WO2017082540A1 - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
WO2017082540A1
WO2017082540A1 PCT/KR2016/011313 KR2016011313W WO2017082540A1 WO 2017082540 A1 WO2017082540 A1 WO 2017082540A1 KR 2016011313 W KR2016011313 W KR 2016011313W WO 2017082540 A1 WO2017082540 A1 WO 2017082540A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflecting surface
reflective surface
reflective
rotating body
Prior art date
Application number
PCT/KR2016/011313
Other languages
French (fr)
Korean (ko)
Inventor
서만형
유종욱
Original Assignee
주식회사 오토시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57527963&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017082540(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 오토시스 filed Critical 주식회사 오토시스
Priority to CN201680065367.9A priority Critical patent/CN108351511B/en
Priority to DE112016004753.3T priority patent/DE112016004753B4/en
Publication of WO2017082540A1 publication Critical patent/WO2017082540A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/129Systems in which the scanning light beam is repeatedly reflected from the polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/124Details of the optical system between the light source and the polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/125Details of the optical system between the polygonal mirror and the image plane
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • G06K7/10603Basic scanning using moving elements
    • G06K7/10613Basic scanning using moving elements by rotation, e.g. polygon
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • G06K7/10603Basic scanning using moving elements
    • G06K7/10613Basic scanning using moving elements by rotation, e.g. polygon
    • G06K7/10623Constructional details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • G06K7/10683Arrangement of fixed elements

Definitions

  • the present invention relates to an optical scanner capable of sensing a wide range of areas.
  • optical scanners electronic devices capable of detecting the distance of an object using laser light and the like are called optical scanners or laser scanners.
  • the light source of the optical scanner is described as being a laser, but is not limited to the laser.
  • the optical scanner may include, for example, a laser range finder (LRF), a time of flight (TOF), a light detection and ranging (LIDAR), and the like.
  • LRF laser range finder
  • TOF time of flight
  • LIDAR light detection and ranging
  • Conventional optical scanning devices are suitable for measuring the angular range in the horizontal direction, and calculate distance information of an object present in the detection space for each angular direction.
  • the laser light periodically scans the scanning area by the optical deflector.
  • the laser light returned by the detection object is detected by the sensor and evaluated by the controller.
  • the angular position of the detection object is determined based on the angular position information of the optical deflector.
  • Distance information of the detection object is determined based on the TOF in the controller.
  • Conventional optical scanning devices use two basic principles to determine the TOF. First, there is a method of modulating the continuous light and evaluating the phase difference between the transmitted light and the received light. Second, there is a method in which the optical output emits intermittent pulses of relatively strong output and calculates the distance by measuring the TOF from the transmission light to the reception light.
  • the optical scanning device outputs a safety signal. In the case of static objects existing in the safety zone, intrusion into the safety zone is allowed through pre-teaching.
  • Japanese Patent Laid-Open No. 2001-51225 and Japanese Patent Laid-Open No. 2014-48313 disclose the contents of a rotating face mirror that can be associated with optical scanning.
  • Another object may be to provide an optical scanner capable of scanning a wide range of areas.
  • Another object may be to provide an optical scanner capable of sensing or monitoring a 2D or 3D area.
  • Another object may be to provide an optical scanner capable of minimizing optical interference.
  • Still another object may be to provide an optical scanner that can improve the efficiency of sensing or monitoring while minimizing the size of the device.
  • Still another object may be to provide an optical scanner capable of efficiently operating a path of reference light.
  • Still another object may be to provide an optical scanner that can determine whether an abnormality of the device through the online.
  • a housing A rotating body rotating in the housing and including a plurality of reflective surfaces; A light shielding plate extending from the rotating body toward an inner surface of the housing and separating each of the plurality of reflective surfaces into a first reflective surface and a second reflective surface; A light emitting unit providing light to the first reflective surface; And, it provides an optical scanner including a light receiving unit for detecting the light reflected from the second reflecting surface.
  • the shield may further include a shield extending from the inner surface of the housing toward the light blocking plate, and the light blocking plate and the shield part may overlap at least a part of the shielding part.
  • the light blocking plate may have a step formed at one end thereof, and the shield may have a step corresponding to the step.
  • the shield may have a groove formed in at least a portion thereof, and the light blocking plate may include a stepped portion inserted into the shield.
  • the first reflecting surface may be located above the rotating body, and the second reflecting surface may be located below the rotating body.
  • the left and right widths of the first reflective surface may be different from the left and right widths of the second reflective surface.
  • the plurality of first reflecting surfaces are provided, the plurality of first reflecting surfaces have different inclinations toward the center of rotation of the rotating body, and the plurality of second reflecting surfaces is provided, and the plurality of second vanes The slope may have different inclination toward the center of rotation of the rotating body.
  • the first reflecting surface may form an upper portion of the rotating body, and the second reflecting surface may form a lower portion of the rotating body, and an area of the second reflecting surface may be wider than that of the first reflecting surface.
  • a first reference reflector protruding from the first reflecting surface; And a second reference reflecting surface protruding from the second reflecting surface.
  • the light blocking plate may further include a slit formed between the first reference reflection surface and the second reference reflection surface.
  • the first reference reflective surface is inclined to face the light emitting part and the second reference reflective surface
  • the second reference reflective surface is inclined to face the light receiving portion and the first reference reflective surface. Can be.
  • the first reference reflective surface is positioned adjacent to at least one edge of the first reflective surface, and the second reference reflective surface is lower than the first reference reflective surface so as to correspond to the first reference reflective surface. It can be located at
  • the first reflecting surface and the second reflecting surface may sequentially form side surfaces of the rotating body so that a flat cross section of the rotating body may be polygonal.
  • First and second reference reflecting surfaces positioned on an outer surface of the housing, wherein the first reference reflecting surfaces are positioned at a height of the first reflecting surface, and the second reference reflecting surfaces are the second Located at the height of the reflective surface, the housing, the first hole formed between the first reflective surface and the first reference reflective surface, and the second formed between the second reflective surface and the second reference reflective surface 2 holes can be provided.
  • a reflector disposed between the light receiver and the second reflective surface, wherein the reflector may be positioned on an optical path between the light receiver and the second reflective surface.
  • the light emitting portion and the light receiving portion are located outside the housing, and the housing includes a first opening formed between the light emitting portion and the first reflective surface, and between the light receiving portion and the second reflective surface.
  • the formed second opening may be provided.
  • a reflector disposed between the light receiver and the second reflector, wherein the second opening is formed between the second reflector and the reflector, and the light emitter and the light receiver are spaced apart from each other.
  • the light emitting unit and the light receiving unit may be located on one PCB substrate.
  • a wide area may be scanned.
  • the 2D or 3D area may be detected or monitored.
  • FIG. 1 to 9 illustrate examples of scanning of an optical scanner according to an embodiment of the present invention.
  • 10 to 20 illustrate examples of optical interference blocking of an optical scanner according to an embodiment of the present invention.
  • 21 to 30 illustrate examples of a reference light path according to an embodiment of the present invention.
  • 31 to 33 are views illustrating an example of an optical scanner according to an embodiment of the present invention.
  • FIG. 34 is a block diagram of an optical scanner according to an embodiment of the present invention
  • FIG. 35 is a diagram illustrating an example of abnormality detection of the optical scanner according to an embodiment of the present invention.
  • 1 to 8 illustrate examples of scanning of an optical scanner according to an embodiment of the present invention.
  • the optical scanner 100 may include a light emitting device 110 and a reflective surface 120.
  • the light emitting device 110 may provide light.
  • the light emitting device 110 may provide light in which straightness is maintained.
  • the light emitting device 110 may be a laser diode LD.
  • the reflective surface 120 may reflect light.
  • the reflective surface 120 may be a mirror or a surface coated with a material having high reflectance.
  • the reflective surface 120 may rotate. When the reflective surface 120 rotates, the path of light provided by the light emitting device 110 may change. For example, the light path may change from L1 to L2 when the reflective surface 120 rotates. The path of the light may change from L1 to L5 according to the rotation of the reflective surface 120. Rotation of the reflective surface 120 may be on the x and y axis planes.
  • the optical scanner 100 may include a plurality of reflective surfaces 120.
  • the plurality of reflective surfaces 120 may sequentially change the path of light provided by the light emitting device 110.
  • the plurality of reflective surfaces 120 may be provided on the outer surface of the rotating body 120R.
  • the rotating body 120R may have a quadrangular shape, and the reflective surfaces 120a, 120b, 120c, and 120d may be provided on an outer surface of the rotating body 120R. That is, it means that the reflective surfaces 120a, 120b, 120c, and 120d may form a square side or a square pillar surface.
  • the rotor 120R may be triangular, and the reflective surfaces 120a, 120b, and 120c may be provided on the outer surface of the rotor 120R. That is, the reflective surfaces 120a, 120b, and 120c may form sides of triangles or surfaces of triangle columns.
  • the rotating body 120R may be pentagonal, and the reflective surfaces 120a, 120b, 120c, 120d, and 120e may be provided on an outer surface of the rotating body 120R. That is, the reflective surfaces 120a, 120b, 120c, 120d, and 120e may form pentagonal sides or pentagonal pillar surfaces.
  • the scanning term of the area that the optical scanner 100 can detect or monitor may be reduced. In other words, it means that the optical scanner 100 can scan the scan area SA at a high speed.
  • the optical scanner 100 may have more reflective surfaces 120.
  • the optical scanner 100 may include a first reflecting surface 1201, a second reflecting surface 1202, a light emitting device 110, and a light receiving sensor 130.
  • the light emitting device 110 may provide light to the first reflective surface 1201.
  • Light provided from the light emitting device 110 may be reflected by the first reflecting surface 1201 to the outside of the optical scanner 100.
  • the path of light provided from the light emitting device 110 may change.
  • the path of light can change from L1 to L4.
  • Light flowing into the optical scanner 100 from the outside of the optical scanner 100 may be provided to the second reflective surface 1202.
  • Light provided from the outside of the optical scanner 100 may be reflected by the second reflecting surface 1202 to face the light receiving sensor 130.
  • the light detected by the light receiving sensor 130 may have information of the scan area SA.
  • the information of the scan area SA may be information about whether an object exists on the scan area SA.
  • the reflective surface 120 may have a predetermined angle.
  • the predetermined angle may vary with respect to the z axis.
  • the path of light may be L1.
  • the path of light may be L2
  • the path of light may be L3. That is, the path of the light may change according to the inclination of the reflective surface 120.
  • the reflective surface 120 may include a first angle surface 120a and a second angle surface 120b.
  • the first angle surface 120a may be formed on one surface of the rotating body 120R
  • the second angle surface 120b may be formed on the other surface of the rotating body 120R.
  • the path of the light reflected on the first angle plane 120a and the path of the light reflected on the second angle plane 120b may be different from each other. That is, when the rotating body 120R rotates, it means that the path of light reflected by the reflecting surface 120 may be changed. In this case, the path of the light reflected by the reflective surface 120 may be a change on the z axis.
  • the scan area SA may be formed outside the optical scanner 100.
  • the scan area SA may be formed on the z axis.
  • the path of light reflected by the first angle plane 120a may be L1
  • the path of light reflected by the second angle plane 120b may be L2.
  • the paths of L1 and L2 may lie on the z axis.
  • the reflective surface 120 may include a plurality of angular surfaces 120a, 120b, 120c, and 120d.
  • the plurality of angle planes 120a, 120b, 120c, and 120d may be four angle planes.
  • the four angle planes may be, for example, 0 degrees, 2 degrees, 4 degrees, and 6 degrees with respect to the z axis.
  • the optical scanner 100 may form the scan area SA in a plurality of different planes. That is, the optical scanner 100 may detect or monitor the scan area SA including the first scan distance SL1 and the second scan distance SL2.
  • the scan area SA may include, for example, a first plane D1, a second plane D2, a third plane D3, and a fourth plane D4.
  • the first plane D1 is the second plane D2 when the angular plane 120b is 2 degrees
  • the third plane D3 is the angular plane 120c.
  • the fourth plane D4 may be formed when the angle plane 120d is 6 degrees.
  • the scan area SA may be radial and / or fan-shaped. For example, it means that the inside of the area specified by the first and second scan distances SL1 and SL2 may be the scan area SA.
  • the optical scanner 100 may detect information about the presence or absence of an object or monitor whether there is an object in the scan area SA.
  • the scan area SA may be formed in 2D or 3D. That is, the accuracy, range, etc. of the optical scanner 100 that detects or monitors the scan area SA may be improved.
  • 9 to 17 illustrate examples of optical interference blocking of an optical scanner according to an embodiment of the present invention.
  • the light scanner 100 may include a light blocking plate 140.
  • the light blocking plate 140 may be positioned between the first reflective surface 1201 and the second reflective surface 1202.
  • the light blocking plate 140 may block light movement between the first reflective surface 1201 and the second reflective surface 1202 between the first reflective surface 1201 and the second reflective surface 1202.
  • the light blocking plate 140 has the light L1 provided to the first reflecting surface 1021 reflected from the first reflecting surface 1201 and directed toward the second reflecting surface 1202 or the second reflecting surface 1202.
  • Light L2 provided to the second reflection surface 1202 may be prevented from being directed toward the first reflection surface 1201.
  • the light blocking plate 100 may be integrally formed with the first and second reflective surfaces 1201 and 1202.
  • the intensity of the light L1 provided to the first reflective surface 1201 is significantly stronger than that of the light L2 provided to the second reflective surface 1202.
  • the intensity of light provided from the light emitting device 110 described with reference to FIG. 9 may be tens of thousands or hundreds of times stronger than the sensitivity of the light receiving sensor 130. Accordingly, the light provided from the light emitting device 110 may cause scattered light while reflecting from the first reflective surface 1201. As a result, the scattered light may cause interference in the second reflecting surface 1202 or the light receiving element 130. This interference is an important issue that can lead to malfunction of the optical scanner 100.
  • the light blocking plate 140 may optically isolate the first reflecting surface 1201 from the second reflecting surface 1202 or optically isolate the second reflecting surface 1202 from the first reflecting surface 1201. ) Accuracy can be improved.
  • the optical scanner 100 may include a first reflecting surface 1201, a second reflecting surface 1202, a light blocking plate 140, and an inner housing 160.
  • the light blocking plate 140 may partition the first reflective surface 1201 and the second reflective surface 1202. This means that the light blocking plate 140 may optically isolate the first reflective surface 1201 and the second reflective surface 1202 from each other, as described above.
  • the light blocking plate 140 may extend in an outward direction of the first reflective surface 1201 or the second reflective surface 1202.
  • the light blocking plate 140 may include a first stepped part 1401 and a second stepped part 1402.
  • the second stepped part 1402 may further extend outwardly than the first stepped part 1401. In other words, a step may be formed at one end of the light blocking plate 140 by the first step part 1401 and the second step part 1402.
  • the first and second stepped portions 1401 and 1402 may be integrally formed.
  • the first and second stepped portions 1401 and 1402 may be integrally formed with the rotating body 120R. That is, the light blocking plate 140 may protrude in the vertical direction of the rotating body 120R, and may have a form in which a step is formed at the protruding end.
  • the rotating body 120R may include a first reflecting surface 1201 and a second reflecting surface 1202.
  • the rotating body 120R may be located inside the inner housing 160.
  • the inner housing 160 may have a cylindrical shape as a whole. That is, it means that the rotor 120R can rotate inside the inner housing 160.
  • the first and second reflective surfaces 1201 and 1202 may face the inner surfaces of the inner housing 160.
  • the inner housing 160 may include an optical shield 150.
  • the light shield 150 may have a shape corresponding to the first and second stepped portions 1401 and 1402 of the light blocking plate 140.
  • the optical shield 150 may include a first shield part 1501 and a second shield part 1502.
  • the first shield part 1501 may be positioned adjacent to the first stepped part 1401.
  • the second shield portion 1502 may be positioned adjacent to the second stepped portion 1402.
  • the first shield part 1501 may form a step with the second shield part 1502.
  • Light may be blocked by the first and second stepped portions 1401 and 1402 and the first and second shield portions 1501 and 1502.
  • the light from the first reflecting surface 1201 to the second reflecting surface 1202 or from the second reflecting surface 1202 to the first reflecting surface 1201 is refracted several times to the optical path LP formed. Can be blocked. That is, the first reflecting surface 1201 and the second reflecting surface 1202 may be optically isolated from each other.
  • the light blocking plate 140 and the shield 150 may optically isolate the first reflecting surface 1201 from the second reflecting surface 1202 or optically isolate the second reflecting surface 1202 from the first reflecting surface 1201.
  • the isolation of the optical scanner 100 can be improved. Such a configuration may be useful in the order of assembly in which the inner housing 160 is mounted around the rotating body 120R after the rotating body 120R is first seated.
  • the first stepped part 1401 may further extend outwardly than the second stepped part 1402.
  • a step may be formed at one end of the light blocking plate 140 by the first step part 1401 and the second step part 1402.
  • the first shield part 1501 may be positioned adjacent to the first stepped part 1401.
  • the second shield portion 1502 may be positioned adjacent to the second stepped portion 1402.
  • the first shield part 1501 may form a step with the second shield part 1502.
  • Light from the first reflecting surface 1201 to the second reflecting surface 1202 or from the second reflecting surface 1202 to the first reflecting surface 1201 may be blocked by the optical path LP formed by refraction several times. Can be. That is, the first reflecting surface 1201 and the second reflecting surface 1202 may be optically isolated from each other. Such a configuration may be useful in the order of assembly in which the inner housing 160 is first seated and then the rotating body 120R is mounted in the inner housing 160.
  • the light blocking plate 140 may include a first stepped part 1401, a second stepped part 1402, and a third stepped part 1403.
  • the second stepped part 1402 may further extend outwardly than the first stepped part 1401 and the third stepped part 1403.
  • a plurality of steps may be formed at one end of the light blocking plate 140 by the first step part 1401, the second step part 1402, and the third step part 1403.
  • the optical shield 150 may include a first shield part 1501, a second shield part 1502, and a third shield part 1503.
  • the first shield part 1501 may be positioned adjacent to the first stepped part 1401.
  • the second shield portion 1502 may be positioned adjacent to the second stepped portion 1402.
  • the third shield portion 1503 may be positioned adjacent to the third stepped portion 1403.
  • the first shield portion 1501, the second shield portion 1502, and the third shield portion 1503 may form grooves as a whole.
  • Light from the first reflecting surface 1201 to the second reflecting surface 1202 or from the second reflecting surface 1202 to the first reflecting surface 1201 may be blocked by the optical path LP formed by refraction several times. Can be. That is, the first reflecting surface 1201 and the second reflecting surface 1202 may be optically isolated from each other. Such a configuration may be more advantageous than the embodiments described above in optical isolation of the first reflective surface 1201 and the second reflective surface 1202.
  • the light blocking plate 140 may be positioned around the rotor 120R.
  • the light blocking plate 140 may be positioned around the reflective surface 120.
  • the light blocking plate 140 may extend from the reflective surface 120 to protrude in the x-axis or y-axis direction.
  • the outside of the light blocking plate 140 may be formed at least adjacent to the reflective surface 120 or at a predetermined distance D. That is, the light blocking plate 140 may mean that the light reflected from the reflective surface 120 may be covered.
  • the reflective surface 120 may be a first angle plane 120a, a second angle plane 120b, a third angle plane 120c, and a fourth angle plane 120d having different angles with respect to the z axis. .
  • the light shielding plate 140 is between the first and second angle planes 120a and 120b, between the second and third angle planes 120b and 120c, and between the third and fourth angle planes 120c and 120d, and the fourth and first angles. It may not be present between faces 120d and 120a. That is, it means that it may be a form protruding in a semi-circular shape on each reflective surface 120.
  • the light blocking plate 140 may extend from the reflective surface 120 to protrude in the x-axis or y-axis direction.
  • the outside of the light blocking plate 140 may be formed at a predetermined distance D from the reflective surface 120. That is, the light blocking plate 140 may mean that the light reflected from the reflective surface 120 may be covered.
  • a distance between one end of the light blocking plate 140 from the center of the fourth angled surface 120d is D2
  • one side of the fourth angled surface 120d that is, the fourth angled surface 120d and the third angled surface.
  • D2 may be greater than D1.
  • the blocking of light from the first reflective surface 1201 to the second reflective surface 1202 or from the second reflective surface 1202 to the first reflective surface 1201 may be further improved.
  • the optical scanner 100 includes a light emitting element 110, a first lens 170, a rotating body 120R, first and second reflecting surfaces 1201 and 1202, a light blocking plate 140, and a reflecting plate. 172, a second lens 171, and a light receiving sensor 130.
  • Light provided from the light emitting device 110 may be directed to the first reflective surface 1201 through the first lens 170. Light reflected from the first reflecting surface 1201 may go out of the optical scanner 100. Light flowing from the outside of the optical scanner 100 to the inside may be reflected by the second reflecting surface 1202 to the reflecting plate 172. Light reflected from the reflector 172 may be detected by the light receiving sensor 130 through the second lens 171. In this case, the light blocking plate 140 may prevent mutual interference of light reflected from the first reflective surface 1201 and light reflected from the second reflective surface 1202. Accordingly, malfunction of the optical scanner 100 can be prevented, and the accuracy of the optical scanner 100 can be improved.
  • the size of the second lens 171 may be larger than the size of the first lens 170. This may mean that one diameter of the second lens 171 may be larger than one diameter of the first lens 170.
  • the outer edge of the second lens 171 may be processed in a straight line as necessary.
  • the correlation between the size of the second lens 171 and the size of the first lens 170 may be formed according to the size of the second reflecting surface 1202 and the first reflecting surface 1201.
  • 16 to 25 illustrate examples of a reference light path according to an embodiment of the present invention.
  • the height H2 of the second reflecting surface 1202 may be higher than the height H1 of the first reflecting surface 1201.
  • the first reflecting surface 1201 reflects the light provided from the light emitting device 110 to the outside of the optical scanner 100, and the second reflecting surface 1202 receives the light flowing from the outside of the optical scanner 100.
  • an increase in the effective area of the second reflective surface 1202 is significant for the operation of the optical scanner 100.
  • the overall height H including the heights H1 and H2 of the first reflective surface 1201 and the second reflective surface 1202 may be limited. There may be a limitation on the size of the optical scanner 100. In addition, the overall height H may occupy a large proportion in miniaturization of the optical scanner 100.
  • the total height H includes the height H1 of the first reflective surface 1201, the height H2 of the second reflective surface 1202, and the height Hw of the light blocking plate 140. can do.
  • the total height H includes the height H1 of the first reflective surface 1201, the height H2 of the second reflective surface 1202, and the height Hg of the groove 120h. can do. Since the height Hg of the groove 120h includes the height Hw of the light blocking plate 140, the height Hg of the groove 120h becomes higher than the height Hw of the light blocking plate 140. That is, the overall height H is higher in the configuration of FIG. 18 than the overall height H in the configuration of FIG. 17.
  • the optical scanner 100 may include a reference reflector 180.
  • the reference reflective surface 180 may be positioned on the first reflective surface 1201 or the second reflective surface 1202.
  • the reference reflective surface 180 may be provided in plural.
  • the plurality of reference reflecting surfaces may include a first reference reflecting surface 1801 and a second reference reflecting surface 1802.
  • the first reference reflective surface 1801 may be located on the first reflective surface 1201, and the second reference reflective surface 1802 may be located on the second reflective surface 1202.
  • the first reflecting surface 1201 and the second reflecting surface 1202 may rotate.
  • the first reflecting surface 1201 and the second reflecting surface 1202 of the rotating body 120R reach a predetermined position
  • the light provided from the light emitting element 110 is transferred to the first reference reflecting surface 1801 or the second reference panel.
  • Slope 1802 may be reached.
  • the light reaching the first reference reflecting surface 1801 may be reflected to face the second reference reflecting surface 1802, and the light reflected from the second reference reflecting surface 1802 may be reflected by the light receiving sensor (172).
  • 130 may be sensed by the light receiving sensor 130. That is, the reflecting plate 172 means that the reflection plate 172 is positioned on the optical path between the second reference reflecting surface 1802 and the light receiving sensor 130.
  • Such a light path may be used as light that is a reference of the optical scanner 100.
  • Light as a reference means that the optical scanner 100 may be a reference in optical measurement for detecting or monitoring a certain area.
  • the optical scanner 100 should correct the result of the distance measurement for the distance measurement of the scan area SA, and the correction is performed by measuring the reference light. That is, the measurement of the reference light is to compensate or compensate for the drift of the electronic circuit constituting the optical scanner 100 when measuring the distance of the scan area SA.
  • the drift phenomenon of the electronic circuit may be compensated or compensated by subtracting the distance value by measuring the reference light from the distance value measured by the optical scanner 100 in the scan area SA.
  • the first reference reflecting surface 1801 may be located adjacent to one side of the first reflecting surface 1201.
  • the first reference reflective surface 1801 may be located on one side of the first angled surface 1201a of the first reflective surface 1201.
  • the first reference reflective surface 1801 is positioned on one surface of the first angled surface 1201a of the first reflective surface 1201, and the position thereof is a first angled surface of the first reflective surface 1201. It may be adjacent to the boundary of the 1201a and the second angular surface 1201b.
  • the first reference reflective surface 1801 may be inclined toward the lower portion of the rotating body 120R. That is, the first reference reflective surface 1801 may protrude in an inverted triangle shape from the first reflective surface 1201. In this case, a surface of the inverted triangular shape facing the lower portion of the rotating body 120R may be the first reference reflective surface 1801.
  • the second reference reflecting surface 1802 may be located adjacent to one side of the second reflecting surface 1202.
  • the second reference reflecting surface 1802 may be located at one side of the first angular surface 1202a of the second reflecting surface 1202.
  • the second reference reflecting surface 1802 is positioned on one surface of the first angled surface 1202a of the second reflective surface 1202, and the position thereof is the first angled surface of the second reflective surface 1202. It may be adjacent to the boundary of the 1202a and the second angular surface 1202b.
  • the second reference reflecting surface 1802 may be inclined toward the upper portion of the rotating body 120R. That is, the second reference reflecting surface 1802 may protrude in a triangular shape from the second reflecting surface 1202. In this case, a surface of the triangular shape facing the top of the rotating body 120R may be the second reference reflecting surface 1802.
  • the light blocking plate 140 may include a slit 140S.
  • the slit 140S may be positioned below the first reference reflective surface 1801 and may be positioned above the second reference reflective surface 1802. That is, the slit 140S may be located between the first reference reflecting surface 1801 and the second reference reflecting surface 1802.
  • the first reference reflecting surface 1801 may face the second reference reflecting surface 1802 through the slit 140S, and the second reference reflecting surface 1802 may refer to the first reference reflecting surface (slit 140S). 1801).
  • the slit 140S may provide a path of reference light between the first and second reference reflection surfaces 1801 and 1802.
  • the manufacturing cost can be reduced compared to the case in which the unit for generating light as a reference is separately configured from the rotating body 120R.
  • the optical path can be configured to be shorter than when the unit for generating light as a reference is configured separately from the rotating body 120R, the measurement accuracy can be expected to be improved.
  • the first reference reflecting surface 1801 may be located in the central area UM of the first reflecting surface 1201.
  • the second reference reflecting surface 1802 may be located in the central area UM of the second reflecting surface 1202. This position may be a position corresponding to the central region of the first lens 170 and the second lens 171. Accordingly, the optical path of the reference light SL may contribute to the efficient use of the lenses 170 and 171. That is, the accuracy of measuring the reference light SL of the optical scanner 100 may be improved.
  • the first reference reflecting surface 1801 may be located in the central area UM of the first reflecting surface 1201.
  • the second reference reflecting surface 1802 may be located in the upper region DU of the second reflecting surface 1202. Such a position may correspond to a center region of the first lens 170 and an upper region of the second lens 171. Accordingly, there is an advantage in that the optical path of the reference light SL can be reduced.
  • the first reference reflective surface 1801 may be located in the lower region UD of the first reflective surface 1201.
  • the second reference reflecting surface 1802 may be located in the upper region DU of the second reflecting surface 1202. This position may correspond to a lower region of the first lens 170 and an upper region of the second lens 171. Accordingly, there is an advantage that the optical path of the reference light SL can be further reduced.
  • the first reference reflective surface 1801 and the second reference reflective surface 1802 may be located outside the inner housing 160.
  • the first reference reflecting surface 1801 and the second reference reflecting surface 1802 may provide a path of the reference light SL outside the inner housing 160.
  • the inner housing 160 may include a light hole 160h.
  • a plurality of light holes 160h may be provided. Portions 160h1 and 160h4 of the plurality of light holes 160h may be formed on one surface of the inner housing 160, and the remaining portions 160h2 and 160h3 of the plurality of light holes 160 may be formed on the other surface of the inner housing 160.
  • the light holes 160h1 and 160h2 may be disposed on the same straight line as the light emitting device 110.
  • the light hole 160h1 and the light hole 160h2 may be located on the same optical path.
  • the light hole 160h3 and the light hole 160h4 may be disposed on the same straight line as the reflector 172. That is, the light hole 160h3 and the light hole 160h4 may be located on the same optical path.
  • Light holes, holes, and openings are terms used for convenience of understanding, and they are not necessarily referred to different configurations because the terms are different.
  • the light hole 160h may mean the interior of the first and second openings 160P1 and 160P2 of FIG. 27.
  • the first reference reflecting surface 1801 and the second reference reflecting surface 1802 may be positioned adjacent to the plurality of light holes 160h2 and 160h3.
  • the first reference reflective surface 1801 may be located adjacent to the hole 160h2.
  • the first reference reflective surface 1801 may face the hole 160h1 through the hole 160h2.
  • the second reference reflecting surface 1802 may be located adjacent to the hole 160h3.
  • the second reference reflecting surface 1802 may face the hole 160h4 through the hole 160h3.
  • Light provided from the light emitting device 110 may pass through the first reflective surface 1201 through the hole 160h1.
  • Light passing through the first reflective surface 1201 may face the first reference reflective surface 1801 through the hole 160h2.
  • the light reflected from the first reference reflecting surface 1801 may face the second reference reflecting surface 1802 and be reflected thereon, and may face the reflecting plate 172 through the holes 160h3 and 160h4, and to the light receiving sensor 130.
  • the optical path SL may be temporarily formed according to the rotation of the rotor 120R. That is, the light path SL is at an angle at which the light provided from the light emitting device 110 is not reflected by the first reflecting surface 1801 by the rotation of the rotor 120R and may pass through the first reflecting surface 1801. ) Can be formed.
  • 26 and 27 illustrate an example of an optical scanner according to an embodiment of the present invention.
  • the optical scanner 100 may include an outer housing 200, an inner housing 160, light emitting units 110 and 170, light receiving units 171 and 130, a rotating body 120R, and a reflective surface 120. Can be.
  • the outer housing 200 may form an appearance of the optical scanner 100.
  • the outer housing 200 may be formed such that the front has a larger area than the rear. This may be in consideration of the radiation angle of light.
  • the inner housing 160 may be located inside the outer housing 200.
  • the inner housing 160 may be built in the outer housing 200.
  • the inner housing 160 may have a cylindrical shape as a whole.
  • the rotating body 120R may rotate inside the inner housing 160.
  • the rotating body 120R may be driven by a motor.
  • the rotating body 120R may include reflective surfaces 120a, 120b, 120c, and 120d sequentially in the rotational direction. This means that as the rotor 120R rotates, not only the entire outer surface of the rotor 120R is formed, but also various reflection surfaces 120 may be provided.
  • the first reflective surface 1201 may be provided above the rotating body 120R, and the second reflective surface 1202 may be provided below the rotating body 120R.
  • the areas of the first reflective surface 1201 and the second reflective surface 1202 may be different from each other.
  • Reflective surface 120 may be a plurality of (120a, 120b, 120c, 120d). That is, it means that the rotating body can provide different reflective surfaces 120 while rotating.
  • the light emitting units 110 and 170 and the light receiving units 171 and 130 may be positioned between the inner housing 160 and the outer housing 200.
  • the light emitting units 110 and 170 may include a light emitting device 110 and a lens 170.
  • the light receiving units 171 and 130 may include a light receiving sensor 130 and a lens 171.
  • the light emitters 110 and 170 may provide light to the first reflective surface 1201.
  • the light receivers 171 and 130 may detect light reflected from the second reflective surface 1202.
  • the reflective plate 172 may be provided between the light receiving sensor 130 and the second reflective surface 1202. Since the light emitting units 110 and 170 and the light receiving units 171 and 130 are spaced apart from each other, mutual interference due to an electromagnetic field may be minimized.
  • the inner housing 160 may include a hole 160h1 between the light emitting units 110 and 170 and the first reflective surface 1201.
  • the inner housing 160 may have a hole 160h4 formed between the second reflecting surface 1202 and the light receiving parts 171 and 130. Accordingly, the light provided from the light emitting units 110 and 170 may be directed toward the inner housing 160, and may be reflected by the first reflective surface 1201 to the outside of the optical scanner 100. Light reflected from the outside of the optical scanner 100 and returned may be reflected by the second reflecting surface 1202 and sensed by the light receiving units 171 and 130 via the reflecting plate 172.
  • the optical scanner 100 may include a main board 210, an outer housing 200, an inner housing 160, light emitting units 110 and 170, light receiving units 171 and 130, and an indicator light 223. have.
  • Electronic devices may be mounted on the main board 210.
  • the outer housing 200 may be mounted on the main board 210.
  • the inner housing 160 may be mounted on the main board 210.
  • the light emitting units 110 and 170 may be mounted on the main board 210, may be adjacent to the inner housing 160, and may be spaced apart from the light receiving units 171 and 130.
  • the light receiving units 171 and 130 may be mounted on the main board 210, may be adjacent to the inner housing 160, and may be spaced apart from the light emitting units 110 and 170.
  • the outer housing 200 may cover the inner housing 160, the light emitting units 110 and 170, and the light receiving units 171 and 130 on the main board 210.
  • the inner housing 160 may have a first opening 160P1 through which a portion of the first reflective surface 1201 is exposed to the outside.
  • the inner housing 160 may have a second opening 160P2 through which a portion of the second reflective surface 1202 is exposed.
  • the windows 221 and 222 may be located in front of the outer housing 200. A plurality of windows 221 and 222 may be provided.
  • the first window 221 may face the first opening 160P1.
  • the second window 222 may face the second opening 160P2.
  • the first window 221 may be an area where light reflected through the first reflective surface 1201 is emitted.
  • the second window 222 may be a region through which light emitted through the first window 221 is reflected by an external object and then passes toward the optical scanner 100. Light may be directed to the second reflective surface 1202 through the second window 222.
  • the indicator light 223 may display information on whether the optical scanner 100 is operated, an operation state, a failure, and the like.
  • the first and second windows 221 and 222 may have different sizes.
  • the second window 222 may be larger than the first window 221.
  • the second window 222 may be an area for receiving the light reflected from the object. Therefore, in order to effectively receive a relatively weak signal, it means that the size of the second window 222 may be larger.
  • An internal structure corresponding to the first and second windows 221 and 222 may also correspond to the sizes of the first and second windows 221 and 222.
  • 28 and 29 are diagrams showing examples of the operation of the optical scanner according to an embodiment of the present invention.
  • the light emitting device 110 may provide light L1 to the first reflective surface 1201 through the lens 170.
  • the light emitting device 110 may be a laser diode LD.
  • the light emitting device 110 may be a pulse laser capable of providing light having a wavelength of 890 nm to 905 nm.
  • the light receiving sensor 130 and the light emitting element 110 may be positioned adjacent to each other.
  • the light receiving sensor 130 and the light emitting device 110 may be configured on one PCB substrate.
  • the light path therein may be simply configured. That is, the volume of the entire optical scanner 100 can be reduced.
  • the first reflective surface 1201 may form four surfaces of the upper portion of the rotating body 120R.
  • the first reflective surface 1201 may include a first angle surface 1201a, a second angle surface 1201b, a third angle surface 1201c, and a fourth angle surface 1201d.
  • the first angle plane 1201a may have an inclination of 0 degrees from the z axis
  • the second angle plane 1201b may have an inclination of 2 degrees from the z axis
  • the third angle plane 1201c may have a slope of 4 degrees from the z axis.
  • the fourth angle plane 1201d may have an inclination of 6 degrees from the z-axis.
  • the light L2 provided from the light emitting device 110 and reflected from the first reflective surface 1201 may be directed to the outside of the optical scanner 100 through the first window 221.
  • the scan area SA may be detected or monitored.
  • the light L3 reflected by the object OB present in the scan area SA may face the second reflective surface 1202 through the second window 222.
  • the second reflective surface 1202 may have a larger effective area than the first reflective surface 1201.
  • the effective area may mean an area capable of reflecting light.
  • the second reflecting surface 1202 may be formed longer in the left and right sides or longer in the vertical direction than the first reflecting surface 1201.
  • the second reflecting surface 1202 may form four surfaces of the lower portion of the rotating body 120R.
  • the second reflective surface 1202 may include a first angular surface 1202a, a second angular surface 1202b, a third angular surface 1202c, and a fourth angular surface 1202d.
  • the first angular plane 1202a may have an inclination of 0 degrees from the z axis
  • the second angular plane 1202b may have an inclination of 2 degrees from the z axis
  • the third angular plane 1202c may have 4 degrees from the z axis.
  • the fourth angle plane 1202d may have an inclination of 6 degrees from the z-axis.
  • Each angle may correspond to the angular surfaces 1201a, 1201b, 1201c, and 1201d of the first reflective surface 1201. That is, the first reflecting surface 1201 and the second reflecting surface 1202 may form an outer surface of the rotating body 120R, and one surface of the outer surface of the rotating body 120R may be formed in a trapezoid shape as a whole. Means.
  • the first reflecting surface 1201 and the second reflecting surface 1202 may form four surfaces of the rotating body 120R, and one surface of the rotating body 120R may have a trapezoid shape as a whole.
  • One surface of the rotor 120R may have an angle different from the other surface of the rotor 120R, and the angles thereof may be in the range of 0 to 6 degrees, as described above.
  • Light L4 reflected from the second reflective surface 1202 may flow into the light receiving sensor 130 through the lens 171.
  • the intensity of the light L1 provided from the light emitting device 110 is significantly stronger than the intensity of the light L3 or L4 which is detected by being introduced into the light receiving sensor 130, it is reflected or reflected from the first reflecting surface 1201.
  • the light shield plate 140 optically isolates the first reflecting surface 1201 and the second reflecting surface 1202 to prevent scattered light from entering the light receiving sensor 130 and causing malfunction of the optical scanner 100. You can.
  • the light blocking plate 140 extends to the inner surface of the inner housing 160 and adjacent to the shield unit 150 to effectively achieve optical isolation between the first reflecting surface 1201 and the second reflecting surface 1202. .
  • step portions 1401, 1402 or 1403 provided at one end of the light blocking plate 140 and the shield part 150 provided on the inner surface of the inner housing 160 overlap each other and rotate to form the first reflective surface 1201.
  • Optical isolation of the second and second reflecting surfaces 1202 can be effectively achieved.
  • measurement of light as a reference may be made according to the rotation of the rotor 120R.
  • the first reflecting surface 1201 and the second reflecting surface 1202 form four surfaces of the rotating body 120R, and among the four first reflecting surfaces 1201 and the second reflecting surface 1202.
  • the reference reflecting surfaces 1801 and 1802 are provided on any one surface, the reference light may be measured for each rotation of the rotating body 120R. Accordingly, values for measuring the distance of the scan area SA may be corrected, and the accuracy of the optical scanner 100 may be improved.
  • the optical scanner 100 may include a reflector 172 between the second reflecting surface 1202 and the optical path of the light receiving sensor 130.
  • the light receiving sensor 130 may be spaced apart from the light emitting device 110 by a considerable distance. This may be to minimize the influence of electromagnetic fields that may occur between the electronic elements.
  • the reflective plate 172 may be positioned at the position of the light receiving sensor 130 described with reference to FIG. 30.
  • the light receiving sensor 130 may be spaced apart from the reflecting plate 172 and the light emitting device 110 by a predetermined distance, and may detect light reflected from the reflecting plate 172. That is, the reflecting plate 172 may look at the second reflecting surface 1202 and the light receiving sensor 130 at the same time to change the path of the light reflected from the second reflecting surface 1202 toward the light receiving sensor 130.
  • the optical scanner 100 includes a light emitting element 110, a first lens 170, a rotating body 120R, a first reflecting surface 1201, a second reflecting surface 1202, and a third half.
  • a slope 1203, a first light blocking plate 1401, a second light blocking plate 1402, a reflecting plate 172, a second lens 171, and a light receiving sensor 130 may be included.
  • the third reflective surface 1203 may be formed on the first reflective surface 1202.
  • the second light blocking plate 1402 may be positioned between the first reflective surface 1201 and the third reflective surface 1203. In this case, the second light blocking plate 1402 may not include a slit for the reference light path.
  • Light provided from the light emitting device 110 may be directed to the first reflective surface 1201 through the first lens 170.
  • the reflector plate 172 may have an opening 172h.
  • the opening 172h may be formed on an optical path of light provided from the light emitting element 110. That is, the light provided from the light emitting element 110 may be directed to the first reflective surface 1201 through the first lens 170 and the opening 172h.
  • Light reflected from the first reflecting surface 1201 may go out of the optical scanner 100.
  • a portion of the light flowing from the outside of the optical scanner 100 to the inside may be reflected by the second reflecting surface 1202 and directed toward the lower portion of the reflecting plate 172.
  • the other part of the light introduced from the outside of the optical scanner 100 may be reflected by the third reflecting surface 1203 and directed toward the upper portion of the reflecting plate 172.
  • Upper and lower lengths of the reflective plate 172 may be formed to cover the second and third reflective surfaces 1202 and 1203. Accordingly, the light receiving rate of the light reflected from the object may be improved. This means that the precision or performance of the optical scanner 100 can be improved.
  • Light reflected from the reflector 172 may be detected by the light receiving sensor 130 through the second lens 171.
  • the first light blocking plate 1401 may prevent mutual interference between light reflected from the first reflective surface 1201 and light reflected from the second reflective surface 1202.
  • the second light blocking plate 1402 may prevent mutual interference of light reflected from the first reflective surface 1201 and light reflected from the third reflective surface 1203. Accordingly, malfunction of the optical scanner 100 can be prevented, and the accuracy of the optical scanner 100 can be improved.
  • the size of the second lens 171 may be larger than the size of the first lens 170. This may mean that one diameter of the second lens 171 may be larger than one diameter of the first lens 170.
  • the outer edge of the second lens 171 may be processed in a straight line as necessary.
  • the correlation between the size of the second lens 171 and the size of the first lens 170 may be formed according to the sizes of the second and third reflective surfaces 1202 and 1203 and the first reflective surface 1201.
  • the vertical length of the second lens may be formed to cover the second and third reflective surfaces. That is, the light reflected by the second and third reflective surfaces may be sensed by the light receiving sensor through the second lens.
  • the optical scanner 100 may include a reference reflecting surface 180.
  • the reference reflective surface 180 may be positioned on the first reflective surface 1201 or the second reflective surface 1202.
  • the reference reflective surface 180 may be provided in plural.
  • the plurality of reference reflecting surfaces may include a first reference reflecting surface 1801 and a second reference reflecting surface 1802.
  • the first reference reflective surface 1801 may be located on the first reflective surface 1201, and the second reference reflective surface 1802 may be located on the second reflective surface 1202.
  • the first reflecting surface 1201, the second reflecting surface 1202, and the third reflecting surface 1203 may rotate.
  • the light provided from the light emitting element 110 is the first reference reflecting surface. 1801 can be reached.
  • the light reaching the first reference reflecting surface 1801 may be reflected to face the second reference reflecting surface 1802, and the light reflected from the second reference reflecting surface 1802 may be reflected by the light receiving sensor (172).
  • 130 may be sensed by the light receiving sensor 130.
  • Such a light path may be used as light that is a reference of the optical scanner 100.
  • Light as a reference means that the optical scanner 100 may be a reference in optical measurement for detecting or monitoring a certain area.
  • the optical scanner 100 should correct the result of the distance measurement for the distance measurement of the scan area SA, and the correction is performed by measuring the reference light. That is, the measurement of the reference light is to compensate or compensate for the drift of the electronic circuit constituting the optical scanner 100 when measuring the distance of the scan area SA.
  • the drift phenomenon of the electronic circuit may be compensated or compensated by subtracting the distance value by measuring the reference light from the distance value measured by the optical scanner 100 in the scan area SA.
  • the first reference reflective surface 1801 may be located adjacent to one side of the first reflective surface 1201.
  • the first reference reflective surface 1801 may be located on one side of the first angled surface 1201a of the first reflective surface 1201.
  • the first reference reflective surface 1801 is positioned on one surface of the first angled surface 1201a of the first reflective surface 1201, and the position thereof is a first angled surface of the first reflective surface 1201. It may be adjacent to the boundary of the 1201a and the second angular surface 1201b.
  • the first reference reflective surface 1801 may be inclined toward the lower portion of the rotating body 120R. That is, the first reference reflective surface 1801 may protrude in an inverted triangle shape from the first reflective surface 1201. In this case, a surface of the inverted triangular shape facing the lower portion of the rotating body 120R may be the first reference reflective surface 1801.
  • the second reference reflecting surface 1802 may be located adjacent to one side of the second reflecting surface 1202.
  • the second reference reflecting surface 1802 may be located at one side of the first angular surface 1202a of the second reflecting surface 1202.
  • the second reference reflecting surface 1802 is positioned on one surface of the first angled surface 1202a of the second reflective surface 1202, and the position thereof is the first angled surface of the second reflective surface 1202. It may be adjacent to the boundary of the 1202a and the second angular surface 1202b.
  • the second reference reflecting surface 1802 may be inclined toward the upper portion of the rotating body 120R. That is, the second reference reflecting surface 1802 may protrude in a triangular shape from the second reflecting surface 1202. In this case, a surface of the triangular shape facing the top of the rotating body 120R may be the second reference reflecting surface 1802.
  • the first light blocking plate 1401 may include a slit 140S.
  • the slit 140S may be positioned below the first reference reflective surface 1801 and may be positioned above the second reference reflective surface 1802. That is, the slit 140S may be located between the first reference reflecting surface 1801 and the second reference reflecting surface 1802.
  • the first reference reflecting surface 1801 may face the second reference reflecting surface 1802 through the slit 140S, and the second reference reflecting surface 1802 may refer to the first reference reflecting surface (slit 140S). 1801).
  • the slit 140S may provide a path of reference light between the first and second reference reflection surfaces 1801 and 1802.
  • the optical scanner 100 may include an outer housing 200, an inner housing 160, light emitting units 110 and 170, light receiving units 171 and 130, a rotating body 120R, and a reflective surface 120. Can be.
  • the outer housing 200 may form an appearance of the optical scanner 100.
  • the outer housing 200 may be formed such that the front has a larger area than the rear. This may be in consideration of the radiation angle of light.
  • the inner housing 160 may be located inside the outer housing 200.
  • the inner housing 160 may be built in the outer housing 200.
  • the inner housing 160 may have a cylindrical shape as a whole.
  • the rotating body 120R may rotate inside the inner housing 160.
  • the rotating body 120R may be driven by a motor.
  • the rotating body 120R may include reflective surfaces 120a, 120b, 120c, and 120d sequentially in the rotational direction. This means that as the rotor 120R rotates, not only the entire outer surface of the rotor 120R is formed, but also various reflection surfaces 120 may be provided.
  • the first reflecting surface 1201 may be provided at the center of the rotating body 120R, and the second reflecting surface 1202 may be provided below the rotating body 120R, and the upper portion of the rotating body 120R may be provided.
  • the third reflective surface 1203 may be provided. Areas of the first to third reflective surfaces 1201, 1202, and 1203 may be different from each other.
  • Reflective surface 120 may be a plurality of (120a, 120b, 120c, 120d). That is, it means that the rotating body can provide different reflective surfaces 120 while rotating.
  • the light emitting units 110 and 170 and the light receiving units 171 and 130 may be positioned between the inner housing 160 and the outer housing 200.
  • the light emitting units 110 and 170 may include a light emitting device 110 and a lens 170.
  • the light receiving units 171 and 130 may include a light receiving sensor 130 and a lens 171.
  • the light emitters 110 and 170 may provide light to the first reflective surface 1201. Light provided from the light emitting units 110 and 170 may face the first reflective surface 1201 through the opening 172h.
  • the light receivers 171 and 130 may detect light reflected from the second and third reflective surfaces 1202 and 1203.
  • the reflective plate 172 may be provided between the light receiving sensor 130 and the second reflecting surface 1202 and between the light receiving sensor 130 and the third reflecting surface 1203. Since the light emitting units 110 and 170 and the light receiving units 171 and 130 are spaced apart from each other, mutual interference due to an electromagnetic field may be minimized.
  • the inner housing 160 may include a hole 160h1 between the light emitting units 110 and 170 and the first reflective surface 1201.
  • the inner housing 160 may have a hole 160h4 formed between the second reflecting surface 1202 and the light receiving parts 171 and 130.
  • the inner housing 160 may have a hole 160h5 formed between the third reflecting surface 1203 and the light receiving parts 171 and 130.
  • the inner housing 160 may have a hole 160h4 formed between the second reflecting surface 1202 and the lower portion of the reflecting plate 172, and between the third reflecting surface 1203 and the upper portion of the reflecting plate 172. Holes 160h5 may be formed in the holes.
  • the light provided from the light emitting units 110 and 170 may be directed toward the inner housing 160, and may be reflected by the first reflective surface 1201 to the outside of the optical scanner 100.
  • Light reflected from the outside of the optical scanner 100 and reflected back may be reflected by the second reflecting surface 1202 and the third reflecting surface 1203 to be detected by the light receiving parts 171 and 130 via the reflecting plate 172.
  • the optical scanner 100 may include a main board 210, an outer housing 200, an inner housing 160, light emitting units 110 and 170, light receiving units 171 and 130, and an indicator light 223. have.
  • Electronic devices may be mounted on the main board 210.
  • the outer housing 200 may be mounted on the main board 210.
  • the inner housing 160 may be mounted on the main board 210.
  • the light emitting units 110 and 170 may be mounted on the main board 210, may be adjacent to the inner housing 160, and may be spaced apart from the light receiving units 171 and 130.
  • the light receiving units 171 and 130 may be mounted on the main board 210, may be adjacent to the inner housing 160, and may be spaced apart from the light emitting units 110 and 170.
  • the outer housing 200 may cover the inner housing 160, the light emitting units 110 and 170, and the light receiving units 171 and 130 on the main board 210.
  • the inner housing 160 may have a first opening 160P1 through which a portion of the first reflective surface 1201 is exposed to the outside.
  • the inner housing 160 may have a second opening 160P2 through which a portion of the second reflective surface 1202 is exposed.
  • the inner housing 160 may have a third opening 160P3 through which a portion of the third reflective surface 1203 is exposed.
  • the windows 221, 222, and 224 may be located in front of the outer housing 200. A plurality of windows 221, 222, and 224 may be provided.
  • the first window 221 may face the first opening 160P1.
  • the second window 222 may face the second opening 160P2.
  • the third window 224 may face the third opening 160P3.
  • the first window 221 may be an area where light reflected through the first reflective surface 1201 is emitted.
  • the second window 222 may be an area through which light emitted through the first window 221 is reflected by an external object and then passes toward the optical scanner 100. Light may be directed to the second reflective surface 1202 through the second window 222.
  • the third window 224 may be an area where light emitted through the first window 221 is reflected by an external object and then passes toward the optical scanner 100. Light may be directed to the third reflective surface 1203 through the third window 224.
  • FIG. 34 is a block diagram of an optical scanner according to an embodiment of the present invention
  • FIG. 35 is a diagram of the present invention.
  • FIG. 1 is a diagram illustrating an example of abnormality detection of an optical scanner, according to an exemplary embodiment.
  • the optical scanner 100 may include a control unit 10, a light emitting device 110, a light receiving sensor 130, a motor 20, a communication unit 30, and a power supply unit 40.
  • the control unit 10 and the communication unit 30 may be mounted on the main board 210.
  • the power supply 40 may be built in the main board 210 or may be supplied from the outside of the optical scanner 100.
  • the controller 10 may be electrically connected to the motor 20, the light emitting device 110, the light receiving sensor 130, the communication unit 30, and the power supply unit 40.
  • the controller 10 may process signals for TOF calculation, calculation of distance and angle information of an object, presence of a detection object, output of a safety signal, and motion state of the detection object.
  • the controller 10 may record the light emitting time of the light emitting device 110 and the light receiving time of the light receiving sensor 130, and may perform calculation based on the TOF principle. Accordingly, the distance of the detection object can be determined and the angle information of the emitted laser can be calculated.
  • the controller 10 may monitor the scan area SA set in the two-dimensional space based on the angle information and the distance information.
  • the communication unit 30 may transmit and receive information via wired and / or wireless.
  • the communication unit 30 may communicate with an external server. For example, it means that the transmission and / or control command of the state of the optical scanner 100 can be received through the communication unit 30.
  • a plurality of optical scanners 100 may be used.
  • the optical scanner 100 may be controlled by a central control center (CT).
  • CT central control center
  • the optical scanner 100 may be connected to the central control center (CT) by wire and / or wireless.
  • Information about the area SA detected or monitored by the optical scanner 100 may be observed at the central control center CT.
  • Information on the state of the optical scanner 100 can also be observed in the central control center (CT).
  • CT central control center
  • the central control center CT may determine which optical scanner 100 shows the abnormality.
  • the abnormality of the optical scanner 100 may be, for example, a lowering of the rotational speed of the rotating body 120R, inability to detect light, a period abnormality of the reference light, and the like.

Abstract

An optical scanner is disclosed. The optical scanner of the present invention comprises: a housing; a rotating body which rotates inside the housing; a first reflective surface which forms the outer surface of the rotating body; a second reflective surface which forms the outer surface of the rotating body; a shade which is located between the first reflective surface and the second reflective surface and is extended from the rotating body toward the inner surface of the housing; a light emitting part which supplies light to the first reflective surface; and a light receiving part which detects light reflected from the second reflective surface.

Description

광 스캐너Optical scanner
본 발명은 광범위한 영역을 감지할 수 있는 광 스캐너에 관한 것이다.The present invention relates to an optical scanner capable of sensing a wide range of areas.
특정 영역에 대한 특이사항의 감지 또는 감시를 위한 전자 디바이스가 개발되고 있다. 사회가 복잡해지고, 다변화되면서 국가의 치안의 부족을 보완하거나 기업 또는 개인의 기밀사항이 외부로 유출되는 것을 방지하기 위해 이러한 디바이스의 수요가 증대되고 있다. 또한, 안전의 확보 등을 목적으로 영역을 출입하는 인원을 정확하게 인식해야 할 필요성이 증가되고 있다.Electronic devices have been developed for the detection or monitoring of specificities in specific areas. As societies become more complex and diversified, the demand for these devices is increasing to make up for the lack of national security or to prevent the leakage of corporate or personal confidential information. In addition, the necessity of accurately recognizing the personnel entering and leaving the area for the purpose of securing safety and the like is increasing.
이러한 기능을 수행하는 종래의 디바이스는 그 감지 또는 감시 영역이 매우 제한되거나 협소하여 감시망을 피할 수 있는 여지가 있었다. 이에, 광범위한 영역을 감지 또는 감시할 수 있는 전자 디바이스의 개발이 요구되고 있다.일반적으로 레이저 광을 이용하여 물체의 거리 등을 검출하는 전자 디바이스를 광 스캐너, 레이저 스캐너 등으로 호칭한다. 본 발명에서는, 광 스캐너의 광원이 레이저인 경우로 설명하고 있으나 레이저에 한정되는 것은 아니다.Conventional devices that perform these functions have room to avoid surveillance networks because their sensing or surveillance areas are very limited or narrow. Accordingly, there is a demand for the development of electronic devices capable of detecting or monitoring a wide range of areas. In general, electronic devices for detecting the distance of an object using laser light and the like are called optical scanners or laser scanners. In the present invention, the light source of the optical scanner is described as being a laser, but is not limited to the laser.
광 스캐너는 LRF(Laser Range Finder), TOF(Time of Flight), LiDAR(Light Detrction and Ranging) 등을 예로 들 수 있다. 종래의 광학 스캐닝 장치는 수평 방향의 각도 범위 측정에 적합하고, 각각의 각도 방향에 대하여 탐지 공간에 존재하는 물체의 거리 정보를 산출한다. 레이저 광은 광 편향장치에 의해서 스캐닝 영역을 주기적으로 스캔한다. 탐지 물체에 의해 돌아오는 레이저 광은 센서에 의해 감지되고 제어부에 의해 평가된다. 탐지 물체의 각도 위치는 광편향장치의 각도 위치 정보에 기반하여 결정된다. 탐지 물체의 거리 정보는 제어부에서 TOF에 기반하여 결정된다.The optical scanner may include, for example, a laser range finder (LRF), a time of flight (TOF), a light detection and ranging (LIDAR), and the like. Conventional optical scanning devices are suitable for measuring the angular range in the horizontal direction, and calculate distance information of an object present in the detection space for each angular direction. The laser light periodically scans the scanning area by the optical deflector. The laser light returned by the detection object is detected by the sensor and evaluated by the controller. The angular position of the detection object is determined based on the angular position information of the optical deflector. Distance information of the detection object is determined based on the TOF in the controller.
종래의 광학 스캐닝 장치는 TOF를 결정하기 위하여 2가지의 기본원리를 이용한다. 첫째, 연속적인 광을 모듈레이션하고 전송광과 수신광 사이의 위상차를 평가하는 방법이 있다. 둘째, 광출력기가 상대적으로 강한 출력의 단속적인 펄스들을 방출하고, 전송광에서 수신광 까지의 TOF를 측정하여 거리를 산출하는 방법이 있다. 탐지 영역에 보호구역을 설정하여 탐지 물체의 침입이 인식되면 광학 스캐닝 장치는 안전 신호를 출력한다. 안전구역 내에 존재하는 정적인 물체의 경우는 사전 teaching을 통하여 안전 구역으로 침입이 허용된다. Conventional optical scanning devices use two basic principles to determine the TOF. First, there is a method of modulating the continuous light and evaluating the phase difference between the transmitted light and the received light. Second, there is a method in which the optical output emits intermittent pulses of relatively strong output and calculates the distance by measuring the TOF from the transmission light to the reception light. When the intrusion of the detection object is recognized by setting a protected area in the detection area, the optical scanning device outputs a safety signal. In the case of static objects existing in the safety zone, intrusion into the safety zone is allowed through pre-teaching.
일본특허공개공보 제2001-51225호 및 일본특허공개공보 제2014-48313호는 광학 스캐닝과 관련될 수 있는 회전다면경에 관한 내용을 개시한다.Japanese Patent Laid-Open No. 2001-51225 and Japanese Patent Laid-Open No. 2014-48313 disclose the contents of a rotating face mirror that can be associated with optical scanning.
본 발명은 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다. 또 다른 목적은 광범위한 영역을 스캐닝할 수 있는 광 스캐너를 제공하는 것일 수 있다.It is an object of the present invention to solve the above and other problems. Another object may be to provide an optical scanner capable of scanning a wide range of areas.
또 다른 목적은 2D 또는 3D 영역을 감지 또는 감시할 수 있는 광 스캐너를 제공하는 것일 수 있다.Another object may be to provide an optical scanner capable of sensing or monitoring a 2D or 3D area.
또 다른 목적은 광간섭을 최소화할 수 있는 광 스캐너를 제공하는 것일 수 있다.Another object may be to provide an optical scanner capable of minimizing optical interference.
또 다른 목적은 감지 또는 감시 효율을 향상시키되, 디바이스의 크기를 최소화할 수 있는 광 스캐너를 제공하는 것일 수 있다.Still another object may be to provide an optical scanner that can improve the efficiency of sensing or monitoring while minimizing the size of the device.
또 다른 목적은 기준 광의 경로를 효율적으로 운용할 수 있는 광 스캐너를 제공하는 것일 수 있다.Still another object may be to provide an optical scanner capable of efficiently operating a path of reference light.
또 다른 목적은 온라인을 통하여 기기의 이상여부를 판단할 수 있는 광 스캐너를 제공하는 것일 수 있다.Still another object may be to provide an optical scanner that can determine whether an abnormality of the device through the online.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 하우징; 상기 하우징 내부에서 회전하며, 다수의 반사면을 포함하는 회전체; 상기 회전체로부터 상기 하우징의 내면을 향해 연장되되, 상기 다수의 반사면 각각을 제1 반사면과 제2 반사면으로 분리하는 차광판; 상기 제1 반사면에 빛을 제공하는 발광부; 그리고, 상기 제2 반사면에서 반사되는 빛을 감지하는 수광부를 포함하는 광 스캐너를 제공한다.According to an aspect of the present invention to achieve the above or another object, a housing; A rotating body rotating in the housing and including a plurality of reflective surfaces; A light shielding plate extending from the rotating body toward an inner surface of the housing and separating each of the plurality of reflective surfaces into a first reflective surface and a second reflective surface; A light emitting unit providing light to the first reflective surface; And, it provides an optical scanner including a light receiving unit for detecting the light reflected from the second reflecting surface.
상기 하우징의 내면에서 상기 차광판을 향해 연장된 쉴드부를 더 포함하며, 상기 차광판과 상기 쉴드부는 적어도 일부가 오버랩(overlap)될 수 있다.The shield may further include a shield extending from the inner surface of the housing toward the light blocking plate, and the light blocking plate and the shield part may overlap at least a part of the shielding part.
상기 차광판은, 일단에 단차가 형성되고, 상기 쉴드부는, 상기 단차에 대응된 단차가 형성될 수 있다.The light blocking plate may have a step formed at one end thereof, and the shield may have a step corresponding to the step.
상기 쉴드부는, 적어도 일부에 홈이 형성되며, 상기 차광판은, 상기 쉴드부에 삽입되는 단차부를 구비할 수 있다.The shield may have a groove formed in at least a portion thereof, and the light blocking plate may include a stepped portion inserted into the shield.
상기 제1 반사면은, 상기 회전체의 상부에 위치하고, 상기 제2 반사면은, 상기 회전체의 하부에 위치할 수 있다.The first reflecting surface may be located above the rotating body, and the second reflecting surface may be located below the rotating body.
상기 제1 반사면의 좌우 너비는 상기 제2 반사면의 좌우 너비와 다를 수 있다.The left and right widths of the first reflective surface may be different from the left and right widths of the second reflective surface.
상기 제1 반사면은 복수개가 구비되고, 상기 복수개의 제1 반사면은 상기 회전체의 회전중심을 향해 서로 다른 기울기를 가지고, 상기 제2 반사면은 복수개가 구비되고, 상기 복수개의 제2 반사면은 상기 회전체의 회전중심을 향해 서로 다른 기울기를 가질 수 있다.The plurality of first reflecting surfaces are provided, the plurality of first reflecting surfaces have different inclinations toward the center of rotation of the rotating body, and the plurality of second reflecting surfaces is provided, and the plurality of second vanes The slope may have different inclination toward the center of rotation of the rotating body.
상기 제1 반사면은 상기 회전체의 상부를 형성하고, 상기 제2 반사면은 상기 회전체의 하부를 형성하되, 상기 제2 반사면의 면적은 상기 제1 반사면의 면적보다 넓을 수 있다.The first reflecting surface may form an upper portion of the rotating body, and the second reflecting surface may form a lower portion of the rotating body, and an area of the second reflecting surface may be wider than that of the first reflecting surface.
상기 제1 반사면에서 돌출된 제1 기준반사면(referecne reflector); 그리고, 상기 제2 반사면에서 돌출된 제2 기준반사면;을 더 포함할 수 있다.A first reference reflector protruding from the first reflecting surface; And a second reference reflecting surface protruding from the second reflecting surface.
상기 차광판에는, 상기 제1 기준반사면과 상기 제2 기준반사면 사이에 형성된 슬릿을 더 포함할 수 있다.The light blocking plate may further include a slit formed between the first reference reflection surface and the second reference reflection surface.
상기 제1 기준반사면은, 상기 발광부와 상기 제2 기준반사면을 바라보도록 기울어져 있고, 상기 제2 기준반사면은, 상기 수광부와 상기 제1 기준반사면을 바라보도록 기울어져 있는 형태일 수 있다.The first reference reflective surface is inclined to face the light emitting part and the second reference reflective surface, and the second reference reflective surface is inclined to face the light receiving portion and the first reference reflective surface. Can be.
상기 제1 기준반사면은, 상기 제1 반사면의 적어도 일 변(edge)에 인접하여 위치하고, 상기 제2 기준반사면은, 상기 제1 기준반사면에 대응되도록 상기 제1 기준반사면의 하부에 위치할 수 있다.The first reference reflective surface is positioned adjacent to at least one edge of the first reflective surface, and the second reference reflective surface is lower than the first reference reflective surface so as to correspond to the first reference reflective surface. It can be located at
상기 제1 반사면과 상기 제2 반사면은, 상기 회전체의 측면을 순차적으로 형성하여, 상기 회전체의 평단면이 다각형이 될 수 있다.The first reflecting surface and the second reflecting surface may sequentially form side surfaces of the rotating body so that a flat cross section of the rotating body may be polygonal.
상기 하우징의 외면에 위치하는 제1 및 제2 기준반사면;을 더 포함하고, 상기 제1 기준반사면은, 상기 제1 반사면의 높이에 위치하고, 상기 제2 기준반사면은, 상기 제2 반사면의 높이에 위치하고, 상기 하우징은, 상기 제1 반사면 및 상기 제1 기준반사면 사이에 형성되는 제1 홀, 그리고, 상기 제2 반사면 및 상기 제2 기준반사면 사이에 형성되는 제2 홀을 구비할 수 있다.First and second reference reflecting surfaces positioned on an outer surface of the housing, wherein the first reference reflecting surfaces are positioned at a height of the first reflecting surface, and the second reference reflecting surfaces are the second Located at the height of the reflective surface, the housing, the first hole formed between the first reflective surface and the first reference reflective surface, and the second formed between the second reflective surface and the second reference reflective surface 2 holes can be provided.
상기 수광부와 상기 제2 반사면 사이에 위치하는 반사판;을 더 포함하고, 상기 반사판은 상기 수광부와 상기 제2 반사면 사이의 광경로 상에 위치할 수 있다.And a reflector disposed between the light receiver and the second reflective surface, wherein the reflector may be positioned on an optical path between the light receiver and the second reflective surface.
상기 수광부 및 상기 발광부와 상기 회전체 사이에 위치하여, 상기 제2 반사면으로부터의 빛을 상기 수광부로 반사하는 반사판;을 더 포함하되, 상기 반사판은, 상기 발광부에 대응되는 홀을 포함할 수 있다.A reflector disposed between the light receiver and the light emitter and the rotating body to reflect light from the second reflecting surface to the light receiver, wherein the reflector includes a hole corresponding to the light emitter. Can be.
상기 발광부 및 상기 수광부는, 상기 하우징의 외부에 위치하고, 상기 하우징은, 상기 발광부와 상기 제1 반사면 사이에 형성된 제1 개구부(opening), 그리고, 상기 수광부와 상기 제2 반사면 사이에 형성된 제2개구부 구비할 수 있다.The light emitting portion and the light receiving portion are located outside the housing, and the housing includes a first opening formed between the light emitting portion and the first reflective surface, and between the light receiving portion and the second reflective surface. The formed second opening may be provided.
상기 수광부와 상기 제2 반사면 사이에 위치하는 반사판;을 더 포함하고, 상기 제2 개구부는, 상기 제2 반사면과 상기 반사판 사이에 형성되고, 상기 발광부와 상기 수광부는 서로 이격될 수 있다.And a reflector disposed between the light receiver and the second reflector, wherein the second opening is formed between the second reflector and the reflector, and the light emitter and the light receiver are spaced apart from each other. .
상기 발광부와 상기 수광부는, 하나의 PCB기판 상에 위치할 수 있다.The light emitting unit and the light receiving unit may be located on one PCB substrate.
본 발명에 따른 광 스캐너의 효과에 대해 설명하면 다음과 같다.The effects of the optical scanner according to the present invention will be described below.
본 발명의 실시 예들 중 적어도 하나에 의하면, 광범위한 영역을 스캐닝할 수 있다.According to at least one of the embodiments of the present invention, a wide area may be scanned.
본 발명의 실시 예들 중 적어도 하나에 의하면, 2D 또는 3D 영역을 감지 또는 감시할 수 있다.According to at least one of the embodiments of the present invention, the 2D or 3D area may be detected or monitored.
본 발명의 실시 예들 중 적어도 하나에 의하면, 광간섭을 최소화할 수 있다.According to at least one of the embodiments of the present invention, it is possible to minimize the optical interference.
본 발명의 실시 예들 중 적어도 하나에 의하면, 감지 또는 감시 효율을 향상시키되, 디바이스의 크기를 최소화할 수 있다.According to at least one of the embodiments of the present invention, it is possible to improve the sensing or monitoring efficiency, but to minimize the size of the device.
본 발명의 실시 예들 중 적어도 하나에 의하면, 기준 광의 경로를 효율적으로 운용할 수 있다.According to at least one of the embodiments of the present invention, it is possible to efficiently operate the path of the reference light.
본 발명의 실시 예들 중 적어도 하나에 의하면, 온라인을 통하여 기기의 이상여부를 판단할 수 있다.According to at least one of the embodiments of the present invention, it is possible to determine whether the device is abnormal through online.
본 발명의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 본 발명의 사상 및 범위 내에서 다양한 변경 및 수정은 통상의 기술자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 발명의 바람직한 실시 예와 같은 특정 실시 예는 단지 예시로 주어진 것으로 이해되어야 한다. Further scope of the applicability of the present invention will become apparent from the following detailed description. However, various changes and modifications within the spirit and scope of the present invention can be clearly understood by those skilled in the art, and therefore, specific embodiments, such as the detailed description and the preferred embodiment of the present invention, should be understood as given by way of example only.
도 1 내지 9는 본 발명의 일 실시예에 따른 광 스캐너의 스캐닝의 예들을 도시한 도면이다.1 to 9 illustrate examples of scanning of an optical scanner according to an embodiment of the present invention.
도 10 내지 20은 본 발명의 일 실시예에 따른 광 스캐너의 광간섭 차단의 예들을 도시한 도면이다.10 to 20 illustrate examples of optical interference blocking of an optical scanner according to an embodiment of the present invention.
도 21 내지 30은 본 발명의 일 실시예에 따른 기준 광경로의 예들을 도시한 도면이다.21 to 30 illustrate examples of a reference light path according to an embodiment of the present invention.
도 31내지 33은 본 발명의 일 실시예에 따른 광 스캐너의 일 예를 도시한 도면이다. 31 to 33 are views illustrating an example of an optical scanner according to an embodiment of the present invention.
도 34는 본 발명의 일 실시예에 따른 광 스캐너의 블록도를 도시한 도면이고, 도 35는 본 발명의 일 실시예에 따른 광 스캐너의 이상 감지의 일 예를 도시한 도면이다.34 is a block diagram of an optical scanner according to an embodiment of the present invention, and FIG. 35 is a diagram illustrating an example of abnormality detection of the optical scanner according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings, and the same or similar components are denoted by the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted. The suffixes "module" and "unit" for components used in the following description are given or used in consideration of ease of specification, and do not have distinct meanings or roles from each other. In addition, in describing the embodiments disclosed herein, when it is determined that the detailed description of the related known technology may obscure the gist of the embodiments disclosed herein, the detailed description thereof will be omitted. In addition, the accompanying drawings are intended to facilitate understanding of the embodiments disclosed herein, but are not limited to the technical spirit disclosed herein by the accompanying drawings, all changes included in the spirit and scope of the present invention. It should be understood to include equivalents and substitutes.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, the terms "comprises" or "having" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
도 1 내지 8은 본 발명의 일 실시예에 따른 광 스캐너의 스캐닝의 예들을 도시한 도면이다.1 to 8 illustrate examples of scanning of an optical scanner according to an embodiment of the present invention.
도 1을 참조하면, 광 스캐너(100)는 발광소자(110), 그리고 반사면(120)을 포함할 수 있다. 발광소자(110)는 빛을 제공할 수 있다. 발광소자(110)는 직진성이 유지되는 빛을 제공할 수 있다. 예를 들어, 발광소자(110)는 레이저 다이오드(LD)일 수 있다. 반사면(120)은 빛을 반사시킬 수 있다. 반사면(120)은 거울일 수 있고, 반사율이 높은 물질로 도포된 면일 수도 있다. 반사면(120)은 회전할 수 있다. 반사면(120)이 회전을 하면, 발광소자(110)가 제공하는 빛의 경로는 변화할 수 있다. 예를 들어, 빛의 경로가 L1에서 반사면(120)이 회전하면 L2로 변화할 수 있다. 빛의 경로는 반사면(120)의 회전에 따라 L1에서 L5로 변화할 수 있다. 반사면(120)의 회전은 x 및 y 축 평면 상일 수 있다.Referring to FIG. 1, the optical scanner 100 may include a light emitting device 110 and a reflective surface 120. The light emitting device 110 may provide light. The light emitting device 110 may provide light in which straightness is maintained. For example, the light emitting device 110 may be a laser diode LD. The reflective surface 120 may reflect light. The reflective surface 120 may be a mirror or a surface coated with a material having high reflectance. The reflective surface 120 may rotate. When the reflective surface 120 rotates, the path of light provided by the light emitting device 110 may change. For example, the light path may change from L1 to L2 when the reflective surface 120 rotates. The path of the light may change from L1 to L5 according to the rotation of the reflective surface 120. Rotation of the reflective surface 120 may be on the x and y axis planes.
도 2 를 참조하면, 광 스캐너(100)는 복수개의 반사면(120)을 포함할 수 있다. 복수개의 반사면(120)은 순차적으로 발광소자(110)가 제공하는 빛의 경로를 변화시킬 수 있다. 복수개의 반사면(120)은 회전체(120R)의 외면에 구비될 수 있다. Referring to FIG. 2, the optical scanner 100 may include a plurality of reflective surfaces 120. The plurality of reflective surfaces 120 may sequentially change the path of light provided by the light emitting device 110. The plurality of reflective surfaces 120 may be provided on the outer surface of the rotating body 120R.
회전체(120R)는 사각형일 수 있고, 반사면(120a,120b,120c,120d)은 회전체(120R)의 외면에 구비될 수 있다. 즉, 반사면(120a,120b,120c,120d)이 사각형의 변 또는 사각기둥의 면을 형성할 수 있음을 의미한다. The rotating body 120R may have a quadrangular shape, and the reflective surfaces 120a, 120b, 120c, and 120d may be provided on an outer surface of the rotating body 120R. That is, it means that the reflective surfaces 120a, 120b, 120c, and 120d may form a square side or a square pillar surface.
다른 예를 들면, 회전체(120R)는 삼각형일 수 있고, 반사면(120a,120b,120c)은 회전체(120R)의 외면에 구비될 수 있다. 즉, 반사면(120a,120b,120c)이 삼각형의 변 또는 삼각기둥의 면을 형성할 수 있음을 의미한다. For another example, the rotor 120R may be triangular, and the reflective surfaces 120a, 120b, and 120c may be provided on the outer surface of the rotor 120R. That is, the reflective surfaces 120a, 120b, and 120c may form sides of triangles or surfaces of triangle columns.
다른 예를 들면, 회전체(120R)는 오각형일 수 있고, 반사면(120a,120b,120c,120d,120e)은 회전체(120R)의 외면에 구비될 수 있다. 즉, 반사면(120a,120b,120c,120d,120e)이 오각형의 변 또는 오각기둥의 면을 형성할 수 있음을 의미한다. As another example, the rotating body 120R may be pentagonal, and the reflective surfaces 120a, 120b, 120c, 120d, and 120e may be provided on an outer surface of the rotating body 120R. That is, the reflective surfaces 120a, 120b, 120c, 120d, and 120e may form pentagonal sides or pentagonal pillar surfaces.
반사면(120)의 수가 증가하면, 광 스캐너(100)가 감지 또는 감시할 수 있는 영역의 스캐닝 텀(scanning term)은 감소될 수 있다. 다시 말해, 광 스캐너(100)가 빠른 속도로 스캔영역(SA)을 스캐닝할 수 있음을 의미한다. 광 스캐너(100)는 더 많은 반사면(120)을 구비할 수 있다.As the number of reflective surfaces 120 increases, the scanning term of the area that the optical scanner 100 can detect or monitor may be reduced. In other words, it means that the optical scanner 100 can scan the scan area SA at a high speed. The optical scanner 100 may have more reflective surfaces 120.
도 3을 참조하면, 광 스캐너(100)는 제1 반사면(1201), 제2 반사면(1202), 발광소자(110), 그리고 수광센서(130)를 포함할 수 있다. 발광소자(110)는 제1 반사면(1201)에 빛을 제공할 수 있다. 발광소자(110)에서 제공되는 빛은 제1 반사면(1201)에 반사되어 광 스캐너(100)의 외부로 나아갈 수 있다. 이때, 제1 반사면(1201)이 회전하면, 발광소자(110)에서 제공되는 빛의 경로는 변할 수 있다. 예를 들면, 빛의 경로는 L1에서 L4로 변할 수 있다.Referring to FIG. 3, the optical scanner 100 may include a first reflecting surface 1201, a second reflecting surface 1202, a light emitting device 110, and a light receiving sensor 130. The light emitting device 110 may provide light to the first reflective surface 1201. Light provided from the light emitting device 110 may be reflected by the first reflecting surface 1201 to the outside of the optical scanner 100. At this time, when the first reflective surface 1201 rotates, the path of light provided from the light emitting device 110 may change. For example, the path of light can change from L1 to L4.
광 스캐너(100)의 외부에서 광 스캐너(100) 내부로 유입되는 빛은 제2 반사면(1202)에 제공될 수 있다. 광 스캐너(100)의 외부에서 제공되는 빛은 제2 반사면(1202)에 반사되어 수광센서(130)를 향할 수 있다. 이때, 수광센서(130)가 감지하는 빛은 스캔영역(SA)의 정보를 가질 수 있다. 다시 말해, 스캔영역(SA)의 정보는 스캔영역(SA) 상에 물체가 존재하는지 여부에 대한 정보일 수 있다.Light flowing into the optical scanner 100 from the outside of the optical scanner 100 may be provided to the second reflective surface 1202. Light provided from the outside of the optical scanner 100 may be reflected by the second reflecting surface 1202 to face the light receiving sensor 130. In this case, the light detected by the light receiving sensor 130 may have information of the scan area SA. In other words, the information of the scan area SA may be information about whether an object exists on the scan area SA.
도 4를 참조하면, 반사면(120)은 소정각도를 지닐 수 있다. 소정의 각도는 z축을 기준으로 변할 수 있다. 예를 들어, 반사면(120)이 θ1의 각도를 지니는 경우, 빛의 경로는 L1일 수 있다. 반사면(120)이 θ2의 각도를 지니는 경우, 빛의 경로는 L2일 수 있고, 반사면(120)이 θ3의 각도를 지니는 경우, 빛의 경로는 L3일 수 있다. 즉, 반사면(120)의 기울기에 따라서 빛의 경로는 변할 수 있음을 의미한다.Referring to FIG. 4, the reflective surface 120 may have a predetermined angle. The predetermined angle may vary with respect to the z axis. For example, when the reflective surface 120 has an angle of θ1, the path of light may be L1. When the reflective surface 120 has an angle of θ2, the path of light may be L2, and when the reflective surface 120 has an angle of θ3, the path of light may be L3. That is, the path of the light may change according to the inclination of the reflective surface 120.
도 5를 참조하면, 반사면(120)은 제1 각도면(120a), 그리고 제2 각도면(120b)을 구비할 수 있다. 제1 각도면(120a)은 회전체(120R)의 일면에 형성되고, 제2 각도면(120b)은 회전체(120R)의 타면에 형성될 수 있다. 도 6을 참조하여 설명한 바와 같이, 제1 각도면(120a)에 반사된 빛의 경로와 제2 각도면(120b)에 반사된 빛의 경로는 서로 다를 수 있다. 즉, 회전체(120R)가 회전하면, 반사면(120)에 반사되는 빛의 경로가 변할 수 있음을 의미한다. 이때, 반사면(120)에 반사되는 빛의 경로는 z 축 상의 변화일 수 있다.Referring to FIG. 5, the reflective surface 120 may include a first angle surface 120a and a second angle surface 120b. The first angle surface 120a may be formed on one surface of the rotating body 120R, and the second angle surface 120b may be formed on the other surface of the rotating body 120R. As described with reference to FIG. 6, the path of the light reflected on the first angle plane 120a and the path of the light reflected on the second angle plane 120b may be different from each other. That is, when the rotating body 120R rotates, it means that the path of light reflected by the reflecting surface 120 may be changed. In this case, the path of the light reflected by the reflective surface 120 may be a change on the z axis.
도 6을 참조하면, 제1 각도면(120a)과 제2 각도면(120b)이 회전함에 따라 발광소자(110)에서 제공되어 반사면(120)에 반사되는 빛의 경로는 변할 수 있다. 이에 따라, 광 스캐너(100)의 외부에 스캔영역(SA)이 형성될 수 있다. 스캔영역(SA)은 z축 상에 형성될 수 있다. 예를 들면, 제1 각도면(120a)에 의해 반사되는 빛의 경로가 L1일 수 있고, 제2 각도면(120b)에 의해 반사되는 빛의 경로가 L2일 수 있다. L1과 L2의 경로는 z축 상에 놓일 수 있다.Referring to FIG. 6, as the first angle plane 120a and the second angle plane 120b rotate, the path of the light provided by the light emitting device 110 and reflected on the reflective surface 120 may be changed. Accordingly, the scan area SA may be formed outside the optical scanner 100. The scan area SA may be formed on the z axis. For example, the path of light reflected by the first angle plane 120a may be L1, and the path of light reflected by the second angle plane 120b may be L2. The paths of L1 and L2 may lie on the z axis.
도 2 내지 7을 참조하면, 반사면(120)은 복수개의 각도면(120a,120b,120c,120d)을 구비할 수 있다. 복수개의 각도면(120a,120b,120c,120d)은 4개의 각도면일 수 있다. 4개의 각도면은, 예를 들면, z축을 기준으로 0도, 2도, 4도, 그리고 6도일 수 있다. 이에 따라, 광 스캐너(100)는 서로 다른 복수개의 평면으로 스캔영역(SA)을 형성할 수 있다. 즉, 광 스캐너(100)는 제1 스캔거리(SL1), 그리고 제2 스캔거리(SL2)를 포함하는 스캔영역(SA)을 감지 또는 감시할 수 있다. 이때, 스캔영역(SA)은, 예를 들면, 제1 평면(D1), 제2 평면(D2), 제3 평면(D3), 그리고 제4 평면(D4)을 포함할 수 있다. 여기서, 제1 평면(D1)은 각도면(120a)이 0도 일 때, 제2 평면(D2)은 각도면(120b)이 2도일 때, 제3 평면(D3)은 각도면(120c)이 4도일 때, 제4 평면(D4)은 각도면(120d)이 6도일 때 형성될 수 있다. 스캔영역(SA)은 방사 형태 및/또는 부채꼴 형태일 수 있다. 예를 들어, 제1,2 스캔거리(SL1, SL2)에 의하여 특정되는 영역 내부가 스캔영역(SA)으로 될 수 있음을 의미한다.2 to 7, the reflective surface 120 may include a plurality of angular surfaces 120a, 120b, 120c, and 120d. The plurality of angle planes 120a, 120b, 120c, and 120d may be four angle planes. The four angle planes may be, for example, 0 degrees, 2 degrees, 4 degrees, and 6 degrees with respect to the z axis. Accordingly, the optical scanner 100 may form the scan area SA in a plurality of different planes. That is, the optical scanner 100 may detect or monitor the scan area SA including the first scan distance SL1 and the second scan distance SL2. In this case, the scan area SA may include, for example, a first plane D1, a second plane D2, a third plane D3, and a fourth plane D4. Here, when the angular plane 120a is 0 degrees, the first plane D1 is the second plane D2 when the angular plane 120b is 2 degrees, and the third plane D3 is the angular plane 120c. At 4 degrees, the fourth plane D4 may be formed when the angle plane 120d is 6 degrees. The scan area SA may be radial and / or fan-shaped. For example, it means that the inside of the area specified by the first and second scan distances SL1 and SL2 may be the scan area SA.
도 8을 참조하면, 발광소자(110)에서 제공되는 빛은 제1 반사면(1201)에 의해 반사되어 물체를 향할 수 있다. 물체로 향하는 빛은 물체에서 반사되어 제2 반사면(1202)을 향할 수 있다. 물체에서 반사되어 제2 반사면(1202)을 향하는 빛은 제2 반사면(1202)에서 반사되어 수광센서(130)를 향할 수 있고, 수광센서(130)는 이러한 빛을 감지할 수 있다. 이에 따라, 광 스캐너(100)는 물체의 유무에 대한 정보를 감지하거나 스캔영역(SA)에 물체가 있는지 여부를 감시할 수 있다. 이때, 앞서 설명한 바와 같이, 스캔영역(SA)은 2D 또는 3D로 형성될 수 있다. 즉, 광 스캐너(100)가 스캔영역(SA)을 감지 또는 감시하는 정밀도, 레인지 등이 향상될 수 있음을 의미한다.Referring to FIG. 8, light provided from the light emitting device 110 may be reflected by the first reflective surface 1201 to face an object. Light directed to the object may be reflected from the object and directed to the second reflective surface 1202. Light reflected from the object toward the second reflective surface 1202 may be reflected by the second reflective surface 1202 toward the light receiving sensor 130, and the light receiving sensor 130 may detect the light. Accordingly, the optical scanner 100 may detect information about the presence or absence of an object or monitor whether there is an object in the scan area SA. In this case, as described above, the scan area SA may be formed in 2D or 3D. That is, the accuracy, range, etc. of the optical scanner 100 that detects or monitors the scan area SA may be improved.
도 9내지 17은 본 발명의 일 실시예에 따른 광 스캐너의 광간섭 차단의 예들을 도시한 도면이다.9 to 17 illustrate examples of optical interference blocking of an optical scanner according to an embodiment of the present invention.
도 9를 참조하면, 광 스캐너(100)는 차광판(140)을 포함할 수 있다. 차광판(140)은 제1 반사면(1201)과 제2 반사면(1202) 사이에 위치할 수 있다. 차광판(140)은 제1 반사면(1201)과 제2 반사면(1202) 사이에서 제1 반사면(1201)과 제2 반사면(1202) 간의 광 이동을 차단할 수 있다. 다시 말해, 차광판(140)은 제1 반사면(1021)에 제공되는 빛(L1)이 제1 반사면(1201)에서 반사되어 제2 반사면(1202) 쪽으로 향하거나 제2 반사면(1202)에 제공되는 빛(L2)이 제2 반사면(1202)에서 반사되어 제1 반사면(1201) 쪽으로 향하는 것을 방지할 수 있다. 차광판(100)은 제1 및 제2 반사면(1201,1202)과 일체로 형성될 수 있다.Referring to FIG. 9, the light scanner 100 may include a light blocking plate 140. The light blocking plate 140 may be positioned between the first reflective surface 1201 and the second reflective surface 1202. The light blocking plate 140 may block light movement between the first reflective surface 1201 and the second reflective surface 1202 between the first reflective surface 1201 and the second reflective surface 1202. In other words, the light blocking plate 140 has the light L1 provided to the first reflecting surface 1021 reflected from the first reflecting surface 1201 and directed toward the second reflecting surface 1202 or the second reflecting surface 1202. Light L2 provided to the second reflection surface 1202 may be prevented from being directed toward the first reflection surface 1201. The light blocking plate 100 may be integrally formed with the first and second reflective surfaces 1201 and 1202.
제1 반사면(1201)에 제공되는 빛(L1)의 세기는 제2 반사면(1202)에 제공되는 빛(L2)의 세기에 비해서 현저히 강하다. 예를 들면, 도 9를 참조하여 설명한 발광소자(110)에서 제공되는 빛의 세기는 수광센서(130)의 감도에 비해서 수만배 또는 수억배 강할 수 있다. 이에, 발광소자(110)에서 제공되는 빛은 제1 반사면(1201)에서 반사하면서 분산광을 야기할 수 있다. 결과적으로, 이렇게 야기된 분산광은 제2 반사면(1202) 또는 수광소자(130)에 간섭현상을 발생시킬 수 있다. 이러한 간섭은 광 스캐너(100)의 작동불량으로 이어질 수 있는 중요한 문제이다.The intensity of the light L1 provided to the first reflective surface 1201 is significantly stronger than that of the light L2 provided to the second reflective surface 1202. For example, the intensity of light provided from the light emitting device 110 described with reference to FIG. 9 may be tens of thousands or hundreds of times stronger than the sensitivity of the light receiving sensor 130. Accordingly, the light provided from the light emitting device 110 may cause scattered light while reflecting from the first reflective surface 1201. As a result, the scattered light may cause interference in the second reflecting surface 1202 or the light receiving element 130. This interference is an important issue that can lead to malfunction of the optical scanner 100.
차광판(140)은 제1 반사면(1201)을 제2 반사면(1202)으로부터 광학적으로 격리시키거나 제2 반사면(1202)을 제1 반사면(1201)으로부터 광학적으로 격리시킴으로써 광 스캐너(100)의 정밀도를 향상시킬 수 있다. The light blocking plate 140 may optically isolate the first reflecting surface 1201 from the second reflecting surface 1202 or optically isolate the second reflecting surface 1202 from the first reflecting surface 1201. ) Accuracy can be improved.
도 10을 참조하면, 광 스캐너(100)는 제1 반사면(1201), 제2 반사면(1202), 차광판(140), 그리고 이너하우징(160)을 포함할 수 있다. 차광판(140)은 제1 반사면(1201) 그리고 제2 반사면(1202)을 구획할 수 있다. 이는, 앞서 설명한 바와 같이, 차광판(140)이 제1 반사면(1201)과 제2 반사면(1202)을 서로 광학적으로 격리시킬 수 있음을 의미한다. 차광판(140)은 제1 반사면(1201) 또는 제2 반사면(1202)의 외측방향으로 연장될 수 있다. 차광판(140)은 제1 단차부(1401), 그리고 제2 단차부(1402)를 구비할 수 있다. 제2 단차부(1402)는 제1 단차부(1401) 보다 외측방향으로 더 연장될 수 있다. 다시 말해, 제1 단차부(1401) 및 제2 단차부(1402)에 의해 차광판(140)은 일단에 단차가 형성될 수 있다.Referring to FIG. 10, the optical scanner 100 may include a first reflecting surface 1201, a second reflecting surface 1202, a light blocking plate 140, and an inner housing 160. The light blocking plate 140 may partition the first reflective surface 1201 and the second reflective surface 1202. This means that the light blocking plate 140 may optically isolate the first reflective surface 1201 and the second reflective surface 1202 from each other, as described above. The light blocking plate 140 may extend in an outward direction of the first reflective surface 1201 or the second reflective surface 1202. The light blocking plate 140 may include a first stepped part 1401 and a second stepped part 1402. The second stepped part 1402 may further extend outwardly than the first stepped part 1401. In other words, a step may be formed at one end of the light blocking plate 140 by the first step part 1401 and the second step part 1402.
제1,2 단차부(1401, 1402)는, 일체로 형성될 수 있다. 제1,2 단차부(1401, 1402)는, 회전체(120R)와 일체로 형상될 수 있다. 즉, 차광판(140)이 회전체(120R)의 수직방향으로 돌출되어 있고, 돌출된 끝단에 단차가 형성된 형태일 수 있음을 의미한다.The first and second stepped portions 1401 and 1402 may be integrally formed. The first and second stepped portions 1401 and 1402 may be integrally formed with the rotating body 120R. That is, the light blocking plate 140 may protrude in the vertical direction of the rotating body 120R, and may have a form in which a step is formed at the protruding end.
회전체(120R)는 제1 반사면(1201), 그리고 제2 반사면(1202)을 구비할 수 있다. 회전체(120R)는 이너하우징(160)의 내부에 위치할 수 있다. 이너하우징(160)은 전체적으로 실린더 형상일 수 있다. 즉, 회전체(120R)가 이너하우징(160)의 내부에서 회전할 수 있음을 의미한다. 이때, 제1 및 제2 반사면(1201,1202)은 이너하우징(160)의 내면을 마주할 수 있다. 이너하우징(160)은 광쉴드(150)를 구비할 수 있다. 광쉴드(150)는 차광판(140)의 제1 및 제2 단차부(1401,1402)에 대응하는 형상일 수 있다. 광쉴드(150)는 제1 쉴드부(1501), 그리고 제2 쉴드부(1502)를 구비할 수 있다. 제1 쉴드부(1501)는 제1 단차부(1401)와 인접하여 위치할 수 있다. 제2 쉴드부(1502)는 제2 단차부(1402)와 인접하여 위치할 수 있다. 제1 쉴드부(1501)는 제2 쉴드부(1502)와 단차를 형성할 수 있다. 제1 및 제2 단차부(1401,1402)와 제1 및 제2 쉴드부(1501,1502)에 의해서 빛이 차단될 수 있다. 다시 말해, 제1 반사면(1201)으로부터 제2 반사면(1202) 또는 제2 반사면(1202)으로부터 제1 반사면(1201)으로 향하는 빛은 여러 번 굴절되어 형성되는 광경로(LP)에 의해 차단될 수 있다. 즉, 제1 반사면(1201)과 제2 반사면(1202)이 서로 광학적으로 격리될 수 있음을 의미한다.The rotating body 120R may include a first reflecting surface 1201 and a second reflecting surface 1202. The rotating body 120R may be located inside the inner housing 160. The inner housing 160 may have a cylindrical shape as a whole. That is, it means that the rotor 120R can rotate inside the inner housing 160. In this case, the first and second reflective surfaces 1201 and 1202 may face the inner surfaces of the inner housing 160. The inner housing 160 may include an optical shield 150. The light shield 150 may have a shape corresponding to the first and second stepped portions 1401 and 1402 of the light blocking plate 140. The optical shield 150 may include a first shield part 1501 and a second shield part 1502. The first shield part 1501 may be positioned adjacent to the first stepped part 1401. The second shield portion 1502 may be positioned adjacent to the second stepped portion 1402. The first shield part 1501 may form a step with the second shield part 1502. Light may be blocked by the first and second stepped portions 1401 and 1402 and the first and second shield portions 1501 and 1502. In other words, the light from the first reflecting surface 1201 to the second reflecting surface 1202 or from the second reflecting surface 1202 to the first reflecting surface 1201 is refracted several times to the optical path LP formed. Can be blocked. That is, the first reflecting surface 1201 and the second reflecting surface 1202 may be optically isolated from each other.
이러한 차광판(140) 및 쉴드부(150)는 제1 반사면(1201)을 제2 반사면(1202)으로부터 광학적으로 격리시키거나 제2 반사면(1202)을 제1 반사면(1201)으로부터 광학적으로 격리시킴으로써 광 스캐너(100)의 정밀도를 향상시킬 수 있다. 이러한 구성은, 회전체(120R)가 먼저 안착된 후 이너하우징(160)이 회전체(120R) 주위에 장착되는 조립의 순서에서 유용할 수 있다.The light blocking plate 140 and the shield 150 may optically isolate the first reflecting surface 1201 from the second reflecting surface 1202 or optically isolate the second reflecting surface 1202 from the first reflecting surface 1201. The isolation of the optical scanner 100 can be improved. Such a configuration may be useful in the order of assembly in which the inner housing 160 is mounted around the rotating body 120R after the rotating body 120R is first seated.
도 11을 참조하면, 제1 단차부(1401)는 제2 단차부(1402) 보다 외측방향으로 더 연장될 수 있다. 다시 말해, 제1 단차부(1401) 및 제2 단차부(1402)에 의해 차광판(140)은 일단에 단차가 형성될 수 있다.Referring to FIG. 11, the first stepped part 1401 may further extend outwardly than the second stepped part 1402. In other words, a step may be formed at one end of the light blocking plate 140 by the first step part 1401 and the second step part 1402.
제1 쉴드부(1501)는 제1 단차부(1401)와 인접하여 위치할 수 있다. 제2 쉴드부(1502)는 제2 단차부(1402)와 인접하여 위치할 수 있다. 제1 쉴드부(1501)는 제2 쉴드부(1502)와 단차를 형성할 수 있다. The first shield part 1501 may be positioned adjacent to the first stepped part 1401. The second shield portion 1502 may be positioned adjacent to the second stepped portion 1402. The first shield part 1501 may form a step with the second shield part 1502.
제1 반사면(1201)으로부터 제2 반사면(1202) 또는 제2 반사면(1202)으로부터 제1 반사면(1201)으로 향하는 빛은 여러 번 굴절되어 형성되는 광경로(LP)에 의해 차단될 수 있다. 즉, 제1 반사면(1201)과 제2 반사면(1202)이 서로 광학적으로 격리될 수 있음을 의미한다. 이러한 구성은, 이너하우징(160)이 먼저 안착된 후 이너하우징(160) 내부에 회전체(120R)가 장착되는 조립의 순서에서 유용할 수 있다.Light from the first reflecting surface 1201 to the second reflecting surface 1202 or from the second reflecting surface 1202 to the first reflecting surface 1201 may be blocked by the optical path LP formed by refraction several times. Can be. That is, the first reflecting surface 1201 and the second reflecting surface 1202 may be optically isolated from each other. Such a configuration may be useful in the order of assembly in which the inner housing 160 is first seated and then the rotating body 120R is mounted in the inner housing 160.
도 12를 참조하면, 차광판(140)은 제1 단차부(1401), 제2 단차부(1402), 그리고 제3 단차부(1403)를 구비할 수 있다. 제2 단차부(1402)는 제1 단차부(1401) 및 제3 단차부(1403) 보다 외측방향으로 더 연장될 수 있다. 다시 말해, 제1 단차부(1401), 제2 단차부(1402), 그리고 제3 단차부(1403)에 의해 차광판(140)은 일단에 복수개의 단차가 형성될 수 있다.Referring to FIG. 12, the light blocking plate 140 may include a first stepped part 1401, a second stepped part 1402, and a third stepped part 1403. The second stepped part 1402 may further extend outwardly than the first stepped part 1401 and the third stepped part 1403. In other words, a plurality of steps may be formed at one end of the light blocking plate 140 by the first step part 1401, the second step part 1402, and the third step part 1403.
광쉴드(150)는 제1 쉴드부(1501), 제2 쉴드부(1502), 그리고 제3 쉴드부(1503)를 구비할 수 있다. 제1 쉴드부(1501)는 제1 단차부(1401)와 인접하여 위치할 수 있다. 제2 쉴드부(1502)는 제2 단차부(1402)와 인접하여 위치할 수 있다. 제3 쉴드부(1503)는 제3 단차부(1403)와 인접하여 위치할 수 있다. 제1 쉴드부(1501), 제2 쉴드부(1502), 그리고 제3 쉴드부(1503)는 전체적으로 홈을 형성할 수 있다.The optical shield 150 may include a first shield part 1501, a second shield part 1502, and a third shield part 1503. The first shield part 1501 may be positioned adjacent to the first stepped part 1401. The second shield portion 1502 may be positioned adjacent to the second stepped portion 1402. The third shield portion 1503 may be positioned adjacent to the third stepped portion 1403. The first shield portion 1501, the second shield portion 1502, and the third shield portion 1503 may form grooves as a whole.
제1 반사면(1201)으로부터 제2 반사면(1202) 또는 제2 반사면(1202)으로부터 제1 반사면(1201)으로 향하는 빛은 여러 번 굴절되어 형성되는 광경로(LP)에 의해 차단될 수 있다. 즉, 제1 반사면(1201)과 제2 반사면(1202)이 서로 광학적으로 격리될 수 있음을 의미한다. 이러한 구성은, 제1 반사면(1201)과 제2 반사면(1202)의 광학적 격리에 있어서 앞서 설명한 실시예들 보다 더 유리할 수 있다.광 스캐너(100) Light from the first reflecting surface 1201 to the second reflecting surface 1202 or from the second reflecting surface 1202 to the first reflecting surface 1201 may be blocked by the optical path LP formed by refraction several times. Can be. That is, the first reflecting surface 1201 and the second reflecting surface 1202 may be optically isolated from each other. Such a configuration may be more advantageous than the embodiments described above in optical isolation of the first reflective surface 1201 and the second reflective surface 1202.
도 13을 참조하면, 차광판(140)은 회전체(120R) 둘레에 위치할 수 있다. 차광판(140)은 반사면(120) 주위에 위치할 수 있다. 차광판(140)은 반사면(120)으로부터 x축 또는 y축 방향으로 돌출되도록 연장될 수 있다. 차광판(140)의 외곽은 반사면(120)에 적어도 인접하거나 일정 거리(D)를 두고 형성될 수 있다. 즉, 차광판(140)이 반사면(120)에서 반사되는 빛을 커버할 수 있음을 의미할 수 있다. 반사면(120)은 z축을 기준으로 서로 다른 각도를 지니는 제1 각도면(120a), 제2 각도면(120b), 제3 각도면(120c), 그리고 제4 각도면(120d)일 수 있다.Referring to FIG. 13, the light blocking plate 140 may be positioned around the rotor 120R. The light blocking plate 140 may be positioned around the reflective surface 120. The light blocking plate 140 may extend from the reflective surface 120 to protrude in the x-axis or y-axis direction. The outside of the light blocking plate 140 may be formed at least adjacent to the reflective surface 120 or at a predetermined distance D. That is, the light blocking plate 140 may mean that the light reflected from the reflective surface 120 may be covered. The reflective surface 120 may be a first angle plane 120a, a second angle plane 120b, a third angle plane 120c, and a fourth angle plane 120d having different angles with respect to the z axis. .
차광판(140)은, 제1,2 각도면(120a, 120b) 사이, 제2,3 각도면(120b, 120c) 사이, 제3,4 각도면(120c, 120d) 사이, 제4,1 각도면(120d, 120a) 사이에서 존재하지 않을 수 있다. 즉, 각 반사면(120)에서 반원형태로 돌출된 형태일 수 있음을 의미한다.The light shielding plate 140 is between the first and second angle planes 120a and 120b, between the second and third angle planes 120b and 120c, and between the third and fourth angle planes 120c and 120d, and the fourth and first angles. It may not be present between faces 120d and 120a. That is, it means that it may be a form protruding in a semi-circular shape on each reflective surface 120.
도 14를 참조하면, 차광판(140)은 반사면(120)으로부터 x축 또는 y축 방향으로 돌출되도록 연장될 수 있다. 차광판(140)의 외곽은 반사면(120)에 일정 거리(D)를 두고 형성될 수 있다. 즉, 차광판(140)이 반사면(120)에서 반사되는 빛을 커버할 수 있음을 의미할 수 있다. 예를 들어, 제4 각도면(120d)의 중앙으로부터 차광판(140) 일단의 거리를 D2라 하고, 제4 각도면(120d)의 일단변, 즉 제4 각도면(120d)과 제3 각도면(120c)이 만나는 변, 으로부터 차광판(140) 일단의 거리를 D1이라 하면, D2는 D1보다 클 수 있다.Referring to FIG. 14, the light blocking plate 140 may extend from the reflective surface 120 to protrude in the x-axis or y-axis direction. The outside of the light blocking plate 140 may be formed at a predetermined distance D from the reflective surface 120. That is, the light blocking plate 140 may mean that the light reflected from the reflective surface 120 may be covered. For example, a distance between one end of the light blocking plate 140 from the center of the fourth angled surface 120d is D2, and one side of the fourth angled surface 120d, that is, the fourth angled surface 120d and the third angled surface. When the distance between one end of the light blocking plate 140 from the side where 120c meets is D1, D2 may be greater than D1.
이에 따라, 제1 반사면(1201)에서 제2 반사면(1202)으로 향하는 빛 또는 제2 반사면(1202)에서 제1 반사면(1201)으로 향하는 빛의 차단이 보다 더 향상될 수 있다. Accordingly, the blocking of light from the first reflective surface 1201 to the second reflective surface 1202 or from the second reflective surface 1202 to the first reflective surface 1201 may be further improved.
도 15를 참조하면, 광 스캐너(100)는 발광소자(110), 제1 렌즈(170), 회전체(120R), 제1 및 제2 반사면(1201,1202), 차광판(140), 반사판(172), 제2 렌즈(171), 그리고 수광센서(130)를 포함할 수 있다.Referring to FIG. 15, the optical scanner 100 includes a light emitting element 110, a first lens 170, a rotating body 120R, first and second reflecting surfaces 1201 and 1202, a light blocking plate 140, and a reflecting plate. 172, a second lens 171, and a light receiving sensor 130.
발광소자(110)에서 제공되는 빛은 제1 렌즈(170)를 통해 제1 반사면(1201)으로 향할 수 있다. 제1 반사면(1201)에서 반사되는 빛은 광 스캐너(100)의 외부로 나갈 수 있다. 광 스캐너(100) 외부에서 내부로 유입되는 빛은 제2 반사면(1202)에 반사되어 반사판(172)으로 향할 수 있다. 반사판(172)에서 반사되는 빛은 제2 렌즈(171)를 통해 수광센서(130)에 감지될 수 있다. 이때, 차광판(140)은 제1 반사면(1201)에서 반사되는 빛, 그리고 제2 반사면(1202)에서 반사되는 빛의 상호 간섭을 방지할 수 있다. 이에 따라, 광 스캐너(100)의 오작동이 방지될 수 있고, 광 스캐너(100)의 정밀도가 향상될 수 있다.Light provided from the light emitting device 110 may be directed to the first reflective surface 1201 through the first lens 170. Light reflected from the first reflecting surface 1201 may go out of the optical scanner 100. Light flowing from the outside of the optical scanner 100 to the inside may be reflected by the second reflecting surface 1202 to the reflecting plate 172. Light reflected from the reflector 172 may be detected by the light receiving sensor 130 through the second lens 171. In this case, the light blocking plate 140 may prevent mutual interference of light reflected from the first reflective surface 1201 and light reflected from the second reflective surface 1202. Accordingly, malfunction of the optical scanner 100 can be prevented, and the accuracy of the optical scanner 100 can be improved.
제2 렌즈(171)의 크기는 제1 렌즈(170)의 크기 보다 더 클 수 있다. 이는, 제2 렌즈(171)의 일 직경이 제1 렌즈(170)의 일 직경 보다 클 수 있음을 의미할 수 있다. 제2 렌즈(171)는 필요에 따라 외곽이 직선으로 가공될 수 있다. 제2 렌즈(171)의 크기와 제1 렌즈(170)의 크기의 상관관계는 제2 반사면(1202)과 제1 반사면(1201)의 크기에 따라 형성될 수 있다.The size of the second lens 171 may be larger than the size of the first lens 170. This may mean that one diameter of the second lens 171 may be larger than one diameter of the first lens 170. The outer edge of the second lens 171 may be processed in a straight line as necessary. The correlation between the size of the second lens 171 and the size of the first lens 170 may be formed according to the size of the second reflecting surface 1202 and the first reflecting surface 1201.
도 16 내지 25는 본 발명의 일 실시예에 따른 기준 광경로의 예들을 도시한 도면이다.16 to 25 illustrate examples of a reference light path according to an embodiment of the present invention.
도 16을 참조하면, 제2 반사면(1202)의 높이(H2)는 제1 반사면(1201)의 높이(H1) 보다 높을 수 있다. 제1 반사면(1201)은 발광소자(110)에서 제공되는 빛을 광 스캐너(100)의 외부로 반사시키고, 제2 반사면(1202)은 광 스캐너(100) 외부에서 유입되는 빛을 수광센서(130)가 감지할 수 있도록 반사시키는 것으로, 제2 반사면(1202)의 유효면적이 증대되는 것은 광 스캐너(100)의 작동에 유의미하다. 이때, 제1 반사면(1201)과 제2 반사면(1202)의 높이(H1,H2)를 포함하는 전체 높이(H)는 제한적일 수 있다. 광 스캐너(100)의 크기에 대한 제한이 있을 수 있다. 또한, 광 스캐너(100)의 소형화에 전체 높이(H)가 많은 비중을 차지할 수 있다.Referring to FIG. 16, the height H2 of the second reflecting surface 1202 may be higher than the height H1 of the first reflecting surface 1201. The first reflecting surface 1201 reflects the light provided from the light emitting device 110 to the outside of the optical scanner 100, and the second reflecting surface 1202 receives the light flowing from the outside of the optical scanner 100. As reflected by the 130 so as to be sensed, an increase in the effective area of the second reflective surface 1202 is significant for the operation of the optical scanner 100. In this case, the overall height H including the heights H1 and H2 of the first reflective surface 1201 and the second reflective surface 1202 may be limited. There may be a limitation on the size of the optical scanner 100. In addition, the overall height H may occupy a large proportion in miniaturization of the optical scanner 100.
도 17을 참조하면, 전체높이(H)는 제1 반사면(1201)의 높이(H1), 제2 반사면(1202)의 높이(H2), 그리고 차광판(140)의 높이(Hw)를 포함할 수 있다. 도 18을 참조하면, 전체높이(H)는 제1 반사면(1201)의 높이(H1), 제2 반사면(1202)의 높이(H2), 그리고 홈(120h)의 높이(Hg)를 포함할 수 있다. 홈(120h)의 높이(Hg)는 차광판(140)의 높이(Hw)를 포함하기 때문에 홈(120h)의 높이(Hg)는 차광판(140)의 높이(Hw) 보다 높게 된다. 즉, 도 17의 구성에서 전체 높이(H) 보다 도 18의 구성에서 전체 높이(H)가 더 높게 된다. 이는, 전체 높이(H)가 제한된다면, 제1 반사면(1201) 또는 제2 반사면(1202)의 유효면적에 영향을 줄 수 있다. 이는, 전체 높이(H)가 제한되지 않는다면, 광 스캐너(100)의 전체 크기에 영향을 줄 수 있다. 즉, 도 17의 구성이 도 18의 구성 보다 유리할 수 있다.Referring to FIG. 17, the total height H includes the height H1 of the first reflective surface 1201, the height H2 of the second reflective surface 1202, and the height Hw of the light blocking plate 140. can do. Referring to FIG. 18, the total height H includes the height H1 of the first reflective surface 1201, the height H2 of the second reflective surface 1202, and the height Hg of the groove 120h. can do. Since the height Hg of the groove 120h includes the height Hw of the light blocking plate 140, the height Hg of the groove 120h becomes higher than the height Hw of the light blocking plate 140. That is, the overall height H is higher in the configuration of FIG. 18 than the overall height H in the configuration of FIG. 17. This may affect the effective area of the first reflecting surface 1201 or the second reflecting surface 1202 if the overall height H is limited. This may affect the overall size of the optical scanner 100, unless the overall height H is limited. That is, the configuration of FIG. 17 may be advantageous than the configuration of FIG. 18.
도 19를 참조하면, 광 스캐너(100)는 기준반사면(180, reference reflector)을 구비할 수 있다. 기준반사면(180)은 제1 반사면(1201) 또는 제2 반사면(1202)에 위치할 수 있다. 기준반사면(180)은 복수개가 구비될 수 있다. 복수개의 기준반사면은 제1 기준반사면(1801), 그리고 제2 기준반사면(1802)을 포함할 수 있다. 제1 기준반사면(1801)은 제1 반사면(1201)에 위치할 수 있고, 제2 기준반사면(1802)은 제2 반사면(1202)에 위치할 수 있다. Referring to FIG. 19, the optical scanner 100 may include a reference reflector 180. The reference reflective surface 180 may be positioned on the first reflective surface 1201 or the second reflective surface 1202. The reference reflective surface 180 may be provided in plural. The plurality of reference reflecting surfaces may include a first reference reflecting surface 1801 and a second reference reflecting surface 1802. The first reference reflective surface 1801 may be located on the first reflective surface 1201, and the second reference reflective surface 1802 may be located on the second reflective surface 1202.
회전체(120R)의 회전에 따라 제1 반사면(1201) 및 제2 반사면(1202)이 회전을 할 수 있다. 회전체(120R)의 제1 반사면(1201) 및 제2 반사면(1202)이 일정한 위치에 도달하면 발광소자(110)에서 제공되는 빛은 제1 기준반사면(1801) 또는 제2 기준반사면(1802)에 도달할 수 있다. 제1 기준반사면(1801)에 도달한 빛은 반사되어 제2 기준반사면(1802)을 향할 수 있고, 제2 기준반사면(1802)에서 반사된 빛은 반사판(172)을 통해 수광센서(130)를 향하고, 수광센서(130)에 의해 감지될 수 있다. 즉, 반사판(172)은, 제2 기준반사면(1802)과 수광센서(130) 사이의 광경로 상에 위치하고 있음을 의미한다. 이러한 빛의 경로는 광 스캐너(100)의 기준이 되는 광으로 사용될 수 있다. 기준이 되는 광이란, 광 스캐너(100)가 일정 영역을 감지 또는 감시하기 위한 광측정에 있어서 기준이 될 수 있음을 의미한다.As the rotor 120R rotates, the first reflecting surface 1201 and the second reflecting surface 1202 may rotate. When the first reflecting surface 1201 and the second reflecting surface 1202 of the rotating body 120R reach a predetermined position, the light provided from the light emitting element 110 is transferred to the first reference reflecting surface 1801 or the second reference panel. Slope 1802 may be reached. The light reaching the first reference reflecting surface 1801 may be reflected to face the second reference reflecting surface 1802, and the light reflected from the second reference reflecting surface 1802 may be reflected by the light receiving sensor (172). 130 may be sensed by the light receiving sensor 130. That is, the reflecting plate 172 means that the reflection plate 172 is positioned on the optical path between the second reference reflecting surface 1802 and the light receiving sensor 130. Such a light path may be used as light that is a reference of the optical scanner 100. Light as a reference means that the optical scanner 100 may be a reference in optical measurement for detecting or monitoring a certain area.
보다 상세하게 설명하면, 광 스캐너(100)는 스캔영역(SA)의 거리측정을 위해서 거리측정의 결과값을 보정해야 하는데, 이러한 보정은 기준이 되는 광의 측정에 의해서 이루어진다. 즉, 기준이 되는 광의 측정은 스캔영역(SA)의 거리측정시 광 스캐너(100)를 구성하는 전자회로의 드리프트 현상을 보완 또는 보상하기 위한 것이다.In more detail, the optical scanner 100 should correct the result of the distance measurement for the distance measurement of the scan area SA, and the correction is performed by measuring the reference light. That is, the measurement of the reference light is to compensate or compensate for the drift of the electronic circuit constituting the optical scanner 100 when measuring the distance of the scan area SA.
전자회로의 드리프트 현상은, 광 스캐너(100)가 스캔영역(SA)을 측정한 거리 값에서 기준이 되는 광의 측정에 의한 거리 값을 빼는 것으로 보완 또는 보상될 수 있다.The drift phenomenon of the electronic circuit may be compensated or compensated by subtracting the distance value by measuring the reference light from the distance value measured by the optical scanner 100 in the scan area SA.
도 20을 참조하면, 제1 기준반사면(1801)은 제1 반사면(1201)의 일변에 인접하여 위치할 수 있다. 예를 들어, 제1 기준반사면(1801)은 제1 반사면(1201)의 제1 각도면(1201a)의 일변에 위치할 수 있다. 다른 예를 들어, 제1 기준반사면(1801)은 제1 반사면(1201)의 제1 각도면(1201a)의 일면에 위치하되, 그 위치는 제1 반사면(1201)의 제1 각도면(1201a) 및 제2 각도면(1201b)의 경계에 인접한 것일 수 있다. 제1 기준반사면(1801)은 회전체(120R)의 하부를 향해 기울어질 수 있다. 즉, 제1 기준반사면(1801)은 제1 반사면(1201)에서 역삼각형 형상으로 돌출될 수 있다. 이때, 역삼각형 형상 중 회전체(120R)의 하부를 바라보는 면이 제1 기준반사면(1801)이 될 수 있다.Referring to FIG. 20, the first reference reflecting surface 1801 may be located adjacent to one side of the first reflecting surface 1201. For example, the first reference reflective surface 1801 may be located on one side of the first angled surface 1201a of the first reflective surface 1201. For another example, the first reference reflective surface 1801 is positioned on one surface of the first angled surface 1201a of the first reflective surface 1201, and the position thereof is a first angled surface of the first reflective surface 1201. It may be adjacent to the boundary of the 1201a and the second angular surface 1201b. The first reference reflective surface 1801 may be inclined toward the lower portion of the rotating body 120R. That is, the first reference reflective surface 1801 may protrude in an inverted triangle shape from the first reflective surface 1201. In this case, a surface of the inverted triangular shape facing the lower portion of the rotating body 120R may be the first reference reflective surface 1801.
제2 기준반사면(1802)은 제2 반사면(1202)의 일변에 인접하여 위치할 수 있다. 예를 들어, 제2 기준반사면(1802)은 제2 반사면(1202)의 제1 각도면(1202a)의 일변에 위치할 수 있다. 다른 예를 들어, 제2 기준반사면(1802)은 제2 반사면(1202)의 제1 각도면(1202a)의 일면에 위치하되, 그 위치는 제2 반사면(1202)의 제1 각도면(1202a) 및 제2 각도면(1202b)의 경계에 인접한 것일 수 있다. 제2 기준반사면(1802)은 회전체(120R)의 상부를 향해 기울어질 수 있다. 즉, 제2 기준반사면(1802)은 제2 반사면(1202)에서 삼각형 형상으로 돌출될 수 있다. 이때, 삼각형 형상 중 회전체(120R)의 상부를 바라보는 면이 제2 기준반사면(1802)이 될 수 있다.The second reference reflecting surface 1802 may be located adjacent to one side of the second reflecting surface 1202. For example, the second reference reflecting surface 1802 may be located at one side of the first angular surface 1202a of the second reflecting surface 1202. For another example, the second reference reflecting surface 1802 is positioned on one surface of the first angled surface 1202a of the second reflective surface 1202, and the position thereof is the first angled surface of the second reflective surface 1202. It may be adjacent to the boundary of the 1202a and the second angular surface 1202b. The second reference reflecting surface 1802 may be inclined toward the upper portion of the rotating body 120R. That is, the second reference reflecting surface 1802 may protrude in a triangular shape from the second reflecting surface 1202. In this case, a surface of the triangular shape facing the top of the rotating body 120R may be the second reference reflecting surface 1802.
차광판(140)은 슬릿(140S)을 구비할 수 있다. 슬릿(140S)은 제1 기준반사면(1801)의 하부에 위치할 수 있고, 제2 기준반사면(1802)의 상부에 위치할 수 있다. 즉, 슬릿(140S)은 제1 기준반사면(1801)과 제2 기준반사면(1802)에 사이에 위치할 수 있다. 슬릿(140S)을 통해 제1 기준반사면(1801)은 제2 기준반사면(1802)을 바라볼 수 있고, 슬릿(140S)을 통해 제2 기준반사면(1802)은 제1 기준반사면(1801)을 바라볼 수 있다. 다시 말해, 슬릿(140S)은 제1 및 제2 기준반사면(1801,1802) 사이에서 기준광의 경로를 제공할 수 있다.The light blocking plate 140 may include a slit 140S. The slit 140S may be positioned below the first reference reflective surface 1801 and may be positioned above the second reference reflective surface 1802. That is, the slit 140S may be located between the first reference reflecting surface 1801 and the second reference reflecting surface 1802. The first reference reflecting surface 1801 may face the second reference reflecting surface 1802 through the slit 140S, and the second reference reflecting surface 1802 may refer to the first reference reflecting surface (slit 140S). 1801). In other words, the slit 140S may provide a path of reference light between the first and second reference reflection surfaces 1801 and 1802.
이에 따라, 광 스캐너(100)의 크기를 최소화하고, 제조단가를 줄이면서 기준 광의 경로를 제공할 수 있다. 즉, 기준이 되는 광을 생성하기 위한 유닛을 회전체(120R)와 별도로 구성하는 경우보다 제조단가를 줄일 수 있음을 의미한다. 또한, 기준이 되는 광을 생성하기 위한 유닛을 회전체(120R)와 별도로 구성하는 경우보다 광경로를 짧게 구성할 수 있음으로 인하여, 측정 정밀도 향상을 기대할 수 있다. Accordingly, it is possible to minimize the size of the optical scanner 100, to provide a path of the reference light while reducing the manufacturing cost. That is, the manufacturing cost can be reduced compared to the case in which the unit for generating light as a reference is separately configured from the rotating body 120R. In addition, since the optical path can be configured to be shorter than when the unit for generating light as a reference is configured separately from the rotating body 120R, the measurement accuracy can be expected to be improved.
도 21을 참조하면, 제1 기준반사면(1801)은 제1 반사면(1201)의 중앙영역(UM)에 위치할 수 있다. 제2 기준반사면(1802)은 제2 반사면(1202)의 중앙영역(UM)에 위치할 수 있다. 이러한 위치는 제1 렌즈(170)와 제2 렌즈(171)의 중앙영역에 대응하는 위치일 수 있다. 이에 따라, 기준광(SL)의 광경로는 렌즈(170,171)의 효율적인 이용에 기여할 수 있다. 즉, 광 스캐너(100)의 기준광(SL) 측정의 정밀도가 향상될 수 있다.Referring to FIG. 21, the first reference reflecting surface 1801 may be located in the central area UM of the first reflecting surface 1201. The second reference reflecting surface 1802 may be located in the central area UM of the second reflecting surface 1202. This position may be a position corresponding to the central region of the first lens 170 and the second lens 171. Accordingly, the optical path of the reference light SL may contribute to the efficient use of the lenses 170 and 171. That is, the accuracy of measuring the reference light SL of the optical scanner 100 may be improved.
도 22를 참조하면, 제1 기준반사면(1801)은 제1 반사면(1201)의 중앙영역(UM)에 위치할 수 있다. 제2 기준반사면(1802)은 제2 반사면(1202)의 상부영역(DU)에 위치할 수 있다. 이러한 위치는 제1 렌즈(170)의 중앙영역과 제2 렌즈(171)의 상부영역에 대응하는 위치일 수 있다. 이에 따라, 기준광(SL)의 광경로를 축소할 수 있는 이점이 있다.Referring to FIG. 22, the first reference reflecting surface 1801 may be located in the central area UM of the first reflecting surface 1201. The second reference reflecting surface 1802 may be located in the upper region DU of the second reflecting surface 1202. Such a position may correspond to a center region of the first lens 170 and an upper region of the second lens 171. Accordingly, there is an advantage in that the optical path of the reference light SL can be reduced.
도 23을 참조하면, 제1 기준반사면(1801)은 제1 반사면(1201)의 하부영역(UD)에 위치할 수 있다. 제2 기준반사면(1802)은 제2 반사면(1202)의 상부영역(DU)에 위치할 수 있다. 이러한 위치는 제1 렌즈(170)의 하부영역과 제2 렌즈(171)의 상부영역에 대응하는 위치일 수 있다. 이에 따라, 기준광(SL)의 광경로를 보다 더 축소할 수 있는 이점이 있다.Referring to FIG. 23, the first reference reflective surface 1801 may be located in the lower region UD of the first reflective surface 1201. The second reference reflecting surface 1802 may be located in the upper region DU of the second reflecting surface 1202. This position may correspond to a lower region of the first lens 170 and an upper region of the second lens 171. Accordingly, there is an advantage that the optical path of the reference light SL can be further reduced.
도 24 및 25를 참조하면, 제1 기준반사면(1801)과 제2 기준반사면(1802)은 이너하우징(160)의 외부에 위치할 수 있다. 제1 기준반사면(1801)과 제2 기준반사면(1802)은 이너하우징(160)의 외부에서 기준광(SL)의 경로를 제공할 수 있다. 이너하우징(160)은 광홀(160h)을 구비할 수 있다. 광홀(160h)은 복수개가 구비될 수 있다. 복수개의 광홀(160h)의 일부(160h1,160h4)는 이너하우징(160)의 일면에 형성되고, 복수개의 광홀의 나머지(160h2,160h3)는 이너하우징(160)의 타면에 형성될 수 있다. 광홀(160h1)과 광홀(160h2)는 발광소자(110)과 동일 직선상에 놓일 수 있다. 즉, 광홀(160h1)과 광홀(160h2)은 동일 광로 상에 위치할 수 있음을 의미한다. 또한, 광홀(160h3)과 광홀(160h4)는 반사판(172)과 동일 직선상에 놓일 수 있다. 즉, 광홀(160h3)과 광홀(160h4)은 동일 광로 상에 위치할 수 있음을 의미한다.24 and 25, the first reference reflective surface 1801 and the second reference reflective surface 1802 may be located outside the inner housing 160. The first reference reflecting surface 1801 and the second reference reflecting surface 1802 may provide a path of the reference light SL outside the inner housing 160. The inner housing 160 may include a light hole 160h. A plurality of light holes 160h may be provided. Portions 160h1 and 160h4 of the plurality of light holes 160h may be formed on one surface of the inner housing 160, and the remaining portions 160h2 and 160h3 of the plurality of light holes 160 may be formed on the other surface of the inner housing 160. The light holes 160h1 and 160h2 may be disposed on the same straight line as the light emitting device 110. That is, the light hole 160h1 and the light hole 160h2 may be located on the same optical path. In addition, the light hole 160h3 and the light hole 160h4 may be disposed on the same straight line as the reflector 172. That is, the light hole 160h3 and the light hole 160h4 may be located on the same optical path.
광홀, 홀 내지 개구(opening)는, 이해의 편의를 위하여 사용한 용어이며, 용어가 다르다고 하여 반드시 다른 구성을 지칭하는 것으로 볼 수 없다. 예를 들어, 광홀(160h)은 도 27의 제1,2 개구(160P1, 160P2) 내부를 의미할 수 있음을 의미한다. Light holes, holes, and openings are terms used for convenience of understanding, and they are not necessarily referred to different configurations because the terms are different. For example, the light hole 160h may mean the interior of the first and second openings 160P1 and 160P2 of FIG. 27.
복수개의 광홀(160h2,160h3)에 인접하여 제1 기준반사면(1801)과 제2 기준반사면(1802)이 위치할 수 있다. 제1 기준반사면(1801)은 홀(160h2)에 인접하여 위치할 수 있다. 제1 기준반사면(1801)은 홀(160h2)을 통해 홀(160h1)을 바라볼 수 있다. 제2 기준반사면(1802)은 홀(160h3)에 인접하여 위치할 수 있다. 제2 기준반사면(1802)은 홀(160h3)을 통해 홀(160h4)을 바라볼 수 있다. The first reference reflecting surface 1801 and the second reference reflecting surface 1802 may be positioned adjacent to the plurality of light holes 160h2 and 160h3. The first reference reflective surface 1801 may be located adjacent to the hole 160h2. The first reference reflective surface 1801 may face the hole 160h1 through the hole 160h2. The second reference reflecting surface 1802 may be located adjacent to the hole 160h3. The second reference reflecting surface 1802 may face the hole 160h4 through the hole 160h3.
발광소자(110)에서 제공되는 빛은 홀(160h1)을 통해 제1 반사면(1201)을 지나갈 수 있다. 제1 반사면(1201)을 지나간 빛은 홀(160h2)을 통해 제1 기준반사면(1801)을 향할 수 있다. 제1 기준반사면(1801)에서 반사된 빛은 제2 기준반사면(1802)을 향하고 그곳에서 반사되어 홀들(160h3,160h4)을 통해 반사판(172)을 향할 수 있고, 수광센서(130)에 의해 감지될 수 있다. 이러한 광경로(SL)는 회전체(120R)의 회전에 따라 일시적으로 형성될 수 있다. 즉, 회전체(120R)의 회전에 의해 발광소자(110)에서 제공되는 빛이 제1 반사면(1801)에서 반사되지 않고, 제1 반사면(1801)을 지나갈 수 있는 각도에서 광경로(SL)가 형성될 수 있음을 의미한다.Light provided from the light emitting device 110 may pass through the first reflective surface 1201 through the hole 160h1. Light passing through the first reflective surface 1201 may face the first reference reflective surface 1801 through the hole 160h2. The light reflected from the first reference reflecting surface 1801 may face the second reference reflecting surface 1802 and be reflected thereon, and may face the reflecting plate 172 through the holes 160h3 and 160h4, and to the light receiving sensor 130. Can be detected. The optical path SL may be temporarily formed according to the rotation of the rotor 120R. That is, the light path SL is at an angle at which the light provided from the light emitting device 110 is not reflected by the first reflecting surface 1801 by the rotation of the rotor 120R and may pass through the first reflecting surface 1801. ) Can be formed.
도 26 및 27은 본 발명의 일 실시예에 따른 광 스캐너의 일 예를 도시한 도면이다.26 and 27 illustrate an example of an optical scanner according to an embodiment of the present invention.
도 26을 참조하면, 광 스캐너(100)는 아우터하우징(200), 이너하우징(160), 발광부(110,170), 수광부(171,130), 회전체(120R), 그리고 반사면(120)을 포함할 수 있다.Referring to FIG. 26, the optical scanner 100 may include an outer housing 200, an inner housing 160, light emitting units 110 and 170, light receiving units 171 and 130, a rotating body 120R, and a reflective surface 120. Can be.
아우터하우징(200)은 광 스캐너(100)의 외관을 형성할 수 있다. 아우터하우징(200)은 전방이 후방 보다 넓은 면적을 가지도록 형성될 수 있다. 이는, 빛의 방사각도를 고려한 것일 수 있다. 이너하우징(160)은 아우터하우징(200)의 내부에 위치할 수 있다. 이너하우징(160)은 아우터하우징(200)에 내장될 수 있다. 이너하우징(160)은 전체적으로 원통형상일 수 있다. The outer housing 200 may form an appearance of the optical scanner 100. The outer housing 200 may be formed such that the front has a larger area than the rear. This may be in consideration of the radiation angle of light. The inner housing 160 may be located inside the outer housing 200. The inner housing 160 may be built in the outer housing 200. The inner housing 160 may have a cylindrical shape as a whole.
회전체(120R)는 이너하우징(160)의 내부에서 회전할 수 있다. 회전체(120R)는 모터에 의해 구동될 수 있다. 회전체(120R)는 회전방향을 따라서 순차적으로 반사면(120a,120b,120c,120d)을 구비할 수 있다. 이는, 회전체(120R)가 회전함에 따라서 회전체(120R)의 전체적인 외면을 형성할 뿐만 아니라, 다양한 반사면(120)을 제공할 수 있음을 의미한다. The rotating body 120R may rotate inside the inner housing 160. The rotating body 120R may be driven by a motor. The rotating body 120R may include reflective surfaces 120a, 120b, 120c, and 120d sequentially in the rotational direction. This means that as the rotor 120R rotates, not only the entire outer surface of the rotor 120R is formed, but also various reflection surfaces 120 may be provided.
회전체(120R)의 상부에 제1 반사면(1201)이 구비될 수 있고, 회전체(120R)의 하부에 제2 반사면(1202)이 구비될 수 있다. 제1 반사면(1201)과 제2 반사면(1202)의 면적은 서로 다를 수 있다. 반사면(120)은 복수개(120a,120b,120c,120d)일 수 있다. 즉, 회전체가 회전하면서 서로 다른 반사면(120)을 제공할 수 있음을 의미한다.The first reflective surface 1201 may be provided above the rotating body 120R, and the second reflective surface 1202 may be provided below the rotating body 120R. The areas of the first reflective surface 1201 and the second reflective surface 1202 may be different from each other. Reflective surface 120 may be a plurality of (120a, 120b, 120c, 120d). That is, it means that the rotating body can provide different reflective surfaces 120 while rotating.
이너하우징(160)과 아우터하우징(200)의 사이에 발광부(110,170), 그리고 수광부(171,130)가 위치할 수 있다. 발광부(110,170)는 발광소자(110), 그리고 렌즈(170)를 구비할 수 있다. 수광부(171,130)는 수광센서(130), 그리고 렌즈(171)를 구비할 수 있다. 발광부(110,170)는 제1 반사면(1201)에 빛을 제공할 수 있다. 수광부(171,130)는 제2 반사면(1202)에서 반사되는 빛을 감지할 수 있다. 이때, 수광센서(130)와 제2 반사면(1202) 사이에 반사판(172)이 구비될 수 있다. 발광부(110,170)와 수광부(171,130)가 서로 이격되어 위치함으로써 전자기장에 의한 상호 간섭을 최소화할 수 있다. The light emitting units 110 and 170 and the light receiving units 171 and 130 may be positioned between the inner housing 160 and the outer housing 200. The light emitting units 110 and 170 may include a light emitting device 110 and a lens 170. The light receiving units 171 and 130 may include a light receiving sensor 130 and a lens 171. The light emitters 110 and 170 may provide light to the first reflective surface 1201. The light receivers 171 and 130 may detect light reflected from the second reflective surface 1202. In this case, the reflective plate 172 may be provided between the light receiving sensor 130 and the second reflective surface 1202. Since the light emitting units 110 and 170 and the light receiving units 171 and 130 are spaced apart from each other, mutual interference due to an electromagnetic field may be minimized.
이너하우징(160)은 발광부(110,170)와 제1 반사면(1201) 사이에 홀(160h1)을 구비할 수 있다. 또한, 이너하우징(160)은 제2 반사면(1202)과 수광부(171,130) 사이에 홀(160h4)이 형성될 수 있다. 이에 따라, 발광부(110,170)에서 제공되는 빛은 이너하우징(160) 내측으로 향하고, 제1 반사면(1201)에서 반사되어 광 스캐너(100)의 외부로 나아갈 수 있다. 광 스캐너(100)의 외부에서 반사되어 되돌아 오는 빛은 제2 반사면(1202)을 통해 반사되어 반사판(172)을 거쳐 수광부(171,130)에서 감지될 수 있다.The inner housing 160 may include a hole 160h1 between the light emitting units 110 and 170 and the first reflective surface 1201. In addition, the inner housing 160 may have a hole 160h4 formed between the second reflecting surface 1202 and the light receiving parts 171 and 130. Accordingly, the light provided from the light emitting units 110 and 170 may be directed toward the inner housing 160, and may be reflected by the first reflective surface 1201 to the outside of the optical scanner 100. Light reflected from the outside of the optical scanner 100 and returned may be reflected by the second reflecting surface 1202 and sensed by the light receiving units 171 and 130 via the reflecting plate 172.
도 27을 참조하면, 광 스캐너(100)는 메인보드(210), 아우터하우징(200), 이너하우징(160), 발광부(110,170), 수광부(171,130) 그리고 표시등(223)을 포함할 수 있다. 전자소자들은 메인보드(210)에 실장될 수 있다. 아우터하우징(200)은 메인보드(210) 상부에 장착될 수 있다. 이너하우징(160)은 메인보드(210) 위에 장착될 수 있다. 발광부(110,170)는 메인보드(210) 위에 장착될 수 있고, 이너하우징(160)에 인접하고, 수광부(171,130)와 이격되어 위치할 수 있다. 수광부(171,130)는 메인보드(210) 위에 장착될 수 있고, 이너하우징(160)에 인접하고, 발광부(110,170)와 이격되어 위치할 수 있다. 아우터하우징(200)은 메인보드(210)의 상부에서 이너하우징(160), 발광부(110,170), 그리고 수광부(171,130)를 덮을 수 있다.Referring to FIG. 27, the optical scanner 100 may include a main board 210, an outer housing 200, an inner housing 160, light emitting units 110 and 170, light receiving units 171 and 130, and an indicator light 223. have. Electronic devices may be mounted on the main board 210. The outer housing 200 may be mounted on the main board 210. The inner housing 160 may be mounted on the main board 210. The light emitting units 110 and 170 may be mounted on the main board 210, may be adjacent to the inner housing 160, and may be spaced apart from the light receiving units 171 and 130. The light receiving units 171 and 130 may be mounted on the main board 210, may be adjacent to the inner housing 160, and may be spaced apart from the light emitting units 110 and 170. The outer housing 200 may cover the inner housing 160, the light emitting units 110 and 170, and the light receiving units 171 and 130 on the main board 210.
이너하우징(160)은 제1 반사면(1201)의 일부가 외부로 노출되는 제1 개구(160P1)가 형성될 수 있다. 이너하우징(160)은 제2 반사면(1202)의 일부가 노출되는 제2 개구(160P2)가 형성될 수 있다. 윈도우(221,222)는 아우터하우징(200)의 전면에 위치할 수 있다. 윈도우(221,222)는 복수개가 구비될 수 있다. 제1 윈도우(221)는 제1 개구(160P1)와 마주할 수 있다. 제2 윈도우(222)는 제2 개구(160P2)와 마주할 수 있다.The inner housing 160 may have a first opening 160P1 through which a portion of the first reflective surface 1201 is exposed to the outside. The inner housing 160 may have a second opening 160P2 through which a portion of the second reflective surface 1202 is exposed. The windows 221 and 222 may be located in front of the outer housing 200. A plurality of windows 221 and 222 may be provided. The first window 221 may face the first opening 160P1. The second window 222 may face the second opening 160P2.
제1 윈도우(221)는 제1 반사면(1201)을 통해 반사되는 빛이 나오는 영역일 수 있다. 제2 윈도우(222)는 제1 윈도우(221)를 통해 나온 빛이 외부 물체에 반사되어 다시 광 스캐너(100)를 향하는 빛이 통과하는 영역일 수 있다. 제2 윈도우(222)를 통해 제2 반사면(1202)으로 빛이 향할 수 있다. 표시등(223)은 광 스캐너(100)의 작동여부, 동작상태, 고장여부 등에 대한 정보를 표시할 수 있다.The first window 221 may be an area where light reflected through the first reflective surface 1201 is emitted. The second window 222 may be a region through which light emitted through the first window 221 is reflected by an external object and then passes toward the optical scanner 100. Light may be directed to the second reflective surface 1202 through the second window 222. The indicator light 223 may display information on whether the optical scanner 100 is operated, an operation state, a failure, and the like.
제1,2 윈도우(221, 222)의 크기는 서로 다를 수 있다. 예를 들어, 제1 윈도우(221) 보다 제2 윈도우(222)가 더 크게 형성될 수 있음을 의미한다. 제2 윈도우(222)는, 물체에서 반사된 빛을 수신하는 영역일 수 있다. 따라서 상대적으로 미약한 신호를 효과적으로 수신하기 위하여 제2 윈도우(222)의 크기가 더 클 수 있음을 의미한다. 제1,2 윈도우(221, 222)에 대응된 내부 구조도, 제1,2 윈도우(221, 222)의 크기에 대응되어 있을 수 있다.The first and second windows 221 and 222 may have different sizes. For example, the second window 222 may be larger than the first window 221. The second window 222 may be an area for receiving the light reflected from the object. Therefore, in order to effectively receive a relatively weak signal, it means that the size of the second window 222 may be larger. An internal structure corresponding to the first and second windows 221 and 222 may also correspond to the sizes of the first and second windows 221 and 222.
도 28및 29는 본 발명의 일 실시예에 따른 광 스캐너의 작동 예들을 도시한 도면이다.28 and 29 are diagrams showing examples of the operation of the optical scanner according to an embodiment of the present invention.
도 28을 참조하면, 발광소자(110)는 렌즈(170)를 통해 제1 반사면(1201)에 빛(L1)을 제공할 수 있다. 발광소자(110)는 레이저 다이오드(LD)일 수 있다. 예를 들어, 발광소자(110)는 890nm에서 905nm이 파장의 빛을 제공할 수 있는 펄스 레이저일 수 있다.  Referring to FIG. 28, the light emitting device 110 may provide light L1 to the first reflective surface 1201 through the lens 170. The light emitting device 110 may be a laser diode LD. For example, the light emitting device 110 may be a pulse laser capable of providing light having a wavelength of 890 nm to 905 nm.
수광센서(130)와 발광소자(110)는, 서로 인접하여 위치될 수 있다. 예를 들어, 수광센서(130)와 발광소자(110)가 하나의 PCB 기판 상에 구성되어 있을 수 있음을 의미한다. 수광센서(130)와 발광소자(110)가 서로 인접하여 배치되는 경우에는, 내부의 광경로를 단순하게 구성할 수 있다. 즉, 광 스캐너(100) 전체의 볼륨을 감소시킬 수 있음을 의미한다.The light receiving sensor 130 and the light emitting element 110 may be positioned adjacent to each other. For example, it means that the light receiving sensor 130 and the light emitting device 110 may be configured on one PCB substrate. When the light receiving sensor 130 and the light emitting element 110 are disposed adjacent to each other, the light path therein may be simply configured. That is, the volume of the entire optical scanner 100 can be reduced.
제1 반사면(1201)은 회전체(120R)의 상부의 4면을 형성할 수 있다. 예를 들어, 제1 반사면(1201)은 제1 각도면(1201a), 제2 각도면(1201b), 제3 각도면(1201c), 그리고 제4 각도면(1201d)을 구비할 수 있다. 제1 각도면(1201a)은 z축으로부터 0도의 기울기를 가질 수 있고, 제2 각도면(1201b)은 z축으로부터 2도의 기울기를 가질 수 있고, 제3 각도면(1201c)은 z축으로부터 4도의 기울기를 가질 수 있고, 제4 각도면(1201d)은 z축으로부터 6도의 기울기를 가질 수 있다.The first reflective surface 1201 may form four surfaces of the upper portion of the rotating body 120R. For example, the first reflective surface 1201 may include a first angle surface 1201a, a second angle surface 1201b, a third angle surface 1201c, and a fourth angle surface 1201d. The first angle plane 1201a may have an inclination of 0 degrees from the z axis, the second angle plane 1201b may have an inclination of 2 degrees from the z axis, and the third angle plane 1201c may have a slope of 4 degrees from the z axis. The fourth angle plane 1201d may have an inclination of 6 degrees from the z-axis.
회전체(120R)가 회전함에 따라 발광소자(110)에서 제공되어 제1 반사면(1201)에서 반사된 빛(L2)은 제1 윈도우(221)를 통해 광 스캐너(100)의 외부로 향할 수 있고, 스캔영역(SA)을 감지 또는 감시할 수 있다. 스캔영역(SA)에 존재하는 물체(OB)에 반사된 빛(L3)은 제2 윈도우(222)를 통해 제2 반사면(1202)을 향할 수 있다. As the rotating body 120R rotates, the light L2 provided from the light emitting device 110 and reflected from the first reflective surface 1201 may be directed to the outside of the optical scanner 100 through the first window 221. In addition, the scan area SA may be detected or monitored. The light L3 reflected by the object OB present in the scan area SA may face the second reflective surface 1202 through the second window 222.
제2 반사면(1202)은 제1 반사면(1201) 보다 넓은 유효 면적을 가질 수 있다. 유효 면적은 빛을 반사시킬 수 있는 면적을 의미할 수 있다. 다시 말해, 제2 반사면(1202)이 제1 반사면(1201)에 비해서 좌우측으로 길게 형성되거나 상하측으로 길게 형성될 수 있다. 제2 반사면(1202)은 회전체(120R)의 하부의 4면을 형성할 수 있다. 예를 들어, 제2 반사면(1202)은 제1 각도면(1202a), 제2 각도면(1202b), 제3 각도면(1202c), 그리고 제4 각도면(1202d)을 구비할 수 있다. 제1 각도면(1202a)은 z축으로부터 0도의 기울기를 가질 수 있고, 제2 각도면(1202b)은 z축으로부터 2도의 기울기를 가질 수 있고, 제3 각도면(1202c)은 z축으로부터 4도의 기울기를 가질 수 있고, 제4 각도면(1202d)은 z축으로부터 6도의 기울기를 가질 수 있다. 각각의 각도는 제1 반사면(1201)의 각도면들(1201a,1201b,1201c,1201d)에 대응될 수 있다. 즉, 제1 반사면(1201) 및 제2 반사면(1202)이 회전체(120R)의 외면을 형성할 수 있고, 이때 회전체(120R)의 외면 중 일면은 전체적으로 사다리꼴 형상으로 형성될 수 있음을 의미한다. The second reflective surface 1202 may have a larger effective area than the first reflective surface 1201. The effective area may mean an area capable of reflecting light. In other words, the second reflecting surface 1202 may be formed longer in the left and right sides or longer in the vertical direction than the first reflecting surface 1201. The second reflecting surface 1202 may form four surfaces of the lower portion of the rotating body 120R. For example, the second reflective surface 1202 may include a first angular surface 1202a, a second angular surface 1202b, a third angular surface 1202c, and a fourth angular surface 1202d. The first angular plane 1202a may have an inclination of 0 degrees from the z axis, the second angular plane 1202b may have an inclination of 2 degrees from the z axis, and the third angular plane 1202c may have 4 degrees from the z axis. The fourth angle plane 1202d may have an inclination of 6 degrees from the z-axis. Each angle may correspond to the angular surfaces 1201a, 1201b, 1201c, and 1201d of the first reflective surface 1201. That is, the first reflecting surface 1201 and the second reflecting surface 1202 may form an outer surface of the rotating body 120R, and one surface of the outer surface of the rotating body 120R may be formed in a trapezoid shape as a whole. Means.
다시 말해, 제1 반사면(1201) 및 제2 반사면(1202)은 회전체(120R)의 4면을 형성할 수 있고, 회전체(120R)의 일면은 전체적으로 사다리꼴 형상일 수 있다. 회전체(120R)의 일면은 회전체(120R)의 타면과 다른 각도를 가질 수 있고, 이들의 각도가 0 내지 6도의 범위 내일 수 있음은 앞서 설명한 바와 같다.In other words, the first reflecting surface 1201 and the second reflecting surface 1202 may form four surfaces of the rotating body 120R, and one surface of the rotating body 120R may have a trapezoid shape as a whole. One surface of the rotor 120R may have an angle different from the other surface of the rotor 120R, and the angles thereof may be in the range of 0 to 6 degrees, as described above.
제2 반사면(1202)에서 반사된 빛(L4)은 렌즈(171)를 통해 수광센서(130)에 유입될 수 있다. 이때, 발광소자(110)에서 제공되는 빛(L1)의 세기가 수광센서(130)에 유입되어 감지되는 빛(L3 또는 L4)의 세기에 비해서 현저히 강하기 때문에 제1 반사면(1201)에서 반사 또는 분산된 빛이 수광센서(130)에 유입됨으로써 광 스캐너(100)의 오작동을 발생시키는 것을 방지하기 위해 차광판(140)이 제1 반사면(1201)과 제2 반사면(1202)을 광학적으로 격리시킬 수 있다. 이때, 차광판(140)이 이너하우징(160)의 내면 까지 연장되고, 쉴드부(150)에 인접함으로써 제1 반사면(1201)과 제2 반사면(1202)의 광학적 격리를 효과적으로 달성할 수 있다. 다시 말해, 차광판(140)의 일단에 구비된 단차부(1401,1402 또는 1403)와 이너하우징(160)의 내면에 구비된 쉴드부(150)가 서로 오버랩되어 회전하면서 제1 반사면(1201)과 제2 반사면(1202)의 광학적 격리를 효과적으로 달성할 수 있다.Light L4 reflected from the second reflective surface 1202 may flow into the light receiving sensor 130 through the lens 171. In this case, since the intensity of the light L1 provided from the light emitting device 110 is significantly stronger than the intensity of the light L3 or L4 which is detected by being introduced into the light receiving sensor 130, it is reflected or reflected from the first reflecting surface 1201. The light shield plate 140 optically isolates the first reflecting surface 1201 and the second reflecting surface 1202 to prevent scattered light from entering the light receiving sensor 130 and causing malfunction of the optical scanner 100. You can. In this case, the light blocking plate 140 extends to the inner surface of the inner housing 160 and adjacent to the shield unit 150 to effectively achieve optical isolation between the first reflecting surface 1201 and the second reflecting surface 1202. . In other words, the step portions 1401, 1402 or 1403 provided at one end of the light blocking plate 140 and the shield part 150 provided on the inner surface of the inner housing 160 overlap each other and rotate to form the first reflective surface 1201. Optical isolation of the second and second reflecting surfaces 1202 can be effectively achieved.
또한, 회전체(120R)의 회전에 따라 기준이 되는 광의 측정이 이루어질 수 있다. 예를 들면, 제1 반사면(1201) 및 제2 반사면(1202)이 회전체(120R)의 4면을 형성하고, 4개의 제1 반사면(1201) 및 제2 반사면(1202) 중 어느 하나의 면들에 기준반사면(1801,1802)이 구비되는 경우, 회전체(120R)의 1회전 마다 기준이 되는 광이 측정될 수 있다. 이에 따라, 스캔영역(SA)의 거리를 측정하는 값들은 보정될 수 있고, 광 스캐너(100)의 정밀도는 향상될 수 있다.In addition, measurement of light as a reference may be made according to the rotation of the rotor 120R. For example, the first reflecting surface 1201 and the second reflecting surface 1202 form four surfaces of the rotating body 120R, and among the four first reflecting surfaces 1201 and the second reflecting surface 1202. When the reference reflecting surfaces 1801 and 1802 are provided on any one surface, the reference light may be measured for each rotation of the rotating body 120R. Accordingly, values for measuring the distance of the scan area SA may be corrected, and the accuracy of the optical scanner 100 may be improved.
도 29를 참조하면, 광 스캐너(100)는 제2 반사면(1202)과 수광센서(130)의 광경로 사이에 반사판(172)을 구비할 수 있다. 수광센서(130)는 발광소자(110)로부터 상당거리 이격될 수 있다. 이는, 전자소자들간에 발생할 수 있는 전자기장의 영향을 최소화시키는 것일 수 있다. 반사판(172)은 도 30을 참조하여 설명된 수광센서(130)의 위치에 위치할 수 있다. 수광센서(130)는 반사판(172) 및 발광소자(110)로부터 소정거리 이격되되, 반사판(172)에서 반사되는 빛을 감지할 수 있다. 즉, 반사판(172)은 제2 반사면(1202)에서 반사되어 수광센서(130)를 향하는 빛의 경로를 바꾸기 위해 제2 반사면(1202)과 수광센서(130)를 동시에 바라볼 수 있다.Referring to FIG. 29, the optical scanner 100 may include a reflector 172 between the second reflecting surface 1202 and the optical path of the light receiving sensor 130. The light receiving sensor 130 may be spaced apart from the light emitting device 110 by a considerable distance. This may be to minimize the influence of electromagnetic fields that may occur between the electronic elements. The reflective plate 172 may be positioned at the position of the light receiving sensor 130 described with reference to FIG. 30. The light receiving sensor 130 may be spaced apart from the reflecting plate 172 and the light emitting device 110 by a predetermined distance, and may detect light reflected from the reflecting plate 172. That is, the reflecting plate 172 may look at the second reflecting surface 1202 and the light receiving sensor 130 at the same time to change the path of the light reflected from the second reflecting surface 1202 toward the light receiving sensor 130.
도 30 내지 33은 본 발명의 일 실시예에 따른 광 스캐너의 다른 예들을 도시한 도면이다.30 to 33 illustrate other examples of the optical scanner according to an embodiment of the present invention.
도 30을 참조하면, 광 스캐너(100)는 발광소자(110), 제1 렌즈(170), 회전체(120R), 제1 반사면(1201), 제2 반사면(1202), 제3 반사면(1203), 제1 차광판(1401), 제2 차광판(1402), 반사판(172), 제2 렌즈(171), 그리고 수광센서(130)를 포함할 수 있다. 제3 반사면(1203)은 제1 반사면(1202)의 상부에 형성될 수 있다. 또한, 제2 차광판(1402)은 제1 반사면(1201)과 제3 반사면(1203)의 사이에 위치할 수 있다. 이때, 제2 차광판(1402)은 기준광경로를 위한 슬릿을 구비하지 않을 수 있다.Referring to FIG. 30, the optical scanner 100 includes a light emitting element 110, a first lens 170, a rotating body 120R, a first reflecting surface 1201, a second reflecting surface 1202, and a third half. A slope 1203, a first light blocking plate 1401, a second light blocking plate 1402, a reflecting plate 172, a second lens 171, and a light receiving sensor 130 may be included. The third reflective surface 1203 may be formed on the first reflective surface 1202. In addition, the second light blocking plate 1402 may be positioned between the first reflective surface 1201 and the third reflective surface 1203. In this case, the second light blocking plate 1402 may not include a slit for the reference light path.
발광소자(110)에서 제공되는 빛은 제1 렌즈(170)를 통해 제1 반사면(1201)으로 향할 수 있다. 반사판(172)은 개구(172h)를 구비할 수 있다. 개구(172h)는 발광소자(110)에서 제공하는 빛의 광 경로 상에 형성될 수 있다. 즉, 발광소자(110)에서 제공되는 빛은 제1 렌즈(170) 및 개구(172h)를 통해 제1 반사면(1201)으로 향할 수 있다.Light provided from the light emitting device 110 may be directed to the first reflective surface 1201 through the first lens 170. The reflector plate 172 may have an opening 172h. The opening 172h may be formed on an optical path of light provided from the light emitting element 110. That is, the light provided from the light emitting element 110 may be directed to the first reflective surface 1201 through the first lens 170 and the opening 172h.
제1 반사면(1201)에서 반사되는 빛은 광 스캐너(100)의 외부로 나갈 수 있다. 광 스캐너(100) 외부에서 내부로 유입되는 빛의 일부는 제2 반사면(1202)에 반사되어 반사판(172)의 하부로 향할 수 있다. 광 스캐너(100) 외부에서 내부로 유입되는 빛의 다른 일부는 제3 반사면(1203)에 반사되어 반사판(172)의 상부로 향할 수 있다. 반사판(172)의 상하 길이는 제2 및 제3 반사면(1202,1203)을 커버할 수 있는 길이로 형성될 수 있다. 이에 따라, 물체에서 반사되어 유입되는 빛의 수광률이 향상될 수 있다. 이는, 광 스캐너(100)의 정밀도 또는 성능이 향상될 수 있음을 의미한다.Light reflected from the first reflecting surface 1201 may go out of the optical scanner 100. A portion of the light flowing from the outside of the optical scanner 100 to the inside may be reflected by the second reflecting surface 1202 and directed toward the lower portion of the reflecting plate 172. The other part of the light introduced from the outside of the optical scanner 100 may be reflected by the third reflecting surface 1203 and directed toward the upper portion of the reflecting plate 172. Upper and lower lengths of the reflective plate 172 may be formed to cover the second and third reflective surfaces 1202 and 1203. Accordingly, the light receiving rate of the light reflected from the object may be improved. This means that the precision or performance of the optical scanner 100 can be improved.
반사판(172)에서 반사되는 빛은 제2 렌즈(171)를 통해 수광센서(130)에 감지될 수 있다. 이때, 제1 차광판(1401)은 제1 반사면(1201)에서 반사되는 빛, 그리고 제2 반사면(1202)에서 반사되는 빛의 상호 간섭을 방지할 수 있다. 또한, 제2 차광판(1402)은 제1 반사면(1201)에서 반사되는 빛, 그리고 제3 반사면(1203)에서 반사되는 빛의 상호 간섭을 방지할 수 있다. 이에 따라, 광 스캐너(100)의 오작동이 방지될 수 있고, 광 스캐너(100)의 정밀도가 향상될 수 있다.Light reflected from the reflector 172 may be detected by the light receiving sensor 130 through the second lens 171. In this case, the first light blocking plate 1401 may prevent mutual interference between light reflected from the first reflective surface 1201 and light reflected from the second reflective surface 1202. In addition, the second light blocking plate 1402 may prevent mutual interference of light reflected from the first reflective surface 1201 and light reflected from the third reflective surface 1203. Accordingly, malfunction of the optical scanner 100 can be prevented, and the accuracy of the optical scanner 100 can be improved.
제2 렌즈(171)의 크기는 제1 렌즈(170)의 크기 보다 더 클 수 있다. 이는, 제2 렌즈(171)의 일 직경이 제1 렌즈(170)의 일 직경 보다 클 수 있음을 의미할 수 있다. 제2 렌즈(171)는 필요에 따라 외곽이 직선으로 가공될 수 있다. 제2 렌즈(171)의 크기와 제1 렌즈(170)의 크기의 상관관계는 제2 및 제3 반사면(1202,1203)과 제1 반사면(1201)의 크기에 따라 형성될 수 있다. 제2 렌즈의 상하 길이는 제2 및 제3 반사면을 커버할 수 있도록 형성될 수 있다. 즉, 제2 및 제3 반사면에 반사되는 빛이 제2 렌즈를 통해 수광센서에 감지될 수 있음을 의미할 수 있다.The size of the second lens 171 may be larger than the size of the first lens 170. This may mean that one diameter of the second lens 171 may be larger than one diameter of the first lens 170. The outer edge of the second lens 171 may be processed in a straight line as necessary. The correlation between the size of the second lens 171 and the size of the first lens 170 may be formed according to the sizes of the second and third reflective surfaces 1202 and 1203 and the first reflective surface 1201. The vertical length of the second lens may be formed to cover the second and third reflective surfaces. That is, the light reflected by the second and third reflective surfaces may be sensed by the light receiving sensor through the second lens.
도 31을 참조하면, 광 스캐너(100)는 기준반사면(180)을 구비할 수 있다. 기준반사면(180)은 제1 반사면(1201) 또는 제2 반사면(1202)에 위치할 수 있다. 기준반사면(180)은 복수개가 구비될 수 있다. 복수개의 기준반사면은 제1 기준반사면(1801), 그리고 제2 기준반사면(1802)을 포함할 수 있다. 제1 기준반사면(1801)은 제1 반사면(1201)에 위치할 수 있고, 제2 기준반사면(1802)은 제2 반사면(1202)에 위치할 수 있다. Referring to FIG. 31, the optical scanner 100 may include a reference reflecting surface 180. The reference reflective surface 180 may be positioned on the first reflective surface 1201 or the second reflective surface 1202. The reference reflective surface 180 may be provided in plural. The plurality of reference reflecting surfaces may include a first reference reflecting surface 1801 and a second reference reflecting surface 1802. The first reference reflective surface 1801 may be located on the first reflective surface 1201, and the second reference reflective surface 1802 may be located on the second reflective surface 1202.
회전체(120R)의 회전에 따라 제1 반사면(1201), 제2 반사면(1202) 및 제3 반사면(1203)이 회전을 할 수 있다. 회전체(120R)의 제1 반사면(1201), 제2 반사면(1202) 및 제3 반사면(1203)이 일정한 위치에 도달하면 발광소자(110)에서 제공되는 빛은 제1 기준반사면(1801)에 도달할 수 있다. 제1 기준반사면(1801)에 도달한 빛은 반사되어 제2 기준반사면(1802)을 향할 수 있고, 제2 기준반사면(1802)에서 반사된 빛은 반사판(172)을 통해 수광센서(130)를 향하고, 수광센서(130)에 의해 감지될 수 있다. 이러한 빛의 경로는 광 스캐너(100)의 기준이 되는 광으로 사용될 수 있다. 기준이 되는 광이란, 광 스캐너(100)가 일정 영역을 감지 또는 감시하기 위한 광측정에 있어서 기준이 될 수 있음을 의미한다.As the rotor 120R rotates, the first reflecting surface 1201, the second reflecting surface 1202, and the third reflecting surface 1203 may rotate. When the first reflecting surface 1201, the second reflecting surface 1202, and the third reflecting surface 1203 of the rotating body 120R reach a predetermined position, the light provided from the light emitting element 110 is the first reference reflecting surface. 1801 can be reached. The light reaching the first reference reflecting surface 1801 may be reflected to face the second reference reflecting surface 1802, and the light reflected from the second reference reflecting surface 1802 may be reflected by the light receiving sensor (172). 130 may be sensed by the light receiving sensor 130. Such a light path may be used as light that is a reference of the optical scanner 100. Light as a reference means that the optical scanner 100 may be a reference in optical measurement for detecting or monitoring a certain area.
보다 상세하게 설명하면, 광 스캐너(100)는 스캔영역(SA)의 거리측정을 위해서 거리측정의 결과값을 보정해야 하는데, 이러한 보정은 기준이 되는 광의 측정에 의해서 이루어진다. 즉, 기준이 되는 광의 측정은 스캔영역(SA)의 거리측정시 광 스캐너(100)를 구성하는 전자회로의 드리프트 현상을 보완 또는 보상하기 위한 것이다.In more detail, the optical scanner 100 should correct the result of the distance measurement for the distance measurement of the scan area SA, and the correction is performed by measuring the reference light. That is, the measurement of the reference light is to compensate or compensate for the drift of the electronic circuit constituting the optical scanner 100 when measuring the distance of the scan area SA.
전자회로의 드리프트 현상은, 광 스캐너(100)가 스캔영역(SA)을 측정한 거리 값에서 기준이 되는 광의 측정에 의한 거리 값을 빼는 것으로 보완 또는 보상될 수 있다.The drift phenomenon of the electronic circuit may be compensated or compensated by subtracting the distance value by measuring the reference light from the distance value measured by the optical scanner 100 in the scan area SA.
제1 기준반사면(1801)은 제1 반사면(1201)의 일변에 인접하여 위치할 수 있다. 예를 들어, 제1 기준반사면(1801)은 제1 반사면(1201)의 제1 각도면(1201a)의 일변에 위치할 수 있다. 다른 예를 들어, 제1 기준반사면(1801)은 제1 반사면(1201)의 제1 각도면(1201a)의 일면에 위치하되, 그 위치는 제1 반사면(1201)의 제1 각도면(1201a) 및 제2 각도면(1201b)의 경계에 인접한 것일 수 있다. 제1 기준반사면(1801)은 회전체(120R)의 하부를 향해 기울어질 수 있다. 즉, 제1 기준반사면(1801)은 제1 반사면(1201)에서 역삼각형 형상으로 돌출될 수 있다. 이때, 역삼각형 형상 중 회전체(120R)의 하부를 바라보는 면이 제1 기준반사면(1801)이 될 수 있다.The first reference reflective surface 1801 may be located adjacent to one side of the first reflective surface 1201. For example, the first reference reflective surface 1801 may be located on one side of the first angled surface 1201a of the first reflective surface 1201. For another example, the first reference reflective surface 1801 is positioned on one surface of the first angled surface 1201a of the first reflective surface 1201, and the position thereof is a first angled surface of the first reflective surface 1201. It may be adjacent to the boundary of the 1201a and the second angular surface 1201b. The first reference reflective surface 1801 may be inclined toward the lower portion of the rotating body 120R. That is, the first reference reflective surface 1801 may protrude in an inverted triangle shape from the first reflective surface 1201. In this case, a surface of the inverted triangular shape facing the lower portion of the rotating body 120R may be the first reference reflective surface 1801.
제2 기준반사면(1802)은 제2 반사면(1202)의 일변에 인접하여 위치할 수 있다. 예를 들어, 제2 기준반사면(1802)은 제2 반사면(1202)의 제1 각도면(1202a)의 일변에 위치할 수 있다. 다른 예를 들어, 제2 기준반사면(1802)은 제2 반사면(1202)의 제1 각도면(1202a)의 일면에 위치하되, 그 위치는 제2 반사면(1202)의 제1 각도면(1202a) 및 제2 각도면(1202b)의 경계에 인접한 것일 수 있다. 제2 기준반사면(1802)은 회전체(120R)의 상부를 향해 기울어질 수 있다. 즉, 제2 기준반사면(1802)은 제2 반사면(1202)에서 삼각형 형상으로 돌출될 수 있다. 이때, 삼각형 형상 중 회전체(120R)의 상부를 바라보는 면이 제2 기준반사면(1802)이 될 수 있다.The second reference reflecting surface 1802 may be located adjacent to one side of the second reflecting surface 1202. For example, the second reference reflecting surface 1802 may be located at one side of the first angular surface 1202a of the second reflecting surface 1202. For another example, the second reference reflecting surface 1802 is positioned on one surface of the first angled surface 1202a of the second reflective surface 1202, and the position thereof is the first angled surface of the second reflective surface 1202. It may be adjacent to the boundary of the 1202a and the second angular surface 1202b. The second reference reflecting surface 1802 may be inclined toward the upper portion of the rotating body 120R. That is, the second reference reflecting surface 1802 may protrude in a triangular shape from the second reflecting surface 1202. In this case, a surface of the triangular shape facing the top of the rotating body 120R may be the second reference reflecting surface 1802.
제1 차광판(1401)은 슬릿(140S)을 구비할 수 있다. 슬릿(140S)은 제1 기준반사면(1801)의 하부에 위치할 수 있고, 제2 기준반사면(1802)의 상부에 위치할 수 있다. 즉, 슬릿(140S)은 제1 기준반사면(1801)과 제2 기준반사면(1802)에 사이에 위치할 수 있다. 슬릿(140S)을 통해 제1 기준반사면(1801)은 제2 기준반사면(1802)을 바라볼 수 있고, 슬릿(140S)을 통해 제2 기준반사면(1802)은 제1 기준반사면(1801)을 바라볼 수 있다. 다시 말해, 슬릿(140S)은 제1 및 제2 기준반사면(1801,1802) 사이에서 기준광의 경로를 제공할 수 있다.The first light blocking plate 1401 may include a slit 140S. The slit 140S may be positioned below the first reference reflective surface 1801 and may be positioned above the second reference reflective surface 1802. That is, the slit 140S may be located between the first reference reflecting surface 1801 and the second reference reflecting surface 1802. The first reference reflecting surface 1801 may face the second reference reflecting surface 1802 through the slit 140S, and the second reference reflecting surface 1802 may refer to the first reference reflecting surface (slit 140S). 1801). In other words, the slit 140S may provide a path of reference light between the first and second reference reflection surfaces 1801 and 1802.
이에 따라, 광 스캐너(100)의 크기를 최소화하고, 제조단가를 줄이면서 기준 광의 경로를 제공할 수 있다. Accordingly, it is possible to minimize the size of the optical scanner 100, to provide a path of the reference light while reducing the manufacturing cost.
도 32를 참조하면, 광 스캐너(100)는 아우터하우징(200), 이너하우징(160), 발광부(110,170), 수광부(171,130), 회전체(120R), 그리고 반사면(120)을 포함할 수 있다.Referring to FIG. 32, the optical scanner 100 may include an outer housing 200, an inner housing 160, light emitting units 110 and 170, light receiving units 171 and 130, a rotating body 120R, and a reflective surface 120. Can be.
아우터하우징(200)은 광 스캐너(100)의 외관을 형성할 수 있다. 아우터하우징(200)은 전방이 후방 보다 넓은 면적을 가지도록 형성될 수 있다. 이는, 빛의 방사각도를 고려한 것일 수 있다. 이너하우징(160)은 아우터하우징(200)의 내부에 위치할 수 있다. 이너하우징(160)은 아우터하우징(200)에 내장될 수 있다. 이너하우징(160)은 전체적으로 원통형상일 수 있다. The outer housing 200 may form an appearance of the optical scanner 100. The outer housing 200 may be formed such that the front has a larger area than the rear. This may be in consideration of the radiation angle of light. The inner housing 160 may be located inside the outer housing 200. The inner housing 160 may be built in the outer housing 200. The inner housing 160 may have a cylindrical shape as a whole.
회전체(120R)는 이너하우징(160)의 내부에서 회전할 수 있다. 회전체(120R)는 모터에 의해 구동될 수 있다. 회전체(120R)는 회전방향을 따라서 순차적으로 반사면(120a,120b,120c,120d)을 구비할 수 있다. 이는, 회전체(120R)가 회전함에 따라서 회전체(120R)의 전체적인 외면을 형성할 뿐만 아니라, 다양한 반사면(120)을 제공할 수 있음을 의미한다. The rotating body 120R may rotate inside the inner housing 160. The rotating body 120R may be driven by a motor. The rotating body 120R may include reflective surfaces 120a, 120b, 120c, and 120d sequentially in the rotational direction. This means that as the rotor 120R rotates, not only the entire outer surface of the rotor 120R is formed, but also various reflection surfaces 120 may be provided.
회전체(120R)의 중앙에 제1 반사면(1201)이 구비될 수 있고, 회전체(120R)의 하부에 제2 반사면(1202)이 구비될 수 있고, 회전체(120R)의 상부에 제3 반사면(1203)이 구비될 수 있다. 제1 내지 제3 반사면(1201,1202,1203)의 면적으로 서로 다를 수 있다. 반사면(120)은 복수개(120a,120b,120c,120d)일 수 있다. 즉, 회전체가 회전하면서 서로 다른 반사면(120)을 제공할 수 있음을 의미한다.The first reflecting surface 1201 may be provided at the center of the rotating body 120R, and the second reflecting surface 1202 may be provided below the rotating body 120R, and the upper portion of the rotating body 120R may be provided. The third reflective surface 1203 may be provided. Areas of the first to third reflective surfaces 1201, 1202, and 1203 may be different from each other. Reflective surface 120 may be a plurality of (120a, 120b, 120c, 120d). That is, it means that the rotating body can provide different reflective surfaces 120 while rotating.
이너하우징(160)과 아우터하우징(200)의 사이에 발광부(110,170), 그리고 수광부(171,130)가 위치할 수 있다. 발광부(110,170)는 발광소자(110), 그리고 렌즈(170)를 구비할 수 있다. 수광부(171,130)는 수광센서(130), 그리고 렌즈(171)를 구비할 수 있다. 발광부(110,170)는 제1 반사면(1201)에 빛을 제공할 수 있다. 발광부(110,170)에서 제공된 빛은 개구(172h)_를 통해 제1 반사면(1201)을 향할 수 있다.The light emitting units 110 and 170 and the light receiving units 171 and 130 may be positioned between the inner housing 160 and the outer housing 200. The light emitting units 110 and 170 may include a light emitting device 110 and a lens 170. The light receiving units 171 and 130 may include a light receiving sensor 130 and a lens 171. The light emitters 110 and 170 may provide light to the first reflective surface 1201. Light provided from the light emitting units 110 and 170 may face the first reflective surface 1201 through the opening 172h.
수광부(171,130)는 제2 및 제3 반사면(1202,1203)에서 반사되는 빛을 감지할 수 있다. 이때, 수광센서(130)와 제2 반사면(1202) 사이, 그리고 수광센서(130)와 제3 반사면(1203) 사이에 반사판(172)이 구비될 수 있다. 발광부(110,170)와 수광부(171,130)가 서로 이격되어 위치함으로써 전자기장에 의한 상호 간섭을 최소화할 수 있다. The light receivers 171 and 130 may detect light reflected from the second and third reflective surfaces 1202 and 1203. In this case, the reflective plate 172 may be provided between the light receiving sensor 130 and the second reflecting surface 1202 and between the light receiving sensor 130 and the third reflecting surface 1203. Since the light emitting units 110 and 170 and the light receiving units 171 and 130 are spaced apart from each other, mutual interference due to an electromagnetic field may be minimized.
이너하우징(160)은 발광부(110,170)와 제1 반사면(1201) 사이에 홀(160h1)을 구비할 수 있다. 또한, 이너하우징(160)은 제2 반사면(1202)과 수광부(171,130) 사이에 홀(160h4)이 형성될 수 있다. 또한, 이너하우징(160)은 제3 반사면(1203)과 수광부(171,130) 사이에 홀(160h5)이 형성될 수 있다. 다시 말해, 이너하우징(160)은 제2 반사면(1202)과 반사판(172)의 하부 사이에 홀(160h4)이 형성될 수 있고, 제3 반사면(1203)과 반사판(172)의 상부 사이에 홀(160h5)이 형성될 수 있다.The inner housing 160 may include a hole 160h1 between the light emitting units 110 and 170 and the first reflective surface 1201. In addition, the inner housing 160 may have a hole 160h4 formed between the second reflecting surface 1202 and the light receiving parts 171 and 130. In addition, the inner housing 160 may have a hole 160h5 formed between the third reflecting surface 1203 and the light receiving parts 171 and 130. In other words, the inner housing 160 may have a hole 160h4 formed between the second reflecting surface 1202 and the lower portion of the reflecting plate 172, and between the third reflecting surface 1203 and the upper portion of the reflecting plate 172. Holes 160h5 may be formed in the holes.
이에 따라, 발광부(110,170)에서 제공되는 빛은 이너하우징(160) 내측으로 향하고, 제1 반사면(1201)에서 반사되어 광 스캐너(100)의 외부로 나아갈 수 있다. 광 스캐너(100)의 외부에서 반사되어 되돌아 오는 빛은 제2 반사면(1202) 및 제3 반사면(1203)을 통해 반사되어 반사판(172)을 거쳐 수광부(171,130)에서 감지될 수 있다.Accordingly, the light provided from the light emitting units 110 and 170 may be directed toward the inner housing 160, and may be reflected by the first reflective surface 1201 to the outside of the optical scanner 100. Light reflected from the outside of the optical scanner 100 and reflected back may be reflected by the second reflecting surface 1202 and the third reflecting surface 1203 to be detected by the light receiving parts 171 and 130 via the reflecting plate 172.
도 33을 참조하면, 광 스캐너(100)는 메인보드(210), 아우터하우징(200), 이너하우징(160), 발광부(110,170), 수광부(171,130) 그리고 표시등(223)을 포함할 수 있다. 전자소자들은 메인보드(210)에 실장될 수 있다. 아우터하우징(200)은 메인보드(210) 상부에 장착될 수 있다. 이너하우징(160)은 메인보드(210) 위에 장착될 수 있다. 발광부(110,170)는 메인보드(210) 위에 장착될 수 있고, 이너하우징(160)에 인접하고, 수광부(171,130)와 이격되어 위치할 수 있다. 수광부(171,130)는 메인보드(210) 위에 장착될 수 있고, 이너하우징(160)에 인접하고, 발광부(110,170)와 이격되어 위치할 수 있다. 아우터하우징(200)은 메인보드(210)의 상부에서 이너하우징(160), 발광부(110,170), 그리고 수광부(171,130)를 덮을 수 있다.Referring to FIG. 33, the optical scanner 100 may include a main board 210, an outer housing 200, an inner housing 160, light emitting units 110 and 170, light receiving units 171 and 130, and an indicator light 223. have. Electronic devices may be mounted on the main board 210. The outer housing 200 may be mounted on the main board 210. The inner housing 160 may be mounted on the main board 210. The light emitting units 110 and 170 may be mounted on the main board 210, may be adjacent to the inner housing 160, and may be spaced apart from the light receiving units 171 and 130. The light receiving units 171 and 130 may be mounted on the main board 210, may be adjacent to the inner housing 160, and may be spaced apart from the light emitting units 110 and 170. The outer housing 200 may cover the inner housing 160, the light emitting units 110 and 170, and the light receiving units 171 and 130 on the main board 210.
이너하우징(160)은 제1 반사면(1201)의 일부가 외부로 노출되는 제1 개구(160P1)가 형성될 수 있다. 이너하우징(160)은 제2 반사면(1202)의 일부가 노출되는 제2 개구(160P2)가 형성될 수 있다. 이너하우징(160)은 제3 반사면(1203)의 일부가 노출되는 제3 개구(160P3)가 형성될 수 있다. 윈도우(221,222,224)는 아우터하우징(200)의 전면에 위치할 수 있다. 윈도우(221,222,224)는 복수개가 구비될 수 있다. 제1 윈도우(221)는 제1 개구(160P1)와 마주할 수 있다. 제2 윈도우(222)는 제2 개구(160P2)와 마주할 수 있다. 제3 윈도우(224)는 제3 개구(160P3)와 마주할 수 있다.The inner housing 160 may have a first opening 160P1 through which a portion of the first reflective surface 1201 is exposed to the outside. The inner housing 160 may have a second opening 160P2 through which a portion of the second reflective surface 1202 is exposed. The inner housing 160 may have a third opening 160P3 through which a portion of the third reflective surface 1203 is exposed. The windows 221, 222, and 224 may be located in front of the outer housing 200. A plurality of windows 221, 222, and 224 may be provided. The first window 221 may face the first opening 160P1. The second window 222 may face the second opening 160P2. The third window 224 may face the third opening 160P3.
제1 윈도우(221)는 제1 반사면(1201)을 통해 반사되는 빛이 나오는 영역일 수 있다. 제2 윈도우(222)는 제1 윈도우(221)을 통해 나온 빛이 외부 물체에 반사되어 다시 광 스캐너(100)를 향하는 빛이 통과하는 영역일 수 있다. 제2 윈도우(222)를 통해 제2 반사면(1202)으로 빛이 향할 수 있다. 제3 윈도우(224)는 제1 윈도우(221)을 통해 나온 빛이 외부 물체에 반사되어 다시 광 스캐너(100)를 향하는 빛이 통과하는 영역일 수 있다. 제3 윈도우(224)를 통해 제3 반사면(1203)으로 빛이 향할 수 있다.도 34는 본 발명의 일 실시예에 따른 광 스캐너의 블록도를 도시한 도면이고, 도 35는 본 발명의 일 실시예에 따른 광 스캐너의 이상 감지의 일 예를 도시한 도면이다.The first window 221 may be an area where light reflected through the first reflective surface 1201 is emitted. The second window 222 may be an area through which light emitted through the first window 221 is reflected by an external object and then passes toward the optical scanner 100. Light may be directed to the second reflective surface 1202 through the second window 222. The third window 224 may be an area where light emitted through the first window 221 is reflected by an external object and then passes toward the optical scanner 100. Light may be directed to the third reflective surface 1203 through the third window 224. FIG. 34 is a block diagram of an optical scanner according to an embodiment of the present invention, and FIG. 35 is a diagram of the present invention. FIG. 1 is a diagram illustrating an example of abnormality detection of an optical scanner, according to an exemplary embodiment.
도 34를 참조하면, 광 스캐너(100)는 제어부(10), 발광소자(110), 수광센서(130), 모터(20), 통신부(30), 그리고 전원공급부(40)를 포함할 수 있다. 제어부(10)와 통신부(30)는 메인보드(210)에 실장될 수 있다. 전원공급부(40)는 메인보드(210)에 내장될 수 있고, 광 스캐너(100) 외부에서 공급될 수도 있다. 제어부(10)는 모터(20), 발광소자(110), 수광센서(130), 통신부(30), 그리고 전원공급부(40)와 전기적으로 연결될 수 있다. Referring to FIG. 34, the optical scanner 100 may include a control unit 10, a light emitting device 110, a light receiving sensor 130, a motor 20, a communication unit 30, and a power supply unit 40. . The control unit 10 and the communication unit 30 may be mounted on the main board 210. The power supply 40 may be built in the main board 210 or may be supplied from the outside of the optical scanner 100. The controller 10 may be electrically connected to the motor 20, the light emitting device 110, the light receiving sensor 130, the communication unit 30, and the power supply unit 40.
제어부(10)는 TOF연산, 물체의 거리 및 각도 정보의 산출, 탐지 물체의 존재여부, 안전신호의 출력, 탐지 물체의 운동상태에 대한 신호를 처리할 수 있다. 제어부(10)는 발광소자(110)의 발광시점과 수광센서(130)의 수광시점을 기록하고, TOF원리에 근거하여 연산을 실행할 수 있다. 이에 따라, 탐지 물체의 거리를 결정하고, 발광된 레이저의 각도 정보를 계산할 수 있다. 제어부(10)는 위 각도정보와 거리정보에 기반하여 2차원적인 공간에 설정된 스캔영역(SA)을 모니터링할 수 있다.The controller 10 may process signals for TOF calculation, calculation of distance and angle information of an object, presence of a detection object, output of a safety signal, and motion state of the detection object. The controller 10 may record the light emitting time of the light emitting device 110 and the light receiving time of the light receiving sensor 130, and may perform calculation based on the TOF principle. Accordingly, the distance of the detection object can be determined and the angle information of the emitted laser can be calculated. The controller 10 may monitor the scan area SA set in the two-dimensional space based on the angle information and the distance information.
통신부(30)는, 유선 및/또는 무선을 통해 정보를 송수신 할 수 있다. 통신부(30)는, 외부의 서버와 통신을 수행할 수 있다. 예를 들어, 광 스캐너(100)의 상태를 통신부(30)를 통해 송신 및/또는 제어명령을 통신부(30)를 통해 수신할 수 있음을 의미한다.The communication unit 30 may transmit and receive information via wired and / or wireless. The communication unit 30 may communicate with an external server. For example, it means that the transmission and / or control command of the state of the optical scanner 100 can be received through the communication unit 30.
도 35를 참조하면, 광 스캐너(100)는 복수개가 사용될 수 있다. 광 스캐너(100)는 중앙통제센터(CT)에서 제어할 수 있다. 광 스캐너(100)는 중앙통제센터(CT)에 유선 및/또는 무선으로 연결될 수 있다. 광 스캐너(100)가 감지 또는 감시하는 영역(SA)에 대한 정보를 중앙통제센터(CT)에서 관측할 수 있다. 광 스캐너(100)의 상태에 대한 정보도, 또한, 중앙통제센터(CT)에서 관측할 수 있다. 예를 들어, 광 스캐너(100)의 동작의 이상이 감지되면 중앙통제센터(CT)에서 어떤 광 스캐너(100)가 이상을 보이는지 파악할 수 있다. 광 스캐너(100)의 이상은, 회전체(120R)의 회전속도 저하, 빛의 감지 불능, 기준광의 주기 이상 등이 될 수 있다.Referring to FIG. 35, a plurality of optical scanners 100 may be used. The optical scanner 100 may be controlled by a central control center (CT). The optical scanner 100 may be connected to the central control center (CT) by wire and / or wireless. Information about the area SA detected or monitored by the optical scanner 100 may be observed at the central control center CT. Information on the state of the optical scanner 100 can also be observed in the central control center (CT). For example, when an abnormality in the operation of the optical scanner 100 is detected, the central control center CT may determine which optical scanner 100 shows the abnormality. The abnormality of the optical scanner 100 may be, for example, a lowering of the rotational speed of the rotating body 120R, inability to detect light, a period abnormality of the reference light, and the like.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It is apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit and essential features of the present invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.

Claims (17)

  1. 하우징;housing;
    상기 하우징 내부에서 회전하며, 다수의 반사면을 포함하는 회전체;A rotating body rotating in the housing and including a plurality of reflective surfaces;
    상기 회전체로부터 상기 하우징의 내면을 향해 연장되되, 상기 다수의 반사면 각각을 제1 반사면과 제2 반사면으로 분리하는 차광판;A light shielding plate extending from the rotating body toward an inner surface of the housing and separating each of the plurality of reflective surfaces into a first reflective surface and a second reflective surface;
    상기 제1 반사면에 빛을 제공하는 발광부; 그리고,A light emitting unit providing light to the first reflective surface; And,
    상기 제2 반사면에서 반사되는 빛을 감지하는 수광부;를 포함하는 광 스캐너.And a light receiver configured to detect light reflected from the second reflective surface.
  2. 제1 항에 있어서,The method of claim 1,
    상기 하우징의 내면에서 상기 차광판을 향해 연장된 쉴드부를 더 포함하며,Further comprising a shield extending from the inner surface of the housing toward the light blocking plate,
    상기 차광판과 상기 쉴드부는 적어도 일부가 오버랩(overlap)된 광 스캐너.And at least a portion of the light blocking plate and the shield part.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 차광판은, 일단에 단차가 형성되고,The light blocking plate is formed with a step at one end,
    상기 쉴드부는, 상기 단차에서 오버랩되는 광 스캐너.The shield unit, the optical scanner overlaps in the step.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제1 반사면은, 상기 회전체의 상부에 위치하고,The first reflecting surface is located above the rotating body,
    상기 제2 반사면은, 상기 회전체의 하부에 위치하는 광 스캐너.The second reflective surface is located below the rotating body.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제1 반사면의 상하 높이는 상기 제2 반사면의 상하 높이 보다 작고,The vertical height of the first reflective surface is smaller than the vertical height of the second reflective surface,
    상기 제1 반사면의 좌우 너비는 상기 제2 반사면의 좌우 너비보다 작은 광 스캐너.The left and right widths of the first reflecting surface are smaller than the left and right widths of the second reflecting surface.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 제1 반사면은 복수개가 구비되고,The first reflective surface is provided with a plurality,
    상기 복수개의 제1 반사면은 상기 회전체의 회전축에 대하여 서로 다른 기울기를 가지고,The plurality of first reflective surfaces have different inclinations with respect to the axis of rotation of the rotating body,
    상기 제2 반사면은 복수개가 구비되고,The second reflection surface is provided with a plurality,
    상기 복수개의 제2 반사면은 상기 회전체의 회전축에 대하여 서로 다른 기울기를 가지는 광 스캐너.And the plurality of second reflecting surfaces have different inclinations with respect to the axis of rotation of the rotating body.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제1 반사면에서 돌출된 제1 기준반사면(referecne reflector); 그리고,A first reference reflector protruding from the first reflecting surface; And,
    상기 제2 반사면에서 돌출된 제2 기준반사면;을 더 포함하는 광 스캐너.And a second reference reflecting surface protruding from the second reflecting surface.
  8. 제7 항에 있어서,The method of claim 7, wherein
    상기 차광판은, The light shield plate,
    상기 제1 기준반사면과 상기 제2 기준반사면 사이에 형성된 슬릿을 더 포함하는 광 스캐너.And a slit formed between the first reference reflecting surface and the second reference reflecting surface.
  9. 제7 항에 있어서,The method of claim 7, wherein
    상기 제1 기준반사면은, 상기 발광부와 상기 제2 기준반사면을 바라보도록 기울어져 있고,The first reference reflecting surface is inclined to face the light emitting portion and the second reference reflecting surface,
    상기 제2 기준반사면은, 상기 제1 기준반사면을 바라보도록 기울어져 있는 형태인 광 스캐너.And the second reference reflecting surface is inclined to face the first reference reflecting surface.
  10. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제1 기준반사면은, 상기 제1 반사면의 적어도 일 변(edge)에 인접하여 위치하고,The first reference reflective surface is located adjacent to at least one edge of the first reflective surface,
    상기 제2 기준반사면은, 상기 제1 기준반사면에 대응되도록 상기 제1 기준반사면의 하부에 위치하는 광 스캐너.And the second reference reflecting surface is positioned below the first reference reflecting surface to correspond to the first reference reflecting surface.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 제1 반사면과 상기 제2 반사면은,The first reflecting surface and the second reflecting surface,
    상기 회전체의 측면을 순차적으로 형성하여, 상기 회전체의 평단면이 다각형이 되는 광 스캐너.And a side surface of the rotating body sequentially formed so that a flat cross section of the rotating body becomes a polygon.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 하우징의 외부에 위치하는 제1 및 제2 기준반사면;을 더 포함하고,And first and second reference reflecting surfaces positioned outside the housing.
    상기 제1 기준반사면은,The first reference reflective surface,
    상기 제1 반사면에 대응하는 높이에 위치하고,Located at a height corresponding to the first reflective surface,
    상기 제2 기준반사면은,The second reference reflective surface,
    상기 제2 반사면에 대응하는 높이에 위치하고,Located at a height corresponding to the second reflecting surface,
    상기 하우징은,The housing is
    상기 제1 반사면 및 상기 제1 기준반사면 사이에 형성되는 제1 홀, 그리고,A first hole formed between the first reflective surface and the first reference reflective surface, and
    상기 제2 반사면 및 상기 제2 기준반사면 사이에 형성되는 제2 홀을 구비하는 광 스캐너.And a second hole formed between the second reflective surface and the second reference reflective surface.
  13. 제 7 항에 있어서,The method of claim 7, wherein
    상기 수광부와 상기 제2 반사면 사이에 위치하는 반사판;을 더 포함하고,And a reflector positioned between the light receiving portion and the second reflecting surface.
    상기 반사판은 상기 수광부와 상기 제2 반사면 사이의 광경로 상에 위치하는 광 스캐너.And the reflector is positioned on an optical path between the light receiving portion and the second reflecting surface.
  14. 제 9 항에 있어서,The method of claim 9,
    상기 발광부에서 제공되는 빛은,The light provided by the light emitting unit is
    상기 제1 기준 반사면에서 반사되어 상기 제2 기준 반사면을 향하고,Is reflected from the first reference reflecting surface and faces the second reference reflecting surface,
    상기 제2 기준 반사면에서 반사되어 상기 수광부로 향하는 광 스캐너.And an optical scanner reflected from the second reference reflecting surface and directed toward the light receiving unit.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 발광부 및 상기 수광부는,The light emitting unit and the light receiving unit,
    상기 하우징의 외부에 위치하고,Located outside of the housing,
    상기 하우징은,The housing is
    상기 발광부와 상기 제1 반사면 사이에 형성된 제1 개구부(opening), 그리고,A first opening formed between the light emitting portion and the first reflective surface, and
    상기 수광부와 상기 제2 반사면 사이에 형성된 제2개구부를 구비하는 광 스캐너.And a second opening formed between the light receiving portion and the second reflecting surface.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 수광부와 상기 제2 반사면 사이에 위치하는 반사판;을 더 포함하고,And a reflector positioned between the light receiving portion and the second reflecting surface.
    상기 제2 개구부는,The second opening is,
    상기 제2 반사면과 상기 반사판 사이에 형성되고,Is formed between the second reflecting surface and the reflecting plate,
    상기 발광부와 상기 수광부는 서로 이격되는 광 스캐너.And the light emitting part and the light receiving part are spaced apart from each other.
  17. 제 1 항에 있어서,The method of claim 1,
    상기 발광부와 상기 수광부는,The light emitting unit and the light receiving unit,
    하나의 PCB기판 상에 위치하는 광 스캐너.Optical scanner located on one PCB board.
PCT/KR2016/011313 2015-11-09 2016-10-10 Optical scanner WO2017082540A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680065367.9A CN108351511B (en) 2015-11-09 2016-10-10 Optical scanner
DE112016004753.3T DE112016004753B4 (en) 2015-11-09 2016-10-10 Optical scanner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0156947 2015-11-09
KR1020150156947A KR101674062B1 (en) 2015-11-09 2015-11-09 Optical scanner

Publications (1)

Publication Number Publication Date
WO2017082540A1 true WO2017082540A1 (en) 2017-05-18

Family

ID=57527963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011313 WO2017082540A1 (en) 2015-11-09 2016-10-10 Optical scanner

Country Status (4)

Country Link
KR (1) KR101674062B1 (en)
CN (1) CN108351511B (en)
DE (1) DE112016004753B4 (en)
WO (1) WO2017082540A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200355800A1 (en) * 2018-01-31 2020-11-12 Denso Corporation Lidar apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102508295B1 (en) * 2017-07-06 2023-03-10 주식회사 오토닉스 Optical scanner
KR102189503B1 (en) * 2018-09-14 2020-12-14 한국전자기술연구원 A lidar having a structure for blocking internal reflection
US11536845B2 (en) * 2018-10-31 2022-12-27 Waymo Llc LIDAR systems with multi-faceted mirrors
WO2021210952A1 (en) * 2020-04-16 2021-10-21 주식회사 만도 Lidar device
KR20220153041A (en) * 2020-04-16 2022-11-17 주식회사 에이치엘클레무브 lidar device
KR102645857B1 (en) * 2021-11-11 2024-03-11 주식회사 오토닉스 Laser scanner
JP2024014460A (en) * 2022-07-22 2024-02-01 ニデックコンポーネンツ株式会社 scanning optical device
JP2024014461A (en) * 2022-07-22 2024-02-01 ニデックコンポーネンツ株式会社 scanning optical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261105A (en) * 1994-03-23 1995-10-13 Omron Corp Optical scanning device, optical sensor device using the same, and code information reader and pos system
US6788861B1 (en) * 1999-08-10 2004-09-07 Pentax Corporation Endoscope system, scanning optical system and polygon mirror
KR20070017780A (en) * 2005-08-08 2007-02-13 삼성전자주식회사 Light scanning apparatus and image forming apparatus
KR101145767B1 (en) * 2011-06-27 2012-05-16 주식회사 미루시스템즈 Omnidirectional camera
JP2014048313A (en) * 2012-08-29 2014-03-17 Ricoh Co Ltd Optical scanner and image forming device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9401302A (en) * 1994-08-11 1996-03-01 Scantech Bv Barcode scanner.
NL1004654C2 (en) * 1996-11-29 1998-07-02 Scantech Bv Device and method for scanning articles with a code.
JP4388116B2 (en) * 2007-11-26 2009-12-24 東芝テック株式会社 Bar code reader
US8305561B2 (en) * 2010-03-25 2012-11-06 Hokuyo Automatic Co., Ltd. Scanning-type distance measuring apparatus
US8629977B2 (en) 2010-04-14 2014-01-14 Digital Ally, Inc. Traffic scanning LIDAR
NO336546B1 (en) * 2010-09-24 2015-09-21 Tomra Sorting As Apparatus and method for inspection of matter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261105A (en) * 1994-03-23 1995-10-13 Omron Corp Optical scanning device, optical sensor device using the same, and code information reader and pos system
US6788861B1 (en) * 1999-08-10 2004-09-07 Pentax Corporation Endoscope system, scanning optical system and polygon mirror
KR20070017780A (en) * 2005-08-08 2007-02-13 삼성전자주식회사 Light scanning apparatus and image forming apparatus
KR101145767B1 (en) * 2011-06-27 2012-05-16 주식회사 미루시스템즈 Omnidirectional camera
JP2014048313A (en) * 2012-08-29 2014-03-17 Ricoh Co Ltd Optical scanner and image forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200355800A1 (en) * 2018-01-31 2020-11-12 Denso Corporation Lidar apparatus

Also Published As

Publication number Publication date
DE112016004753T5 (en) 2018-07-12
CN108351511B (en) 2021-07-16
DE112016004753B4 (en) 2021-12-30
KR101674062B1 (en) 2016-11-08
CN108351511A (en) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2017082540A1 (en) Optical scanner
WO2016175395A2 (en) Multi-channel lidar scanner optical system using mirror rotation manner
US6753776B2 (en) Presence sensing system and method
JP5607484B2 (en) Door sensing system for detecting target objects
US6480187B1 (en) Optical scanning-type touch panel
WO2018230852A1 (en) Method for identifying moving object in three-dimensional space and robot for implementing same
JP6866048B2 (en) Photoelectric sensor and method for detecting objects in the monitoring area
CN106054276A (en) Flight time safety optoelectronic barrier and method for monitoring protective region
WO2019240381A1 (en) Charging station for robot vacuum cleaner
KR101361276B1 (en) Optical sensor, in particular proximity switch
WO2019022549A1 (en) Lidar device
WO2014104765A1 (en) Three-dimensional space measurement device and method for operating same
WO2013094791A1 (en) Distance measurement apparatus
US6677602B1 (en) Notch and flat sensor for wafer alignment
WO2021177752A1 (en) Micro-lidar sensor
KR102508295B1 (en) Optical scanner
WO2021261809A1 (en) Lidar apparatus
JP4004177B2 (en) Optical scanning touch panel
WO2021095904A1 (en) Lidar device using dual wavelengths
CN215402424U (en) ToF elevator light curtain device and elevator
ITTO20090147A1 (en) SAFETY BARRIER WITH LIGHT DETECTION
JP2003294415A (en) Optical curtain type safety sensor
WO2019098721A1 (en) System for actively blocking sunlight by using photoelectric effect and liquid crystal
CN219328896U (en) Laser scanning sensor
WO2024063203A1 (en) Device for sensing position of structure and mems scanner package comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864466

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016004753

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864466

Country of ref document: EP

Kind code of ref document: A1