WO2017084037A1 - 电路板及具有该电路板的电子装置 - Google Patents

电路板及具有该电路板的电子装置 Download PDF

Info

Publication number
WO2017084037A1
WO2017084037A1 PCT/CN2015/094883 CN2015094883W WO2017084037A1 WO 2017084037 A1 WO2017084037 A1 WO 2017084037A1 CN 2015094883 W CN2015094883 W CN 2015094883W WO 2017084037 A1 WO2017084037 A1 WO 2017084037A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
circuit board
electronic device
conductive line
resonators
Prior art date
Application number
PCT/CN2015/094883
Other languages
English (en)
French (fr)
Inventor
王典
胡孟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2015/094883 priority Critical patent/WO2017084037A1/zh
Priority to CN201580066661.7A priority patent/CN107004952B/zh
Publication of WO2017084037A1 publication Critical patent/WO2017084037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • the present invention relates to a circuit board and an electronic device having the same.
  • Conventional techniques generally employ increasing the distance between the antenna and electronic components, other antennas, wires, etc. to reduce coupling and reduce the effects of other effects on antenna performance. Or use polarization diversity between multiple antennas to increase isolation.
  • Due to the increase of the distance between the antenna and the wire or other antennas it is very likely that a large amount of space is required in the design of the device, which is disadvantageous for circuit integration and integration.
  • the distance between the antenna and other components and the wires is often very close due to space constraints. Traditional designs often ignore these effects, resulting in reduced antenna radiation performance.
  • a circuit board comprising: an antenna; a conductive line integrated around the antenna; and a decoupling resonance unit, wherein the decoupling resonance unit is disposed between the antenna and the conductive line to The antenna is isolated from the electromagnetic field of the conductive line.
  • the decoupling resonant unit includes one or more resonators that produce a particular resonant frequency.
  • each resonator produces a frequency equal to the operating frequency of the antenna, and/or the physical length of each resonator is a quarter wavelength, a half wavelength of the antenna operating frequency, or Integer multiple.
  • the shapes of the plurality of resonators are completely different or partially different, and the resonators of completely different or partially different shapes are arranged in a predetermined arrangement between the antenna and the conductive line. .
  • the plurality of resonators are arranged in parallel in a row, adjacent and parallel to the antenna arrangement.
  • the electrically conductive line is an electronic component that interferes with the antenna, the electronic component being on the same side of the circuit board as the antenna.
  • the circuit board includes a connecting wire, the connecting wire and the antenna are located on different sides of the circuit board, and the decoupling resonance unit and the wire are respectively disposed on the circuit board On the opposite side surfaces of the two.
  • the circuit board is a multi-layer structure
  • the conductive line includes an electronic component that interferes with the antenna, and when the electronic component is on a different layer than the antenna on the circuit board,
  • the layer in which the decoupling resonance unit is located is located between the layer where the antenna is located and the layer where the electronic component is located.
  • the antenna is a monopole antenna.
  • the circuit board further includes a feed structure electrically coupled to the antenna, the feed structure being a coplanar waveguide feed structure.
  • An electronic device having a circuit board as described above.
  • the electronic device is a remote control device, a mobile phone, a computer, an e-reader or a smart watch.
  • the electronic device is a remote control for remotely controlling an unmanned aerial vehicle, or an unmanned aerial vehicle.
  • a decoupling resonance unit is added between the antenna and the conductive line integrated around the antenna on the circuit board of the present invention, and the decoupling resonance unit is used to generate resonance to reduce the antenna and the
  • the coupling between the conductive lines using the decoupling resonance unit increases the electromagnetic field isolation between the antenna and the conductive line, so that the antenna can maintain high radiation efficiency and maintain the original radiation pattern to ensure the radiation of the antenna.
  • FIG. 1 is an exploded view of a circuit board in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a top plan view of a circuit board in accordance with a preferred embodiment of the present invention.
  • Figure 3 is a bottom plan view of a circuit board in accordance with a preferred embodiment of the present invention.
  • Figure 4 illustrates a comparison of antenna simulation efficiencies.
  • Figure 5 is a schematic view showing the direction of the E plane of the antenna shown in Figure 1.
  • Figure 6 is a schematic view showing the H-plane direction of the antenna shown in Figure 1.
  • Circuit board 1 antenna 2 Feed structure 3 Decoupling resonance unit 4 Electronic component 5 Substrate 6 Connecting wire 7
  • FIGS. 2 and 3 are top and bottom views of a circuit board 1 in accordance with a preferred embodiment of the present invention.
  • the circuit board 1 includes, but is not limited to, an antenna 2, a feed structure 3, a decoupling resonance unit 4, an electronic component 5, a substrate 6, and a connecting wire 7.
  • the substrate 6 is an antenna 2, a feed structure 3, a decoupling resonance unit 4, an electronic component 5, and a carrier connecting the wires 7.
  • the substrate 6 may be a single layer substrate or a multilayer substrate.
  • the circuit board 1 is integrated as a printed circuit board integrated with the above devices.
  • the circuit board 1 may be a flexible printed circuit board.
  • the circuit board may also be a non-flexible printed circuit board, such as a PCB board.
  • the antenna 2, the feed structure 3, the decoupling resonance unit 4, and the electronic component 5 are disposed on one side surface of the substrate 6 (for example, the substrate 6 described in FIG. The upper surface), and the connecting wire 7 are disposed on the other side surface of the circuit board (for example, the lower surface of the substrate 6 described in FIG. 1).
  • the connecting wires 7 By arranging the connecting wires 7 on the different sides of the substrate 6 from the antenna 2, it is further helpful to reduce the interference of the connecting wires 7 on the antenna 2.
  • the arrangement of the above devices may also vary according to actual needs.
  • the electronic component 5 and the antenna 2 may also be located on different sides of the substrate 6.
  • the antenna 2 may be an antenna device of various types and configurations, such as a Wimax antenna, a WiFi antenna, a MIMO antenna, or the like.
  • the antenna 2 is described by taking a planar printed monopole antenna as an example.
  • a planar printed monopole antenna refers to a conductor microstrip line printed on the surface of a dielectric substrate (usually having a length of about a quarter of the wavelength of the antenna operating frequency).
  • the antenna 2 is fed by the feed structure 3.
  • the feed structure 3 can be a feed unit of various feed modes. Commonly used feeding methods include: coaxial line feeding, microstrip line feeding, and coplanar waveguide feeding.
  • the feed structure 3 is described by taking a coplanar waveguide feed structure as an example.
  • the planar antenna powered by the coplanar waveguide may be, for example, a gradation slotted antenna, a multimode antenna, a monopole antenna, a circularly polarized antenna, or the like.
  • the antenna 2 and the feed structure 3 are on the same surface of the substrate 6, and the antenna 2 and the feed structure 3 are connected by a microstrip line coplanar waveguide.
  • the manner of connecting the antenna 2 to the feed structure 3 is a general connection method well known to those skilled in the art, and will not be explained too much here.
  • the decoupling resonance unit 4 comprises a plurality of resonators.
  • the resonator is an electronic component that produces a resonant frequency.
  • each of the resonators is a shaped resonator made of a copper sheet, such as an E-shape, an I-shape, a circle, or a "back" shape.
  • the decoupling resonance unit 4 may be various types of resonators made of other metal materials, or materials such as non-metal materials, and the resonators may also be resonant circuits or the like. The shape and number of the resonators can be set according to the actual structure of the circuit board 1.
  • the decoupling resonance unit 4 may also include a resonator according to the structure of the circuit board 1. It should be noted that each resonator can generate a specific resonant frequency (to reduce the frequency of coupling between the antenna 2 and the electronic component 5 disposed around the antenna 2, and to lower the antenna 2 and the The frequency of the coupling between the connecting wires 7 around the antenna 2, i.e., the resonant frequency of the interference is reduced, to ensure that the antenna 2 can radiate in its original performance and manner.
  • the length of each of the resonators is also useful for the frequency at which the interference is required to be reduced.
  • the physical length of each resonator (that is, the expanded length) may be a quarter wavelength ( ⁇ /4), a half wavelength, or an integer multiple thereof of the antenna operating frequency.
  • the operating frequency of the antenna is equal to the resonant frequency of the resonator.
  • the plurality of decoupling resonance units 4 of the present invention are devices independent of the antenna 2.
  • the electronic component 5 can be other components integrated around the antenna 2, which can cause interference to the antenna 2 after being energized.
  • the electronic component 5 can be an electronic chip.
  • the connecting wires 7 are used to connect the electronic component 5 and other structures on the circuit board 1.
  • the connecting wire 7 also causes interference to the antenna 2 after being energized. Referring to Figures 1 and 3, four connecting wires 7 are illustrated.
  • the decoupling resonance unit 4 is arranged between the antenna 2 and the electronic component 5 or arranged between the antenna 2 and the connecting wire 7 in a predetermined arrangement manner.
  • the electromagnetic field between the antenna 2 and the electronic component 5 in the vicinity of the antenna 2 is isolated, or the antenna 2 is electromagnetically isolated from the connecting wire 7 in the vicinity of the antenna 2, thereby reducing the electronic components in the vicinity of the antenna 2 and the antenna 2. 5 or the coupling between the connecting wires 7.
  • the decoupling resonance unit 4 is arranged between the antenna 2 and the electronic component 5 in a predetermined arrangement as an example. In other preferred embodiments, the decoupling resonance unit 4 can also be arranged between the antenna 2 and the connecting wire 7 in a predetermined arrangement.
  • the electronic component 5 and the connecting wire 7 are both conductive lines that interfere with the antenna 2.
  • the case where the decoupling resonance unit 4 is arranged between the antenna 2 and the conductive line in a predetermined arrangement includes: (1) when the antenna 2 and the conductive line are disposed on the circuit board a position of the decoupling resonance unit 4 disposed on the side of the circuit board 1 between the antenna 2 and the conductive line; (2) when the circuit board 1 has at least three layers When the antenna 2 and the conductive line are respectively disposed on different layers of the circuit board 1, the layer where the decoupling resonance unit 4 is located is located at the layer where the antenna 2 is located and the conductive line Between the layers.
  • the decoupling resonance unit 4 of FIG. 1 includes three resonators each having a shape of approximately two pulses plus a rising edge. It should be understood that, in practical applications, the shape of the resonator is not limited thereto as long as the resonant frequency of each resonator is equal to the operating frequency of the antenna, and/or the physical length of each resonator (ie, the expanded length) is The quarter wavelength ( ⁇ /4), the half wavelength, or an integral multiple thereof of the operating frequency of the antenna 2 is not limited to this embodiment. Three resonators having the same shape shown in FIGS.
  • the three resonators are also at the same time as the upper layer facing the connecting wire 7 (on the other side surface of the substrate 6) (for example, on one side surface of the substrate 6 corresponding to the connecting wire 7 position).
  • the shapes of the resonators may also be different (including completely different or partially different), and the plurality of resonators may be periodically arranged in a fixed or non-fixed order.
  • the plurality of resonators may be periodically arranged in a fixed or non-fixed order.
  • two or more resonators of different shapes are periodically arranged and the like.
  • the distance between the decoupling resonance unit 4 and the antenna 2 is a preset optimization distance value. For example, setting the preset optimization position and distance can minimize the electronic component 5 and/or Or the effect of the connecting wires 7 on the radiation performance of the antenna 2.
  • the optimized distance value may be correspondingly set according to the shape and material of the antenna 2 and/or the resonator.
  • the decoupling resonance unit 4 is disposed at a maximum value of the electromagnetic field strength between the antenna 2 and the electronic component 5.
  • the position of the decoupling resonance unit 4 relative to the antenna 2 may also be correspondingly set according to actual needs, for example, may be arranged on the upper side, the left side, the right side, and the like of the antenna 2.
  • the above circuit board 1 can be applied to an electronic device (not shown).
  • the electronic device can be any suitable device such as a remote control device, a mobile phone, a computer, an electronic reader, a smart watch, or the like.
  • the circuit board 1 is housed in a housing (not shown) of the electronic device.
  • the electronic device may be a remote control device (not shown) for remotely controlling an unmanned aerial vehicle (not shown).
  • the electronic device may also be a mobile device such as a car, a ship, an unmanned aerial vehicle, or the like.
  • FIG. 4 is a schematic diagram of the radiation efficiency comparison of the antenna 2 .
  • the efficiency of a monopole antenna with a design frequency in the range of 2.4 GHz to 2.5 GHz is shown in FIG.
  • the monopole antenna is fed by a coplanar waveguide feed structure, and in the case where it exists alone, the radiation efficiency is high and is good in the direction of the H plane (the plane passing through the maximum radiation direction of the antenna and parallel to the magnetic field vector). Omnidirectional. However, since other electronic components and wires are in a very small range of the antenna, the efficiency and pattern of the monopole antenna are affected.
  • the curve A indicates the radiation efficiency when the decoupling resonance unit is not in the vicinity of the monopole antenna
  • the curve B indicates the radiation efficiency when the decoupling resonance unit is added in the vicinity of the monopole antenna. It can be seen from the two curves in FIG. 4 that when the decoupling resonance unit 4 is not added near the monopole antenna, the radiation efficiency of the monopole antenna is about 60%-70% due to the influence of the nearby metal wires. In addition, due to the problem of over-line, the monopole antenna has a maximum gain of only 1.3 dBi and an out-of-roundness of about 3 dB.
  • the radiation efficiency of the monopole antenna is the same after the decoupling resonance unit 4 is added to the upper layer of the connection wire 7 (also below the antenna 2, beside the electronic component 5)
  • the frequency band reaches about 90%, while the maximum gain of the monopole antenna also reaches 2.7dBi, and the out-of-roundness is less than 1.7dB.
  • FIG. 5 is a schematic diagram showing the E plane of the monopole antenna (through the plane of the maximum radiation direction of the antenna and parallel to the plane of the electric field vector), and FIG. 6 illustrates the monopole antenna. Schematic diagram of the H plane.
  • FIG. 5 and FIG. 6 by adding the decoupling resonance unit 4, a relatively symmetrical omnidirectional radiation pattern can be obtained, so that the antenna 2 can maintain the original radiation pattern.

Landscapes

  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种电路板(1)及具有该电路板(1)的电子装置。所述电路板(1)包括:天线(2);集成在该天线(2)周围的导电线路;及退耦谐振单元(4),其中,所述退耦谐振单元(4)布置于所述天线(2)与所述导电线路之间,以将所述天线(2)与所述导电线路电磁场隔离。

Description

电路板及具有该电路板的电子装置 技术领域
本发明涉及一种电路板及具有该电路板的电子装置。
背景技术
随着无线通信技术的发展以及在各行业中的广泛应用,天线的设计也面临巨大的挑战。一方面,高质量远距离的传输需求,对天线的辐射效率,方向图以及增益都有较高的要求。另一方面,不断小型化的设备,更加紧凑的电路,追求廉价的成本,都限制了天线的大小尺寸以及辐射效率。这两方面的矛盾,促使了天线不断的朝小型化,多频带方向发展。与此同时高度集成的电路以及多个天线之间的互相影响已经成为一类常见的问题,在高度集成的设备中,电子元器件,以及各种导线对天线辐射效能的限制已经变得不容小视。
传统技术一般采用增加天线与电子组件、其他天线、导线等之间的距离来降低耦合以及降低其他效应对天线性能的影响。或者在多天线之间采用极化分集的方式来增加隔离度。但是,由于增加了天线和导线或者其他天线之间的距离,在设备的设计上,很有可能需要占用大量的空间,不利于电路集成整合。而在很多紧凑设计中,由于空间的限制,天线和其他组件以及导线之间的距离往往非常靠近。传统的设计常常忽略这些影响,从而造成天线辐射效能下降。
发明内容
鉴于以上内容,有必要提供一种能够保证天线的辐射特性和效率的电路板。
还有必要提供一种具有该电路板的电子装置。
一种电路板,该电路板包括:天线;集成在该天线周围的导电线路;及退耦谐振单元,其中,所述退耦谐振单元布置于所述天线与所述导电线路之间,以将所述天线与所述导电线路电磁场隔离。
在一些实施例中,所述退耦谐振单元包括一个或多个谐振器,该一个或多个谐振器产生特定的谐振频率。
在一些实施例中,各谐振器所产生的频率等于所述天线的工作频率,及/或各谐振器的物理长度为所述天线工作频率的四分之一波长、二分之一波长或其整数倍。
在一些实施例中,所述多个谐振器的形状完全不同或部分不同,所述形状完全不同或部分不同的谐振器以预定的排布方式排布于所述天线与所述导电线路之间。
在一些实施例中,所述多个谐振器并行排列成一排,靠近且平行于所述天线排布。
在一些实施例中,所述导电线路为对天线造成的干扰的电子组件,所述电子组件与所述天线位于所述电路板的相同侧面上。
在一实施例中,所述电路板包括连接导线,所述连接导线与所述天线位于所述电路板的不同侧面上,以及所述退耦谐振单元与所述导线分别布置于所述电路板的两个相对的侧表面上。
在一些实施例中,所述电路板为多层结构,所述导电线路包括对天线造成的干扰的电子组件,以及当所述电子组件与所述天线位于所述电路板不同的层时,所述退耦谐振单元所在层位于所述天线所在层与所述电子组件所在层之间。
在一些实施例中,所述天线为单极子天线。
在一些实施例中,所述电路板还包括与所述天线电性连接的馈电结构,所述馈电结构为共面波导馈电结构。
一种电子装置,该电子装置具有如上所述的电路板。
在一实施例中,所述电子装置为遥控装置、手机、电脑、电子阅读器或智能手表。
在另一实施例中,所述电子装置为用于遥控无人飞行器的遥控装置,或无人飞行器。
与现有技术相比较,本发明所述的电路板上在天线与集成在该天线周围的导电线路之间添加了退耦谐振单元,利用所述退耦谐振单元产生谐振来降低天线与所述导电线路之间的耦合,使用退耦谐振单元增加了天线与所述导电线路之间的电磁场隔离,从而使得天线能够保持较高的辐射效率以及保持原有的辐射方向图,保证了天线的辐射特性和效率。
附图说明
图1为本发明较佳实施例的电路板的分解图。
图2为本发明较佳实施例的电路板的俯视图。
图3为本发明较佳实施例的电路板的仰视图。
图4示意了天线仿真效率的对比示意图。
图5示意了图1所示天线的E面方向示意图。
图6示意了图1所示天线的H面方向示意图。
主要元件符号说明
电路板 1
天线 2
馈电结构 3
退耦谐振单元 4
电子组件 5
基板 6
连接导线 7
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,是本发明较佳实施例电路板1的分解图,图2与图3是本发明较佳实施例电路板1的俯视图和仰视图。所述电路板1包括,但不限于,天线2、馈电结构3、退耦谐振单元4、电子组件5、基板6及连接导线7。所述基板6为天线2、馈电结构3、退耦谐振单元4、电子组件5及连接导线7的载体,所述基板6可为单层基板或多层基板。在本较佳实施例中,所述电路板1作为集成上述器件所印刷集成的电路板,例如,所述电路板1可以是柔性印刷电路板。在其他较佳实施例中,所述电路板也可以是非柔性印刷电路板,如PCB板。
在本较佳实施例中,所述天线2、馈电结构3、退耦谐振单元4、电子组件5布置于所述基板6的一侧表面上(例如图1中所述的所述基板6的上表面),以及所述连接导线7布置于所述电路板的另一侧表面上(例如图1中所述的所述基板6的下表面)。通过将连接导线7设置于与所述天线2在所述基板6的不同侧面上,进一步地有助于降低所述连接导线7对所述天线2的干扰。
在其他较佳实施例中,上述各器件的布置也可以根据实际需求而不同。例如,所述电子组件5与所述天线2也可以位于所述基板6的不同侧面上。
在一实施例中,所述天线2可以是各种类型和结构的天线装置,例如,Wimax天线,WiFi天线,MIMO天线等。在本较佳实施例中,所述天线2以平面印刷的单极子天线为例进行说明。平面印刷单极子天线是指一种印刷在介质基板表面的导体微带线(通常其长度约为天线工作频率的四分之一波长)。
所述天线2采用所述馈电结构3进行馈电。所述馈电结构3可以是各种馈电方式的馈电单元。常用的馈电方式包括:同轴线馈电、微带线馈电和共面波导馈电等。在本较佳实施例中,所述馈电结构3以共面波导馈电结构为例进行说明。应说明的是,利用共面波导供电的平面天线可以是例如,渐变开槽天线、多模天线、单极子天线、圆极化天线等。参见图1,所述天线2与所述馈电结构3处于所述基板6的同一表面上,所述天线2与所述馈电结构3利用微带线共面波导连接在一起。所述天线2与所述馈电结构3的连接方式为本技术领域人员所熟知的一般连接方式,在此不做过多解释。
在一实施例中,所述退耦谐振单元4包括多个谐振器。所述谐振器为产生谐振频率的电子组件。在本较佳实施例中,各谐振器为由铜片制成的具有一定形状的谐振器,例如E字型、工字型、圆形或“回”字形等各种任意适用的形状。在其他较佳实施例中,所述退耦谐振单元4可以是由其他金属材料、或非金属材料等材料制成的各类谐振器,所述谐振器也可以为谐振电路等。所述谐振器的形状和数量可以根据所述电路板1的实际结构进行设置。当然,在其他实施例中,根据所述电路板1的结构的不同,所述退耦谐振单元4也可以包括一个谐振器。应说明的是,各谐振器可以产生特定的谐振频率(用于降低所述天线2与设置于该天线2周围的电子组件5之间的耦合的频率、以及降低所述天线2与设置于该天线2周围的连接导线7之间的耦合的频率,即,降低干扰的谐振频率),以保证所述天线2能够以原有的性能和方式进行辐射。所述各谐振器的长度对于所需要降低干扰的频率也是有用的。在一实施例中,所述各谐振器的物理长度(也即,展开后的长度)可以是天线工作频率的四分之一波长(λ/4)、二分之一波长或其整数倍等。天线的工作频率等于谐振器的谐振频率。应说明的是,本发明所述多个退耦谐振单元4是独立于所述天线2之外的器件。
所述电子组件5可以是集成在所述天线2周围的其他组件,该电子组件5在通电后会对所述天线2造成干扰。在一实施例中,所述电子组件5可以是电子芯片。
所述连接导线7用于连接所述电子组件5和所述电路板1上的其他结构。所述连接导线7在通电后也会对所述天线2造成干扰。请参阅图1和图3,示意了四条连接导线7。
在一实施例中,所述退耦谐振单元4以预定的排布方式排布于所述天线2与所述电子组件5之间或排布于所述天线2与所述连接导线7之间,以将所述天线2与该天线2附近的电子组件5电磁场隔离,或将所述天线2与该天线2附近的连接导线7电磁场隔离,从而降低所述天线2与该天线2附近的电子组件5或连接导线7之间的耦合。
在本较佳实施例中,以所述退耦谐振单元4以预定的排布方式排布于所述天线2与所述电子组件5之间为例进行说明。在其他较佳实施例中,所述退耦谐振单元4也可以预定的排布方式排布于所述天线2与所述连接导线7之间为例进行说明。
应当理解的是,所述电子组件5与所述连接导线7均为对所述天线2造成干扰的导电线路。所述退耦谐振单元4以预定的排布方式排布于所述天线2与所述导电线路之间的情况包括:(1)当所述天线2与所述导电线路设置于所述电路板1的同一侧面时,所述退耦谐振单元4的位置布置于所述电路板1的该侧面上所述天线2与所述导电线路之间;(2)当所述电路板1至少有三层结构且所述天线2与所述导电线路之间分别设置于所述电路板1不同的层上时,所述退耦谐振单元4所在的层位于所述天线2所在层与所述导电线路所在层之间。
再次参阅图1及图2,例如,图1中所述退耦谐振单元4包括三个谐振器,各谐振器的形状大致为两个脉冲加一个上升沿的形状。应当理解,实际应用中,谐振器的形状并不限于此,只要各谐振器的谐振频率等于天线的工作频率,及/或各谐振器的物理长度(也即,展开后的长度)为所述天线2工作频率的四分之一波长(λ/4)、二分之一波长或其整数倍即可,并不限于本实施例。图1和图2中所示的具有相同形状的三个谐振器并行排列,均靠近所述天线2并与所述天线2平行,且均位于所述天线2的上侧以及所述电子组件5的右侧,该三个谐振器同时也处于正对于所述连接导线7(处于所述基板6的另一侧表面)的上层(例如在所述基板6的一侧表面对应于所述连接导线7的位置)。
在其他较佳实施例中,各谐振器的形状也可以是不相同(包括完全不同或部分不同)的,该多个谐振器可以以固定的或不固定的顺序周期性地排布。例如,两个或两个以上不同形状的谐振器周期性地排布等。
所述退耦谐振单元4与所述天线2之间的距离为预设的最优化距离值,例如,设置为该预设的最优化位置和距离能够最大限度地降低所述电子组件5与/或连接导线7对于所述天线2辐射效能的影响。该最优化距离值可以依据所述天线2及/或所述谐振器的形状和材料的不同而进行对应的设置。例如,将所述退耦谐振单元4设置于天线2与电子组件5之间的电磁场强度的最大值处。此外,所述退耦谐振单元4相对于所述天线2的位置也可以根据实际需求进行对应地设置,例如,可以排布于所述天线2的上侧、左侧、右侧等。
上述电路板1可以应用于一电子装置(图示未示出)中。该电子装置可以为遥控装置、手机、电脑、电子阅读器、智能手表等任意适用的装置。所述电路板1容置于该电子装置的壳体(图示未示出)内。在一实施例中,所述电子装置可以是用于遥控无人飞行器(图示未示出)的遥控装置(图示未示出)。应当理解的是,所述电子装置还可以为可移动设备,例如,汽车、轮船、无人飞行器等。
请参阅图4,是所述天线2的辐射效率对比示意图。图4中显示了设计频率在2.4GHz到2.5GHz范围内的单极子天线的效率。所述单极子天线由共面波导馈电结构馈电,在单独存在的情况下,辐射效率较高并且在H面(通过天线最大辐射方向并平行于磁场矢量的平面)方向有很好的全向性。但是由于有其他电子组件以及导线处于该天线非常小的范围内,因此所述单极子天线的效率以及方向图都会受到影响。
其中,曲线A表示所述单极子天线附近没有退耦谐振单元时的辐射效率,曲线B表示所述单极子天线附近增加了退耦谐振单元时的辐射效率。从图4中的两个曲线可以看出,在单极子天线附近没有添加退耦谐振单元4时,由于附近金属导线的影响,所述单极子天线的辐射效率约为60%-70%,此外,由于过线的问题,所述单极子天线的最大增益仅为1.3dBi,不圆度为约3dB。相比较,通过在连接导线7的上层(也处于所述天线2的下方、所述电子组件5的旁边)添加了所述退耦谐振单元4之后,所述单极子天线的辐射效率在相同的频段达到了约90%,与此同时所述单极子天线的最大增益也达到了2.7dBi,不圆度小于1.7dB。
请参阅图5和图6,图5示意了所述单极子天线的E面(通过天线最大辐射方向并平行于电场矢量的平面)方向示意图,以及图6示意了所述单极子天线的H面方向示意图。从图5和图6可以看出,通过添加了退耦谐振单元4,能够获得较为对称的全向辐射方向图,使得所述天线2能够保持原有的辐射方向图。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (23)

  1. 一种电路板,其特征在于,该电路板包括:天线;集成在该天线周围的导电线路;及退耦谐振单元,其中,所述退耦谐振单元布置于所述天线与所述导电线路之间,以将所述天线与所述导电线路电磁场隔离。
  2. 如权利要求1所述的电路板,其特征在于,所述退耦谐振单元包括一个或多个谐振器,该一个或多个谐振器产生特定的谐振频率。
  3. 如权利要求2所述的电路板,其特征在于,所述多个谐振器的形状相同,且各谐振器所产生的频率等于所述天线的工作频率,及/或各谐振器的物理长度为所述天线工作频率的四分之一波长、二分之一波长或其整数倍。
  4. 如权利要求2所述的电路板,其特征在于,所述多个谐振器并行排列。
  5. 如权利要求2所述的电路板,其特征在于,所述多个谐振器的形状完全不同或部分不同,且各谐振器所产生的频率等于所述天线的工作频率,及/或各谐振器的物理长度为所述天线工作频率的四分之一波长、二分之一波长或其整数倍。
  6. 如权利要求1所述的电路板,其特征在于,所述导电线路为对天线造成的干扰的电子组件,所述电子组件与所述天线位于所述电路板的相同侧面上。
  7. 如权利要求6所述的电路板,其特征在于,所述电路板还包括连接导线,所述连接导线与所述天线位于所述电路板的不同侧面上,以及所述退耦谐振单元与所述导线分别布置于所述电路板的两个相对的侧表面上。
  8. 如权利要求1所述的电路板,其特征在于,所述电路板为多层结构,所述导电线路包括对天线造成的干扰的电子组件,以及当所述电子组件与所述天线位于所述电路板不同的层时,所述退耦谐振单元所在层位于所述天线所在层与所述电子组件所在层之间。
  9. 如权利要求1所述的电路板,其特征在于,所述天线为单极子天线。
  10. 如权利要求1所述的电路板,其特征在于,所述电路板还包括与所述天线电性连接的馈电结构,所述馈电结构为共面波导馈电结构。
  11. 一种电子装置,其特征在于,该电子装置包括一电路板,该电路板包括天线;集成在该天线周围的导电线路;及退耦谐振单元,其中,所述退耦谐振单元布置于所述天线与所述导电线路之间,以将所述天线与所述导电线路电磁场隔离。
  12. 如权利要求11所述的电子装置,其特征在于,所述退耦谐振单元包括一个或多个谐振器,该一个或多个谐振器产生特定的谐振频率。
  13. 如权利要求12所述的电子装置,其特征在于,所述多个谐振器的形状相同,且各谐振器所产生的频率等于所述天线的工作频率,及/或各谐振器的物理长度为所述天线工作频率的四分之一波长、二分之一波长或其整数倍。
  14. 如权利要求13所述的电子装置,其特征在于,所述多个谐振器并行排列。
  15. 如权利要求12所述的电子装置,其特征在于,所述多个谐振器的形状完全不同或部分不同,且各谐振器所产生的频率等于所述天线的工作频率,及/或各谐振器的物理长度为所述天线工作频率的四分之一波长、二分之一波长或其整数倍。
  16. 如权利要求11所述的电子装置,其特征在于,所述导电线路为对天线造成的干扰的电子组件,所述电子组件与所述天线位于所述电路板的相同侧面上。
  17. 如权利要求16所述的电子装置,其特征在于,所述电路板包括连接导线,所述连接导线与所述天线位于所述电路板的不同侧面上,以及所述退耦谐振单元与所述导线分别布置于所述电路板的两个相对的侧表面上。
  18. 如权利要求11所述的电子装置,其特征在于,所述电路板为多层结构,所述导电线路包括对天线造成的干扰的电子组件,以及当所述电子组件与所述天线位于所述电路板不同的层时,所述退耦谐振单元所在层位于所述天线所在层与所述电子组件所在层之间。
  19. 如权利要求11所述的电子装置,其特征在于,所述天线为单极子天线。
  20. 如权利要求11所述的电子装置,其特征在于,所述电路板还包括与所述天线电性连接的馈电结构,所述馈电结构为共面波导馈电结构。
  21. 如权利要求11所述的电子装置,其特征在于,所述电子装置为遥控装置、手机、电脑、电子阅读器或智能手表。
  22. 如权利要求11所述的电子装置,其特征在于,所述电子装置为用于遥控无人飞行器的遥控装置。
  23. 如权利要求11所述的电子装置,其特征在于,所述电子装置为无人飞行器。
PCT/CN2015/094883 2015-11-18 2015-11-18 电路板及具有该电路板的电子装置 WO2017084037A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/094883 WO2017084037A1 (zh) 2015-11-18 2015-11-18 电路板及具有该电路板的电子装置
CN201580066661.7A CN107004952B (zh) 2015-11-18 2015-11-18 电路板及具有该电路板的电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094883 WO2017084037A1 (zh) 2015-11-18 2015-11-18 电路板及具有该电路板的电子装置

Publications (1)

Publication Number Publication Date
WO2017084037A1 true WO2017084037A1 (zh) 2017-05-26

Family

ID=58717193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094883 WO2017084037A1 (zh) 2015-11-18 2015-11-18 电路板及具有该电路板的电子装置

Country Status (2)

Country Link
CN (1) CN107004952B (zh)
WO (1) WO2017084037A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201893439U (zh) * 2009-12-16 2011-07-06 国基电子(上海)有限公司 多天线系统
US8416138B2 (en) * 2008-12-29 2013-04-09 Calamp Corp. Multiband antenna including antenna elements connected by a choking circuit
CN103367893A (zh) * 2013-07-04 2013-10-23 云南大学 高隔离宽频带两天线系统
CN103825093A (zh) * 2012-11-16 2014-05-28 启碁科技股份有限公司 去耦合电路及天线装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649791B1 (ko) * 1998-02-20 2006-11-24 콸콤 인코포레이티드 안테나와 컨덕터들 사이의 에너지 커플링을 방지하는 요소를 편입한 기판 안테나
US7330156B2 (en) * 2004-08-20 2008-02-12 Nokia Corporation Antenna isolation using grounded microwave elements
FI124066B (fi) * 2010-06-01 2014-02-28 Marisense Oy Järjestely häiriöiden pienentämiseksi elektronisessa hyllylapussa
CN104681985A (zh) * 2015-02-13 2015-06-03 昆山联滔电子有限公司 三维立体天线
CN204696240U (zh) * 2015-06-12 2015-10-07 河北电信设计咨询有限公司 Lte天线隔离结构
CN205178014U (zh) * 2015-11-18 2016-04-20 深圳市大疆创新科技有限公司 电路板及具有该电路板的电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416138B2 (en) * 2008-12-29 2013-04-09 Calamp Corp. Multiband antenna including antenna elements connected by a choking circuit
CN201893439U (zh) * 2009-12-16 2011-07-06 国基电子(上海)有限公司 多天线系统
CN103825093A (zh) * 2012-11-16 2014-05-28 启碁科技股份有限公司 去耦合电路及天线装置
CN103367893A (zh) * 2013-07-04 2013-10-23 云南大学 高隔离宽频带两天线系统

Also Published As

Publication number Publication date
CN107004952B (zh) 2019-09-06
CN107004952A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
US6483463B2 (en) Diversity antenna system including two planar inverted F antennas
US8890763B2 (en) Multiantenna unit and communication apparatus
US8593366B2 (en) Multi-antenna apparatus and mobile device
US8854273B2 (en) Antenna and communication device thereof
US8619001B2 (en) Multi-antenna apparatus and mobile device
CN102414914B (zh) 平衡超材料天线装置
US11682828B2 (en) Integrated millimeter wave antenna modules
US8952850B2 (en) Mimo antenna apparatus
EP3952021B1 (en) Antenna device and mobile terminal
JP2002299933A (ja) アンテナの電極構造およびそれを備えた通信機
WO2011145323A1 (ja) アンテナ装置及びこれを搭載した携帯無線端末
WO2021184986A1 (zh) 天线装置及电子设备
US11552402B2 (en) Electronic devices having side-mounted antenna modules
US11664601B2 (en) Electronic devices with coexisting antennas
US9627747B2 (en) Dual-polarized magnetic antennas
US11018418B2 (en) Chip antenna and chip antenna module including the same
TW200945657A (en) Antenna device
WO2017084037A1 (zh) 电路板及具有该电路板的电子装置
Zhang et al. Compact MIMO antenna with embedded decoupling network
JP6183269B2 (ja) アンテナ装置およびこれを搭載した携帯無線端末
JPWO2014027457A1 (ja) 電流抑制素子及び電流抑制方法
CN113013621B (zh) 一种面向5g移动终端的紧凑型高隔离度mimo天线
CN219833009U (zh) 一种天线单元、天线阵列及电子设备
TW201301659A (zh) 天線與其通訊裝置
US20240079761A1 (en) Impedance Transitions Between Boards for Antennas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908534

Country of ref document: EP

Kind code of ref document: A1