WO2017082239A1 - Leanable vehicle - Google Patents

Leanable vehicle Download PDF

Info

Publication number
WO2017082239A1
WO2017082239A1 PCT/JP2016/083064 JP2016083064W WO2017082239A1 WO 2017082239 A1 WO2017082239 A1 WO 2017082239A1 JP 2016083064 W JP2016083064 W JP 2016083064W WO 2017082239 A1 WO2017082239 A1 WO 2017082239A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
motor
state
driving force
torque command
Prior art date
Application number
PCT/JP2016/083064
Other languages
French (fr)
Japanese (ja)
Inventor
普 田中
史尚 大林
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2017082239A1 publication Critical patent/WO2017082239A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J50/00Arrangements specially adapted for use on cycles not provided for in main groups B62J1/00 - B62J45/00
    • B62J50/20Information-providing devices
    • B62J50/21Information-providing devices intended to provide information to rider or passenger
    • B62J50/22Information-providing devices intended to provide information to rider or passenger electronic, e.g. displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/12Motorcycles characterised by position of motor or engine with the engine beside or within the driven wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/10Arrangements of batteries for propulsion
    • B62J43/13Arrangements of batteries for propulsion on rider-propelled cycles with additional electric propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/20Arrangements of batteries characterised by the mounting

Definitions

  • the present invention relates to a lean vehicle, and more particularly, to a lean vehicle including a first motor that generates a driving force transmitted to front wheels and a second motor that generates a driving force transmitted to rear wheels.
  • motors are arranged on the front wheels and the rear wheels.
  • a motor disposed on the front wheel generates a driving force transmitted to the front wheel.
  • a motor disposed on the rear wheel generates a driving force transmitted to the rear wheel.
  • the straightness of the lean vehicle is improved as compared to the case where the front wheels are not driven by the motor and the rear wheels are driven by the motor.
  • the lean vehicle is likely to be understeered when turning. That is, it is easy to generate a state in which the turning radius of the travel line becomes large when the lean vehicle is turning, even though the vehicle is turning at a constant steering angle.
  • An object of the present invention is to adjust the understeer characteristic of a lean vehicle in a lean vehicle in which each of the front wheels and the rear wheels is driven by a motor.
  • a lean vehicle includes a vehicle body, a front wheel, a front motor, a rear wheel, a rear motor, an operator, and a control device.
  • a lean vehicle leans to the left when turning left, and leans to the right when turning right.
  • the front wheel is supported by the vehicle body.
  • the front motor generates a driving force transmitted to the front wheels.
  • the rear wheel is supported by the vehicle body.
  • the rear motor generates driving force transmitted to the rear wheels.
  • the operation element is operated by an occupant.
  • the control device controls the driving force of the front motor and the rear motor according to the operation state of the operation element.
  • the control device changes from a state where the lean vehicle is moving forward with the vehicle body upright to a state where the lean vehicle is turning while the vehicle body is tilted, and the operation state of the operator is not changed.
  • the rear wheel receives driving force from the rear motor in each of the forward state and the turning state, and the front wheel turns a smaller driving force than the forward state.
  • the driving force of the front motor and the rear motor is controlled so as to be transmitted from the front motor in a state.
  • the lean vehicle changes from the upright state with the leaning vehicle moving forward to the leaning vehicle with the leaning vehicle body, and the operating state of the operation element changes.
  • a driving force that is smaller than the forward moving state is transmitted from the front motor to the front wheels in a turning state. Therefore, the understeer characteristic of the vehicle can be adjusted.
  • the steering wheel that changes the traveling direction of the vehicle may be a front wheel or a rear wheel.
  • the operating element is not particularly limited as long as it is operated by a passenger.
  • the operation element is, for example, an accelerator grip or a pedal.
  • a driving force that is smaller than that in the forward movement is not necessarily transmitted from the front motor to the front wheels. That is, it is only necessary to transmit a driving force smaller than that in a state where the vehicle is moving forward from the front motor to the front wheels in a part when the vehicle is turning.
  • the driving force of the front motor changes periodically.
  • “the driving force that is smaller than the state in which the vehicle is moving forward” may be a driving force that has a peak value that is smaller than the peak value in one cycle of the driving force when moving forward in at least some of the cycles.
  • the lean vehicle may further include an operation information output unit.
  • the operation information output unit outputs operation information indicating an operation state of the operation element to the control device.
  • the control device controls the driving force of the front motor and the rear motor based on the operation information.
  • the operation information output unit is not particularly limited as long as it can detect the operation state of the operator and output operation information indicating the operation state.
  • the operation information output unit is, for example, an opening sensor that detects and outputs the opening of an accelerator grip as an operator.
  • the lean vehicle may further include a state detection unit.
  • the state detection unit detects a state related to turning of the lean vehicle, and outputs state information indicating a state related to turning of the lean vehicle to the control device.
  • the control device determines whether or not the vehicle is turning based on the state information.
  • the state detection unit is not particularly limited as long as it can detect a state related to turning of the lean vehicle and output state information indicating the state.
  • the state detection unit is, for example, an operation angle detection sensor that detects an operation angle of a handle included in the lean vehicle.
  • the state information may include attitude information indicating the attitude of the vehicle.
  • the posture information may include inclination information indicating the inclination of the vehicle body.
  • the state information may include vehicle speed information indicating the speed when the vehicle is turning in addition to the attitude information.
  • the above lean vehicle has a handle.
  • the steering wheel changes the traveling direction of the vehicle.
  • the posture information may include angle information indicating the operation angle of the handle.
  • the control device is preferably configured such that when the driving force of the front motor when the vehicle starts turning is greater than or equal to a predetermined magnitude, the front motor is in a state where the driving force is smaller than the state in which the vehicle is moving forward.
  • the driving force of the front motor is controlled so as to be transmitted to the front wheels.
  • the driving force of the front motor when the vehicle starts turning is not greater than or equal to a predetermined magnitude
  • a driving force that is smaller than that in which the vehicle is moving forward is obtained. It is not transmitted from the front motor to the front wheels. As a result, every time the vehicle turns, it is possible to avoid transmission of a driving force smaller than that in a forward movement state from the front motor to the front wheels.
  • the control device preferably drives larger than the driving force corresponding to the operating state of the operating element when a driving force smaller than the forward moving state is transmitted from the front motor to the front wheels while turning.
  • the rear motor is driven with force.
  • the overall driving force of the vehicle (the sum of the driving force of the front motor and the driving force of the rear motor) ) Decreases.
  • the driving force of the rear motor is made larger than the driving force according to the operating state of the operator by the occupant, it is possible to avoid the driving force of the entire vehicle from being lowered.
  • control device preferably causes the rear wheel to slip the driving force of the rear motor when the rear wheel slips when a driving force smaller than that of the forward movement is turning and transmitted from the front motor to the front wheel. Decrease the driving force.
  • FIG. 1 is a right side view showing an electric motorcycle as a lean vehicle according to a first embodiment of the present invention. It is a block diagram for demonstrating the structure of the control system of an electric motorcycle. It is a schematic diagram which shows schematic structure of a handle
  • 7 is a map showing the relationship between the steering wheel operation angle indicated by the detection signal of the steering wheel angle sensor and the front wheel torque command coefficient, which is different from the map shown in FIG.
  • It is explanatory drawing which shows the relationship between each driving force of a front motor and a rear motor, the operation amount of an accelerator grip, and the state of a vehicle. It is explanatory drawing which shows the relationship between the driving force of each of a front motor and a rear motor, pedal effort, and the state of a vehicle.
  • FIG. 7 is a flowchart for explaining a specific operation example of a controller when checking the state of a vehicle in the second embodiment of the present invention. It is a map which shows the relationship between the steering wheel operation angle which the detection signal of a steering wheel angle sensor shows, the vehicle speed which a vehicle speed signal shows, and a front wheel torque command coefficient. 12 is a map showing the relationship between the steering wheel operation angle indicated by the detection signal of the steering wheel angle sensor, the vehicle speed indicated by the vehicle speed signal, and the front wheel torque command coefficient, which is different from the map shown in FIG. 10 is a flowchart for explaining a specific operation example of a controller when calculating a torque command value in the third embodiment of the present invention.
  • the 4th Embodiment of this invention it is a flowchart for demonstrating the specific operation example of a controller when calculating a torque instruction value. It is a block diagram for demonstrating the structure of the control system of the electric two-wheeled vehicle used in the 5th Embodiment of this invention.
  • the 5th Embodiment of this invention it is a flowchart for demonstrating the specific operation example of a controller when confirming the state of a vehicle.
  • the 6th Embodiment of this invention it is a flowchart for demonstrating the specific operation example of a controller when confirming the state of a vehicle. It is a flowchart for demonstrating the specific operation example of a controller when performing traction control in the state in which the control which adjusts the characteristic of the understeer of a vehicle is performed.
  • the inventors of the present application have obtained new knowledge that the output of the motor that drives the front wheels is reduced when the lean vehicle is turning. It has been found that the understeer can be adjusted by adjusting the balance of the driving force of the front and rear wheels of the lean vehicle that is turning. And the present invention was completed.
  • FIG. 1 is a right side view of an electric motorcycle 10 as a lean vehicle according to the first embodiment of the present invention.
  • the electric motorcycle 10 includes an electric drive system for driving front wheels and rear wheels by a motor.
  • the electric motorcycle 10 also includes a human power drive system for driving the rear wheels 16 by human power.
  • front / rear / left / right means front / rear / left / right as viewed from a passenger seated on the saddle 30 of the electric motorcycle 10.
  • the arrow F indicates the forward direction of the electric motorcycle 10
  • the arrow U indicates the upward direction of the electric motorcycle 10.
  • the electric motorcycle 10 includes a body frame 12, a front wheel 14, and a rear wheel 16.
  • the vehicle body frame 12 supports the front wheel 14 and the rear wheel 16.
  • the front wheel 14 and the rear wheel 16 have the same size.
  • the vehicle body frame 12 includes a head pipe 18, an upper pipe 20, a front pipe 22, a seat pipe 24, a pair of left and right rear pipes 26 and 26, and a pair of left and right lower pipes 28 and 28.
  • the upper pipe 20 extends rearward from the head pipe 18.
  • the front pipe 22 is disposed below the upper pipe 20 and extends rearward and downward from the head pipe 18.
  • the rear end of the front pipe 22 is connected to a bottom bracket (not shown).
  • the seat pipe 24 extends upward from the bottom bracket.
  • the rear end of the upper pipe 20 is connected to the seat pipe 24.
  • a saddle 30 is attached to the upper end of the seat pipe 24.
  • a battery 32 is attached to the seat pipe 24 below the saddle 30.
  • the left and right rear pipes 26 and 26 extend rearward and downward from the seat pipe 24.
  • the pair of left and right lower pipes 28 and 28 extend rearward from the bottom bracket.
  • the rear ends of the pair of lower pipes 28, 28 are connected to the rear ends of the pair of rear pipes 26, 26.
  • the rear wheel 16 is rotatably attached at a connection portion between the lower pipe 28 and the rear pipe 26.
  • a rear sprocket 34 is fixed to the rear wheel 16.
  • a rear wheel drive device 35 is disposed on the hub of the rear wheel 16.
  • the rear wheel drive device 35 includes a rear motor 36 and a rear wheel speed reduction mechanism 78 shown in FIG. The rear wheel drive device 35 applies a driving force to the rear wheel 16.
  • a part (non-rotating part) of the tread force sensor 72 is attached to the bottom bracket.
  • a crankshaft 38 is rotatably attached to the bottom bracket.
  • Crank arms 44 are attached to both ends of the crankshaft 38.
  • a pedal 46 is attached to the crank arm 44. When the occupant operates the pedal 46 (specifically, the pedal 46 is depressed), the crankshaft 38 rotates.
  • a part of the pedal force sensor 72 (rotating part) is attached to the crankshaft 38.
  • a front sprocket 40 is attached to the crankshaft 38.
  • An endless chain 42 is wound around the rear sprocket 34 and the front sprocket 40. The rotation of the crankshaft 38 is transmitted from the front sprocket 40 to the rear sprocket 34 via the chain 42.
  • the steering shaft 50 is rotatably inserted into the head pipe 18.
  • a front fork 52 is attached to the lower end of the steering shaft 50.
  • the front wheel 14 is rotatably attached to the lower end of the front fork 52.
  • a front wheel drive device 53 is disposed on the hub of the front wheel 14.
  • the front wheel drive device 53 includes a front motor 54 and a front wheel speed reduction mechanism 76 shown in FIG.
  • the front wheel drive device 53 applies a driving force to the front wheels 14.
  • a handle 56 is attached to the upper end of the steering shaft 50. When the occupant rotates the handle 56, the steering shaft 50 rotates. Along with this, the front fork 52 and the front wheel 14 rotate. As a result, the traveling direction of the vehicle changes.
  • Accelerator grip 58 is disposed on the handle 56.
  • the accelerator grip 58 is disposed so as to be rotatable with respect to the handle 56. Based on the operation amount of the accelerator grip 58, the outputs of the front motor 54 and the rear motor 36 are adjusted.
  • FIG. 2 is a block diagram for explaining the configuration of the control system of the electric motorcycle 10.
  • the electric motorcycle 10 has a human power drive system 60 and an electric drive system 62.
  • the human power drive system 60 changes the pedaling force applied to the pedal 46 by the occupant at a predetermined gear ratio and supplies it to the rear wheels 16.
  • the electric drive system 62 supplies the driving force of the front motor 54 and the rear motor 36 to the front wheels 14 and the rear wheels 16.
  • the human power drive system 60 includes a crankshaft 38 that is rotated by a pedaling force applied to the pedal 46, a speed increasing mechanism 66, a speed change mechanism 68, and a one-way clutch 70.
  • the speed increasing mechanism 66 includes a front sprocket 40, a rear sprocket 34, and a chain 42. The rotation of the crank 64 is increased according to the gear ratio between the front sprocket 40 and the rear sprocket 34.
  • the transmission mechanism 68 is disposed, for example, in the hub of the rear wheel 16.
  • the speed change mechanism 68 shifts the rotation of the input shaft coupled to the rear sprocket 34 at any of a plurality of speed ratios (for example, three speeds) and outputs it to the output shaft.
  • the one-way clutch 70 transmits a rotational force in one direction (forward direction) of the output shaft of the transmission mechanism 68 to the rear wheel 16 and does not transmit a rotational force in the reverse direction (reverse direction).
  • the forward rotational force (manual torque) applied to the crank 64 is accelerated by the speed increasing mechanism 66, then shifted by the speed changing mechanism 68, and transmitted to the rear wheel 16 via the one-way clutch 70.
  • the electric drive system 62 drives the front motor 54 and the rear motor 36 according to the output of the pedal force sensor 72 or the output of the accelerator sensor 74.
  • the pedaling force sensor 72 detects the pedaling force (torque) applied to the crankshaft 38 and outputs a signal (pedaling force signal) corresponding to the pedaling force.
  • the accelerator sensor 74 detects an operation amount of the accelerator grip 58 and outputs a signal (accelerator signal) corresponding to the operation amount.
  • the electric drive system 62 includes a pedal force sensor 72, an accelerator sensor 74, a front motor 54, a rear motor 36, a front wheel speed reduction mechanism 76, a rear wheel speed reduction mechanism 78, and a controller 80.
  • the controller 80 drives the front motor 54 and the rear motor 36 in accordance with the output of the pedal force sensor 72 or the accelerator sensor 74.
  • the rotation of the front motor 54 is decelerated by the front wheel reduction mechanism 76 and transmitted to the front wheel 14.
  • the rotation of the rear motor 36 is decelerated by the rear wheel reduction mechanism 78 and transmitted to the rear wheel 16.
  • the controller 80 includes a front wheel torque command value calculation unit 82, a rear wheel torque command value calculation unit 84, a front motor drive unit 86, and a rear motor drive unit 88.
  • the front wheel torque command value calculation unit 82 calculates a front wheel torque command value according to the output of the pedal force sensor 72 or the accelerator sensor 74.
  • the rear wheel torque command value calculation unit 84 calculates a rear wheel torque command value according to the output of the pedal force sensor 72 or the accelerator sensor 74.
  • the front motor drive unit 86 drives the front motor 54 based on the front wheel torque command value.
  • the rear motor drive unit 88 drives the rear motor 36 based on the rear wheel torque command value.
  • the front wheel torque command value is a command value of the drive torque that the front motor 54 should generate.
  • the rear wheel torque command value is a command value of the driving torque that should be generated by the rear motor 36.
  • the front motor drive unit 86 performs PWM control of drive power from the battery 32 with a duty ratio corresponding to the front wheel torque command value.
  • a PWM-controlled drive voltage is applied to the front motor 54.
  • a driving current corresponding to the front wheel torque command value flows to the front motor 54.
  • the rear motor drive unit 88 performs PWM control of drive power from the battery 32 with a duty ratio corresponding to the rear wheel torque command value.
  • a PWM-controlled drive voltage is applied to the rear motor 36.
  • a driving current corresponding to the rear wheel torque command value flows to the rear motor 36.
  • the controller 80 further includes a slip detection unit 90, a front wheel rotation speed calculation unit 92, and a rear wheel rotation speed calculation unit 94.
  • the slip detection unit 90 is based on the rotation speed of the front wheel 14 calculated by the front wheel rotation speed calculation unit 92 and the rotation speed of the rear wheel 16 calculated by the rear wheel rotation speed calculation unit 94. 16 slips are detected.
  • the front wheel rotation speed calculation unit 92 calculates the rotation speed of the front wheel 14 from the rotation speed of the front motor 54.
  • the rear wheel rotation speed calculation unit 94 calculates the rotation speed of the rear wheel 16 from the rotation speed of the rear motor 36.
  • the front wheel 14 and the rear wheel 16 have the same size. Therefore, the conversion ratio between the rotation speed of the front wheel 14 and the speed of the electric motorcycle 10 is equal to the conversion ratio between the rotation speed of the rear wheel 16 and the speed of the electric motorcycle 10.
  • the controller 80 further includes a changeover switch 96 and a control switch 98.
  • the change-over switch 96 is configured so that the output of the pedal force sensor 72 is input to the front wheel torque command value calculation unit 82 and the rear wheel torque command value calculation unit 84, and the output of the accelerator sensor 74 is the front wheel torque command value calculation unit 82 and the rear wheel. The case where the torque command value calculation unit 84 is input is switched.
  • the control switch 98 switches whether to allow signal input from the slip detection unit 90 to the front wheel torque command value calculation unit 82 and the rear wheel torque command value calculation unit 84.
  • the electric motorcycle 10 further includes a switch box 100.
  • the switch box 100 includes a first switch 102, a second switch 104, and an adjustment switch 106.
  • the switch box 100 is disposed on the handle 56, for example.
  • the first switch 102 switches the operation of the control switch 98.
  • the second switch 104 switches the operation of the changeover switch 96.
  • the adjustment switch 106 switches the ratio between the driving force of the front motor 54 and the driving force of the rear motor 36.
  • the electric motorcycle 10 further includes a display panel 107.
  • the display panel 107 is disposed on the handle 56, for example.
  • the display panel 107 displays, for example, information related to control of the driving force of the front motor 54 and the rear motor 36. For example, when the control switch 98 is OFF, that is, when the first switch 102 is OFF, the display panel 107 displays that the driving force of the front motor 54 and the rear motor 36 is not changed according to the traveling state of the vehicle. To do.
  • the electric motorcycle 10 further includes a handle angle sensor 108.
  • the handle angle sensor 108 detects the operation angle of the handle 56.
  • the handle angle sensor 108 can detect the operation angle of the handle 56 within a range of 90 degrees to the left and right, for example, when the straight traveling direction of the vehicle is set to the reference position (0 °).
  • FIG. 3 is a schematic diagram showing a schematic configuration of the handle angle sensor 108.
  • the handle angle sensor 108 includes a permanent magnet 110 and two Hall elements 112 and 112.
  • the permanent magnet 110 has a ring shape. That is, the permanent magnet 110 has a hole 111 formed therein. In plan view, the center C1 of the hole 111 is deviated from the outer diameter center C2 of the permanent magnet 110. Therefore, the permanent magnet 110 has a radial thickness that changes in the circumferential direction.
  • the permanent magnet 110 is fixed to the steering shaft 50. Specifically, the steering shaft 50 is inserted into the hole 111 formed in the permanent magnet 110. Examples of a method for fixing the permanent magnet 110 to the steering shaft 50 include adhesion. Since the permanent magnet 110 is fixed to the steering shaft 50, the permanent magnet 110 rotates integrally with the steering shaft 50.
  • the two Hall elements 112 and 112 are fixed to the head pipe 18 via the bracket 114.
  • One Hall element 112 is disposed in front of the permanent magnet 110.
  • the other Hall element 112 is disposed behind the permanent magnet 110.
  • the two Hall elements 112 and 112 are arranged on a straight line L1 connecting the center C1 and the center C2. In the example shown in FIG. 3, the straight line L1 extends in the front-rear direction of the vehicle.
  • the radial thickness varies in the circumferential direction. Therefore, when the steering shaft 50 rotates in accordance with the operation of the handle 56, the size of the gap formed between the Hall elements 112, 112 and the permanent magnet 110 changes. As a result, the magnitude of the magnetic field detected by the Hall elements 112 and 112 changes. Since the magnitude of the magnetic field changes, the outputs of the Hall elements 112 and 112 change. The operation angle of the handle 56 can be detected based on the outputs of the hall elements 112 and 112.
  • FIG. 4 is a flowchart for explaining a specific operation example of the controller 80 when adjusting the understeer characteristic of the vehicle.
  • step S11 the controller 80 determines whether the first switch 102 is ON. That is, it is determined whether the control switch 98 is ON.
  • step S11: YES the controller 80 confirms the state of a vehicle in step S12.
  • step S21 the front wheel torque command value calculation unit 82 and the rear wheel torque command value calculation unit 84 read the detection signal of the pedal force sensor 72 or the accelerator sensor 74. Subsequently, in step S22, the front wheel torque command value calculation unit 82 reads the detection signal of the handle angle sensor 108. Thereafter, the controller 80 ends the process of step S12 shown in FIG.
  • the controller 80 calculates a torque command value in step S13.
  • the front wheel torque command value calculation unit 82 calculates a front wheel torque command coefficient.
  • the front wheel torque command coefficient is calculated based on a predetermined map and the read detection signal of the handle angle sensor 108.
  • the front wheel torque command coefficient is a numerical value of 0 or more and 1 or less, and is a coefficient multiplied by the front wheel torque command value. That is, when the front wheel torque command coefficient is smaller than 1, the front wheel torque command value after being multiplied by the front wheel torque command coefficient is smaller than the front wheel torque command value before being multiplied by the front wheel torque command coefficient.
  • the map shown in FIG. 7 shows the relationship between the operation angle of the handle 56 indicated by the detection signal of the handle angle sensor 108 and the front wheel torque command coefficient.
  • the steering wheel operation angle when the steering wheel operation angle is larger than 0 °, the steering wheel 56 is rotated in the clockwise direction from the reference position (the position of 0 °, that is, the position when the vehicle goes straight). It is shown that.
  • the front wheel torque command coefficient is 1 when the operation angle of the handle 56 is 0 °.
  • the front wheel torque command coefficient becomes smaller than 1.
  • the front wheel torque command coefficient becomes zero.
  • the map is stored in a memory provided in the controller 80, for example.
  • the map is not particularly limited as long as it shows the relationship between the operation angle of the handle 56 indicated by the detection signal of the handle angle sensor 108 and the front wheel torque command coefficient.
  • the map shown in FIG. 8 may be used.
  • front wheel torque command value calculation unit 82 calculates a front wheel torque command coefficient, and then calculates a front wheel torque command value in step S32.
  • the front wheel torque command value is calculated based on a predetermined map and the detected detection signal of the pedal force sensor 72 or the accelerator sensor 74.
  • the map at this time is not particularly limited as long as it shows the relationship between the detection signal of the pedal force sensor 72 or the accelerator sensor 74 and the front wheel torque command value.
  • a front wheel torque command value corresponding to the detection signal of the pedal force sensor 72 or the accelerator sensor 74 is calculated.
  • the map is stored in a memory provided in the controller 80, for example.
  • step S33 the front wheel torque command value calculation unit 82 multiplies the front wheel torque command value calculated in step S32 by the front wheel torque command coefficient calculated in step S31. Thereby, the target front wheel torque command value is obtained.
  • the front motor 54 is controlled based on the front wheel torque command value calculated in step S32.
  • the front wheel torque command coefficient calculated in step S31 is smaller than 1, that is, when the vehicle is turning, the front wheel torque calculated in step S31 with respect to the front wheel torque command value calculated in step S32.
  • the front motor 54 is controlled based on the front wheel torque command value (corrected front wheel torque command value) obtained by multiplying the command coefficient.
  • the rear wheel torque command value calculation unit 84 calculates a rear wheel torque command value.
  • the rear wheel torque command value is calculated based on a predetermined map and the detected detection signal of the pedal force sensor 72 or the accelerator sensor 74.
  • the map at this time is not particularly limited as long as it shows the relationship between the detection signal of the pedal force sensor 72 or the accelerator sensor 74 and the rear wheel torque command value.
  • a rear wheel torque command value corresponding to the detection signal of the pedal force sensor 72 or the accelerator sensor 74 is calculated.
  • the map is stored in a memory provided in the controller 80, for example.
  • the target rear wheel torque command value can be obtained by calculating as described above. Thereafter, the controller 80 ends the process of step S13 shown in FIG.
  • the controller 80 outputs the calculated torque command value in step S14.
  • the front wheel torque command value calculation unit 82 outputs the calculated front wheel torque command value to the front motor drive unit 86. Thereby, the front motor 54 is driven based on the calculated front wheel torque command value.
  • the rear wheel torque command value calculation unit 84 outputs the calculated rear wheel torque command value to the rear motor drive unit 88. As a result, the rear motor 36 is driven based on the calculated rear wheel torque command value.
  • the controller 80 ends the control after outputting the calculated front wheel torque command value and the rear wheel torque command value.
  • step S11 NO
  • step S15 the controller 80 calculates a torque command value in step S15.
  • the front wheel torque command value calculation unit 82 calculates a front wheel torque command value based on a predetermined map and the detected detection signal of the pedal force sensor 72 or the accelerator sensor 74.
  • the map at this time is not particularly limited as long as it shows the relationship between the detection signal of the pedal force sensor 72 or the accelerator sensor 74 and the front wheel torque command value.
  • a front wheel torque command value corresponding to the detection signal of the pedal force sensor 72 or the accelerator sensor 74 is calculated.
  • the map is stored in a memory provided in the controller 80, for example.
  • the rear wheel torque command value calculation unit 84 calculates a rear wheel torque command value based on a predetermined map and the detected detection signal of the pedal force sensor 72 or the accelerator sensor 74.
  • the map at this time is not particularly limited as long as it shows the relationship between the detection signal of the pedal force sensor 72 or the accelerator sensor 74 and the rear wheel torque command value.
  • a rear wheel torque command value corresponding to the detection signal of the pedal force sensor 72 or the accelerator sensor 74 is calculated.
  • the map is stored in a memory provided in the controller 80, for example.
  • controller 80 outputs the calculated torque command value in step S16.
  • the front wheel torque command value calculation unit 82 outputs the front wheel torque command value calculated in step S15 to the front motor drive unit 86.
  • the front motor 54 is driven based on the calculated front wheel torque command value.
  • the rear wheel torque command value calculation unit 84 outputs the rear wheel torque command value calculated in step S15 to the rear motor drive unit 88.
  • the rear motor 36 is driven based on the calculated rear wheel torque command value.
  • controller 80 ends the control shown in FIG.
  • the front wheel torque command value output to the front motor drive unit 86 changes according to the operation angle of the handle 56.
  • the front motor is based on the front wheel torque command value corresponding to the amount of operation of the accelerator grip 58 by the occupant or the pedal effort. 54 is driven.
  • the front wheel torque command value (correction) is smaller than the front wheel torque command value corresponding to the amount of operation of the accelerator grip 58 or the pedal depression force by the occupant. Based on the rear front wheel torque command value), the front motor 54 is driven. Therefore, the driving force of the front motor 54 is lower than the driving force corresponding to the amount of operation of the accelerator grip 58 by the occupant or the pedaling force. As a result, the understeer characteristic of the vehicle can be adjusted.
  • FIG. 9 is an explanatory diagram showing the driving force of each of the front motor 54 and the rear motor 36, the opening degree of the accelerator grip 58, and the state of the vehicle.
  • the driving force of the front motor 54 when the vehicle is turning is the front force when the vehicle is traveling straight.
  • the driving force of the motor 54 that is, the driving force corresponding to the operation amount of the accelerator grip 58 is smaller.
  • the driving force of the rear motor 36 is the same when the vehicle is traveling straight and when the vehicle is turning.
  • FIG. 9 shows a case where the driving force of each of the front motor 54 and the rear motor 36 is generated by operating the accelerator grip 58, the driving force of each of the front motor 54 and the rear motor 36 is obtained by stepping on the pedal. It may occur.
  • FIG. 10 is an explanatory diagram showing the driving force of each of the front motor 54 and the rear motor 36, the magnitude of the pedal depression force, and the state of the vehicle.
  • the driving force of each of the front motor 54 and the rear motor 36 changes periodically according to the magnitude of the pedal effort.
  • the peak value in one cycle of the driving force of the front motor 54 is smaller when the vehicle is turning than when the vehicle is moving forward. That is, the driving force of the front motor 54 is smaller when the vehicle is turning than when the vehicle is traveling straight.
  • the peak value in one cycle of the driving force of the rear motor 36 is the same when the vehicle is traveling straight and when the vehicle is turning.
  • the timing for returning the driving force of the front motor 54 to the magnitude corresponding to the operation amount of the accelerator grip 58 or the pedal depression force may be, for example, the timing when the turning of the vehicle is completed.
  • the timing at which the operation amount 58 becomes zero, the timing at which the pedal effort becomes zero, or the timing at which the brake is activated while the vehicle is turning may be used.
  • the timing when the front wheel torque command coefficient becomes 1 may be used.
  • the handle angle sensor 108 is provided with two Hall elements 112 and 112. Therefore, it is possible to ensure temperature when detecting the operation angle of the handle 56. In addition, the detection accuracy of the handle angle is improved. Furthermore, when a failure occurs in any of the hall elements 112, the failure can be notified.
  • step S12 and step S13 shown in the flowchart of FIG. 4 are different from those in the first embodiment.
  • step S12 in the present embodiment will be described.
  • step S23 is added after step S22 as compared to the first embodiment (the flowchart shown in FIG. 5).
  • a vehicle speed signal indicating the speed of the vehicle is read. Specifically, it is as follows.
  • the front wheel rotation speed calculation unit 92 reads the rotation speed of the front motor 54.
  • the front wheel rotation speed calculation unit 92 calculates the rotation speed of the front wheel 14 based on the read rotation speed of the front motor 54.
  • the slip detection unit 90 reads the rotation speed of the front wheel 14 calculated by the front wheel rotation speed calculation unit 92.
  • the rear wheel rotational speed calculation unit 94 reads the rotational speed of the rear motor 36.
  • the rear wheel rotation speed calculation unit 94 calculates the rotation speed of the rear wheel 16 based on the read rotation speed of the rear motor 36.
  • the slip detection unit 90 reads the rotation speed of the rear wheel 16 calculated by the rear wheel rotation speed calculation unit 94.
  • the slip detection unit 90 calculates the difference between the read rotational speed of the front wheel 14 and the rotational speed of the rear wheel 16. Specifically, the rear wheel 16 rotational speed is subtracted from the rotational speed of the front wheel 14. It is determined whether or not the absolute value of the rotational speed difference thus obtained exceeds a predetermined threshold value. When the absolute value of the rotational speed difference does not exceed a predetermined threshold value, the speed of the vehicle is calculated by converting the rotational speed of the front wheels 14 or the rear wheels 16 with a predetermined conversion ratio. If the absolute value of the rotational speed difference exceeds a predetermined threshold value, the vehicle speed is calculated by converting the smaller rotational speed of the rotational speeds of the front wheels 14 and the rear wheels 16 with a predetermined conversion ratio. calculate.
  • the front wheel torque command value calculation unit 82 reads a vehicle speed signal indicating the vehicle speed calculated by the slip detection unit 90.
  • step S13 of the present embodiment step 31 is different from that of the first embodiment (the flowchart shown in FIG. 6). Specifically, it is as follows.
  • the front wheel torque command value calculation unit 82 of the present embodiment performs the front wheel torque command based on the predetermined map, the read detection signal of the handle angle sensor 108, and the read vehicle speed signal. Calculate the coefficient.
  • the map shown in FIG. 12 can be adopted.
  • the map shown in FIG. 12 shows the relationship between the steering wheel operation angle indicated by the detection signal of the steering wheel angle sensor 108, the vehicle speed indicated by the vehicle speed signal, and the front wheel torque command coefficient.
  • the steering wheel operation angle is larger than 0 °
  • the steering wheel 56 is rotated in the clockwise direction from the reference position (the position of 0 °, that is, the position when the vehicle goes straight).
  • the handle operating angle When the handle operating angle is smaller than 0 °, it indicates that the handle 56 is rotating counterclockwise from the reference position.
  • the front wheel torque command coefficient when the vehicle speed is zero, the front wheel torque command coefficient is 1 even if the operation angle of the handle 56 changes.
  • the front wheel torque command coefficient when the vehicle speed is greater than zero, the front wheel torque command coefficient becomes smaller than 1 when the absolute value of the operation angle of the handle 56 increases. Further, when the absolute value of the operation angle of the handle 56 is not 0 °, the front wheel torque command coefficient becomes smaller than 1 as the vehicle speed increases.
  • the map is stored in a memory provided in the controller 80, for example.
  • the map is not particularly limited as long as it shows the relationship between the operation angle of the handle 56 indicated by the detection signal of the handle angle sensor 108, the vehicle speed indicated by the vehicle speed signal, and the front wheel torque command coefficient.
  • the map shown in FIG. 13 may be used.
  • a front wheel torque command coefficient corresponding to the vehicle speed is calculated.
  • understeer of the vehicle is more likely to occur as the vehicle speed increases. Therefore, if the vehicle speed is taken into consideration as in the present embodiment, the driving force of the front motor 54 when the vehicle is turning can be changed to a more appropriate driving force.
  • step S13 in the flowchart shown in FIG. 4 is different from that in the first embodiment.
  • step S13 in the present embodiment will be described.
  • step S30 is added before step S31, compared to the flowchart shown in FIG.
  • step S30 the front wheel torque command value calculation unit 82 selects a map to be used when calculating a front wheel torque command coefficient based on the read pedaling force sensor 72 or accelerator sensor 74 detection signal.
  • a map to be used when calculating a front wheel torque command coefficient based on the read pedaling force sensor 72 or accelerator sensor 74 detection signal.
  • the map is stored in a memory provided in the controller 80, for example.
  • the map used in step S31 is the map selected in step S30 because step S30 is added.
  • the map used when calculating the front wheel torque command coefficient is selected according to the amount of operation of the accelerator grip 58 by the occupant or the magnitude of the pedal effort. For example, a map shown in FIG. 7 and a map in which the rate at which the front wheel torque command coefficient changes when the operation angle of the handle 56 changes is different from the map shown in FIG. One map is selected from these maps according to the operation amount of 58 or the magnitude of the pedal effort.
  • understeer of the vehicle is more likely to occur as the vehicle speed increases, that is, as the driving force increases.
  • the map used when calculating the front wheel torque command coefficient is selected according to the amount of operation of the accelerator grip 58 by the occupant or the magnitude of the pedal effort, a more appropriate front wheel torque command
  • the front wheel torque command value can be calculated using the coefficient.
  • the driving force of the front motor 54 can be made more appropriate.
  • step S13 in the flowchart shown in FIG. 4 is different from that in the first embodiment.
  • step S13 in the present embodiment will be described.
  • step S30 is added before step S31, compared to the flowchart shown in FIG.
  • step S30 the front wheel torque command value calculation unit 82 determines whether or not the read detection signal of the pedal force sensor 72 or the accelerator sensor 74 is equal to or greater than a predetermined threshold value. That is, it is determined whether the driving force of the front motor 54 based on the detection signal is greater than or equal to a predetermined magnitude.
  • the driving force is greater than or equal to a predetermined magnitude” means that the driving force is assumed to cause understeer of the vehicle.
  • the front wheel torque command value calculation unit 82 ends the process of step S13. On the other hand, if it is equal to or greater than the predetermined threshold value (S30: YES), the front wheel torque command value calculation unit 82 executes the processing after step S31.
  • the front wheel torque command coefficient is calculated when the driving force of the front motor 54 based on the detection signal of the pedal force sensor 72 or the accelerator sensor 74 is greater than or equal to a predetermined magnitude. That is, when the front motor 54 is driven with a driving force that is assumed to cause understeer of the vehicle, the driving force of the front motor 54 is determined by a driving force corresponding to the amount of operation of the accelerator grip 58 by the occupant or the pedaling force. Also make it smaller. Therefore, it is possible to avoid a decrease in the driving force of the front motor 54 each time the vehicle turns. As a result, the driving force of the front motor 54 can be controlled more appropriately.
  • FIG. 16 is a block diagram for explaining the configuration of the control system of the electric motorcycle 10.
  • the handle angle sensor 108 is not provided. Instead, a motion sensor 116 is provided.
  • the motion sensor 116 is disposed, for example, under the saddle 30.
  • the motion sensor 116 is not particularly limited as long as it detects an acceleration or angular acceleration of three or more axes.
  • the controller 80 further includes a position calculation unit 118.
  • the position calculation unit 118 detects the position of the saddle 30 based on the detection signal of the motion sensor 116.
  • step S12 and step S13 in the flowchart shown in FIG. 4 are different from those in the first embodiment.
  • step S12 in the present embodiment will be described.
  • the flowchart shown in FIG. 17 is different in step S22 from the flowchart shown in FIG.
  • the detection signal of the motion sensor 116 is read instead of the detection signal of the handle angle sensor 108.
  • the position calculation unit 118 reads the detection signal of the motion sensor 116.
  • the position calculation unit 118 calculates the position of the saddle 30 based on the detected detection signal of the motion sensor 116.
  • the front wheel torque command value calculation unit 82 reads a position signal indicating the position of the saddle 30 calculated by the position calculation unit 118.
  • step S31 of the flowchart shown in FIG. 6 is different from that of the first embodiment.
  • the front wheel torque command value calculation unit 82 calculates a front wheel torque command coefficient based on a predetermined map and the read position signal of the saddle 30.
  • the position of the saddle 30 is represented by, for example, a tilt angle in the left-right direction from the reference position, where the position where the body frame 12 is not tilted is a reference position (0 °).
  • the map is not particularly limited as long as it shows the relationship between the position of the saddle 30 and the front wheel torque command coefficient.
  • the map is stored in a memory provided in the controller 80, for example.
  • the position of the saddle 30 is calculated based on the detection signal of the motion sensor 116. Based on the calculated position of the saddle 30, a front wheel torque command coefficient is calculated. Therefore, as in the first embodiment, the driving force of the front motor 54 when the vehicle is turning can be set to an appropriate magnitude, and the understeer characteristic of the vehicle can be adjusted.
  • step S12 and step S13 shown in the flowchart of FIG. 4 are different from those in the first embodiment.
  • step S12 in the present embodiment will be described.
  • step S23 is added after step S22 in the first embodiment (the flowchart shown in FIG. 5).
  • step 23 a vehicle speed signal indicating the speed of the vehicle is read.
  • the method is the same as the method described in the second embodiment. Therefore, detailed description is omitted.
  • step S13 of the present embodiment step 31 is different from that of the first embodiment (the flowchart shown in FIG. 6). Specifically, it is as follows.
  • the front wheel torque command value calculation unit 82 calculates a front wheel torque command coefficient in step 31 shown in FIG. 6 based on a predetermined map, the read position signal of the saddle 30 and the read vehicle speed signal.
  • the position of the saddle 30 is represented by, for example, a tilt angle in the left-right direction from the reference position, where the position where the body frame 12 is not tilted is a reference position (0 °).
  • the map is not particularly limited as long as it shows the relationship between the position of the saddle 30 indicated by the position signal, the vehicle speed indicated by the vehicle speed signal, and the front wheel torque command coefficient.
  • the map is stored in a memory provided in the controller 80, for example.
  • the front wheel torque command coefficient is calculated with reference to the vehicle speed. Therefore, the driving force of the front motor 54 when the vehicle is turning can be changed to a more appropriate driving force.
  • FIG. 19 is a flowchart for explaining a specific operation example of the controller 80 when performing traction control in a state where control for adjusting the understeer characteristic of the vehicle is performed.
  • step S41 the controller 80 determines whether control for adjusting the understeer characteristic of the vehicle is performed. Specifically, it is determined whether the driving force of the front motor 54 is smaller than the driving force of the front motor 54 according to the amount of operation of the accelerator grip 58 by the occupant or the magnitude of the pedal effort.
  • step S41: NO If the control for adjusting the understeer characteristic of the vehicle is not performed (step S41: NO), the controller 80 ends the process. On the other hand, when control for adjusting the understeer characteristic of the vehicle is performed (step S41: YES), the controller 80 determines whether the front wheel 14 or the rear wheel 16 is slipping in step S42. The slip of the front wheel 14 or the rear wheel 16 is determined as follows, for example.
  • the front wheel rotation speed calculation unit 92 reads the rotation speed of the front motor 54.
  • the front wheel rotation speed calculation unit 92 calculates the rotation speed of the front wheel 14 based on the read rotation speed of the front motor 54.
  • the slip detection unit 90 reads the rotation speed of the front wheel 14 calculated by the front wheel rotation speed calculation unit 92.
  • the rear wheel rotational speed calculation unit 94 reads the rotational speed of the rear motor 36.
  • the rear wheel rotation speed calculation unit 94 calculates the rotation speed of the rear wheel 16 based on the read rotation speed of the rear motor 36.
  • the slip detection unit 90 reads the rotation speed of the rear wheel 16 calculated by the rear wheel rotation speed calculation unit 94.
  • the slip detection unit 90 calculates the difference between the read rotational speed of the front wheel 14 and the rotational speed of the rear wheel 16. Specifically, the rear wheel 16 rotational speed is subtracted from the rotational speed of the front wheel 14. It is determined whether or not the absolute value of the rotational speed difference thus obtained exceeds a predetermined threshold value. If the predetermined threshold is not exceeded (step S42: NO), the slip detection unit 90 determines that the front wheel 14 and the rear wheel 16 are not slipping, and ends the process.
  • step S42 determines whether or not the rear wheel 16 is slipping in step S43. Specifically, it is determined whether the difference calculated in step S42 is a negative value. When it is a negative value (step S43: YES), the slip detection unit 90 determines that the rear wheel 16 is slipping.
  • step S43 YES
  • the controller 80 calculates a torque command value in step S44. Specifically, it is as follows.
  • the front wheel torque command value calculation unit 82 employs a mode in which the current front wheel torque command value is continuously output as the front wheel torque command value.
  • the rear wheel torque command value calculation unit 84 employs a mode in which the current torque command value is intermittently output as the rear wheel torque command value.
  • the current torque command value is intermittently output, for example, the current torque command value and a torque command value that does not generate a driving force (a torque command value having a magnitude of zero) are output alternately. Thereby, the average value of the rear wheel torque command value in the predetermined period becomes smaller than the current rear wheel torque command value.
  • the controller 80 outputs a torque command value in step S45.
  • the front motor drive unit 86 drives the front motor 54 based on the front wheel torque command value determined by the front wheel torque command value calculation unit 82.
  • the rear motor drive unit 88 drives the rear motor 36 based on the rear wheel torque command value determined by the rear wheel torque command value calculation unit 84.
  • controller 80 ends the control.
  • step S43 NO
  • the controller 80 calculates a torque command value in step S45. Specifically, it is as follows.
  • the front wheel torque command value calculation unit 82 adopts a mode in which the current front wheel torque command value is intermittently output as the front wheel torque command value.
  • the current torque command value is intermittently output, for example, the current torque command value and a torque command value that does not generate a driving force (a torque command value having a magnitude of zero) are output alternately. Thereby, the average value of the front wheel torque command value in a predetermined period becomes smaller than the current front wheel torque command value.
  • the rear wheel torque command value calculation unit 84 employs a mode of outputting a torque command value larger than the current torque command value as the rear wheel torque command value. For example, the increase amount of the rear wheel torque command value is the same as the decrease amount of the front wheel torque command value.
  • controller 80 executes the processing after step S45.
  • the driving force of the front motor 54 is not increased, so that the state of adjusting the understeer characteristic can be continued.
  • a two-wheeled vehicle has been described as an example of a lean vehicle, but the lean vehicle is not limited to a two-wheeled vehicle.
  • the lean vehicle may include one front wheel and two rear wheels, or may include two front wheels and one rear wheel.
  • One rear wheel may be provided. That is, in the lean vehicle, the number of front wheels and rear wheels is not limited to one each.
  • the driving force of the front motor 54 and the rear motor 36 is controlled according to the amount of operation of the accelerator grip 58 or the magnitude of the pedal depression force. Depending on the size, the driving force of the front motor 54 and the rear motor 36 may be controlled.
  • the accelerator grip 58 and the accelerator sensor 74 may not be provided.
  • the electric motorcycle 10 may not include the human power drive system 60.
  • the second switch 104 and the changeover switch 96 may not be provided.
  • the first switch 102 and the control switch 98 may not be provided.
  • the handle angle sensor 108 outputs an analog signal, but may output a digital signal.

Abstract

The present invention adjusts vehicle understeering characteristics in a leanable vehicle that separately drives a front wheel and a rear wheel using motors. The leanable vehicle is equipped with a chassis, a front wheel, a front motor, a rear wheel, a rear motor, an operation element, and a control device. The chassis leans to the left when the leanable vehicle turns to the left, and the chassis leans to the right when the leanable vehicle turns to the right. The vehicle state changes from a state where the leanable vehicle is advancing forward while the chassis is upright to a state where the leanable vehicle is turning while the chassis is leaning, and when the state of operation of the operation element has not changed, the drive force is transmitted from the rear motor to the rear wheel when advancing forward and when turning. Meanwhile, a smaller drive force is transmitted from the front motor to the front wheel when turning than is transmitted when advancing forward.

Description

リーン車両Lean vehicle
 本発明は、リーン車両に関し、詳しくは、前輪に伝達される駆動力を発生する第1のモータと、後輪に伝達される駆動力を発生する第2のモータとを備えるリーン車両に関する。 The present invention relates to a lean vehicle, and more particularly, to a lean vehicle including a first motor that generates a driving force transmitted to front wheels and a second motor that generates a driving force transmitted to rear wheels.
 近年、モータの駆動力を利用して走行するリーン車両としての二輪車が提案されている。このような二輪車は、例えば、特開2015-98226号公報に開示されている。 In recent years, motorcycles have been proposed as lean vehicles that travel using the driving force of a motor. Such a motorcycle is disclosed in, for example, Japanese Patent Application Laid-Open No. 2015-98226.
 上記公報に開示の二輪車では、前輪及び後輪にモータが配置されている。前輪に配置されたモータは、前輪に伝達される駆動力を発生する。後輪に配置されたモータは、後輪に伝達される駆動力を発生する。 In the motorcycle disclosed in the above publication, motors are arranged on the front wheels and the rear wheels. A motor disposed on the front wheel generates a driving force transmitted to the front wheel. A motor disposed on the rear wheel generates a driving force transmitted to the rear wheel.
 上記のように、リーン車両の前輪及び後輪をモータで駆動すると、前輪をモータで駆動せず、後輪をモータで駆動する場合と比べて、リーン車両の直進性が向上する。しかしながら、リーン車両の前輪及び後輪をモータで駆動すると、リーン車両は、旋回しているときに、アンダーステアになり易い。つまり、一定のハンドル操作角度で旋回しているにも関わらず、リーン車両が旋回しているときの走行ラインの旋回半径が大きくなる状態が発生しやすくなる。 As described above, when the front and rear wheels of a lean vehicle are driven by a motor, the straightness of the lean vehicle is improved as compared to the case where the front wheels are not driven by the motor and the rear wheels are driven by the motor. However, when the front wheels and rear wheels of the lean vehicle are driven by a motor, the lean vehicle is likely to be understeered when turning. That is, it is easy to generate a state in which the turning radius of the travel line becomes large when the lean vehicle is turning, even though the vehicle is turning at a constant steering angle.
 本発明の目的は、前輪及び後輪の各々をモータで駆動するリーン車両において、リーン車両のアンダーステアの特性を調整することである。 An object of the present invention is to adjust the understeer characteristic of a lean vehicle in a lean vehicle in which each of the front wheels and the rear wheels is driven by a motor.
 本発明の実施の形態によるリーン車両は、車体と、前輪と、フロントモータと、後輪と、リアモータと、操作子と、制御装置とを備える。リーン車両は、左に旋回するときには車体が左に傾斜し、右に旋回するときには車体が右に傾斜する。前輪は、車体に支持される。フロントモータは、前輪に伝達される駆動力を発生する。後輪は、車体に支持される。リアモータは、後輪に伝達される駆動力を発生する。操作子は、乗員によって操作される。制御装置は、操作子の操作状態に応じて、フロントモータ及びリアモータの駆動力を制御する。制御装置は、車体が直立状態でリーン車両が前進している状態から車体が傾斜している状態でリーン車両が旋回している状態に変化し、且つ、操作子の操作状態が変化していないときに、後輪には、前進している状態及び旋回している状態の各々において、リアモータから駆動力が伝達され、前輪には、前進している状態よりも小さな駆動力が旋回している状態でフロントモータから伝達されるように、フロントモータ及びリアモータの駆動力を制御する。 A lean vehicle according to an embodiment of the present invention includes a vehicle body, a front wheel, a front motor, a rear wheel, a rear motor, an operator, and a control device. A lean vehicle leans to the left when turning left, and leans to the right when turning right. The front wheel is supported by the vehicle body. The front motor generates a driving force transmitted to the front wheels. The rear wheel is supported by the vehicle body. The rear motor generates driving force transmitted to the rear wheels. The operation element is operated by an occupant. The control device controls the driving force of the front motor and the rear motor according to the operation state of the operation element. The control device changes from a state where the lean vehicle is moving forward with the vehicle body upright to a state where the lean vehicle is turning while the vehicle body is tilted, and the operation state of the operator is not changed. Sometimes, the rear wheel receives driving force from the rear motor in each of the forward state and the turning state, and the front wheel turns a smaller driving force than the forward state. The driving force of the front motor and the rear motor is controlled so as to be transmitted from the front motor in a state.
 上記のリーン車両においては、車体が直立状態でリーン車両が前進している状態から車体が傾斜している状態でリーン車両が旋回している状態に変化し、且つ、操作子の操作状態が変化していないときに、前進している状態よりも小さな駆動力が旋回している状態でフロントモータから前輪に伝達される。そのため、車両のアンダーステアの特性を調整することができる。 In the above lean vehicle, the lean vehicle changes from the upright state with the leaning vehicle moving forward to the leaning vehicle with the leaning vehicle body, and the operating state of the operation element changes. When not, a driving force that is smaller than the forward moving state is transmitted from the front motor to the front wheels in a turning state. Therefore, the understeer characteristic of the vehicle can be adjusted.
 車両の進行方向を変更する操舵輪は、前輪であってもよいし、後輪であってもよい。 The steering wheel that changes the traveling direction of the vehicle may be a front wheel or a rear wheel.
 操作子は、乗員によって操作されるものであれば、特に限定されない。操作子は、例えば、アクセルグリップや、ペダルである。 The operating element is not particularly limited as long as it is operated by a passenger. The operation element is, for example, an accelerator grip or a pedal.
 車両が旋回しているとき、つまり、旋回の開始から終了までの間は、必ず、前進している状態よりも小さな駆動力がフロントモータから前輪に伝達されていなくてもよい。つまり、車両が旋回しているときの一部において、前進している状態よりも小さな駆動力がフロントモータから前輪に伝達されていればよい。 When the vehicle is turning, that is, from the start to the end of turning, a driving force that is smaller than that in the forward movement is not necessarily transmitted from the front motor to the front wheels. That is, it is only necessary to transmit a driving force smaller than that in a state where the vehicle is moving forward from the front motor to the front wheels in a part when the vehicle is turning.
 例えば、ペダル踏力に基づいてフロントモータを駆動する場合、フロントモータの駆動力は、周期的に変化する。この場合、「前進している状態よりも小さな駆動力」は、前進しているときの駆動力の一周期におけるピーク値よりも小さなピーク値を少なくとも一部の周期において有する駆動力であればよい。 For example, when driving the front motor based on the pedal effort, the driving force of the front motor changes periodically. In this case, “the driving force that is smaller than the state in which the vehicle is moving forward” may be a driving force that has a peak value that is smaller than the peak value in one cycle of the driving force when moving forward in at least some of the cycles. .
 上記リーン車両は、さらに、操作情報出力部を備えていてもよい。操作情報出力部は、操作子の操作状態を示す操作情報を制御装置に出力する。制御装置は、操作情報に基づいて、フロントモータ及びリアモータの駆動力を制御する。 The lean vehicle may further include an operation information output unit. The operation information output unit outputs operation information indicating an operation state of the operation element to the control device. The control device controls the driving force of the front motor and the rear motor based on the operation information.
 操作情報出力部は、操作子の操作状態を検出し、当該操作状態を示す操作情報を出力できるものであれば、特に限定されない。操作情報出力部は、例えば、操作子としてのアクセルグリップの開度を検出して出力する開度センサである。 The operation information output unit is not particularly limited as long as it can detect the operation state of the operator and output operation information indicating the operation state. The operation information output unit is, for example, an opening sensor that detects and outputs the opening of an accelerator grip as an operator.
 上記リーン車両は、さらに、状態検出部を備えていてもよい。状態検出部は、リーン車両の旋回に関する状態を検出し、リーン車両の旋回に関する状態を示す状態情報を制御装置に出力する。制御装置は、状態情報に基づいて、旋回している状態か否かを判断する。 The lean vehicle may further include a state detection unit. The state detection unit detects a state related to turning of the lean vehicle, and outputs state information indicating a state related to turning of the lean vehicle to the control device. The control device determines whether or not the vehicle is turning based on the state information.
 状態検出部は、リーン車両の旋回に関する状態を検出し、当該状態を示す状態情報を出力できるものであれば、特に限定されない。状態検出部は、例えば、リーン車両が備えるハンドルの操作角度を検出する操作角度検出センサである。 The state detection unit is not particularly limited as long as it can detect a state related to turning of the lean vehicle and output state information indicating the state. The state detection unit is, for example, an operation angle detection sensor that detects an operation angle of a handle included in the lean vehicle.
 状態情報は、車両の姿勢を示す姿勢情報を含んでいてもよい。姿勢情報は、車体の傾きを示す傾き情報を含んでいてもよい。状態情報は、姿勢情報の他に、車両が旋回しているときの速度を示す車速情報を含んでいてもよい。 The state information may include attitude information indicating the attitude of the vehicle. The posture information may include inclination information indicating the inclination of the vehicle body. The state information may include vehicle speed information indicating the speed when the vehicle is turning in addition to the attitude information.
 上記のリーン車両は、ハンドルを備える。ハンドルは、車両の進行方向を変更する。この場合、姿勢情報は、ハンドルの操作角度を示す角度情報を含んでいてもよい。 The above lean vehicle has a handle. The steering wheel changes the traveling direction of the vehicle. In this case, the posture information may include angle information indicating the operation angle of the handle.
 制御装置は、好ましくは、車両が旋回を開始したときのフロントモータの駆動力が所定の大きさ以上である場合に、前進している状態よりも小さな駆動力が旋回している状態でフロントモータから前輪に伝達されるように、フロントモータの駆動力を制御する。 The control device is preferably configured such that when the driving force of the front motor when the vehicle starts turning is greater than or equal to a predetermined magnitude, the front motor is in a state where the driving force is smaller than the state in which the vehicle is moving forward. The driving force of the front motor is controlled so as to be transmitted to the front wheels.
 車体が直立状態でリーン車両が前進している状態から車体が傾斜している状態でリーン車両が旋回している状態に変化し、且つ、操作子の操作状態が変化していないときに、前進している状態よりも小さな駆動力が旋回している状態でフロントモータから前輪に伝達されるようにすれば、車両のアンダーステアの特性を調整することができる。ここで、車両がアンダーステアになるのは、ある程度の駆動力が発生しているときである。 Advances when the lean vehicle moves forward from the lean vehicle with the vehicle body upright and the lean vehicle turns with the vehicle body tilted, and the operating state of the operating element has not changed. If a driving force smaller than that in the state of turning is transmitted from the front motor to the front wheels while turning, the understeer characteristic of the vehicle can be adjusted. Here, the vehicle is understeered when a certain amount of driving force is generated.
 上記の好ましい態様では、車両が旋回を開始したときのフロントモータの駆動力が所定の大きさ以上でない場合には、車両が旋回しているときに、前進している状態よりも小さな駆動力がフロントモータから前輪に伝達されない。その結果、車両が旋回する度に、前進している状態よりも小さな駆動力がフロントモータから前輪に伝達されるのを回避できる。 In the above preferred aspect, when the driving force of the front motor when the vehicle starts turning is not greater than or equal to a predetermined magnitude, when the vehicle is turning, a driving force that is smaller than that in which the vehicle is moving forward is obtained. It is not transmitted from the front motor to the front wheels. As a result, every time the vehicle turns, it is possible to avoid transmission of a driving force smaller than that in a forward movement state from the front motor to the front wheels.
 制御装置は、好ましくは、前進している状態よりも小さな駆動力が旋回している状態でフロントモータから前輪に伝達されているときに、操作子の操作状態に応じた駆動力よりも大きな駆動力で、リアモータを駆動する。 The control device preferably drives larger than the driving force corresponding to the operating state of the operating element when a driving force smaller than the forward moving state is transmitted from the front motor to the front wheels while turning. The rear motor is driven with force.
 車両が旋回しているときに前進している状態よりも小さな駆動力がフロントモータから前輪に伝達されると、車両全体としての駆動力(フロントモータの駆動力とリアモータの駆動力を合算したもの)が低下する。 When a driving force that is smaller than when the vehicle is moving forward is transmitted from the front motor to the front wheels, the overall driving force of the vehicle (the sum of the driving force of the front motor and the driving force of the rear motor) ) Decreases.
 上記の好ましい態様では、リアモータの駆動力を乗員による操作子の操作状態に応じた駆動力よりも大きくするので、車両全体としての駆動力が低下するのを回避できる。 In the above preferred embodiment, since the driving force of the rear motor is made larger than the driving force according to the operating state of the operator by the occupant, it is possible to avoid the driving force of the entire vehicle from being lowered.
 制御装置は、好ましくは、前進している状態よりも小さな駆動力が旋回している状態でフロントモータから前輪に伝達されているときに後輪がスリップすると、リアモータの駆動力を後輪がスリップしたときの駆動力よりも減少させる。 Preferably, the control device preferably causes the rear wheel to slip the driving force of the rear motor when the rear wheel slips when a driving force smaller than that of the forward movement is turning and transmitted from the front motor to the front wheel. Decrease the driving force.
 この場合、後輪のスリップを速やかに解消しつつ、車両のアンダーステアの特性を調整することができる。 In this case, it is possible to adjust the understeer characteristics of the vehicle while quickly eliminating the slip of the rear wheel.
本発明の第1の実施の形態によるリーン車両としての電動二輪車を示す右側面図である。1 is a right side view showing an electric motorcycle as a lean vehicle according to a first embodiment of the present invention. 電動二輪車の制御システムの構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of the control system of an electric motorcycle. ハンドル角度センサの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of a handle | steering-wheel angle sensor. 車両のアンダーステアの特性を調整するときのコントローラの具体的な動作例を説明するためのフローチャートである。It is a flowchart for demonstrating the specific operation example of a controller when adjusting the characteristic of the understeer of a vehicle. 車両の状態を確認するときのコントローラの具体的な動作例を説明するためのフローチャートである。It is a flowchart for demonstrating the specific operation example of a controller when confirming the state of a vehicle. トルク指令値を算出するときのコントローラの具体的な動作例を説明するためのフローチャートである。It is a flowchart for demonstrating the specific operation example of a controller when calculating a torque instruction value. ハンドル角度センサの検出信号が示すハンドルの操作角度と、前輪トルク指令係数との関係を示すマップである。It is a map which shows the relationship between the steering wheel operation angle which the detection signal of a steering wheel angle sensor shows, and a front wheel torque command coefficient. ハンドル角度センサの検出信号が示すハンドルの操作角度と、前輪トルク指令係数との関係を示すマップであって、図7に示すマップとは異なるマップである。7 is a map showing the relationship between the steering wheel operation angle indicated by the detection signal of the steering wheel angle sensor and the front wheel torque command coefficient, which is different from the map shown in FIG. フロントモータ及びリアモータの各々の駆動力と、アクセルグリップの操作量と、車両の状態との関係を示す説明図である。It is explanatory drawing which shows the relationship between each driving force of a front motor and a rear motor, the operation amount of an accelerator grip, and the state of a vehicle. フロントモータ及びリアモータの各々の駆動力と、ペダル踏力と、車両の状態との関係を示す説明図である。It is explanatory drawing which shows the relationship between the driving force of each of a front motor and a rear motor, pedal effort, and the state of a vehicle. 本発明の第2の実施の形態において、車両の状態を確認するときのコントローラの具体的な動作例を説明するためのフローチャートである。7 is a flowchart for explaining a specific operation example of a controller when checking the state of a vehicle in the second embodiment of the present invention. ハンドル角度センサの検出信号が示すハンドルの操作角度と、車速信号が示す車速と、前輪トルク指令係数との関係を示すマップである。It is a map which shows the relationship between the steering wheel operation angle which the detection signal of a steering wheel angle sensor shows, the vehicle speed which a vehicle speed signal shows, and a front wheel torque command coefficient. ハンドル角度センサの検出信号が示すハンドルの操作角度と、車速信号が示す車速と、前輪トルク指令係数との関係を示すマップであって、図12に示すマップとは異なるマップである。12 is a map showing the relationship between the steering wheel operation angle indicated by the detection signal of the steering wheel angle sensor, the vehicle speed indicated by the vehicle speed signal, and the front wheel torque command coefficient, which is different from the map shown in FIG. 本発明の第3の実施の形態において、トルク指令値を算出するときのコントローラの具体的な動作例を説明するためのフローチャートである。10 is a flowchart for explaining a specific operation example of a controller when calculating a torque command value in the third embodiment of the present invention. 本発明の第4の実施の形態において、トルク指令値を算出するときのコントローラの具体的な動作例を説明するためのフローチャートである。In the 4th Embodiment of this invention, it is a flowchart for demonstrating the specific operation example of a controller when calculating a torque instruction value. 本発明の第5の実施の形態で用いられる電動二輪車の制御システムの構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of the control system of the electric two-wheeled vehicle used in the 5th Embodiment of this invention. 本発明の第5の実施の形態において、車両の状態を確認するときのコントローラの具体的な動作例を説明するためのフローチャートである。In the 5th Embodiment of this invention, it is a flowchart for demonstrating the specific operation example of a controller when confirming the state of a vehicle. 本発明の第6の実施の形態において、車両の状態を確認するときのコントローラの具体的な動作例を説明するためのフローチャートである。In the 6th Embodiment of this invention, it is a flowchart for demonstrating the specific operation example of a controller when confirming the state of a vehicle. 車両のアンダーステアの特性を調整する制御が行われている状態で、トラクションコントロールを行うときのコントローラの具体的な動作例を説明するためのフローチャートである。It is a flowchart for demonstrating the specific operation example of a controller when performing traction control in the state in which the control which adjusts the characteristic of the understeer of a vehicle is performed.
 上記のように、リーン車両の前輪及び後輪をモータで駆動すると、車両の直進性は向上するが、車両が旋回しているときに、アンダーステアになり易い。 As described above, when the front and rear wheels of a lean vehicle are driven by a motor, the straight traveling performance of the vehicle is improved, but understeer tends to occur when the vehicle is turning.
 本願の発明者は、リーン車両が旋回しているときに、前輪を駆動するモータの出力を低下させるという新たな知見を得るに至った。旋回中のリーン車両の前輪及び後輪の駆動力のバランスを調整することで、アンダーステアの調整ができることを見出した。そして、本発明を完成させた。 The inventors of the present application have obtained new knowledge that the output of the motor that drives the front wheels is reduced when the lean vehicle is turning. It has been found that the understeer can be adjusted by adjusting the balance of the driving force of the front and rear wheels of the lean vehicle that is turning. And the present invention was completed.
 以下、図面を参照し、本発明の実施の形態によるリーン車両について説明する。本実施形態では、リーン車両として、電動二輪車を例に説明する。図中同一又は相当部分には同一符号を付してその部材についての説明は繰り返さない。 Hereinafter, a lean vehicle according to an embodiment of the present invention will be described with reference to the drawings. In this embodiment, an electric motorcycle will be described as an example of a lean vehicle. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description of the members will not be repeated.
 [第1の実施の形態]
 図1は、本発明の第1の実施の形態によるリーン車両としての電動二輪車10の右側面図である。電動二輪車10は、前輪及び後輪をモータによって駆動するための電動駆動系を備える。また、電動二輪車10は、人力によって後輪16を駆動するための人力駆動系も備える。
[First Embodiment]
FIG. 1 is a right side view of an electric motorcycle 10 as a lean vehicle according to the first embodiment of the present invention. The electric motorcycle 10 includes an electric drive system for driving front wheels and rear wheels by a motor. The electric motorcycle 10 also includes a human power drive system for driving the rear wheels 16 by human power.
 以下の説明において、前後左右とは、電動二輪車10のサドル30に着座した乗員から見た前後左右を意味する。図1において、矢印Fは電動二輪車10の前方向を示し、矢印Uは電動二輪車10の上方向を示す。 In the following description, front / rear / left / right means front / rear / left / right as viewed from a passenger seated on the saddle 30 of the electric motorcycle 10. In FIG. 1, the arrow F indicates the forward direction of the electric motorcycle 10, and the arrow U indicates the upward direction of the electric motorcycle 10.
 電動二輪車10は、車体フレーム12と、前輪14と、後輪16とを備える。車体フレーム12は、前輪14及び後輪16を支持する。本実施の形態では、前輪14及び後輪16は、同じ大きさを有する。 The electric motorcycle 10 includes a body frame 12, a front wheel 14, and a rear wheel 16. The vehicle body frame 12 supports the front wheel 14 and the rear wheel 16. In the present embodiment, the front wheel 14 and the rear wheel 16 have the same size.
 車体フレーム12は、ヘッドパイプ18と、上パイプ20と、フロントパイプ22と、シートパイプ24と、左右一対のリアパイプ26、26と、左右一対の下パイプ28、28とを備える。 The vehicle body frame 12 includes a head pipe 18, an upper pipe 20, a front pipe 22, a seat pipe 24, a pair of left and right rear pipes 26 and 26, and a pair of left and right lower pipes 28 and 28.
 上パイプ20は、ヘッドパイプ18から後方に延びている。フロントパイプ22は、上パイプ20の下方に配置され、ヘッドパイプ18から後方且つ下方に延びている。フロントパイプ22の後端は、ボトムブラケット(図示せず)に接続されている。シートパイプ24は、ボトムブラケットから上方に延びている。シートパイプ24には、上パイプ20の後端が接続されている。シートパイプ24の上端には、サドル30が取り付けられている。シートパイプ24には、サドル30よりも下方において、バッテリ32が取り付けられている。 The upper pipe 20 extends rearward from the head pipe 18. The front pipe 22 is disposed below the upper pipe 20 and extends rearward and downward from the head pipe 18. The rear end of the front pipe 22 is connected to a bottom bracket (not shown). The seat pipe 24 extends upward from the bottom bracket. The rear end of the upper pipe 20 is connected to the seat pipe 24. A saddle 30 is attached to the upper end of the seat pipe 24. A battery 32 is attached to the seat pipe 24 below the saddle 30.
 左右一対のリアパイプ26、26は、シートパイプ24から後方且つ下方に延びている。左右一対の下パイプ28、28は、ボトムブラケットから後方に延びている。一対の下パイプ28、28の後端は、一対のリアパイプ26、26の後端に接続されている。下パイプ28とリアパイプ26との接続部分において、後輪16が回転可能に取り付けられている。後輪16には、リアスプロケット34が固定されている。後輪16のハブには、後輪駆動装置35が配置されている。後輪駆動装置35は、図2に示すリアモータ36及び後輪減速機構78を含む。後輪駆動装置35は、後輪16に駆動力を与える。 The left and right rear pipes 26 and 26 extend rearward and downward from the seat pipe 24. The pair of left and right lower pipes 28 and 28 extend rearward from the bottom bracket. The rear ends of the pair of lower pipes 28, 28 are connected to the rear ends of the pair of rear pipes 26, 26. The rear wheel 16 is rotatably attached at a connection portion between the lower pipe 28 and the rear pipe 26. A rear sprocket 34 is fixed to the rear wheel 16. A rear wheel drive device 35 is disposed on the hub of the rear wheel 16. The rear wheel drive device 35 includes a rear motor 36 and a rear wheel speed reduction mechanism 78 shown in FIG. The rear wheel drive device 35 applies a driving force to the rear wheel 16.
 ボトムブラケットには、踏力センサ72の一部(非回転部)が取り付けられている。また、ボトムブラケットには、クランクシャフト38が回転可能に取り付けられている。クランクシャフト38の両端には、クランクアーム44が取り付けられている。クランクアーム44には、ペダル46が取り付けられている。乗員がペダル46を操作する(具体的には、ペダル46を踏み込む)ことにより、クランクシャフト38が回転する。 A part (non-rotating part) of the tread force sensor 72 is attached to the bottom bracket. A crankshaft 38 is rotatably attached to the bottom bracket. Crank arms 44 are attached to both ends of the crankshaft 38. A pedal 46 is attached to the crank arm 44. When the occupant operates the pedal 46 (specifically, the pedal 46 is depressed), the crankshaft 38 rotates.
 クランクシャフト38には、踏力センサ72の一部(回転部)が取り付けられている。また、クランクシャフト38には、フロントスプロケット40が取り付けられている。リアスプロケット34及びフロントスプロケット40に対して、無端のチェーン42が巻き掛けられている。クランクシャフト38の回転は、フロントスプロケット40からチェーン42を介してリアスプロケット34に伝達される。 A part of the pedal force sensor 72 (rotating part) is attached to the crankshaft 38. A front sprocket 40 is attached to the crankshaft 38. An endless chain 42 is wound around the rear sprocket 34 and the front sprocket 40. The rotation of the crankshaft 38 is transmitted from the front sprocket 40 to the rear sprocket 34 via the chain 42.
 ヘッドパイプ18には、ステアリングシャフト50が回転可能に挿入されている。ステアリングシャフト50の下端には、フロントフォーク52が取り付けられている。フロントフォーク52の下端には、前輪14が回転可能に取り付けられている。前輪14のハブには、前輪駆動装置53が配置されている。前輪駆動装置53は、図2に示すフロントモータ54及び前輪減速機構76を含む。前輪駆動装置53は、前輪14に駆動力を与える。ステアリングシャフト50の上端には、ハンドル56が取り付けられている。乗員がハンドル56を回転させると、ステアリングシャフト50が回転する。それに伴って、フロントフォーク52及び前輪14が回転する。その結果、車両の進行方向が変わる。 The steering shaft 50 is rotatably inserted into the head pipe 18. A front fork 52 is attached to the lower end of the steering shaft 50. The front wheel 14 is rotatably attached to the lower end of the front fork 52. A front wheel drive device 53 is disposed on the hub of the front wheel 14. The front wheel drive device 53 includes a front motor 54 and a front wheel speed reduction mechanism 76 shown in FIG. The front wheel drive device 53 applies a driving force to the front wheels 14. A handle 56 is attached to the upper end of the steering shaft 50. When the occupant rotates the handle 56, the steering shaft 50 rotates. Along with this, the front fork 52 and the front wheel 14 rotate. As a result, the traveling direction of the vehicle changes.
 ハンドル56には、アクセルグリップ58が配置されている。アクセルグリップ58は、ハンドル56に対して回転可能に配置されている。アクセルグリップ58の操作量に基づいて、フロントモータ54及びリアモータ36の出力が調節される。 Accelerator grip 58 is disposed on the handle 56. The accelerator grip 58 is disposed so as to be rotatable with respect to the handle 56. Based on the operation amount of the accelerator grip 58, the outputs of the front motor 54 and the rear motor 36 are adjusted.
 図2は、電動二輪車10の制御システムの構成を説明するためのブロック図である。電動二輪車10は、人力駆動系60と、電動駆動系62とを有する。人力駆動系60は、乗員によりペダル46に加えられた踏力を、所定の変速比で変更して、後輪16に供給する。電動駆動系62は、フロントモータ54及びリアモータ36の駆動力を、前輪14及び後輪16に供給する。 FIG. 2 is a block diagram for explaining the configuration of the control system of the electric motorcycle 10. The electric motorcycle 10 has a human power drive system 60 and an electric drive system 62. The human power drive system 60 changes the pedaling force applied to the pedal 46 by the occupant at a predetermined gear ratio and supplies it to the rear wheels 16. The electric drive system 62 supplies the driving force of the front motor 54 and the rear motor 36 to the front wheels 14 and the rear wheels 16.
 人力駆動系60は、ペダル46に加えられた踏力によって回転するクランクシャフト38と、増速機構66と、変速機構68と、ワンウェイクラッチ70とを含む。増速機構66は、フロントスプロケット40、リアスプロケット34及びチェーン42を含む。フロントスプロケット40とリアスプロケット34との歯数比に応じて、クランク64の回転が増速される。変速機構68は、例えば、後輪16のハブ内に配置される。変速機構68は、リアスプロケット34に結合された入力軸の回転を複数段(例えば、3段)の変速比の何れかで変速して、出力軸に出力する。ワンウェイクラッチ70は、変速機構68の出力軸の一方向(前進方向)への回転力を後輪16に伝達し、逆方向(後退方向)への回転力を伝達しない。クランク64に加えられた前進方向の回転力(人力トルク)が、増速機構66によって増速された後、変速機構68によって変速され、ワンウェイクラッチ70を介して後輪16に伝達される。 The human power drive system 60 includes a crankshaft 38 that is rotated by a pedaling force applied to the pedal 46, a speed increasing mechanism 66, a speed change mechanism 68, and a one-way clutch 70. The speed increasing mechanism 66 includes a front sprocket 40, a rear sprocket 34, and a chain 42. The rotation of the crank 64 is increased according to the gear ratio between the front sprocket 40 and the rear sprocket 34. The transmission mechanism 68 is disposed, for example, in the hub of the rear wheel 16. The speed change mechanism 68 shifts the rotation of the input shaft coupled to the rear sprocket 34 at any of a plurality of speed ratios (for example, three speeds) and outputs it to the output shaft. The one-way clutch 70 transmits a rotational force in one direction (forward direction) of the output shaft of the transmission mechanism 68 to the rear wheel 16 and does not transmit a rotational force in the reverse direction (reverse direction). The forward rotational force (manual torque) applied to the crank 64 is accelerated by the speed increasing mechanism 66, then shifted by the speed changing mechanism 68, and transmitted to the rear wheel 16 via the one-way clutch 70.
 電動駆動系62は、踏力センサ72の出力又はアクセルセンサ74の出力に応じて、フロントモータ54及びリアモータ36を駆動する。踏力センサ72は、クランクシャフト38に加えられた踏力(トルク)を検出し、その踏力に応じた信号(踏力信号)を出力する。アクセルセンサ74は、アクセルグリップ58の操作量を検出し、その操作量に応じた信号(アクセル信号)を出力する。 The electric drive system 62 drives the front motor 54 and the rear motor 36 according to the output of the pedal force sensor 72 or the output of the accelerator sensor 74. The pedaling force sensor 72 detects the pedaling force (torque) applied to the crankshaft 38 and outputs a signal (pedaling force signal) corresponding to the pedaling force. The accelerator sensor 74 detects an operation amount of the accelerator grip 58 and outputs a signal (accelerator signal) corresponding to the operation amount.
 電動駆動系62は、踏力センサ72と、アクセルセンサ74と、フロントモータ54と、リアモータ36と、前輪減速機構76と、後輪減速機構78と、コントローラ80とを含む。コントローラ80は、踏力センサ72又はアクセルセンサ74の出力に応じて、フロントモータ54及びリアモータ36を駆動する。フロントモータ54の回転は、前輪減速機構76によって減速されて、前輪14に伝達される。リアモータ36の回転は、後輪減速機構78によって減速されて、後輪16に伝達される。 The electric drive system 62 includes a pedal force sensor 72, an accelerator sensor 74, a front motor 54, a rear motor 36, a front wheel speed reduction mechanism 76, a rear wheel speed reduction mechanism 78, and a controller 80. The controller 80 drives the front motor 54 and the rear motor 36 in accordance with the output of the pedal force sensor 72 or the accelerator sensor 74. The rotation of the front motor 54 is decelerated by the front wheel reduction mechanism 76 and transmitted to the front wheel 14. The rotation of the rear motor 36 is decelerated by the rear wheel reduction mechanism 78 and transmitted to the rear wheel 16.
 コントローラ80は、前輪トルク指令値演算ユニット82と、後輪トルク指令値演算ユニット84と、フロントモータ駆動ユニット86と、リアモータ駆動ユニット88とを含む。前輪トルク指令値演算ユニット82は、踏力センサ72又はアクセルセンサ74の出力に応じて、前輪トルク指令値を演算する。後輪トルク指令値演算ユニット84は、踏力センサ72又はアクセルセンサ74の出力に応じて、後輪トルク指令値を演算する。フロントモータ駆動ユニット86は、前輪トルク指令値に基づいて、フロントモータ54を駆動する。リアモータ駆動ユニット88は、後輪トルク指令値に基づいて、リアモータ36を駆動する。 The controller 80 includes a front wheel torque command value calculation unit 82, a rear wheel torque command value calculation unit 84, a front motor drive unit 86, and a rear motor drive unit 88. The front wheel torque command value calculation unit 82 calculates a front wheel torque command value according to the output of the pedal force sensor 72 or the accelerator sensor 74. The rear wheel torque command value calculation unit 84 calculates a rear wheel torque command value according to the output of the pedal force sensor 72 or the accelerator sensor 74. The front motor drive unit 86 drives the front motor 54 based on the front wheel torque command value. The rear motor drive unit 88 drives the rear motor 36 based on the rear wheel torque command value.
 本実施の形態では、前輪トルク指令値は、フロントモータ54が発生すべき駆動トルクの指令値である。後輪トルク指令値は、リアモータ36が発生すべき駆動トルクの指令値である。 In the present embodiment, the front wheel torque command value is a command value of the drive torque that the front motor 54 should generate. The rear wheel torque command value is a command value of the driving torque that should be generated by the rear motor 36.
 フロントモータ駆動ユニット86は、前輪トルク指令値に対応するデューティー比でバッテリ32からの駆動電力をPWM制御する。PWM制御された駆動電圧がフロントモータ54に印加される。それによって、フロントモータ54に対して、前輪トルク指令値に対応した駆動電流が流れる。 The front motor drive unit 86 performs PWM control of drive power from the battery 32 with a duty ratio corresponding to the front wheel torque command value. A PWM-controlled drive voltage is applied to the front motor 54. As a result, a driving current corresponding to the front wheel torque command value flows to the front motor 54.
 リアモータ駆動ユニット88は、後輪トルク指令値に対応するデューティー比でバッテリ32からの駆動電力をPWM制御する。PWM制御された駆動電圧がリアモータ36に印加される。それによって、リアモータ36に対して、後輪トルク指令値に対応した駆動電流が流れる。 The rear motor drive unit 88 performs PWM control of drive power from the battery 32 with a duty ratio corresponding to the rear wheel torque command value. A PWM-controlled drive voltage is applied to the rear motor 36. As a result, a driving current corresponding to the rear wheel torque command value flows to the rear motor 36.
 コントローラ80は、さらに、スリップ検出ユニット90と、前輪回転速度演算ユニット92と、後輪回転速度演算ユニット94とを含む。スリップ検出ユニット90は、前輪回転速度演算ユニット92によって演算された前輪14の回転速度と、後輪回転速度演算ユニット94によって演算された後輪16の回転速度とに基づいて、前輪14及び後輪16のスリップを検出する。前輪回転速度演算ユニット92は、フロントモータ54の回転速度から前輪14の回転速度を演算する。後輪回転速度演算ユニット94は、リアモータ36の回転速度から後輪16の回転速度を演算する。 The controller 80 further includes a slip detection unit 90, a front wheel rotation speed calculation unit 92, and a rear wheel rotation speed calculation unit 94. The slip detection unit 90 is based on the rotation speed of the front wheel 14 calculated by the front wheel rotation speed calculation unit 92 and the rotation speed of the rear wheel 16 calculated by the rear wheel rotation speed calculation unit 94. 16 slips are detected. The front wheel rotation speed calculation unit 92 calculates the rotation speed of the front wheel 14 from the rotation speed of the front motor 54. The rear wheel rotation speed calculation unit 94 calculates the rotation speed of the rear wheel 16 from the rotation speed of the rear motor 36.
 ここで、前輪14及び後輪16は同じ大きさを有している。そのため、前輪14の回転速度と電動二輪車10の速度との換算比は、後輪16の回転速度と電動二輪車10の速度との換算比に等しい。 Here, the front wheel 14 and the rear wheel 16 have the same size. Therefore, the conversion ratio between the rotation speed of the front wheel 14 and the speed of the electric motorcycle 10 is equal to the conversion ratio between the rotation speed of the rear wheel 16 and the speed of the electric motorcycle 10.
 コントローラ80は、さらに、切替スイッチ96及び制御スイッチ98を含む。切替スイッチ96は、踏力センサ72の出力が前輪トルク指令値演算ユニット82及び後輪トルク指令値演算ユニット84に入力される場合と、アクセルセンサ74の出力が前輪トルク指令値演算ユニット82及び後輪トルク指令値演算ユニット84に入力される場合とを切り替える。制御スイッチ98は、スリップ検出ユニット90から前輪トルク指令値演算ユニット82及び後輪トルク指令値演算ユニット84への信号入力を許可するか否かを切り替える。 The controller 80 further includes a changeover switch 96 and a control switch 98. The change-over switch 96 is configured so that the output of the pedal force sensor 72 is input to the front wheel torque command value calculation unit 82 and the rear wheel torque command value calculation unit 84, and the output of the accelerator sensor 74 is the front wheel torque command value calculation unit 82 and the rear wheel. The case where the torque command value calculation unit 84 is input is switched. The control switch 98 switches whether to allow signal input from the slip detection unit 90 to the front wheel torque command value calculation unit 82 and the rear wheel torque command value calculation unit 84.
 電動二輪車10は、さらに、スイッチボックス100を備える。スイッチボックス100は、第1スイッチ102と、第2スイッチ104と、調整スイッチ106とを含む。 The electric motorcycle 10 further includes a switch box 100. The switch box 100 includes a first switch 102, a second switch 104, and an adjustment switch 106.
 スイッチボックス100は、例えば、ハンドル56に配置される。第1スイッチ102は、制御スイッチ98の動作を切り替える。第2スイッチ104は、切替スイッチ96の動作を切り替える。調整スイッチ106は、フロントモータ54の駆動力とリアモータ36の駆動力との比率を切り替える。 The switch box 100 is disposed on the handle 56, for example. The first switch 102 switches the operation of the control switch 98. The second switch 104 switches the operation of the changeover switch 96. The adjustment switch 106 switches the ratio between the driving force of the front motor 54 and the driving force of the rear motor 36.
 電動二輪車10は、さらに、表示パネル107を備える。表示パネル107は、例えば、ハンドル56に配置される。表示パネル107は、例えば、フロントモータ54及びリアモータ36の駆動力の制御に関する情報を表示する。表示パネル107は、例えば、制御スイッチ98がOFFの場合、つまり、第1スイッチ102がOFFの場合に、フロントモータ54及びリアモータ36の駆動力を車両の走行状況に応じて変更しない旨の表示をする。 The electric motorcycle 10 further includes a display panel 107. The display panel 107 is disposed on the handle 56, for example. The display panel 107 displays, for example, information related to control of the driving force of the front motor 54 and the rear motor 36. For example, when the control switch 98 is OFF, that is, when the first switch 102 is OFF, the display panel 107 displays that the driving force of the front motor 54 and the rear motor 36 is not changed according to the traveling state of the vehicle. To do.
 電動二輪車10は、さらに、ハンドル角度センサ108を備える。ハンドル角度センサ108は、ハンドル56の操作角度を検出する。ハンドル角度センサ108は、車両の直進方向を基準位置(0°)とした場合に、例えば、当該基準位置から左右に90度の範囲で、ハンドル56の操作角度を検出できる。 The electric motorcycle 10 further includes a handle angle sensor 108. The handle angle sensor 108 detects the operation angle of the handle 56. The handle angle sensor 108 can detect the operation angle of the handle 56 within a range of 90 degrees to the left and right, for example, when the straight traveling direction of the vehicle is set to the reference position (0 °).
 図3を参照しながら、ハンドル角度センサ108について説明する。図3は、ハンドル角度センサ108の概略構成を示す模式図である。 The handle angle sensor 108 will be described with reference to FIG. FIG. 3 is a schematic diagram showing a schematic configuration of the handle angle sensor 108.
 ハンドル角度センサ108は、永久磁石110と、2つのホール素子112,112とを含む。 The handle angle sensor 108 includes a permanent magnet 110 and two Hall elements 112 and 112.
 永久磁石110は、リング形状を有する。つまり、永久磁石110には、孔111が形成されている。平面視において、孔111の中心C1は、永久磁石110の外径中心C2からずれている。そのため、永久磁石110は、径方向の厚みが周方向で変化する。 The permanent magnet 110 has a ring shape. That is, the permanent magnet 110 has a hole 111 formed therein. In plan view, the center C1 of the hole 111 is deviated from the outer diameter center C2 of the permanent magnet 110. Therefore, the permanent magnet 110 has a radial thickness that changes in the circumferential direction.
 永久磁石110は、ステアリングシャフト50に固定されている。具体的には、永久磁石110に形成された孔111に対して、ステアリングシャフト50が挿入されている。永久磁石110をステアリングシャフト50に固定する方法としては、例えば、接着等がある。永久磁石110は、ステアリングシャフト50に固定されていることにより、ステアリングシャフト50と一体的に回転する。 The permanent magnet 110 is fixed to the steering shaft 50. Specifically, the steering shaft 50 is inserted into the hole 111 formed in the permanent magnet 110. Examples of a method for fixing the permanent magnet 110 to the steering shaft 50 include adhesion. Since the permanent magnet 110 is fixed to the steering shaft 50, the permanent magnet 110 rotates integrally with the steering shaft 50.
 2つのホール素子112,112は、ブラケット114を介して、ヘッドパイプ18に固定されている。一方のホール素子112は、永久磁石110の前方に配置されている。他方のホール素子112は、永久磁石110の後方に配置されている。2つのホール素子112,112は、中心C1及び中心C2を結ぶ直線L1上に配置されている。なお、図3に示す例では、直線L1は車両の前後方向に延びている。 The two Hall elements 112 and 112 are fixed to the head pipe 18 via the bracket 114. One Hall element 112 is disposed in front of the permanent magnet 110. The other Hall element 112 is disposed behind the permanent magnet 110. The two Hall elements 112 and 112 are arranged on a straight line L1 connecting the center C1 and the center C2. In the example shown in FIG. 3, the straight line L1 extends in the front-rear direction of the vehicle.
 上記のように、永久磁石110では、径方向の厚みが周方向で変化する。そのため、ハンドル56の操作に伴ってステアリングシャフト50が回転すると、ホール素子112,112と永久磁石110との間に形成された隙間の大きさが変化する。その結果、ホール素子112,112が検出する磁界の大きさが変化する。磁界の大きさが変化するので、ホール素子112,112の出力が変化する。ホール素子112,112の出力に基づいて、ハンドル56の操作角度を検出することができる。 As described above, in the permanent magnet 110, the radial thickness varies in the circumferential direction. Therefore, when the steering shaft 50 rotates in accordance with the operation of the handle 56, the size of the gap formed between the Hall elements 112, 112 and the permanent magnet 110 changes. As a result, the magnitude of the magnetic field detected by the Hall elements 112 and 112 changes. Since the magnitude of the magnetic field changes, the outputs of the Hall elements 112 and 112 change. The operation angle of the handle 56 can be detected based on the outputs of the hall elements 112 and 112.
 電動二輪車10では、車両のアンダーステアの特性を調整する。図4は、車両のアンダーステアの特性を調整するときのコントローラ80の具体的な動作例を説明するためのフローチャートである。 In the electric motorcycle 10, the understeer characteristic of the vehicle is adjusted. FIG. 4 is a flowchart for explaining a specific operation example of the controller 80 when adjusting the understeer characteristic of the vehicle.
 先ず、コントローラ80は、ステップS11において、第1スイッチ102がONであるかを判断する。つまり、制御スイッチ98がONであるかを判断する。第1スイッチ102がONである場合(ステップS11:YES)、コントローラ80は、ステップS12において、車両の状態を確認する。 First, in step S11, the controller 80 determines whether the first switch 102 is ON. That is, it is determined whether the control switch 98 is ON. When the 1st switch 102 is ON (step S11: YES), the controller 80 confirms the state of a vehicle in step S12.
 具体的には、図5に示すように、ステップS21において、前輪トルク指令値演算ユニット82及び後輪トルク指令値演算ユニット84が、踏力センサ72又はアクセルセンサ74の検出信号を読み込む。続いて、ステップS22において、前輪トルク指令値演算ユニット82が、ハンドル角度センサ108の検出信号を読み込む。その後、コントローラ80は、図4に示すステップS12の処理を終了する。 Specifically, as shown in FIG. 5, in step S21, the front wheel torque command value calculation unit 82 and the rear wheel torque command value calculation unit 84 read the detection signal of the pedal force sensor 72 or the accelerator sensor 74. Subsequently, in step S22, the front wheel torque command value calculation unit 82 reads the detection signal of the handle angle sensor 108. Thereafter, the controller 80 ends the process of step S12 shown in FIG.
 続いて、コントローラ80は、図4に示すように、ステップS13において、トルク指令値を算出する。 Subsequently, as shown in FIG. 4, the controller 80 calculates a torque command value in step S13.
 具体的には、図6に示すように、ステップS31において、前輪トルク指令値演算ユニット82が、前輪トルク指令係数を算出する。前輪トルク指令係数は、所定のマップと、読み込んだハンドル角度センサ108の検出信号とに基づいて、算出される。 Specifically, as shown in FIG. 6, in step S31, the front wheel torque command value calculation unit 82 calculates a front wheel torque command coefficient. The front wheel torque command coefficient is calculated based on a predetermined map and the read detection signal of the handle angle sensor 108.
 ここで、前輪トルク指令係数は、0以上であって、且つ、1以下の数値であって、前輪トルク指令値に乗算される係数である。つまり、前輪トルク指令係数が1よりも小さい場合には、前輪トルク指令係数が乗算された後の前輪トルク指令値は、前輪トルク指令係数が乗算される前の前輪トルク指令値よりも小さくなる。 Here, the front wheel torque command coefficient is a numerical value of 0 or more and 1 or less, and is a coefficient multiplied by the front wheel torque command value. That is, when the front wheel torque command coefficient is smaller than 1, the front wheel torque command value after being multiplied by the front wheel torque command coefficient is smaller than the front wheel torque command value before being multiplied by the front wheel torque command coefficient.
 前輪トルク指令値演算ユニット82が参照するマップとしては、例えば、図7に示すマップが採用される。図7に示すマップでは、ハンドル角度センサ108の検出信号が示すハンドル56の操作角度と、前輪トルク指令係数との関係が示されている。図7に示すマップでは、ハンドル操作角度が0°よりも大きい場合は、ハンドル56が基準位置(0°の位置、つまり、車両が直進するときの位置)から時計回りの方向に回転していることを示している。ハンドル操作角度が0°よりも小さい場合は、ハンドル56が基準位置から反時計回りの方向に回転していることを示している。図7に示すマップでは、ハンドル56の操作角度が0°のときに、前輪トルク指令係数が1になる。ハンドル56の操作角度の絶対値が大きくなると、前輪トルク指令係数が1よりも小さくなる。ハンドル56の操作角度の絶対値が90°になると、前輪トルク指令係数が0になる。マップは、例えば、コントローラ80内に設けられたメモリに格納されている。マップは、ハンドル角度センサ108の検出信号が示すハンドル56の操作角度と、前輪トルク指令係数との関係を示すものであれば、特に限定されない。例えば、図8に示すマップであってもよい。 As the map referred to by the front wheel torque command value calculation unit 82, for example, the map shown in FIG. 7 is adopted. The map shown in FIG. 7 shows the relationship between the operation angle of the handle 56 indicated by the detection signal of the handle angle sensor 108 and the front wheel torque command coefficient. In the map shown in FIG. 7, when the steering wheel operation angle is larger than 0 °, the steering wheel 56 is rotated in the clockwise direction from the reference position (the position of 0 °, that is, the position when the vehicle goes straight). It is shown that. When the handle operating angle is smaller than 0 °, it indicates that the handle 56 is rotating counterclockwise from the reference position. In the map shown in FIG. 7, the front wheel torque command coefficient is 1 when the operation angle of the handle 56 is 0 °. When the absolute value of the operation angle of the handle 56 becomes large, the front wheel torque command coefficient becomes smaller than 1. When the absolute value of the operation angle of the handle 56 becomes 90 °, the front wheel torque command coefficient becomes zero. The map is stored in a memory provided in the controller 80, for example. The map is not particularly limited as long as it shows the relationship between the operation angle of the handle 56 indicated by the detection signal of the handle angle sensor 108 and the front wheel torque command coefficient. For example, the map shown in FIG. 8 may be used.
 図6を参照して、前輪トルク指令値演算ユニット82は、前輪トルク指令係数を算出した後、ステップS32において、前輪トルク指令値を算出する。前輪トルク指令値は、所定のマップと、読み込んだ踏力センサ72又はアクセルセンサ74の検出信号に基づいて、算出される。このときのマップは、踏力センサ72又はアクセルセンサ74の検出信号と、前輪トルク指令値との関係を示すものであれば、特に限定されない。踏力センサ72又はアクセルセンサ74の検出信号に対応する前輪トルク指令値が算出される。マップは、例えば、コントローラ80内に設けられたメモリに格納されている。 Referring to FIG. 6, front wheel torque command value calculation unit 82 calculates a front wheel torque command coefficient, and then calculates a front wheel torque command value in step S32. The front wheel torque command value is calculated based on a predetermined map and the detected detection signal of the pedal force sensor 72 or the accelerator sensor 74. The map at this time is not particularly limited as long as it shows the relationship between the detection signal of the pedal force sensor 72 or the accelerator sensor 74 and the front wheel torque command value. A front wheel torque command value corresponding to the detection signal of the pedal force sensor 72 or the accelerator sensor 74 is calculated. The map is stored in a memory provided in the controller 80, for example.
 続いて、ステップS33において、前輪トルク指令値演算ユニット82は、ステップS32で算出した前輪トルク指令値に対して、ステップS31で算出した前輪トルク指令係数を乗算する。これにより、目的とする前輪トルク指令値が得られる。 Subsequently, in step S33, the front wheel torque command value calculation unit 82 multiplies the front wheel torque command value calculated in step S32 by the front wheel torque command coefficient calculated in step S31. Thereby, the target front wheel torque command value is obtained.
 ここで、ステップS31で算出した前輪トルク指令係数が1である場合、つまり、車両が直進している場合には、ステップS32で算出した前輪トルク指令値に基づいて、フロントモータ54が制御される。一方、ステップS31で算出した前輪トルク指令係数が1よりも小さい場合、つまり、車両が旋回している場合には、ステップS32で算出した前輪トルク指令値に対して、ステップS31で算出した前輪トルク指令係数を乗算して得られた前輪トルク指令値(補正後の前輪トルク指令値)に基づいて、フロントモータ54が制御される。 Here, when the front wheel torque command coefficient calculated in step S31 is 1, that is, when the vehicle is traveling straight, the front motor 54 is controlled based on the front wheel torque command value calculated in step S32. . On the other hand, when the front wheel torque command coefficient calculated in step S31 is smaller than 1, that is, when the vehicle is turning, the front wheel torque calculated in step S31 with respect to the front wheel torque command value calculated in step S32. The front motor 54 is controlled based on the front wheel torque command value (corrected front wheel torque command value) obtained by multiplying the command coefficient.
 続いて、ステップS34において、後輪トルク指令値演算ユニット84は、後輪トルク指令値を算出する。後輪トルク指令値は、所定のマップと、読み込んだ踏力センサ72又はアクセルセンサ74の検出信号に基づいて、算出される。このときのマップは、踏力センサ72又はアクセルセンサ74の検出信号と、後輪トルク指令値との関係を示すものであれば、特に限定されない。踏力センサ72又はアクセルセンサ74の検出信号に対応する後輪トルク指令値が算出される。マップは、例えば、コントローラ80内に設けられたメモリに格納されている。 Subsequently, in step S34, the rear wheel torque command value calculation unit 84 calculates a rear wheel torque command value. The rear wheel torque command value is calculated based on a predetermined map and the detected detection signal of the pedal force sensor 72 or the accelerator sensor 74. The map at this time is not particularly limited as long as it shows the relationship between the detection signal of the pedal force sensor 72 or the accelerator sensor 74 and the rear wheel torque command value. A rear wheel torque command value corresponding to the detection signal of the pedal force sensor 72 or the accelerator sensor 74 is calculated. The map is stored in a memory provided in the controller 80, for example.
 上記のように算出することで、目的とする後輪トルク指令値が得られる。その後、コントローラ80は、図4に示すステップS13の処理を終了する。 The target rear wheel torque command value can be obtained by calculating as described above. Thereafter, the controller 80 ends the process of step S13 shown in FIG.
 続いて、コントローラ80は、図4に示すように、ステップS14において、算出したトルク指令値を出力する。 Subsequently, as shown in FIG. 4, the controller 80 outputs the calculated torque command value in step S14.
 具体的には、前輪トルク指令値演算ユニット82は、算出した前輪トルク指令値をフロントモータ駆動ユニット86に出力する。これにより、フロントモータ54が算出された前輪トルク指令値に基づいて駆動される。 Specifically, the front wheel torque command value calculation unit 82 outputs the calculated front wheel torque command value to the front motor drive unit 86. Thereby, the front motor 54 is driven based on the calculated front wheel torque command value.
 また、後輪トルク指令値演算ユニット84は、算出した後輪トルク指令値をリアモータ駆動ユニット88に出力する。これにより、リアモータ36が算出された後輪トルク指令値に基づいて駆動される。 Also, the rear wheel torque command value calculation unit 84 outputs the calculated rear wheel torque command value to the rear motor drive unit 88. As a result, the rear motor 36 is driven based on the calculated rear wheel torque command value.
 コントローラ80は、算出した前輪トルク指令値及び後輪トルク指令値を出力した後、制御を終了する。 The controller 80 ends the control after outputting the calculated front wheel torque command value and the rear wheel torque command value.
 第1スイッチ102がOFFである場合(ステップS11:NO)、つまり、制御スイッチ98がOFFの場合、コントローラ80は、ステップS15において、トルク指令値を算出する。 When the first switch 102 is OFF (step S11: NO), that is, when the control switch 98 is OFF, the controller 80 calculates a torque command value in step S15.
 具体的には、前輪トルク指令値演算ユニット82は、所定のマップと、読み込んだ踏力センサ72又はアクセルセンサ74の検出信号に基づいて、前輪トルク指令値を算出する。このときのマップは、踏力センサ72又はアクセルセンサ74の検出信号と、前輪トルク指令値との関係を示すものであれば、特に限定されない。踏力センサ72又はアクセルセンサ74の検出信号に対応する前輪トルク指令値が算出される。マップは、例えば、コントローラ80内に設けられたメモリに格納されている。 Specifically, the front wheel torque command value calculation unit 82 calculates a front wheel torque command value based on a predetermined map and the detected detection signal of the pedal force sensor 72 or the accelerator sensor 74. The map at this time is not particularly limited as long as it shows the relationship between the detection signal of the pedal force sensor 72 or the accelerator sensor 74 and the front wheel torque command value. A front wheel torque command value corresponding to the detection signal of the pedal force sensor 72 or the accelerator sensor 74 is calculated. The map is stored in a memory provided in the controller 80, for example.
 また、後輪トルク指令値演算ユニット84は、所定のマップと、読み込んだ踏力センサ72又はアクセルセンサ74の検出信号に基づいて、後輪トルク指令値を算出する。このときのマップは、踏力センサ72又はアクセルセンサ74の検出信号と、後輪トルク指令値との関係を示すものであれば、特に限定されない。踏力センサ72又はアクセルセンサ74の検出信号に対応する後輪トルク指令値が算出される。マップは、例えば、コントローラ80内に設けられたメモリに格納されている。 Also, the rear wheel torque command value calculation unit 84 calculates a rear wheel torque command value based on a predetermined map and the detected detection signal of the pedal force sensor 72 or the accelerator sensor 74. The map at this time is not particularly limited as long as it shows the relationship between the detection signal of the pedal force sensor 72 or the accelerator sensor 74 and the rear wheel torque command value. A rear wheel torque command value corresponding to the detection signal of the pedal force sensor 72 or the accelerator sensor 74 is calculated. The map is stored in a memory provided in the controller 80, for example.
 続いて、コントローラ80は、ステップS16において、算出したトルク指令値を出力する。 Subsequently, the controller 80 outputs the calculated torque command value in step S16.
 具体的には、前輪トルク指令値演算ユニット82は、ステップS15で算出した前輪トルク指令値をフロントモータ駆動ユニット86に出力する。算出された前輪トルク指令値に基づいて、フロントモータ54が駆動される。 Specifically, the front wheel torque command value calculation unit 82 outputs the front wheel torque command value calculated in step S15 to the front motor drive unit 86. The front motor 54 is driven based on the calculated front wheel torque command value.
 また、後輪トルク指令値演算ユニット84は、ステップS15で算出した後輪トルク指令値をリアモータ駆動ユニット88に出力する。算出された後輪トルク指令値に基づいて、リアモータ36が駆動される。 Also, the rear wheel torque command value calculation unit 84 outputs the rear wheel torque command value calculated in step S15 to the rear motor drive unit 88. The rear motor 36 is driven based on the calculated rear wheel torque command value.
 その後、コントローラ80は、図4に示す制御を終了する。 Thereafter, the controller 80 ends the control shown in FIG.
 電動二輪車10においては、ハンドル56の操作角度に応じて、フロントモータ駆動ユニット86に出力される前輪トルク指令値が変化する。 In the electric motorcycle 10, the front wheel torque command value output to the front motor drive unit 86 changes according to the operation angle of the handle 56.
 具体的には、ハンドル56の操作角度が0°の場合、つまり、車両が直進しているときには、乗員によるアクセルグリップ58の操作量又はペダル踏力に応じた前輪トルク指令値に基づいて、フロントモータ54が駆動される。 Specifically, when the operation angle of the handle 56 is 0 °, that is, when the vehicle is traveling straight, the front motor is based on the front wheel torque command value corresponding to the amount of operation of the accelerator grip 58 by the occupant or the pedal effort. 54 is driven.
 一方、ハンドル56の操作角度が0°でない場合、つまり、車両が旋回しているときには、乗員によるアクセルグリップ58の操作量又はペダル踏力に応じた前輪トルク指令値よりも小さい前輪トルク指令値(補正後の前輪トルク指令値)に基づいて、フロントモータ54が駆動される。そのため、フロントモータ54の駆動力が、乗員によるアクセルグリップ58の操作量又はペダル踏力に応じた駆動力よりも低下する。その結果、車両のアンダーステアの特性を調整することができる。 On the other hand, when the operation angle of the handle 56 is not 0 °, that is, when the vehicle is turning, the front wheel torque command value (correction) is smaller than the front wheel torque command value corresponding to the amount of operation of the accelerator grip 58 or the pedal depression force by the occupant. Based on the rear front wheel torque command value), the front motor 54 is driven. Therefore, the driving force of the front motor 54 is lower than the driving force corresponding to the amount of operation of the accelerator grip 58 by the occupant or the pedaling force. As a result, the understeer characteristic of the vehicle can be adjusted.
 図9を参照しながら、アンダーステアの調整について、さらに説明する。図9は、フロントモータ54及びリアモータ36の各々の駆動力と、アクセルグリップ58の開度と、車両の状態とを示す説明図である。 The adjustment of understeer will be further described with reference to FIG. FIG. 9 is an explanatory diagram showing the driving force of each of the front motor 54 and the rear motor 36, the opening degree of the accelerator grip 58, and the state of the vehicle.
 図9に示すように、電動二輪車10では、アクセルグリップ58の操作量が一定であっても、車両が旋回しているときのフロントモータ54の駆動力が、車両が直進しているときのフロントモータ54の駆動力、つまり、アクセルグリップ58の操作量に応じた駆動力よりも小さくなる。なお、リアモータ36の駆動力は、車両が直進しているとき及び車両が旋回しているときの各々において、同じである。 As shown in FIG. 9, in the electric motorcycle 10, even when the operation amount of the accelerator grip 58 is constant, the driving force of the front motor 54 when the vehicle is turning is the front force when the vehicle is traveling straight. The driving force of the motor 54, that is, the driving force corresponding to the operation amount of the accelerator grip 58 is smaller. The driving force of the rear motor 36 is the same when the vehicle is traveling straight and when the vehicle is turning.
 図9では、フロントモータ54及びリアモータ36の各々の駆動力がアクセルグリップ58を操作することで発生する場合を示しているが、フロントモータ54及びリアモータ36の各々の駆動力がペダルを踏むことで発生してもよい。 Although FIG. 9 shows a case where the driving force of each of the front motor 54 and the rear motor 36 is generated by operating the accelerator grip 58, the driving force of each of the front motor 54 and the rear motor 36 is obtained by stepping on the pedal. It may occur.
 図10は、フロントモータ54及びリアモータ36の各々の駆動力と、ペダル踏力の大きさと、車両の状態とを示す説明図である。図10に示すように、フロントモータ54及びリアモータ36の各々の駆動力は、ペダル踏力の大きさに応じて、周期的に変化する。フロントモータ54の駆動力の一周期におけるピーク値は、車両が旋回しているときのほうが、車両が前進しているときよりも小さい。つまり、フロントモータ54の駆動力は、車両が旋回しているときに、車両が直進しているときよりも小さくなる。なお、リアモータ36の駆動力の一周期におけるピーク値は、車両が直進しているとき及び車両が旋回しているときの各々において、同じである。 FIG. 10 is an explanatory diagram showing the driving force of each of the front motor 54 and the rear motor 36, the magnitude of the pedal depression force, and the state of the vehicle. As shown in FIG. 10, the driving force of each of the front motor 54 and the rear motor 36 changes periodically according to the magnitude of the pedal effort. The peak value in one cycle of the driving force of the front motor 54 is smaller when the vehicle is turning than when the vehicle is moving forward. That is, the driving force of the front motor 54 is smaller when the vehicle is turning than when the vehicle is traveling straight. The peak value in one cycle of the driving force of the rear motor 36 is the same when the vehicle is traveling straight and when the vehicle is turning.
 本実施の形態において、フロントモータ54の駆動力をアクセルグリップ58の操作量又はペダル踏力に対応した大きさに戻すタイミングは、例えば、車両の旋回が終了したタイミングであってもよいし、アクセルグリップ58の操作量がゼロになったタイミングであってもよいし、ペダル踏力がゼロになったタイミングであってもよいし、車両の旋回中にブレーキが作動したタイミングであってもよい。或いは、前輪トルク指令係数が1になったタイミングであってもよい。 In the present embodiment, the timing for returning the driving force of the front motor 54 to the magnitude corresponding to the operation amount of the accelerator grip 58 or the pedal depression force may be, for example, the timing when the turning of the vehicle is completed. The timing at which the operation amount 58 becomes zero, the timing at which the pedal effort becomes zero, or the timing at which the brake is activated while the vehicle is turning may be used. Alternatively, the timing when the front wheel torque command coefficient becomes 1 may be used.
 本実施の形態では、ハンドル角度センサ108において、2つのホール素子112,112が設けられている。そのため、ハンドル56の操作角度の検出に際して、温度保障が可能となる。また、ハンドル角度の検出精度が向上する。さらに、何れかのホール素子112に故障が発生したときに、当該故障を報知することができる。 In the present embodiment, the handle angle sensor 108 is provided with two Hall elements 112 and 112. Therefore, it is possible to ensure temperature when detecting the operation angle of the handle 56. In addition, the detection accuracy of the handle angle is improved. Furthermore, when a failure occurs in any of the hall elements 112, the failure can be notified.
 [第2の実施の形態]
 続いて、本発明の第2の実施の形態について説明する。本実施の形態では、図4のフローチャートに示すステップS12及びステップS13が、第1の実施の形態と異なる。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the present embodiment, step S12 and step S13 shown in the flowchart of FIG. 4 are different from those in the first embodiment.
 図11を参照して、本実施の形態でのステップS12について説明する。本実施の形態では、第1の実施の形態(図5に示すフローチャート)と比べて、ステップS22の後に、ステップS23が追加されている。ステップ23では、車両の速度を示す車速信号を読み込む。具体的には、以下のとおりである。 Referring to FIG. 11, step S12 in the present embodiment will be described. In the present embodiment, step S23 is added after step S22 as compared to the first embodiment (the flowchart shown in FIG. 5). In step 23, a vehicle speed signal indicating the speed of the vehicle is read. Specifically, it is as follows.
 前輪回転速度演算ユニット92は、フロントモータ54の回転速度を読み込む。前輪回転速度演算ユニット92は、読み込んだフロントモータ54の回転速度に基づいて、前輪14の回転速度を算出する。スリップ検出ユニット90は、前輪回転速度演算ユニット92が算出した前輪14の回転速度を読み込む。 The front wheel rotation speed calculation unit 92 reads the rotation speed of the front motor 54. The front wheel rotation speed calculation unit 92 calculates the rotation speed of the front wheel 14 based on the read rotation speed of the front motor 54. The slip detection unit 90 reads the rotation speed of the front wheel 14 calculated by the front wheel rotation speed calculation unit 92.
 後輪回転速度演算ユニット94は、リアモータ36の回転速度を読み込む。後輪回転速度演算ユニット94は、読み込んだリアモータ36の回転速度に基づいて、後輪16の回転速度を算出する。スリップ検出ユニット90は、後輪回転速度演算ユニット94が算出した後輪16の回転速度を読み込む。 The rear wheel rotational speed calculation unit 94 reads the rotational speed of the rear motor 36. The rear wheel rotation speed calculation unit 94 calculates the rotation speed of the rear wheel 16 based on the read rotation speed of the rear motor 36. The slip detection unit 90 reads the rotation speed of the rear wheel 16 calculated by the rear wheel rotation speed calculation unit 94.
 スリップ検出ユニット90は、読み込んだ前輪14の回転速度及び後輪16の回転速度の差分を算出する。具体的には、前輪14の回転速度から後輪16回転速度を減算する。これによって得られる回転速度差の絶対値が所定の閾値を越えているかを判断する。回転速度差の絶対値が所定の閾値を超えていない場合には、前輪14又は後輪16の回転速度を所定の換算比で換算することにより、車両の速度を算出する。回転速度差の絶対値が所定の閾値を超えている場合には、前輪14及び後輪16の回転速度のうち、小さいほうの回転速度を所定の換算比で換算することにより、車両の速度を算出する。 The slip detection unit 90 calculates the difference between the read rotational speed of the front wheel 14 and the rotational speed of the rear wheel 16. Specifically, the rear wheel 16 rotational speed is subtracted from the rotational speed of the front wheel 14. It is determined whether or not the absolute value of the rotational speed difference thus obtained exceeds a predetermined threshold value. When the absolute value of the rotational speed difference does not exceed a predetermined threshold value, the speed of the vehicle is calculated by converting the rotational speed of the front wheels 14 or the rear wheels 16 with a predetermined conversion ratio. If the absolute value of the rotational speed difference exceeds a predetermined threshold value, the vehicle speed is calculated by converting the smaller rotational speed of the rotational speeds of the front wheels 14 and the rear wheels 16 with a predetermined conversion ratio. calculate.
 前輪トルク指令値演算ユニット82は、スリップ検出ユニット90が算出した車両の速度を示す車速信号を読み込む。 The front wheel torque command value calculation unit 82 reads a vehicle speed signal indicating the vehicle speed calculated by the slip detection unit 90.
 本実施の形態のステップS13では、第1の実施の形態(図6に示すフローチャート)と比べて、ステップ31が異なる。具体的には、以下のとおりである。 In step S13 of the present embodiment, step 31 is different from that of the first embodiment (the flowchart shown in FIG. 6). Specifically, it is as follows.
 本実施の形態の前輪トルク指令値演算ユニット82は、図6に示すステップ31において、所定のマップと、読み込んだハンドル角度センサ108の検出信号と、読み込んだ車速信号とに基づいて、前輪トルク指令係数を算出する。このときのマップとしては、例えば、図12に示すマップを採用することができる。図12に示すマップでは、ハンドル角度センサ108の検出信号が示すハンドルの操作角度と、車速信号が示す車速と、前輪トルク指令係数との関係が示されている。図12に示すマップでは、ハンドル操作角度が0°よりも大きい場合は、ハンドル56が基準位置(0°の位置、つまり、車両が直進するときの位置)から時計回りの方向に回転していることを示している。ハンドル操作角度が0°よりも小さい場合は、ハンドル56が基準位置から反時計回りの方向に回転していることを示している。図12に示すマップでは、車速がゼロのときには、ハンドル56の操作角度が変化しても、前輪トルク指令係数は1である。図12に示すマップでは、車速がゼロよりも大きいときには、ハンドル56の操作角度の絶対値が大きくなると、前輪トルク指令係数が1よりも小さくなる。また、ハンドル56の操作角度の絶対値が0°でない場合、車速が大きくなると、前輪トルク指令係数が1よりも小さくなる。マップは、例えば、コントローラ80内に設けられたメモリに格納されている。マップは、ハンドル角度センサ108の検出信号が示すハンドル56の操作角度と、車速信号が示す車速と、前輪トルク指令係数との関係を示すものであれば、特に限定されない。例えば、図13に示すマップであってもよい。 In step 31 shown in FIG. 6, the front wheel torque command value calculation unit 82 of the present embodiment performs the front wheel torque command based on the predetermined map, the read detection signal of the handle angle sensor 108, and the read vehicle speed signal. Calculate the coefficient. As the map at this time, for example, the map shown in FIG. 12 can be adopted. The map shown in FIG. 12 shows the relationship between the steering wheel operation angle indicated by the detection signal of the steering wheel angle sensor 108, the vehicle speed indicated by the vehicle speed signal, and the front wheel torque command coefficient. In the map shown in FIG. 12, when the steering wheel operation angle is larger than 0 °, the steering wheel 56 is rotated in the clockwise direction from the reference position (the position of 0 °, that is, the position when the vehicle goes straight). It is shown that. When the handle operating angle is smaller than 0 °, it indicates that the handle 56 is rotating counterclockwise from the reference position. In the map shown in FIG. 12, when the vehicle speed is zero, the front wheel torque command coefficient is 1 even if the operation angle of the handle 56 changes. In the map shown in FIG. 12, when the vehicle speed is greater than zero, the front wheel torque command coefficient becomes smaller than 1 when the absolute value of the operation angle of the handle 56 increases. Further, when the absolute value of the operation angle of the handle 56 is not 0 °, the front wheel torque command coefficient becomes smaller than 1 as the vehicle speed increases. The map is stored in a memory provided in the controller 80, for example. The map is not particularly limited as long as it shows the relationship between the operation angle of the handle 56 indicated by the detection signal of the handle angle sensor 108, the vehicle speed indicated by the vehicle speed signal, and the front wheel torque command coefficient. For example, the map shown in FIG. 13 may be used.
 本実施の形態では、車速に応じた前輪トルク指令係数が算出される。ここで、車両のアンダーステアは、車速が大きいほど、発生し易くなる。そのため、本実施の形態のように、車速を考慮すれば、車両の旋回時におけるフロントモータ54の駆動力をより適切な駆動力に変更することができる。 In this embodiment, a front wheel torque command coefficient corresponding to the vehicle speed is calculated. Here, understeer of the vehicle is more likely to occur as the vehicle speed increases. Therefore, if the vehicle speed is taken into consideration as in the present embodiment, the driving force of the front motor 54 when the vehicle is turning can be changed to a more appropriate driving force.
 [第3の実施の形態]
 続いて、本発明の第3の実施の形態について説明する。第3の実施の形態では、第1の実施の形態と比べて、図4に示すフローチャートのステップS13が異なる。
[Third Embodiment]
Subsequently, a third embodiment of the present invention will be described. In the third embodiment, step S13 in the flowchart shown in FIG. 4 is different from that in the first embodiment.
 図14を参照して、本実施の形態でのステップS13について説明する。図14に示すフローチャートは、図6に示すフローチャートと比べて、ステップS31の前に、ステップS30が追加されている。 Referring to FIG. 14, step S13 in the present embodiment will be described. In the flowchart shown in FIG. 14, step S30 is added before step S31, compared to the flowchart shown in FIG.
 ステップS30では、前輪トルク指令値演算ユニット82は、読み込んだ踏力センサ72又はアクセルセンサ74の検出信号に基づいて、前輪トルク指令係数を算出するときに用いるマップを選択する。マップは、踏力センサ72又はアクセルセンサ74の検出信号の大きさに応じて、複数存在する。マップは、例えば、コントローラ80内に設けられたメモリに格納されている。 In step S30, the front wheel torque command value calculation unit 82 selects a map to be used when calculating a front wheel torque command coefficient based on the read pedaling force sensor 72 or accelerator sensor 74 detection signal. There are a plurality of maps depending on the magnitude of the detection signal of the pedal force sensor 72 or the accelerator sensor 74. The map is stored in a memory provided in the controller 80, for example.
 なお、本実施の形態では、上記のステップS30が追加されていることにより、ステップS31で用いるマップがステップS30で選択したマップになっている。 In the present embodiment, the map used in step S31 is the map selected in step S30 because step S30 is added.
 本実施の形態では、前輪トルク指令係数を算出するときに用いるマップを、乗員によるアクセルグリップ58の操作量又はペダル踏力の大きさに応じて選択する。例えば、図7に示すマップと、ハンドル56の操作角度が変化するときの前輪トルク指令係数が変化する割合を図7に示すマップとは異ならせたマップとを準備しておき、乗員によるアクセルグリップ58の操作量又はペダル踏力の大きさに応じて、これらのマップから1つのマップを選択する。ここで、車両のアンダーステアは、車速が大きいほど、つまり、駆動力が大きいほど、発生し易くなる。そのため、本実施の形態のように、前輪トルク指令係数を算出するときに用いるマップを、乗員によるアクセルグリップ58の操作量又はペダル踏力の大きさに応じて選択すれば、より適切な前輪トルク指令係数を用いて、前輪トルク指令値を算出できる。その結果、フロントモータ54の駆動力をより適切なものにすることができる。 In this embodiment, the map used when calculating the front wheel torque command coefficient is selected according to the amount of operation of the accelerator grip 58 by the occupant or the magnitude of the pedal effort. For example, a map shown in FIG. 7 and a map in which the rate at which the front wheel torque command coefficient changes when the operation angle of the handle 56 changes is different from the map shown in FIG. One map is selected from these maps according to the operation amount of 58 or the magnitude of the pedal effort. Here, understeer of the vehicle is more likely to occur as the vehicle speed increases, that is, as the driving force increases. Therefore, as in the present embodiment, if the map used when calculating the front wheel torque command coefficient is selected according to the amount of operation of the accelerator grip 58 by the occupant or the magnitude of the pedal effort, a more appropriate front wheel torque command The front wheel torque command value can be calculated using the coefficient. As a result, the driving force of the front motor 54 can be made more appropriate.
 [第4の実施の形態]
 続いて、本発明の第4の実施の形態について説明する。第4の実施の形態では、第1の実施の形態と比べて、図4に示すフローチャートのステップS13が異なる。
[Fourth Embodiment]
Subsequently, a fourth embodiment of the present invention will be described. In the fourth embodiment, step S13 in the flowchart shown in FIG. 4 is different from that in the first embodiment.
 図15を参照して、本実施の形態でのステップS13について説明する。図15に示すフローチャートは、図6に示すフローチャートと比べて、ステップS31の前に、ステップS30が追加されている。 With reference to FIG. 15, step S13 in the present embodiment will be described. In the flowchart shown in FIG. 15, step S30 is added before step S31, compared to the flowchart shown in FIG.
 ステップS30では、前輪トルク指令値演算ユニット82は、読み込んだ踏力センサ72又はアクセルセンサ74の検出信号が所定の閾値以上であるか否かを判断する。つまり、当該検出信号に基づくフロントモータ54の駆動力が所定の大きさ以上であるか否かを判断する。ここで、『駆動力が所定の大きさ以上である』とは、車両のアンダーステアが発生すると想定される駆動力であることをいう。 In step S30, the front wheel torque command value calculation unit 82 determines whether or not the read detection signal of the pedal force sensor 72 or the accelerator sensor 74 is equal to or greater than a predetermined threshold value. That is, it is determined whether the driving force of the front motor 54 based on the detection signal is greater than or equal to a predetermined magnitude. Here, “the driving force is greater than or equal to a predetermined magnitude” means that the driving force is assumed to cause understeer of the vehicle.
 所定の閾値よりも小さい場合(S30:NO)、前輪トルク指令値演算ユニット82は、ステップS13の処理を終了する。一方、所定の閾値以上である場合(S30:YES)には、前輪トルク指令値演算ユニット82は、ステップS31以降の処理を実行する。 If it is smaller than the predetermined threshold (S30: NO), the front wheel torque command value calculation unit 82 ends the process of step S13. On the other hand, if it is equal to or greater than the predetermined threshold value (S30: YES), the front wheel torque command value calculation unit 82 executes the processing after step S31.
 本実施の形態では、踏力センサ72又はアクセルセンサ74の検出信号に基づくフロントモータ54の駆動力が所定の大きさ以上である場合に、前輪トルク指令係数を算出する。つまり、車両のアンダーステアが発生すると想定される駆動力でフロントモータ54が駆動している場合に、フロントモータ54の駆動力を、乗員によるアクセルグリップ58の操作量又はペダル踏力に応じた駆動力よりも小さくする。そのため、車両が旋回する度に、フロントモータ54の駆動力が低下するのを回避できる。その結果、フロントモータ54の駆動力をより適切に制御することができる。 In the present embodiment, the front wheel torque command coefficient is calculated when the driving force of the front motor 54 based on the detection signal of the pedal force sensor 72 or the accelerator sensor 74 is greater than or equal to a predetermined magnitude. That is, when the front motor 54 is driven with a driving force that is assumed to cause understeer of the vehicle, the driving force of the front motor 54 is determined by a driving force corresponding to the amount of operation of the accelerator grip 58 by the occupant or the pedaling force. Also make it smaller. Therefore, it is possible to avoid a decrease in the driving force of the front motor 54 each time the vehicle turns. As a result, the driving force of the front motor 54 can be controlled more appropriately.
 [第5の実施の形態]
 続いて、図16を参照しながら、本発明の第5の実施の形態について説明する。図16は、電動二輪車10の制御システムの構成を説明するためのブロック図である。
[Fifth Embodiment]
Subsequently, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 16 is a block diagram for explaining the configuration of the control system of the electric motorcycle 10.
 本実施の形態では、ハンドル角度センサ108が設けられていない。その代わりに、モーションセンサ116が設けられている。モーションセンサ116は、例えば、サドル30の下に配置される。モーションセンサ116は、3軸以上の加速度又は角加速度を検出するものであれば、特に限定されない。 In the present embodiment, the handle angle sensor 108 is not provided. Instead, a motion sensor 116 is provided. The motion sensor 116 is disposed, for example, under the saddle 30. The motion sensor 116 is not particularly limited as long as it detects an acceleration or angular acceleration of three or more axes.
 本実施の形態では、コントローラ80は、位置演算ユニット118をさらに備える。位置演算ユニット118は、モーションセンサ116の検出信号に基づいてサドル30の位置を検出する。 In the present embodiment, the controller 80 further includes a position calculation unit 118. The position calculation unit 118 detects the position of the saddle 30 based on the detection signal of the motion sensor 116.
 また、本実施の形態では、第1の実施の形態と比べて、図4に示すフローチャートのステップS12及びステップS13が異なる。 Further, in the present embodiment, step S12 and step S13 in the flowchart shown in FIG. 4 are different from those in the first embodiment.
 図17を参照して、本実施の形態でのステップS12について説明する。図17に示すフローチャートは、図5に示すフローチャートと比べて、ステップS22が異なる。本実施の形態のステップS22では、ハンドル角度センサ108の検出信号の代わりに、モーションセンサ116の検出信号を読み込む。具体的には、位置演算ユニット118がモーションセンサ116の検出信号を読み込む。位置演算ユニット118は、読み込んだモーションセンサ116の検出信号に基づいて、サドル30の位置を算出する。前輪トルク指令値演算ユニット82は、位置演算ユニット118が算出したサドル30の位置を示す位置信号を読み込む。 With reference to FIG. 17, step S12 in the present embodiment will be described. The flowchart shown in FIG. 17 is different in step S22 from the flowchart shown in FIG. In step S22 of the present embodiment, the detection signal of the motion sensor 116 is read instead of the detection signal of the handle angle sensor 108. Specifically, the position calculation unit 118 reads the detection signal of the motion sensor 116. The position calculation unit 118 calculates the position of the saddle 30 based on the detected detection signal of the motion sensor 116. The front wheel torque command value calculation unit 82 reads a position signal indicating the position of the saddle 30 calculated by the position calculation unit 118.
 本実施の形態のステップS13では、第1の実施の形態と比べて、図6に示すフローチャートのステップS31が異なる。本実施の形態のステップS31では、前輪トルク指令値演算ユニット82は、所定のマップと、読み込んだサドル30の位置信号とに基づいて、前輪トルク指令係数を算出する。このときのマップとしては、例えば、図7又は図8に示すマップにおいて、横軸をハンドル56の操作角度からサドル30の位置に変更したマップ等を採用することができる。サドル30の位置は、例えば、車体フレーム12が傾いていない位置を基準位置(0°)として、当該基準位置からの左右方向への傾き角度で表される。マップは、サドル30の位置と、前輪トルク指令係数との関係を示すものであれば、特に限定されない。マップは、例えば、コントローラ80内に設けられたメモリに格納されている。 In step S13 of the present embodiment, step S31 of the flowchart shown in FIG. 6 is different from that of the first embodiment. In step S31 of the present embodiment, the front wheel torque command value calculation unit 82 calculates a front wheel torque command coefficient based on a predetermined map and the read position signal of the saddle 30. As the map at this time, for example, a map in which the horizontal axis is changed from the operation angle of the handle 56 to the position of the saddle 30 in the map shown in FIG. The position of the saddle 30 is represented by, for example, a tilt angle in the left-right direction from the reference position, where the position where the body frame 12 is not tilted is a reference position (0 °). The map is not particularly limited as long as it shows the relationship between the position of the saddle 30 and the front wheel torque command coefficient. The map is stored in a memory provided in the controller 80, for example.
 本実施の形態では、モーションセンサ116の検出信号に基づいて、サドル30の位置を算出する。算出したサドル30の位置に基づいて、前輪トルク指令係数を算出する。そのため、第1の実施の形態と同様に、車両が旋回しているときのフロントモータ54の駆動力を適切な大きさにして、車両のアンダーステアの特性を調整することができる。 In the present embodiment, the position of the saddle 30 is calculated based on the detection signal of the motion sensor 116. Based on the calculated position of the saddle 30, a front wheel torque command coefficient is calculated. Therefore, as in the first embodiment, the driving force of the front motor 54 when the vehicle is turning can be set to an appropriate magnitude, and the understeer characteristic of the vehicle can be adjusted.
 [第6の実施の形態]
 続いて、本発明の第6の実施の形態について説明する。本実施の形態では、図4のフローチャートに示すステップS12及びステップS13が、第1の実施の形態と異なる。
[Sixth Embodiment]
Subsequently, a sixth embodiment of the present invention will be described. In the present embodiment, step S12 and step S13 shown in the flowchart of FIG. 4 are different from those in the first embodiment.
 図18を参照して、本実施の形態でのステップS12について説明する。本実施の形態では、第1の実施の形態(図5に示すフローチャート)におけるステップS22の後に、ステップS23が追加されている。ステップ23では、車両の速度を示す車速信号を読み込む。その方法は、第2の実施の形態で説明した方法と同じである。そのため、詳細な説明は省略する。 Referring to FIG. 18, step S12 in the present embodiment will be described. In the present embodiment, step S23 is added after step S22 in the first embodiment (the flowchart shown in FIG. 5). In step 23, a vehicle speed signal indicating the speed of the vehicle is read. The method is the same as the method described in the second embodiment. Therefore, detailed description is omitted.
 本実施の形態のステップS13では、第1の実施の形態(図6に示すフローチャート)と比べて、ステップ31が異なる。具体的には、以下のとおりである。 In step S13 of the present embodiment, step 31 is different from that of the first embodiment (the flowchart shown in FIG. 6). Specifically, it is as follows.
 前輪トルク指令値演算ユニット82は、図6に示すステップ31において、所定のマップと、読み込んだサドル30の位置信号と、読み込んだ車速信号とに基づいて、前輪トルク指令係数を算出する。このときのマップとしては、例えば、図12又は図13に示すマップにおいて、横軸をハンドル56の操作角度からサドル30の位置に変更したマップ等を採用することができる。サドル30の位置は、例えば、車体フレーム12が傾いていない位置を基準位置(0°)として、当該基準位置からの左右方向への傾き角度で表される。マップは、位置信号が示すサドル30の位置と、車速信号が示す車速と、前輪トルク指令係数との関係を示すものであれば、特に限定されない。マップは、例えば、コントローラ80内に設けられたメモリに格納されている。 The front wheel torque command value calculation unit 82 calculates a front wheel torque command coefficient in step 31 shown in FIG. 6 based on a predetermined map, the read position signal of the saddle 30 and the read vehicle speed signal. As the map at this time, for example, a map in which the horizontal axis is changed from the operation angle of the handle 56 to the position of the saddle 30 in the map shown in FIG. The position of the saddle 30 is represented by, for example, a tilt angle in the left-right direction from the reference position, where the position where the body frame 12 is not tilted is a reference position (0 °). The map is not particularly limited as long as it shows the relationship between the position of the saddle 30 indicated by the position signal, the vehicle speed indicated by the vehicle speed signal, and the front wheel torque command coefficient. The map is stored in a memory provided in the controller 80, for example.
 本実施の形態では、車速も参照しつつ、前輪トルク指令係数が算出される。そのため、車両の旋回時におけるフロントモータ54の駆動力をより適切な駆動力に変更することができる。 In the present embodiment, the front wheel torque command coefficient is calculated with reference to the vehicle speed. Therefore, the driving force of the front motor 54 when the vehicle is turning can be changed to a more appropriate driving force.
 [第7の実施の形態]
 続いて、図19を参照しながら、本発明の第7の実施の形態について説明する。図19は、車両のアンダーステアの特性を調整する制御が行われている状態で、トラクションコントロールを行うときのコントローラ80の具体的な動作例を説明するためのフローチャートである。
[Seventh Embodiment]
Subsequently, a seventh embodiment of the present invention will be described with reference to FIG. FIG. 19 is a flowchart for explaining a specific operation example of the controller 80 when performing traction control in a state where control for adjusting the understeer characteristic of the vehicle is performed.
 コントローラ80は、ステップS41において、車両のアンダーステアの特性を調整する制御が行われているかを判断する。具体的には、フロントモータ54の駆動力が、乗員によるアクセルグリップ58の操作量又はペダル踏力の大きさに応じたフロントモータ54の駆動力よりも小さくなっているかを判断する。 In step S41, the controller 80 determines whether control for adjusting the understeer characteristic of the vehicle is performed. Specifically, it is determined whether the driving force of the front motor 54 is smaller than the driving force of the front motor 54 according to the amount of operation of the accelerator grip 58 by the occupant or the magnitude of the pedal effort.
 車両のアンダーステアの特性を調整する制御が行われていない場合(ステップS41:NO)、コントローラ80は、処理を終了する。一方、車両のアンダーステアの特性を調整する制御が行われている場合(ステップS41:YES)、コントローラ80は、ステップS42において、前輪14又は後輪16がスリップしているかを判断する。前輪14又は後輪16のスリップは、例えば、以下のようにして判断される。 If the control for adjusting the understeer characteristic of the vehicle is not performed (step S41: NO), the controller 80 ends the process. On the other hand, when control for adjusting the understeer characteristic of the vehicle is performed (step S41: YES), the controller 80 determines whether the front wheel 14 or the rear wheel 16 is slipping in step S42. The slip of the front wheel 14 or the rear wheel 16 is determined as follows, for example.
 前輪回転速度演算ユニット92は、フロントモータ54の回転速度を読み込む。前輪回転速度演算ユニット92は、読み込んだフロントモータ54の回転速度に基づいて、前輪14の回転速度を算出する。スリップ検出ユニット90は、前輪回転速度演算ユニット92が算出した前輪14の回転速度を読み込む。 The front wheel rotation speed calculation unit 92 reads the rotation speed of the front motor 54. The front wheel rotation speed calculation unit 92 calculates the rotation speed of the front wheel 14 based on the read rotation speed of the front motor 54. The slip detection unit 90 reads the rotation speed of the front wheel 14 calculated by the front wheel rotation speed calculation unit 92.
 後輪回転速度演算ユニット94は、リアモータ36の回転速度を読み込む。後輪回転速度演算ユニット94は、読み込んだリアモータ36の回転速度に基づいて、後輪16の回転速度を算出する。スリップ検出ユニット90は、後輪回転速度演算ユニット94が算出した後輪16の回転速度を読み込む。 The rear wheel rotational speed calculation unit 94 reads the rotational speed of the rear motor 36. The rear wheel rotation speed calculation unit 94 calculates the rotation speed of the rear wheel 16 based on the read rotation speed of the rear motor 36. The slip detection unit 90 reads the rotation speed of the rear wheel 16 calculated by the rear wheel rotation speed calculation unit 94.
 スリップ検出ユニット90は、読み込んだ前輪14の回転速度及び後輪16の回転速度の差分を算出する。具体的には、前輪14の回転速度から後輪16回転速度を減算する。これによって得られる回転速度差の絶対値が所定の閾値を越えているかを判断する。所定の閾値を超えていない場合(ステップS42:NO)には、スリップ検出ユニット90は、前輪14及び後輪16がスリップしていないと判断し、処理を終了する。 The slip detection unit 90 calculates the difference between the read rotational speed of the front wheel 14 and the rotational speed of the rear wheel 16. Specifically, the rear wheel 16 rotational speed is subtracted from the rotational speed of the front wheel 14. It is determined whether or not the absolute value of the rotational speed difference thus obtained exceeds a predetermined threshold value. If the predetermined threshold is not exceeded (step S42: NO), the slip detection unit 90 determines that the front wheel 14 and the rear wheel 16 are not slipping, and ends the process.
 一方、所定の閾値を越えている場合(ステップS42:YES)には、スリップ検出ユニット90は、ステップS43において、後輪16がスリップしているか否かを判断する。具体的には、ステップS42で算出した差分が負の値であるかを判断する。負の値である場合(ステップS43:YES)、スリップ検出ユニット90は、後輪16がスリップしていると判断する。 On the other hand, when the predetermined threshold value is exceeded (step S42: YES), the slip detection unit 90 determines whether or not the rear wheel 16 is slipping in step S43. Specifically, it is determined whether the difference calculated in step S42 is a negative value. When it is a negative value (step S43: YES), the slip detection unit 90 determines that the rear wheel 16 is slipping.
 後輪16がスリップしている場合(ステップS43:YES)、コントローラ80は、ステップS44において、トルク指令値を算出する。具体的には、以下のとおりである。 When the rear wheel 16 is slipping (step S43: YES), the controller 80 calculates a torque command value in step S44. Specifically, it is as follows.
 前輪トルク指令値演算ユニット82は、前輪トルク指令値として、現在の前輪トルク指令値を継続して出力する態様を採用する。後輪トルク指令値演算ユニット84は、後輪トルク指令値として、現在のトルク指令値を間欠的に出力する態様を採用する。現在のトルク指令値を間欠的に出力する態様では、例えば、現在のトルク指令値と、駆動力を発生させないトルク指令値(大きさがゼロのトルク指令値)とを交互に出力する。これにより、所定の期間おける後輪トルク指令値の平均値は、現在の後輪トルク指令値よりも小さくなる。 The front wheel torque command value calculation unit 82 employs a mode in which the current front wheel torque command value is continuously output as the front wheel torque command value. The rear wheel torque command value calculation unit 84 employs a mode in which the current torque command value is intermittently output as the rear wheel torque command value. In an aspect in which the current torque command value is intermittently output, for example, the current torque command value and a torque command value that does not generate a driving force (a torque command value having a magnitude of zero) are output alternately. Thereby, the average value of the rear wheel torque command value in the predetermined period becomes smaller than the current rear wheel torque command value.
 続いて、コントローラ80は、ステップS45において、トルク指令値を出力する。具体的には、フロントモータ駆動ユニット86は、前輪トルク指令値演算ユニット82が決定した前輪トルク指令値に基づいて、フロントモータ54を駆動する。リアモータ駆動ユニット88は、後輪トルク指令値演算ユニット84が決定した後輪トルク指令値に基づいて、リアモータ36を駆動する。 Subsequently, the controller 80 outputs a torque command value in step S45. Specifically, the front motor drive unit 86 drives the front motor 54 based on the front wheel torque command value determined by the front wheel torque command value calculation unit 82. The rear motor drive unit 88 drives the rear motor 36 based on the rear wheel torque command value determined by the rear wheel torque command value calculation unit 84.
 その後、コントローラ80は、制御を終了する。 Thereafter, the controller 80 ends the control.
 前輪14がスリップしている場合(ステップS43:NO)、コントローラ80は、ステップS45において、トルク指令値を算出する。具体的には、以下のとおりである。 When the front wheel 14 is slipping (step S43: NO), the controller 80 calculates a torque command value in step S45. Specifically, it is as follows.
 前輪トルク指令値演算ユニット82は、前輪トルク指令値として、現在の前輪トルク指令値を間欠的に出力する態様を採用する。現在のトルク指令値を間欠的に出力する態様では、例えば、現在のトルク指令値と、駆動力を発生させないトルク指令値(大きさがゼロのトルク指令値)とを交互に出力する。これにより、所定の期間における前輪トルク指令値の平均値は、現在の前輪トルク指令値よりも小さくなる。 The front wheel torque command value calculation unit 82 adopts a mode in which the current front wheel torque command value is intermittently output as the front wheel torque command value. In an aspect in which the current torque command value is intermittently output, for example, the current torque command value and a torque command value that does not generate a driving force (a torque command value having a magnitude of zero) are output alternately. Thereby, the average value of the front wheel torque command value in a predetermined period becomes smaller than the current front wheel torque command value.
 後輪トルク指令値演算ユニット84は、後輪トルク指令値として、現在のトルク指令値よりも大きなトルク指令値を出力する態様を採用する。後輪トルク指令値の増加量は、例えば、前輪トルク指令値の減少量と同じである。 The rear wheel torque command value calculation unit 84 employs a mode of outputting a torque command value larger than the current torque command value as the rear wheel torque command value. For example, the increase amount of the rear wheel torque command value is the same as the decrease amount of the front wheel torque command value.
 その後、コントローラ80は、ステップS45以降の処理を実行する。 Thereafter, the controller 80 executes the processing after step S45.
 本実施の形態では、後輪16がスリップしても、フロントモータ54の駆動力を増加させないので、アンダーステアの特性を調整している状態を継続することができる。 In the present embodiment, even if the rear wheel 16 slips, the driving force of the front motor 54 is not increased, so that the state of adjusting the understeer characteristic can be continued.
 [第7の実施の形態の応用例]
 第7の実施の形態では、後輪16がスリップしたときに、前輪トルク指令値として、現在の前輪トルク指令値を継続して出力する態様が採用されていたが、例えば、アンダーステアが発生すると想定されるフロントモータ54の駆動力に対応する前輪トルク指令値よりも小さくするのであれば、現在の前輪トルク指令値よりも大きいトルク指令値を出力するようにしてもよい。
[Application Example of Seventh Embodiment]
In the seventh embodiment, when the rear wheel 16 slips, a mode in which the current front wheel torque command value is continuously output as the front wheel torque command value is employed. However, for example, it is assumed that understeer occurs. As long as the front wheel torque command value corresponding to the driving force of the front motor 54 is made smaller, a torque command value larger than the current front wheel torque command value may be output.
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 As mentioned above, although embodiment of this invention was described, embodiment mentioned above is only the illustration for implementing this invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.
 例えば、上記実施の形態では、リーン車両として、二輪車を例に説明したが、リーン車両は、二輪車に限定されない。リーン車両は、1つの前輪と、2つの後輪とを備えるものであってもよいし、2つの前輪と、1つの後輪とを備えるものであってもよいし、2つの前輪と、2つの後輪とを備えるものであってもよい。つまり、リーン車両において、前輪及び後輪の数は、それぞれ、1つに限定されない。 For example, in the above embodiment, a two-wheeled vehicle has been described as an example of a lean vehicle, but the lean vehicle is not limited to a two-wheeled vehicle. The lean vehicle may include one front wheel and two rear wheels, or may include two front wheels and one rear wheel. One rear wheel may be provided. That is, in the lean vehicle, the number of front wheels and rear wheels is not limited to one each.
 例えば、上記実施の形態では、アクセルグリップ58の操作量又はペダル踏力の大きさに応じて、フロントモータ54及びリアモータ36の駆動力を制御していたが、アクセルグリップ58の操作量及びペダル踏力の大きさに応じて、フロントモータ54及びリアモータ36の駆動力を制御してもよい。 For example, in the above embodiment, the driving force of the front motor 54 and the rear motor 36 is controlled according to the amount of operation of the accelerator grip 58 or the magnitude of the pedal depression force. Depending on the size, the driving force of the front motor 54 and the rear motor 36 may be controlled.
 例えば、上記実施の形態において、アクセルグリップ58及びアクセルセンサ74はなくてもよい。 For example, in the above embodiment, the accelerator grip 58 and the accelerator sensor 74 may not be provided.
 例えば、上記実施の形態において、電動二輪車10は、人力駆動系60を備えていなくてもよい。 For example, in the above-described embodiment, the electric motorcycle 10 may not include the human power drive system 60.
 例えば、上記実施の形態において、第2スイッチ104及び切替スイッチ96はなくてもよい。 For example, in the above embodiment, the second switch 104 and the changeover switch 96 may not be provided.
 例えば、上記実施の形態において、第1スイッチ102及び制御スイッチ98はなくてもよい。 For example, in the above embodiment, the first switch 102 and the control switch 98 may not be provided.
 例えば、上記実施の形態では、ハンドル角度センサ108はアナログ的な出力をしていたが、デジタル的な出力をしてもよい。 For example, in the above embodiment, the handle angle sensor 108 outputs an analog signal, but may output a digital signal.

Claims (10)

  1.  左に旋回するときには車体が左に傾斜し、右に旋回するときには前記車体が右に傾斜するリーン車両であって、
     前記車体に支持される前輪と、
     前記前輪に伝達される駆動力を発生するフロントモータと、
     前記車体に支持される後輪と、
     前記後輪に伝達される駆動力を発生するリアモータと、
     乗員によって操作される操作子と、
     前記操作子の操作状態に応じて、前記フロントモータ及び前記リアモータの駆動力を制御する制御装置とを備え、
     前記制御装置は、
     前記車体が直立状態で前記リーン車両が前進している状態から前記車体が傾斜している状態で前記リーン車両が旋回している状態に変化し、且つ、前記操作子の操作状態が変化していないときに、
     前記後輪には、前記前進している状態及び前記旋回している状態の各々において、前記リアモータから駆動力が伝達され、
     前記前輪には、前記前進している状態よりも小さな駆動力が前記旋回している状態で前記フロントモータから伝達されるように、
     前記フロントモータ及び前記リアモータの駆動力を制御する、リーン車両。
    A lean vehicle in which the vehicle body leans to the left when turning left and the vehicle body leans to the right when turning right;
    A front wheel supported by the vehicle body;
    A front motor for generating a driving force transmitted to the front wheels;
    A rear wheel supported by the vehicle body;
    A rear motor that generates a driving force transmitted to the rear wheel;
    An operator operated by a passenger,
    A control device for controlling the driving force of the front motor and the rear motor according to the operation state of the operation element;
    The control device includes:
    The lean vehicle changes from a state in which the vehicle body is upright and the lean vehicle is moving forward to a state in which the vehicle body is tilted and the lean vehicle is turning, and the operation state of the operator is changing. When not
    A driving force is transmitted to the rear wheel from the rear motor in each of the forward state and the turning state.
    To the front wheel, a driving force smaller than the forward moving state is transmitted from the front motor in the turning state,
    A lean vehicle that controls driving forces of the front motor and the rear motor.
  2.  請求項1に記載のリーン車両であって、さらに、
     前記操作子の操作状態を示す操作情報を前記制御装置に出力する操作情報出力部を備え、
     前記制御装置は、前記操作情報に基づいて、前記フロントモータ及び前記リアモータの駆動力を制御する、リーン車両。
    The lean vehicle according to claim 1, further comprising:
    An operation information output unit that outputs operation information indicating an operation state of the operation element to the control device;
    The control device is a lean vehicle that controls driving forces of the front motor and the rear motor based on the operation information.
  3.  請求項1又は2に記載のリーン車両であって、さらに、
     前記リーン車両の旋回に関する状態を検出し、前記リーン車両の旋回に関する状態を示す状態情報を前記制御装置に出力する状態検出部を備え、
     前記制御装置は、前記状態情報に基づいて、前記旋回している状態であるか否かを判断する、リーン車両。
    The lean vehicle according to claim 1, further comprising:
    A state detection unit that detects a state related to turning of the lean vehicle and outputs state information indicating a state related to turning of the lean vehicle to the control device;
    The control device determines whether the vehicle is turning based on the state information.
  4.  請求項3に記載のリーン車両であって、
     前記状態情報は、
     車両の姿勢を示す姿勢情報を含む、リーン車両。
    The lean vehicle according to claim 3,
    The state information is
    A lean vehicle including attitude information indicating the attitude of the vehicle.
  5.  請求項4に記載のリーン車両であって、さらに、
     車両の進行方向を変更するハンドルを備え、
     前記姿勢情報は、前記ハンドルの操作角度を示す角度情報を含む、リーン車両。
    The lean vehicle according to claim 4, further comprising:
    With a handle to change the direction of travel of the vehicle,
    The lean information includes the angle information indicating the operation angle of the steering wheel.
  6.  請求項4又は5に記載のリーン車両であって、さらに、
     前記姿勢情報は、前記車体の傾きを示す傾き情報を含む、リーン車両。
    The lean vehicle according to claim 4 or 5, further comprising:
    The lean information includes the lean information indicating the lean of the vehicle body.
  7.  請求項3~6の何れか1項に記載のリーン車両であって、
     前記状態情報は、さらに、
     車両が旋回しているときの速度を示す車速情報を含む、リーン車両。
    A lean vehicle according to any one of claims 3 to 6,
    The state information further includes:
    A lean vehicle that includes vehicle speed information indicating the speed at which the vehicle is turning.
  8.  請求項1~7の何れか1項に記載のリーン車両であって、
     前記制御装置は、
     車両が旋回を開始したときの前記フロントモータの駆動力が所定の大きさ以上である場合に、
     前記前進している状態よりも小さな駆動力が前記旋回している状態で前記フロントモータから前記前輪に伝達されるように、前記フロントモータの駆動力を制御する、リーン車両。
    A lean vehicle according to any one of claims 1 to 7,
    The control device includes:
    When the driving force of the front motor when the vehicle starts turning is not less than a predetermined magnitude,
    A lean vehicle that controls the driving force of the front motor so that a driving force smaller than the forward moving state is transmitted from the front motor to the front wheels in the turning state.
  9.  請求項1~8の何れか1項に記載のリーン車両であって、
     前記制御装置は、
     前記前進している状態よりも小さな駆動力が前記旋回している状態で前記フロントモータから前記前輪に伝達されているときに、
     前記操作子の操作状態に応じた駆動力よりも大きな駆動力で、前記リアモータを駆動する、リーン車両。
    A lean vehicle according to any one of claims 1 to 8,
    The control device includes:
    When a driving force smaller than the forward moving state is transmitted from the front motor to the front wheels in the turning state,
    A lean vehicle that drives the rear motor with a driving force larger than a driving force corresponding to an operation state of the operation element.
  10.  請求項1~9の何れか1項に記載のリーン車両であって、
     前記制御装置は、
     前記前進している状態よりも小さな駆動力が前記旋回している状態で前記フロントモータから前記前輪に伝達されているときに前記後輪がスリップすると、前記リアモータの駆動力を前記後輪がスリップしたときの駆動力よりも減少させる、リーン車両。
    A lean vehicle according to any one of claims 1 to 9,
    The control device includes:
    If the rear wheel slips when a driving force smaller than the forward moving state is transmitted from the front motor to the front wheel in the turning state, the rear wheel slips the driving force of the rear motor. Lean vehicle that reduces the driving force when
PCT/JP2016/083064 2015-11-09 2016-11-08 Leanable vehicle WO2017082239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015219188 2015-11-09
JP2015-219188 2015-11-09

Publications (1)

Publication Number Publication Date
WO2017082239A1 true WO2017082239A1 (en) 2017-05-18

Family

ID=58695309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083064 WO2017082239A1 (en) 2015-11-09 2016-11-08 Leanable vehicle

Country Status (1)

Country Link
WO (1) WO2017082239A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079749A (en) * 2007-09-27 2009-04-16 Honda Motor Co Ltd Saddle-riding type vehicle clutch control system
JP2012066668A (en) * 2010-09-22 2012-04-05 Gs Yuasa Corp Two-wheel electric vehicle with auxiliary wheel
WO2012067234A1 (en) * 2010-11-19 2012-05-24 ヤマハ発動機株式会社 Automatic two-wheeled vehicle and control device therefor
JP2013220762A (en) * 2012-04-17 2013-10-28 Electrike Japan Co Ltd Three-wheeled motorcycle
JP2015098226A (en) * 2013-11-18 2015-05-28 ヤマハ発動機株式会社 Vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079749A (en) * 2007-09-27 2009-04-16 Honda Motor Co Ltd Saddle-riding type vehicle clutch control system
JP2012066668A (en) * 2010-09-22 2012-04-05 Gs Yuasa Corp Two-wheel electric vehicle with auxiliary wheel
WO2012067234A1 (en) * 2010-11-19 2012-05-24 ヤマハ発動機株式会社 Automatic two-wheeled vehicle and control device therefor
JP2013220762A (en) * 2012-04-17 2013-10-28 Electrike Japan Co Ltd Three-wheeled motorcycle
JP2015098226A (en) * 2013-11-18 2015-05-28 ヤマハ発動機株式会社 Vehicle

Similar Documents

Publication Publication Date Title
CN107298151B (en) Bicycle control device
JP6817113B2 (en) Bicycle controller and bicycle drive including this controller
US9376164B2 (en) Electrically assisted vehicle
JP5276735B1 (en) Bicycle control device
TWI537177B (en) Vehicle
WO2018123161A1 (en) Electric assistance system and electrically assisted vehicle
JP2017013624A (en) Bicycle control system
JP7131940B2 (en) Manpowered vehicle controller
TWI601660B (en) Bicycle control device
CN110857134B (en) Speed change control system of manpower-driven vehicle
TW201924965A (en) vehicle
JP2019182176A (en) Control device for man-power driven vehicle
JP2019081512A (en) Control device for man power drive vehicle
JP2020040479A (en) Control device for human-powered vehicle
JP2004243920A (en) Auxiliary power control device for motor-assisted vehicle
JP4725431B2 (en) Driving force estimation device for electric vehicle, automobile and driving force estimation method for electric vehicle
JP7277120B2 (en) Control device for man-powered vehicles
WO2017082239A1 (en) Leanable vehicle
JP2010013027A (en) Vehicle with assist force
WO2017082240A1 (en) Two-wheeled vehicle
JP3734713B2 (en) Bicycle with electric motor and control method thereof
JP6748211B2 (en) vehicle
JP2021187303A (en) Control device and transmission system
JP2022117218A (en) Electric assisted bicycle and motor control device
WO2019102997A1 (en) Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP