JP3810130B2 - Vehicle with electric motor and control method thereof - Google Patents

Vehicle with electric motor and control method thereof Download PDF

Info

Publication number
JP3810130B2
JP3810130B2 JP12076596A JP12076596A JP3810130B2 JP 3810130 B2 JP3810130 B2 JP 3810130B2 JP 12076596 A JP12076596 A JP 12076596A JP 12076596 A JP12076596 A JP 12076596A JP 3810130 B2 JP3810130 B2 JP 3810130B2
Authority
JP
Japan
Prior art keywords
motor
torque
reduction ratio
electric motor
drive system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12076596A
Other languages
Japanese (ja)
Other versions
JPH09286376A (en
Inventor
延男 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP12076596A priority Critical patent/JP3810130B2/en
Publication of JPH09286376A publication Critical patent/JPH09286376A/en
Application granted granted Critical
Publication of JP3810130B2 publication Critical patent/JP3810130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

【0001】
【発明の属する技術分野】
この発明は、人力駆動系と電気駆動系とを並列に設け、人力駆動系出力の変化に対応して電気駆動系の出力を制御するようにした電動モータ付き乗り物と、これに用いる制御方法とに関するものである。
【0002】
【従来の技術】
人力による駆動力を例えば踏力から検出し、この踏力の大小変化に対応して電動モータの出力を制御する自転車などの乗り物が公知である(特開昭50−125438号、実開昭56−76590号、特開平2−74491号等)。すなわち人力の負担が大きい時には電動モータの駆動力も増やして人力の負担を減らし、楽に走行できるようにするものである。
【0003】
【従来技術の問題点】
この種の乗り物において、人力駆動系に減速比可変な変速機を付加することが考えられる。
【0004】
この場合、人力駆動系の出力と電動モータの出力との合力点よりも下流側(駆動輪側)に変速機を設ける方式と、この合力点よりも上流側に変速機を設ける方式とが考えられる。前者の合力点よりも下流側に変速機を介在させる方式によれば、変速機の変速比が変わっても踏力トルクと電動モータのトルクとの比率は変わらない。従って変速機の減速比が変わっても車速が変わるだけで踏力の負担割合は変わらないから不都合はない。
【0005】
しかし後者の合力点よりも上流側に変速機を介在させる方式では、変速機の変速比によって踏力の負担が変化するという問題が生じる。例えば変速機が高速段(減速比が小)にある時には踏力トルクが増加し、これに伴ってモータトルクも増加するが、モータと駆動輪との間の減速比は固定なので駆動輪の駆動トルクが増大する。このため踏力のよる駆動トルクに対するモータによる駆動トルクの比(モータ補助率)が増大することになる。
【0006】
反対に変速機が低速段(減速比が大)にある時には、踏力トルクが減少し、これに伴ってモータトルクも減少する。このため駆動輪の駆動トルクも減少するので、モータ補助率が減少することになる。このように変速機の変速操作に伴いモータの踏力トルクに対する補助率が変化するため、望ましい走行感が得られないという問題が生じる。
【0007】
【発明の目的】
本発明はこのような事情に鑑みなされたものであり、人力駆動系と電気駆動系の合力点より上流側の人力駆動系に変速機を設けた場合に、変速機の変速操作に伴うモータ補助率の大幅な変動を防ぎ、望ましい走行感を得ることができるようにした電動モータ付き乗り物の制御方法を提供することを第1の目的とする。またこの電動モータ付き乗り物を提供することを第2の目的とする。
【0008】
【発明の構成】
本発明によれば第1の目的は、人力駆動系と電気駆動系とを並列に設け、人力による駆動力の変化に対応して前記電気駆動系の電動モータの出力を制御する電動モータ付き乗り物の制御方法において、人力駆動力とモータ駆動力との合力点よりも上流側の人力駆動系に減速比可変な変速機を介在させ、人力駆動トルクに対するモータの補助率を前記変速機の減速比の大小によって大小に変化させるようにモータトルクの目標値を求め、電動モータの出力を前記目標値に制御することを特徴とする電動モータ付き乗り物の制御方法により達成される。
【0009】
また第2の目的は、人力駆動系と電気駆動系とを並列に設け、人力駆動系の出力の変化に対応して前記電気駆動系の電動モータの出力を制御する電動モータ付き乗り物において、前記人力駆動系の人力駆動トルクを検出するトルク検出手段と、前記人力駆動系および電気駆動系の合力点よりも上流側で人力駆動系に介在された減速比可変な変速機と、この変速機の減速比を検出する減速比検出手段と、人力駆動トルクに対するモータの補助率を前記変速機の減速比の大小によって大小に変化させるようにモータトルクの目標値を求めるモータトルク目標値演算手段と、電動モータのトルクの実際値を求めるモータトルク実際値検出手段と、モータトルク実際値を前記モータトルク目標値に一致させるように電動モータの出力を制御する出力制御手段とを備えることを特徴とする電動モータ付き乗り物により達成される。
【0010】
ここにモータトルク目標値演算手段は、減速比により決まる係数を人力トルクに積算することによりモータトルク目標値を求めることができる。また減速比ごとに変換マップや変換式などを予めメモリしておき、減速比に応じて用いる変換マップあるいは変換式を選択して、目標値を求めることもできる。
【0011】
【作用】
変速機の減速比によってモータトルク目標値を変化させるから、減速比に適したモータトルクを出力させることができる。例えば変速機が高中低速の3段階に変速可能としたときに、高速段(減速比が小)の時にはモータの補助率を中速段の時よりも減少させる。反対に低速段(減速比が大)の時にはモータの補助率を中速段の時よりも増大させる。
【0012】
このように減速比によってモータ補助率を変化させることにより、変速時にむけるモータ補助率の変化幅を小さくできる。この結果走行感を向上させることができる。
【0013】
【実施態様】
図1は本発明の一実施態様である自転車の側面図、図2はその制御系統を示す図、図3はトルク検出部分の概念図、図4はトルク検出原理の説明図である。また図5、6、7はそれぞれ異なる補間方法の説明図、図8は移動平均化処理の説明図である。
【0014】
図1において符号10はメインフレームであり、ヘッドパイプ12、メインチューブ14、ダウンチューブ16、シートチューブ18、チェーンステー20、バックステー22等を有する。ヘッドパイプ12には前フォーク24および操向ハンドルバー26が操舵自在に保持され、前フォーク24に前輪28が取付けられている。
【0015】
シートチューブ18の上端にはサドル30が保持され、下端にはボトムブラケット32が固着されている。このボトムブラケット32にはクランク軸34が回転自在に水平に保持されている。このクランク軸34の左端および右端にはそれぞれ左クランクアーム36および右クランクアーム38が固定されている。これらのクランクアーム36、38は人力駆動系の入力手段となる。クランク軸34の右端には図3に示すトルク検出手段40が取付けられている。
【0016】
トルク検出手段40は、クランク軸34の右端に固定され、前記右クランクアーム38と一体化された入力側回転体42と、クランク軸34に僅かに回動可能に保持された出力側回転体44と、回転体42から44への回転伝達時に圧縮される弾性材46とを有する。ここに回転体42と44とにはこれらの回転方向に対向する20個の歯42A、44Aがそれぞれ等間隔に突設され、これらの歯42A、44Aの間にそれぞれ弾性材46が挟まれている。従って弾性材46は合計20個ある。
【0017】
出力側回転体44の外周はチェーンスプロケットとなっている。48は後輪であり、出力側回転体44の回転はチェーン50および外装式変速機52およびフリーホイールクラッチ(図示せず)を介して後輪48に伝えられる。
【0018】
従ってクランクアーム36、38に踏力が加わると、入力側回転体42は弾性材46を圧縮しつつ出力側回転体44を同方向に回転し、後輪48を駆動する。この時の弾性材46の圧縮量は踏力に比例または対応するから、両回転体42、44の位相差の変化量は踏力に比例または対応する。
【0019】
この実施態様ではこの位相差は、回転体42、44にそれぞれ円周に沿って固着した20個づつの永久磁石54、56の通過をホール素子58、60で検出することにより求めている。ホール素子58、60は回転体42、44が360°/20回転する度に永久磁石54、56を検出して、それぞれパルス状の第1および第2の角度検出信号58A、60A(図4)を出力する。
【0020】
今踏力が0の時に、回転体42、44の位相差すなわち永久磁石54、56の位相差をθ0とする。そして踏力F(F≠0)が加った時の位相差がθ1になったとすれば、弾性材46の変形量△θは(θ0−θ1)であり、この変形量△θがすなわち位相差θの変化量△θとなる。従ってこの△θから踏力のトルクすなわち人力駆動トルクTを知ることができる。なおトルク検出手段40の付近には、クランク軸34の回転速度を検出する速度検出器62(図1参照)が取付けられている。
【0021】
図1、2において64は電動モータであり、例えば永久磁石式直流モータを用いることができる。このモータ64は永久磁石による界磁内でロータが回転し、この電機子電流を変えることにより出力駆動トルクを制御することができる。また電機子電圧によりその回転速度を制御することができる。このモータ64の回転はベルト式減速機66を介して後輪48に直接伝えられる。
【0022】
すなわちこの実施例では、電気駆動系と人力駆動系の出力が合流する合力点は後輪48となる。従って前記変速機52はこの合力点(後輪48)より上流側の人力駆動系に介在することになる。なお図1で68は電池や制御装置などを収容するケースである。
【0023】
次に図2に基づいて制御装置70を説明する。この制御装置70はマイクロコンピュータで構成される。図2はそのソフトウェアで形成される機能をブロック図で示したものである。この図2で72、74は入力インターフェースであり、前記トルク検出手段40で検出した第1および第2の角度検出信号58A、60Aがインターフェース72を介してトルク算出手段76に入力され、ここで位相差変化量△θおよび入力駆動トルクTが求められる。
【0024】
ここにトルク検出手段40は永久磁石54、56の固定間隔(360°/20=θf)ごとにトルクTを求める。従ってこの間隔θfの間では実際のトルクTを知ることができない。そこでこの発明ではこの間隔θfの間のトルクTを後記する補間手段80によって推定し連続するトルク推定値を出力する。そしてこのトルク推定値をトルクの実際値と見なして以下の処理を行う。
【0025】
なお実際にはこのトルクの推定値はコンピュータの演算周期ごとに求められるが、間隔θfの間の時間に比べれば十分に短いから連続と見なすことができる。また速度検出器62の出力はインターフェース74を介して速度算出手段78に入力され、クランク軸回転速度(N)が求められる。
【0026】
一方後輪48の回転速度は車速検出器79で検出される。この車速検出器79の出力は入力インターフェース79aを介して車速算出手段79bに入力され、ここで車速Spが求められる。すなわち車速検出器79は後輪48の回転速度を検出するから、後輪48の直径を考慮して所定の係数を積算し、車速Spを求めるものである。
【0027】
この求めた車速Spと前記したクランク軸回転速度Nとに基づいて減速比算出手段79cは変速機52の減速比Rを求める。この求めた減速比Rと前記補間手段80が出力するトルク実際値(推定値)とはモータトルク目標値演算手段82に入力され、ここでモータトルク目標値が求められる。
【0028】
このモータトルク目標値演算手段82では、例えば減速比Rにより決まる係数をトルク実際値(T)に積算することにより求めることができる。この係数は固定値としてもよいし、電池の充電状態などの他の要素により変化する変数でもよい。
【0029】
またモータトルク目標値演算手段82は、減速比Rごとに予め変換マップまたは変換式をメモリしておき、検出した減速比Rに対応する変換マップまたは変換式を選択して用いるようにしてもよい。
【0030】
その結果は補正演算手段84に入力される。この補正演算手段84では適宜の補正を行う。例えば速度算出手段78で求めたクランク軸回転速度(N)や車速(Sp)が増大するのに伴い、モータ補助力を次第に減少させて、車速が過大になるのを防止する。
【0031】
また走行中に踏力が0になった時には、モータ64の電流を減らして無負荷回転させる電圧(無負荷回転電圧)を印加する。すなわちモータ64は一方向クラッチを内蔵し、このクラッチが接続するモータ速度付近にモータ回転を保ち、モータ補助力の目標値が再び増加した時に速やかにモータ駆動力を後輪48に付加できるようにするものである。
【0032】
さらに自転車の発進時には、クランク軸速度(N)および車速Spは0で減速比Rを推定することができないので、この時には目標値が0とならないように補正を行うのがよい。例えばこの時には、クランク軸速度(N)や車速Spが実際は0あるいはほぼ0であってもこれらに0でない或る一定値を初期値として用いるようにする。あるいは減速比Rの初期値を設定しておいてもよい。こうすれば発進時にもペダルから入力するトルクに対応してモータ補助力を出力させることができる。
【0034】
このようにして補正したモータトルクの目標値は比較器86に入力され、モータ64のトルクTM (実際値)との差が求められる。そしてこの差を0にするようにモータ64の駆動トルクを制御する。すなわち出力制御手段88はこの差に対応する信号を出力インターフェース90を介してモータドライバ92に出力する。このドライバ92では、例えば電池94からモータ64に供給する電力を、パルス幅制御方式(PWM)によって制御する。
【0035】
なおモータ64のトルクTM の実際値は、モータ64の電流Iから得られる。ここにモータ64の電流Iは、電機子電流をシャント抵抗などを用いた電流検出器96で検出することにより求める。例えばこの検出器96の出力を入力インターフェース98を介して電流検出手段100に入力し、ここで電機子電流Iを求める。この場合電流検出手段100がモータトルクの実際値検出手段となる。
【0036】
次に補間手段80の処理方法を説明する。補間方法としては種々の方法が考えられる。最も簡単な方法は図5に示す直線近似を用いるものである。この図5で横軸tは時間であり、縦軸TはトルクTを表す。時間t1、t2…は検出時点を示し、その間隔は永久磁石54、56の角度間隔に対応している。この時間tに代えてクランク軸34の回転角度θを採ってもよい。
【0037】
この図5でt1、t2…はトルク検出手段40による検出時点であり、この時の検出値(検出トルク)Tは、T1、T2…で表されている。今t1とt2の検出点A、Bを結ぶ直線L1は、傾きm1=(T2−T1)/(t2−t1)を持つ。そこで次のt2とt3の検出点B、Cの間では、トルクTをこの傾きm1の直線L1で近似する。
【0038】
すなわちt2<t<t3の間では、直線、T=T2+m1tにより推定する。また同様にt3<t<t4の間では、直線、T=T3+m2tにより推定する。このように順次直線を変えながら演算するものである。
【0039】
図6の方法は2次曲線K1(t)、K2(t)、…で近似するものである。例えば、T=at2+bt+c≡K(t)という2次関数を設定し、検出点A(t1、T1)、B(t2、T2)、C(t3、T3)に対する連立方程式を解くことにより係数abcを求めることができる。このようにして関数K1(t)を決定し、t3とt4の間ではT=K1(t)により推定するものである。
【0040】
なお検出点AとBおよびBとCを通る2つの直線の傾きをそれぞれm1、m2とすれば、2a=(m2−m1)/(t3−t2)、b=m2となる。すなわち前記図5の方法における検出点Cを通る傾きm2の近似直線(T=m2t+T3)に、傾きの変化率2a={(m2−m1)/(t3−t2)}による補正項at2を付加したものである。
【0041】
図7の方法は、サイン曲線を予めメモリしておき、検出点A、B、C…が乗るサイン曲線を求め、この曲線により近似値を決める。例えば検出点A、B…のうち最大値TMと最小値Tmを知ると共に、周期を知ることにより、サイン曲線を一義的に決めることができる。
【0042】
なお一般に車輌停止時から発進する時には、一方のペダルは上死点付近にあたる。そこで発進時の最初の検出点SからはトルクTはサイン曲線に乗って減少すると考えられる。この時のサイン曲線の周期は、速度検出器62(図1)が検出するクランク軸回転速度を用いて知ることができる。この方法によれば、発進直後のトルクTも高い精度で推定でき、より円滑な運転が可能になる。
【0043】
以上説明した補間方法では、検出点A、B、C…における検出値T1、T2、T3…と、この検出点A、B、C…の直前に求めた推定値とは一致しない。この差が大きいとモータ駆動トルクの目標値が検出点A、B、…で大きく変動することになり、乗り心地が悪くなる。
【0044】
そこでこの差を小さくするため修正処理を追加しておくのがよい。図8はその修正方法の一例を示す。この方法では移動平均値を用いる。すなわち或る時点tにおける推定値(近似トルク)Tb(t)を、この時点tより連続して先行する一定数(n)の推定値Tb(t−τ)、Tb(t−2τ)、…Tb(t−nτ)の算術平均値Tc(t)を求め、この平均値Tc(t)をこの時点tにおける推定値Tb(t)に置き換えるものである。
【0045】
ここにτは検出点A、B…の時間間隔(t2−t1)、(t3−t2)、…であり、クランク軸34の回転速度が一定なら(t2−t1)、(t3−t2)、…も一定でτも定数になる。実際にはクランク軸34の回転速度は変化するから、τは定数ではなくなる。従ってこの時はτを各検出点A、B…の間隔ごとに変化させる必要がある。
【0046】
この修正処理を行えば、例えば図8の検出点Aから始まった近似曲線Tb1が検出点Bの検出時t2でTb1(t2)(≠T2)となっても、その後では修正トルクTc(t)に乗って次第に次の近似曲線Tb2に接近してゆく。このため検出点B、C…におけるトルク推定値の変化が滑らかになる。
【0047】
なおこの移動平均の計算に用いる推定値は、その一部が検出値に代わる場合があり得るのは勿論である。
【0048】
以上説明した実施態様では、人力駆動トルク(T)を間欠的に検出し補間処理により連続するトルクを推定し、この推定値を実際値とするものである。しかし本発明は、人力駆動トルクを連続的に検出するトルク検出手段により検出してもよいのは勿論である。また減速比Rを求めるのにクランク軸回転速度(N)と車速Spとを用いているが、変速機66の変速段ごとの減速比を予めメモリしておき、使用する変速段をセンサで検出し、検出した変速段に対応する減速比をメモリから読出すようにしてもよい。
【0049】
【発明の効果】
請求項1の発明は以上のように、変速機の減速比を検出し、人力駆動トルクに対するモータの補助率を前記変速機の減速比の大小によって大小に変化させるようにモータトルクの目標値を決定するものであるから、両駆動系の合力点よりも上流側の人力駆動系に介在させた変速機の減速比が変わっても、電動モータの補助率を減速比に対して適切になるように設定することができる。このため望ましい走行感が得られる。
【0050】
請求項2の発明によれば、請求項1の発明の方法を実施するための電動モータ付き乗り物が得られる。ここにモータトルク目標値演算手段は、変速機の減速比により決まる係数を人力駆動トルクに積算して求めることができる(請求項3)。
また予め変換マップや変換式をメモリしておき、減速比に対応する変換マップや変換式を選択して用いるようにしてもよい(請求項4)。
【図面の簡単な説明】
【図1】本発明の一実施態様である自転車の側面図
【図2】その制御系統を示す図
【図3】トルク検出部分の概念図
【図4】トルク検出原理の説明図
【図5】補間方法(直線近似)の説明図
【図6】補間方法(2次曲線近似)の説明図
【図7】補間方法(サイン曲線近似)の説明図
【図8】移動平均化処理の説明図
【符号の説明】
34 クランク軸
36、38 人力駆動系の入力手段としてのクランクアーム
40 トルク検出手段
48 後輪(両駆動系の合力点)
52 変速機
64 電動モータ
70 制御装置
82 モータトルク目標値演算手段
84 補正演算手段
88 出力制御手段
100 モータトルクの実際値検出手段としてのモータ電流検出手段
T 人力駆動トルク(踏力トルク)
R 減速比
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a vehicle with an electric motor in which a human power drive system and an electric drive system are provided in parallel, and the output of the electric drive system is controlled in response to a change in the output of the human power drive system, and a control method used therefor, It is about.
[0002]
[Prior art]
A vehicle such as a bicycle that detects a driving force by human power from, for example, a pedaling force and controls an output of an electric motor in response to a change in the pedaling force is known (Japanese Patent Laid-Open No. 50-125438, Japanese Utility Model Laid-Open No. 56-76590). No. 2, JP-A-2-74491). In other words, when the burden of human power is large, the driving force of the electric motor is also increased to reduce the burden of human power, so that the vehicle can travel easily.
[0003]
[Problems of the prior art]
In this type of vehicle, it is conceivable to add a transmission with a variable reduction ratio to the human power drive system.
[0004]
In this case, there are a method of providing a transmission on the downstream side (drive wheel side) from the resultant force point of the output of the human power drive system and the output of the electric motor, and a method of providing a transmission upstream of the resultant force point. It is done. According to the system in which the transmission is interposed downstream from the former resultant force point, the ratio of the pedaling force torque and the electric motor torque does not change even if the transmission gear ratio changes. Therefore, there is no inconvenience because even if the speed reduction ratio of the transmission changes, only the vehicle speed changes and the burden ratio of the pedal effort does not change.
[0005]
However, in the system in which the transmission is interposed upstream from the latter resultant force point, there arises a problem that the burden of the pedaling force changes depending on the transmission gear ratio. For example, when the transmission is at a high speed (the reduction ratio is small), the pedal force torque increases, and the motor torque increases accordingly. However, since the reduction ratio between the motor and the drive wheels is fixed, the drive torque of the drive wheels Will increase. For this reason, the ratio of the driving torque by the motor to the driving torque due to the pedaling force (motor assist rate) increases.
[0006]
On the contrary, when the transmission is at a low speed (the reduction ratio is large), the pedaling force torque is reduced, and the motor torque is also reduced accordingly. For this reason, since the driving torque of the driving wheel is also reduced, the motor assist rate is reduced . Thus because auxiliary index for pressing torque of the motor due to the shifting operation of the transmission is changed, a problem that desirable drive feeling can not be obtained.
[0007]
OBJECT OF THE INVENTION
The present invention has been made in view of such circumstances, and when a transmission is provided in the human power drive system upstream of the resultant force point of the human power drive system and the electric drive system, the motor assistance accompanying the speed change operation of the transmission is provided. It is a first object of the present invention to provide a control method for a vehicle with an electric motor that can prevent a significant change in the rate and obtain a desired driving feeling. A second object is to provide a vehicle with an electric motor.
[0008]
[Structure of the invention]
According to the present invention, a first object is to provide a vehicle with an electric motor in which a human power drive system and an electric drive system are provided in parallel, and the output of the electric motor of the electric drive system is controlled in response to a change in the driving force due to human power. In this control method, a transmission having a variable reduction ratio is interposed in the human power drive system upstream of the resultant force point of the human power driving force and the motor driving force, and the auxiliary ratio of the motor to the human power driving torque is set to a reduction ratio of the transmission. This is achieved by a vehicle motor-equipped vehicle control method characterized in that a target value of a motor torque is obtained so as to change depending on the size of the motor, and the output of the electric motor is controlled to the target value.
[0009]
A second object is to provide a vehicle with an electric motor that is provided with a human drive system and an electric drive system in parallel, and controls the output of the electric motor of the electric drive system in response to a change in the output of the human drive system. Torque detection means for detecting human power drive torque of the human power drive system, a transmission with a variable reduction ratio interposed in the human power drive system upstream of the resultant force point of the human power drive system and the electric drive system, A reduction ratio detection means for detecting a reduction ratio; a motor torque target value calculation means for obtaining a target value of the motor torque so as to change a motor auxiliary rate with respect to the human drive torque according to the magnitude of the reduction ratio of the transmission ; and Motor torque actual value detecting means for obtaining the actual value of the electric motor torque, and output control for controlling the output of the electric motor so that the motor torque actual value matches the motor torque target value. It is achieved by an electric motor with vehicle, characterized in that it comprises a means.
[0010]
Here, the motor torque target value calculating means can obtain the motor torque target value by adding the coefficient determined by the reduction ratio to the human power torque. It is also possible to store in advance a conversion map, a conversion equation, etc. for each reduction ratio, and select a conversion map or conversion equation to be used according to the reduction ratio to obtain the target value.
[0011]
[Action]
Since the motor torque target value is changed according to the reduction ratio of the transmission, motor torque suitable for the reduction ratio can be output. For example, when the transmission is capable of shifting in three stages of high, medium, and low speeds, the motor auxiliary rate is decreased at the high speed (the reduction ratio is small) compared to that at the medium speed. On the other hand, when the speed is low (the reduction ratio is large), the motor auxiliary rate is increased as compared with the middle speed.
[0012]
Thus, by changing the motor assist rate according to the reduction ratio, the range of change in the motor assist rate at the time of shifting can be reduced. As a result, the running feeling can be improved.
[0013]
Embodiment
1 is a side view of a bicycle according to an embodiment of the present invention, FIG. 2 is a diagram showing a control system thereof, FIG. 3 is a conceptual diagram of a torque detection portion, and FIG. 4 is an explanatory diagram of a principle of torque detection. 5, 6 and 7 are explanatory diagrams of different interpolation methods, and FIG. 8 is an explanatory diagram of the moving averaging process.
[0014]
In FIG. 1, reference numeral 10 denotes a main frame, which has a head pipe 12, a main tube 14, a down tube 16, a seat tube 18, a chain stay 20, a back stay 22 and the like. A front fork 24 and a steering handle bar 26 are steerably held on the head pipe 12, and a front wheel 28 is attached to the front fork 24.
[0015]
A saddle 30 is held at the upper end of the seat tube 18 and a bottom bracket 32 is fixed to the lower end. A crankshaft 34 is rotatably held horizontally by the bottom bracket 32. A left crank arm 36 and a right crank arm 38 are fixed to the left end and the right end of the crank shaft 34, respectively. These crank arms 36 and 38 serve as input means for a human-powered drive system. A torque detecting means 40 shown in FIG. 3 is attached to the right end of the crankshaft 34.
[0016]
The torque detecting means 40 is fixed to the right end of the crankshaft 34, and is integrated with the right crank arm 38, and an output side rotating body 44 that is held on the crankshaft 34 so as to be slightly rotatable. And an elastic material 46 that is compressed when the rotation is transmitted from the rotating body 42 to the rotating body 42. Here, the rotating bodies 42 and 44 are provided with 20 teeth 42A and 44A opposed to each other in the rotation direction at equal intervals, and an elastic material 46 is sandwiched between the teeth 42A and 44A, respectively. Yes. Therefore, there are 20 elastic members 46 in total.
[0017]
The outer periphery of the output side rotating body 44 is a chain sprocket. Reference numeral 48 denotes a rear wheel, and the rotation of the output side rotator 44 is transmitted to the rear wheel 48 via the chain 50, the exterior transmission 52, and a free wheel clutch (not shown).
[0018]
Therefore, when a pedaling force is applied to the crank arms 36 and 38, the input side rotating body 42 rotates the output side rotating body 44 in the same direction while compressing the elastic member 46, and drives the rear wheel 48. Since the amount of compression of the elastic member 46 at this time is proportional to or corresponds to the pedaling force, the amount of change in the phase difference between the rotating bodies 42 and 44 is proportional to or corresponds to the pedaling force.
[0019]
In this embodiment, this phase difference is obtained by detecting the passage of 20 permanent magnets 54 and 56 fixed to the rotating bodies 42 and 44 along the circumference by the Hall elements 58 and 60, respectively. The hall elements 58 and 60 detect the permanent magnets 54 and 56 each time the rotating bodies 42 and 44 rotate 360 ° / 20, respectively, and pulse-shaped first and second angle detection signals 58A and 60A (FIG. 4), respectively. Is output.
[0020]
When the pedaling force is now 0, the phase difference between the rotating bodies 42 and 44, that is, the phase difference between the permanent magnets 54 and 56 is defined as θ 0 . If the phase difference when the pedaling force F (F ≠ 0) is applied is θ 1 , the deformation amount Δθ of the elastic material 46 is (θ 0 −θ 1 ), and this deformation amount Δθ is That is, the amount of change Δθ of the phase difference θ. Therefore, the pedaling force torque, that is, the manpower driving torque T can be known from this Δθ. A speed detector 62 (see FIG. 1) for detecting the rotational speed of the crankshaft 34 is attached in the vicinity of the torque detecting means 40.
[0021]
1 and 2, 64 is an electric motor, and for example, a permanent magnet type DC motor can be used. In this motor 64, the rotor rotates in the field of a permanent magnet, and the output driving torque can be controlled by changing the armature current. The rotation speed can be controlled by the armature voltage. The rotation of the motor 64 is directly transmitted to the rear wheel 48 via the belt type speed reducer 66.
[0022]
That is, in this embodiment, the resultant force point where the outputs of the electric drive system and the human power drive system merge is the rear wheel 48. Therefore, the transmission 52 is interposed in the human power drive system upstream of the resultant force point (rear wheel 48). In FIG. 1, reference numeral 68 denotes a case for accommodating a battery, a control device, and the like.
[0023]
Next, the control device 70 will be described with reference to FIG. The control device 70 is constituted by a microcomputer. FIG. 2 is a block diagram showing functions formed by the software. In FIG. 2, reference numerals 72 and 74 denote input interfaces, and the first and second angle detection signals 58A and 60A detected by the torque detection means 40 are input to the torque calculation means 76 via the interface 72. A phase difference change amount Δθ and an input driving torque T are obtained.
[0024]
Here, the torque detection means 40 obtains the torque T at every fixed interval (360 ° / 20 = θ f ) between the permanent magnets 54 and 56. Therefore, the actual torque T cannot be known during this interval θ f . Therefore, in the present invention, the torque T during the interval θ f is estimated by the interpolation means 80 described later, and a continuous estimated torque value is output. The torque estimation value is regarded as an actual torque value, and the following processing is performed.
[0025]
Note in fact the estimated value of the torque is determined for each operation cycle of the computer can be regarded as continuous from sufficiently short compared to the time between the intervals theta f. The output of the speed detector 62 is input to the speed calculation means 78 via the interface 74, and the crankshaft rotation speed (N) is obtained.
[0026]
On the other hand, the rotational speed of the rear wheel 48 is detected by a vehicle speed detector 79. The output of the vehicle speed detector 79 is input to the vehicle speed calculation means 79b via the input interface 79a, where the vehicle speed Sp is obtained. That is, since the vehicle speed detector 79 detects the rotational speed of the rear wheel 48, the vehicle speed Sp is obtained by adding a predetermined coefficient in consideration of the diameter of the rear wheel 48.
[0027]
Based on the calculated vehicle speed Sp and the crankshaft rotational speed N, the reduction ratio calculation means 79c calculates the reduction ratio R of the transmission 52. The obtained reduction ratio R and the actual torque value (estimated value) output from the interpolation means 80 are input to the motor torque target value calculating means 82, where the motor torque target value is obtained.
[0028]
In this motor torque target value calculation means 82, for example, the coefficient determined by the reduction ratio R can be obtained by integrating the actual torque value (T). This coefficient may be a fixed value or a variable that varies depending on other factors such as the state of charge of the battery.
[0029]
Further, the motor torque target value calculating means 82 may store a conversion map or a conversion formula in advance for each reduction ratio R, and select and use a conversion map or conversion formula corresponding to the detected reduction ratio R. .
[0030]
The result is input to the correction calculation means 84. The correction calculation means 84 performs appropriate correction. For example, as the crankshaft rotation speed (N) and vehicle speed (Sp) obtained by the speed calculation means 78 increase, the motor assist force is gradually decreased to prevent the vehicle speed from becoming excessive.
[0031]
Further, when the pedaling force becomes zero during traveling, a voltage for reducing the current of the motor 64 and causing no-load rotation (no-load rotation voltage) is applied. That is, the motor 64 has a built-in one-way clutch, keeps the motor rotating near the motor speed to which the clutch is connected, and can quickly apply the motor driving force to the rear wheel 48 when the target value of the motor assist force increases again. To do.
[0032]
Further, when the bicycle is started, the crankshaft speed (N) and the vehicle speed Sp are 0, and the reduction ratio R cannot be estimated. At this time, correction is preferably performed so that the target value does not become 0. For example, at this time, even if the crankshaft speed (N) and the vehicle speed Sp are actually zero or almost zero, a certain value other than zero is used as the initial value. Alternatively, an initial value of the reduction ratio R may be set. In this way, the motor auxiliary force can be output in response to the torque input from the pedal even when the vehicle starts.
[0034]
The target value of the motor torque corrected in this way is input to the comparator 86, and a difference from the torque T M (actual value) of the motor 64 is obtained. Then, the driving torque of the motor 64 is controlled so that this difference becomes zero. That is, the output control means 88 outputs a signal corresponding to this difference to the motor driver 92 via the output interface 90. In the driver 92, for example, power supplied from the battery 94 to the motor 64 is controlled by a pulse width control method (PWM).
[0035]
The actual value of the torque T M of the motor 64 is obtained from the current I of the motor 64. Here, the current I of the motor 64 is obtained by detecting the armature current with a current detector 96 using a shunt resistor or the like. For example, the output of the detector 96 is input to the current detection means 100 via the input interface 98, and the armature current I is obtained here. In this case, the current detection means 100 becomes the actual value detection means of the motor torque.
[0036]
Next, a processing method of the interpolation unit 80 will be described. Various methods can be considered as the interpolation method. The simplest method uses the linear approximation shown in FIG. In FIG. 5, the horizontal axis t represents time, and the vertical axis T represents torque T. Times t 1 , t 2 ... Indicate detection time points, and the intervals correspond to the angular intervals of the permanent magnets 54 and 56. Instead of this time t, the rotation angle θ of the crankshaft 34 may be taken.
[0037]
In FIG. 5, t 1 , t 2 ... Are detection times by the torque detecting means 40, and the detected value (detected torque) T at this time is represented by T 1 , T 2 . The straight line L 1 connecting the detection points A and B at t 1 and t 2 now has a slope m 1 = (T 2 −T 1 ) / (t 2 −t 1 ). Therefore, between the next detection points B and C at t 2 and t 3 , the torque T is approximated by a straight line L 1 having the slope m 1 .
[0038]
That is, during t 2 <t <t 3 , the estimation is performed using a straight line, T = T 2 + m 1 t. Similarly, during t 3 <t <t 4 , the estimation is performed using a straight line, T = T 3 + m 2 t. In this way, the calculation is performed while sequentially changing the straight line.
[0039]
The method shown in FIG. 6 is approximated by quadratic curves K 1 (t), K 2 (t),. For example, a quadratic function of T = at 2 + bt + c≡K (t) is set, and simultaneous with respect to the detection points A (t 1 , T 1 ), B (t 2 , T 2 ), C (t 3 , T 3 ) The coefficient abc can be obtained by solving the equation. In this way, the function K 1 (t) is determined, and is estimated by T = K 1 (t) between t 3 and t 4 .
[0040]
If slopes of two straight lines passing through the detection points A and B and B and C are m 1 and m 2 , respectively, 2a = (m 2 −m 1 ) / (t 3 −t 2 ), b = m 2 It becomes. That is, the slope change rate 2a = {(m 2 −m 1 ) / (t 3 −t 2 ) on the approximate straight line (T = m 2 t + T 3 ) of the slope m 2 passing through the detection point C in the method of FIG. } To which a correction term at 2 is added.
[0041]
In the method of FIG. 7, a sine curve is stored in advance, a sine curve on which detection points A, B, C... Are obtained is determined, and an approximate value is determined by this curve. For example, the sine curve can be uniquely determined by knowing the maximum value T M and the minimum value T m of the detection points A, B.
[0042]
In general, when starting from the time when the vehicle is stopped, one pedal is near the top dead center. Therefore, it is considered that the torque T decreases along the sine curve from the first detection point S at the start. The period of the sine curve at this time can be known using the crankshaft rotation speed detected by the speed detector 62 (FIG. 1). According to this method, the torque T immediately after starting can be estimated with high accuracy, and smoother operation is possible.
[0043]
In the interpolation method described above, the detection values T 1 , T 2 , T 3 ... At the detection points A, B, C... Do not match the estimated values obtained immediately before the detection points A, B, C. If this difference is large, the target value of the motor drive torque will fluctuate greatly at the detection points A, B,.
[0044]
Therefore, it is preferable to add a correction process to reduce this difference. FIG. 8 shows an example of the correction method. This method uses a moving average value. That is, an estimated value (approximate torque) Tb (t) at a certain time t is converted into a certain number (n) of estimated values Tb (t−τ), Tb (t−2τ),. An arithmetic average value Tc (t) of Tb (t−nτ) is obtained, and this average value Tc (t) is replaced with an estimated value Tb (t) at this time point t.
[0045]
Here, τ is a time interval (t 2 −t 1 ), (t 3 −t 2 ),... Of the detection points A, B..., And if the rotation speed of the crankshaft 34 is constant (t 2 −t 1 ), (T 3 −t 2 ),... Is constant and τ is constant. Since the rotational speed of the crankshaft 34 actually changes, τ is no longer a constant. Therefore, at this time, it is necessary to change τ for each interval between the detection points A, B.
[0046]
If this correction process is performed, for example, even if the approximate curve Tb1 starting from the detection point A in FIG. 8 becomes Tb 1 (t 2 ) (≠ T 2 ) at the detection time B2 of the detection point B, thereafter, the correction torque Tc riding a (t) slide into close gradually in the following approximate curve Tb 2. Therefore, the change in the estimated torque value at the detection points B, C... Becomes smooth.
[0047]
Of course, a part of the estimated value used for the calculation of the moving average may be replaced with the detected value.
[0048]
In the embodiment described above, the manual driving torque (T) is intermittently detected, continuous torque is estimated by interpolation processing, and this estimated value is used as an actual value. However, the present invention may of course be detected by a torque detecting means for continuously detecting the human driving torque. The crankshaft rotational speed (N) and the vehicle speed Sp are used to obtain the reduction ratio R, but the reduction ratio for each gear stage of the transmission 66 is stored in advance, and the gear stage to be used is detected by a sensor. Then, the reduction ratio corresponding to the detected gear position may be read from the memory.
[0049]
【The invention's effect】
As described above, the reduction ratio of the transmission is detected, and the motor torque target value is set so that the assist ratio of the motor with respect to the manual driving torque is changed depending on the magnitude of the reduction ratio of the transmission. Therefore, even if the reduction ratio of the transmission interposed in the human power drive system upstream of the resultant force point of both drive systems changes, the auxiliary ratio of the electric motor is made appropriate to the reduction ratio. Can be set to For this reason, a desirable running feeling can be obtained.
[0050]
According to the invention of claim 2, a vehicle with an electric motor for carrying out the method of the invention of claim 1 is obtained. Here, the motor torque target value calculation means can obtain the coefficient determined by the reduction ratio of the transmission by adding it to the manual driving torque.
Alternatively, a conversion map or conversion formula may be stored in advance, and a conversion map or conversion formula corresponding to the reduction ratio may be selected and used.
[Brief description of the drawings]
FIG. 1 is a side view of a bicycle according to an embodiment of the present invention. FIG. 2 is a diagram showing its control system. FIG. 3 is a conceptual diagram of a torque detection portion. Illustration of interpolation method (linear approximation) [FIG. 6] Illustration of interpolation method (quadratic curve approximation) [FIG. 7] Illustration of interpolation method (sine curve approximation) [FIG. 8] Illustration of moving averaging process [FIG. Explanation of symbols]
34 Crankshaft 36, 38 Crank arm 40 as input means for manual drive system Torque detection means 48 Rear wheel (the resultant force point of both drive systems)
52 Transmission 64 Electric motor 70 Control device 82 Motor torque target value calculation means 84 Correction calculation means 88 Output control means 100 Motor current detection means T as actual motor torque value detection means T Manual driving torque (stepping force torque)
R Reduction ratio

Claims (4)

人力駆動系と電気駆動系とを並列に設け、人力による駆動力の変化に対応して前記電気駆動系の電動モータの出力を制御する電動モータ付き乗り物の制御方法において、人力駆動力とモータ駆動力との合力点よりも上流側の人力駆動系に減速比可変な変速機を介在させ、人力駆動トルクに対するモータの補助率を前記変速機の減速比の大小によって大小に変化させるようにモータトルクの目標値を求め、電動モータの出力を前記目標値に制御することを特徴とする電動モータ付き乗り物の制御方法。In a method for controlling a vehicle with an electric motor, in which a manpower driving system and an electric driving system are provided in parallel and the output of the electric motor of the electric driving system is controlled in response to a change in driving force due to manpower, the manpower driving force and the motor driving The motor torque so that the auxiliary ratio of the motor with respect to the manual driving torque is changed depending on the size of the reduction ratio of the transmission by interposing a transmission with a variable reduction ratio in the manual driving system upstream of the resultant force point. And a control method for a vehicle with an electric motor, wherein the output of the electric motor is controlled to the target value. 人力駆動系と電気駆動系とを並列に設け、人力駆動系の出力の変化に対応して前記電気駆動系の電動モータの出力を制御する電動モータ付き乗り物において、前記人力駆動系の人力駆動トルクを検出するトルク検出手段と、前記人力駆動系および電気駆動系の合力点よりも上流側で人力駆動系に介在された減速比可変な変速機と、この変速機の減速比を検出する減速比検出手段と、人力駆動トルクに対するモータの補助率を前記変速機の減速比の大小によって大小に変化させるようにモータトルクの目標値を求めるモータトルク目標値演算手段と、電動モータのトルクの実際値を求めるモータトルク実際値検出手段と、モータトルク実際値を前記モータトルク目標値に一致させるように電動モータの出力を制御する出力制御手段とを備えることを特徴とする電動モータ付き乗り物。In a vehicle with an electric motor that provides a human drive system and an electric drive system in parallel and controls the output of the electric motor of the electric drive system in response to a change in the output of the human drive system, the human drive torque of the human drive system A torque detection means for detecting the transmission, a transmission with a variable reduction ratio interposed in the manual drive system upstream of the resultant force of the manual drive system and the electric drive system, and a reduction ratio for detecting the reduction ratio of the transmission Detecting means; motor torque target value calculating means for determining a target value of the motor torque so as to change the motor auxiliary ratio with respect to the manual driving torque depending on the reduction ratio of the transmission; and an actual value of the torque of the electric motor Motor torque actual value detecting means for obtaining the motor torque, and output control means for controlling the output of the electric motor so that the motor torque actual value matches the motor torque target value. Vehicles with an electric motor which is characterized in. モータトルク目標値演算手段は減速比により決まる係数を人力駆動トルクに積算することにより、モータトルク目標値を求める請求項2の電動モータ付き乗り物。  3. The vehicle with an electric motor according to claim 2, wherein the motor torque target value calculating means obtains the motor torque target value by adding a coefficient determined by the reduction ratio to the manual driving torque. モータトルク目標値演算手段は、減速比ごとに予めメモリした変換マップまたは変換式を持ち、検出した減速比に対応する変換マップまたは変換式を用いてモータトルク目標値を求める請求項2の電動モータ付き乗り物。  3. The electric motor according to claim 2, wherein the motor torque target value calculation means has a conversion map or conversion formula stored in advance for each reduction ratio, and obtains the motor torque target value using the conversion map or conversion formula corresponding to the detected reduction ratio. With vehicle.
JP12076596A 1996-04-19 1996-04-19 Vehicle with electric motor and control method thereof Expired - Fee Related JP3810130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12076596A JP3810130B2 (en) 1996-04-19 1996-04-19 Vehicle with electric motor and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12076596A JP3810130B2 (en) 1996-04-19 1996-04-19 Vehicle with electric motor and control method thereof

Publications (2)

Publication Number Publication Date
JPH09286376A JPH09286376A (en) 1997-11-04
JP3810130B2 true JP3810130B2 (en) 2006-08-16

Family

ID=14794453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12076596A Expired - Fee Related JP3810130B2 (en) 1996-04-19 1996-04-19 Vehicle with electric motor and control method thereof

Country Status (1)

Country Link
JP (1) JP3810130B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8660728B2 (en) 2010-10-29 2014-02-25 Shimano Inc. Bicycle motor-assist control system
CN110758112A (en) * 2019-10-12 2020-02-07 北京北方华德尼奥普兰客车股份有限公司 Control method of integrated assembly controller

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002604A (en) * 1998-06-18 2000-01-07 Honda Motor Co Ltd Input torque detecting device of power-assisted vehicle
JP3736157B2 (en) * 1998-12-04 2006-01-18 スズキ株式会社 Electric assist bicycle
JP4369589B2 (en) * 2000-03-01 2009-11-25 本田技研工業株式会社 Electric bicycle
JP5025851B2 (en) * 2001-02-14 2012-09-12 ヤマハ発動機株式会社 Auxiliary power control device for electric auxiliary vehicle
JP2003104274A (en) * 2001-09-27 2003-04-09 Honda Motor Co Ltd Power-assisted bicycle
JP5479436B2 (en) * 2011-11-07 2014-04-23 日本電産コパル株式会社 Torque detection device
JP5689849B2 (en) * 2012-05-18 2015-03-25 マイクロスペース株式会社 Motor drive control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8660728B2 (en) 2010-10-29 2014-02-25 Shimano Inc. Bicycle motor-assist control system
CN110758112A (en) * 2019-10-12 2020-02-07 北京北方华德尼奥普兰客车股份有限公司 Control method of integrated assembly controller

Also Published As

Publication number Publication date
JPH09286376A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
US9376163B2 (en) Driving unit and battery-assisted bicycle
CA2836764C (en) Driving unit and battery-assisted bicycle
EP2873550A2 (en) Electrically assisted vehicle
JP2013209077A (en) Power-assisted bicycle
US20040206563A1 (en) Assist control of power assisted vehicle
CN113044152B (en) Control device for man-power driven vehicle
CN114435526B (en) Control device for man-power driven vehicle
JP3810130B2 (en) Vehicle with electric motor and control method thereof
JP3810131B2 (en) Vehicle with electric motor
TW201922580A (en) Human-powered vehicle control device
JP2003104274A (en) Power-assisted bicycle
JP3105570B2 (en) Manual drive with electric motor
JP4229718B2 (en) Auxiliary force control device for electric auxiliary vehicle
JP3468799B2 (en) Vehicle with electric motor and control method therefor
JPH09286375A (en) Vehicle with electric motor and control thereof
JPH05310175A (en) Bicycle equipped with electric motor
JPH08207876A (en) Man power traveling vehicle with auxiliary drive power source
JP3734713B2 (en) Bicycle with electric motor and control method thereof
JP2022103608A (en) Control device for human-powered vehicle and control system for human-powered vehicle
JP3192296B2 (en) Vehicle with electric motor
JP3382597B2 (en) Bicycle with electric motor and control method therefor
JP3141345B2 (en) Bicycle with drive assist device
JPH08310477A (en) Bicycle with electric motor
JPH07223579A (en) Power-assisted bicycle
JP3843159B2 (en) Auxiliary force control device for electric auxiliary vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees