WO2017082681A1 - Smart window and method for producing same - Google Patents

Smart window and method for producing same Download PDF

Info

Publication number
WO2017082681A1
WO2017082681A1 PCT/KR2016/013015 KR2016013015W WO2017082681A1 WO 2017082681 A1 WO2017082681 A1 WO 2017082681A1 KR 2016013015 W KR2016013015 W KR 2016013015W WO 2017082681 A1 WO2017082681 A1 WO 2017082681A1
Authority
WO
WIPO (PCT)
Prior art keywords
smart window
zinc oxide
conductive
nano
barrier ribs
Prior art date
Application number
PCT/KR2016/013015
Other languages
French (fr)
Korean (ko)
Inventor
금동기
금중한
손영섭
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Publication of WO2017082681A1 publication Critical patent/WO2017082681A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type

Definitions

  • the present invention relates to a smart window and a method of manufacturing the same.
  • a smart window is a window that is formed to be turned on and off, and controls the amount of light or heat passing through it by changing the light transmittance when a voltage is applied. That is, the smart window is provided to be changed to a transparent, opaque or translucent state by the voltage and is also called a variable transmittance glass, dimming glass or smart glass (smart glass).
  • the smart window may be used as a partition of an indoor space or as a skylight disposed at an opening of a building, and may be used as a highway sign, a bulletin board, a scoreboard, a clock, or an advertisement screen. It can also be used as windows or sunroofs of ships or trains.
  • the smart window can be divided into Liquid Crystal Display (LCD), Suspended Particle Display (SPD), Electrochromic glass (EC), Photochromic glass (PC) and Thermochromic (LTC: Thermo-chromic glass) is classified.
  • LCD Liquid Crystal Display
  • SPD Suspended Particle Display
  • EC Electrochromic glass
  • PC Photochromic glass
  • LTC Thermochromic glass
  • a smart window using liquid crystal has a problem in that power consumption is large when it is driven for a long time.
  • the conventional polarized particle dispersion type smart window technology has a problem that the thickness becomes thick or the transmission efficiency is low by using a transparent electrode having a multilayer structure.
  • Korean Patent Publication No. 2013-0037600 discloses a smart window technology including a polymer dispersed liquid crystal device, but has not suggested an alternative to the aforementioned problem.
  • An object of the present invention is to provide a smart window that can improve the transmittance of the smart window.
  • An object of the present invention is to provide a method for manufacturing the smart window.
  • Conductive nano barrier ribs formed at predetermined intervals on the substrate
  • nano barrier ribs are 5 to 200nm in thickness, smart window.
  • the pattern is an opening pattern having an opening pattern having a circle, ellipse, triangle, rectangle, pentagon, hexagon, octagon or a mixture thereof, smart window.
  • the height of the nano barrier rib is 100 to 8,000nm, smart window.
  • the nano barrier ribs are In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo At least one metal selected from the group consisting of Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide
  • a smart window comprising at least one metal oxide selected from the group consisting of silver-aluminum zinc oxide (AZO-Ag-AZO).
  • the conductive light shielding particles are carbon black, C.I. Pigment Black 7 and at least one selected from the group consisting of polar nano dyes, smart window.
  • the conductive light shielding particles are attached to the side of the conductive nano barrier ribs, smart window.
  • the smart window of claim 1 further comprising a polymer pattern on at least some of the conductive nano barrier ribs.
  • the image display device including the smart window of the above 1 to 9.
  • nano barrier ribs have a thickness of 5 to 200nm, smart window manufacturing method.
  • the conductive layer is In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo At least one metal selected from the group consisting of Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -Silver-aluminum zinc oxide (AZO-Ag-AZO) comprising at least one metal oxide selected from the group consisting of, smart window
  • the smart window of the present invention can significantly improve the transmittance of the smart window by including a conductive nano barrier rib.
  • FIG. 1 is a schematic cross-sectional view when no voltage is applied in a smart window according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view when a voltage is applied in a smart window according to an embodiment of the present invention.
  • 3 to 4 are schematic perspective views of conductive nano barrier ribs formed on a substrate in a smart window, respectively, according to one embodiment of the present invention.
  • FIG. 5 is a schematic process diagram of a method of manufacturing a smart window according to an embodiment of the present invention.
  • the present invention is directed to an opposite substrate; Conductive nano barrier ribs formed at predetermined intervals on the substrate; Conductive light shielding particles filled in at least a portion of the nano barrier ribs; And an electrode for applying a voltage to the nano-barrier, and thus, a smart window and a method for manufacturing the same, which can realize excellent visibility by significantly improving transmittance.
  • the smart window of the present invention may be formed on at least some of the conductive nano barrier ribs 200 and the conductive nano barrier ribs 200 formed at predetermined intervals between the substrate 100 and the substrate 100. Filled conductive light shielding particles 500 and the electrode (not shown) for applying a voltage to the nano-barrier.
  • the substrate 100 is not particularly limited as long as it has transparency and appropriate strength.
  • the substrate 100 may include cycloolefin such as silicon, quartz, glass, polymer, metal, metal oxide, nonmetal oxide, norbornene or polycyclic norbornene-based monomer.
  • Vinyl copolymer polyester, polystyrene, polyamide, polyetherimide, polyacryl, polyimide, polyethersulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol , Polyvinyl acetal, poly Substrate 100 comprising materials such as ether ketone, polyether ether ketone, polyether sulfone, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyurethane and epoxy Can be. These materials can be used individually or in mixture of 2 or more types.
  • the thickness of the substrate 100 is not particularly limited, and may be, for example, 10 ⁇ m to 500 ⁇ m.
  • the conductive nano barrier rib 200 is positioned on the substrate 100, and the nano barrier rib according to the present invention refers to a barrier rib having a thickness of nano level.
  • the conductive nano barrier rib according to the present invention has an advantage that the light transmittance is remarkably improved because the thickness thereof is nanoscopic and is not visually recognized by the user.
  • the conductive nano barrier rib 200 is made of a conductive material, for example, In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti At least one metal selected from the group consisting of Ag, Cr, Mo, Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -At least one metal oxide selected from the group consisting of silver-aluminum zinc oxide (AZO-A
  • the thickness of the nano barrier ribs is not particularly limited as long as it is within a range capable of improving transmittance, for example, the thickness may be 5 nm to 200 nm, preferably 5 nm to 100 nm, more preferably 5 nm to 50 nm, and most preferably 10 nm to 30 nm. If the thickness is less than 5nm, there may be a problem in durability, and if the thickness is more than 200nm, the transmittance may be lowered.
  • the height of the nano barrier ribs is not particularly limited, and may be, for example, 100 nm to 8,000 nm. If the height is less than 100nm, it may be difficult for the conductive light shielding particles to be sufficiently attached. If the height is more than 8,000nm, problems such as deterioration of durability of the smart window may occur due to the presence of an excessive gap.
  • the nano barrier 200 may be located alone or as a plurality of walls.
  • the distance between the nano barrier ribs 200 is not particularly limited, and may be, for example, 10 nm to 3 ⁇ m, and preferably 10 nm to 200 nm in view of improving light extraction efficiency. .
  • the plurality of walls may not be parallel but may meet each other or may be positioned such that the extension lines meet each other.
  • the distance between the nano barrier ribs 200 may be, for example, 5 ⁇ m to 200 ⁇ m, but is not limited thereto.
  • the nano barrier ribs may form a predetermined pattern.
  • the opening pattern may have a polygon such as a circle, an ellipse, a triangle, a square, a pentagon, a hexagon, an octagon, or a combination thereof, and a linear pattern, a mesh pattern, a zigzag, a spiral, a radiation, an irregular shape. It may have a shape such as a single closed curve. 4 illustrates an opening pattern having a hexagonal opening, but is not limited thereto.
  • the opening pattern is a pattern having an opening surrounded by nano barrier ribs, and the opening pattern may be located alone or in plurality.
  • each opening pattern may be located at regular or irregular intervals.
  • the plurality of opening patterns may be connected or spaced apart from each other, and may be located in line symmetry, point symmetry, or irregularly.
  • the opening pattern may include an opening shape of the figure illustrated above; A shape in which the illustrated figure is combined; Alternatively, at least one of the figures may have a mixed shape, and the openings may be arranged periodically or aperiodically.
  • the smart window of the present invention includes conductive light shielding particles 500 filled in at least a portion of the conductive nano barrier ribs 200.
  • the conductive nano barrier rib 200 according to the present invention is connected to the electrode, it is possible to control the presence or absence of voltage supply to the smart window by the control of the controller.
  • the conductive light shielding particles are irregularly dispersed between the conductive nano barrier ribs 200, light is absorbed and scattered to form the color of the conductive light shielding particles, For example, black, dark blue, etc. are shown.
  • the smart window of the present invention includes the conductive nano-barrier having a nano-thickness and the conductive light shielding particles filled in at least a part of the conductive nano-barrier, thereby improving visibility and significantly improving light transmittance.
  • the conductive light shielding particles according to the present invention can be used without particular limitation as long as they have conductivity, for example, carbon black, C.I. Pigment black 7, polar nano dyes, and the like. These can be used individually or in mixture of 2 or more types.
  • the conductive light shielding particles may be dispersed in the transparent fluid.
  • the transparent fluid can be used in the art without particular limitation, and examples thereof include non-aqueous polar solvents and the like.
  • non-aqueous polar solvent examples include 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, diethylene glycol, dipropylene glycol, ethylene carbonate, propylene carbonate, 1,2- Butylene carbonate, 1,2-cyclohexane carbonate, glycerin carbonate, dimethyl carbonate, diethyl carbonate, acetophenone, pyridine, dimethylmalonate, diacetone alcohol, hydroxypropyl carbamate, beta-hydroxyethyl carbamate, N -Methyl formamide, N-methyl acetamide, dimethyl sulfoxide, sulfolane, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, acetonyl acetone, cyclo Hexanone, ethyl acetoacetate, ethyl-L-lactate, pyrrole, N
  • the transparent fluid in which the conductive light shielding particles may be dispersed may further include a surfactant.
  • surfactant examples include neutral surfactants such as betaine (eg, Zwittergent Co.), phospholipids, lecithin, TRITONTM, TWEENTM; Cationic surfactants of alkene oxide block polymers such as ethylene oxide and propylene oxide; Cationic surfactants such as alkyldimethylamine; Quaternary ammonium salt surfactants such as CTAB or a compound represented by Formula 1 below; Such as alkyl aryl sulfonates, sodium dodecyl sulfate (SDS), alkyl aryl sulfonates, bis-2-ethylhexyl sodium sulfosuccinate, carboxyl surfactants, and phosphate surfactants Anionic surfactants; Fluorocarbon surfactants; Amphoteric (positive) surfactants; Solids such as SiO 2 , A1 2 0 3 , BaTiO 4 , zeolites having a particle size of several micrometers to
  • R is an organic substituent such as alkyl, aryl or ether, x is an integer from 1 to 4, y is an integer from 0 to 3, and X is a counterion).
  • the surfactant contributes to the colloidal stabilization of the conductive light shielding particles in the transparent fluid and can lower the interfacial tension to reduce the required voltage.
  • the smart window of the present invention includes an electrode for applying a voltage to the conductive nano-barrier 200, and transmits or shields light with or without applying a voltage.
  • the electrode is capable of forming an electric field in the conductive nano barrier ribs 200, those used in the art may be used without particular limitation.
  • the smart window of the present invention may further include a polymer pattern 400 in at least some of the conductive nano barrier ribs 200.
  • any polymer polymer known in the art may be used without limitation as long as it is a transparent polymer.
  • polymer resins such as polyesters. These can be used individually or in mixture of 2 or more types.
  • the smart window of the present invention may further include a typical configuration required for the smart window.
  • the present invention provides an image display device including the smart window.
  • the image display device of the present invention includes a smart window including conductive nano barrier ribs, whereby visibility and transmittance are remarkably improved.
  • the image display device may include a liquid crystal display device, an OLED, a flexible display, and the like, but is not limited thereto, and all image display devices known in the art may be exemplified.
  • the smart window of the present invention can be applied to transportation means such as glass products, automobiles, aircraft for construction.
  • the present invention provides a method of manufacturing the smart window.
  • the polymer pattern 400 is formed on the substrate 100 as shown in FIG.
  • the polymer pattern 400 may be formed by forming a polymer resin layer on the substrate 100 and patterning the polymer resin layer.
  • the height of the nano barrier ribs is determined according to the height of the polymer pattern, the height of the nano barrier ribs of the present invention may be selected by adjusting the height of the polymer pattern.
  • polymer resin layer polymer resins known in the art can be used without limitation, and for example, epoxy, cellulose, acrylic, vinyl chloride, vinyl acetate, polyvinyl alcohol, polyurethane, polyester, etc. It may be a polymer resin of. These can be used individually or in mixture of 2 or more types.
  • the method of patterning the polymer resin layer is not particularly limited, and examples thereof include screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, photolithography, nanoimprinting, and the like. It can be used, and in terms of being able to form a fine pattern, preferably by the nanoimprinting method.
  • the conductive layer 300 is formed on the substrate 100 on which the polymer pattern 400 is formed.
  • the conductive layer 300 is a conductive material such as at least one metal, at least one metal oxide, and the like, and may include physical vapor deposition, chemical vapor deposition, plasma deposition, plasma polymerization, thermal deposition, thermal oxidation, anodization, cluster ion beam deposition, It may be formed by a screen printing method, a gravure printing method, a flexographic printing method, an offset printing method, an inkjet coating method, a dispenser printing method, a photolithography method, but is not limited thereto.
  • Examples of the conductive material used for the conductive layer 300 include In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag At least one metal selected from the group consisting of Cr, Mo, Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -One or more metal oxides selected from the group consisting of silver-aluminum zinc oxide (AZO-Ag-AZO) may
  • the conductive layer 300 is ion milled and etched, and a nano-thick coating layer is formed on the side surface of the polymer pattern 400 to form the nano barrier rib 200.
  • the nano-thick coating layer corresponds to the nano barrier rib 200.
  • the gas used to form the ions can be, for example, argon, helium, nitrogen, hydrogen, oxygen or a mixture of these, preferably argon.
  • Ion milling conditions are not particularly limited, for example, 10-1 form a plasma in the gas under the pressure 5 Torr to 10 -3 Torr can then be accomplished by accelerating the plasma by 100eV ⁇ 1500eV.
  • the energy is less than 100 eV, the etching of the conductive layer 300 may be difficult.
  • the energy is more than 1500 eV, the polymer pattern 400 may be damaged, and thus the nano barrier rib may not be easily formed.
  • the thickness of the nano barrier rib 200 according to the present invention can be selected by adjusting the conditions of ion milling.
  • the thickness of the nano barrier rib 200 is not particularly limited as long as it is within a range capable of improving transmittance, and may be, for example, 5 nm to 200 nm, preferably 5 nm to 100 nm, more preferably 5 nm to 50 nm, and most preferably. May be 10 nm to 30 nm. If the thickness is less than 5nm, there may be a problem in durability, and if the thickness is more than 200nm, the transmittance may be lowered.
  • the height of the nano barrier ribs is not particularly limited, and may be, for example, 100 nm to 8,000 nm. If the height is less than 100nm, it may be difficult for the conductive light shielding particles to be sufficiently attached. If the height is more than 5,000nm, problems such as deterioration of durability of the smart window may occur due to the presence of an excessive gap.
  • the conductive light shielding particle liquid is coated on the substrate on which the nano barrier ribs are formed.
  • the method of coating the conductive light shielding particle liquid may be formed using any method known in the art without particular limitation, and for example, may be coated by a method of applying and drying a transparent fluid including the conductive light shielding particles described above. But can. It is not limited to this.
  • the electrode is connected to the conductive nano barrier ribs.
  • the method of connecting the electrode to the conductive nano barrier ribs can be formed using any method known in the art without particular limitation.
  • FIG. 5D is a cross-sectional view along the line AA ′ of FIG. 4.
  • substrate 200 conductive nano barrier ribs

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)

Abstract

The present invention relates to a smart window and a method for producing same and, more specifically, to a smart window which can realize excellent visibility due to significantly improved transmittance by comprising: a substrate; electroconductive nano-partitions formed at predetermined intervals on the substrate; electroconductive light-blocking particles filled in at least part of the space between the electroconductive nano-partitions; and an electrode for applying a voltage to the nano-partitions, and to a method for producing the smart window.

Description

스마트 윈도우 및 이의 제조 방법Smart window and its manufacturing method
본 발명은 스마트 윈도우 및 이의 제조 방법에 관한 것이다.The present invention relates to a smart window and a method of manufacturing the same.
일반적으로 스마트 윈도우(smart window)는 켜고 끌 수 있도록 형성되어 전압이 걸리면 빛의 투과성을 변화시켜서 통과하는 빛 또는 열의 양이 제어되는 창을 뜻한다. 즉, 스마트 윈도우는 전압에 의해서 투명, 불투명 또는 반투명 상태로 변화될 수 있게 구비되며 투과도 가변유리, 조광유리 또는 스마트 글래스(smart glass)로도 불리운다.In general, a smart window is a window that is formed to be turned on and off, and controls the amount of light or heat passing through it by changing the light transmittance when a voltage is applied. That is, the smart window is provided to be changed to a transparent, opaque or translucent state by the voltage and is also called a variable transmittance glass, dimming glass or smart glass (smart glass).
또한, 스마트 윈도우는 실내 공간의 칸막이로 활용되거나 건축물의 개구부에 배치된 채광창으로 활용될 수 있고, 고속도로 표지판, 게시판, 점수판, 시계 또는 광고스크린으로도 활용될 수 있으며, 자동차, 버스, 항공기, 선박 또는 기차의 창(windows) 또는 선루프로도 활용이 가능하다.In addition, the smart window may be used as a partition of an indoor space or as a skylight disposed at an opening of a building, and may be used as a highway sign, a bulletin board, a scoreboard, a clock, or an advertisement screen. It can also be used as windows or sunroofs of ships or trains.
스마트 윈도우는 기능성을 나타내는 재료의 종류에 따라 액정(LCD: Liquid Crystal Display), 분극입자분산(SPD: Suspended Particle Display), 일렉트로크로믹(EC: Electrochromic glass), 포토크롬(PC: Photochromic glass) 및 써모크롬(LTC: Thermo-chromic glass) 등으로 구분되고 있다. 스마트 윈도우가 차세대의 고기능성 및 고부가가치의 제품으로 각광을 받게 되면서 선진기업과 관련 연구 기관에서는 막대한 예산을 투입하여 개발을 추진하고 있다.The smart window can be divided into Liquid Crystal Display (LCD), Suspended Particle Display (SPD), Electrochromic glass (EC), Photochromic glass (PC) and Thermochromic (LTC: Thermo-chromic glass) is classified. As smart windows are in the spotlight as the next generation of high-performance and high-value products, developed companies and related research institutes are investing enormous budgets.
종래의 스마트 윈도우는 대개 고분자 분산 액정(polymer dispersed liquid crystal, PDLC)를 이용하여 제조되고 있는데, 한 쌍의 유리 기판의 사이에 고분자 분산 액정을 주입하여 고분자 매트릭스 내의 미세한 액정(liquid crystal, LC)이 분산되어 있는 구조를 갖는다. 하지만, 액정을 사용한 스마트 윈도우의 경우 장기간 구동시키는 경우에는 전력의 소모가 크게 발생하는 문제점이 있다.Conventional smart windows are usually manufactured using a polymer dispersed liquid crystal (PDLC), where a liquid crystal (LC) in a polymer matrix is formed by injecting a polymer dispersed liquid crystal between a pair of glass substrates. It has a dispersed structure. However, a smart window using liquid crystal has a problem in that power consumption is large when it is driven for a long time.
또한, 종래의 분극 입자 분산형 스마트 윈도우 기술의 경우 다층 구조의 투명전극을 이용하여 두께가 두꺼워지거나 투과효율이 낮다는 문제점이 있다.In addition, the conventional polarized particle dispersion type smart window technology has a problem that the thickness becomes thick or the transmission efficiency is low by using a transparent electrode having a multilayer structure.
한국공개특허 제2013-0037600호에는 고분자 분산형 액정 소자를 포함하는 스마트 윈도우 기술이 개시되어 있으나, 전술한 문제점에 대한 대안을 제시하지 못하였다. Korean Patent Publication No. 2013-0037600 discloses a smart window technology including a polymer dispersed liquid crystal device, but has not suggested an alternative to the aforementioned problem.
본 발명은 스마트 윈도우의 투과율을 개선할 수 있는 스마트 윈도우를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a smart window that can improve the transmittance of the smart window.
본 발명은 상기 스마트 윈도우의 제조 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for manufacturing the smart window.
1. 기판;1. a substrate;
상기 기판 상에 소정 간격을 두고 형성된 도전성 나노 격벽;Conductive nano barrier ribs formed at predetermined intervals on the substrate;
상기 나노 격벽 사이 중 적어도 일부에 충진된 도전성 광 차폐 입자; 및Conductive light shielding particles filled in at least a portion of the nano barrier ribs; And
상기 나노 격벽에 전압을 인가하는 전극;을 포함하는 스마트 윈도우.And an electrode for applying a voltage to the nano barrier ribs.
2. 위 1에 있어서, 상기 나노 격벽은 두께가 5 내지 200nm인, 스마트 윈도우.2. In the above 1, wherein the nano barrier ribs are 5 to 200nm in thickness, smart window.
3. 위 1에 있어서, 상기 나노 격벽은 소정의 패턴을 이루는, 스마트 윈도우.3. In the above 1, wherein the nano barrier ribs form a predetermined pattern, smart window.
4. 위 3에 있어서, 상기 패턴은 개구부가 원, 타원, 삼각형, 사각형, 오각형, 육각형, 팔각형 또는 이들이 혼합된 도형 형상을 갖는 개구 패턴인, 스마트 윈도우.4. In the above 3, wherein the pattern is an opening pattern having an opening pattern having a circle, ellipse, triangle, rectangle, pentagon, hexagon, octagon or a mixture thereof, smart window.
5. 위 1에 있어서, 상기 나노 격벽의 높이는 100 내지 8,000nm인, 스마트 윈도우.5. according to the above 1, wherein the height of the nano barrier rib is 100 to 8,000nm, smart window.
6. 위 1에 있어서, 상기 나노 격벽은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 스마트 윈도우.6. In the above 1, the nano barrier ribs are In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo At least one metal selected from the group consisting of Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide A smart window comprising at least one metal oxide selected from the group consisting of silver-aluminum zinc oxide (AZO-Ag-AZO).
7. 위 1에 있어서, 상기 도전성 광 차폐 입자는 카본 블랙, C.I. 피그먼트 블랙 7 및 극성나노염료로 이루어진 군에서 선택되는 적어도 하나인, 스마트 윈도우.7. In the above 1, wherein the conductive light shielding particles are carbon black, C.I. Pigment Black 7 and at least one selected from the group consisting of polar nano dyes, smart window.
8. 위 1에 있어서, 상기 전극이 도전성 나노 격벽에 전압을 인가하면, 도전성 광 차폐 입자가 도전성 나노 격벽의 측면에 부착되는, 스마트 윈도우.8. In the above 1, wherein the electrode is a voltage applied to the conductive nano barrier ribs, the conductive light shielding particles are attached to the side of the conductive nano barrier ribs, smart window.
9. 위 1에 있어서, 상기 도전성 나노 격벽 사이 중 적어도 일부에 고분자 패턴을 더 포함하는, 스마트 윈도우.9. The smart window of claim 1, further comprising a polymer pattern on at least some of the conductive nano barrier ribs.
10. 위 1 내지 9의 스마트 윈도우를 포함하는 화상 표시 장치.10. The image display device including the smart window of the above 1 to 9.
11. 기판 상에 고분자 패턴을 형성하는 단계;11. forming a polymer pattern on the substrate;
상기 고분자 패턴이 형성된 기판 상에 도전층을 형성하는 단계;Forming a conductive layer on the substrate on which the polymer pattern is formed;
상기 도전층을 이온 밀링하여 식각하고, 상기 고분자 패턴의 측면에 나노 두께의 코팅층을 형성하여 나노 격벽을 형성하는 단계;Ion milling the conductive layer and etching, and forming a nano-thick coating layer on a side of the polymer pattern to form a nano barrier rib;
상기 나노 격벽이 형성된 기판 상에 도전성 광 차폐 입자액을 코팅하는 단계; 및Coating a conductive light shielding particle liquid on the substrate on which the nano barrier ribs are formed; And
상기 도전성 나노 격벽에 전극을 연결하는 단계;를 포함하는, 스마트 윈도우의 제조 방법.And connecting an electrode to the conductive nano barrier ribs.
12. 위 11에 있어서, 상기 나노 격벽은 두께가 5 내지 200nm인, 스마트 윈도우의 제조 방법.12. The method of claim 11, wherein the nano barrier ribs have a thickness of 5 to 200nm, smart window manufacturing method.
13. 위 11에 있어서, 상기 고분자 패턴은 나노 임프린팅법으로 형성하는, 스마트 윈도우의 제조 방법.13. In the above 11, wherein the polymer pattern is formed by nano imprinting method, smart window manufacturing method.
14. 위 11에 있어서, 상기 코팅층은 이온 밀링으로 뜯겨져 나간 도전성 입자가 고분자 패턴의 측면에 부착되어 형성되는, 스마트 윈도우의 제조 방법.14. In the above 11, wherein the coating layer is formed by attaching the conductive particles torn off by ion milling on the side of the polymer pattern, smart window manufacturing method.
15. 위 11에 있어서, 상기 도전층은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 스마트 윈도우의 제조 방법.15. In the above 11, the conductive layer is In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo At least one metal selected from the group consisting of Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -Silver-aluminum zinc oxide (AZO-Ag-AZO) comprising at least one metal oxide selected from the group consisting of, smart window manufacturing method.
16. 위 11에 있어서, 상기 이온 밀링은 10- 5Torr 내지 10- 3Torr의 압력 하에서 플라즈마를 100ev 내지 1500eV로 가속화하여 수행되는 것인, 스마트 윈도우의 제조 방법.16 according to the above 11, wherein the ion milling is 10 - The method of producing a smart window to the plasma under a pressure of 3 Torr is performed by accelerated 100ev to 1500eV - 5 to 10 Torr.
17. 위 11에 있어서, 상기 고분자 패턴을 제거하는 단계를 더 포함하는, 스마트 윈도우의 제조 방법.17. The method of 11 above, further comprising the step of removing the polymer pattern, manufacturing method of a smart window.
본 발명의 스마트 윈도우는 도전성 나노 격벽을 포함함으로써, 스마트 윈도우의 투과율을 현저히 개선할 수 있다.The smart window of the present invention can significantly improve the transmittance of the smart window by including a conductive nano barrier rib.
도 1은 본 발명의 일 구현예에 따른 스마트 윈도우에서 전압이 인가되지 않은 경우의 개략적인 단면도이다.1 is a schematic cross-sectional view when no voltage is applied in a smart window according to an embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른 스마트 윈도우에서 전압이 인가된 경우의 개략적인 단면도이다.2 is a schematic cross-sectional view when a voltage is applied in a smart window according to an embodiment of the present invention.
도 3 내지 4는 각각 본 발명의 일 구현예에 따른 스마트 윈도우에서 기판 상에 형성된 도전성 나노 격벽의 개략적인 사시도이다.3 to 4 are schematic perspective views of conductive nano barrier ribs formed on a substrate in a smart window, respectively, according to one embodiment of the present invention.
도 5는 본 발명의 일 구현예에 따른 스마트 윈도우의 제조 방법의 개략적인 공정도이다.5 is a schematic process diagram of a method of manufacturing a smart window according to an embodiment of the present invention.
본 발명은 대향하는 기판; 상기 기판 상에 소정 간격을 두고 형성된 도전성 나노 격벽; 상기 나노 격벽 사이 중 적어도 일부에 충진된 도전성 광 차폐 입자; 및 상기 나노 격벽에 전압을 인가하는 전극;을 포함함으로써, 투과율을 현저히 개선하여 우수한 시인성을 구현할 수 있는 스마트 윈도우 및 이의 제조 방법에 관한 것이다.The present invention is directed to an opposite substrate; Conductive nano barrier ribs formed at predetermined intervals on the substrate; Conductive light shielding particles filled in at least a portion of the nano barrier ribs; And an electrode for applying a voltage to the nano-barrier, and thus, a smart window and a method for manufacturing the same, which can realize excellent visibility by significantly improving transmittance.
이하, 도면을 참조하여 본 발명의 구체적인 실시 형태를 설명하기로 한다. 다만, 본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 구현예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, the following drawings attached to the specification are for exemplifying preferred embodiments of the present invention, and together with the contents of the present invention serves to further understand the technical spirit of the present invention, the present invention described in such drawings It should not be construed as limited to matters.
본 발명의 스마트 윈도우는 도 1에 도시된 바와 같이, 기판(100) 상기 기판(100) 상에 사이에 소정 간격을 두고 형성된 도전성 나노 격벽(200) 상기 도전성 나노 격벽(200) 사이 중 적어도 일부에 충진된 도전성 광 차폐 입자(500) 및 상기 나노 격벽에 전압을 인가하는 전극(미도시)을 포함한다.As shown in FIG. 1, the smart window of the present invention may be formed on at least some of the conductive nano barrier ribs 200 and the conductive nano barrier ribs 200 formed at predetermined intervals between the substrate 100 and the substrate 100. Filled conductive light shielding particles 500 and the electrode (not shown) for applying a voltage to the nano-barrier.
기판(100)은 투명성 및 적정 강도를 가지는 것이라면 특별히 한정되지 않으며, 예를 들면 실리콘, 석영, 유리, 고분자, 금속, 금속 산화물, 비금속 산화물, 노르보르넨이나 다환 노르보르넨계 단량체와 같은 시클로올레핀을 포함하는 단량체의 단위를 갖는 시클로올레핀계 유도체, 디아세틸셀룰로오스, 트리아세틸셀룰로오스, 아세틸셀룰로오스부틸레이트, 이소부틸에스테르셀룰로오스, 프로피오닐셀룰로오스, 부티릴셀룰로오스 또는 아세틸프로피오닐셀룰로오스 등에서 선택되는 셀룰로오스, 에틸렌-아세트산비닐공중합체, 폴리에스테르, 폴리스티렌, 폴리아미드, 폴리에테르이미드, 폴리아크릴, 폴리이미드, 폴리에테르술폰, 폴리술폰, 폴리에틸렌, 폴리프로필렌, 폴리메틸펜텐, 폴리염화비닐, 폴리염화비닐리덴, 폴리비닐알콜, 폴리비닐아세탈, 폴리에테르케톤, 폴리에테르에테르케톤, 폴리에테르술폰, 폴리메틸메타아크릴레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리카보네이트, 폴리우레탄, 에폭시 등의 소재를 포함하는 기판(100)일 수 있다. 이들 소재는 단독 또는 2종 이상 혼합하여 사용할 수 있다.The substrate 100 is not particularly limited as long as it has transparency and appropriate strength. For example, the substrate 100 may include cycloolefin such as silicon, quartz, glass, polymer, metal, metal oxide, nonmetal oxide, norbornene or polycyclic norbornene-based monomer. Cellulose, ethylene-acetic acid selected from cycloolefin derivatives, diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, isobutyl ester cellulose, propionyl cellulose, butyryl cellulose or acetyl propionyl cellulose, etc. Vinyl copolymer, polyester, polystyrene, polyamide, polyetherimide, polyacryl, polyimide, polyethersulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol , Polyvinyl acetal, poly Substrate 100 comprising materials such as ether ketone, polyether ether ketone, polyether sulfone, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyurethane and epoxy Can be. These materials can be used individually or in mixture of 2 or more types.
기판(100)의 두께는 특별히 한정되지 않으며, 예를 들면 10㎛ 내지 500㎛일 수 있다.The thickness of the substrate 100 is not particularly limited, and may be, for example, 10 μm to 500 μm.
도 3에 도시된 바와 같이, 도전성 나노 격벽(200)은 기판(100) 상에 위치하는데, 본 발명에 따른 나노 격벽은 그 두께가 나노 수준인 격벽을 의미한다.As shown in FIG. 3, the conductive nano barrier rib 200 is positioned on the substrate 100, and the nano barrier rib according to the present invention refers to a barrier rib having a thickness of nano level.
또한, 본 발명에 따른 도전성 나노 격벽은 그 두께가 나노 수준으로 사용자에게 육안으로 시인되지 않아 광 투과율이 현저히 개선되는 장점이 있다.In addition, the conductive nano barrier rib according to the present invention has an advantage that the light transmittance is remarkably improved because the thickness thereof is nanoscopic and is not visually recognized by the user.
도전성 나노 격벽(200)은 도전성 재료로 제조된 것으로서, 예를 들면 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류 등을 사용할 수 있다.The conductive nano barrier rib 200 is made of a conductive material, for example, In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti At least one metal selected from the group consisting of Ag, Cr, Mo, Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -At least one metal oxide selected from the group consisting of silver-aluminum zinc oxide (AZO-Ag-AZO) and the like can be used.
나노 격벽의 두께는 투과율을 개선할 수 있는 범위 내라면 특별히 한정되지 않으며, 예를 들면 두께가 5nm 내지 200nm일 수 잇고, 바람직하게는 5nm 내지 100nm, 보다 바람직하게는 5nm 내지 50nm, 가장 바람직하게는 10nm 내지 30nm일 수 있다. 두께가 5nm 미만이면 내구성에 문제가 있을 수 있고, 200nm 초과이면 투과율이 저하될 수 있다.The thickness of the nano barrier ribs is not particularly limited as long as it is within a range capable of improving transmittance, for example, the thickness may be 5 nm to 200 nm, preferably 5 nm to 100 nm, more preferably 5 nm to 50 nm, and most preferably 10 nm to 30 nm. If the thickness is less than 5nm, there may be a problem in durability, and if the thickness is more than 200nm, the transmittance may be lowered.
나노 격벽의 높이는 특별히 한정되지 않으며, 예를 들면 100nm 내지 8,000nm일 수 있다. 높이가 100nm 미만이면 도전성 광 차폐 입자가 충분히 부착되기 어려울 수 있고, 8,000nm 초과이면 과다한 갭의 존재로 스마트 윈도우의 내구성 저하 등의 문제가 발생할 수 있다.The height of the nano barrier ribs is not particularly limited, and may be, for example, 100 nm to 8,000 nm. If the height is less than 100nm, it may be difficult for the conductive light shielding particles to be sufficiently attached. If the height is more than 8,000nm, problems such as deterioration of durability of the smart window may occur due to the presence of an excessive gap.
나노 격벽(200)은 단독으로 또는 복수개의 벽으로서 위치할 수 있다.The nano barrier 200 may be located alone or as a plurality of walls.
복수개의 벽이 병렬하여 위치하는 경우, 나노 격벽(200)간 간격은 특별히 한정되지 않으며, 예를 들면 10nm 내지 3㎛일 수 있고, 광 추출 효율 개선의 측면에서 바람직하게는 10nm 내지 200nm일 수 있다.When the plurality of walls are positioned in parallel, the distance between the nano barrier ribs 200 is not particularly limited, and may be, for example, 10 nm to 3 μm, and preferably 10 nm to 200 nm in view of improving light extraction efficiency. .
복수개의 벽은 병렬하지 않고, 서로 만나거나, 그 연장선이 서로 만나도록 위치할 수도 있다.The plurality of walls may not be parallel but may meet each other or may be positioned such that the extension lines meet each other.
본 발명의 다른 일 구현예에 따르면 상기 나노 격벽(200)의 간격은 예를 들면 5㎛ 내지 200㎛일 수 있으나 이에 제한되는 것은 아니다.According to another embodiment of the present invention, the distance between the nano barrier ribs 200 may be, for example, 5 μm to 200 μm, but is not limited thereto.
나노 격벽은 소정의 패턴을 이룰 수 있다. 예를 들면 개구 패턴으로서, 개구부가 원, 타원, 삼각형, 사각형, 오각형, 육각형, 팔각형 등의 다각형, 또는 이들이 결합된 형상을 가질 수도 있고, 선형 패턴, 메쉬 패턴, 지그재그, 나선형, 방사선형, 불규칙한 단일 폐곡선 등의 형상을 가질 수도 있다. 도 4에는 육각형의 개구부를 갖는 개구 패턴인 경우가 예시되어 있으나, 이에 제한되는 것은 아니다.The nano barrier ribs may form a predetermined pattern. For example, as the opening pattern, the opening may have a polygon such as a circle, an ellipse, a triangle, a square, a pentagon, a hexagon, an octagon, or a combination thereof, and a linear pattern, a mesh pattern, a zigzag, a spiral, a radiation, an irregular shape. It may have a shape such as a single closed curve. 4 illustrates an opening pattern having a hexagonal opening, but is not limited thereto.
개구 패턴은 나노 격벽들로 둘러쌓이면서 개구부를 갖는 패턴으로서, 개구 패턴은 단독 또는 복수개로 위치할 수 있다.The opening pattern is a pattern having an opening surrounded by nano barrier ribs, and the opening pattern may be located alone or in plurality.
복수개의 개구 패턴이 위치하는 경우, 각 개구 패턴은 규칙적 또는 불규칙적인 간격으로 위치할 수 있다. 또한, 복수개의 개구 패턴은 서로 연결되거나 이격되어 위치할 수 있으며, 선대칭, 점대칭 또는 불규칙하게 위치할 수 있다.When a plurality of opening patterns are located, each opening pattern may be located at regular or irregular intervals. In addition, the plurality of opening patterns may be connected or spaced apart from each other, and may be located in line symmetry, point symmetry, or irregularly.
개구 패턴은 개구부가 상기 예시한 도형 형상; 상기 예시한 도형이 결합된 형상; 또는 이들 중 적어도 1개 이상의 도형이 혼재된 형상을 가질 수 있는 것으로서, 개구부는 주기적으로, 또는 비주기적으로 배열될 수 있다.The opening pattern may include an opening shape of the figure illustrated above; A shape in which the illustrated figure is combined; Alternatively, at least one of the figures may have a mixed shape, and the openings may be arranged periodically or aperiodically.
본 발명의 스마트 윈도우는 도전성 나노 격벽(200) 중 적어도 일부에 충진된 도전성 광 차폐 입자(500)를 포함한다.The smart window of the present invention includes conductive light shielding particles 500 filled in at least a portion of the conductive nano barrier ribs 200.
본 발명에 따른 도전성 나노 격벽(200)은 전극에 연결되므로, 컨트롤러 등의 제어에 의해서 스마트 윈도우에 대한 전압 공급 유무를 제어할 수 있다.Since the conductive nano barrier rib 200 according to the present invention is connected to the electrode, it is possible to control the presence or absence of voltage supply to the smart window by the control of the controller.
도 1에 도시된 바와 같이, 스마트 윈도우에 전압이 인가되지 않은 경우에는 도전성 나노 격벽(200) 사이에 도전성 광 차폐 입자가 불규칙하게 분산되어 있기 때문에 광이 흡수, 산란되어 도전성 광 차폐 입자의 색, 예를 들면 검은색, 짙은 청색 등을 나타낸다.As shown in FIG. 1, when the voltage is not applied to the smart window, since the conductive light shielding particles are irregularly dispersed between the conductive nano barrier ribs 200, light is absorbed and scattered to form the color of the conductive light shielding particles, For example, black, dark blue, etc. are shown.
한편, 스마트 윈도우에 전압이 인가되는 경우에는 도전성 나노 격벽 주변으로 전계(electric field)가 형성된다. 이에 따라, 도 2에 도시된 바와 같이, 도전성을 가지는 도전성 광 차폐 입자(500)가 도전성 나노 격벽(200) 측면으로 규칙적으로 배열 및 부착되기 때문에 투명한 상태로 전환된다.On the other hand, when a voltage is applied to the smart window, an electric field is formed around the conductive nano barrier ribs. Accordingly, as shown in FIG. 2, since the conductive light shielding particles 500 having conductivity are regularly arranged and attached to the side surfaces of the conductive nano barrier walls 200, the conductive light shielding particles 500 are converted to a transparent state.
이와 같이, 본 발명의 스마트 윈도우는 나노 두께를 가지는 도전성 나노 격벽 및 상기 도전성 나노 격벽 사이 중 적어도 일부에 충진된 도전성 광 차폐 입자를 포함함으로써, 시인성을 개선하여 광 투과율을 현저히 개선시킬 수 있다. As such, the smart window of the present invention includes the conductive nano-barrier having a nano-thickness and the conductive light shielding particles filled in at least a part of the conductive nano-barrier, thereby improving visibility and significantly improving light transmittance.
본 발명에 따른 도전성 광 차폐 입자는 도전성을 가지는 것이라면 특별한 제한 없이 사용할 수 있으며, 예를 들면, 카본 블랙, C.I. 피그먼트 블랙 7, 극성나노염료 등을 들 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.The conductive light shielding particles according to the present invention can be used without particular limitation as long as they have conductivity, for example, carbon black, C.I. Pigment black 7, polar nano dyes, and the like. These can be used individually or in mixture of 2 or more types.
도전성 광 차폐 입자는 투명 유체 내에 분산되어 있을 수 있다.The conductive light shielding particles may be dispersed in the transparent fluid.
투명 유체는 당분야에서 사용하는 것을 특별한 제한 없이 사용할 수 있으며, 예를 들면 비수성 극성 용매 등을 들 수 있다.The transparent fluid can be used in the art without particular limitation, and examples thereof include non-aqueous polar solvents and the like.
비수성 극성 용매의 구체적인 예를 들면, 1,2-프로필렌 글리콜, 1,3-프로필렌 글리콜, 1,4-부틸렌 글리콜, 디에틸렌글리콜, 디프로필렌 글리콜, 에틸렌 카보네이트, 프로필렌 카보네이트, 1,2-부틸렌 카보네이트, 1,2- 사이클로헥산 카보네이트, 글리세린 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 아세토페논, 피리딘, 디메틸말로네이트, 디아세톤 알콜, 하이드록시프로필 카바메이트, 베타-하이드록시에틸 카바메이트, N-메틸 포름아미드, N-메틸 아세트아미드, 디메틸설폭사이드, 설폴란, 2-피롤리돈, N-메틸 -2-피롤리돈, N-사이클로헥실 -2-피롤리돈, 아세토닐 아세톤, 사이클로헥사논, 에틸 아세토아세테이트, 에틸-L-락테이트, 피롤, N-메틸 피롤, N-에틸 피롤, 4H-피란-4-온, 1,3-디메틸-2-이미다졸리디논, 모르폴린, N-메틸모르폴린, N-에틸모르폴린, N-포르밀모르폴린, 베타-프로피오락톤, 베타-발레로락톤, 베타-헥사락톤, 감마-부티로락톤, 감마-발레로락톤, 감마-헥사락톤, 감마-헵타락톤, 감마-옥타락톤, 감마-노나락톤, 감마-데카락톤, 델타-발레로락톤, 델타-헥사락톤, 델타-헵타락톤, 델타-옥타락톤, 델타-노나락톤, 델타-데카락톤, 델타-테트라데카락톤, 델타-옥타데코락톤 등을 들 수 있고, 이들에 한정되는 것은 아니다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.Specific examples of the non-aqueous polar solvent include 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, diethylene glycol, dipropylene glycol, ethylene carbonate, propylene carbonate, 1,2- Butylene carbonate, 1,2-cyclohexane carbonate, glycerin carbonate, dimethyl carbonate, diethyl carbonate, acetophenone, pyridine, dimethylmalonate, diacetone alcohol, hydroxypropyl carbamate, beta-hydroxyethyl carbamate, N -Methyl formamide, N-methyl acetamide, dimethyl sulfoxide, sulfolane, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, acetonyl acetone, cyclo Hexanone, ethyl acetoacetate, ethyl-L-lactate, pyrrole, N-methyl pyrrole, N-ethyl pyrrole, 4H-pyran-4-one, 1,3-dimethyl-2-imidazolidinone, morpholine, N-methylmorpholine, N-ethylmorpholine, N-fo Milmorpholine, beta-propiolactone, beta-valerolactone, beta-hexalactone, gamma-butyrolactone, gamma-valerolactone, gamma-hexalactone, gamma-heptalactone, gamma-octalactone, Gamma-Nonalactone, Gamma-Dekaralactone, Delta-Valerolactone, Delta-hexalactone, Delta-heptalactone, Delta-octalactone, Delta-nonlaclactone, Delta-dekaralactone, Delta-tetradekaralactone And delta-octadecolactone, and the like, and the like. These can be used individually or in mixture of 2 or more types.
필요에 따라, 도전성 광 차폐 입자가 분산될 수 있는 투명 유체는 계면활성제를 더 포함할 수도 있다. If necessary, the transparent fluid in which the conductive light shielding particles may be dispersed may further include a surfactant.
계면활성제의 예를 들면, 베타인(예를 들면, Zwittergent 社 제품), 인지질, 레시틴, TRITONTM, TWEENTM과 같은 중성 계면활성제; 에틸렌 옥사이드, 프로필렌 옥사이드 등의 알켄옥사이드 블록 폴리머의 양이온성 계면활성제; 알킬디메틸아민과 같은 양이온성 계면활성제; CTAB 또는 하기 화학식 1로 표시되는 화합물과 같은 4급 암모늄염 계면활성제; 알킬 아릴 술폰산염, SDS(sodium dodecyl sulfate), 알킬 아릴 설포네이트, 비스-2-에틸엑실 나트륨 설포석시네이트(bis-2-ethylhexyl sodium sulfosuccinate), 카르복실계 계면활성제, 인산염계 계면활성제와 같은 음이온성 계면활성제; 플루오로탄소계 계면활성제; 양쪽성(양성) 계면활성제; SiO2, A1203, BaTiO4, 수 Åm 내지 수 ㎛의 입자 크기를 가지는 제올라이트와 같은 고체 또는 이들의 혼합물일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.Examples of the surfactant include neutral surfactants such as betaine (eg, Zwittergent Co.), phospholipids, lecithin, TRITONTM, TWEENTM; Cationic surfactants of alkene oxide block polymers such as ethylene oxide and propylene oxide; Cationic surfactants such as alkyldimethylamine; Quaternary ammonium salt surfactants such as CTAB or a compound represented by Formula 1 below; Such as alkyl aryl sulfonates, sodium dodecyl sulfate (SDS), alkyl aryl sulfonates, bis-2-ethylhexyl sodium sulfosuccinate, carboxyl surfactants, and phosphate surfactants Anionic surfactants; Fluorocarbon surfactants; Amphoteric (positive) surfactants; Solids such as SiO 2 , A1 2 0 3 , BaTiO 4 , zeolites having a particle size of several micrometers to several micrometers, or mixtures thereof. These can be used individually or in mixture of 2 or more types.
[화학식 1][Formula 1]
RxHyN+X- R x H y N + X -
(식 중에서, R은 알킬, 아릴 또는 에테르 등의 유기 치환기이며, x는 1 내지 4의 정수이고, y는 0 내지 3의 정수이고, X는 반대이온임).(Wherein R is an organic substituent such as alkyl, aryl or ether, x is an integer from 1 to 4, y is an integer from 0 to 3, and X is a counterion).
계면활성제는 투명 유체 중의 도전성 광 차폐 입자의 콜로이드성 안정화에 기여하며, 계면장력을 저하시켜 필요한 전압을 감소시킬 수 있다.The surfactant contributes to the colloidal stabilization of the conductive light shielding particles in the transparent fluid and can lower the interfacial tension to reduce the required voltage.
본 발명의 스마트 윈도우는 도전성 나노 격벽(200)에 전압을 인가하는 전극을 포함하여, 전압의 인가 유무에 의해 광을 투과 또는 차폐한다.The smart window of the present invention includes an electrode for applying a voltage to the conductive nano-barrier 200, and transmits or shields light with or without applying a voltage.
전극은 도전성 나노 격벽(200)에 전계를 형성시킬 수 있는 것이라면, 당분야에서 사용하는 것을 특별한 제한 없이 사용할 수 있다.As long as the electrode is capable of forming an electric field in the conductive nano barrier ribs 200, those used in the art may be used without particular limitation.
본 발명의 스마트 윈도우는 도전성 나노 격벽(200) 사이 중 적어도 일부에 고분자 패턴(400)을 더 포함할 수 있다.The smart window of the present invention may further include a polymer pattern 400 in at least some of the conductive nano barrier ribs 200.
고분자 패턴(400)으로는 투명 고분자라면 당 분야에 공지된 고분자 수지를 제한없이 사용할 수 있고, 예를 들면 에폭시계, 셀룰로오스계, 아크릴계, 염화비닐계, 아세트산비닐계, 폴리비닐알콜계, 폴리우레탄계, 폴리에스테르계 등의 고분자 수지일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.As the polymer pattern 400, any polymer polymer known in the art may be used without limitation as long as it is a transparent polymer. For example, epoxy, cellulose, acrylic, vinyl chloride, vinyl acetate, polyvinyl alcohol, polyurethane, etc. And polymer resins such as polyesters. These can be used individually or in mixture of 2 or more types.
또한, 본 발명의 스마트 윈도우는 스마트 윈도우에 필요한 통상의 구성을 더 포함할 수 있다.In addition, the smart window of the present invention may further include a typical configuration required for the smart window.
또한, 본 발명은 상기 스마트 윈도우를 포함하는 화상 표시 장치를 제공한다. 본 발명의 화상 표시 장치는 도전성 나노 격벽을 포함하는 스마트 윈도우를 포함함으로써, 시인성 및 투과율이 현저히 개선된다.In addition, the present invention provides an image display device including the smart window. The image display device of the present invention includes a smart window including conductive nano barrier ribs, whereby visibility and transmittance are remarkably improved.
화상 표시 장치로는 액정 표시 장치, OLED, 플렉서블 디스플레이 등이 있을 수 있으나, 이에 한정되는 것은 아니며 적용이 가능한 당 분야에 알려진 모든 화상 표시 장치를 예시할 수 있다.The image display device may include a liquid crystal display device, an OLED, a flexible display, and the like, but is not limited thereto, and all image display devices known in the art may be exemplified.
또한, 본 발명의 스마트 윈도우는 건축용 유리제품, 자동차, 항공기 등의 수송수단 등에 적용될 수 있다.In addition, the smart window of the present invention can be applied to transportation means such as glass products, automobiles, aircraft for construction.
또한, 본 발명은 상기 스마트 윈도우의 제조 방법을 제공한다.In addition, the present invention provides a method of manufacturing the smart window.
이하 본 발명의 일 구현예에 따른 스마트 윈도우의 제조 방법을 설명한다.Hereinafter, a method of manufacturing a smart window according to an embodiment of the present invention will be described.
먼저, 도 5 (a)와 같이 기판(100) 상에 고분자 패턴(400)을 형성한다. First, the polymer pattern 400 is formed on the substrate 100 as shown in FIG.
고분자 패턴(400)은 기판(100) 상에 고분자 수지층을 형성하고, 이를 패터닝하여 형성할 수 있다.The polymer pattern 400 may be formed by forming a polymer resin layer on the substrate 100 and patterning the polymer resin layer.
고분자 패턴의 높이에 따라 나노 격벽의 높이가 결정되므로, 고분자 패턴의 높이를 조절하여 본 발명의 나노 격벽의 높이를 선택할 수 있다.Since the height of the nano barrier ribs is determined according to the height of the polymer pattern, the height of the nano barrier ribs of the present invention may be selected by adjusting the height of the polymer pattern.
고분자 수지층으로는 당 분야에 공지된 고분자 수지를 제한없이 사용할 수 있고, 예를 들면 에폭시계, 셀룰로오스계, 아크릴계, 염화비닐계, 아세트산비닐계, 폴리비닐알콜계, 폴리우레탄계, 폴리에스테르계 등의 고분자 수지일 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.As the polymer resin layer, polymer resins known in the art can be used without limitation, and for example, epoxy, cellulose, acrylic, vinyl chloride, vinyl acetate, polyvinyl alcohol, polyurethane, polyester, etc. It may be a polymer resin of. These can be used individually or in mixture of 2 or more types.
고분자 수지층의 패터닝 방법은 특별히 한정되지 않고 예를 들면 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 포토리소그래피법, 나노 임프린팅 등의 방법을 사용할 수 있으며, 미세 패턴을 형성할 수 있다는 측면에서 바람직하게는 나노 임프린팅법에 의할 수 있다.The method of patterning the polymer resin layer is not particularly limited, and examples thereof include screen printing, gravure printing, flexographic printing, offset printing, inkjet coating, dispenser printing, photolithography, nanoimprinting, and the like. It can be used, and in terms of being able to form a fine pattern, preferably by the nanoimprinting method.
이후에, 도 5 (b)와 같이 상기 고분자 패턴(400)이 형성된 기판(100) 상에 도전층(300)을 형성한다.Thereafter, as illustrated in FIG. 5B, the conductive layer 300 is formed on the substrate 100 on which the polymer pattern 400 is formed.
도전층(300)은 전술한 1종 이상의 금속, 1종 이상의 금속산화물 등의 도전성 소재로, 물리적 증착법, 화학적 증착법, 플라즈마 증착법, 플라즈마 중합법, 열 증착법, 열 산화법, 양극 산화법, 클러스터 이온빔 증착법, 스크린 인쇄법, 그라비아 인쇄법, 플렉소 인쇄법, 오프셋 인쇄법, 잉크젯 코팅법, 디스펜서 인쇄법, 포토리소그래피법 등의 방법으로 형성할 수 있으나, 이에 제한되는 것은 아니다.The conductive layer 300 is a conductive material such as at least one metal, at least one metal oxide, and the like, and may include physical vapor deposition, chemical vapor deposition, plasma deposition, plasma polymerization, thermal deposition, thermal oxidation, anodization, cluster ion beam deposition, It may be formed by a screen printing method, a gravure printing method, a flexographic printing method, an offset printing method, an inkjet coating method, a dispenser printing method, a photolithography method, but is not limited thereto.
도전층(300)에 사용되는 도전성 소재로는 예를 들면 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.Examples of the conductive material used for the conductive layer 300 include In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag At least one metal selected from the group consisting of Cr, Mo, Nb, Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -One or more metal oxides selected from the group consisting of silver-aluminum zinc oxide (AZO-Ag-AZO) may be used, but is not limited thereto.
이후에, 도 5 (c)와 같이 상기 도전층(300)을 이온 밀링하여 식각하고, 상기 고분자 패턴(400)의 측면에 나노 두께의 코팅층을 형성하여 나노 격벽(200)을 형성한다.Thereafter, as illustrated in FIG. 5C, the conductive layer 300 is ion milled and etched, and a nano-thick coating layer is formed on the side surface of the polymer pattern 400 to form the nano barrier rib 200.
나노 두께의 코팅층이 나노 격벽(200)에 해당한다.The nano-thick coating layer corresponds to the nano barrier rib 200.
이온 형성에 사용되는 기체는 예를 들면 아르곤, 헬륨, 질소, 수소, 산소 또는 이들의 혼합 기체일 수 있고, 바람직하게는 아르곤일 수 있다.The gas used to form the ions can be, for example, argon, helium, nitrogen, hydrogen, oxygen or a mixture of these, preferably argon.
이온 밀링 조건은 특별히 한정되지 않으며, 예를 들면 10- 5Torr 내지 10-3Torr의 압력 하에서 기체로 플라즈마를 형성한 다음, 플라즈마를 100eV ~ 1500eV로 가속화하여 수행할 수 있다. 에너지가 100eV 미만인 경우 도전층(300)의 식각이 어려울 수 있고, 1500eV 초과이면 고분자 패턴(400)이 손상되어 나노 격벽의 생성이 어려울 수 있다.Ion milling conditions are not particularly limited, for example, 10-1 form a plasma in the gas under the pressure 5 Torr to 10 -3 Torr can then be accomplished by accelerating the plasma by 100eV ~ 1500eV. When the energy is less than 100 eV, the etching of the conductive layer 300 may be difficult. When the energy is more than 1500 eV, the polymer pattern 400 may be damaged, and thus the nano barrier rib may not be easily formed.
본 발명에 따른 나노 격벽(200)의 두께는 이온 밀링의 조건을 조절하여 선택할 수 있다. The thickness of the nano barrier rib 200 according to the present invention can be selected by adjusting the conditions of ion milling.
나노 격벽(200)의 두께는 투과율을 개선할 수 있는 범위 내라면 특별히 한정되지 않으며, 예를 들면 5nm 내지 200nm일 수 잇고, 바람직하게는 5nm 내지 100nm, 보다 바람직하게는 5nm 내지 50nm, 가장 바람직하게는 10nm 내지 30nm일 수 있다. 두께가 5nm 미만이면 내구성에 문제가 있을 수 있고, 200nm 초과이면 투과율이 저하될 수 있다.The thickness of the nano barrier rib 200 is not particularly limited as long as it is within a range capable of improving transmittance, and may be, for example, 5 nm to 200 nm, preferably 5 nm to 100 nm, more preferably 5 nm to 50 nm, and most preferably. May be 10 nm to 30 nm. If the thickness is less than 5nm, there may be a problem in durability, and if the thickness is more than 200nm, the transmittance may be lowered.
나노 격벽의 높이는 특별히 한정되지 않으며, 예를 들면 100nm 내지 8,000nm일 수 있다. 높이가 100nm 미만이면 도전성 광 차폐 입자가 충분히 부착되기 어려울 수 있고, 5,000nm 초과이면 과다한 갭의 존재로 스마트 윈도우의 내구성 저하 등의 문제가 발생할 수 있다.The height of the nano barrier ribs is not particularly limited, and may be, for example, 100 nm to 8,000 nm. If the height is less than 100nm, it may be difficult for the conductive light shielding particles to be sufficiently attached. If the height is more than 5,000nm, problems such as deterioration of durability of the smart window may occur due to the presence of an excessive gap.
다음으로, 나노 격벽이 형성된 기판 상에 도전성 광 차폐 입자액을 코팅한다. Next, the conductive light shielding particle liquid is coated on the substrate on which the nano barrier ribs are formed.
도전성 광 차폐 입자액을 코팅하는 방법은 당분야에 공지된 방법이면 특별한 제한없이 사용하여 형성할 수 있고, 예를 들면 전술한 도전성 광 차폐 입자를 포함하는 투명 유체를 도포 및 건조하는 방법으로 코팅할 수 있으나. 이에 한정되는 것은 아니다.The method of coating the conductive light shielding particle liquid may be formed using any method known in the art without particular limitation, and for example, may be coated by a method of applying and drying a transparent fluid including the conductive light shielding particles described above. But can. It is not limited to this.
다음으로, 도전성 나노 격벽에 전극을 연결한다. 도전성 나노 격벽에 전극을 연결하는 방법은 당분야에 공지된 방법이면 특별한 제한없이 사용하여 형성할 수 있다.Next, the electrode is connected to the conductive nano barrier ribs. The method of connecting the electrode to the conductive nano barrier ribs can be formed using any method known in the art without particular limitation.
필요에 따라, 본 발명의 스마트 윈도우의 제조 방법은 도 5 (d)와 같이 고분자 패턴(400)을 제거함으로써, 그 측면에 형성된 나노 격벽(200)만이 남을 수 있다. 도 5 (d)는 도 4의 A-A' 단면이다.If necessary, the method of manufacturing a smart window of the present invention by removing the polymer pattern 400, as shown in Figure 5 (d), only the nano barrier ribs 200 formed on the side may remain. FIG. 5D is a cross-sectional view along the line AA ′ of FIG. 4.
[부호의 설명][Description of the code]
100: 기판 200: 도전성 나노 격벽100: substrate 200: conductive nano barrier ribs
300: 도전층 400: 고분자 패턴300: conductive layer 400: polymer pattern
500: 도전성 광 차폐 입자500: conductive light shielding particles

Claims (17)

  1. 기판;Board;
    상기 기판 상에 소정 간격을 두고 형성된 도전성 나노 격벽;Conductive nano barrier ribs formed at predetermined intervals on the substrate;
    상기 나노 격벽 사이 중 적어도 일부에 충진된 도전성 광 차폐 입자; 및Conductive light shielding particles filled in at least a portion of the nano barrier ribs; And
    상기 나노 격벽에 전압을 인가하는 전극;을 포함하는 스마트 윈도우.And an electrode for applying a voltage to the nano barrier ribs.
  2. 청구항 1에 있어서, 상기 나노 격벽은 두께가 5 내지 200nm인, 스마트 윈도우.The smart window of claim 1, wherein the nano barrier rib has a thickness of 5 to 200 nm.
  3. 청구항 1에 있어서, 상기 나노 격벽은 소정의 패턴을 이루는, 스마트 윈도우.The smart window of claim 1, wherein the nano barrier ribs form a predetermined pattern.
  4. 청구항 3에 있어서, 상기 패턴은 개구부가 원, 타원, 삼각형, 사각형, 오각형, 육각형, 팔각형 또는 이들이 혼합된 도형 형상을 갖는 개구 패턴인, 스마트 윈도우.The smart window of claim 3, wherein the pattern is an opening pattern having an opening, an ellipse, a triangle, a square, a pentagon, a hexagon, an octagon, or a mixed shape thereof.
  5. 청구항 1에 있어서, 상기 나노 격벽의 높이는 100 내지 8,000nm인, 스마트 윈도우.The smart window of claim 1, wherein the nano barrier rib has a height of 100 to 8,000 nm.
  6. 청구항 1에 있어서, 상기 나노 격벽은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 스마트 윈도우.The method of claim 1, wherein the nano barrier ribs are In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb At least one metal selected from the group consisting of Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide A smart window comprising at least one metal oxide selected from the group consisting of silver-aluminum zinc oxide (AZO-Ag-AZO).
  7. 청구항 1에 있어서, 상기 도전성 광 차폐 입자는 카본 블랙, C.I. 피그먼트 블랙 7, 및 극성나노염료로 이루어진 군에서 선택되는 적어도 하나인, 스마트 윈도우.The method of claim 1, wherein the conductive light shielding particles are carbon black, C.I. Pigment Black 7, and at least one selected from the group consisting of polar nano dyes, smart window.
  8. 청구항 1에 있어서, 상기 전극이 도전성 나노 격벽에 전압을 인가하면, 도전성 광 차폐 입자가 도전성 나노 격벽의 측면에 부착되는, 스마트 윈도우.The smart window according to claim 1, wherein when the electrode applies a voltage to the conductive nano barrier ribs, the conductive light shielding particles are attached to the side surfaces of the conductive nano barrier ribs.
  9. 청구항 1에 있어서, 상기 도전성 나노 격벽 사이 중 적어도 일부에 고분자 패턴을 더 포함하는, 스마트 윈도우.The smart window of claim 1, further comprising a polymer pattern between at least some of the conductive nano barrier ribs.
  10. 청구항 1 내지 9의 스마트 윈도우를 포함하는 화상 표시 장치.An image display device comprising the smart window of claims 1 to 9.
  11. 기판 상에 고분자 패턴을 형성하는 단계;Forming a polymer pattern on the substrate;
    상기 고분자 패턴이 형성된 기판 상에 도전층을 형성하는 단계;Forming a conductive layer on the substrate on which the polymer pattern is formed;
    상기 도전층을 이온 밀링하여 식각하고, 상기 고분자 패턴의 측면에 나노 두께의 코팅층을 형성하여 나노 격벽을 형성하는 단계;Ion milling the conductive layer and etching, and forming a nano-thick coating layer on a side of the polymer pattern to form a nano barrier rib;
    상기 나노 격벽이 형성된 기판 상에 도전성 광 차폐 입자액을 코팅하는 단계; 및Coating a conductive light shielding particle liquid on the substrate on which the nano barrier ribs are formed; And
    상기 도전성 나노 격벽에 전극을 연결하는 단계;를 포함하는, 스마트 윈도우의 제조 방법.And connecting an electrode to the conductive nano barrier ribs.
  12. 청구항 11에 있어서, 상기 나노 격벽은 두께가 5 내지 200nm인, 스마트 윈도우의 제조 방법.The method of claim 11, wherein the nano barrier rib has a thickness of 5 to 200 nm.
  13. 청구항 11에 있어서, 상기 고분자 패턴은 나노 임프린팅법으로 형성하는, 스마트 윈도우의 제조 방법.The method of claim 11, wherein the polymer pattern is formed by a nanoimprinting method.
  14. 청구항 11에 있어서, 상기 코팅층은 이온 밀링으로 뜯겨져 나간 도전성 입자가 고분자 패턴의 측면에 부착되어 형성되는, 스마트 윈도우의 제조 방법.The method of claim 11, wherein the coating layer is formed by attaching the conductive particles torn off by ion milling on the side of the polymer pattern.
  15. 청구항 11에 있어서, 상기 도전층은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi로 이루어진 군에서 선택된 1종 이상의 금속; 또는 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드(AZO), 갈륨징크옥사이드(GZO), 플로린틴옥사이드(FTO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드(IZTO-Ag-IZTO) 및 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO)로 이루어진 군에서 선택된 1종 이상의 금속산화물류를 포함하는 것인, 스마트 윈도우의 제조 방법.The method of claim 11, wherein the conductive layer is In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb At least one metal selected from the group consisting of Al, Ni, Cu, and WTi; Or indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), florin tin oxide (FTO), indium tin oxide-silver- Indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc oxide-silver-indium zinc tin oxide (IZTO-Ag-IZTO) and aluminum zinc oxide -Silver-aluminum zinc oxide (AZO-Ag-AZO) comprising at least one metal oxide selected from the group consisting of, smart window manufacturing method.
  16. 청구항 11에 있어서, 상기 이온 밀링은 10- 5Torr 내지 10- 3Torr의 압력 하에서 플라즈마를 100ev 내지 1500eV로 가속화하여 수행되는 것인, 스마트 윈도우의 제조 방법.The method according to claim 11, wherein the ion milling is 10 - The method of producing a smart window to the plasma under a pressure of 3 Torr is performed by accelerated 100ev to 1500eV - 5 to 10 Torr.
  17. 청구항 11에 있어서, 상기 고분자 패턴을 제거하는 단계를 더 포함하는, 스마트 윈도우의 제조 방법.The method of claim 11, further comprising removing the polymer pattern.
PCT/KR2016/013015 2015-11-11 2016-11-11 Smart window and method for producing same WO2017082681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150158181A KR102288729B1 (en) 2015-11-11 2015-11-11 Smart window and preparing method thereof
KR10-2015-0158181 2015-11-11

Publications (1)

Publication Number Publication Date
WO2017082681A1 true WO2017082681A1 (en) 2017-05-18

Family

ID=58695835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013015 WO2017082681A1 (en) 2015-11-11 2016-11-11 Smart window and method for producing same

Country Status (2)

Country Link
KR (1) KR102288729B1 (en)
WO (1) WO2017082681A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080050564A1 (en) * 2004-06-08 2008-02-28 Riken Method of Forming a Nano-Structure and the Nano-Structure
KR101072469B1 (en) * 2010-04-22 2011-10-11 홍익대학교 산학협력단 Active shutter glasses
KR20120001694A (en) * 2010-06-29 2012-01-04 한국과학기술원 Three dimensional nanostructure and method for preparing the same
KR20120139948A (en) * 2011-06-20 2012-12-28 한국과학기술원 Transparent electrode formed nanostructure pattern and method for preparing the same
KR20140146356A (en) * 2013-06-17 2014-12-26 한국기계연구원 Method for manufacturing flexible substrate with buried conducting trace using modification layer and flexible substrate manufactured thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888139B1 (en) 2011-10-06 2018-08-14 엘지디스플레이 주식회사 Smart window display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080050564A1 (en) * 2004-06-08 2008-02-28 Riken Method of Forming a Nano-Structure and the Nano-Structure
KR101072469B1 (en) * 2010-04-22 2011-10-11 홍익대학교 산학협력단 Active shutter glasses
KR20120001694A (en) * 2010-06-29 2012-01-04 한국과학기술원 Three dimensional nanostructure and method for preparing the same
KR20120139948A (en) * 2011-06-20 2012-12-28 한국과학기술원 Transparent electrode formed nanostructure pattern and method for preparing the same
KR20140146356A (en) * 2013-06-17 2014-12-26 한국기계연구원 Method for manufacturing flexible substrate with buried conducting trace using modification layer and flexible substrate manufactured thereby

Also Published As

Publication number Publication date
KR102288729B1 (en) 2021-08-10
KR20170055245A (en) 2017-05-19

Similar Documents

Publication Publication Date Title
WO2015080385A1 (en) Transmittance-variable film and method for producing same
WO2019066336A1 (en) Electrode substrate for transparent light-emitting diode display and method for manufacturing same
CN106647065B (en) Display panel and its control method, display device
WO2017105099A2 (en) Color filter
WO2022255740A1 (en) Optical laminate and manufacturing method therefor, smart window including same, and window and door for vehicle or building to which same is applied
WO2019022565A1 (en) Substrate
WO2016148430A1 (en) Liquid crystal capsule display film and display apparatus having same
WO2019168345A1 (en) Viewing angle compensation film, polarizing plate comprising same, and display device comprising same
WO2017073969A1 (en) Conductive structure, electrode comprising same, and display device
WO2022270944A1 (en) Optical laminate and manufacturing method therefor, smart window comprising same, and window and door for vehicle and building, having same applied thereto
CN102662270B (en) Polarizing layer of liquid crystal display panel and manufacture method thereof
WO2017082681A1 (en) Smart window and method for producing same
WO2015163535A1 (en) Photomask for manufacturing light-transmitting conductor having nanostructured pattern and method for manufacturing same
WO2016060485A2 (en) Color display device capable of displaying various local colors and display method therefor
WO2020105977A1 (en) Substrate
WO2019088766A1 (en) Film having variable transmittance
WO2012128573A2 (en) Display apparatus
WO2019151709A1 (en) Coating composition
WO2017082677A1 (en) Transparent electrode for organic light-emitting element and method for manufacturing same
WO2022255742A1 (en) Optical laminate, method for manufacturing same, smart window comprising same, and window for vehicle or building applying same
KR20120133085A (en) Optical film, method for manufacturing thereof and display device having the same
WO2019004767A1 (en) Substrate
WO2017043882A1 (en) Method for manufacturing optical element
WO2017142287A1 (en) Shielding polyester film
JP2008233484A (en) Reflective display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864607

Country of ref document: EP

Kind code of ref document: A1