the circulating media. All the advantages of the invention are thus obtained.
Un avantage supplémentaire est qu'il est ainsi possible d'augmenter la température de surchauffe de la vapeur en tant que fluide B, tout en bénéficiant d'une plage d'enthalpie supérieure pour la production de vapeur par la récupération d'une partie de la chaleur latente, et de plus de chaleur sensible. On peut ainsi obtenir un supplément d'enthalpie supérieur à 6% par rapport aux solutions conventionnelles.  An additional advantage is that it is thus possible to increase the superheat temperature of the vapor as fluid B, while benefiting from an upper enthalpy range for steam production by recovering a portion of latent heat, and more sensible heat. It is thus possible to obtain an enthalpy supplement greater than 6% with respect to conventional solutions.
Comme variante, il est avantageux de préchauffer l'air de combustion en tant que fluide C dans le cas de trois étages. Cela permet de mieux refroidir le média de transfert, permettant ainsi d'améliorer la récupération de la chaleur latente par condensation.  As a variant, it is advantageous to preheat the combustion air as fluid C in the case of three stages. This allows better cooling of the transfer media, thus improving the recovery of latent heat by condensation.
Dans le cas d'un procédé de gazéification par voie thermique, le syngaz produit a une température qui peut dépasser 1200°C et peut avantageusement circuler au travers de l'invention en tant que fluide A, afin de transmettre son enthalpie à divers fluides récepteurs destinés à alimenter en énergie thermique le procédé, et notamment une étape de pyrolyse ou thermolyse en amont, par exemple, en faisant circuler le fluide dans un réseau de tuyaux enveloppant l'enceinte du dispositif mis en œuvre. Il peut aussi chauffer de l'air ou tout autre fluide afin de réduire le taux d'humidité des entrants destinés à alimenter le procédé de gazéification, par exemple par le biais d'un moyen de chauffage. Il peut enfin transmettre le complément d'énergie à tout procédé externe audit procédé de gazéification, de telle sorte que le rendement du procédé soit maximisé. In the case of a thermal gasification process, the syngas produced at a temperature which may exceed 1200 ° C. and can advantageously circulate through the invention as fluid A, in order to transmit its enthalpy to various receiving fluids. intended to supply thermal energy to the process, and in particular a step of pyrolysis or thermolysis upstream, for example, by circulating the fluid in a pipe network surrounding the enclosure of the device implemented. It can also heat air or other fluid to reduce the moisture content of the inputs intended to supply the gasification process, for example by means of a heating means. he can finally, transmitting the additional energy to any process external to said gasification process, so that the efficiency of the process is maximized.
De façon générale, le fluide B peut être un liquide caloporteur, une huile thermique, un sel fondu, un métal fondu ou bien de l'eau pouvant être sélectionnés en fonction de la plage de température requise.  In general, the fluid B may be a heat transfer liquid, a thermal oil, a molten salt, a molten metal or water that can be selected according to the required temperature range.
Selon une variante de l'invention, il est avantageux de disposer d'un fluide B le plus froid possible afin de capter le plus d'enthalpie possible du fluide A. A cette fin, l'aide d'une pompe à chaleur qui traite le fluide B, qui sort du dispositif d'échange d'enthalpie après avoir capté l' enthalpie du fluide A, en tant que source chaude, permet d'une part de prélever l' enthalpie du fluide B, de la restituer à plus haute température à un fluide auxiliaire en tant que source froide, et aussi de refroidir davantage le fluide A lors du retour du fluide B refroidi dans le dispositif d'échange d'enthalpie 1.  According to a variant of the invention, it is advantageous to have a fluid B as cold as possible in order to capture as much as possible enthalpy of the fluid A. To this end, using a heat pump that processes the fluid B, which leaves the enthalpy exchange device after having sensed the enthalpy of the fluid A, as a hot source, makes it possible on the one hand to extract the enthalpy of the fluid B, to restore it to higher temperature to an auxiliary fluid as a cold source, and also to further cool the fluid A upon return of the cooled fluid B in the enthalpy exchange device 1.
Selon une variante de l'invention, l'échange d'enthalpie est avantageux mais pas indispensable dans l'objectif de procéder à une épuration de fluide.  According to a variant of the invention, the exchange of enthalpy is advantageous but not essential for the purpose of carrying out a fluid purification.
Ainsi, si le fluide A comporte des éléments indésirables qu'il s'agit de collecter et de séparer, l'invention s'emploie de la façon suivante: le fluide A circule à travers les vides d'un média de collecte et de transfert. Lors de cette traversée, des éléments indésirables touchent les parois des éléments du média et sont captés. Lorsque le média est déplacé vers la zone d'action du fluide B, une partie des éléments indésirables sont entraînés avec. Le fluide B est alors employé comme un fluide de nettoyage car en traversant le média, il va procéder à son lavage. Le média propre est alors retourné vers la zone d'action du fluide A. Selon une variante de l'invention, un nettoyage complémentaire du média est réalisé hors de l'enceinte 2, lors du transfert du média hors de l'enceinte 2. Thus, if the fluid A has undesirable elements that it is a question of collecting and separating, the invention is used in the following way: the fluid A flows through the voids of a collection and transfer media . During this crossing, undesirable elements touch the walls of the elements of the media and are captured. When the media is moved to the fluid B action zone, a portion of the unwanted elements are driven with. The fluid B is then used as a cleaning fluid because crossing the media, it will proceed to its washing. The clean media is then returned to the fluid A action zone. According to a variant of the invention, an additional cleaning of the media is performed outside the enclosure 2, during the transfer of the media out of the enclosure 2.
Par exemple le fluide A est des fumées de procédé de combustion de biomasse dans une chaudière de cogénérat ion, comportant des poussières en suspension à séparer. Le média est des billes d'acier austénitique recouvertes d'une couche d'agent de collecte tel de l'eau additionnée d'agent tensioactif. Le fluide B est de l'eau de lavage. Le média est injecté dans l'enceinte 2 en mélange avec de l'agent de collecte afin que toute la surface du média en soit recouverte. Lors de la circulation du fluide A, les poussières sont captées et collent à la surface des billes. Lorsque les billes se déplacent dans la zone d'action du fluide B, elles entraînent les poussières qui sont alors lavées par le fluide B.  For example, the fluid A is combustion process fumes of biomass in a cogeneration boiler, comprising suspended dusts to be separated. The media is austenitic steel balls coated with a collection agent layer such as water with surfactant added. Fluid B is wash water. The media is injected into the chamber 2 in admixture with the collection agent so that the entire surface of the media is covered. During the circulation of fluid A, the dust is collected and stick to the surface of the balls. When the balls move in the area of action of the fluid B, they cause the dusts which are then washed by the fluid B.
Cette épuration peut être améliorée en déclenchant la condensation des vapeurs d'eau contenues dans le fluide A. A cette fin, le média est volontairement refroidi en dessous de la température de rosée du fluide A, soit par le fluide B dans sa zone d'action, soit par un autre fluide C dans une troisième zone d'action.  This purification can be improved by triggering the condensation of the water vapor contained in the fluid A. For this purpose, the media is voluntarily cooled below the dew point temperature of the fluid A, or by the fluid B in its zone. action, or by another fluid C in a third zone of action.
Selon une variante de l'invention, l'effet d'épuration amélioré par la condensation sera encore plus amélioré en procédant à la recirculation d'une partie des condensats dans le fluide A, après traitement spécifique de nettoyage de ces condensats. Ainsi le taux de vapeur condensable présent dans le fluide A est accru et le phénomène de condensation, donc d'épuration, sera plus intense.  According to a variant of the invention, the purification effect improved by the condensation will be further improved by proceeding to the recirculation of a portion of the condensate in the fluid A, after specific cleaning treatment of these condensates. Thus the rate of condensable vapor present in the fluid A is increased and the phenomenon of condensation, thus of purification, will be more intense.
Selon une autre variante de l'invention, l'agent de collecte est un agent de fonte, tel des sels alcalins, qui est introduit en mélange avec le média de transfert froid. Le fluide A est apporteur de calorie de sorte que l'agent de fonte fond et forme une couche collante et collectrice sur les particules du média. Le fluide B est un gaz chargé d'éléments indésirables qui sont collectés par les surfaces du média et le fluide B est ainsi épuré lors de son passage dans sa zone d'action. Le média est alors évacué et subit une étape de nettoyage. According to another variant of the invention, the collecting agent is a melting agent, such as alkaline salts, which is introduced in admixture with the cold transfer medium. Fluid A is a calorie builder so that the melting agent melts and forms a sticky and collecting layer on the media particles. The fluid B is a gas loaded with undesirable elements which are collected by the surfaces of the media and the fluid B is thus purified during its passage in its zone of action. The media is then evacuated and undergoes a cleaning step.
Selon une variante de l'invention, l'épuration du fluide A peut correspondre à la situation suivante : le fluide A est un gaz chargé d'éléments chimiques indésirables, tels de l'hydrogène sulfureux gazeux, l'acide hypochloreux ou les métaux lourds. Le média est du charbon actif dont le rôle est de capter les vapeurs indésirables par adsorption, lorsque le fluide A le traverse. Ensuite le média est déplacé dans la zone d'action d'un fluide B chaud, qui va réchauffer le média et assurer la désorption des éléments adsorbés alors évacués avec le fluide B.  According to a variant of the invention, the purification of the fluid A may correspond to the following situation: the fluid A is a gas loaded with undesirable chemical elements, such as gaseous sulfurous hydrogen, hypochlorous acid or heavy metals . The media is activated carbon whose role is to capture the unwanted vapors by adsorption, when the fluid A passes through. Then the media is moved in the action zone of a hot fluid B, which will heat the media and ensure the desorption of the adsorbed elements then discharged with the fluid B.

Claims

REVENDICATIONS
1- Dispositif (1) d'échange entre au moins un fluide A et au moins un fluide B, comprenant une enceinte (2), comprenant une sortie (32) de fluide A, une entrée (31) de fluide A, une sortie (42) de fluide B, une entrée (41) de fluide B, caractérisé en ce que la position des entrées et sorties de fluide A et B définissent 2 zones distinctes dans l'enceinte, une première zone d'action de fluide A (21) entre l'entrée et la sortie de fluide A et une seconde zone d'action de fluide B (22) entre l'entrée et la sortie de fluide B et en ce que des particules solides indépendantes (5) formant un média de transfert mobile sont placées en tas dans l'enceinte (2), dans la zone d'action de fluide A (21) et dans la zone d'action de fluide B (22) et en ce qu'une entrée (51) dudit média de transfert est placée à une extrémité de l'enceinte (2) et en ce qu'une sortie (52) dudit média (52) est placée à l'autre extrémité de l'enceinte (2) et en ce qu'un moyen de transfert (8) dudit média de transfert est intercalé entre ladite sortie de média (52) et ladite entrée de média (51) assurant la circulation en boucle dudit média et en ce qu'il comprend en outre un moyen de récupération des condensats (10) . 2- Dispositif d'échange selon l'une des revendications précédentes, caractérisé en ce que le média de transfert présente un taux de vide d'au moins 20%. 1- Device (1) for exchange between at least one fluid A and at least one fluid B, comprising an enclosure (2), comprising an outlet (32) of fluid A, a fluid inlet (31), an outlet (42) of fluid B, an inlet (41) of fluid B, characterized in that the position of the fluid inlets and outlets A and B define 2 distinct zones in the chamber, a first fluid action zone A ( 21) between the fluid inlet and outlet A and a second fluid action zone B (22) between the inlet and the fluid outlet B and in that independent solid particles (5) forming a media of mobile transfer are placed in a pile in the chamber (2), in the fluid action zone A (21) and in the fluid action zone B (22) and in that an inlet (51) of said fluid transfer media is placed at one end of the enclosure (2) and that an outlet (52) of said media (52) is placed at the other end of the enclosure (2) and that a transfer means (8) of said transfer medium is interposed between said media outlet (52) and said media inlet (51) providing for loop circulation of said media and further comprising condensate recovery means (10). 2- exchange device according to one of the preceding claims, characterized in that the transfer media has a vacuum rate of at least 20%.
3- Dispositif d'échange selon l'une des revendications précédentes, caractérisé en ce que les particules solides indépendantes (5) sont des sphères de diamètre compris entre 3mm et 100mm. 4- Dispositif d'échange selon l'une des revendications précédentes, caractérisé en ce qu'un moyen de régulation du débit d'au moins un des fluides est associé à l'entrée et/ou à la sortie dudit fluide. 3- exchange device according to one of the preceding claims, characterized in that the independent solid particles (5) are spheres with a diameter of between 3mm and 100mm. 4- exchange device according to one of the preceding claims, characterized in that a flow control means of at least one of the fluids is associated with the inlet and / or the outlet of said fluid.
5- Dispositif d'échange selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre un moyen de nettoyage des particules du média de transfert. 6- Dispositif d'échange selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre un moyen de nettoyage des condensats. 5. Exchange device according to one of the preceding claims, characterized in that it further comprises a means for cleaning the particles of the transfer medium. 6- exchange device according to one of the preceding claims, characterized in that it further comprises a condensate cleaning means.
7- Dispositif d'échange selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre un moyen de criblage des particules du média assurant entre autres l'élimination des éléments brisés ou agglomérés. 7. Exchange device according to one of the preceding claims, characterized in that it further comprises a means of screening the particles of the media ensuring inter alia the elimination of broken or agglomerated elements.
8- Dispositif d'échange selon l'une des revendications précédentes, caractérisé en ce qu'il comprend au moins un échangeur de chaleur (6) étanche placé à l'intérieur de ladite enceinte au contact dudit média de transfert, et raccordé à ladite entrée et à ladite sortie d'un desdits fluides . 8- exchange device according to one of the preceding claims, characterized in that it comprises at least one sealed heat exchanger (6) placed inside said enclosure in contact with said transfer medium, and connected to said input and at said output of one of said fluids.
9- Dispositif d'échange selon l'une des revendications précédentes, caractérisé en ce que les particules solides indépendantes constituant le média de transfert sont constituées d'un matériau de conductivité thermique supérieure à 0.2 W/mK. 9. Exchange device according to one of the preceding claims, characterized in that the independent solid particles constituting the transfer media consist of a thermal conductivity material greater than 0.2 W / mK.
10- Dispositif d'échange selon l'une des revendications précédentes, caractérisé par le fait que les particules solides indépendantes sont constituées de deux matériaux différents et en ce que l'un des matériaux constitue l'enveloppe extérieure de la particule et l'autre matériau constitue le cœur de la particule et présente une température de fusion inférieure à celle du matériau constituant l'enveloppe extérieure. 10- Exchange device according to one of the preceding claims, characterized in that the independent solid particles consist of two different materials and in that one of the materials constitutes the outer shell of the particle and the other material is the core of the particle and has a lower melting temperature than the material constituting the outer shell.
11- Procédé d'échange, caractérisé à ce qu'il comprend une étape consistant à faire circuler un média de transfert, composé de particules solides indépendantes (5) en tas dans une même enceinte, entre une première zone d'action A dans laquelle circule un fluide A et une zone d'action B dans laquelle circule un fluide B, et en ce que ledit média de transfert est renvoyé dans la zone d'action A après avoir circulé dans la zone d'action B et en ce qu'il comprend une étape de recueil des condensats formé au contact d'un des fluides et dudit média de transfert. 11- exchange process, characterized in that it comprises a step of circulating a transfer medium, composed of independent solid particles (5) in a heap in the same chamber, between a first action zone A in which circulates a fluid A and an action zone B in which a fluid B circulates, and in that said transfer medium is returned to the action zone A after having circulated in the action zone B and in that it comprises a step of collecting the condensates formed in contact with one of the fluids and said transfer medium.
12- Procédé d'échange selon la revendication précédente, caractérisé en ce que le fluide A est plus chaud que le fluide B. 12- The exchange process according to the preceding claim, characterized in that the fluid A is hotter than the fluid B.
13- Procédé d'échange selon la revendication 11, caractérisé en ce que le fluide A est moins chaud que le fluide B. 13- The exchange process according to claim 11, characterized in that the fluid A is less hot than the fluid B.
14- Procédé d'échange selon la revendication 11, caractérisé en ce que le fluide le plus chaud a une température supérieure à 150°C, encore plus préfèrentiellement à 400°C et tout à fait préfèrentiellement supérieure à 600°C. 14- The method of exchange of claim 11, characterized in that the hottest fluid has a temperature above 150 ° C, even more preferably at 400 ° C and quite preferably greater than 600 ° C.
15- Procédé d'échange selon l'une des revendications 12 à 14, caractérisé en ce que les débits des fluides A et B sont régulés de sorte que le débit d'un des fluides, considéré propre, est supérieur de plus de 1% au débit de l'autre fluide, considéré sale, assurant une fuite du fluide propre vers le fluide sale et empêchant l'inverse. 16- Procédé d'échange selon la revendication 12, caractérisé en ce que le fluide A est un gaz chaud qui circule à travers le média de transfert (5), le fluide B est de l'eau liquide et /ou de la vapeur d'eau qui circule dans un échangeur de chaleur étanche (6) et le média de transfert circule entre la zone A et la zone B, de sorte que l'enthalpie du fluide A soit transmise au fluide B. 15- exchange process according to one of claims 12 to 14, characterized in that the flow rates of fluids A and B are regulated so that the flow rate of one of the fluids, considered clean, is more than 1% greater than the flow rate of the other fluid, considered dirty, ensuring leakage of the clean fluid to the dirty fluid and preventing the reverse. 16- A method of exchange according to claim 12, characterized in that the fluid A is a hot gas which circulates through the transfer media (5), the fluid B is liquid water and / or steam water flowing in a sealed heat exchanger (6) and the transfer medium flows between the zone A and the zone B, so that the enthalpy of the fluid A is transmitted to the fluid B.
17- Procédé d'échange selon l'une des revendications 12 à 16, caractérisé en ce que le fluide A est un gaz et en ce que le fluide B est refroidi, après son passage sur ledit média de transfert, par une pompe à chaleur et est ensuite utilisé pour condenser la vapeur condensable contenue dans le gaz A. 18- Procédé d'échange selon l'une des revendications17- The exchange process according to one of claims 12 to 16, characterized in that the fluid A is a gas and in that the fluid B is cooled, after passing over said transfer media, by a heat pump and is then used to condense the condensable vapor contained in the gas A. 18- An exchange process according to one of the claims
12 à 16, caractérisé en ce que le média de transfert collecte les éléments indésirables du fluide A dans la zone A et en ce que ledit média de transfert est lavé par le fluide B dans la zone B. 12 to 16, characterized in that the transfer medium collects the undesirable elements of the fluid A in the zone A and in that said transfer medium is washed by the fluid B in the zone B.
19- Procédé d'échange selon la revendication précédente, caractérisé en ce que ledit média de transfert circule également dans une zone C, au milieu d'un fluide C comprenant un agent collecteur apte à améliorer la capacité de collecte dudit média de transfert. 19- The exchange method according to the preceding claim, characterized in that said transfer medium also circulates in a zone C, in the middle of a fluid C comprising a collector capable of improving the collection capacity of said transfer medium.
20- Procédé d'échange selon l'une des revendications 11 à 18 précédente, caractérisé en ce que les condensats assure une fonction de lavage interne des éléments de média de transfert. 20- exchange process according to one of claims 11 to 18 above, characterized in that the condensates provides an internal washing function of the media elements transfer.
21- Procédé d'échange caractérisé en ce qu'il met en œuvre un dispositif selon l'une des revendications 1 à 10. 21- exchange process characterized in that it implements a device according to one of claims 1 to 10.
PCT/FR2016/053031 2015-11-20 2016-11-21 Enthalpy exchange device WO2017085433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1561207A FR3044083B1 (en) 2015-11-20 2015-11-20 ENTHALPY EXCHANGE DEVICE
FR1561207 2015-11-20

Publications (1)

Publication Number Publication Date
WO2017085433A1 true WO2017085433A1 (en) 2017-05-26

Family

ID=55971069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/053031 WO2017085433A1 (en) 2015-11-20 2016-11-21 Enthalpy exchange device

Country Status (2)

Country Link
FR (1) FR3044083B1 (en)
WO (1) WO2017085433A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3814176A (en) * 1973-01-22 1974-06-04 R Seth Fixed-fluidized bed dry cooling tower
GB2061477A (en) * 1979-10-18 1981-05-13 Steinmueller Gmbh L & C Heat-transmitting elements for regenrative heat exchange
GB2118702A (en) * 1982-04-22 1983-11-02 Steinmueller Gmbh L & C Regenerative heat exchangers
WO1997001072A1 (en) * 1995-06-21 1997-01-09 Abb Carbon Ab A method and a device for heat recovery from flue gases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3814176A (en) * 1973-01-22 1974-06-04 R Seth Fixed-fluidized bed dry cooling tower
GB2061477A (en) * 1979-10-18 1981-05-13 Steinmueller Gmbh L & C Heat-transmitting elements for regenrative heat exchange
GB2118702A (en) * 1982-04-22 1983-11-02 Steinmueller Gmbh L & C Regenerative heat exchangers
WO1997001072A1 (en) * 1995-06-21 1997-01-09 Abb Carbon Ab A method and a device for heat recovery from flue gases

Also Published As

Publication number Publication date
FR3044083B1 (en) 2019-06-21
FR3044083A1 (en) 2017-05-26

Similar Documents

Publication Publication Date Title
EP0419643B1 (en) Process and apparatus for decoking a steam-craking installation
CA1336267C (en) Process and device for the reduction, in smoke containing condensable substances, of the non-condensable substances content in condensable substances
CA1110825A (en) Decomposition process for aluminium chloride hexahydrate by indirect heating with part of recycled calcinate
CA2655852C (en) Method and corresponding device for treating tar sands or oil shales
FR2854887A1 (en) Thermal recycling system suitable for waste material with high water content has thermopyrolysis. solid and gas combustion systems and heat exchanger with condenser
FR3044083B1 (en) ENTHALPY EXCHANGE DEVICE
FR2899238A1 (en) BIOMASS GASIFICATION SYSTEM WITH TARCING DEVICE IN PRODUCTION SYNTHESIS GAS
WO1987004510A1 (en) Method for generating and using cold, and device for implementing such method
EP3041788B1 (en) Regeneration of a trap for impurities in hydrogen using the heat leaving a hydride reservoir
WO2017153681A1 (en) Device for enthalpy exchange between a gas and a liquid
EP3120098A1 (en) Improved phase-change latent heat thermal storage device
FR2485178A1 (en) IMPROVEMENTS IN DEVICES FOR REACTING, SUCH AS COMBUSTION, BETWEEN A SOLID AND A GAS
WO2017085434A1 (en) Thermolysis device and process
FR2836059A1 (en) Continuous recovery process, e.g. for volatile organics, involves condensing or solidifying fraction from gaseous flow
EP3469279B1 (en) Drying method
EP3371278B1 (en) Device for lamella clarification on molten ash
EP0051540A1 (en) Method for the thermal treatment of fine solid particles
EP1205446B1 (en) Glass furnace regenerator
EP3368852B1 (en) Device for storing thermal energy by a solid-liquid phase-change material comprising a condenser
WO2017212189A1 (en) Combustion method
CN213172222U (en) Multi-effect heat recovery device of circulating fluidized bed
FR2790545A1 (en) Unit for extraction of heat from dust-containing hot gas, such as glass melting furnace combustion gas, includes device for creating helicoidally rotating gas current in a heat exchanger
FR3044238A1 (en) DEVICE FOR CLEANING BY ADIABATIC DISTILLATION
BE508601A (en)
BE450208A (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813078

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16813078

Country of ref document: EP

Kind code of ref document: A1