JP2004243920A - Auxiliary power control device for motor-assisted vehicle - Google Patents

Auxiliary power control device for motor-assisted vehicle Download PDF

Info

Publication number
JP2004243920A
JP2004243920A JP2003036552A JP2003036552A JP2004243920A JP 2004243920 A JP2004243920 A JP 2004243920A JP 2003036552 A JP2003036552 A JP 2003036552A JP 2003036552 A JP2003036552 A JP 2003036552A JP 2004243920 A JP2004243920 A JP 2004243920A
Authority
JP
Japan
Prior art keywords
force
auxiliary
speed
vehicle speed
auxiliary power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003036552A
Other languages
Japanese (ja)
Other versions
JP4229718B2 (en
Inventor
Shoichiro Miyata
彰一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2003036552A priority Critical patent/JP4229718B2/en
Publication of JP2004243920A publication Critical patent/JP2004243920A/en
Application granted granted Critical
Publication of JP4229718B2 publication Critical patent/JP4229718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an auxiliary power control device for a motor-assisted vehicle capable of obtaining sufficient auxiliary power regardless of gear shifting stages, when a human-powered drive system is provided with a transmission mechanism. <P>SOLUTION: The auxiliary power control device for the motor-assisted vehicle 1 comprises the human-powered drive system 13 supplying treading power added on a pedal 15b to drive wheels 12 through a specified transmission ratio, and an auxiliary power drive system 14 supplying auxiliary power from an electric motor corresponding to the treading power to the drive wheels 12. An auxiliary power correcting means 26 for correcting the auxiliary power corresponding to the treading power on the basis of a transmission ratio at the present time is provided, and the corrected auxiliary power is supplied from the motor to the drive wheels 12. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、人力駆動系と補助力駆動系とを備えた電動補助車両に関し、詳細には人力駆動系が変速機構を備えている場合の踏力に対する補助率の設定方法の改善に関する。
【0002】
【従来の技術】
従来から、運転者がペダルに加えた踏力を駆動輪に供給する人力駆動系と、上記踏力に応じた補助力を電動モータに発生させ、該補助力を駆動輪に供給する補助力駆動系とを備えた電動補助車両が実用化されている。そしてこの種の電動補助車両において、上記人力駆動系の途中に変速機構を設けたものがある(例えば特許文献1参照)。
【0003】
【特許文献1】
特開2000−105155号公報
【0004】
【発明が解決すようとする課題】
ところが上記従来の変速機構付きの電動補助車両では、特に低速段での走行時に、補助力あるいは補助率が不足していると運転者が感じる場合がある。これは以下の理由によるものと考えられる。
【0005】
この種の電動補助車両では、車速が規定値(例えば15Km/h)以下の範囲では、運転者がペダルを漕ぐことによる踏力(より正確には、人による動力=踏力(トルク)×回転速度)に対して補助率1.0の補助力(より正確には、モータ補助動力=モータトルク×回転速度)を電動モータから供給するのが一般的である。
【0006】
しかしながら、上記従来の変速機構付き電動補助車両では、何れの変速段であっても、単純にその時のペダル踏力(トルク)に一定の補助率を乗じた補助力を電動モータから出力するように構成されている。
【0007】
一方、変速機構付き車両の場合、同じ走行抵抗であれば必要なペダル踏力(トルク)は低速段ほど小さくなる。従って低速段ではペダル踏力が小さくなるに従って補助力も小さくなり、結局必要なモータ補助力が得られない。換言すれば、変速機構付き電動補助車両では、例えば高速段において補助率を1.0に設定した場合、低速段では補助率が1.0より小さくなってしまう。
【0008】
本発明は、上記従来の問題点に鑑みてなされたものであり、人力駆動系が変速機構を備えている場合に、変速段の如何に関わらず十分な補助力が得られる電動補助車両の補助力制御装置を提供することを課題としている。
【0009】
【課題を解決するための手段】
請求項1の発明は、ペダルに加えられた踏力を所定の変速比を介して駆動輪に供給する人力駆動系と、上記踏力に応じた電動モータからの補助力を駆動輪に供給する補助力駆動系とを備えた電動補助車両の補助力制御装置において、上記踏力に応じた補助力を現時点での変速比に基づいて補正する補助力補正手段を備え、該補正された補助力を上記モータから駆動輪に供給するようにしたことを特徴としている。
【0010】
請求項2の発明は、請求項1において、上記補助力駆動系は、上記踏力に応じた大きさの補助電流を上記電動モータに供給することにより上記踏力に応じた大きさの補助力を発生するように構成されており、上記補助力補正手段は、補助力系車速Vpに対する人力系車速Vmの車速比ε(=Vm/Vp)が大きいほど上記補助電流を上記踏力に応じた補助電流より大きくなるように補正することを特徴としている。
【0011】
請求項3の発明は、請求項1又は2において、上記人力系車速は、ペダル軸の回転速度により、又はペダル踏力の周期により求められ、上記補助力系車速は、モータ軸の回転速度により、又は上記電動モータへの印加電流,電圧により求められることを特徴としている。
【0012】
ここで人力系車速をペダル軸の回転速度から求める場合、及び補助力系車速をモータ軸の回転速度から求める場合には、ペダル軸,モータ軸に回転速度を求める回転センサを装着することとなる。一方、人力系車速をペダル踏力の周期により求める場合及び補助力系車速をモータ印加電圧,電流により求める場合には車速検出センサ自体は不要になる。
【0013】
請求項4の発明は、請求項1において、上記補助力補正手段は、現時点の変速段を直接検出し、該変速段に応じた変速比でもって補助力を補正することを特徴としている。
【0014】
【発明の作用効果】
請求項1の発明によれば、踏力に応じた補助力を現時点での変速比に基づいて補正した補正補助力を駆動輪に供給するようにしたので、例えば変速機構が低速段である場合には高速段である場合よりも補助率を大きくすることにより、実際の踏力(トルク)に応じた補助力よりも大きな補正補助力(トルク)とすることができ、変速段の如何によって補助力あるいは補助率が不足していると感じるといった問題を回避できる。
【0015】
より詳細に述べれば以下の通りである。変速機構付き電動補助車両の場合、同じ走行速度,走行抵抗であれば、低速段ほど必要な踏力は小さくなるが回転速度が速くなるので、踏力により人が出す動力(踏力(トルク)×回転速度)は高速段の場合と等しい。従来車両では、この小さくなっている踏力に応じた補助力をそのまま出力するようにしたので、補助力が不足していると運転者は感じたのである。一方、本発明では、変速比を考慮することにより上記高い回転速度に対応するように補助力を補正したので、上記補助力の不足を回避できる。
【0016】
請求項2の発明によれば、補助力系車速Vpに対する人力系車速Vmの車速比ε(=Vm/Vp)が大きいほど電動モータに供給する補助電流を上記踏力に応じた補助電流より大きくなるように補正するようにしたので、踏力に応じた補助力を低速段の場合ほど大きい値に補正することとなり、特に低速段で補助力が不足するといった問題を回避できる。
【0017】
また人力駆動系から求めた人力系車速と上記補助力駆動系から求めた補助力系車速との車速比、即ち現時点での変速比を求めるようにしたので、現時点での変速段を直接検出するセンサを設ける必要がなく、低コストで補助力不足の問題を回避できる。なお、この種の電動補助車両は補助力制御の必要上従来から人力系車速及び補助力系車速を検出するようにしているので、この検出データを利用することができ、車速検出センサを新たに追加する必要はない。
【0018】
請求項3の発明によれば、人力供給系車速を、ペダル軸の回転速度により、又はペダル踏力の周期により求め、また補助力系車速を、モータ軸の回転速度により、又は電動モータへの印加電圧,電流により求めるようにしたので、人力系車速,補助力系車速を簡単な構造により容易に求めることができる。
【0019】
請求項4の発明によれば、現時点の変速段を検出し、該変速段に応じた変速比でもって補助力を補正するようにしたので、例えば低速段である場合には高速段である場合よりも補助率を大きくすることにより踏力(トルク)よりも大きな補助力(トルク)とすることができ、変速段の如何によって補助力が不足するといった問題を回避できる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
図1〜図3は本発明の一実施形態を説明するための図であり、図1は本実施形態による補助力制御装置を搭載した電動補助自転車の側面図、図2は補助力制御装置のブロック図、図3は制御動作を説明するためのフローチャートである。
【0021】
図1において、1は電動補助車両としての電動補助自転車であり、これの車体フレーム2はヘッドパイプ3と、該ヘッドパイプ3から車体後方斜め下方に延びるダウンチューブ4と、該ダウンチューブ4の後端から上方に起立して延びるシートチューブ5と、該シートチューブ5の下端付近から後方に略水平に延びる左,右一対のチェーンステー6と、該両チェーンステー6の後端部と上記シートチューブ5の上部とを結合する左,右一対のシートステー7とを備えている。
【0022】
上記ヘッドパイプ3にはフロントフォーク8が左右に回動可能に軸支されている。このフロントフォーク8の下端には前輪9が軸支されており、上端には操向ハンドル10が固着されている。また上記シートチューブ5の上端にはサドル11が装着されている。さらに上記チェーンステー6の後端には後輪12が軸支されている。
【0023】
本実施形態の電動補助自転車1は、運転者によりペダル15bに加えられた踏力を所定の変速比を介して後輪(駆動輪)12に供給する人力駆動系13と、上記踏力に応じた電動モータ18からの補助力を後輪12に供給する補助力駆動系14とを備えている。
【0024】
上記人力駆動系13は以下の構成となっている。上記車体フレーム2の中央下端部に車幅方向に向けて配置されたペダル軸15の両端にクランクアーム15aが固着され、該クランクアーム15aの先端にペダル15bが軸支されている。
【0025】
また上記ペダル軸15の右側クランクアーム15aの内側に装着された大径の駆動スプロケット15cと後輪12の後輪ハブ16内の入力軸に装着された小径の従動スプロケット16aとはチェーン17で連結されている。これにより、運転者の踏力によるペダル軸15の回転を上記駆動,従動スプロケット15c,16aの歯数比に応じて増速して後輪側に伝達する増速機構19が構成されている。
【0026】
また上記ペダル軸15と駆動スプロケット15cとの間には運転者によりペダル15bに入力された踏力(トルク)を検出するための踏力センサ20が配設されている。詳細には、上記ペダル軸15と駆動スプロケット15cとは所定の角度範囲で相対回転可能にかつ相対回転を0とする方向にばね等で付勢して、つまりペダル踏力が大きくなるほど上記相対回転角度が大きくなるように連結されている。そしてこの相対回転角度の大きさが上記踏力として検出される。
【0027】
具体的には例えばポテンショメータにより上記相対回転角度に比例した電圧が出力される。ここでこの電圧の波形はペダル軸15の1回転毎に1サイクルをなす大略サイン波形であることから、この電圧波形の周期を計測することにより、ペダル軸15の回転速度が得られる。
【0028】
さらにまた上記後輪ハブ16内には3段変速式の変速機構21が内蔵されており、該変速機構は上記後輪ハブ16内の入力軸の回転を第1速〜第3速の何れかの変速比で変速して該後輪ハブ16内の出力軸に伝達する。この出力軸の回転はワンウェイクラッチ22を介して後輪12に伝達される。
【0029】
ここで上記変速機構21の第1速,第2速,第3速の変速比は、上記増速機構19の増速比を含めた場合に、2.0、1.33、1.0に設定されている。なお、ここで変速比2.0とは、ペダル軸2回転につき後輪が1回転するとの意味である。
【0030】
上記補助力駆動系14は、上記シートステー5と後輪12の前縁との間に配設されたバッテリユニット23と、上記後輪ハブ16内に配置された補助力ユニットとを備えている。この補助力ユニットは後輪ハブ16内に配置された電動モータ18の回転を減速機構24によって減速し、ワンウェイクラッチ25を介して後輪12に伝達するように構成されている。
【0031】
また上記バッテリユニット23内には、多数の充電式電池と、上記電動モータ18への印加電圧,印加電流により出力を制御するコントローラ26が内蔵されている。このコントローラ26は上記踏力に応じた補助力を現時点での変速比に基づいて補正する補助力補正手段として機能する。即ち、上記人力駆動系13の踏力センサ20から入力された踏力検出値(電圧波形)から人力系車速Vmを求め、上記補助力駆動系14から入力されたモータ電圧,電流等から補助力系車速Vpを求め、この両車速Vm,Vpの比から現時点での変速比を後述する方法で推定し、該推定した変速比に基づいて上記踏力に応じた補助力を補正する。
【0032】
具体的には、上記踏力に応じた大きさの補助電流Ioに、上記補助力系車速Vpに対する人力系車速Vmの車速比ε(=Vm/Vp)が大きいほど大きい補正係数を乗じて得られた補正補助電流Io′が上記電動モータ18に供給される。
【0033】
本実施形態の補助力制御装置による制御動作を図3のフローチャートに沿ってさらに詳述する。補助力制御フローがスタートすると、補助力系車速Vp及び人力系車速Vmが求められる(ステップS1,S2)。
【0034】
ここで補助力系車速Vpは、上述のように、電動モータへの印加電圧,電流及び予め既知のモータ捲線抵抗等からモータ回転速度を求め、該モータ回転速度に減速機構24の減速比を乗じることにより求められる。
【0035】
また人力系車速Vmとしては、上述のように踏力センサ20からの電圧波形における周期から求められたペダル軸15の回転速度が採用される。なお、この電圧波形の周期から求めたぺダル軸回転速度の精度を高めるために後述する方法が採用されている。
【0036】
そして車速比ε、即ち人力系車速Vm/補助力系車速Vpが求められる(ステップS3)。この場合、車速比εが大きいほど上記変速機構は低速段になっており、小さいほど高速段になっていると判断される。具体的には、上記車速比εが1.0〜1.16の場合には第3速と判断され(ステップS4)、1.16超〜1.56以下の場合には第2速と判断され(ステップS5)、1.56超〜2.3以下の場合には第1速と判断される(ステップS6)。
【0037】
そして第3速,第2速,第1速と判断された場合には、上記ペダル踏力に応じた補助電流Ioがそれそれ1.0倍,1.33倍,1.78倍に補正され(ステップS7,S8,S9)、この補正された補正補助電流Io′が上記電動モータ18に供給される。なお、車速比εが上述の何れの範囲にも入らない場合には、計測ミスと判断され、ステップS7に進んで踏力に対応した補助電流Ioのまま電動モータ18に供給される。
【0038】
以上のように、踏力に応じた補助電流Ioを現時点での車速比ε、即ち変速比に基づいて補正した補正補助電流Io′を電動モータ18に供給するようにしたので、変速機構21が低速段(第1速)である場合には高速段(第2速,第3速)である場合よりも大きな補正補助電流Io′を電動モータ18に供給することとなり、単に踏力(トルク)に応じた補助力よりも大きな補正補助力(トルク)とすることができ、特に低速段において補助力の不足を感じるといった問題を回避できる。
【0039】
また人力駆動系13から求めた人力系車速Vmと補助力駆動系14から求めた補助力系車速Vpとの車速比ε、即ち現時点での変速比を求めるようにしたので、変速機構21の現時点での変速段を直接検出するセンサを設ける必要がなく、低コストで補助力不足の問題を回避できる。
【0040】
また人力供給系車速Vmを、ペダル踏力を表す踏力センサ20からの電圧波形の周期により求め、補助力系車速Vpを、電動モータ18への印加電圧,電流等により求めるようにしたので、人力系車速Vm,補助力系車速Vpを簡単な構造により容易に求めることができる。なお、この種の電動補助車両は補助力制御の必要上従来から上記踏力センサ20を備えており、またモータ印加電圧,電流を計測するようにしている。従って上記各車速を求めるに当たっては、既存部品からの検出データを利用することができ、新たなセンサを追加する必要はない。
【0041】
ここで踏力センサ20の出力電圧波形の周期からペダル軸15の回転速度を求める方法の場合、運転者によるペダル漕ぎ動作が必ずしも一定でないことから該回転速度の検出精度が低くなる場合がある。そこで本実施形態では、車速比εがある程度広い範囲(1.0〜1.16、1.16〜1.56、1.56〜2.3)内にある場合に第3速,第2速,第1速とみなすようにしたので、上述の運転者による漕ぎ動作が一定でない場合でも変速比を正確に求めることができ、従って補正補助力を精度よく求めることができる。
【0042】
なお、上記実施形態では人力系車速と補助力系車速との車速比から変速段を推定するようにしたが、現時点の変速段を直接検出し、該変速段に応じて補助電流Ioを補正するようにしても勿論良く、このようにしたのが請求項4の発明である。
【図面の簡単な説明】
【図1】本発明の一実施形態による補助力制御装置を備えた電動補助自転車の側面図である。
【図2】上記補助力制御装置のブロック図である。
【図3】上記制御装置の制御動作を説明するためのフローチャートである。
【符号の説明】
1 電動補助自転車(電動補助車両)
12 後輪(駆動輪)
13 人力駆動系
14 補助力駆動系
15b ペダル
26 コントローラ(補助力補正手段)
Vm 人力系車速
Vp 補助力系車速
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electric assist vehicle provided with a human-powered driving system and an auxiliary-power driving system, and more particularly, to an improvement in a method of setting an auxiliary ratio with respect to a pedaling force when the human-powered driving system includes a transmission mechanism.
[0002]
[Prior art]
Conventionally, a human-powered driving system that supplies a pedaling force applied to a pedal to a driving wheel by a driver, and an auxiliary-powered driving system that generates an auxiliary force corresponding to the pedaling force to an electric motor and supplies the auxiliary force to the driving wheel. An electric assist vehicle equipped with a vehicle has been put to practical use. There is an electric assist vehicle of this type in which a speed change mechanism is provided in the middle of the above-mentioned manual drive system (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-105155 A
[Problems to be solved by the invention]
However, in the above-described conventional electric assist vehicle with a speed change mechanism, the driver may feel that the assisting force or assist ratio is insufficient, especially when traveling at a low speed. This is considered for the following reasons.
[0005]
In this type of electric assist vehicle, when the vehicle speed is equal to or less than a prescribed value (for example, 15 km / h), the pedaling force by the driver pedaling (more precisely, the power by a person = the pedaling force (torque) × rotation speed) In general, an assisting power of 1.0 (more precisely, motor assisting power = motor torque × rotational speed) is supplied from an electric motor.
[0006]
However, the above-described conventional electric assist vehicle with a speed change mechanism is configured such that, regardless of the speed, the electric motor simply outputs an assist force obtained by multiplying the pedal depression force (torque) at that time by a constant assist ratio. Have been.
[0007]
On the other hand, in the case of a vehicle with a speed change mechanism, if the running resistance is the same, the required pedaling force (torque) decreases as the speed decreases. Therefore, at low speeds, as the pedaling force decreases, the assisting force also decreases, and eventually the necessary motor assisting force cannot be obtained. In other words, in the electric assist vehicle with the transmission mechanism, for example, when the assist ratio is set to 1.0 in the high speed stage, the assist ratio becomes smaller than 1.0 in the low speed stage.
[0008]
The present invention has been made in view of the above-mentioned conventional problems, and has been made in consideration of the problem described above. When a human-powered driving system includes a speed change mechanism, an assisting method for an electric assist vehicle that can obtain a sufficient assist force regardless of the gear position. It is an object to provide a force control device.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is a human-powered driving system that supplies a pedaling force applied to a pedal to driving wheels through a predetermined gear ratio, and an auxiliary force that supplies an auxiliary force from an electric motor according to the pedaling force to the driving wheels. An assisting force control device for an electrically assisted vehicle having a driving system, comprising: an assisting force correcting means for correcting an assisting force corresponding to the pedaling force based on a current gear ratio; and transmitting the corrected assisting force to the motor. , And is supplied to the drive wheels.
[0010]
According to a second aspect of the present invention, in the first aspect, the auxiliary force drive system generates an auxiliary force having a magnitude corresponding to the pedaling force by supplying an auxiliary current having a magnitude corresponding to the pedaling force to the electric motor. The auxiliary force correction means is configured to reduce the auxiliary current from the auxiliary current corresponding to the pedaling force as the vehicle speed ratio ε (= Vm / Vp) of the human-powered vehicle speed Vm to the auxiliary power-based vehicle speed Vp increases. It is characterized in that it is corrected so as to increase.
[0011]
According to a third aspect of the present invention, in the first or second aspect, the human-powered vehicle speed is obtained by a rotation speed of a pedal shaft or by a cycle of a pedal depression force, and the auxiliary power system vehicle speed is obtained by a rotation speed of a motor shaft. Alternatively, it is obtained by the current and voltage applied to the electric motor.
[0012]
Here, when the human-powered vehicle speed is obtained from the rotation speed of the pedal shaft, and when the auxiliary power-based vehicle speed is obtained from the rotation speed of the motor shaft, a rotation sensor for obtaining the rotation speed is attached to the pedal shaft and the motor shaft. . On the other hand, when the human-powered vehicle speed is obtained by the cycle of the pedaling force and when the auxiliary power-based vehicle speed is obtained by the motor applied voltage and current, the vehicle speed detection sensor itself becomes unnecessary.
[0013]
A fourth aspect of the present invention is characterized in that, in the first aspect, the auxiliary force correction means directly detects a current gear position and corrects the auxiliary force with a gear ratio according to the gear position.
[0014]
Operation and Effect of the Invention
According to the first aspect of the present invention, the assisting force that is obtained by correcting the assisting force according to the treading force based on the current gear ratio is supplied to the drive wheels. By increasing the assist ratio as compared with the case of the high-speed gear, it is possible to make the correction assist force (torque) larger than the assist force according to the actual pedaling force (torque). It is possible to avoid problems such as feeling that the auxiliary rate is insufficient.
[0015]
More specifically, it is as follows. In the case of an electric assist vehicle with a speed change mechanism, if the traveling speed and traveling resistance are the same, the required pedaling force decreases as the gear speed decreases, but the rotational speed increases. Therefore, the power (pedal force (torque) × rotational speed) generated by a person due to the pedaling force ) Is the same as for the high speed stage. In the conventional vehicle, the assist force according to the reduced pedaling force is output as it is, so the driver feels that the assist force is insufficient. On the other hand, in the present invention, the auxiliary force is corrected so as to correspond to the high rotation speed by considering the gear ratio, so that the shortage of the auxiliary force can be avoided.
[0016]
According to the invention of claim 2, as the vehicle speed ratio ε (= Vm / Vp) of the human-powered vehicle speed Vm to the auxiliary power-based vehicle speed Vp increases, the auxiliary current supplied to the electric motor becomes larger than the auxiliary current corresponding to the pedaling force. As described above, the auxiliary force corresponding to the pedaling force is corrected to a larger value in the lower gear, and the problem of insufficient assist force in the lower gear can be avoided.
[0017]
Further, since the vehicle speed ratio between the human-powered vehicle speed obtained from the human-powered drive system and the auxiliary power-based vehicle speed obtained from the auxiliary power drive system, that is, the current gear ratio, is obtained, the current gear position is directly detected. There is no need to provide a sensor, and the problem of insufficient auxiliary power can be avoided at low cost. In addition, since this type of electric assist vehicle conventionally detects the human-powered vehicle speed and the auxiliary power-based vehicle speed because of the need for the assisting force control, this detection data can be used, and the vehicle speed detecting sensor is newly added. No need to add.
[0018]
According to the third aspect of the present invention, the human power supply system vehicle speed is obtained by the rotation speed of the pedal shaft or by the cycle of the pedal depression force, and the auxiliary power system vehicle speed is applied by the rotation speed of the motor shaft or to the electric motor. Since the voltage and the current are determined, the vehicle speed of the human power system and the vehicle speed of the auxiliary power system can be easily obtained with a simple structure.
[0019]
According to the fourth aspect of the present invention, the present speed stage is detected, and the auxiliary force is corrected with a speed ratio corresponding to the current speed stage. By making the assist ratio larger than the above, it is possible to make the assist force (torque) larger than the pedaling force (torque), and it is possible to avoid the problem that the assist force becomes insufficient depending on the gear position.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
1 to 3 are views for explaining an embodiment of the present invention. FIG. 1 is a side view of an electric assist bicycle equipped with an assist force control device according to the embodiment, and FIG. FIG. 3 is a block diagram and FIG. 3 is a flowchart for explaining the control operation.
[0021]
In FIG. 1, reference numeral 1 denotes an electric assisted bicycle as an electric assisted vehicle, which has a body frame 2, a head pipe 3, a down tube 4 extending obliquely downward from the head pipe 3 to the rear of the vehicle, and a rear tube 4. A seat tube 5 extending upright from an end, a pair of left and right chain stays 6 extending substantially horizontally rearward from near the lower end of the seat tube 5, a rear end portion of both chain stays 6, and the seat tube 5 is provided with a pair of left and right seat stays 7 which are connected to the upper part of the seat stay 5.
[0022]
A front fork 8 is pivotally supported on the head pipe 3 so as to be rotatable left and right. A front wheel 9 is pivotally supported at the lower end of the front fork 8, and a steering handle 10 is fixed to the upper end. A saddle 11 is mounted on the upper end of the seat tube 5. Further, a rear wheel 12 is supported at the rear end of the chain stay 6.
[0023]
The electric assist bicycle 1 of the present embodiment includes a human-powered driving system 13 that supplies a pedaling force applied to the pedal 15b by a driver to a rear wheel (driving wheel) 12 via a predetermined gear ratio, and an electric motor corresponding to the pedaling force. An auxiliary force drive system 14 that supplies the auxiliary force from the motor 18 to the rear wheel 12 is provided.
[0024]
The manual drive system 13 has the following configuration. Crank arms 15a are fixed to both ends of a pedal shaft 15 arranged at the center lower end of the body frame 2 in the vehicle width direction, and a pedal 15b is pivotally supported at the tip of the crank arm 15a.
[0025]
A large diameter drive sprocket 15c mounted inside the right crank arm 15a of the pedal shaft 15 and a small diameter driven sprocket 16a mounted on the input shaft in the rear wheel hub 16 of the rear wheel 12 are connected by a chain 17. Have been. Thus, a speed increasing mechanism 19 is configured to increase the speed of rotation of the pedal shaft 15 due to the pedaling force of the driver in accordance with the tooth ratio of the driving and driven sprockets 15c and 16a and transmit the rotation to the rear wheels.
[0026]
A pedaling force sensor 20 for detecting a pedaling force (torque) input to the pedal 15b by the driver is provided between the pedal shaft 15 and the driving sprocket 15c. Specifically, the pedal shaft 15 and the driving sprocket 15c are relatively rotatable within a predetermined angle range and are urged by a spring or the like in a direction where the relative rotation is set to 0, that is, the relative rotation angle increases as the pedaling force increases. Are connected so as to increase. Then, the magnitude of the relative rotation angle is detected as the pedaling force.
[0027]
Specifically, for example, a voltage proportional to the relative rotation angle is output by a potentiometer. Here, since the waveform of this voltage is a substantially sine waveform that forms one cycle for each rotation of the pedal shaft 15, the rotation speed of the pedal shaft 15 can be obtained by measuring the cycle of this voltage waveform.
[0028]
Further, a three-speed transmission type speed change mechanism 21 is built in the rear wheel hub 16, and the speed change mechanism rotates the input shaft in the rear wheel hub 16 in any one of first to third speeds. And the power is transmitted to the output shaft in the rear wheel hub 16. The rotation of the output shaft is transmitted to the rear wheel 12 via the one-way clutch 22.
[0029]
Here, the speed ratios of the first speed, the second speed, and the third speed of the speed change mechanism 21 are 2.0, 1.33, and 1.0 when the speed increase ratio of the speed increase mechanism 19 is included. Is set. Here, the gear ratio of 2.0 means that the rear wheel makes one revolution for every two revolutions of the pedal shaft.
[0030]
The auxiliary power drive system 14 includes a battery unit 23 disposed between the seat stay 5 and the front edge of the rear wheel 12 and an auxiliary power unit disposed in the rear wheel hub 16. . The auxiliary force unit is configured to reduce the rotation of the electric motor 18 disposed in the rear wheel hub 16 by the reduction mechanism 24 and transmit the rotation to the rear wheel 12 via the one-way clutch 25.
[0031]
In the battery unit 23, a number of rechargeable batteries and a controller 26 for controlling the output by applying voltage and current to the electric motor 18 are incorporated. The controller 26 functions as an auxiliary force correction unit that corrects the auxiliary force corresponding to the pedaling force based on the current gear ratio. That is, the human-powered vehicle speed Vm is determined from the treading force detection value (voltage waveform) input from the treading force sensor 20 of the human-powered driving system 13, and the auxiliary power-system vehicle speed is determined from the motor voltage, current, etc. input from the auxiliary power driving system 14. Vp is obtained, the current gear ratio is estimated from the ratio between the two vehicle speeds Vm and Vp by a method described later, and the assisting force corresponding to the pedaling force is corrected based on the estimated gear ratio.
[0032]
Specifically, it is obtained by multiplying the auxiliary current Io having a magnitude corresponding to the pedaling force by a larger correction coefficient as the vehicle speed ratio ε (= Vm / Vp) of the human-powered vehicle speed Vm to the auxiliary-powered vehicle speed Vp increases. The corrected auxiliary current Io ′ is supplied to the electric motor 18.
[0033]
The control operation of the auxiliary force control device according to the present embodiment will be described in more detail with reference to the flowchart of FIG. When the assist force control flow starts, an assist force vehicle speed Vp and a human power vehicle speed Vm are obtained (steps S1 and S2).
[0034]
As described above, the auxiliary power system vehicle speed Vp determines the motor rotation speed from the voltage and current applied to the electric motor and the known motor winding resistance and the like, and multiplies the motor rotation speed by the reduction ratio of the reduction mechanism 24. It is required by
[0035]
As the human-powered vehicle speed Vm, the rotation speed of the pedal shaft 15 obtained from the cycle in the voltage waveform from the pedaling force sensor 20 as described above is employed. Note that a method described later is employed to increase the accuracy of the pedal shaft rotation speed obtained from the cycle of the voltage waveform.
[0036]
Then, the vehicle speed ratio ε, that is, the human-powered vehicle speed Vm / the auxiliary power-based vehicle speed Vp is obtained (step S3). In this case, it is determined that the higher the vehicle speed ratio ε, the lower the speed of the transmission mechanism is, and the lower the speed ratio, the higher the speed. Specifically, when the vehicle speed ratio ε is 1.0 to 1.16, it is determined to be the third speed (step S4), and when it is more than 1.16 to 1.56 or less, it is determined to be the second speed. The speed is determined to be the first speed (step S5) when the value exceeds 1.56 and is equal to or less than 2.3 (step S6).
[0037]
If the third speed, the second speed, and the first speed are determined, the auxiliary current Io corresponding to the pedal depression force is corrected to 1.0, 1.33, and 1.78 times, respectively ( Steps S7, S8, S9), the corrected auxiliary current Io 'is supplied to the electric motor 18. If the vehicle speed ratio ε does not fall in any of the above ranges, it is determined that a measurement error has occurred, and the process proceeds to step S7 where the auxiliary current Io corresponding to the pedaling force is supplied to the electric motor 18.
[0038]
As described above, the auxiliary current Io corresponding to the pedaling force is supplied to the electric motor 18 by correcting the auxiliary current Io 'based on the current vehicle speed ratio ε, that is, the gear ratio. In the case of the first gear (first speed), a larger correction auxiliary current Io 'is supplied to the electric motor 18 than in the case of the high gear (second speed and third speed). The correction assisting force (torque) larger than the assisting force can be obtained, and the problem that the assisting force is insufficient in a low-speed stage can be avoided.
[0039]
Further, the vehicle speed ratio ε between the human-powered vehicle speed Vm obtained from the human-powered drive system 13 and the auxiliary power-system vehicle speed Vp obtained from the auxiliary power drive system 14, that is, the current gear ratio is obtained. Therefore, there is no need to provide a sensor for directly detecting the shift speed in the above-described embodiment, and the problem of insufficient auxiliary power can be avoided at low cost.
[0040]
Further, the human power supply system vehicle speed Vm is obtained by the cycle of the voltage waveform from the pedaling force sensor 20 representing the pedaling force, and the auxiliary power system vehicle speed Vp is obtained by the voltage, current, etc. applied to the electric motor 18, so that the human power system The vehicle speed Vm and the auxiliary power system vehicle speed Vp can be easily obtained with a simple structure. In addition, this type of electric assist vehicle is conventionally provided with the above-described treading force sensor 20 because of the necessity of assist force control, and measures the motor applied voltage and current. Therefore, in obtaining the vehicle speeds, detection data from existing parts can be used, and there is no need to add a new sensor.
[0041]
Here, in the case of the method of obtaining the rotation speed of the pedal shaft 15 from the cycle of the output voltage waveform of the pedaling force sensor 20, the detection accuracy of the rotation speed may be low because the pedaling operation by the driver is not always constant. Therefore, in the present embodiment, when the vehicle speed ratio ε is within a certain wide range (1.0 to 1.16, 1.16 to 1.56, 1.56 to 2.3), the third speed and the second speed are set. , The first speed, the speed ratio can be accurately obtained even when the above-mentioned rowing operation by the driver is not constant, so that the correction assist force can be accurately obtained.
[0042]
In the above-described embodiment, the gear position is estimated from the vehicle speed ratio between the human-powered vehicle speed and the auxiliary power-related vehicle speed. However, the current gear position is directly detected, and the auxiliary current Io is corrected according to the gear position. Of course, this is the case, and this is the invention of claim 4.
[Brief description of the drawings]
FIG. 1 is a side view of an electric assist bicycle including an assist force control device according to an embodiment of the present invention.
FIG. 2 is a block diagram of the auxiliary force control device.
FIG. 3 is a flowchart illustrating a control operation of the control device.
[Explanation of symbols]
1 electric assist bicycle (electric assist vehicle)
12 Rear wheel (drive wheel)
13 human power drive system 14 auxiliary power drive system 15b pedal 26 controller (auxiliary power correction means)
Vm Human-powered vehicle speed Vp Auxiliary-powered vehicle speed

Claims (4)

ペダルに加えられた踏力を所定の変速比を介して駆動輪に供給する人力駆動系と、上記踏力に応じた補助力を電動モータから駆動輪に供給する補助力駆動系とを備えた電動補助車両の補助力制御装置において、上記踏力に応じた補助力を現時点での変速比に基づいて補正する補助力補正手段を備え、該補正された補助力を上記電動モータから駆動輪に供給するようにしたことを特徴とする電動補助車両の補助力制御装置。An electric assist system including a human-powered drive system that supplies a pedal force applied to a pedal to drive wheels via a predetermined gear ratio, and an auxiliary force drive system that supplies an auxiliary force corresponding to the pedal force from an electric motor to the drive wheels. An assisting force control device for a vehicle includes an assisting force correcting means for correcting an assisting force according to the pedaling force based on a current gear ratio, and supplying the corrected assisting force from the electric motor to driving wheels. An assist power control device for an electrically assisted vehicle, characterized in that: 請求項1において、上記補助力駆動系は、上記踏力に応じた大きさの補助電流を上記電動モータに供給することにより上記踏力に応じた大きさの補助力を発生するように構成されており、上記補助力補正手段は、補助力系車速Vpに対する人力系車速Vmの車速比ε(=Vm/Vp)が大きいほど上記補助電流を上記踏力に応じた補助電流より大きくなるように補正することを特徴とする電動補助車両の補助動力制御装置。In claim 1, the auxiliary force drive system is configured to generate an auxiliary force having a magnitude corresponding to the pedaling force by supplying an auxiliary current having a magnitude corresponding to the pedaling force to the electric motor. The auxiliary force correcting means corrects the auxiliary current so that the larger the vehicle speed ratio ε (= Vm / Vp) of the human-powered vehicle speed Vm to the auxiliary power-related vehicle speed Vp becomes, the larger the auxiliary current is, compared to the auxiliary current corresponding to the pedaling force. An auxiliary power control device for an electric auxiliary vehicle, characterized by: 請求項1又は2において、上記人力系車速は、ペダル軸の回転速度により、又はペダル踏力の周期により求められ、上記補助力系車速は、モータ軸の回転速度により、又は上記電動モータへの印加電流,電圧により求められることを特徴とする電動補助車両の補助力制御装置。3. The human-powered vehicle speed according to claim 1 or 2, wherein the human-powered vehicle speed is obtained by a rotation speed of a pedal shaft or a cycle of a pedal depression force, and the auxiliary power-based vehicle speed is obtained by a rotation speed of a motor shaft or applied to the electric motor. An assisting force control device for an electrically assisted vehicle, wherein the assisting force is determined by a current and a voltage. 請求項1において、上記補助力補正手段は、現時点の変速段を直接検出し、該変速段に応じた変速比でもって補助力を補正することを特徴とする電動補助車両の補助力制御装置。2. The assisting force control device for an electrically assisted vehicle according to claim 1, wherein the assisting force correcting means directly detects a current gear position and corrects the assisting force with a gear ratio corresponding to the gear position.
JP2003036552A 2003-02-14 2003-02-14 Auxiliary force control device for electric auxiliary vehicle Expired - Fee Related JP4229718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036552A JP4229718B2 (en) 2003-02-14 2003-02-14 Auxiliary force control device for electric auxiliary vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036552A JP4229718B2 (en) 2003-02-14 2003-02-14 Auxiliary force control device for electric auxiliary vehicle

Publications (2)

Publication Number Publication Date
JP2004243920A true JP2004243920A (en) 2004-09-02
JP4229718B2 JP4229718B2 (en) 2009-02-25

Family

ID=33021606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036552A Expired - Fee Related JP4229718B2 (en) 2003-02-14 2003-02-14 Auxiliary force control device for electric auxiliary vehicle

Country Status (1)

Country Link
JP (1) JP4229718B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013027A (en) * 2008-07-04 2010-01-21 Yamaha Motor Co Ltd Vehicle with assist force
EP2471705A1 (en) 2010-12-31 2012-07-04 J.D Components Co., Ltd. Control system for power-assisted bicycle
CN102582766A (en) * 2011-01-07 2012-07-18 久鼎金属实业股份有限公司 Pedaling booster providing system for bicycle
EP2511166A1 (en) 2011-04-13 2012-10-17 J.D Components Co., Ltd. Shift control system for power-assisted bicycle
JP2013047085A (en) * 2011-08-29 2013-03-07 Shimano Inc Bicycle control apparatus
JP2013241045A (en) * 2012-05-18 2013-12-05 Micro Space Kk Motor drive control device
WO2015018554A1 (en) * 2013-08-06 2015-02-12 Robert Bosch Gmbh Method for controlling an electric drive of a vehicle which can be operated using muscle power and/or motor power, and vehicle of this kind
JP2015051731A (en) * 2013-09-09 2015-03-19 株式会社シマノ Control device for bicycle
DE102016209275B3 (en) * 2016-05-30 2017-09-28 Robert Bosch Gmbh Control method and apparatus for controlling the electric motor of an electric bicycle
CN109720496A (en) * 2017-10-27 2019-05-07 株式会社岛野 Human-powered vehicle control device
JP2021107188A (en) * 2019-12-27 2021-07-29 ヤマハ発動機株式会社 Electrically-assisted bicycle, driving system thereof, and manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013027A (en) * 2008-07-04 2010-01-21 Yamaha Motor Co Ltd Vehicle with assist force
US8532857B2 (en) 2010-12-31 2013-09-10 J.D. Components Co., Ltd. Power-assisted system for bicycle
EP2471705A1 (en) 2010-12-31 2012-07-04 J.D Components Co., Ltd. Control system for power-assisted bicycle
CN102582766A (en) * 2011-01-07 2012-07-18 久鼎金属实业股份有限公司 Pedaling booster providing system for bicycle
CN102582766B (en) * 2011-01-07 2013-09-25 久鼎金属实业股份有限公司 Pedaling booster providing system for bicycle
EP2511166A1 (en) 2011-04-13 2012-10-17 J.D Components Co., Ltd. Shift control system for power-assisted bicycle
US8768585B2 (en) 2011-04-13 2014-07-01 J.D. Components Co., Ltd. Shift control system for power-assisted bicycle
CN102963486A (en) * 2011-08-29 2013-03-13 株式会社岛野 Bicycle drive apparatus
JP2013047085A (en) * 2011-08-29 2013-03-07 Shimano Inc Bicycle control apparatus
TWI507322B (en) * 2011-08-29 2015-11-11 Shimano Kk Bicycle control device
US8958935B2 (en) 2011-08-29 2015-02-17 Shimano Inc. Bicycle drive apparatus
DE102012107940B4 (en) 2011-08-29 2020-07-09 Shimano Inc. Bicycle drive device
JP2013241045A (en) * 2012-05-18 2013-12-05 Micro Space Kk Motor drive control device
US9114850B2 (en) 2012-05-18 2015-08-25 Microspace Corporation Motor drive control device
WO2015018554A1 (en) * 2013-08-06 2015-02-12 Robert Bosch Gmbh Method for controlling an electric drive of a vehicle which can be operated using muscle power and/or motor power, and vehicle of this kind
US9932088B2 (en) 2013-08-06 2018-04-03 Robert Bosch Gmbh Method for controlling an electric drive of a vehicle which is operable by muscular energy and/or motor power, and vehicle of this kind
JP2015051731A (en) * 2013-09-09 2015-03-19 株式会社シマノ Control device for bicycle
DE102016209275B3 (en) * 2016-05-30 2017-09-28 Robert Bosch Gmbh Control method and apparatus for controlling the electric motor of an electric bicycle
US11097806B2 (en) 2016-05-30 2021-08-24 Robert Bosch Gmbh Control method and devices for controlling the electric motor of an electric bicycle
CN109720496A (en) * 2017-10-27 2019-05-07 株式会社岛野 Human-powered vehicle control device
JP2021107188A (en) * 2019-12-27 2021-07-29 ヤマハ発動機株式会社 Electrically-assisted bicycle, driving system thereof, and manufacturing method
JP7039545B2 (en) 2019-12-27 2022-03-22 ヤマハ発動機株式会社 Electric auxiliary bicycle, its drive system, and control method
US11794852B2 (en) 2019-12-27 2023-10-24 Yamaha Hatsudoki Kabushiki Kaisha Electric assisted bicycle, drive system thereof, and control method

Also Published As

Publication number Publication date
JP4229718B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
US8958935B2 (en) Bicycle drive apparatus
JP5276735B1 (en) Bicycle control device
JP2015098227A (en) Electrically-driven auxiliary vehicle
US20190300115A1 (en) Human-powered vehicle control device
JP3736157B2 (en) Electric assist bicycle
EP3360769A1 (en) Electric bicycle and method of controlling the same
US11685466B2 (en) Human-powered vehicle control device
JP2015505282A (en) Auxiliary motor control system for pedal-driven vehicles
US20220135176A1 (en) Human-powered vehicle control device
KR20150012796A (en) Eletricity bike control system and method for control the same
JP4229718B2 (en) Auxiliary force control device for electric auxiliary vehicle
JP4365113B2 (en) Auxiliary force control device for electric auxiliary vehicle
JP5255347B2 (en) Vehicle with assist power
JP2017159867A (en) Power-assisted bicycle and pedal effort calculation method
JP5025851B2 (en) Auxiliary power control device for electric auxiliary vehicle
JP2000118481A (en) Motor-driven assist bicycle
US11377166B2 (en) Human-powered vehicle control device
JP3810130B2 (en) Vehicle with electric motor and control method thereof
US20220135177A1 (en) Human-powered vehicle control device
US20220242521A1 (en) Electric motor-assisted bicycle and motor control apparatus
US20220204129A1 (en) Control device for human-powered vehicle
JP3734713B2 (en) Bicycle with electric motor and control method thereof
JP3164098U (en) Power control device for electric bicycle
JPH11334676A (en) Car with auxiliary power unit and control method for the same
JP3382597B2 (en) Bicycle with electric motor and control method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

R150 Certificate of patent or registration of utility model

Ref document number: 4229718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees