WO2017082198A1 - Battery warm-up system - Google Patents

Battery warm-up system Download PDF

Info

Publication number
WO2017082198A1
WO2017082198A1 PCT/JP2016/082943 JP2016082943W WO2017082198A1 WO 2017082198 A1 WO2017082198 A1 WO 2017082198A1 JP 2016082943 W JP2016082943 W JP 2016082943W WO 2017082198 A1 WO2017082198 A1 WO 2017082198A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
air
heat exchanger
warm
conditioning
Prior art date
Application number
PCT/JP2016/082943
Other languages
French (fr)
Japanese (ja)
Inventor
功嗣 三浦
山中 隆
加藤 吉毅
竹内 雅之
憲彦 榎本
慧伍 佐藤
賢吾 杉村
マラシガン アリエル
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016196184A external-priority patent/JP6414174B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/773,209 priority Critical patent/US20180323482A1/en
Priority to CN201680060644.7A priority patent/CN108140917B/en
Priority to DE112016005124.7T priority patent/DE112016005124T5/en
Publication of WO2017082198A1 publication Critical patent/WO2017082198A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a battery warm-up system.
  • Patent Document 1 As a battery warming-up system that warms up a battery mounted on a vehicle mainly in the initial stage of startup, a battery described in Patent Document 1 below is known.
  • the battery warm-up system described in Patent Document 1 below is a refrigeration cycle apparatus, and adjusts the air temperature sent out for battery warm-up while adjusting the air temperature sent out to the air-conditioning target space.
  • the refrigeration cycle apparatus described in Patent Literature 1 below includes a blower air heat exchanger that heats indoor blown air that is blown into the vehicle interior using the refrigerant discharged from the compressor as a heat source, and a blown air heat exchanger.
  • a high-stage expansion valve that depressurizes the refrigerant that has flowed out, and a battery heat exchanger that heats battery air blown to the battery using the refrigerant decompressed by the high-stage expansion valve as a heat source.
  • the refrigeration cycle apparatus controls the refrigerant discharge capacity of the compressor so that the blown air temperature of the indoor blown air approaches the target blowout temperature in the indoor heating + electric warm-up mode, and the battery temperature, which is the battery temperature, is determined in advance.
  • the throttle opening degree of the high stage side expansion valve is controlled so as to be within the reference temperature range.
  • Patent Document 1 a high-stage expansion valve is provided between a blower air heat exchanger and a battery heat exchange in order to produce a two-temperature refrigerant. Therefore, for example, when a system that includes a high-temperature side water circuit and a refrigerant circuit and supplies water to the two heat exchangers using water that has been exchanged heat with a water-cooled condenser provided in the refrigerant circuit is adopted. Can not respond.
  • the present disclosure provides a battery warm-up system that can increase the degree of freedom in an aspect in which a refrigerant or a fluid is supplied to a heat exchanger for air conditioning and a heat exchanger for battery, and can appropriately warm up the battery. For the purpose.
  • the present disclosure relates to a battery warm-up system, which includes a compressor (112) that compresses and discharges a refrigerant, and a refrigerant discharged from the compressor or a fluid that exchanges heat with the refrigerant as a heat source.
  • Heat exchanger for air conditioning (102) that heats the air-conditioning air flow that is sent out, and heat for the battery that heats the battery air flow that is sent to the battery using the refrigerant discharged from the compressor or the fluid exchanged with the refrigerant as a heat source
  • a control device (13) for controlling the air conditioner blower and the battery blower.
  • the control device is a battery warm-up mode that controls at least one of the air-conditioning blower and the battery blower so that the air-side temperature efficiency in the air-conditioning heat exchanger is higher than the air-side temperature efficiency in the battery heat exchanger. Execute.
  • the present disclosure by executing the battery warm-up mode, it is possible to change the outlet temperature of each heat exchanger while supplying a fluid having the same temperature to the heat exchanger for air conditioning and the heat exchanger for battery. Air supply for supplying air at a high temperature and air supply for batteries that do not require high-temperature air can be made compatible.
  • FIG. 1 is a diagram showing a configuration of a battery warm-up system according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example in which the battery warm-up system according to the first embodiment of the present invention is mounted on a vehicle.
  • FIG. 3 is a timing chart showing changes in temperature and wind speed of each part when the battery warm-up system shown in FIG. 1 is operated.
  • FIG. 4 is a diagram showing a configuration of a battery warm-up system according to the second embodiment of the present invention.
  • FIG. 5 is a timing chart showing changes in temperature and wind speed of each part when the battery warm-up system shown in FIG. 4 is operated.
  • FIG. 6 is a diagram showing a configuration of a battery warm-up system according to a modification of the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a configuration of a battery warm-up system according to a modification of the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of a battery warm-up system according to a modification of the first embodiment of the present invention.
  • FIG. 9 is a diagram showing a configuration of a battery warm-up system according to a modification of the first embodiment of the present invention.
  • the battery warm-up system 1 includes a high-temperature side water circuit 10, a refrigerant circuit 11, a low-temperature side water circuit 12, and a control device 13.
  • the high-temperature water circuit 10 includes a water-cooled condenser 101, an air conditioning heat exchanger 102, a battery heat exchanger 103, a pump 104, a water temperature sensor 105, an air conditioning fan 106, and a battery fan 107. I have.
  • the warm water generated by the water-cooled condenser 101 is distributed to the air conditioning heat exchanger 102 and the battery heat exchanger 103, and the air conditioning heat exchanger 102 and the battery heat exchanger. 103 is arranged in parallel.
  • a pump 104 is provided on the upstream side of the water-cooled condenser 101. By driving the pump 104, the water in the high temperature side water circuit 10 circulates.
  • the water temperature sensor 105 is a sensor for measuring the outlet water temperature of the water-cooled condenser 101.
  • the air conditioner blower 106 sends air into the air conditioner heat exchanger 102.
  • the air sent to the air conditioning heat exchanger 102 is heat-exchanged by the air conditioning heat exchanger 102 and sent into the passenger compartment.
  • the temperature efficiency of the heat exchange in the heat exchanger 102 for air conditioning is adjusted by adjusting the air flow rate of the air blower 106 for air conditioning.
  • the air-conditioning heat exchanger 102 heats the air-conditioned air flow sent to the air-conditioning target space using a refrigerant discharged from a compressor as a compressor or a fluid exchanged with the refrigerant as a heat source.
  • the air-side temperature efficiency ⁇ is obtained by the following equation, assuming that the air inlet temperature Ta_in, the air outlet temperature Ta_out, and the water inlet temperature Tw_in. This relationship is the same in other heat exchangers, and is the same even if the refrigerant is other than water.
  • (Ta_out ⁇ Ta_in) / (Tw_in ⁇ Ta_in)
  • the battery blower 107 sends air into the battery heat exchanger 103.
  • the air sent to the battery heat exchanger 103 exchanges heat with the battery heat exchanger 103 and is sent to the battery.
  • the temperature efficiency of the heat exchange in the battery heat exchanger 103 is adjusted by adjusting the amount of air blown from the battery blower 107.
  • the battery heat exchanger 103 heats a battery air stream sent to the battery using a refrigerant discharged from a compressor as a compressor or a fluid exchanged with the refrigerant as a heat source.
  • the refrigerant circuit 11 includes a chiller 111, a compressor 112, a water-cooled condenser 101, and an expansion valve 113.
  • the high-temperature refrigerant pumped by the compressor 112 as a compressor that compresses and discharges the refrigerant exchanges heat with water in the high-temperature side water circuit 10 by the water-cooled condenser 101.
  • the refrigerant that has exchanged heat with the water-cooled condenser 101 goes to the chiller 111 via the expansion valve 113.
  • the refrigerant exchanges heat with water flowing in the low temperature side water circuit 12 in the chiller 111.
  • the low temperature side water circuit 12 includes an LT radiator 121 serving as an endothermic heat exchanger, a chiller 111, and a pump 122.
  • the water absorbed by the LT radiator 121 is sent to the chiller 111 by the pump 122 and exchanges heat with the refrigerant in the chiller 111.
  • the control device 13 outputs a drive signal for driving each of the pump 104, the air-conditioning blower 106, the battery blower 107, the compressor 112, and the pump 122. Water temperature information acquired by the water temperature sensor 105 is output to the control device 13.
  • the air-conditioning air flow sent from the air-conditioning blower 106 to the air-conditioning heat exchanger 102 is configured to be sent as battery air-flow to the battery heat exchanger 103 by the battery blower 107.
  • the air-conditioning blower 106 and the battery blower 107 are so-called push-type blowers, but a so-called suction-type blower may be used.
  • the control of the control device 13 will be described with reference to FIG.
  • the compressor 112 and the pumps 104 and 122 are started to operate.
  • the outlet temperature of the water-cooled condenser 101 gradually increases. It is necessary to increase the temperature of the battery in the initial stage of startup.
  • heat is used for heating the vehicle interior during periods when the outlet temperature of the water-cooled condenser 101 is not so high at the beginning of startup. It is preferable to use heat for warming up the battery rather than doing so.
  • Completion of battery warm-up is a state in which an output for running can be obtained from the battery, and the effect of heat insulation or warm-up can be obtained by self-heating due to charging / discharging of the battery.
  • the outlet temperature of the water-cooled condenser 101 is further increased, so that the air speed of the air-conditioning blower 106 can be further increased, and air having a necessary temperature and air volume can be supplied into the vehicle interior.
  • the control device 13 is configured so that the air-side temperature efficiency in the air-conditioning heat exchanger 102 is higher than the air-side temperature efficiency in the battery heat exchanger 103 and A battery warm-up mode for controlling the battery blower 107 is executed.
  • this battery warm-up mode it is possible to change the outlet temperature of each heat exchanger while supplying the same temperature fluid to the air conditioner heat exchanger 102 and the battery heat exchanger 103. It is possible to achieve both air supply for supplying air and air for batteries that do not require high-temperature air.
  • the control device 13 controls the air conditioning air flow so that the wind speed of the battery air flow passing through the battery heat exchanger 103 is faster than the wind speed of the air conditioning air flow passing through the air conditioning heat exchanger 102. At least one of the blower 106 and the battery blower 107 is adjusted. In general, if the inlet water temperature and the inlet air temperature of the heat exchanger are the same, the outlet air temperature relatively decreases as the wind speed increases, and the outlet air temperature increases relatively as the wind speed decreases. .
  • the battery heat exchanger is used rather than the wind speed of the air-conditioning air flow passing through the air conditioner heat exchanger 102.
  • the outlet air temperature of the battery heat exchanger 103 becomes lower than the outlet air temperature of the air conditioning heat exchanger 102.
  • the air speed of the air-conditioning air flow passing through the air-conditioning heat exchanger 102 and the air speed of the battery air-flow of the battery heat exchanger 103 are such that the temperature of the air-conditioning air flow is higher than the temperature of the battery air-flow.
  • the wind speed sent out by the battery blower 107 is driven so as to be relatively higher than the wind speed sent out by the air conditioning blower 106, so the amount of heat necessary for starting the battery is supplied. can do.
  • the controller 13 starts the battery blower 107 from the stage where the temperature of the refrigerant or fluid flowing in the battery heat exchanger 103 is lower than the temperature of the refrigerant or fluid flowing in the air conditioning heat exchanger 102. To drive. As described above, since the battery fan 107 is driven from the state where the temperature of the refrigerant or water is low by starting to drive the compressor 112, the battery warm-up can be completed quickly.
  • the control device 13 When the control device 13 executes the battery warm-up mode and determines that the battery has reached the target temperature, the control device 13 controls the battery blower 107 so that the wind speed of the battery air flow passing through the battery heat exchanger 103 decreases. . As described above, when the battery warm-up mode is executed and it is determined that the battery has reached the target temperature, the wind speed of the battery air flow passing through the battery heat exchanger 103 is reduced and stopped, so that the excess A lot of heat can be used for indoor air conditioning without using heat for battery warm-up.
  • the battery warm-up system 1A according to the second embodiment will be described with reference to FIG.
  • the battery warm-up system 1 ⁇ / b> A has a three-way valve 108 added to the high-temperature side water circuit 10.
  • the control device 13 can adjust the amount of water flowing into the air-conditioning heat exchanger 102 and the amount of water flowing into the battery heat exchanger 103 by controlling the opening of the three-way valve 108.
  • the control of the control device 13 in the second embodiment will be described with reference to FIG.
  • the compressor 112 and the pumps 104 and 122 are started to operate.
  • the outlet temperature of the water-cooled condenser 101 gradually increases. It is necessary to increase the temperature of the battery in the initial stage of startup.
  • heat is used for heating the vehicle interior during periods when the outlet temperature of the water-cooled condenser 101 is not so high at the beginning of startup. It is preferable to use heat for warming up the battery rather than doing so.
  • the outlet temperature of the water-cooled condenser 101 further rises, so the air-conditioning blower 106 is driven. Further, the three-way valve 108 is adjusted and controlled so that water flows into the battery heat exchanger 103 and the air conditioning heat exchanger 102. On the other hand, the temperature efficiency in the air conditioner heat exchanger 102 is adjusted to be higher than the temperature efficiency in the battery heat exchanger 103. From time t1 to time t2, the amount of heat required for starting the battery can be supplied by driving the wind speed sent out by the battery blower 107 to be relatively higher than the wind speed sent out by the air conditioning blower 106. .
  • the amount of water flowing into the air conditioning heat exchanger 102 is made larger than the amount of water flowing into the battery heat exchanger 103.
  • the inlet water temperature and the inlet air temperature of the heat exchanger are the same, the outlet air temperature will rise relatively if the flow rate of water increases, and the outlet air temperature will become relatively higher if the flow rate of water decreases. Descend. Therefore, from time t1 to time t2, the temperature efficiency in the air-conditioning heat exchanger 102 is higher than the temperature efficiency in the battery heat exchanger 103 from the viewpoints of wind speed adjustment and water volume adjustment. It has been adjusted. Air supply for air conditioning that wants to supply air at a higher temperature and air supply for batteries that do not require high-temperature air can be made compatible.
  • the rotational speed of the air conditioning fan 106 is increased so that the amount of air sent from the air conditioning fan 106 is further increased.
  • the three-way valve 108 is adjusted to reduce the amount of water flowing into the battery heat exchanger 103 and reduce the amount of water flowing into the air conditioning heat exchanger 102.
  • a functioning three-way valve 108 is provided.
  • the control device 13 is configured to control the air conditioner fan 106, the battery fan 107, and the three-way valve 108.
  • the controller 13 controls the air conditioner fan 106, the battery fan 107, and the three-way valve 108 so that the air side temperature efficiency in the air conditioner heat exchanger 102 is higher than the air side temperature efficiency in the battery heat exchanger 103.
  • a battery warm-up mode for controlling at least one is executed.
  • the amount of water sent to the air conditioning heat exchanger 102 and the battery heat exchanger 103 is adjusted. Heat can be used efficiently.
  • the control device 13 causes the amount of refrigerant or fluid sent to the battery heat exchanger 103 to be smaller than the amount of refrigerant or fluid sent to the air conditioning heat exchanger 102 in the battery warm-up mode. Then, the three-way valve 108 is adjusted. The adjustment of the three-way valve 108 corresponds to the adjustment of the delivery amount of at least one of the air conditioning adjustment unit and the battery adjustment unit in the present invention. In the second embodiment, from time t1 to time t2 and from time t2 to time t3, the amount of water fed into the battery heat exchanger 103 is less than the amount of water fed into the air conditioning heat exchanger 102. In addition, the three-way valve 108 is adjusted. By adjusting the amount of water fed in this way, it is possible to achieve both air supply for supplying air at a higher temperature and air supply for batteries that do not require air at a very high temperature.
  • the controller 13 starts from a stage where the temperature of the refrigerant or fluid flowing in the battery heat exchanger 103 is lower than the temperature of the refrigerant or fluid flowing in the air-conditioning heat exchanger 102. At least one of the air conditioner blower 106, the battery blower 107, and the three-way valve 108 is controlled so that the battery heat exchanger 103 starts to exchange heat. Since the compressor 112 is started and water is supplied to the battery heat exchanger 103 while driving the battery blower 107 from a state in which the temperature of the refrigerant or water is low, the battery warm-up can be completed quickly.
  • the control device 13 executes the battery warm-up mode and determines that the battery has reached the target temperature
  • the battery blower 107 so that the wind speed of the battery air passing through the battery heat exchanger 103 decreases.
  • the three-way valve 108 is controlled so that the amount of refrigerant or fluid sent to the battery heat exchanger 103 is reduced.
  • the control device 13 executes the battery warm-up mode when the discharge is started from the battery. If this battery warm-up system 1, 1 ⁇ / b> A is mounted on a vehicle, the case where the battery starts discharging is when the ignition switch is turned on.
  • control device 13 executes the battery warm-up mode when the temperature of the refrigerant or fluid is higher than the temperature of the battery. This is because the startability of the battery is improved if air having a temperature slightly higher than the battery temperature can be supplied.
  • the fluid is high-temperature water that is heat-exchanged by the water-cooled condenser 101 that is a water-refrigerant heat exchanger in the refrigeration cycle, and the air-conditioning heat exchanger 102 and the battery heat exchanger 103. And are arranged in parallel.
  • the air conditioning heat exchanger 102 and the battery heat exchanger 103 are arranged in parallel.
  • the three-way valve 108 can be provided as in the second embodiment, and the air conditioning heat exchanger 102 and the battery heat exchanger 103 can be provided. The amount of water supplied to each can be adjusted.
  • the fluid is the same as that of the high-temperature water that is heat-exchanged by the water-cooled condenser 101 that is a water-refrigerant heat exchanger in the refrigeration cycle, and from the upstream side where the fluid flows as in the modification shown in FIG.
  • the water-cooled condenser 101, the air-conditioning heat exchanger 102, and the battery heat exchanger 103 can be arranged in series in this order. In this way, the branching of the flow path can be eliminated. Further, by arranging the air conditioner heat exchanger 102 on the upstream side and the battery heat exchanger 103 on the downstream side, high-temperature water is supplied to the air conditioner heat exchanger 102, and the battery heat exchanger 103. Can be supplied with water suitable for warming up the battery at a low temperature.
  • an outdoor unit 121C can be provided in the refrigerant circuit 11C. Since the outdoor unit 121C can directly absorb heat, the low temperature side water circuit 12 can be omitted.
  • the high-temperature side water circuit 10 can be omitted, and a refrigerant circuit 11D can be provided in which the air conditioner heat exchanger 102 and the battery heat exchanger 103 directly exchange heat with the refrigerant.
  • the air conditioner heat exchanger 102 and the battery heat exchanger 103 are arranged in series.
  • the air conditioner heat exchanger 102 and the battery heat exchanger 103 are arranged in parallel.
  • An arranged refrigerant circuit 11E can also be provided.

Abstract

A battery warm-up mode for controlling at least one of an air conditioner fan 106 and a battery fan 107 is executed so that the air side temperature efficiency of an air conditioner heat exchanger 102 becomes higher than the air side temperature efficiency of a battery heat exchanger 103.

Description

電池暖機システムBattery warm-up system 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年11月9日に出願された日本国特許出願2015-219621号と、2016年10月4日に出願された日本国特許出願2016-196184号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2015-219621 filed on November 9, 2015 and Japanese Patent Application No. 2016-196184 filed on October 4, 2016. Claims the benefit of that priority, the entire contents of which are incorporated herein by reference.
 本開示は、電池暖機システムに関する。 This disclosure relates to a battery warm-up system.
 車両に搭載された電池を、主に起動初期において暖機する電池暖機システムとして、下記特許文献1に記載のものが知られている。下記特許文献1に記載の電池暖機システムは、冷凍サイクル装置であって、空調対象空間へ送り出される空気温度を調整しつつ、電池暖機のために送り出される空気温度を調整するものである。 As a battery warming-up system that warms up a battery mounted on a vehicle mainly in the initial stage of startup, a battery described in Patent Document 1 below is known. The battery warm-up system described in Patent Document 1 below is a refrigeration cycle apparatus, and adjusts the air temperature sent out for battery warm-up while adjusting the air temperature sent out to the air-conditioning target space.
 下記特許文献1に記載の冷凍サイクル装置は、圧縮機から吐出された冷媒を熱源として車室内へ送風される室内用送風空気を加熱する送風空気用熱交換器と、送風空気用熱交換器から流出した冷媒を減圧させる高段側膨張弁と、高段側膨張弁にて減圧された冷媒を熱源としてバッテリに吹き付けられる電池用送風空気を加熱するバッテリ用熱交換器とを備えている。冷凍サイクル装置は、室内暖房+電気暖機モード時に、室内用送風空気の送風空気温度が目標吹出温度に近づくように圧縮機の冷媒吐出能力を制御し、バッテリの温度である電池温度が予め定めた基準温度範囲内となるように高段側膨張弁の絞り開度を制御している。 The refrigeration cycle apparatus described in Patent Literature 1 below includes a blower air heat exchanger that heats indoor blown air that is blown into the vehicle interior using the refrigerant discharged from the compressor as a heat source, and a blown air heat exchanger. A high-stage expansion valve that depressurizes the refrigerant that has flowed out, and a battery heat exchanger that heats battery air blown to the battery using the refrigerant decompressed by the high-stage expansion valve as a heat source. The refrigeration cycle apparatus controls the refrigerant discharge capacity of the compressor so that the blown air temperature of the indoor blown air approaches the target blowout temperature in the indoor heating + electric warm-up mode, and the battery temperature, which is the battery temperature, is determined in advance. The throttle opening degree of the high stage side expansion valve is controlled so as to be within the reference temperature range.
特開2014-37959号公報JP 2014-37959 A
 特許文献1では、2温度の冷媒を作るため、高段側膨張弁を送風空気用熱交換器とバッテリ用熱交換との間に設けている。そのため、例えば高温側水回路と冷媒回路とを備え、冷媒回路に設けられた水冷コンデンサで熱交換して高温となった水を用いて両熱交換器に供給するようなシステムを採用した場合には対応することができない。 In Patent Document 1, a high-stage expansion valve is provided between a blower air heat exchanger and a battery heat exchange in order to produce a two-temperature refrigerant. Therefore, for example, when a system that includes a high-temperature side water circuit and a refrigerant circuit and supplies water to the two heat exchangers using water that has been exchanged heat with a water-cooled condenser provided in the refrigerant circuit is adopted. Can not respond.
 本開示は、空調用の熱交換器と電池用の熱交換器とに冷媒又は流体を供給する態様における自由度を高め、電池の暖機を適切に行うことができる電池暖機システムを提供することを目的とする。 The present disclosure provides a battery warm-up system that can increase the degree of freedom in an aspect in which a refrigerant or a fluid is supplied to a heat exchanger for air conditioning and a heat exchanger for battery, and can appropriately warm up the battery. For the purpose.
 本開示は、電池暖機システムであって、冷媒を圧縮して吐出する圧縮機(112)と、圧縮機から吐出された冷媒又は前記冷媒と熱交換された流体を熱源として、空調対象空間へ送り出される空調空気流を加熱する空調用熱交換器(102)と、圧縮機から吐出された冷媒又は冷媒と熱交換された流体を熱源として、電池へ送り出される電池空気流を加熱する電池用熱交換器(103)と、空調用熱交換器を通過する空調空気流を発生する空調用送風機(106)と、電池用熱交換器を通過する電池空気を発生する電池用送風機(107)と、空調用送風機及び電池用送風機を制御する制御装置(13)と、を備える。制御装置は、空調用熱交換器における空気側温度効率が、電池用熱交換器における空気側温度効率よりも高くなるように、空調用送風機及び電池用送風機の少なくとも一方を制御する電池暖機モードを実行する。 The present disclosure relates to a battery warm-up system, which includes a compressor (112) that compresses and discharges a refrigerant, and a refrigerant discharged from the compressor or a fluid that exchanges heat with the refrigerant as a heat source. Heat exchanger for air conditioning (102) that heats the air-conditioning air flow that is sent out, and heat for the battery that heats the battery air flow that is sent to the battery using the refrigerant discharged from the compressor or the fluid exchanged with the refrigerant as a heat source An exchanger (103), an air-conditioning fan (106) that generates an air-conditioned air flow that passes through the air-conditioning heat exchanger, and a battery fan (107) that generates battery air that passes through the battery heat exchanger; And a control device (13) for controlling the air conditioner blower and the battery blower. The control device is a battery warm-up mode that controls at least one of the air-conditioning blower and the battery blower so that the air-side temperature efficiency in the air-conditioning heat exchanger is higher than the air-side temperature efficiency in the battery heat exchanger. Execute.
 本開示によれば、電池暖機モードの実行により、空調用熱交換器及び電池用熱交換器に同じ温度の流体を供給しつつ、各熱交換器出口温度を変えることができるので、より高い温度の空気を供給したい空調用と、さほど高い温度の空気は必要ではない電池用との空気供給を両立させることができる。 According to the present disclosure, by executing the battery warm-up mode, it is possible to change the outlet temperature of each heat exchanger while supplying a fluid having the same temperature to the heat exchanger for air conditioning and the heat exchanger for battery. Air supply for supplying air at a high temperature and air supply for batteries that do not require high-temperature air can be made compatible.
図1は、本発明の第1実施形態に係る電池暖機システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a battery warm-up system according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係る電池暖機システムを車両に搭載した例を示す図である。FIG. 2 is a diagram illustrating an example in which the battery warm-up system according to the first embodiment of the present invention is mounted on a vehicle. 図3は、図1に示される電池暖機システムを稼働させた場合の各部温度・風速の変化を示すタイミングチャートである。FIG. 3 is a timing chart showing changes in temperature and wind speed of each part when the battery warm-up system shown in FIG. 1 is operated. 図4は、本発明の第2実施形態に係る電池暖機システムの構成を示す図である。FIG. 4 is a diagram showing a configuration of a battery warm-up system according to the second embodiment of the present invention. 図5は、図4に示される電池暖機システムを稼働させた場合の各部温度・風速の変化を示すタイミングチャートである。FIG. 5 is a timing chart showing changes in temperature and wind speed of each part when the battery warm-up system shown in FIG. 4 is operated. 図6は、本発明の第1実施形態の変形例に係る電池暖機システムの構成を示す図である。FIG. 6 is a diagram showing a configuration of a battery warm-up system according to a modification of the first embodiment of the present invention. 図7は、本発明の第1実施形態の変形例に係る電池暖機システムの構成を示す図である。FIG. 7 is a diagram illustrating a configuration of a battery warm-up system according to a modification of the first embodiment of the present invention. 図8は、本発明の第1実施形態の変形例に係る電池暖機システムの構成を示す図である。FIG. 8 is a diagram showing a configuration of a battery warm-up system according to a modification of the first embodiment of the present invention. 図9は、本発明の第1実施形態の変形例に係る電池暖機システムの構成を示す図である。FIG. 9 is a diagram showing a configuration of a battery warm-up system according to a modification of the first embodiment of the present invention.
 以下、添付図面を参照しながら本発明の実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 図1に示されるように、第1実施形態に係る電池暖機システム1は、高温側水回路10と、冷媒回路11と、低温側水回路12と、制御装置13と、を備えている。 As shown in FIG. 1, the battery warm-up system 1 according to the first embodiment includes a high-temperature side water circuit 10, a refrigerant circuit 11, a low-temperature side water circuit 12, and a control device 13.
 高温側水回路10は、水冷コンデンサ101と、空調用熱交換器102と、電池用熱交換器103と、ポンプ104と、水温センサ105と、空調用送風機106と、電池用送風機107と、を備えている。 The high-temperature water circuit 10 includes a water-cooled condenser 101, an air conditioning heat exchanger 102, a battery heat exchanger 103, a pump 104, a water temperature sensor 105, an air conditioning fan 106, and a battery fan 107. I have.
 高温側水回路10では、水冷コンデンサ101で生成された暖かい水を、空調用熱交換器102と、電池用熱交換器103とに分配する、空調用熱交換器102と、電池用熱交換器103とは並列に配置されている。水冷コンデンサ101よりも上流側にはポンプ104が設けられている。ポンプ104が駆動することにより、高温側水回路10内の水が循環する。 In the high temperature side water circuit 10, the warm water generated by the water-cooled condenser 101 is distributed to the air conditioning heat exchanger 102 and the battery heat exchanger 103, and the air conditioning heat exchanger 102 and the battery heat exchanger. 103 is arranged in parallel. A pump 104 is provided on the upstream side of the water-cooled condenser 101. By driving the pump 104, the water in the high temperature side water circuit 10 circulates.
 水温センサ105は、水冷コンデンサ101の出口水温を測定するためのセンサである。空調用送風機106は、空調用熱交換器102に空気を送り込む。空調用熱交換器102に送り込まれた空気は、空調用熱交換器102で熱交換し車室内に送り込まれる。本実施形態では、空調用送風機106の送風量を調整することで、空調用熱交換器102における熱交換の温度効率を調整している。空調用熱交換器102は、圧縮機であるコンプレッサから吐出された冷媒又はその冷媒と熱交換された流体を熱源として、空調対象空間へ送り出される空調空気流を加熱するものである。尚、空調用熱交換器102における温度効率の内、空気側温度効率ηは、空気入口温度Ta_in、空気出口温度Ta_out、水入口温度Tw_inとすると、次式によって求められる。この関係は他の熱交換器でも同様であり、冷媒が水以外であっても同様である。
η=(Ta_out-Ta_in)/(Tw_in-Ta_in)
The water temperature sensor 105 is a sensor for measuring the outlet water temperature of the water-cooled condenser 101. The air conditioner blower 106 sends air into the air conditioner heat exchanger 102. The air sent to the air conditioning heat exchanger 102 is heat-exchanged by the air conditioning heat exchanger 102 and sent into the passenger compartment. In this embodiment, the temperature efficiency of the heat exchange in the heat exchanger 102 for air conditioning is adjusted by adjusting the air flow rate of the air blower 106 for air conditioning. The air-conditioning heat exchanger 102 heats the air-conditioned air flow sent to the air-conditioning target space using a refrigerant discharged from a compressor as a compressor or a fluid exchanged with the refrigerant as a heat source. Of the temperature efficiencies in the air-conditioning heat exchanger 102, the air-side temperature efficiency η is obtained by the following equation, assuming that the air inlet temperature Ta_in, the air outlet temperature Ta_out, and the water inlet temperature Tw_in. This relationship is the same in other heat exchangers, and is the same even if the refrigerant is other than water.
η = (Ta_out−Ta_in) / (Tw_in−Ta_in)
 電池用送風機107は、電池用熱交換器103に空気を送り込む。電池用熱交換器103に送り込まれた空気は、電池用熱交換器103で熱交換し電池に送り込まれる。本実施形態では、電池用送風機107の送風量を調整することで、電池用熱交換器103における熱交換の温度効率を調整している。電池用熱交換器103は、圧縮機であるコンプレッサから吐出された冷媒又はその冷媒と熱交換された流体を熱源として、電池へ送り出される電池空気流を加熱するものである。 The battery blower 107 sends air into the battery heat exchanger 103. The air sent to the battery heat exchanger 103 exchanges heat with the battery heat exchanger 103 and is sent to the battery. In this embodiment, the temperature efficiency of the heat exchange in the battery heat exchanger 103 is adjusted by adjusting the amount of air blown from the battery blower 107. The battery heat exchanger 103 heats a battery air stream sent to the battery using a refrigerant discharged from a compressor as a compressor or a fluid exchanged with the refrigerant as a heat source.
 冷媒回路11は、チラー111と、コンプレッサ112と、水冷コンデンサ101と、膨張弁113と、を備えている。冷媒を圧縮して吐出する圧縮機としてのコンプレッサ112によって圧送された高温冷媒は、水冷コンデンサ101で高温側水回路10の水と熱交換する。水冷コンデンサ101で熱交換した冷媒は、膨張弁113を経由してチラー111に向かう。冷媒はチラー111において、低温側水回路12を流れる水と熱交換する。 The refrigerant circuit 11 includes a chiller 111, a compressor 112, a water-cooled condenser 101, and an expansion valve 113. The high-temperature refrigerant pumped by the compressor 112 as a compressor that compresses and discharges the refrigerant exchanges heat with water in the high-temperature side water circuit 10 by the water-cooled condenser 101. The refrigerant that has exchanged heat with the water-cooled condenser 101 goes to the chiller 111 via the expansion valve 113. The refrigerant exchanges heat with water flowing in the low temperature side water circuit 12 in the chiller 111.
 低温側水回路12は、吸熱熱交換器としてのLTラジエータ121と、チラー111と、ポンプ122と、を備えている。LTラジエータ121において吸熱した水は、ポンプ122によってチラー111に送り込まれ、チラー111において冷媒と熱交換する。 The low temperature side water circuit 12 includes an LT radiator 121 serving as an endothermic heat exchanger, a chiller 111, and a pump 122. The water absorbed by the LT radiator 121 is sent to the chiller 111 by the pump 122 and exchanges heat with the refrigerant in the chiller 111.
 制御装置13は、ポンプ104と、空調用送風機106と、電池用送風機107と、コンプレッサ112と、ポンプ122と、のそれぞれを駆動するための駆動信号を出力する。制御装置13には、水温センサ105が取得した水温情報が出力される。 The control device 13 outputs a drive signal for driving each of the pump 104, the air-conditioning blower 106, the battery blower 107, the compressor 112, and the pump 122. Water temperature information acquired by the water temperature sensor 105 is output to the control device 13.
 図2に示されるように、空調用熱交換器102に空調用送風機106が送り込んだ空調空気流は、電池用送風機107によって電池用熱交換器103に電池用空気流として送り込まれるように構成されている。尚、本実施形態の場合、空調用送風機106及び電池用送風機107は、いわゆる押し込みタイプの送風機であるが、いわゆる吸込みタイプの送風機を用いてもよい。 As shown in FIG. 2, the air-conditioning air flow sent from the air-conditioning blower 106 to the air-conditioning heat exchanger 102 is configured to be sent as battery air-flow to the battery heat exchanger 103 by the battery blower 107. ing. In the case of the present embodiment, the air-conditioning blower 106 and the battery blower 107 are so-called push-type blowers, but a so-called suction-type blower may be used.
 続いて、図3を参照しながら、制御装置13の制御について説明する。電池暖機システム1が運転開始されると、コンプレッサ112、ポンプ104,122が駆動開始される。図3の(A)に示されるように、水冷コンデンサ101の出口温度が徐々に上昇する。この起動初期において、電池の温度を高める必要がある。また、車室内の暖房に必要な空気温度は電池暖機に必要な暖機温度よりも高いため、起動初期において水冷コンデンサ101の出口温度がさほど高くない期間は、車室内の暖房に熱を使用するよりも電池の暖機に熱を使用するほうが好ましい。 Subsequently, the control of the control device 13 will be described with reference to FIG. When the battery warm-up system 1 is started to operate, the compressor 112 and the pumps 104 and 122 are started to operate. As shown in FIG. 3A, the outlet temperature of the water-cooled condenser 101 gradually increases. It is necessary to increase the temperature of the battery in the initial stage of startup. In addition, since the air temperature required for heating the vehicle interior is higher than the warm-up temperature required for battery warm-up, heat is used for heating the vehicle interior during periods when the outlet temperature of the water-cooled condenser 101 is not so high at the beginning of startup. It is preferable to use heat for warming up the battery rather than doing so.
 そこでこの実施形態では、図3の(E)に示されるように、電池暖機システム1の起動に合わせて、電池用送風機107のみを駆動させる。起動初期から時刻t1においては、電池用熱交換器103のみにおいて熱交換が行われるので、図3の(C)に示されるように電池用熱交換器103の出口空気温度が上昇し、図3の(B)に示されるように電池の温度が上昇する。 Therefore, in this embodiment, as shown in FIG. 3E, only the battery blower 107 is driven in accordance with the activation of the battery warm-up system 1. At time t1 from the start of startup, heat exchange is performed only in the battery heat exchanger 103, so that the outlet air temperature of the battery heat exchanger 103 rises as shown in FIG. As shown in (B), the temperature of the battery rises.
 時刻t1に到達すると、水冷コンデンサ101の出口温度が更に上昇するので、空調用送風機106を駆動させる。一方、空調用熱交換器102における温度効率は、電池用熱交換器103における温度効率よりも高くなるように調整される。より高い温度の空気を供給したい空調用と、さほど高い温度の空気は必要ではない電池用との空気供給を両立させることができる。 When time t1 is reached, the outlet temperature of the water-cooled condenser 101 further rises, so the air-conditioning blower 106 is driven. On the other hand, the temperature efficiency in the air conditioner heat exchanger 102 is adjusted to be higher than the temperature efficiency in the battery heat exchanger 103. Air supply for air conditioning that wants to supply air at a higher temperature and air supply for batteries that do not require high-temperature air can be made compatible.
 時刻t2に到達すると、電池暖機が完了するので、電池用送風機107が停止される。電池暖機の完了とは、電池から走行用の出力を得ることができ、電池の充放電による自己発熱で保温若しくは暖機の効果が得られる状態である。 When the time t2 is reached, the battery warm-up is completed, so the battery blower 107 is stopped. Completion of battery warm-up is a state in which an output for running can be obtained from the battery, and the effect of heat insulation or warm-up can be obtained by self-heating due to charging / discharging of the battery.
 時刻t3に到達すると、水冷コンデンサ101の出口温度が更に高まるので、空調用送風機106の風速を更に上昇させ、必要な温度且つ風量の空気を車室内に供給することができる。 When the time t3 is reached, the outlet temperature of the water-cooled condenser 101 is further increased, so that the air speed of the air-conditioning blower 106 can be further increased, and air having a necessary temperature and air volume can be supplied into the vehicle interior.
 上記したように第1実施形態において制御装置13は、空調用熱交換器102における空気側温度効率が、電池用熱交換器103における空気側温度効率よりも高くなるように、空調用送風機106及び電池用送風機107を制御する電池暖機モードを実行する。この電池暖機モードの実行により、空調用熱交換器102及び電池用熱交換器103に同じ温度の流体を供給しつつ、各熱交換器出口温度を変えることができるので、より高い温度の空気を供給したい空調用と、さほど高い温度の空気は必要ではない電池用との空気供給を両立させることができる。 As described above, in the first embodiment, the control device 13 is configured so that the air-side temperature efficiency in the air-conditioning heat exchanger 102 is higher than the air-side temperature efficiency in the battery heat exchanger 103 and A battery warm-up mode for controlling the battery blower 107 is executed. By executing this battery warm-up mode, it is possible to change the outlet temperature of each heat exchanger while supplying the same temperature fluid to the air conditioner heat exchanger 102 and the battery heat exchanger 103. It is possible to achieve both air supply for supplying air and air for batteries that do not require high-temperature air.
 また制御装置13は、電池暖機モードにおいて、空調用熱交換器102を通過する空調空気流の風速よりも電池用熱交換器103を通過する電池空気流の風速が速くなるように、空調用送風機106及び電池用送風機107の少なくとも一方の送風量を調整する。一般的に、熱交換器の入口水温と入口空気温とが同じであれば、風速が速くなれば出口空気温は相対的に低下し、風速が遅くなれば出口空気温は相対的に上昇する。従って、空調用熱交換器102の入口水温と電池用熱交換器107の入口水温とはほぼ同じであるので、空調用熱交換器102を通過する空調空気流の風速よりも電池用熱交換器103を通過する電池空気流の風速が速くなるよう調整すると、空調用熱交換器102の出口空気温よりも電池用熱交換器103の出口空気温は低くなる。空調用熱交換器102を通過する空調空気流の風速と、電池用熱交換器103の電池用空気流の風速とは、空調用空気流の温度が電池用空気流の温度よりも高くなるようなものであれば、どのように設定してもよい。上記したように、時刻t1から時刻t2においては、電池用送風機107が送り出す風速を、空調用送風機106が送り出す風速よりも相対的に高くなるように駆動するので、電池始動に必要な熱量を供給することができる。 In the battery warm-up mode, the control device 13 controls the air conditioning air flow so that the wind speed of the battery air flow passing through the battery heat exchanger 103 is faster than the wind speed of the air conditioning air flow passing through the air conditioning heat exchanger 102. At least one of the blower 106 and the battery blower 107 is adjusted. In general, if the inlet water temperature and the inlet air temperature of the heat exchanger are the same, the outlet air temperature relatively decreases as the wind speed increases, and the outlet air temperature increases relatively as the wind speed decreases. . Accordingly, since the inlet water temperature of the air conditioner heat exchanger 102 and the inlet water temperature of the battery heat exchanger 107 are substantially the same, the battery heat exchanger is used rather than the wind speed of the air-conditioning air flow passing through the air conditioner heat exchanger 102. When adjustment is made so that the wind speed of the battery air flow passing through 103 becomes faster, the outlet air temperature of the battery heat exchanger 103 becomes lower than the outlet air temperature of the air conditioning heat exchanger 102. The air speed of the air-conditioning air flow passing through the air-conditioning heat exchanger 102 and the air speed of the battery air-flow of the battery heat exchanger 103 are such that the temperature of the air-conditioning air flow is higher than the temperature of the battery air-flow. Any method may be used as long as it is appropriate. As described above, from time t1 to time t2, the wind speed sent out by the battery blower 107 is driven so as to be relatively higher than the wind speed sent out by the air conditioning blower 106, so the amount of heat necessary for starting the battery is supplied. can do.
 また制御装置13は、電池暖機モードにおいて、空調用熱交換器102に流れる冷媒又は流体の温度よりも、電池用熱交換器103に流れる冷媒又は流体の温度が低い段階から電池用送風機107が駆動する。上記したように、コンプレッサ112を駆動し始めて冷媒又は水の温度が低い状態から電池用送風機107を駆動するので、電池暖機を早く完了させることができる。 In the battery warm-up mode, the controller 13 starts the battery blower 107 from the stage where the temperature of the refrigerant or fluid flowing in the battery heat exchanger 103 is lower than the temperature of the refrigerant or fluid flowing in the air conditioning heat exchanger 102. To drive. As described above, since the battery fan 107 is driven from the state where the temperature of the refrigerant or water is low by starting to drive the compressor 112, the battery warm-up can be completed quickly.
 また制御装置13は、電池暖機モードを実行し電池が目標温度に達したと判断すると、電池用熱交換器103を通過する電池空気流の風速が低下するように電池用送風機107を制御する。上記したように、電池暖機モードを実行し電池が目標温度に達したと判断すると、電池用熱交換器103を通過する電池空気流の風速が低下させられ停止させられているので、余分な電池暖機に熱を使うこと無く室内空調により多くの熱を用いることができる。 When the control device 13 executes the battery warm-up mode and determines that the battery has reached the target temperature, the control device 13 controls the battery blower 107 so that the wind speed of the battery air flow passing through the battery heat exchanger 103 decreases. . As described above, when the battery warm-up mode is executed and it is determined that the battery has reached the target temperature, the wind speed of the battery air flow passing through the battery heat exchanger 103 is reduced and stopped, so that the excess A lot of heat can be used for indoor air conditioning without using heat for battery warm-up.
 続いて、図4を参照しながら第2実施形態に係る電池暖機システム1Aについて説明する。第1実施形態に係る電池暖機システム1に対して、電池暖機システム1Aは、高温側水回路10に三方弁108を追加している。制御装置13は、三方弁108の開度を制御することで、空調用熱交換器102に流れ込む水の量と、電池用熱交換器103に流れる水の量と、を調整することができる。 Subsequently, a battery warm-up system 1A according to the second embodiment will be described with reference to FIG. Compared to the battery warm-up system 1 according to the first embodiment, the battery warm-up system 1 </ b> A has a three-way valve 108 added to the high-temperature side water circuit 10. The control device 13 can adjust the amount of water flowing into the air-conditioning heat exchanger 102 and the amount of water flowing into the battery heat exchanger 103 by controlling the opening of the three-way valve 108.
 続いて、図5を参照しながら、第2実施形態における制御装置13の制御について説明する。電池暖機システム1Aが運転開始されると、コンプレッサ112、ポンプ104,122が駆動開始される。図5の(A)に示されるように、水冷コンデンサ101の出口温度が徐々に上昇する。この起動初期において、電池の温度を高める必要がある。また、車室内の暖房に必要な空気温度は電池暖機に必要な暖機温度よりも高いため、起動初期において水冷コンデンサ101の出口温度がさほど高くない期間は、車室内の暖房に熱を使用するよりも電池の暖機に熱を使用するほうが好ましい。 Subsequently, the control of the control device 13 in the second embodiment will be described with reference to FIG. When the battery warming-up system 1A is started to operate, the compressor 112 and the pumps 104 and 122 are started to operate. As shown in FIG. 5A, the outlet temperature of the water-cooled condenser 101 gradually increases. It is necessary to increase the temperature of the battery in the initial stage of startup. In addition, since the air temperature required for heating the vehicle interior is higher than the warm-up temperature required for battery warm-up, heat is used for heating the vehicle interior during periods when the outlet temperature of the water-cooled condenser 101 is not so high at the beginning of startup. It is preferable to use heat for warming up the battery rather than doing so.
 そこでこの実施形態では、図5の(E)に示されるように、電池暖機システム1Aの起動に合わせて、電池用送風機107のみを駆動させる。更に、三方弁108を調整し、電池用熱交換器103にのみ水が流れこむように制御している。起動初期から時刻t1においては、電池用熱交換器103のみにおいて熱交換が行われるので、図3の(C)に示されるように電池用熱交換器103の出口空気温度が上昇し、図3の(B)に示されるように電池の温度が上昇する。 Therefore, in this embodiment, as shown in FIG. 5E, only the battery blower 107 is driven in accordance with the activation of the battery warm-up system 1A. Further, the three-way valve 108 is adjusted so that water flows only into the battery heat exchanger 103. At time t1 from the start of startup, heat exchange is performed only in the battery heat exchanger 103, so that the outlet air temperature of the battery heat exchanger 103 rises as shown in FIG. As shown in (B), the temperature of the battery rises.
 時刻t1に到達すると、水冷コンデンサ101の出口温度が更に上昇するので、空調用送風機106を駆動させる。更に、三方弁108を調整し、電池用熱交換器103及び空調用熱交換器102に水が流れこむように制御する。一方、空調用熱交換器102における温度効率は、電池用熱交換器103における温度効率よりも高くなるように調整される。時刻t1から時刻t2においては、電池用送風機107が送り出す風速を、空調用送風機106が送り出す風速よりも相対的に高くなるように駆動することで、電池始動に必要な熱量を供給することができる。更に、時刻t1から時刻t2においては、電池用熱交換器103に流れ込む水量よりも、空調用熱交換器102に流れ込む水量が多くなるようにしている。一般的に、熱交換器の入口水温と入口空気温とが同じであれば、水の流量が増えれば出口空気温は相対的に上昇し、水の流量が減れば出口空気温は相対的に下降する。従って、時刻t1から時刻t2においては、風速調整の観点からも、水量調整の観点からも、空調用熱交換器102における温度効率は、電池用熱交換器103における温度効率よりも高くなるように調整されている。より高い温度の空気を供給したい空調用と、さほど高い温度の空気は必要ではない電池用との空気供給を両立させることができる。 When time t1 is reached, the outlet temperature of the water-cooled condenser 101 further rises, so the air-conditioning blower 106 is driven. Further, the three-way valve 108 is adjusted and controlled so that water flows into the battery heat exchanger 103 and the air conditioning heat exchanger 102. On the other hand, the temperature efficiency in the air conditioner heat exchanger 102 is adjusted to be higher than the temperature efficiency in the battery heat exchanger 103. From time t1 to time t2, the amount of heat required for starting the battery can be supplied by driving the wind speed sent out by the battery blower 107 to be relatively higher than the wind speed sent out by the air conditioning blower 106. . Furthermore, from time t1 to time t2, the amount of water flowing into the air conditioning heat exchanger 102 is made larger than the amount of water flowing into the battery heat exchanger 103. Generally, if the inlet water temperature and the inlet air temperature of the heat exchanger are the same, the outlet air temperature will rise relatively if the flow rate of water increases, and the outlet air temperature will become relatively higher if the flow rate of water decreases. Descend. Therefore, from time t1 to time t2, the temperature efficiency in the air-conditioning heat exchanger 102 is higher than the temperature efficiency in the battery heat exchanger 103 from the viewpoints of wind speed adjustment and water volume adjustment. It has been adjusted. Air supply for air conditioning that wants to supply air at a higher temperature and air supply for batteries that do not require high-temperature air can be made compatible.
 時刻t2に到達すると、更に空調用送風機106から送り出される空気量が増えるように、空調用送風機106の回転数を上げる。三方弁108を調整し、電池用熱交換器103に流入する水の量を減らし、空調用熱交換器102に流入する水の量を減らす。 When the time t2 is reached, the rotational speed of the air conditioning fan 106 is increased so that the amount of air sent from the air conditioning fan 106 is further increased. The three-way valve 108 is adjusted to reduce the amount of water flowing into the battery heat exchanger 103 and reduce the amount of water flowing into the air conditioning heat exchanger 102.
 時刻t3に到達すると、電池暖機が完了するので、電池用送風機107が停止され、電池用熱交換器103への水の供給も停止される。電池暖機の完了とは、電池から走行用の出力を得ることができ、電池の充放電による自己発熱で保温若しくは暖機の効果が得られる状態である。時刻t3に到達すると、水冷コンデンサ101の出口温度が更に高まるので、空調用熱交換器102に流入する水量を更に上昇させ、必要な温度且つ風量の空気を車室内に供給することができる。 When time t3 is reached, the battery warm-up is completed, so the battery blower 107 is stopped and the supply of water to the battery heat exchanger 103 is also stopped. Completion of battery warm-up is a state in which an output for running can be obtained from the battery, and the effect of heat insulation or warm-up can be obtained by self-heating due to charging / discharging of the battery. When the time t3 is reached, the outlet temperature of the water-cooled condenser 101 further increases, so that the amount of water flowing into the air-conditioning heat exchanger 102 can be further increased, and air having a required temperature and air volume can be supplied into the vehicle interior.
 上記した第2実施形態では、空調用熱交換器102に冷媒又は流体を流す量を調整する空調用調整部及び電池用熱交換器103に冷媒又は流体を流す量を調整する電池用調整部として機能する三方弁108を設けている。制御装置13は、空調用送風機106、電池用送風機107、及び三方弁108を制御するように構成されている。制御装置13は、空調用熱交換器102における空気側温度効率が、電池用熱交換器103における空気側温度効率よりも高くなるように、空調用送風機106、電池用送風機107、三方弁108の少なくとも一つを制御する電池暖機モードを実行する。 In the second embodiment described above, as an air conditioning adjustment unit that adjusts the amount of refrigerant or fluid that flows through the air conditioning heat exchanger 102 and a battery adjustment unit that adjusts the amount of refrigerant or fluid that flows through the battery heat exchanger 103. A functioning three-way valve 108 is provided. The control device 13 is configured to control the air conditioner fan 106, the battery fan 107, and the three-way valve 108. The controller 13 controls the air conditioner fan 106, the battery fan 107, and the three-way valve 108 so that the air side temperature efficiency in the air conditioner heat exchanger 102 is higher than the air side temperature efficiency in the battery heat exchanger 103. A battery warm-up mode for controlling at least one is executed.
 空調用熱交換器102及び電池用熱交換器103に送り込む空気量の調整に加えて若しくは代えて、空調用熱交換器102及び電池用熱交換器103に送り込む水の量を調整するので、より効率的に熱を利用することができる。 In addition to or instead of adjusting the amount of air sent to the air conditioning heat exchanger 102 and the battery heat exchanger 103, the amount of water sent to the air conditioning heat exchanger 102 and the battery heat exchanger 103 is adjusted. Heat can be used efficiently.
 第2実施形態において制御装置13は、電池暖機モードにおいて、空調用熱交換器102に送り込まれる冷媒又は流体の量よりも電池用熱交換器103に送り込まれる冷媒又は流体の量が少なくなるように、三方弁108を調整する。この三方弁108の調整は、本発明における空調用調整部及び電池用調整部の少なくとも一方の送出量を調整することに相当する。第2実施形態においては、時刻t1から時刻t2及び時刻t2から時刻t3にかけて、空調用熱交換器102に送り込まれる水の量よりも電池用熱交換器103に送り込まれる水の量が少なくなるように、三方弁108を調整している。このように水の送り込み量を調整することで、より高い温度の空気を供給したい空調用と、さほど高い温度の空気は必要ではない電池用との空気供給を両立させることができる。 In the second embodiment, the control device 13 causes the amount of refrigerant or fluid sent to the battery heat exchanger 103 to be smaller than the amount of refrigerant or fluid sent to the air conditioning heat exchanger 102 in the battery warm-up mode. Then, the three-way valve 108 is adjusted. The adjustment of the three-way valve 108 corresponds to the adjustment of the delivery amount of at least one of the air conditioning adjustment unit and the battery adjustment unit in the present invention. In the second embodiment, from time t1 to time t2 and from time t2 to time t3, the amount of water fed into the battery heat exchanger 103 is less than the amount of water fed into the air conditioning heat exchanger 102. In addition, the three-way valve 108 is adjusted. By adjusting the amount of water fed in this way, it is possible to achieve both air supply for supplying air at a higher temperature and air supply for batteries that do not require air at a very high temperature.
 第2実施形態において制御装置13は、電池暖機モードにおいて、空調用熱交換器102に流れる冷媒又は流体の温度よりも、電池用熱交換器103に流れる冷媒又は流体の温度が低い段階から、電池用熱交換器103が熱交換し始めるように、空調用送風機106、電池用送風機107、及び三方弁108の少なくとも一つを制御する。コンプレッサ112を駆動し始めて冷媒又は水の温度が低い状態から電池用送風機107を駆動しつつ電池用熱交換器103に水を供給するので、電池暖機を早く完了させることができる。 In the second embodiment, in the battery warm-up mode, the controller 13 starts from a stage where the temperature of the refrigerant or fluid flowing in the battery heat exchanger 103 is lower than the temperature of the refrigerant or fluid flowing in the air-conditioning heat exchanger 102. At least one of the air conditioner blower 106, the battery blower 107, and the three-way valve 108 is controlled so that the battery heat exchanger 103 starts to exchange heat. Since the compressor 112 is started and water is supplied to the battery heat exchanger 103 while driving the battery blower 107 from a state in which the temperature of the refrigerant or water is low, the battery warm-up can be completed quickly.
 第2実施形態において制御装置13は、電池暖機モードを実行し電池が目標温度に達したと判断すると、電池用熱交換器103を通過する電池空気の風速が低下するように電池用送風機107を制御するか、電池用熱交換器103に送り込まれる冷媒又は流体の量が少なくなるように三方弁108を制御するか、のいずれか若しくは双方を実行する。電池暖機モードを実行し電池が目標温度に達したと判断すると、電池用熱交換器103を通過する電池空気の風速が低下させられ停止させられていることに加えて、電池用熱交換器103への水の供給を停止しているので、余分な電池暖機に熱を使うこと無く室内空調により多くの熱を用いることができる。 In the second embodiment, when the control device 13 executes the battery warm-up mode and determines that the battery has reached the target temperature, the battery blower 107 so that the wind speed of the battery air passing through the battery heat exchanger 103 decreases. Or the three-way valve 108 is controlled so that the amount of refrigerant or fluid sent to the battery heat exchanger 103 is reduced. When the battery warm-up mode is executed and it is determined that the battery has reached the target temperature, the wind speed of the battery air passing through the battery heat exchanger 103 is reduced and stopped, and the battery heat exchanger Since the supply of water to 103 is stopped, more heat can be used for indoor air conditioning without using heat for extra battery warm-up.
 上記第1実施形態及び第2実施形態において制御装置13は、電池から放電が開始される場合に、電池暖機モードを実行する。この電池暖機システム1,1Aが車両に搭載されているのであれば、電池から放電が開始される場合とはイグニッションスイッチをオンにした場合である。 In the first embodiment and the second embodiment, the control device 13 executes the battery warm-up mode when the discharge is started from the battery. If this battery warm-up system 1, 1 </ b> A is mounted on a vehicle, the case where the battery starts discharging is when the ignition switch is turned on.
 上記第1実施形態及び第2実施形態において制御装置13は、冷媒又は流体の温度が電池の温度よりも高い場合に電池暖機モードを実行する。電池の温度より少しでも高い温度の空気を供給することができれば、電池の起動性が向上するためである。 In the first embodiment and the second embodiment, the control device 13 executes the battery warm-up mode when the temperature of the refrigerant or fluid is higher than the temperature of the battery. This is because the startability of the battery is improved if air having a temperature slightly higher than the battery temperature can be supplied.
 上記第1実施形態及び第2実施形態において流体は、冷凍サイクルにおける水冷媒熱交換器である水冷コンデンサ101によって熱交換された高温水であり、空調用熱交換器102と電池用熱交換器103とは並列に配置されている。空調用熱交換器102と電池用熱交換器103とを並列配置することで、第2実施形態のように三方弁108を設けることができ、空調用熱交換器102と電池用熱交換器103とにそれぞれ供給する水の量を調整することができる。 In the first embodiment and the second embodiment, the fluid is high-temperature water that is heat-exchanged by the water-cooled condenser 101 that is a water-refrigerant heat exchanger in the refrigeration cycle, and the air-conditioning heat exchanger 102 and the battery heat exchanger 103. And are arranged in parallel. By arranging the air conditioning heat exchanger 102 and the battery heat exchanger 103 in parallel, the three-way valve 108 can be provided as in the second embodiment, and the air conditioning heat exchanger 102 and the battery heat exchanger 103 can be provided. The amount of water supplied to each can be adjusted.
 一方、流体は、冷凍サイクルにおける水冷媒熱交換器である水冷コンデンサ101によって熱交換された高温水であるところを同一としつつ、図6に示される変形例のように、流体が流れる上流側から、水冷コンデンサ101、空調用熱交換器102、電池用熱交換器103の順に直列配置することもできる。このように直列配置とすることで、流路の分岐を無くすことができる。更に、空調用熱交換器102を上流側に配置し電池用熱交換器103を下流側に配置することで、空調用熱交換器102に温度の高い水を供給し、電池用熱交換器103には温度が低く電池を暖機するのに適切な水を供給することができる。 On the other hand, the fluid is the same as that of the high-temperature water that is heat-exchanged by the water-cooled condenser 101 that is a water-refrigerant heat exchanger in the refrigeration cycle, and from the upstream side where the fluid flows as in the modification shown in FIG. Further, the water-cooled condenser 101, the air-conditioning heat exchanger 102, and the battery heat exchanger 103 can be arranged in series in this order. In this way, the branching of the flow path can be eliminated. Further, by arranging the air conditioner heat exchanger 102 on the upstream side and the battery heat exchanger 103 on the downstream side, high-temperature water is supplied to the air conditioner heat exchanger 102, and the battery heat exchanger 103. Can be supplied with water suitable for warming up the battery at a low temperature.
 図7に示されるように、冷媒回路11Cにおいて室外機121Cを設けることもできる。室外機121Cによって直接吸熱することができるので、低温側水回路12を省略することができる。 As shown in FIG. 7, an outdoor unit 121C can be provided in the refrigerant circuit 11C. Since the outdoor unit 121C can directly absorb heat, the low temperature side water circuit 12 can be omitted.
 図8に示されるように、高温側水回路10を省略し、空調用熱交換器102及び電池用熱交換器103が冷媒と直接熱交換を行う冷媒回路11Dを設けることができる。図8においては、空調用熱交換器102と電池用熱交換器103とを直列配置しているけれども、図9に示されるように空調用熱交換器102と電池用熱交換器103とを並列配置した冷媒回路11Eを設けることもできる。 As shown in FIG. 8, the high-temperature side water circuit 10 can be omitted, and a refrigerant circuit 11D can be provided in which the air conditioner heat exchanger 102 and the battery heat exchanger 103 directly exchange heat with the refrigerant. In FIG. 8, the air conditioner heat exchanger 102 and the battery heat exchanger 103 are arranged in series. However, as shown in FIG. 9, the air conditioner heat exchanger 102 and the battery heat exchanger 103 are arranged in parallel. An arranged refrigerant circuit 11E can also be provided.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those in which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

Claims (12)

  1.  電池暖機システムであって、
     冷媒を圧縮して吐出する圧縮機(112)と、
     前記圧縮機から吐出された冷媒又は前記冷媒と熱交換された流体を熱源として、空調対象空間へ送り出される空調空気流を加熱する空調用熱交換器(102)と、
     前記圧縮機から吐出された冷媒又は前記冷媒と熱交換された流体を熱源として、電池へ送り出される電池空気流を加熱する電池用熱交換器(103)と、
     前記空調用熱交換器を通過する前記空調空気流を発生する空調用送風機(106)と、
     前記電池用熱交換器を通過する前記電池空気流を発生する電池用送風機(107)と、
     前記空調用送風機及び前記電池用送風機を制御する制御装置(13)と、を備え、
     前記制御装置は、前記空調用熱交換器における空気側温度効率が、前記電池用熱交換器における空気側温度効率よりも高くなるように、前記空調用送風機及び前記電池用送風機の少なくとも一方を制御する電池暖機モードを実行する、電池暖機システム。
    A battery warm-up system,
    A compressor (112) for compressing and discharging the refrigerant;
    A heat exchanger for air conditioning (102) that heats the air-conditioned air flow sent to the air-conditioning target space, using the refrigerant discharged from the compressor or the fluid heat-exchanged with the refrigerant as a heat source;
    A battery heat exchanger (103) for heating a battery air flow sent to the battery using a refrigerant discharged from the compressor or a fluid heat-exchanged with the refrigerant as a heat source;
    An air-conditioning blower (106) for generating the air-conditioned air flow passing through the air-conditioning heat exchanger;
    A battery blower (107) for generating the battery airflow passing through the battery heat exchanger;
    A control device (13) for controlling the air-conditioning blower and the battery blower,
    The control device controls at least one of the air-conditioning blower and the battery blower so that an air-side temperature efficiency in the air-conditioning heat exchanger is higher than an air-side temperature efficiency in the battery heat exchanger. A battery warm-up system that executes a battery warm-up mode.
  2.  前記制御装置は、前記電池暖機モードにおいて、前記空調用熱交換器を通過する前記空調空気流の風速よりも前記電池用熱交換器を通過する前記電池空気流の風速が速くなるように、前記空調用送風機及び前記電池用送風機の少なくとも一方の送風量を調整する、請求項1に記載の電池暖機システム。 In the battery warm-up mode, the control device is configured such that the wind speed of the battery air flow passing through the battery heat exchanger is faster than the wind speed of the air conditioning air flow passing through the air conditioning heat exchanger. The battery warm-up system according to claim 1, wherein an air flow rate of at least one of the air-conditioning blower and the battery blower is adjusted.
  3.  前記制御装置は、前記電池暖機モードにおいて、前記空調用熱交換器に流れる前記冷媒又は前記流体の温度よりも、前記電池用熱交換器に流れる前記冷媒又は前記流体の温度が低い段階から前記電池用送風機を駆動する、請求項1又は2に記載の電池暖機システム。 In the battery warm-up mode, the control device starts from the stage where the temperature of the refrigerant or the fluid flowing in the battery heat exchanger is lower than the temperature of the refrigerant or the fluid flowing in the air-conditioning heat exchanger. The battery warm-up system according to claim 1 or 2, wherein the battery blower is driven.
  4.  前記制御装置は、前記電池暖機モードを実行し前記電池が目標温度に達したと判断すると、前記電池用熱交換器を通過する前記電池空気流の風速が低下するように前記電池用送風機を制御する、請求項1から3のいずれか1項に記載の電池暖機システム。 When the control device executes the battery warm-up mode and determines that the battery has reached a target temperature, the controller blows the battery blower so that the wind speed of the battery air flow passing through the battery heat exchanger decreases. The battery warm-up system according to any one of claims 1 to 3, wherein the battery warm-up system is controlled.
  5.  前記空調用熱交換器に前記冷媒又は前記流体を流す量を調整する空調用調整部と、
     前記電池用熱交換器に前記冷媒又は前記流体を流す量を調整する電池用調整部と、を更に備え、
     前記制御装置は、前記空調用送風機、前記電池用送風機、前記空調用調整部、及び前記電池用調整部を制御するように構成され、
     前記制御装置は、前記空調用熱交換器における空気側温度効率が、前記電池用熱交換器における空気側温度効率よりも高くなるように、前記空調用送風機、前記電池用送風機、前記空調用調整部、及び前記電池用調整部の少なくとも一つを制御する電池暖機モードを実行する、請求項1に記載の電池暖機システム。
    An adjustment unit for air conditioning that adjusts the amount of the refrigerant or the fluid flowing through the heat exchanger for air conditioning;
    A battery adjustment unit for adjusting an amount of the refrigerant or the fluid flowing through the battery heat exchanger;
    The control device is configured to control the air-conditioning blower, the battery blower, the air-conditioning adjustment unit, and the battery adjustment unit.
    The control device includes the air-conditioning blower, the battery blower, and the air-conditioning adjustment so that an air-side temperature efficiency in the air-conditioning heat exchanger is higher than an air-side temperature efficiency in the battery heat exchanger. The battery warm-up system according to claim 1, wherein a battery warm-up mode is performed to control at least one of the battery control unit and the battery adjustment unit.
  6.  前記制御装置は、前記電池暖機モードにおいて、前記空調用熱交換器に送り込まれる前記冷媒又は前記流体の量よりも前記電池用熱交換器に送り込まれる前記冷媒又は前記流体の量が少なくなるように、前記空調用調整部及び前記電池用調整部の少なくとも一方の送出量を調整する、請求項5に記載の電池暖機システム。 In the battery warm-up mode, the control device is configured so that the amount of the refrigerant or the fluid sent to the battery heat exchanger is smaller than the amount of the refrigerant or the fluid sent to the air conditioning heat exchanger. The battery warming-up system according to claim 5, wherein a sending amount of at least one of the air conditioning adjustment unit and the battery adjustment unit is adjusted.
  7.  前記制御装置は、前記電池暖機モードにおいて、前記空調用熱交換器に流れる前記冷媒又は前記流体の温度よりも、前記電池用熱交換器に流れる前記冷媒又は前記流体の温度が低い段階から、前記電池用熱交換器が熱交換し始めるように、前記空調用送風機、前記電池用送風機、前記空調用調整部、及び前記電池用調整部の少なくとも一つを制御する、請求項5又は6に記載の電池暖機システム。 The controller, in the battery warm-up mode, from the stage where the temperature of the refrigerant or the fluid flowing to the battery heat exchanger is lower than the temperature of the refrigerant or the fluid flowing to the air conditioning heat exchanger, The apparatus according to claim 5 or 6, wherein at least one of the air conditioning blower, the battery blower, the air conditioning adjustment unit, and the battery adjustment unit is controlled so that the battery heat exchanger starts to exchange heat. The battery warm-up system described.
  8.  前記制御装置は、前記電池暖機モードを実行し前記電池が目標温度に達したと判断すると、前記電池用熱交換器を通過する前記電池空気流の風速が低下するように前記電池用送風機を制御するか、前記電池用熱交換器に送り込まれる前記冷媒又は前記流体の量が少なくなるように前記電池用調整部を制御するか、のいずれか若しくは双方を実行する、請求項5から7のいずれか1項に記載の電池暖機システム。 When the control device executes the battery warm-up mode and determines that the battery has reached a target temperature, the controller blows the battery blower so that the wind speed of the battery air flow passing through the battery heat exchanger decreases. The control of the battery or the controller for controlling the battery so as to reduce the amount of the refrigerant or the fluid sent to the battery heat exchanger, or both of them is executed. The battery warm-up system according to any one of the above.
  9.  前記制御装置は、前記電池から放電が開始される場合に、前記電池暖機モードを実行する、請求項1から8のいずれか1項に記載の電池暖機システム。 The battery warm-up system according to any one of claims 1 to 8, wherein the control device executes the battery warm-up mode when discharging from the battery is started.
  10.  前記制御装置は、前記冷媒又は前記流体の温度が前記電池の温度よりも高い場合に、前記電池暖機モードを実行する、請求項1から9のいずれか1項に記載の電池暖機システム。 The battery warm-up system according to any one of claims 1 to 9, wherein the control device executes the battery warm-up mode when a temperature of the refrigerant or the fluid is higher than a temperature of the battery.
  11.  前記流体は、冷凍サイクルにおける水冷媒熱交換器(101,111)によって熱交換された高温水であり、前記空調用熱交換器と前記電池用熱交換器とは並列に配置される、請求項1から10のいずれか1項に記載の電池暖機システム。 The said fluid is the high temperature water heat-exchanged by the water refrigerant | coolant heat exchanger (101,111) in the refrigerating cycle, The said heat exchanger for an air conditioning and the said heat exchanger for batteries are arrange | positioned in parallel. The battery warm-up system according to any one of 1 to 10.
  12.  前記流体は、冷凍サイクルにおける水冷媒熱交換器(101,111)によって熱交換された高温水であり、
     前記流体が流れる上流側から、前記水冷媒熱交換器、前記空調用熱交換器、前記電池用熱交換器の順に直列配置されている、請求項1から10のいずれか1項に記載の電池暖機システム。
    The fluid is high-temperature water heat-exchanged by a water-refrigerant heat exchanger (101, 111) in a refrigeration cycle,
    The battery according to any one of claims 1 to 10, wherein the water refrigerant heat exchanger, the air conditioning heat exchanger, and the battery heat exchanger are arranged in series in this order from the upstream side in which the fluid flows. Warm-up system.
PCT/JP2016/082943 2015-11-09 2016-11-07 Battery warm-up system WO2017082198A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/773,209 US20180323482A1 (en) 2015-11-09 2016-11-07 Battery warming-up system
CN201680060644.7A CN108140917B (en) 2015-11-09 2016-11-07 Battery preheating system
DE112016005124.7T DE112016005124T5 (en) 2015-11-09 2016-11-07 Battery warming system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-219621 2015-11-09
JP2015219621 2015-11-09
JP2016-196184 2016-10-04
JP2016196184A JP6414174B2 (en) 2015-11-09 2016-10-04 Battery warm-up system

Publications (1)

Publication Number Publication Date
WO2017082198A1 true WO2017082198A1 (en) 2017-05-18

Family

ID=58695428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082943 WO2017082198A1 (en) 2015-11-09 2016-11-07 Battery warm-up system

Country Status (1)

Country Link
WO (1) WO2017082198A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001674A (en) * 2001-10-29 2004-01-08 Denso Corp Battery temperature control device
JP2014019213A (en) * 2012-07-13 2014-02-03 Aisan Ind Co Ltd Vehicular air conditioner
WO2014024376A1 (en) * 2012-08-09 2014-02-13 株式会社デンソー Refrigeration cycling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001674A (en) * 2001-10-29 2004-01-08 Denso Corp Battery temperature control device
JP2014019213A (en) * 2012-07-13 2014-02-03 Aisan Ind Co Ltd Vehicular air conditioner
WO2014024376A1 (en) * 2012-08-09 2014-02-13 株式会社デンソー Refrigeration cycling device

Similar Documents

Publication Publication Date Title
CN108698469B (en) Heat pump system for vehicle
JP5370402B2 (en) Air conditioner for vehicles
JP6269307B2 (en) Air conditioner for vehicles
US20160001636A1 (en) Vehicle air conditioning device
JP7221639B2 (en) Vehicle air conditioner
CN102529690A (en) Temperature control system and method
CN112572092B (en) Cooling system
US20210387506A1 (en) In-vehicle temperature control system
JP2021054278A (en) Cooling system
JP2004066847A (en) Air conditioner for vehicle
JP2005262948A (en) Vehicular air-conditioner
JP2013032144A (en) Air conditioning device for fuel cell vehicle
CN204665584U (en) A kind of heat pump air conditioner defrosting device
JP6939575B2 (en) Vehicle cooling system
JP6414174B2 (en) Battery warm-up system
CN103317995B (en) Air conditioner for vehicles
JP7119698B2 (en) vehicle air conditioner
WO2017082198A1 (en) Battery warm-up system
JP2016185757A (en) Vehicular air conditioning device
WO2017073669A1 (en) Vehicle control device
JP7221650B2 (en) Vehicle air conditioner
US20150114018A1 (en) Viscous heater for heat pump system
JP2020134089A (en) Heating system
JP5972084B2 (en) Air conditioner for vehicles
WO2023243367A1 (en) Vehicle air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864159

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15773209

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016005124

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864159

Country of ref document: EP

Kind code of ref document: A1