WO2017084562A1 - 电连接器及通信设备 - Google Patents

电连接器及通信设备 Download PDF

Info

Publication number
WO2017084562A1
WO2017084562A1 PCT/CN2016/105956 CN2016105956W WO2017084562A1 WO 2017084562 A1 WO2017084562 A1 WO 2017084562A1 CN 2016105956 W CN2016105956 W CN 2016105956W WO 2017084562 A1 WO2017084562 A1 WO 2017084562A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical connector
resin substrate
carbon nanotube
resin
nanotube array
Prior art date
Application number
PCT/CN2016/105956
Other languages
English (en)
French (fr)
Inventor
晏韦
徐焰
杨曦晨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017084562A1 publication Critical patent/WO2017084562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases

Definitions

  • the present invention relates to the field of connector technologies, and in particular, to an electrical connector and a communication device.
  • PCB printed circuit board
  • the electrical connector is a male connector.
  • the female connector is soldered to the inner surface of PCB2.
  • the pins (pins) on the male seat are inserted into the slots on the female socket, pins and slots.
  • Electrical interconnection between PCB1 and PCB2 is achieved by overstressing.
  • a drawback of conventional male and female electrical connectors is the poor ability to transmit electrical signals, resulting in poor signal interaction between the two electronic devices through which electrical interconnections are achieved.
  • Embodiments of the present invention provide an electrical connector for improving the ability of an electrical connector to transmit electrical signals.
  • an embodiment of the present invention provides an electrical connector including at least one carbon nanotube array and a resin matrix, the at least one carbon nanotube array penetrating through the resin matrix, and the top end of each carbon nanotube array is protruded a first surface of the resin substrate; a bottom end of each of the carbon nanotube arrays protrudes from a second surface of the resin substrate, a first surface of the resin substrate being opposite to a second surface of the resin substrate;
  • the electrical connector includes two or more carbon nanotube arrays
  • the two or more carbon nanotube arrays are isolated from each other, and the two or more carbon nanotube arrays are parallel to each other.
  • Conventional male and female electrical connectors usually use copper as a medium for transmitting electrical signals. Since the electrical conductivity of carbon nanotubes is up to 10,000 times that of copper, the performance of carbon nanotubes for transmitting electrical signals is better; correspondingly, carbon nanotubes are used.
  • the electrical connector as an electrical signal transmission medium is also better at transmitting electrical signals than conventional male and female connectors.
  • the resin matrix comprises a first resin matrix and at least one second resin matrix
  • the at least one second resin matrix extends through the first resin matrix, the first surface of the second resin matrix protrudes from the first surface of the first resin matrix, or the first surface of the second resin matrix And the first resin base
  • the first surface of the body is flush; the second surface of the second resin substrate protrudes from the second surface of the first resin substrate, or the second surface of the second resin substrate and the first resin The second surface of the substrate is flush, wherein the first surface of the second resin substrate is opposite to the second surface of the second resin substrate;
  • Each carbon nanotube array extends through a second resin matrix
  • top end of the carbon nanotube array protrudes from the first surface of the corresponding second resin substrate, or the first surface of the corresponding second resin substrate protrudes from the first surface of the first resin substrate a case where the top end of the carbon nanotube array is flush with the first surface of the corresponding second resin substrate;
  • the bottom end of the carbon nanotube array protrudes from the second surface of the corresponding second resin substrate, or the second surface of the corresponding second resin substrate protrudes from the second surface of the first resin substrate In the case of a surface, the bottom end of the carbon nanotube array is flush with the second surface of the second resin substrate.
  • the purpose of wrapping the carbon nanotube array with the second resin matrix is to reduce the risk of the carbon nanotubes being broken to some extent.
  • each of the two or more second resin substrates is adjacent The two second resin substrates are isolated from each other. It is used to further ensure that each adjacent two carbon nanotube arrays are isolated from each other.
  • the plurality of carbon nanotubes in the same carbon nanotube array are protruded from the first resin
  • the top end of the carbon nanotubes on the first surface of the substrate is flush.
  • the top end of the carbon nanotube protruding from the first surface of the first resin substrate is in contact with electrical contacts of other electronic devices for electrical signal transmission for enhancing electrical signal transmission of the electrical connector ability.
  • the plurality of carbon nanotubes located in the same carbon nanotube array protrude from the first surface of the first resin substrate. It is advantageous to make the electrical signal transmission capability of the carbon nanotube array to be the strongest.
  • the vertices of all the carbon nanotube arrays in the electrical connector are located in the first plane.
  • the electrical contacts of other electronic devices are located on the surface of the pad, and the surface of the pad is planar, and the vertices of all the carbon nanotube arrays are located in the first plane, which facilitates the apex of all the carbon nanotube arrays and other The electrical contacts of the electronic device are in contact, thereby enhancing the universality of the electrical connector.
  • the plurality of carbon nanotubes in the same carbon nanotube array are convex Out of the first tree
  • the bottom end of the carbon nanotubes on the second surface of the lipid matrix is flush.
  • the bottom ends of all the carbon nanotubes protruding from the second surface of the first resin substrate are in contact with the electrical contacts of other electronic devices, thereby enhancing the electrical signal of the electrical connector Transmission capacity.
  • the plurality of carbon nanotubes located in the same carbon nanotube array protrude from the second surface of the first resin substrate. All the carbon nanotubes located in the same carbon nanotube array are in contact with the electrical contacts of other electronic devices, which is advantageous for making the electrical signal transmission capability of the carbon nanotube arrays the strongest. .
  • the lowest point of the bottom end of all the carbon nanotube arrays of the electrical connector is located in the second plane.
  • the electrical contacts of other electronic devices are located on the surface of the pad, and the surface of the pad is planar, and the lowest point of the bottom end of all the carbon nanotube arrays is located in the second plane, which is beneficial to the bottom of all the carbon nanotube arrays.
  • the lowest point of the terminal is in contact with the electrical contacts of other electronic devices for electrical signal transmission, thereby enhancing the universality of the electrical connector.
  • the first plane and the second plane are parallel to each other. Used to further enhance the universality of the electrical connector.
  • each of the carbon nanotube arrays is perpendicular to the first plane. It is used to realize the electrical signal transmission between the two electronic devices using the shortest carbon nanotube array. On the basis of avoiding the waste of carbon nanotubes, the transmission distance of the electrical signal is shortened, thereby increasing the transmission rate of the electrical signal.
  • the first surface of the first resin substrate and the first resin are parallel to each other. It is beneficial to increase the universality of the electrical connector.
  • the first plane is parallel to the first surface of the first resin substrate. Causing each carbon nanotube array to have the same distance beyond the first surface of the first resin substrate, and each carbon nanotube array protrudes the same distance from the second surface of the first resin substrate, even if The length of each carbon nanotube array wrapped by the first resin matrix is substantially the same, which is advantageous for each of the carbon nanotube arrays to receive substantially the same package strength from the first resin matrix, thereby avoiding multiple carbon nanotube arrays due to The strength of the package received is not uniform, which causes some carbon nanotubes to be easily bent.
  • the first surface of the second resin substrate and the second The second surfaces of the resin matrix are parallel to each other. It is advantageous to mass-produce the electrical connector and enhance the universality of the electrical connector.
  • the first surface of the second resin matrix is parallel to the first surface of the first resin matrix. It is further advantageous to mass produce the electrical connector.
  • the first plane is parallel to the first surface of the first resin matrix.
  • the length of each carbon nanotube array is not only wrapped by the first resin matrix, but also the length of the second resin matrix is substantially the same, which is advantageous for each of the carbon nanotube arrays to have substantially the same package strength, thereby further avoiding A plurality of carbon nanotube arrays are likely to be bent due to uneven coating strength.
  • the top end of the carbon nanotube array protrudes from the first resin
  • the length outside the first surface of the substrate is greater than 0 and less than or equal to 1 mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the first surface of the second resin substrate protrudes from the first surface of the first resin substrate
  • the first surface of the second resin substrate protrudes beyond the first surface of the first resin substrate by a length greater than 0 and less than or equal to 1 mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the length of the top end of the carbon nanotube array protruding beyond the first surface of the first resin substrate is greater than 0 and less than or equal to 0.1mm. It is advantageous to further realize the miniaturization of the electrical connector.
  • the first surface of the second resin substrate protrudes from the first surface of the first resin substrate
  • the first surface of the second resin substrate protrudes beyond the first surface of the first resin substrate by a length greater than 0 and less than or equal to 0.1 mm. It is advantageous to further realize the miniaturization of the electrical connector.
  • the bottom end of the carbon nanotube array protrudes from the first
  • the length outside the second surface of the resin substrate is greater than 0 and less than or equal to 1 mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the second surface of the second resin substrate protrudes from the second surface of the first resin substrate
  • the second surface of the second resin substrate protrudes beyond the second surface of the first resin substrate by a length greater than 0 and less than or equal to 1 mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the carbon nanotube array The length of the bottom end of the column protruding beyond the second surface of the first resin substrate is greater than 0 and less than or equal to 0.1 mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the second surface of the second resin substrate protrudes from the second surface of the first resin substrate
  • the second surface of the second resin substrate protrudes beyond the second surface of the first resin substrate by a length greater than 0 and less than or equal to 0.1 mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the thickness of the first resin substrate is greater than or equal to 0.1 mm And less than or equal to 5mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the thickness of the first resin substrate is greater than or equal to 0.1 mm and less than or equal to 1 mm, which is advantageous for realizing the small size of the electrical connector.
  • the length of the carbon nanotube array is greater than 0.1 mm and less than 6 mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the cross-section of the same carbon nanotube array is the farthest
  • the spacing between the two carbon nanotubes is greater than or equal to 0.1 mm and less than or equal to 1 mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the spacing between adjacent two carbon nanotube arrays is greater than 0.1 mm And less than or equal to 1.5mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the second resin substrate has the farthest cross-section in cross section
  • the spacing between the two points is greater than or equal to 0.1 mm and less than or equal to 1 mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the second resin substrate has a circular cross section, and the circular diameter is greater than or equal to 0.1 mm and less than or equal to 1mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the spacing between adjacent two second resin substrates is greater than 0.1 mm and Less than or equal to 1.5mm. It is advantageous to achieve miniaturization of the electrical connector.
  • the thirty-second possible embodiment at greater than or equal to -50 ° C and less than or equal to 200 ° C At the temperature
  • the first resin matrix is in a solid state. It is used to ensure that the electrical connector works normally under normal temperature conditions.
  • the first resin matrix has rubber elasticity. It is beneficial to improve the tolerance performance of the electrical connector.
  • the thirty-fourth possible embodiment at greater than or equal to -50 ° C and less than or equal to 200 ° C
  • the second resin matrix is in a solid state. It is used to ensure that the electrical connector works normally under normal temperature conditions.
  • the second resin matrix has rubber elasticity. It is beneficial to further improve the tolerance performance of the electrical connector.
  • the hardness of the first resin matrix is greater than the second
  • the resin matrix has a high hardness. It is used to further improve the flexibility of the electrical connector, thereby further improving the tolerance performance of the electrical connector.
  • the carbon nanotube surface of the electrical connector is plated with metal
  • the layer has a thickness of between 10 nm and 100 nm. It is beneficial to enhance the electrical conductivity of the carbon nanotubes, thereby enhancing the electrical properties of the electrical connector.
  • the plurality of carbon nanotubes located in the same carbon nanotube array The nano-sized metal particles are filled with a diameter between 10 nm and 100 nm. It is beneficial to further enhance the electrical conductivity of the carbon nanotubes, thereby enhancing the electrical properties of the electrical connector.
  • the embodiment of the present invention further provides a communication device, including the first aspect or the first possible implementation manner of the first aspect to any of the thirtieth possible embodiments of the first aspect
  • the electrical connector, the first electronic device, the second electronic device, and the fixing device of the embodiment, the fixing device fixes the electrical connector between the first electronic device and the second electronic device ;
  • An end of the carbon nanotube array on one side of the resin substrate is in contact with an electrical contact of the first electronic device, and an end of the carbon nanotube array on the other side of the resin substrate and the second electronic device
  • the electrical contacts are in contact, and the first electronic device and the second electronic device are electrically connected by the electrical connector. Since the electrical connector included in the communication device uses carbon nanotubes as a medium for transmitting electrical signals, the electrical signal transmission capability of the communication device is higher than that of the conventional male and female connectors.
  • FIG. 1 is a schematic structural diagram of a conventional male and female electrical connector according to an embodiment of the present invention
  • FIG. 2A is a side cross-sectional view of a communication system according to an embodiment of the present invention.
  • 2B is a side cross-sectional view of another communication system according to an embodiment of the present invention.
  • FIG. 3 is a side cross-sectional view of an electrical connector according to an embodiment of the present invention.
  • FIG. 4A is a side cross-sectional view of another electrical connector according to an embodiment of the present invention.
  • FIG. 4B is a side cross-sectional view of still another electrical connector according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of an array of carbon nanotubes according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of two adjacent carbon nanotube arrays according to an embodiment of the present invention.
  • FIG. 7 is a front view of an electrical connector according to an embodiment of the present invention.
  • FIG. 3 is a side cross-sectional structural view of an electrical connector including a resin substrate and a plurality of carbon nanotube arrays penetrating the resin matrix, and two carbon nanotube arrays. The ends are used to connect two electronic devices, respectively.
  • the electrical connector provided by the embodiment of the present invention is applied to the application scenario shown in FIG. 2A.
  • FIG. 2A is a schematic side sectional structural diagram of a communication system according to an embodiment of the present invention.
  • the communication system includes a first electronic device 101.
  • the second electronic device 102, the fixing device 106 and the electrical connector 103 the electrical connector 103 is the electrical connector according to the embodiment of the invention, and the structure of the electrical connector 103 can be seen in FIG.
  • the electrical connector 103 is fixed between the first electronic device 101 and the first electronic device 102, and the end of the carbon nanotube array on the resin substrate side is in contact with the electrical contact of the first electronic device 101; The ends of the carbon nanotube array on the other side are in contact with the electrical contacts of the second electronic device 102; and the first electronic device 101 and the second electronic device 102 are electrically connected by the electrical connector 103.
  • Carbon nanotubes have good electrical conductivity. It is easy to know that the electrical conductivity of carbon nanotubes is up to 10,000 times that of copper. Therefore, the signal transmission capacity of carbon nanotubes is much larger than that of copper.
  • the electrical connector of the carbon nanotube as the electrical signal transmission medium also has a relatively high signal transmission capability.
  • the communication device including the electrical connector provided by the embodiment of the present invention also has better signal interaction capability. Furthermore, since the aspect ratio of carbon nanotubes is very large (usually above 1000:1), heat exchange performance along the length of the carbon nanotubes is high, and further, electrical connection using carbon nanotubes as an electrical signal transmission medium is further employed. The device also has a high thermal conductivity. Further, the communication device including the electrical connector provided by the embodiment of the present invention is in the process of performing signal interaction. Thermal performance is also better.
  • the fixing device 106 may be any mechanical fixing device commonly used by those skilled in the art, such as fastening screws, and is not limited herein.
  • the first electronic device 101 is a circuit board (specifically, a printed circuit board or a flexible board, etc.) or other electronic components (such as a chip) other than the circuit board
  • the second electronic device 102 is also a circuit board ( Specifically, it is a printed circuit board or a flexible board, etc. or other electronic components (such as chips) other than the circuit board.
  • the electrical connector 103 is in contact with a pad located on the inner surface of the printed circuit board. It is worth noting that in the case where the alignment accuracy of the electrical connector is not high, one pad can be in contact with the ends of the plurality of carbon nanotube arrays; the alignment accuracy of the electrical connector is relatively high. In the case where one pad is in contact with only one end of the carbon nanotube array, that is, the pad is in one-to-one contact with the carbon nanotube array, because only the electrical interconnection can be realized, otherwise the short circuit is likely to occur. .
  • the electrical connector 103 is in contact with the solder balls on the inner surface of the chip.
  • the alignment accuracy of the electrical connector is not high, one solder ball can be in contact with the ends of the plurality of carbon nanotube arrays; in the case where the alignment accuracy of the electrical connector is relatively high
  • the pads are in one-to-one contact with the array of carbon nanotubes to facilitate electrical interconnection and avoid short circuits. Since the power consumption of the chip is large, the heat generated by the chip is usually large, and a heat sink 104 is usually required to be mounted on the upper surface of the chip to enhance the heat dissipation capability of the chip.
  • a slot is formed in the side of the heat sink 104 that is in contact with the chip for receiving the chip, the depth of the slot being less than or equal to the total thickness of the chip and the electrical connector.
  • the slot is the same size as the chip.
  • the electrical connector 103 is also in contact with a pad located on the inner surface of the printed circuit board; in the case where the second electronic device 102 is a chip, the electrical connector The 103 is also in contact with the solder ball on the inner surface of the chip.
  • FIG. 4A is a side cross-sectional view of another electrical connector according to an embodiment of the present invention.
  • the electrical connector can be applied to the communication system shown in FIGS. 2A and 2B instead of FIG. 2A and FIG. Electrical connector 103 in the communication system.
  • the electrical connector includes a resin matrix and at least one array of carbon nanotubes.
  • the at least one carbon nanotube array extends through the resin matrix, the top end of each carbon nanotube array protrudes from the first surface of the resin matrix, and the bottom end of each carbon nanotube array protrudes from the bottom a second surface of the resin matrix, wherein the resin The first surface of the substrate is opposite the second surface of the resin matrix.
  • the electrical connector includes two or more carbon nanotube arrays, the two or more carbon nanotube arrays are isolated from each other, and the two or more carbon nanotube arrays are parallel to each other.
  • An electrical connector using carbon nanotubes as an electrical signal transmission medium has a better ability to transmit electrical signals than a conventional male and female connector.
  • top and bottom are the orientations shown in Figure 4A, and are used herein for the purpose of simplicity of description and are not intended to indicate or imply that the electrical connector referred to must have The specific orientation is therefore not to be construed as limiting the invention.
  • the diameter of the cross section of the carbon nanotubes lies in the range of 0.5 nm to 100 nm.
  • the resin matrix is solid at a temperature greater than or equal to -50° and less than or remaining at 200°. It should be understood that the resin matrix is insulating. Optionally, the resin matrix has rubber elasticity. Specifically, the resin matrix has a hardness index of Shore 00 and a hardness value between 10 and 80. It is to be noted that, in the case where the resin material for preparing the resin matrix is in a liquid state, the viscosity of the resin material is in the range of 100 Pa.s to 50,000 Pa.s.
  • the resin matrix is made of a silicone resin, a polyurethane resin or other resin.
  • the resin matrix and the at least one carbon nanotube array in the electrical connector may be integrally formed.
  • the electrical connector includes a plurality of carbon nanotube arrays
  • the plurality of carbon nanotube arrays are arranged in a matrix, and the number of rows and columns is determined according to actual needs. design.
  • the distance between each adjacent two carbon nanotube arrays is substantially the same.
  • the application knows that the spacing of adjacent two carbon nanotube arrays in the electrical connector is not always exactly the same based on limitations of the process conditions, so the "substantially the same” described herein should be suitable to those skilled in the art. It is acceptable and easy to understand.
  • the spacing between the carbon nanotube array 1 and the carbon nanotube array 2 is b
  • the spacing between the carbon nanotube array 1 and the carbon nanotube array 3 is a, then a and b are substantially the same. .
  • the same carbon nanotube array since the same carbon nanotube array includes a plurality of carbon nanotubes, it is located in a plurality of carbon nanotubes of the same carbon nanotube array, and protrudes from the top of the carbon nanotubes on the first surface of the resin substrate. Qi Ping. Since the top end of the carbon nanotube array will be in contact with the electrical contacts of other electronic devices, an electrical signal is transmitted between the electrical connector and the other electronic device, and the same carbon nanotube array protrudes from the resin substrate. The top end of the carbon nanotubes on one surface is flush, thereby facilitating the electrical signal transmission performance of the electrical connector.
  • a plurality of carbon nanotubes located in the same carbon nanotube array protrude from the first surface of the resin matrix.
  • the vertices of all the carbon nanotube arrays in the electrical connector are located in a first plane.
  • the apex of each carbon nanotube array refers to the point at which the length between the top end of the carbon nanotube array and the first surface of the resin substrate is the longest.
  • the bottom ends of the carbon nanotubes located on the second surface of the resin matrix are flush in a plurality of carbon nanotubes of the same carbon nanotube array.
  • the bottom end of the carbon nanotube array is also used to improve the electrical signal transmission performance of the electrical connector.
  • a plurality of carbon nanotubes located in the same carbon nanotube array protrude from the second surface of the resin matrix.
  • the lowest point of the bottom end of all the carbon nanotube arrays in the electrical connector is located in the second plane.
  • the lowest point of the bottom end of each carbon nanotube array refers to the point at which the length between the bottom end of the carbon nanotube array and the second surface of the resin substrate is the longest.
  • the first plane is parallel to the second plane.
  • each of the carbon nanotube arrays is perpendicular to the first plane.
  • the first surface of the resin matrix is parallel to the second surface of the resin matrix.
  • the resin matrix has a uniform thickness.
  • the first plane is parallel to the first surface of the resin substrate.
  • the first plane is parallel to the resin substrate In the case of the first surface, the first plane, the first surface of the resin substrate, the second surface of the resin substrate, and the second plane are all parallel to each other. Therefore, not only the top end of each carbon nanotube array protrudes from the first surface of the resin substrate, but the bottom end of each carbon nanotube array protrudes from the second surface of the resin substrate to have the same length. And each of the carbon nanotube arrays is wrapped by the resin substrate to have the same length, which is convenient for mass production, and avoids a situation in which a plurality of carbon nanotube arrays are easily bent due to different package strengths. .
  • the length of the top end of the carbon nanotube array protruding beyond the first surface of the resin substrate is greater than 0 and less than or equal to 1 mm.
  • the length of the top end of the carbon nanotube array protruding beyond the first surface of the resin substrate is greater than 0 and less than or equal to 0.1 mm.
  • the portion of the carbon nanotube array that protrudes beyond the first surface of the resin substrate is considered to be the first electrode of the electrical connector.
  • the length of the first electrode is smaller than The length of the pin in the conventional male and female connectors is such that the electrical connector provided by the embodiment of the present invention is easier to achieve miniaturization.
  • the bottom end of the carbon nanotube array protrudes beyond the second surface of the resin substrate by a length greater than 0 and less than or equal to 1 mm.
  • the bottom end of the carbon nanotube array protrudes beyond the second surface of the resin substrate by a length greater than 0 and less than or equal to 0.1 mm.
  • the bottom end of the carbon nanotube array protrudes beyond the second surface of the resin substrate, and can be regarded as the second electrode of the electrical connector.
  • the length of the second electrode is also To be smaller than the length of the pins in the conventional male and female connectors, the electrical connector provided by the embodiment of the present invention is further miniaturized.
  • the thickness of the resin substrate is greater than or equal to 0.1 mm and less than or equal to 5 mm.
  • the length of the carbon nanotube array is greater than 0.1 mm and less than 6 mm.
  • the resin substrate has a thickness greater than or equal to 0.1 mm and less than or equal to 1 mm.
  • the distance between the two carbon nanotubes which are the farthest apart in the cross section of the same carbon nanotube array is greater than or equal to 0.1 mm and less than or equal to 1 mm.
  • FIG. 5 which is a top view of a carbon nanotube array
  • the farthest apart is carbon nanotube 1 and carbon nanotube 2
  • carbon nanotube 1 and carbon nanotube 2 The spacing between the distances is greater than or equal to 0.1 mm and less than or equal to 1 mm.
  • the cross section of the carbon nanotube array is also small, which is advantageous for miniaturization of the electrical connector. .
  • the spacing between two adjacent carbon nanotube arrays is greater than 0.1 mm and less than or equal to 1.5 mm.
  • the carbon nanotube array 1 and the carbon nanotube array 2 are two adjacent carbon nanotube arrays in the electrical connector, and the distance between the carbon nanotube array 1 and the carbon nanotube array 2 is Located between 0.1mm and 1.5mm.
  • a metal layer may be plated on the surface of the carbon nanotubes, and the thickness of the metal layer is in the range of 10 nm to 100 nm, and optionally, a copper plating layer is formed on the surface of the carbon nanotubes.
  • nano-scale metal particles are filled between the plurality of carbon nanotubes located in the same carbon nanotube array, and the nano-sized metal particles have a diameter between 10 nm and 100 nm.
  • FIG. 4B is a side cross-sectional view of another electrical connector according to an embodiment of the present invention.
  • the resin substrate includes a first resin matrix and at least one second resin matrix;
  • the at least one second resin matrix extends through the first resin matrix, and the first table of the second resin matrix The surface protrudes from the first surface of the first resin substrate, or the first surface of the second resin substrate is flush with the first surface of the first resin substrate; the second of the second resin substrate The surface protrudes from the second surface of the first resin substrate, or the second surface of the second resin substrate is flush with the second surface of the first resin substrate, wherein the second resin substrate The first surface is opposite to the second surface of the second resin substrate;
  • Each carbon nanotube array extends through a second resin matrix
  • top end of the carbon nanotube array protrudes from the first surface of the corresponding second resin substrate, or the first surface of the corresponding second resin substrate protrudes from the first surface of the first resin substrate a case where the top end of the carbon nanotube array is flush with the first surface of the corresponding second resin substrate;
  • the bottom end of the carbon nanotube array protrudes from the second surface of the corresponding second resin substrate, or the second surface of the corresponding second resin substrate protrudes from the second surface of the first resin substrate In the case of a surface, the bottom end of the carbon nanotube array is flush with the second surface of the second resin substrate.
  • first resin substrate in the embodiment of the present invention can be referred to the definition of the resin matrix in the first embodiment.
  • the definition of the carbon nanotube array in the embodiment of the present invention reference may also be made to the embodiment.
  • the definition of the nanotube array is not described here. Only the definitions associated with the second resin matrix will be described below.
  • the hardness of the second resin matrix is less than the hardness of the first resin matrix, thereby facilitating further enhancement of the flexibility of the electrical connector.
  • the second resin matrix is in a solid state at a temperature greater than or equal to -50° and less than or remaining 200°. It will be appreciated that the second resin matrix is insulating. Optionally, the second resin matrix has rubber elasticity. Specifically, the second resin matrix has a hardness index of Shore 00 and a hardness value between 10 and 80. It is to be noted that, in the case where the resin material for preparing the second resin substrate is in a liquid state, the viscosity of the resin material is in the range of 100 Pa.s to 50,000 Pa.s.
  • the second resin substrate is made of a silicone resin, a urethane resin or other resin.
  • first resin matrix, the at least one second resin matrix, and the at least one carbon nanotube array in the electrical connector may be integrally formed.
  • the electrical connector includes two or more second resin substrates
  • the two or more second resin substrates are isolated from each other.
  • the top end of the carbon nanotube array protrudes from the first surface of the corresponding second resin substrate, is located in the plurality of carbon nanotubes of the same carbon nanotube array, and protrudes from the second The tips of the carbon nanotubes on the first surface of the resin substrate are flush. In order to improve the electrical signal transmission performance of the electrical connector. Further, a plurality of carbon nanotubes located in the same carbon nanotube array protrude from the first surface of the second resin substrate.
  • a first surface of the corresponding second resin substrate protrudes from a first surface of the first resin substrate, and a top end of the carbon nanotube array and the corresponding second resin substrate In the case where the first surface is flush, the tips of the plurality of carbon nanotubes located in the same carbon nanotube array are flush with the first surface of the corresponding second resin substrate.
  • the bottom end of the carbon nanotube array protrudes from the second surface of the corresponding second resin substrate, is located in the plurality of carbon nanotubes of the same carbon nanotube array, and protrudes from the The top end of the carbon nanotubes on the second surface of the second resin substrate is flush. Further, a plurality of carbon nanotubes located in the same carbon nanotube array protrude from the second surface of the second resin substrate.
  • the second surface of the corresponding second resin substrate protrudes from the second surface of the first resin substrate, and the bottom end of the carbon nanotube array and the second resin substrate In the case where the second surface is flush, the bottom ends of the plurality of carbon nanotubes located in the same carbon nanotube array are flush with the second surface of the corresponding second resin substrate.
  • the first surface of the second resin substrate is parallel to the second surface of the second resin substrate.
  • the length of each of the carbon nanotube arrays is the same as that of the second resin matrix, thereby ensuring that all of the carbon nanotube arrays are less susceptible to bending.
  • first surface of the first resin substrate is parallel to a second surface of the first resin substrate
  • a first surface of the second resin substrate is parallel to a first surface of the first resin substrate surface.
  • Each of the carbon nanotube arrays is not only wrapped in the same length by the second resin substrate, but also has the same length wrapped by the first resin matrix, thereby further ensuring that all of the carbon nanotube arrays are less susceptible to bending.
  • first plane is also parallel to the first surface of the first resin substrate. Not only the length of each of the carbon nanotube arrays is the same, but also the length of each of the carbon nanotube arrays protruding from the first resin matrix and the second resin matrix is the same, which not only facilitates batch processing, but also has strong universality. Sex.
  • the length of the top end of the carbon nanotube array protruding beyond the first surface of the first resin substrate is greater than 0 and less than or equal to 1 mm, and the first surface of the second resin substrate protrudes from the In the case of the first surface of the first resin substrate, the first surface of the second resin substrate protrudes beyond the first surface of the first resin substrate by a length greater than 0 and less than or equal to 1 mm.
  • a length of the top end of the carbon nanotube array protruding beyond the first surface of the first resin substrate is greater than 0 and less than or equal to 0.1 mm, and the first surface of the second resin substrate protrudes from the In the case of the first surface of the first resin substrate, the first surface of the second resin substrate protrudes beyond the first surface of the first resin substrate by a length greater than 0 and less than or equal to 0.1 mm.
  • the bottom end of the carbon nanotube array protrudes beyond the second surface of the first resin substrate.
  • the length is greater than 0 and less than or equal to 1 mm
  • the second surface of the second resin substrate protrudes from the second surface of the first resin substrate
  • the second surface of the second resin substrate protrudes from the The length other than the second surface of the first resin substrate is greater than 0 and less than or equal to 1 mm.
  • a length of the bottom end of the carbon nanotube array protruding beyond the second surface of the first resin substrate is greater than 0 and less than or equal to 0.1 mm
  • the second resin substrate is Where the two surfaces protrude from the second surface of the first resin substrate, the second surface of the second resin substrate protrudes beyond the second surface of the first resin substrate by a length greater than 0 and less than or equal to 0.1mm.
  • a distance between two points having the farthest distance in the cross section of the second resin substrate is greater than or equal to 0.1 mm and less than or equal to 1 mm.
  • the diameter of the circle is greater than or equal to 0.1 mm and less than or equal to 1 mm.
  • the spacing between two adjacent second resin substrates is greater than 0.1 mm and less than or equal to 1.5 mm.
  • the electrical connector provided by the embodiment of the invention is miniaturized to meet the application requirements of the current high density scene. in.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • a plurality means two or more unless otherwise stated.
  • installation should be understood broadly, unless it is specifically defined and defined, for example, it may be a fixed connection, a detachable connection, or an integral connection; It is directly connected, or it can be connected indirectly through an intermediate medium, which can be the internal connection between two components.
  • intermediate medium which can be the internal connection between two components.

Landscapes

  • Connector Housings Or Holding Contact Members (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

一种电连接器及通信设备,涉及连接器技术领域。所述电连接器(103)包括至少一个碳纳米管阵列和树脂基体,所述至少一个碳纳米管阵列贯穿所述树脂基体,每一碳纳米管阵列的两个端部均暴露在所述树脂基体外部;在所述电连接器(103)包括两个以上碳纳米管阵列的情况下,所述两个以上碳纳米管阵列之间互相隔离,且所述两个以上碳纳米管阵列之间互相平行。利用所述的电连接器(103)能够提升电信号的传输能力。

Description

电连接器及通信设备
本申请要求于2015年11月20日提交中国专利局、申请号为201510810458.8、发明名称为“电连接器及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及连接器技术领域,尤其涉及一种电连接器及通信设备。
背景技术
目前,通信类电子产品以及终端消费类电子产品,主要使用传统公母电连接器,参见附图1,印刷电路板(PCB)1的内表面与PCB2的内表面相对设置,电连接器公座焊接在PCB1的内表面,电连接器母座焊接在PCB2的内表面,装配时,将位于公座上的插针(pin脚)插进位于母座上的插槽中,插针和插槽通过过应力互相配合,从而使得PCB1和PCB2之间实现电气互连。传统公母电连接器的缺陷在于传输电信号的能力不佳,从而导致通过它实现电气互连的两个电子器件之间的信号交互较差。
发明内容
本发明实施例提供一种电连接器,用于提升电连接器传输电信号的能力。
第一方面,本发明实施例提供一种电连接器,包括至少一个碳纳米管阵列和树脂基体,所述至少一个碳纳米管阵列贯穿所述树脂基体,每一碳纳米管阵列的顶端凸出于所述树脂基体的第一表面;每一碳纳米管阵列的底端凸出于所述树脂基体的第二表面,所述树脂基体的第一表面与所述树脂基体的第二表面相对;
在所述电连接器包括两个以上碳纳米管阵列的情况下,所述两个以上碳纳米管阵列之间互相隔离,且所述两个以上碳纳米管阵列之间互相平行。
传统公母电连接器通常使用铜作为传输电信号的介质,由于碳纳米管的电导率可达铜的一万倍,所以碳纳米管传输电信号的性能更好;相应的,使用碳纳米管作为电信号传输介质的电连接器相对于传统公母连接器来说,传输电信号的能力也更好一些。
结合第一方面,在第一种可能的实施方式下所述树脂基体包括第一树脂基体和至少一个第二树脂基体;
所述至少一个第二树脂基体贯穿所述第一树脂基体,第二树脂基体的第一表面凸出于所述第一树脂基体的第一表面,或,所述第二树脂基体的第一表面与所述第一树脂基 体的第一表面齐平;所述第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面,或,所述第二树脂基体的第二表面与所述第一树脂基体的第二表面齐平,其中,所述第二树脂基体的第一表面与所述第二树脂基体的第二表面是相对的;
每一碳纳米管阵列贯穿一个第二树脂基体;
其中,碳纳米管阵列的顶端凸出于对应的第二树脂基体的第一表面,或,在所述对应的第二树脂基体的第一表面凸出于所述第一树脂基体的第一表面的情况下,所述碳纳米管阵列的顶端与所述对应的第二树脂基体的第一表面齐平;
所述碳纳米管阵列的底端凸出于对应的第二树脂基体的第二表面,或,在所述对应的第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面的情况下,所述碳纳米管阵列的底端与所述第二树脂基体的第二表面齐平。
使用第二树脂基体包裹碳纳米管阵列的目的在于在一定程度上降低碳纳米管被折断的风险。
结合第一种可能的实施方式,在第二种可能的实施方式下,在所述电连接器包括两个以上第二树脂基体的情况下,所述两个以上第二树脂基体中每相邻的两个第二树脂基体之间互相隔离。用于进一步确保每相邻的两个碳纳米管阵列之间互相隔离。
结合第一种可能的实施方式或第二种可能的实施方式,在第三种可能的实施方式下,位于同一碳纳米管阵列的多个碳纳米管中,且凸出于所述第一树脂基体第一表面的碳纳米管的顶端齐平。有利于该凸出于所述第一树脂基体第一表面的碳纳米管的顶端均与其他电子器件的电触点相接触,以进行电信号传输,用于增强该电连接器的电信号传输能力。
结合第三种可能的实施方式,在第四种可能的实施方式下,位于同一碳纳米管阵列的多个碳纳米管均凸出于所述第一树脂基体的第一表面。有利于使得该碳纳米管阵列的电信号传输能力达到最强。
结合第三种可能的实施方式或第四种可能的实施方式,在第五种可能的实施方式下,所述电连接器中所有碳纳米管阵列的顶点均位于第一平面。通常,其他电子器件的电触点位于焊盘的表面,且该焊盘的表面呈平面状,所有碳纳米管阵列的顶点均位于第一平面,有利于所有碳纳米管阵列的顶点均与其他电子器件的电触点相接触,从而增强了该电连接器的普适性。
结合第一种可能的实施方式至第五种可能的实施方式中的任一种实施方式,在第六种可能的实施方式下,位于同一碳纳米管阵列的多个碳纳米管中,且凸出于所述第一树 脂基体第二表面的碳纳米管的底端齐平。有利于该碳纳米管阵列中,所有凸出于所述第一树脂基体第二表面的碳纳米管的底端均与其他电子器件的电触点相接触,从而增强该电连接器的电信号传输能力。
结合第六种可能的实施方式,在第七种可能的实施方式下,位于同一碳纳米管阵列的多个碳纳米管均凸出于所述第一树脂基体的第二表面。位于同一碳纳米管阵列的所有碳纳米管均与其他电子器件的电触点相接触,有利于使得该碳纳米管阵列的电信号传输能力达到最强。。
结合第六种可能的实施方式或第七种可能的实施方式,在第八种可能的实施方式下,所述电连接器的所有碳纳米管阵列的底端最低点均位于第二平面。通常,其他电子器件的电触点位于焊盘的表面,且该焊盘的表面呈平面状,所有碳纳米管阵列的底端最低点均位于第二平面,有利于所有碳纳米管阵列的底端最低点均与其他电子器件的电触点接触进行电信号传输,从而增强了该电连接器的普适性。
结合第八种可能的实施方式,在第九种可能的实施方式下,所述第一平面与所述第二平面互相平行。用于进一步增强该电连接器的普适性。
结合第九种可能的实施方式,在第十种可能的实施方式下,每一碳纳米管阵列均垂直于所述第一平面。用于实现使用最短的碳纳米管阵列在两个电子器件之间进行电信号传输,在避免碳纳米管浪费的基础上,缩短电信号的传输距离,进而提高电信号的传输速率。
结合第一种可能的实施方式至第十种可能的实施方式中任一种实施方式,在第十一种可能的实施方式下,所述第一树脂基体的第一表面与所述第一树脂基体的第二表面相互平行。有利于增加该电连接器的普适性。
结合第十一种可能的实施方式,在第十二种可能的实施方式下,所述第一平面平行于所述第一树脂基体的第一表面。使得每一碳纳米管阵列突出于所述第一树脂基体第一表面之外的距离相同,且每一碳纳米管阵列突出于所述第一树脂基体第二表面之外的距离相同,也即使得每一碳纳米管阵列被第一树脂基体包裹的长度大致相同,有利于每一碳纳米管阵列所受的来自第一树脂基体的包裹强度大致相同,从而避免了多个碳纳米管阵列由于所受的包裹强度不均匀,导致部分碳纳米管容易发生弯折的情形。
结合第一种可能的实施方式至第十二种可能的实施方式中任一种实施方式,在第十三种可能的实施方式下,所述第二树脂基体的第一表面与所述第二树脂基体的第二表面相互平行。有利于批量生产该电连接器,且增强该电连接器的普适性。
结合第十三种可能的实施方式,在第十四种可能的实施方式下,
所述第二树脂基体的第一表面平行于所述第一树脂基体的第一表面。进一步有利于批量生产该电连接器。
结合第十四种可能的实施方式,在第十五种可能的实施方式下,
所述第一平面平行于所述第一树脂基体的第一表面。使得每一碳纳米管阵列不仅被第一树脂基体包裹的长度大致相同,而且被第二树脂基体包裹的长度大致相同,有利于每一碳纳米管阵列所受的包裹强度大致相同,从而进一步避免了多个碳纳米管阵列由于所受的包裹强度不均匀,导致部分碳纳米管容易发生弯折的情形。
结合第一种可能的实施方式至第十五种可能的实施方式中任一种实施方式,在第十六种可能的实施方式下,所述碳纳米管阵列的顶端突出于所述第一树脂基体第一表面之外的长度大于0且小于或者等于1mm。有利于实现该电连接器的小型化。
结合第十六种可能的实施方式,在第十七种可能的实施方式下,在所述第二树脂基体的第一表面凸出于所述第一树脂基体第一表面的情况下,所述第二树脂基体的第一表面突出于所述第一树脂基体第一表面之外的长度大于0且小于或者等于1mm。有利于实现该电连接器的小型化。
结合第十六种可能的实施方式,在第十八种可能的实施方式下,所述碳纳米管阵列的顶端突出于所述第一树脂基体第一表面之外的长度大于0且小于或者等于0.1mm。有利于进一步实现该电连接器的小型化。
结合第十八种可能的实施方式,在第十九种可能的实施方式下,在所述第二树脂基体的第一表面凸出于所述第一树脂基体的第一表面的情况下,所述第二树脂基体的第一表面突出于所述第一树脂基体第一表面之外的长度大于0且小于或者等于0.1mm。有利于进一步实现该电连接器的小型化。
结合第一种可能的实施方式至第十九种可能的实施方式中任一种实施方式,在第二十种可能的实施方式下,所述碳纳米管阵列的底端突出于所述第一树脂基体第二表面之外的长度大于0且小于或等于1mm。有利于实现该电连接器的小型化。
结合第二十种可能的实施方式,在第二十一种可能的实施方式下,在所述第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面的情况下,所述第二树脂基体的第二表面突出于所述第一树脂基体第二表面之外的长度大于0且小于或等于1mm。有利于实现该电连接器的小型化。
结合第二十种可能的实施方式,在第二十二种可能的实施方式下,所述碳纳米管阵 列的底端突出于所述第一树脂基体第二表面之外的长度大于0且小于或等于0.1mm。有利于实现该电连接器的小型化。
结合第二十二种可能的实施方式,在第二十三种可能的实施方式下,在所述第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面的情况下,所述第二树脂基体的第二表面突出于所述第一树脂基体第二表面之外的长度大于0且小于或等于0.1mm。有利于实现该电连接器的小型化。
结合第一种可能的实施方式至第二十三种可能的实施方式中任一种实施方式,在第二十四种可能的实施方式下,所述第一树脂基体的厚度大于或等于0.1mm且小于或等于5mm。有利于实现该电连接器的小型化。
结合第二十四种可能的实施方式,在第二十五种可能的实施方式下,所述第一树脂基体的厚度大于或等于0.1mm且小于或等于1mm有利于实现该电连接器的小型化。。
结合第二十四种可能的实施方式,在第二十六种可能的实施方式下,所述碳纳米管阵列的长度大于0.1mm且小于6mm之间。有利于实现该电连接器的小型化。
结合第一种可能的实施方式至第二十六种可能的实施方式中任一种实施方式,在第二十七种可能的实施方式下,同一碳纳米管阵列的横截面中相距最远的两个碳纳米管之间的间距大于或等于0.1mm且小于或等于1mm。有利于实现该电连接器的小型化。
结合第一种可能的实施方式至第二十七种可能的实施方式中任一种实施方式,在第二十八种可能的实施方式下,相邻两个碳纳米管阵列的间距大于0.1mm且小于或等于1.5mm之间。有利于实现该电连接器的小型化。
结合第一种可能的实施方式至第二十八种可能的实施方式中任一种实施方式,在第二十九种可能的实施方式下,所述第二树脂基体的横截面内距离最远的两个点之间的间距大于或等于0.1mm且小于或等于1mm。有利于实现该电连接器的小型化。
结合第二十九种可能的实施方式,在第三十种可能的实施方式下,所述第二树脂基体的横截面是圆形,所述圆形的直径大于或等于0.1mm且小于或等于1mm。有利于实现该电连接器的小型化。
结合第一种可能的实施方式至第三十种可能的实施方式中任一种实施方式,在第三十一种可能的实施方式下,相邻两个第二树脂基体的间距大于0.1mm且小于或等于1.5mm之间。有利于实现该电连接器的小型化。
结合第一种可能的实施方式至第三十一种可能的实施方式中任一种实施方式,在第三十二种可能的实施方式下,在大于或等于-50℃以及小于或等于200℃的温度下,所述 第一树脂基体为固态。用于保证电连接器在通常的温度条件下均能正常工作。
结合第一种可能的实施方式至第三十二种可能的实施方式中任一种实施方式,在第三十三种可能的实施方式下,所述第一树脂基体具有橡胶弹性。有利于提升电连接器的容差性能。
结合第一种可能的实施方式至第三十三种可能的实施方式中任一种实施方式,在第三十四种可能的实施方式下,在大于或等于-50℃以及小于或等于200℃的温度下,所述第二树脂基体为固态。用于保证电连接器在通常的温度条件下均能正常工作。
结合第一种可能的实施方式至第三十四种可能的实施方式中任一种实施方式,在第三十五种可能的实施方式下,所述第二树脂基体具有橡胶弹性。有利于进一步提升电连接器的容差性能。
结合第一种可能的实施方式至第三十五种可能的实施方式中任一种实施方式,在第三十六种可能的实施方式下,所述第一树脂基体的硬度比所述第二树脂基体的硬度大。用于进一步提升该电连接器的柔性,进而进一步提升该电连接器的容差性能。
结合第一种可能的实施方式至第三十六种可能的实施方式中任一种实施方式,在第三十七种可能的实施方式下,所述电连接器的碳纳米管表面镀有金属层,该金属层的厚度位于10nm至100nm之间。有利于增强碳纳米管的导电性,进而增强电连接器的电气性能。
结合第一种可能的实施方式至第三十七种可能的实施方式中任一种实施方式,在第三十八种可能的实施方式下,位于同一碳纳米管阵列的多个碳纳米管之间填充有纳米级的金属颗粒,该金属颗粒的直径位于10nm至100nm之间。有利于进一步增强碳纳米管的导电性,进而增强电连接器的电气性能。
第二方面,本发明实施例还提供一种通信设备,包括如第一方面或第一方面的第一种可能的实施方式至第一方面的第三十@@种可能的实施方式中任一种实施方式所述的电连接器、第一电子器件、第二电子器件和固定装置,所述固定装置将所述电连接器固定在所述第一电子器件和所述第二电子器件之间;
位于树脂基体一侧的碳纳米管阵列的端部与所述第一电子器件的电触点相接触,位于所述树脂基体另一侧的碳纳米管阵列的端部与所述第二电子器件的电触点相接触,所述第一电子器件和所述第二电子器件通过所述电连接器实现电气连接。由于该通信设备包含的电连接器使用碳纳米管作为传输电信号的介质,所以该通信设备的电信号传输能力要高于传统公母连接器的电信号传输能力。
附图说明
图1为本发明实施例提供的传统公母电连接器的结构示意图;
图2A为本发明实施例提供的一种通信系统的侧剖面图;
图2B为本发明实施例提供的另一种通信系统的侧剖面图;
图3为本发明实施例提供的一种电连接器的侧剖面图;
图4A为本发明实施例提供的另一种电连接器的侧剖面图;
图4B为本发明实施例提供的再一种电连接器的侧剖面图;
图5为本发明实施例提供的碳纳米管阵列的截面图;
图6为本发明实施例提供的相邻两个碳纳米管阵列的截面图;
图7为本发明实施例提供的一种电连接器的主视图。
具体实施方式
参阅附图3,为本发明实施例提供的一种电连接器的侧剖面结构示意图,该电连接器包括树脂基体和贯穿该树脂基体的多个碳纳米管阵列,碳纳米管阵列的两个端部分别用于连接两个电子器件。本发明实施例提供的电连接器应用在如图2A所示的应用场景下,图2A为本发明实施例提供的一种通信系统的侧剖面结构示意图,该通信系统包括第一电子器件101、第二电子器件102、固定装置106以及电连接器103(电连接器103即为本发明实施例所述的电连接器,且电连接器103的结构可以参见附图3),固定装置106将电连接器103固定在第一电子器件101和第一电子器件102之间,位于树脂基体一侧的碳纳米管阵列的端部与第一电子器件101的电触点相接触;位于该树脂基体另一侧的碳纳米管阵列的端部与第二电子器件102的电触点相接触;且第一电子器件101与第二电子器件102通过电连接器103实现电气连接。
碳纳米管具有良好的导电性能,容易知道的是,碳纳米管的电导率可达铜的一万倍,所以相应的,碳纳米管的信号传输能力要远大于铜的信号传输能力;则采用碳纳米管作为电信号传输介质的电连接器也具有比较高的信号传输能力,进一步的,本发明实施例提供的包含该电连接器的通信设备也具有比较好的信号交互能力。再者,由于碳纳米管的长径比非常大(通常在1000:1以上),所以沿碳纳米管长度方向的热交换性能很高,进一步,采用碳纳米管作为电信号传输介质的电连接器也具有较高的导热能力,进一步的,本发明实施例提供的包含该电连接器的通信设备在进行信号交互的过程中,导 热性能也比较好。
需要说明的是,固定装置106可以是紧固螺钉等任何本领域技术人员惯用的机械固定装置,此处不做限制性规定。
值得注意的是,第一电子器件101为电路板(具体为印刷电路板或柔性板等)或者除电路板之外的其他电子元器件(比如芯片),第二电子器件102也为电路板(具体为印刷电路板或柔性板等)或者除电路板之外的其他电子元器件(比如芯片)。
在第一电子器件101为印刷电路板的情况下,电连接器103与位于印刷电路板内表面的焊盘相接触。值得注意的是,在对电连接器的对位精度要求不高的情况下,一个焊盘可以与多个碳纳米管阵列的端部相接触;在对电连接器的对位精度要求比较高的情况下,一个焊盘仅与一个碳纳米管阵列的端部相接触,也即焊盘与碳纳米管阵列是一对一的相接触,因为只有这样才能实现电气互连,否则容易出现短路。
在第一电子器件101为芯片的情况下,参见附图2B,电连接器103与芯片内表面的焊球相接触。相应的,在对电连接器的对位精度要求不高的情况下,一个焊球可以与多个碳纳米管阵列的端部相接触;在对电连接器的对位精度要求比较高的情况下,焊盘与碳纳米管阵列一对一的相接触,以便于实现电气互连,避免出现短路。由于芯片的功耗较大,导致芯片的发热量通常较大,通常需要在芯片的上表面安装一个散热器104,以增强芯片的散热能力。为了节省空间,在散热器104与芯片相接触的一面上开槽,用于容纳该芯片,槽的深度小于或者等于芯片和电连接器的总厚度。可选的,该槽的尺寸大小与芯片的尺寸大小相同。
类似的,在第二电子器件102为印刷电路板的情况下,电连接器103也与位于印刷电路板内表面的焊盘相接触;在第二电子器件102为芯片的情况下,电连接器103也与芯片内表面的焊球相接触,具体可以参见前述对第一电子器件101的相关限定,此处不再赘述。
实施例一
参见附图4A,为本发明实施例提供的另一种电连接器的侧剖面示意图,该电连接器可以应用于图2A和2B所示的通信系统中,用于替代图2A和2B所示通信系统中的电连接器103.
具体的,该电连接器包括树脂基体和至少一个碳纳米管阵列。其中,所述至少一个碳纳米管阵列贯穿所述树脂基体,每一碳纳米管阵列的顶端凸出于所述树脂基体的第一表面,所每一碳纳米管阵列的底端凸出于所述树脂基体的第二表面,其中,所述树脂 基体的第一表面与所述树脂基体的第二表面相对。以及,在该电连接器包括两个以上碳纳米管阵列的情况下,所述两个以上碳纳米管阵列之间互相隔离,且所述两个以上碳纳米管阵列之间互相平行。使用碳纳米管作为电信号传输介质的电连接器相对于传统公母连接器来说,传输电信号的能力也更好一些。
值得注意的是,术语“顶端”和“底端”所指示的方位为附图4A所示的方位,用在此处仅是为了简化描述,而不是指示或暗示所指的电连接器必须具有特定的方位,因此不能理解为对本发明的限制。
应当知道的是,碳纳米管的横截面的直径位于0.5nm至100nm的范围内。
需要说明的是,在大于或等于-50°以及小于或剩余200°的温度下,所述树脂基体为固态。应当知道的是,所述树脂基体是绝缘的。可选的,所述树脂基体具有橡胶弹性。具体的,所述树脂基体的硬度分度为邵氏硬度shore 00,且硬度值位于10至80之间。值得注意的是,用于制备所述树脂基体的树脂材料在处于液态的情况下,该树脂材料的粘度位于100Pa.s至50000Pa.s的范围内。所述树脂基体使用有机硅树脂、聚氨酯树脂或其他树脂制成。
需要强调的是,所述电连接器中的所述树脂基体和至少一个碳纳米管阵列可以是一体成型的。
如附图7所示,在所述电连接器包括多个碳纳米管阵列的情况下,可选的,该多个碳纳米管阵列以矩阵的方式排列,行和列的数目根据实际需求进行设计。进一步可选的是,在同一个电连接器中,每相邻的两个碳纳米管阵列之间的距离是大致相同的。应用知道的是,基于工艺条件的限制,所述电连接器中相邻两个碳纳米管阵列的间距并非总是完全相同的,所以这里所述的“大致相同”对本领域技术人员来说应该是可以接受且容易理解的。如图7所示,碳纳米管阵列1和碳纳米管阵列2之间的间距为b,碳纳米管阵列1和碳纳米管阵列3之间的间距为a,则a与b是大致相同的。
需要说明的是,由于同一碳纳米管阵列包括多个碳纳米管,则位于同一碳纳米管阵列的多个碳纳米管中,且凸出于所述树脂基体第一表面的碳纳米管的顶端齐平。由于碳纳米管阵列的顶端将会与其他电子器件的电触点相接触,实现电信号在电连接器与该其他电子器件之间传输,同一碳纳米管阵列中凸出于所述树脂基体第一表面的碳纳米管的顶端齐平,从而有利于电连接器的电信号传输性能。
可选的,位于同一碳纳米管阵列的多个碳纳米管均凸出于所述树脂基体的第一表面。
可选的,所述电连接器中所有碳纳米管阵列的顶点均位于第一平面。每一碳纳米管阵列的顶点均是指该碳纳米管阵列的顶端中与所述树脂基体第一表面之间的长度最长的点。
值得注意的是,位于同一碳纳米管阵列的多个碳纳米管中,且凸出于所述树脂基体第二表面的碳纳米管的的底端齐平。基于与碳纳米管阵列顶端齐平同样的理由,碳纳米管阵列底端齐平也是用于提升电连接器的电信号传输性能。
可选的,位于同一碳纳米管阵列的多个碳纳米管均凸出于所述树脂基体的第二表面。
可选的,所述电连接器中所有碳纳米管阵列的底端最低点均位于第二平面。每一碳纳米管阵列的底端最低点均是指该碳纳米管阵列的底端中与所述树脂基体第二表面之间的长度最长的点。
可选的,所述第一平面平行于所述第二平面。以及进一步的,每一碳纳米管阵列均垂直于所述第一平面。
可选的,所述树脂基体的第一表面平行于所述树脂基体的第二表面。从而使得所述树脂基体具有均匀的厚度。
进一步的,所述第一平面平行于所述树脂基体的第一表面。
由于所述树脂基体的第一表面与所述树脂基体的第二表面互相平行,以及所述第一平面与所述第二平面互相平行,所以,在所述第一平面平行于所述树脂基体的第一表面的情况下,所述第一平面、所述树脂基体的第一表面、所述树脂基体的第二表面和所述第二平面均互相平行。从而不仅使得每一碳纳米管阵列的顶端突出于所述树脂基体第一表面之外的长度相同,每一碳纳米管阵列的底端突出于所述树脂基体第二表面之外的长度相同,并且每一碳纳米管阵列被所述树脂基体包裹的长度相同,便于批量生产,并且避免多个碳纳米管阵列由于所受的包裹强度不同而导致的部分碳纳米管阵列容易发生弯折的情形。
需要说明的是,在本发明实施例提供的电连接器中,碳纳米管阵列的顶端突出于所述树脂基体第一表面之外的长度大于0且小于或等于1mm。可选的,碳纳米管阵列的顶端突出于所述树脂基体第一表面之外的长度大于0且小于或等于0.1mm。碳纳米管阵列的顶端突出于所述树脂基体第一表面之外的部分,可认为是电连接器的第一电极,则本发明实施例提供的电连接器中,第一电极的长度要小于传统公母连接器中插针的长度,所以本发明实施例提供的电连接器更容易实现小型化。
值得注意的是,在本发明实施例提供的电连接器中,碳纳米管阵列的底端突出于所述树脂基体第二表面之外的长度大于0且小于或等于1mm。可选的,碳纳米管阵列的底端突出于所述树脂基体第二表面之外的长度大于0且小于或等于0.1mm。碳纳米管阵列的底端突出于所述树脂基体第二表面之外的部分,可认为是电连接器的第二电极,则本发明实施例提供的电连接器中,第二电极的长度也要小于传统公母连接器中插针的长度,有利于本发明实施例提供的电连接器进一步实现小型化。
需要说明的是,所述树脂基体的厚度大于或等于0.1mm且小于或等于5mm。相应的,所述碳纳米管阵列的长度大于0.1mm且小于6mm。可知本发明实施例提供的电连接器,不仅传输电信号的能力强、导热能力强,而且电连接器的尺寸很小,从而能够满足当前的器件高密化的需求。
进一步的,所述树脂基体的厚度大于或等于0.1mm且小于或等于1mm。
值得关注的是,在本发明实施例提供的电连接器中,同一碳纳米管阵列的横截面中相距最远的两个碳纳米管之间的间距大于或等于0.1mm且小于或者等于1mm。参见附图5,为碳纳米管阵列的俯视图,在图5所示的碳纳米管阵列中,相距最远的是碳纳米管1和碳纳米管2,则碳纳米管1和碳纳米管2之间的间距大于或等于0.1mm且小于或等于1mm。在同一碳纳米管阵列的横截面中,由于相距最远的两个碳纳米管之间的间距较小,所以碳纳米管阵列的截面也会比较小,从而有利于实现电连接器的小型化。
需要说明的是,在本发明实施例提供的电连接器中,相邻两个碳纳米管阵列的间距大于0.1mm且小于或等于1.5mm之间。具体的,参见附图9,碳纳米管阵列1和碳纳米管阵列2为电连接器中两个相邻的碳纳米管阵列,则碳纳米管阵列1与碳纳米管阵列2之间的距离位于0.1mm至1.5mm之间。
可选的,为了增加碳纳米管的导电性,可以在碳纳米管的表面镀金属层,该金属层的厚度位于10nm至100nm的范围内,可选的,在碳纳米管的表面镀铜层。
可选的,在位于同一碳纳米管阵列的多个碳纳米管之间填充纳米级的金属颗粒,该纳米级的金属颗粒的直径位于10nm至100nm之间。
实施例二
参见附图4B,为本发明实施例提供的另一种电连接器的侧剖面示意图。与图4A所示的电连接器不同的是,图4B所示的电连接器中,树脂基体包括第一树脂基体和至少一个第二树脂基体;
所述至少一个第二树脂基体贯穿所述第一树脂基体,所述第二树脂基体的第一表 面凸出于所述第一树脂基体的第一表面,或,所述第二树脂基体的第一表面与所述第一树脂基体的第一表面齐平;所述第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面,或,所述第二树脂基体的第二表面与所述第一树脂基体的第二表面齐平,其中,所述第二树脂基体的第一表面与所述第二树脂基体的第二表面是相对的;
每一碳纳米管阵列贯穿一个第二树脂基体;
其中,碳纳米管阵列的顶端凸出于对应的第二树脂基体的第一表面,或,在所述对应的第二树脂基体的第一表面凸出于所述第一树脂基体的第一表面的情况下,所述碳纳米管阵列的顶端与所述对应的第二树脂基体的第一表面齐平;
所述碳纳米管阵列的底端凸出于对应的第二树脂基体的第二表面,或,在所述对应的第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面的情况下,所述碳纳米管阵列的底端与所述第二树脂基体的第二表面齐平。
应当理解的是,本发明实施例中对第一树脂基体的限定可以参见实施例一中对树脂基体的限定,本发明实施例中对碳纳米管阵列的限定也可以参见实施例一种对碳纳米管阵列的限定,此处不再赘述。下面仅对与第二树脂基体相关的限定进行描述。
值得注意的是,所述第二树脂基体的硬度小于所述第一树脂基体的硬度,从而有利于进一步提升该电连接器的柔性。
具体的,在大于或等于-50°以及小于或剩余200°的温度下,所述第二树脂基体为固态。应当知道的是,所述第二树脂基体是绝缘的。可选的,所述第二树脂基体具有橡胶弹性。具体的,所述第二树脂基体的硬度分度为邵氏硬度shore 00,且硬度值位于10至80之间。值得注意的是,用于制备所述第二树脂基体的树脂材料在处于液态的情况下,该树脂材料的粘度位于100Pa.s至50000Pa.s的范围内。所述第二树脂基体使用有机硅树脂、聚氨酯树脂或其他树脂制成。
需要强调的是,所述电连接器中的第一树脂基体、至少一个第二树脂基体和至少一个碳纳米管阵列可以是一体成型的。
需要说明的是,在所述电连接器包括两个以上第二树脂基体的情况下,所述两个以上第二树脂基体之间互相隔离。
值得注意的是,在碳纳米管阵列的顶端凸出于对应的第二树脂基体第一表面的情况下,位于同一碳纳米管阵列的多个碳纳米管中,且凸出于所述第二树脂基体第一表面的碳纳米管的顶端齐平。以便于提升电连接器的电信号传输性能。进一步的,位于同一碳纳米管阵列的多个碳纳米管均凸出于所述第二树脂基体的第一表面。
需要说明的是,在所述对应的第二树脂基体的第一表面凸出于所述第一树脂基体的第一表面、且所述碳纳米管阵列的顶端与所述对应的第二树脂基体的第一表面齐平的情况下,位于同一碳纳米管阵列的多个碳纳米管的顶端均与所述对应的第二树脂基体的第一表面齐平。
值得注意的是,在碳纳米管阵列的底端凸出于对应的第二树脂基体的第二表面的情况下,位于同一碳纳米管阵列的多个碳纳米管中,且凸出于所述第二树脂基体第二表面的碳纳米管的顶端齐平。进一步的,位于同一碳纳米管阵列的多个碳纳米管均凸出于所述第二树脂基体的第二表面。需要说明的是,在所述对应的第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面,且所述碳纳米管阵列的底端与所述第二树脂基体的第二表面齐平的情况下,位于同一碳纳米管阵列的多个碳纳米管的底端均与所述对应的第二树脂基体的第二表面齐平。
可选的,所述第二树脂基体的第一表面平行于所述第二树脂基体的第二表面。使得每一碳纳米管阵列被所述第二树脂基体包裹的长度相同,从而保证所有碳纳米管阵列均不易发生弯折。
进一步的,所述第一树脂基体的第一表面平行于所述第一树脂基体的第二表面,且所述所述第二树脂基体的第一表面平行于所述第一树脂基体的第一表面。使得每一碳纳米管阵列不仅被所述第二树脂基体包裹的长度相同,而且被第一树脂基体包裹的长度相同,从而进一步确保所有碳纳米管阵列均不易发生弯折。
再进一步的,所述第一平面也平行于所述第一树脂基体的第一表面。不仅使得每一碳纳米管阵列被包裹的长度相同,而且每一碳纳米管阵列凸出于第一树脂基体、第二树脂基体的长度也相同,不仅利于批量加工,而且具有较强的普适性。
值得注意的是,在碳纳米管阵列的顶端突出于所述第一树脂基体第一表面之外的长度大于0且小于或者等于1mm,且所述第二树脂基体的第一表面凸出于所述第一树脂基体的第一表面的情况下,所述第二树脂基体的第一表面突出于所述第一树脂基体第一表面之外的长度大于0且小于或者等于1mm。
可选的,在碳纳米管阵列的顶端突出于所述第一树脂基体第一表面之外的长度大于0且小于或者等于0.1mm,且所述第二树脂基体的第一表面凸出于所述第一树脂基体的第一表面的情况下,所述第二树脂基体的第一表面突出于所述第一树脂基体第一表面之外的长度大于0且小于或者等于0.1mm。
需要说明的是,在碳纳米管阵列的底端突出于所述第一树脂基体第二表面之外的 长度大于0且小于或者等于1mm,且所述第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面的情况下,所述第二树脂基体的第二表面突出于所述第一树脂基体第二表面之外的长度大于0且小于或者等于1mm。
可选的,需要说明的是,在碳纳米管阵列的底端突出于所述第一树脂基体第二表面之外的长度大于0且小于或者等于0.1mm,且所述第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面的情况下,所述第二树脂基体的第二表面突出于所述第一树脂基体第二表面之外的长度大于0且小于或者等于0.1mm。
可选的,所述第二树脂基体的横截面内距离最远的两个点之间的间距大于或等于0.1mm且小于或者等于1mm。
具体的,在所述第二树脂基体的横截面为圆形的情况下,该圆形的直径大于或等于0.1mm且小于或者等于1mm。
可选的,相邻两个第二树脂基体的间距大于0.1mm且小于或等于1.5mm之间。无论是第二树脂基体的横截面较小,还是相邻两个第二树脂基体的间距较小,均有利于使得本发明实施例提供的电连接器实现小型化,满足当下高密场景的应用需求中。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (29)

  1. 一种电连接器,其特征在于,包括至少一个碳纳米管阵列和树脂基体,所述至少一个碳纳米管阵列贯穿所述树脂基体,每一碳纳米管阵列的顶端凸出于所述树脂基体的第一表面,每一碳纳米管阵列的底端凸出于所述树脂基体的第二表面,所述树脂基体的第一表面与所述树脂基体的第二表面相对;
    在所述电连接器包括两个以上碳纳米管阵列的情况下,所述两个以上碳纳米管阵列之间互相隔离,且所述两个以上碳纳米管阵列之间互相平行。
  2. 根据权利要求1所述的电连接器,其特征在于,所述树脂基体包括第一树脂基体和至少一个第二树脂基体;
    所述至少一个第二树脂基体贯穿所述第一树脂基体,第二树脂基体的第一表面凸出于所述第一树脂基体的第一表面,或,所述第二树脂基体的第一表面与所述第一树脂基体的第一表面齐平;所述第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面,或,所述第二树脂基体的第二表面与所述第一树脂基体的第二表面齐平,其中,所述第二树脂基体的第一表面与所述第二树脂基体的第二表面是相对的;
    每一碳纳米管阵列贯穿一个第二树脂基体;
    其中,碳纳米管阵列的顶端凸出于对应的第二树脂基体的第一表面,或,在所述对应的第二树脂基体的第一表面凸出于所述第一树脂基体的第一表面的情况下,所述碳纳米管阵列的顶端与所述对应的第二树脂基体的第一表面齐平;
    所述碳纳米管阵列的底端凸出于对应的第二树脂基体的第二表面,或,在所述对应的第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面的情况下,所述碳纳米管阵列的底端与所述第二树脂基体的第二表面齐平。
  3. 根据权利要求2所述的电连接器,其特征在于,在所述电连接器包括两个以上第二树脂基体的情况下,所述两个以上第二树脂基体中每相邻的两个第二树脂基体之间互相隔离。
  4. 根据权利要求2或3所述的电连接器,其特征在于,位于同一碳纳米管阵列的多个碳纳米管中,且凸出于所述第一树脂基体第一表面的碳纳米管的顶端齐平。
  5. 根据权利要求4所述的电连接器,其特征在于,所述电连接器中所有碳纳米管阵列的顶点均位于第一平面。
  6. 根据权利要求2至5任一项所述的电连接器,其特征在于,位于同一碳纳米管阵列的多个碳纳米管中,且凸出于所述第一树脂基体第二表面的碳纳米管的底端齐平。
  7. 根据权利要求6所述的电连接器,其特征在于,所述电连接器中所有碳纳米管阵列的底端最低点均位于第二平面。
  8. 根据权利要求7所述的电连接器,其特征在于,所述第一平面与所述第二平面互相平行。
  9. 根据权利要求8所述的电连接器,其特征在于,每一碳纳米管阵列均垂直于所述第一平面。
  10. 根据权利要求2至9任一项所述的电连接器,其特征在于,所述第一树脂基体的第一表面与所述第一树脂基体的第二表面相互平行。
  11. 根据权利要求2至10任一项所述的电连接器,其特征在于,所述第二树脂基体的第一表面与所述第二树脂基体的第二表面相互平行。
  12. 根据权利要求11所述的电连接器,其特征在于,所述第二树脂基体的第一表面平行于所述第一树脂基体的第一表面。
  13. 根据权利要求12所述的电连接器,其特征在于,所述第一平面平行于所述第一树脂基体的第一表面。
  14. 根据权利要求2至13任一项所述的电连接器,其特征在于,所述碳纳米管阵列的顶端突出于所述第一树脂基体第一表面之外的长度大于0且小于或者等于1mm。
  15. 根据权利要求14所述的电连接器,其特征在于,在所述第二树脂基体的第一表面凸出于所述第一树脂基体的第一表面的情况下,所述第二树脂基体的第一表面突出于所述第一树脂基体第一表面之外的长度大于0且小于或等于1mm。
  16. 根据权利要求2至15任一项所述的电连接器,其特征在于,所述碳纳米管阵列的底端突出于所述第一树脂基体第二表面之外的长度大于0且小于或等于1mm。
  17. 根据权利要求16所述的电连接器,其特征在于,在所述第二树脂基体的第二表面凸出于所述第一树脂基体的第二表面的情况下,所述第二树脂基体的第二表面突出于所述第一树脂基体第二表面之外的长度大于0且小于或等于1mm。
  18. 根据权利要求2至17任一项所述的电连接器,其特征在于,所述第一树脂基体的厚度大于或等于0.1mm且小于或等于5mm。
  19. 根据权利要求1至18任一项所述的电连接器,其特征在于,所述碳纳米管阵列的长度大于0.1mm且小于6mm之间。
  20. 根据权利要求1至19任一项所述的电连接器,其特征在于,同一碳纳米管阵列的横截面中相距最远的两个碳纳米管之间的间距大于或等于0.1mm且 小于或等于1mm。
  21. 根据权利要求1至20任一项所述的电连接器,其特征在于,相邻两个碳纳米管阵列的间距大于0.1mm且小于或等于1.5mm之间。
  22. 根据权利要求2至21任一项所述的电连接器,其特征在于,所述第二树脂基体的横截面内距离最远的两个点之间的间距大于或等于0.1mm且小于或等于1mm。
  23. 根据权利要求2至22任一项所述的电连接器,其特征在于,相邻两个第二树脂基体的间距大于0.1mm且小于或等于1.5mm之间。
  24. 根据权利要求2至23任一项所述的电连接器,其特征在于,在大于或等于-50℃以及小于或等于200℃的温度下,所述第一树脂基体为固态。
  25. 根据权利要求2至24任一项所述的电连接器,其特征在于,所述第一树脂基体具有橡胶弹性。
  26. 根据权利要求2至25任一项所述的电连接器,其特征在于,在大于或等于-50℃以及小于或等于200℃的温度下,所述第二树脂基体为固态。
  27. 根据权利要求2至26任一项所述的电连接器,其特征在于,所述第二树脂基体具有橡胶弹性。
  28. 根据权利要求2至27任一项所述的电连接器,其特征在于,所述第一树脂基体的硬度大于所述第二树脂基体的硬度。
  29. 一种通信设备,其特征在于,包括如权利要求1至28任一项所述的电连接器、第一电子器件、第二电子器件和固定装置,所述固定装置将所述电连接器固定在所述第一电子器件和所述第二电子器件之间;
    位于树脂基体一侧的碳纳米管阵列的端部与所述第一电子器件的电触点相接触,位于所述树脂基体另一侧的碳纳米管阵列的端部与所述第二电子器件的电触点相接触,所述第一电子器件和所述第二电子器件通过所述电连接器实现电气连接。
PCT/CN2016/105956 2015-11-20 2016-11-15 电连接器及通信设备 WO2017084562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510810458.8 2015-11-20
CN201510810458.8A CN105305126A (zh) 2015-11-20 2015-11-20 电连接器及通信设备

Publications (1)

Publication Number Publication Date
WO2017084562A1 true WO2017084562A1 (zh) 2017-05-26

Family

ID=55202077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105956 WO2017084562A1 (zh) 2015-11-20 2016-11-15 电连接器及通信设备

Country Status (2)

Country Link
CN (1) CN105305126A (zh)
WO (1) WO2017084562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11637406B2 (en) * 2017-05-18 2023-04-25 Shin-Etsu Polymer Co., Ltd. Electrical connector and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305126A (zh) * 2015-11-20 2016-02-03 华为技术有限公司 电连接器及通信设备
CN107492724B (zh) * 2017-07-05 2019-11-05 华为技术有限公司 一种连接器及其制备方法、通信设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030092294A1 (en) * 2001-11-13 2003-05-15 Hitoshi Matsunaga Connector structure for connecting electronic parts
US6626684B1 (en) * 2002-06-24 2003-09-30 Hewlett-Packard Development Company, L.P. Nanotube socket system and method
CN201797087U (zh) * 2010-09-01 2011-04-13 富士康(昆山)电脑接插件有限公司 电连接器
CN202076463U (zh) * 2011-01-08 2011-12-14 富士康(昆山)电脑接插件有限公司 电连接器
CN102468590A (zh) * 2010-11-16 2012-05-23 富士康(昆山)电脑接插件有限公司 电连接器制造方法
CN103022855A (zh) * 2011-09-28 2013-04-03 富士康(昆山)电脑接插件有限公司 电连接器及其制造方法
CN105305126A (zh) * 2015-11-20 2016-02-03 华为技术有限公司 电连接器及通信设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012619A (ja) * 1998-06-23 2000-01-14 Nitto Denko Corp 異方導電性フィルム
JP3737899B2 (ja) * 1999-01-29 2006-01-25 日東電工株式会社 半導体素子の検査方法およびそのための異方導電性フィルム
JP2002124319A (ja) * 2000-10-18 2002-04-26 Nitto Denko Corp 異方導電性フィルムおよびそれを用いた半導体素子または電子部品の検査方法
EP1515399B1 (en) * 2003-09-09 2008-12-31 Nitto Denko Corporation Anisotropic conductive film, production method thereof and method of use thereof
JP5164878B2 (ja) * 2009-02-17 2013-03-21 富士フイルム株式会社 異方導電性部材およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030092294A1 (en) * 2001-11-13 2003-05-15 Hitoshi Matsunaga Connector structure for connecting electronic parts
US6626684B1 (en) * 2002-06-24 2003-09-30 Hewlett-Packard Development Company, L.P. Nanotube socket system and method
CN201797087U (zh) * 2010-09-01 2011-04-13 富士康(昆山)电脑接插件有限公司 电连接器
CN102468590A (zh) * 2010-11-16 2012-05-23 富士康(昆山)电脑接插件有限公司 电连接器制造方法
CN202076463U (zh) * 2011-01-08 2011-12-14 富士康(昆山)电脑接插件有限公司 电连接器
CN103022855A (zh) * 2011-09-28 2013-04-03 富士康(昆山)电脑接插件有限公司 电连接器及其制造方法
CN105305126A (zh) * 2015-11-20 2016-02-03 华为技术有限公司 电连接器及通信设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11637406B2 (en) * 2017-05-18 2023-04-25 Shin-Etsu Polymer Co., Ltd. Electrical connector and method for producing same

Also Published As

Publication number Publication date
CN105305126A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
US7508061B2 (en) Three-dimensional semiconductor module having multi-sided ground block
TWI517326B (zh) 具有引線之基板
KR101488266B1 (ko) 착탈형 전기 접속 구조와 이를 구비한 전기 접속용 커넥터, 반도체 패키지 조립체 및 전자기기
TWM468799U (zh) 電連接器
WO2017084562A1 (zh) 电连接器及通信设备
TWM416891U (en) Electrical connector
JP2011049031A (ja) フレキシブルハーネスおよびそれを用いた電気的接続部品
JPWO2004012488A1 (ja) マルチワイヤ基板及びその製造方法、並びに、マルチワイヤ基板を有する電子機器
TW201123623A (en) Electrical connector
TW200303633A (en) Surface-mounted right-angle electrical connector
TW200947809A (en) Electrical contact
US9252513B2 (en) Socket and electronic component mounting structure
US20150262916A1 (en) Flexible package-to-socket interposer
CN107453104B (zh) 连接器、电源组件和终端设备
US20070238324A1 (en) Electrical connector
US8272880B2 (en) Socket and semiconductor device including socket and semiconductor package
TWM511699U (zh) 電連接器和球狀柵格陣列封裝組件
US9788425B2 (en) Electronic package assembly
TW201444189A (zh) 電連接器
TW200810258A (en) Electrical connector assembly and method of assembling the same
TWI424617B (zh) 電連接器
TWM399528U (en) Electrical connector and assembly thereof
CN107482333B (zh) 连接器、连接器组件、电源组件和终端设备
US9318851B2 (en) Connector and manufacturing method thereof
US20210029835A1 (en) Silicone contact element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865739

Country of ref document: EP

Kind code of ref document: A1