WO2017081955A1 - Chemical heat storage apparatus - Google Patents

Chemical heat storage apparatus Download PDF

Info

Publication number
WO2017081955A1
WO2017081955A1 PCT/JP2016/079296 JP2016079296W WO2017081955A1 WO 2017081955 A1 WO2017081955 A1 WO 2017081955A1 JP 2016079296 W JP2016079296 W JP 2016079296W WO 2017081955 A1 WO2017081955 A1 WO 2017081955A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
reaction medium
pump
valve
recovery
Prior art date
Application number
PCT/JP2016/079296
Other languages
French (fr)
Japanese (ja)
Inventor
康 佐竹
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2017081955A1 publication Critical patent/WO2017081955A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/18Indicating or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • One aspect of the present invention relates to a chemical heat storage device.
  • the chemical heat storage device described in Patent Document 1 includes a reactor including a reaction material that chemically reacts with NH 3 as a reaction medium to generate heat, and a heat storage that stores heat by adsorbing and storing NH 3.
  • the reactor and the regenerator are connected, the first supply passage for supplying NH 3 from the regenerator to the reactor, and the reactor and the regenerator are connected in parallel to the first supply passage.
  • a suction pump that forcibly lowers the pressure in the reactor and forcibly recovers NH 3 from the reactor to the heat accumulator.
  • An object of one aspect of the present invention is to provide a chemical heat storage device capable of detecting a failure in a reaction medium supply system including a pump and a valve.
  • a chemical heat storage device includes a reactor including a reaction material that generates heat due to a chemical reaction with a reaction medium when the reaction medium is supplied and from which the reaction medium is detached when heat is applied; Are connected to the first reaction medium flow path, the first reaction medium flow path for connecting the reaction medium and the reservoir in a bidirectional manner, and the first reaction medium flow path.
  • a second reaction medium flow path configured to connect the reactor and the reservoir and to circulate the reaction medium from the reactor to the reservoir; and a second reaction medium flow path provided to open and close the first reaction medium flow path
  • a pump for recovering the reaction medium from the reactor to the reservoir by sucking the inside of the reactor, a temperature detector for detecting the temperature of the reactor, and the temperature of the reactor detected by the temperature detector When the temperature is higher than the first temperature and lower than the second temperature, the pump is operated When the temperature of the reactor detected by the temperature detector is equal to or higher than the second temperature, a recovery controller that controls the opening of the valve so that the reaction medium can be recovered from the reactor to the reservoir;
  • a storage unit for storing an estimated value of the recovery amount of the reaction medium from the reactor to the reservoir when the pump is operating and when the valve is opened, and from the reactor to the reservoir when the pump is operating and when the valve is opened An actual measurement value for the recovery amount of the reaction medium is obtained, and based on the amount of deviation between the actual measurement value for the recovery amount of the reaction medium
  • the reaction medium passes through the second reaction medium flow path by operating the pump.
  • the valve is opened so that the reaction medium passes from the reactor through the first reaction medium flow path to the reservoir. To be recovered.
  • the measured value of the recovery amount of the reaction medium from the reactor to the reservoir when the pump is operated and the valve is opened, and the reaction medium from the reactor to the reservoir when the pump is operated and the valve is opened.
  • a chemical heat storage device capable of detecting a failure in a reaction medium supply system including a pump and a valve is provided.
  • FIG. 1 is a schematic structure figure showing an engine oil circulation system provided with a chemical heat storage device concerning one embodiment.
  • FIG. 2 is a graph showing the relationship between the temperature of the reactor and the equilibrium pressure of the reactor.
  • FIG. 3 is a graph showing an example of a fluctuation state of the temperature of the engine oil.
  • FIG. 4 is a flowchart showing details of a collection control processing procedure executed by the collection control unit shown in FIG.
  • FIG. 5A is a graph showing NH 3 saturated vapor pressure characteristics
  • FIG. 5B is a graph showing NH 3 adsorption characteristics.
  • 6A and 6B are graphs showing patterns of NH 3 recovery rate estimation values of the adsorber stored in the storage unit shown in FIG.
  • FIG. 7 is a flowchart showing details of a failure detection processing procedure executed by the failure detection unit shown in FIG.
  • FIG. 8 is a flowchart showing details of a failure detection processing procedure executed by the failure detection unit shown in FIG.
  • the failure detection unit is configured to estimate the amount of reaction medium recovered from the reactor to the reservoir during operation of the pump and the amount of reaction medium recovered from the reactor to the reservoir during operation of the pump. After determining that the amount of deviation from the value is greater than the threshold value for determining pump failure, the measured value of the recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened and the reactor when the valve is opened. When it is determined that the deviation from the estimated value related to the recovery amount of the reaction medium in the reservoir is equal to or less than the valve failure determination threshold, it may be determined that the pump is malfunctioning. In this case, after it is assumed that the pump may have failed, it is determined that it is not a valve failure. Can be detected.
  • the failure detection unit includes an actual measurement value related to a recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened and a recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened. After determining that the deviation from the estimated value for the valve is greater than the threshold value for determining valve failure, the measured value for the recovery amount of the reaction medium from the reactor to the reservoir during operation of the pump and from the reactor during operation of the pump. When it is determined that the amount of deviation from the estimated value related to the recovery amount of the reaction medium in the reservoir is equal to or less than the pump failure determination threshold value, it may be determined that the valve is malfunctioning. In this case, since it is determined that the valve is not faulty after it is determined that the valve may have failed, it is determined that the valve is faulty. Can be detected.
  • the failure detection unit includes an actual measurement value related to a recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened and a recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened.
  • the pump may be controlled to operate. In this case, it is possible to forcibly operate the pump without waiting for the temperature of the reactor to be higher than the first temperature and lower than the second temperature. Whether the deviation between the measured value of the recovery amount of the reaction medium from the reactor to the reservoir and the estimated value of the recovery amount of the reaction medium from the reactor to the reservoir when the pump is operating is equal to or less than the threshold for determining the pump failure To be judged. Therefore, it is possible to quickly detect that the pump is not malfunctioning and to quickly detect the malfunction of the valve.
  • FIG. 1 is a schematic configuration diagram showing an engine oil circulation system including a chemical heat storage device according to an embodiment.
  • an engine oil circulation system 1 is mounted on a vehicle and circulates engine oil for lubricating each part in the engine 2.
  • the engine oil circulation system 1 includes an oil pan 3, an oil pump 4, an oil cooler 5, and a heat exchanger 6.
  • the oil pan 3 stores engine oil.
  • the engine oil that has flowed through each part in the engine 2 returns to the oil pan 3.
  • the oil pump 4 sucks up and pumps the engine oil stored in the oil pan 3.
  • the oil cooler 5 cools the engine oil to a predetermined temperature with cooling water when the temperature of the engine oil sucked up by the oil pump 4 becomes too high.
  • the reason for cooling the engine oil is to prevent deterioration due to excessive temperature rise of the engine oil.
  • the heat exchanger 6 is disposed between the oil cooler 5 and the engine 2. The heat exchanger 6 allows the engine oil to pass therethrough and performs heat exchange between the engine oil and a reactor 11 described later.
  • the engine oil circulation system 1 includes a chemical heat storage device 10 that enables an early temperature increase of the engine oil.
  • the chemical heat storage device 10 heats (warms up) the engine oil via the heat exchanger 6 without requiring external energy such as electric power.
  • the chemical heat storage device 10 desorbs the reaction medium from the reaction material 17 (described in detail later) of the reactor 11 by the heat of the engine oil, stores the desorbed reaction medium, The stored reaction medium is supplied to the reactor 11 to cause the reaction material 17 and the reaction medium to chemically react, and the engine oil is heated by the reaction heat at that time.
  • the chemical heat storage device 10 is a device that stores heat from the engine oil and supplies heat to the engine oil using a reversible chemical reaction.
  • the reaction medium is ammonia (NH 3 ).
  • the chemical heat storage device 10 is arranged in parallel with the reactor 11, the adsorber 12, the reaction medium flow path 13 that connects the reactor 11 and the adsorber 12, and the reaction medium flow path 13.
  • a reaction medium flow path 14 for connecting the reactor 11 and the adsorber 12, a valve 15 disposed in the reaction medium flow path 13, and a recovery pump 16 disposed in the reaction medium flow path 14 are provided.
  • the reaction medium flow paths 13 and 14, the valve 15 and the recovery pump 16 constitute a reaction medium supply system 26 disposed between the reactor 11 and the adsorber 12.
  • the reactor 11 is arranged around the heat exchanger 6 so as to exchange heat with engine oil.
  • the reactor 11 includes a reaction material 17 that generates heat due to a chemical reaction with NH 3 when NH 3 is supplied and desorbs NH 3 when heat of engine oil is applied.
  • a halide represented by the composition formula MXa is used as the reaction material 17, a halide represented by the composition formula MXa is used.
  • M is an alkaline earth metal such as Mg, Ca or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu or Zn.
  • X is Cl, Br, I or the like.
  • a is a number specified by the valence of M, and is 2 to 3.
  • the adsorber 12 is a reservoir that stores NH 3 .
  • the adsorber 12 includes an adsorbent 18 capable of physical adsorption and desorption of NH 3 .
  • adsorbent 18 capable of physical adsorption and desorption of NH 3 .
  • activated carbon, carbon black, mesoporous carbon, nanocarbon, zeolite, or the like is used.
  • NH 3 may be chemically adsorbed on the adsorbent 18.
  • reaction medium channel 13 is a first reaction medium channel that allows NH 3 to flow in both directions between the reactor 11 and the adsorber 12.
  • the reaction medium flow path 14 is a second reaction medium flow path for allowing NH 3 to flow from the reactor 11 to the adsorber 12.
  • the valve 15 is an electromagnetic valve that opens and closes the reaction medium flow path 13.
  • the recovery pump 16 recovers NH 3 from the reactor 11 to the adsorber 12 by sucking the inside of the reactor 11.
  • the adsorbent 18 of the adsorber 12 has a reaction system comprising the reactor 11, the adsorber 12, and the reaction medium channels 13 and 14 when the valve 15 is opened.
  • the pressure maintaining NH 3 for maintaining a predetermined pressure and the moving NH 3 used for the chemical reaction with the reactant 17 in order to obtain a desired exothermic temperature in the reactor 11 are adsorbed.
  • the amounts of the pressure holding NH 3 and the transfer NH 3 are appropriately determined according to the material of the reaction material 17 and the like.
  • the chemical heat storage device 10 includes a temperature sensor 19, a temperature sensor 20, a pressure sensor 21, and a controller 22.
  • the temperature sensor 19 is a temperature detection unit that detects the temperature of the reactor 11.
  • the temperature sensor 19 detects the temperature of the reaction material 17 as the temperature of the reactor 11.
  • the temperature detector instead of directly detecting the temperature of the reactor 11 by the temperature sensor 19, for example, the temperature of the engine oil flowing downstream from the reactor 11 is detected by the temperature sensor, and the temperature of the engine oil is detected.
  • the temperature of the reactor 11 may be estimated.
  • the temperature sensor 20 detects the temperature of the adsorber 12.
  • the pressure sensor 21 detects the pressure in the adsorber 12.
  • the controller 22 includes a CPU, a RAM, a ROM, an input / output interface, and the like.
  • the controller 22 includes a collection control unit 23, a storage unit 24, and a failure detection unit 25.
  • the recovery control unit 23 controls the valve 15 and the recovery pump 16 so as to recover the moving NH 3 from the reactor 11 to the adsorber 12 based on the detection values of the temperature sensors 19 and 20 and the pressure sensor 21. .
  • the storage unit 24 uses an estimated value of the recovery rate of NH 3 for transfer to the adsorber 12 (described in detail later) as an estimated value related to the recovery amount of NH 3 for transfer from the reactor 11 to the adsorber 12.
  • the failure detection unit 25 determines whether the reaction between the reactor 11 and the adsorber 12 is based on the detected values of the temperature sensors 19, 20 and the pressure sensor 21 and the estimated value of the recovery rate of NH 3 for movement stored in the storage unit 24. In the meantime, the failure of the reaction medium supply system 26 is detected.
  • FIG. 2 is a graph showing the relationship between the temperature of the reactor 11 and the equilibrium pressure of the reactor 11.
  • the equilibrium pressure of the reactor 11 is a pressure at which the reactant 17 and NH 3 are in an equilibrium state in the reactor 11, and more specifically, a closed state where NH 3 does not move from the reactor 11 to the adsorber 12. This is the pressure of NH 3 that can be desorbed from the reactant 17 in the system.
  • the solid line X represents the equilibrium pressure of the reactor 11.
  • a one-dot chain line Y is the reference pressure Ps of the adsorber 12 determined by the amount of the pressure holding NH 3 accommodated in the adsorber 12.
  • T2 in the figure is a temperature (second temperature) at which the equilibrium pressure of the reactor 11 becomes equal to the reference pressure Ps of the adsorber 12, and is about 80 ° C., for example (see FIG. 3).
  • T1 in the figure is a temperature (first temperature) lower than T2, for example, about 50 ° C. (see FIG. 3).
  • T2 may be a temperature at which the equilibrium pressure of the reactor 11 is equal to or higher than the reference pressure Ps of the adsorber 12.
  • the NH 3 for movement is not sufficiently regenerated.
  • the temperature of the reactor 11 is higher than T1 and lower than T2, by using the recovery pump 16, the moving NH 3 can be sufficiently regenerated in a certain time.
  • the moving NH 3 can be sufficiently regenerated in a certain amount of time without using the recovery pump 16.
  • FIG. 3 is a graph showing an example of a fluctuation state of the temperature of the engine oil.
  • the temperature of the engine oil increases with time, and the engine 2 is stopped after a predetermined time (2000 seconds) has elapsed.
  • a normal regeneration operation without using the recovery pump 16 is performed in a region where the temperature of the reactor 11 is higher than T2
  • the regeneration time is as short as ta, and the moving NH 3 cannot be sufficiently regenerated.
  • the heat generation effect of the reactor 11 cannot be sufficiently obtained during the next exothermic reaction.
  • the regeneration time becomes as long as tb and the mobile NH 3 can be sufficiently regenerated. It becomes possible.
  • the recovery controller 23 controls the recovery pump 16 to operate when the temperature of the reactor 11 detected by the temperature sensor 19 is higher than T1 and lower than T2, and the reaction detected by the temperature sensor 19 is detected.
  • the valve 15 is controlled to open so that the transfer NH 3 can be recovered from the reactor 11 to the adsorber 12.
  • FIG. 4 is a flowchart showing details of the collection control processing procedure executed by the collection control unit 23.
  • the valve 15 is closed and the recovery pump 16 is stopped.
  • the recovery control unit 23 first determines whether the temperature of the reactor 11 is higher than T1 based on the detection value of the temperature sensor 19 (step S101). When the recovery control unit 23 determines that the temperature of the reactor 11 is higher than T1, it determines whether or not the temperature of the reactor 11 is lower than T2 based on the detection value of the temperature sensor 19 (step S102). ).
  • step S102 determines that the temperature of the reactor 11 is lower than T2 (step S102: YES)
  • the recovery control unit 23 controls to close the valve 15 and operate the recovery pump 16 (step S103).
  • the valve 15 is in the closed state
  • control is performed so that the valve 15 is maintained in the closed state.
  • the recovery pump 16 is in the operating state, control is performed so that the recovery pump 16 is maintained in the operating state.
  • NH 3 for movement is forcibly recovered from the reactor 11 to the adsorber 12 through the reaction medium flow path 14.
  • step S102 when the recovery control unit 23 determines that the temperature of the reactor 11 is equal to or higher than T2 (step S102: NO), the recovery control unit 23 controls to open the valve 15 and stop the recovery pump 16 (step S102). S104). At this time, when the valve 15 is in the open state, control is performed so that the valve 15 is maintained in the open state. When the recovery pump 16 is in a stopped state, control is performed so that the recovery pump 16 is maintained in the stopped state. Thereby, NH 3 for movement is recovered from the reactor 11 to the adsorber 12 through the reaction medium flow path 13.
  • Step S105 the recovery control unit 23 obtains the NH 3 recovery rate of the adsorber 12 based on the detection values of the temperature sensor 20 and the pressure sensor 21 (Step S105).
  • NH 3 recovery of adsorber 12 is a recovery of movement NH 3 for adsorber 12, the ratio between the recoverable amount of the transfer NH 3 to the total amount and the adsorber 12 of the transfer NH 3 and more specifically It is.
  • the collection controller 23 is adsorbed by the adsorbent 18 of the adsorber 12 based on the temperature of the adsorber 12 detected by the temperature sensor 20 and the pressure in the adsorber 12 detected by the pressure sensor 21.
  • the amount of NH 3 (NH 3 adsorption amount of the adsorber 12) is estimated.
  • the estimation of the NH 3 adsorption amount is performed using the NH 3 saturated vapor pressure characteristics and the NH 3 adsorption characteristics shown in FIG.
  • the NH 3 saturated vapor pressure characteristic shown in FIG. 5A is a graph showing the relationship between the temperature of the adsorber 12 and the NH 3 saturated vapor pressure, and the NH 3 saturated vapor pressure increases as the temperature of the adsorber 12 increases. It has the characteristic that becomes high.
  • the NH 3 adsorption characteristic shown in FIG. 5 (b) is a graph showing the relationship between the relative pressure and the NH 3 adsorption amount of the adsorber 12, and the NH 3 adsorption amount of the adsorber 12 increases as the relative pressure increases. It has the characteristic which becomes.
  • the relative pressure is a ratio (P / Psat) between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 12.
  • Recovery control unit 23 first with NH 3 saturated vapor pressure characteristics, determine the NH 3 saturated vapor pressure Psat corresponding to the temperature T of the adsorber 12 detected by the temperature sensor 20. Then, the recovery control unit 23 calculates a relative pressure that is a ratio between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 12 detected by the pressure sensor 21. Then, the recovery control section 23, using the NH 3 adsorption properties, determine the adsorbed NH 3 amount Snh3 corresponding to the relative pressure. Thereby, the NH 3 adsorption amount of the adsorber 12 is estimated.
  • the recovery control unit 23 obtains the NH 3 recovery rate of the adsorber 12 from the NH 3 adsorption amount of the adsorber 12.
  • the NH 3 adsorption amount of the adsorber 12 is an amount corresponding to NH 3 for maintaining the pressure
  • the NH 3 recovery rate of the adsorber 12 is 0%
  • the NH 3 adsorption amount of the adsorber 12 is the pressure holding.
  • the amount corresponding to use NH 3 which is the sum of the amount corresponding to the total amount of the transfer NH 3 is, NH 3 recovery of the adsorber 12 is 100%.
  • the recovery control unit 23 determines whether the NH 3 recovery rate of the adsorber 12 is equal to or higher than a target value (for example, 80%) (step S106). When the recovery control unit 23 determines that the NH 3 recovery rate of the adsorber 12 is not equal to or higher than the target value, the recovery control unit 23 executes the above step S101 again.
  • a target value for example, 80%
  • the recovery control unit 23 determines that the NH 3 recovery rate of the adsorber 12 is equal to or higher than the target value, the recovery control unit 23 controls to close the valve 15 and stop the recovery pump 16 (step S107). This process is terminated. At this time, when the recovery pump 16 is in a stopped state, control is performed so that the recovery pump 16 is maintained in the stopped state.
  • the storage unit 24 stores the NH 3 recovery rate estimated value pattern of the adsorber 12 as shown in FIGS. 6 (a) and 6 (b).
  • the NH 3 recovery rate estimated value of the adsorber 12 is an estimated value of the transfer NH 3 recovery rate with respect to the adsorber 12.
  • the NH 3 recovery rate estimated value pattern is an estimated value pattern representing the time elapsed until the NH 3 recovery rate reaches the target value, and varies depending on the temperature of the reactor 11.
  • the NH 3 recovery rate estimated value pattern is obtained and set in advance by experiments or the like.
  • FIG. 6A shows an NH 3 recovery rate estimated value pattern of the adsorber 12 during operation of the recovery pump 16, that is, the NH of the adsorber 12 when the temperature of the reactor 11 is higher than T1 and lower than T2.
  • 3 is a pattern of estimated recovery rate. In this pattern, the time until the NH 3 recovery rate reaches the target value M becomes shorter as the temperature of the reactor 11 increases from T1 to T2.
  • NH 3 recovery rate estimated value of the adsorber 12 is a pattern of NH 3 recovery rate estimated value of the adsorber 12 during the opening of the valve 15, i.e. NH 3 recovery rate estimated value of the adsorber 12 when the temperature of the reactor 11 is equal to or higher than T2 Pattern.
  • T2 Pattern the time until the NH 3 recovery rate reaches the target value M becomes shorter as the temperature of the reactor 11 increases from T2.
  • the failure detection unit 25 uses an actual measurement value of the recovery rate of NH 3 for transfer to the adsorber 12 (an NH 3 recovery rate of the adsorber 12 as an actual value related to the recovery amount of the transfer NH 3 from the reactor 11 to the adsorber 12. seek) of measured values, on the basis of the shift amount between NH 3 recovery estimate adsorber 12 stored in the storage unit 24 and the NH 3 recovery measured values of adsorber 12, the reactor 11 and adsorber 12 The failure of the reaction medium supply system 26 is determined.
  • FIG. 7 and 8 are flowcharts showing details of the failure detection processing procedure executed by the failure detection unit 25.
  • the pump failure flag and the valve failure flag are OFF.
  • the failure detection unit 25 first determines whether the temperature of the reactor 11 is higher than T1 and lower than T2 based on the detection value of the temperature sensor 19 (step S111). When the temperature of the reactor 11 is higher than T1 and lower than T2, the recovery pump 16 is operated as described above.
  • the failure detection unit 25 determines that the temperature of the reactor 11 is higher than T1 and lower than T2, the adsorber during operation of the recovery pump 16 based on the detection values of the temperature sensor 20 and the pressure sensor 21. 12 actual measurement values of NH 3 recovery are obtained (step S112). Specifically, the failure detection unit 25 detects the temperature of the adsorber 12 detected by the temperature sensor 20 and the pressure in the adsorber 12 detected by the pressure sensor 21 as in step S105 of the flowchart shown in FIG. Based on the above, the NH 3 adsorption amount of the adsorber 12 is estimated, and the NH 3 recovery rate actual measurement value of the adsorber 12 when the recovery pump 16 is operated is obtained from the NH 3 adsorption amount of the adsorber 12.
  • a deviation amount from the value is calculated, and it is determined whether or not the deviation amount is equal to or less than a pump failure determination threshold value (step S113).
  • the threshold value for determining a pump failure is determined in advance through experiments or the like. This step is performed a plurality of times during a period in which the temperature of the reactor 11 is higher than T1 and lower than T2.
  • the failure detection unit 25, for example, a plurality of calculating the shift amount of the NH 3 recovery measured value and the NH 3 recovery rate estimated value at time, average or maximum pump failure determination threshold of the shift amount Determine whether:
  • the failure detection unit 25 determines that the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is for determining pump failure. If it is determined that the value is larger than the threshold value, it is estimated that there is a possibility that the recovery pump 16 has failed, and the pump failure flag is set to ON (step S114).
  • the failure detection unit 25 determines that the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is for determining pump failure.
  • the valve 15 is opened and the recovery pump 16 is stopped as described above.
  • the failure detection unit 25 determines that the temperature of the reactor 11 is equal to or higher than T2
  • the NH 3 recovery of the adsorber 12 when the valve 15 is opened based on the detection values of the temperature sensor 20 and the pressure sensor 21.
  • a rate actual measurement value is obtained (step S116).
  • the method for obtaining the actual measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened is the same as in step S112 described above.
  • the valve failure determination threshold value is determined in advance by experiments or the like.
  • the valve failure determination threshold value may be the same as or different from the pump failure determination threshold value.
  • This step is executed a plurality of times during a period in which the temperature of the reactor 11 is higher than T2.
  • the failure detection unit 25 determines the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened. If it is determined that the value is equal to or less than the threshold value, it is determined whether the pump failure flag is ON (step S118). When the failure detection unit 25 determines that the pump failure flag is not ON, since the pump failure flag and the valve failure flag are both OFF, the reactor 11, the adsorber 12, and the reaction medium supply system 26 are normal. Is determined (step S119), and the process is terminated.
  • the failure detecting unit 25 determines that the pump failure flag is ON, the pump failure flag is ON and the valve failure flag is OFF. It determines with there existing (step S120), and complete
  • step S117 the failure detection unit 25 determines whether the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened. If it is determined that the value is larger than the failure determination threshold value, it is estimated that the valve 15 may be broken, and the valve failure flag is set to ON (step S121).
  • the failure detection unit 25 determines whether or not the pump failure flag is ON (step S122). When the failure detection unit 25 determines that the pump failure flag is ON, since both the pump failure flag and the valve failure flag are ON, failure of the chemical heat storage device 10, specifically, the reactor 11 Then, it is determined that there is a failure in any of the adsorber 12, the pump line including the recovery pump 16 and the valve line including the valve 15 (step S123), and the process is terminated.
  • the failure detection unit 25 determines that the pump failure flag is not ON, the failure detection unit 25 controls the recovery pump 16 to operate (step S124). Thereby, the collection pump 16 is operated.
  • the failure detection unit 25 obtains the measured NH 3 recovery rate of the adsorber 12 during the operation of the recovery pump 16 based on the detection values of the temperature sensor 20 and the pressure sensor 21 as in step S112 described above. (Step S125). The failure detection unit 25 then measures the actual NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is in operation and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is stored and stored in the storage unit 24. Is calculated, and it is determined whether the amount of deviation is equal to or less than a pump failure determination threshold value (step S126). The determination method at this time is the same as that in step S113.
  • the failure detection unit 25 determines that the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is for determining pump failure. When it is determined that the value is equal to or less than the threshold value, since the amount of deviation between the two is small and the valve failure flag is ON, it is determined that the valve line including the valve 15 is in failure (step S127).
  • the failure detection unit 25 determines that the deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is a pump failure.
  • the value is larger than the threshold for determination, since the deviation amount between the two is large and the valve failure flag is ON, failure of the chemical heat storage device 10, specifically, the reactor 11, the adsorber 12, and the recovery pump It is determined that there is a failure in either the pump line including 16 or the valve line including valve 15 (step S128).
  • the failure detection unit 25 controls to stop the recovery pump 16 (step S129), and ends this process.
  • the failure determination result is displayed, for example, on a display unit (not shown).
  • the recovery pump 16 when the temperature of the reactor 11 is higher than T1 and lower than T2, the recovery pump 16 is operated so that the NH 3 for movement is transferred to the reaction medium flow path 14.
  • the valve 15 is opened so that the moving NH 3 passes through the reaction medium flow path 13. Recovered from the reactor 11 to the adsorber 12.
  • the deviation amount between the measured NH 3 recovery rate of the adsorber 12 during operation of the recovery pump 16 and the estimated NH 3 recovery rate of the adsorber 12 during operation of the recovery pump 16 is greater than the pump failure determination threshold.
  • the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened is used for valve failure determination.
  • the value is equal to or less than the threshold value, it is determined that the recovery pump 16 is out of order. Since it is determined that there is no failure in the valve 15 after it is estimated that there is a possibility that the recovery pump 16 has failed in this way, it is determined that the recovery pump 16 is in failure. Sixteen failures can be reliably detected.
  • the deviation amount between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened is larger than the valve failure determination threshold value.
  • the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is used for determining a pump failure.
  • the valve 15 is malfunctioning. Since it is determined that there is no failure in the recovery pump 16 after it is assumed that the valve 15 may have failed in this way, it is determined that the valve 15 is in failure. A failure can be detected reliably.
  • the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened is smaller than the valve failure determination threshold.
  • the recovery pump 16 can be operated without waiting for the temperature of the reactor 11 to be higher than T1 and lower than T2. It is determined whether the amount of deviation between the actual measured NH 3 recovery rate of the adsorber 12 and the estimated NH 3 recovery rate of the adsorber 12 during operation of the recovery pump 16 is equal to or less than the pump failure determination threshold value. Therefore, it is possible to quickly identify that the recovery pump 16 is not malfunctioning and to quickly detect the malfunction of the valve 15.
  • the deviation amount between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened is used for determining a valve failure.
  • the recovery pump 16 is forcibly operated.
  • the present invention is not limited to this configuration, and the temperature of the reactor 11 is naturally higher than T1 and lower than T2.
  • the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is the threshold for pump failure determination. It may be determined whether or not: In this case, the processing procedure by the failure detection unit 25 can be simplified.
  • the estimated value of the NH 3 recovery rate of the adsorber 12 is used as the estimated value related to the recovery amount of NH 3 for transfer from the reactor 11 to the adsorber 12, but it is not particularly limited thereto.
  • an estimated value of the amount of NH 3 recovered for the adsorber 12 may be used. In this case, as the actual measurement value relating to the recovery amount of the transfer NH 3 into adsorber 12 from the reactor 11, the measured value of the recovered amount of the transfer NH 3 is used for adsorber 12.
  • the recovery control process is terminated when the NH 3 recovery rate of the adsorber 12 is equal to or higher than the target value.
  • the present invention is not limited to this mode.
  • the recovery control is performed when the engine 2 is driven.
  • the process may be continued and the collection control process may be terminated when the engine 2 is stopped.
  • the valve 15 is closed and the recovery pump 16 is operated, or the valve 15 is opened and recovered. Since the control for stopping the pump 16 is continued, the reactor 11 can be prevented from being in an overpressure state.
  • one end of the reaction medium channels 13 and 14 is connected to the reactor 11 and the other end of the reaction medium channels 13 and 14 is connected to the adsorber 12, respectively. If it connects so that the path
  • one end of the reaction medium flow path 13 is connected to the reactor 11, the other end of the reaction medium flow path 13 is connected to the adsorber 12, and both ends of the reaction medium flow path 14 are connected to the reaction medium flow path 13.
  • One end of the reaction medium flow path 14 may be connected to the reactor 11, the other end of the reaction medium flow path 14 is connected to the adsorber 12, and both ends of the reaction medium flow path 13 may be connected. May be connected to the reaction medium flow path 14.
  • the reaction medium NH 3 and the reaction material 17 represented by the composition formula MXa are chemically reacted to generate heat.
  • the reaction medium is not particularly limited to NH 3.
  • CO 2 or H 2 O may be used.
  • the reaction material 17 chemically reacted with CO 2 includes MgO, CaO, BaO, Ca (OH) 2 , Mg (OH) 2 , Fe (OH) 2 , Fe (OH) 3 , FeO, Fe 2 O 3, Fe 3 O 4 or the like is used.
  • H 2 O is used as the reaction medium, CaO, MnO, CuO, Al 2 O 3 or the like is used as the reaction material 17 to be chemically reacted with H 2 O.
  • the reactor 11 is disposed around the heat exchanger 6, but is not particularly limited to that form, for example, a heat exchanger that passes engine oil and a reactor are alternately stacked.
  • the structure may be Further, without using the heat exchanger 6, the reactor 11 may be arranged around the oil flow path through which the engine oil flows so as to be able to exchange heat with the engine oil.
  • the reactor 11 is arrange
  • the engine oil is heated by the chemical heat storage device 10, but the heating target is not particularly limited to engine oil, and may be, for example, exhaust gas, cooling water, cooling air, or the like.
  • SYMBOLS 10 Chemical heat storage apparatus, 11 ... Reactor, 12 ... Adsorber (reservoir), 13 ... Reaction medium flow path (1st reaction medium flow path), 14 ... Reaction medium flow path (2nd reaction medium flow path), DESCRIPTION OF SYMBOLS 15 ... Valve, 16 ... Recovery pump (pump), 17 ... Reaction material, 19 ... Temperature sensor (temperature detection part), 23 ... Recovery control part, 24 ... Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

This chemical heat storage apparatus (10) is equipped with a recovery control unit (23), a storage unit (24), and a failure detection unit (25). The recovery control unit (23) controls a recovery pump (16) into operation when the temperature of a reactor (11) is higher than T1 but lower than T2, the recovery pump (16) recovering an NH3 from the reactor and forcing the NH3 into an adsorber (12). When the temperature of the reactor is T2 or more, the recovery control unit (23) controls a valve (15) to an open position so that the NH3 can be recovered from the reactor and forced into the adsorber. The storage unit (24) stores the estimate value of the NH3 recovery rate of the adsorber when the recovery pump (16) is in operation and the valve is in an open position. The failure detection unit (25) calculates the actual measurement value of the NH3 recovery rate of the adsorber when the recovery pump (16) is in operation and the valve is in an open position. On the basis of the amount of deviation between the actual measurement value of the NH3 recovery rate of the adsorber and the estimate value of the NH3 recovery rate of the adsorber as stored in the storage unit, the failure detection unit (25) determines the failure in a reactive medium supply system (26) between the reactor and the adsorber.

Description

化学蓄熱装置Chemical heat storage device
 本発明の一側面は、化学蓄熱装置に関する。 One aspect of the present invention relates to a chemical heat storage device.
 従来の化学蓄熱装置としては、例えば特許文献1に記載されている装置が知られている。特許文献1に記載の化学蓄熱装置は、反応媒体であるNHと化学反応して熱を発生させる反応材を含む反応器と、NHを吸着して貯蔵することで蓄熱を行う蓄熱器と、反応器と蓄熱器とを接続し、蓄熱器から反応器にNHを供給するための第1供給通路と、第1供給通路に対して並列となるように反応器と蓄熱器とを接続し、反応器から蓄熱器にNHを供給するための第2供給通路と、第1供給通路に設けられた開閉弁と、第2供給通路に設けられ、反応器内を強制吸引することで、反応器内の圧力を強制的に下げて、反応器から蓄熱器に強制的にNHを回収する吸引ポンプとを備えている。 As a conventional chemical heat storage device, for example, a device described in Patent Document 1 is known. The chemical heat storage device described in Patent Document 1 includes a reactor including a reaction material that chemically reacts with NH 3 as a reaction medium to generate heat, and a heat storage that stores heat by adsorbing and storing NH 3. The reactor and the regenerator are connected, the first supply passage for supplying NH 3 from the regenerator to the reactor, and the reactor and the regenerator are connected in parallel to the first supply passage. A second supply passage for supplying NH 3 from the reactor to the heat accumulator, an on-off valve provided in the first supply passage, and a forcible suction inside the reactor provided in the second supply passage. And a suction pump that forcibly lowers the pressure in the reactor and forcibly recovers NH 3 from the reactor to the heat accumulator.
特開2014-234950号公報JP 2014-234950 A
 上記従来技術においては、例えば吸引ポンプが故障すると、NHが蓄熱器に回収されなくなる。従って、次に蓄熱器から反応器にNHを供給する際に、所望量のNHが反応器に供給されないため、反応器においてNHと反応材との化学反応による発熱の効果が十分に得られない。そのような不具合を未然に防ぐためには、吸引ポンプ及び開閉弁を含む反応媒体供給系の故障を検知する必要がある。 In the above prior art, for example, when the suction pump fails, NH 3 is not recovered by the heat accumulator. Therefore, the next time NH 3 is supplied from the regenerator to the reactor, the desired amount of NH 3 is not supplied to the reactor, so that the heat generation effect due to the chemical reaction between NH 3 and the reactant in the reactor is sufficient. I can't get it. In order to prevent such a problem, it is necessary to detect a failure in the reaction medium supply system including the suction pump and the on-off valve.
 本発明の一側面の目的は、ポンプ及びバルブを含む反応媒体供給系の故障を検知することができる化学蓄熱装置を提供することである。 An object of one aspect of the present invention is to provide a chemical heat storage device capable of detecting a failure in a reaction medium supply system including a pump and a valve.
 本発明の一側面に係る化学蓄熱装置は、反応媒体が供給されると反応媒体との化学反応により発熱すると共に熱が与えられると反応媒体が脱離する反応材を含む反応器と、反応媒体を貯蔵する貯蔵器と、反応器と貯蔵器とを接続し、反応器と貯蔵器との間で反応媒体を双方向に流通させる第1反応媒体流路と、第1反応媒体流路に配設され、第1反応媒体流路を開閉するバルブと、反応器と貯蔵器とを接続し、反応器から貯蔵器に反応媒体を流通させる第2反応媒体流路と、第2反応媒体流路に配設され、反応器内を吸引することで反応器から貯蔵器に反応媒体を回収するポンプと、反応器の温度を検出する温度検出部と、温度検出部により検出された反応器の温度が第1温度よりも高く且つ第2温度よりも低いときは、ポンプを稼動するように制御し、温度検出部により検出された反応器の温度が第2温度以上であるときは、反応器から貯蔵器に反応媒体が回収可能となるようにバルブを開制御する回収制御部と、ポンプの稼動時及びバルブの開弁時における反応器から貯蔵器への反応媒体の回収量に関する推定値を記憶する記憶部と、ポンプの稼動時及びバルブの開弁時における反応器から貯蔵器への反応媒体の回収量に関する実測値を求め、反応媒体の回収量に関する実測値と記憶部に記憶された反応媒体の回収量に関する推定値とのずれ量に基づいて、反応器と貯蔵器との間の反応媒体供給系の故障を判定する故障検知部とを備える。 A chemical heat storage device according to one aspect of the present invention includes a reactor including a reaction material that generates heat due to a chemical reaction with a reaction medium when the reaction medium is supplied and from which the reaction medium is detached when heat is applied; Are connected to the first reaction medium flow path, the first reaction medium flow path for connecting the reaction medium and the reservoir in a bidirectional manner, and the first reaction medium flow path. A second reaction medium flow path configured to connect the reactor and the reservoir and to circulate the reaction medium from the reactor to the reservoir; and a second reaction medium flow path provided to open and close the first reaction medium flow path And a pump for recovering the reaction medium from the reactor to the reservoir by sucking the inside of the reactor, a temperature detector for detecting the temperature of the reactor, and the temperature of the reactor detected by the temperature detector When the temperature is higher than the first temperature and lower than the second temperature, the pump is operated When the temperature of the reactor detected by the temperature detector is equal to or higher than the second temperature, a recovery controller that controls the opening of the valve so that the reaction medium can be recovered from the reactor to the reservoir; A storage unit for storing an estimated value of the recovery amount of the reaction medium from the reactor to the reservoir when the pump is operating and when the valve is opened, and from the reactor to the reservoir when the pump is operating and when the valve is opened An actual measurement value for the recovery amount of the reaction medium is obtained, and based on the amount of deviation between the actual measurement value for the recovery amount of the reaction medium and the estimated value for the recovery amount of the reaction medium stored in the storage unit, And a failure detection unit for determining a failure in the reaction medium supply system.
 以上のような化学蓄熱装置においては、反応器の温度が第1温度よりも高く且つ第2温度よりも低いときは、ポンプが稼動されることで、反応媒体が第2反応媒体流路を通って反応器から貯蔵器に回収され、反応器の温度が第2温度以上であるときは、バルブが開弁されることで、反応媒体が第1反応媒体流路を通って反応器から貯蔵器に回収される。このとき、ポンプの稼動時及びバルブの開弁時における反応器から貯蔵器への反応媒体の回収量に関する実測値とポンプの稼動時及びバルブの開弁時における反応器から貯蔵器への反応媒体の回収量に関する推定値とのずれ量に基づいて、反応器と貯蔵器との間の反応媒体供給系の故障が判定される。これにより、ポンプ及びバルブを含む反応媒体供給系の故障を検知することができる。 In the above chemical heat storage device, when the temperature of the reactor is higher than the first temperature and lower than the second temperature, the reaction medium passes through the second reaction medium flow path by operating the pump. When the reactor is recovered from the reactor and the temperature of the reactor is equal to or higher than the second temperature, the valve is opened so that the reaction medium passes from the reactor through the first reaction medium flow path to the reservoir. To be recovered. At this time, the measured value of the recovery amount of the reaction medium from the reactor to the reservoir when the pump is operated and the valve is opened, and the reaction medium from the reactor to the reservoir when the pump is operated and the valve is opened The failure of the reaction medium supply system between the reactor and the reservoir is determined on the basis of the amount of deviation from the estimated value related to the recovered amount. Thereby, the failure of the reaction medium supply system including the pump and the valve can be detected.
 本発明の一側面によれば、ポンプ及びバルブを含む反応媒体供給系の故障を検知することができる化学蓄熱装置が提供される。 According to one aspect of the present invention, a chemical heat storage device capable of detecting a failure in a reaction medium supply system including a pump and a valve is provided.
図1は、一実施形態に係る化学蓄熱装置を備えたエンジンオイル循環システムを示す概略構成図である。 Drawing 1 is a schematic structure figure showing an engine oil circulation system provided with a chemical heat storage device concerning one embodiment. 図2は、反応器の温度と反応器の平衡圧との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the temperature of the reactor and the equilibrium pressure of the reactor. 図3は、エンジンオイルの温度の変動状況の一例を示すグラフである。FIG. 3 is a graph showing an example of a fluctuation state of the temperature of the engine oil. 図4は、図1に示された回収制御部により実行される回収制御処理手順の詳細を示すフローチャートである。FIG. 4 is a flowchart showing details of a collection control processing procedure executed by the collection control unit shown in FIG. 図5(a)は、NH飽和蒸気圧特性を示すグラフであり、図5(b)は、NH吸着特性を示すグラフである。FIG. 5A is a graph showing NH 3 saturated vapor pressure characteristics, and FIG. 5B is a graph showing NH 3 adsorption characteristics. 図6(a)及び図6(b)は、図1に示された記憶部に記憶される吸着器のNH回収率推定値のパターンを示すグラフである。6A and 6B are graphs showing patterns of NH 3 recovery rate estimation values of the adsorber stored in the storage unit shown in FIG. 図7は、図1に示された故障検知部により実行される故障検知処理手順の詳細を示すフローチャートである。FIG. 7 is a flowchart showing details of a failure detection processing procedure executed by the failure detection unit shown in FIG. 図8は、図1に示された故障検知部により実行される故障検知処理手順の詳細を示すフローチャートである。FIG. 8 is a flowchart showing details of a failure detection processing procedure executed by the failure detection unit shown in FIG.
 一実施形態において、故障検知部は、ポンプの稼動時における反応器から貯蔵器への反応媒体の回収量に関する実測値とポンプの稼動時における反応器から貯蔵器への反応媒体の回収量に関する推定値とのずれ量がポンプ故障判定用閾値よりも大きいと判断した後、バルブの開弁時における反応器から貯蔵器への反応媒体の回収量に関する実測値とバルブの開弁時における反応器から貯蔵器への反応媒体の回収量に関する推定値とのずれ量がバルブ故障判定用閾値以下であると判断したときに、ポンプの故障であると判定してもよい。この場合には、ポンプが故障している可能性があると推測された後、バルブの故障でないことが明らかとされたときに、ポンプの故障であると判定されるため、ポンプの故障を確実に検知することができる。 In one embodiment, the failure detection unit is configured to estimate the amount of reaction medium recovered from the reactor to the reservoir during operation of the pump and the amount of reaction medium recovered from the reactor to the reservoir during operation of the pump. After determining that the amount of deviation from the value is greater than the threshold value for determining pump failure, the measured value of the recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened and the reactor when the valve is opened When it is determined that the deviation from the estimated value related to the recovery amount of the reaction medium in the reservoir is equal to or less than the valve failure determination threshold, it may be determined that the pump is malfunctioning. In this case, after it is assumed that the pump may have failed, it is determined that it is not a valve failure. Can be detected.
 一実施形態において、故障検知部は、バルブの開弁時における反応器から貯蔵器への反応媒体の回収量に関する実測値とバルブの開弁時における反応器から貯蔵器への反応媒体の回収量に関する推定値とのずれ量がバルブ故障判定用閾値よりも大きいと判断した後、ポンプの稼動時における反応器から貯蔵器への反応媒体の回収量に関する実測値とポンプの稼動時における反応器から貯蔵器への反応媒体の回収量に関する推定値とのずれ量がポンプ故障判定用閾値以下であると判断したときに、バルブの故障であると判定してもよい。この場合には、バルブが故障している可能性があると推測された後、ポンプの故障でないことが明らかとされたときに、バルブの故障であると判定されるため、バルブの故障を確実に検知することができる。 In one embodiment, the failure detection unit includes an actual measurement value related to a recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened and a recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened. After determining that the deviation from the estimated value for the valve is greater than the threshold value for determining valve failure, the measured value for the recovery amount of the reaction medium from the reactor to the reservoir during operation of the pump and from the reactor during operation of the pump When it is determined that the amount of deviation from the estimated value related to the recovery amount of the reaction medium in the reservoir is equal to or less than the pump failure determination threshold value, it may be determined that the valve is malfunctioning. In this case, since it is determined that the valve is not faulty after it is determined that the valve may have failed, it is determined that the valve is faulty. Can be detected.
 一実施形態において、故障検知部は、バルブの開弁時における反応器から貯蔵器への反応媒体の回収量に関する実測値とバルブの開弁時における反応器から貯蔵器への反応媒体の回収量に関する推定値とのずれ量がバルブ故障判定用閾値よりも大きいと判断した後、ポンプを稼動するように制御してもよい。この場合には、反応器の温度が第1温度よりも高く且つ第2温度よりも低い状態になることを待たなくても、ポンプを強制的に稼動することにより、ポンプの稼動時における反応器から貯蔵器への反応媒体の回収量に関する実測値とポンプの稼動時における反応器から貯蔵器への反応媒体の回収量に関する推定値とのずれ量がポンプ故障判定用閾値以下であるかどうかが判断される。従って、ポンプの故障でないことを迅速に明らかにして、バルブの故障を迅速に検知することができる。 In one embodiment, the failure detection unit includes an actual measurement value related to a recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened and a recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened. After determining that the amount of deviation from the estimated value is greater than the valve failure determination threshold, the pump may be controlled to operate. In this case, it is possible to forcibly operate the pump without waiting for the temperature of the reactor to be higher than the first temperature and lower than the second temperature. Whether the deviation between the measured value of the recovery amount of the reaction medium from the reactor to the reservoir and the estimated value of the recovery amount of the reaction medium from the reactor to the reservoir when the pump is operating is equal to or less than the threshold for determining the pump failure To be judged. Therefore, it is possible to quickly detect that the pump is not malfunctioning and to quickly detect the malfunction of the valve.
 以下、一実施形態について、図面を参照して詳細に説明する。 Hereinafter, an embodiment will be described in detail with reference to the drawings.
 図1は、一実施形態に係る化学蓄熱装置を備えたエンジンオイル循環システムを示す概略構成図である。図1において、エンジンオイル循環システム1は、車両に搭載され、エンジン2内の各部を潤滑するためのエンジンオイルを循環させる。 FIG. 1 is a schematic configuration diagram showing an engine oil circulation system including a chemical heat storage device according to an embodiment. In FIG. 1, an engine oil circulation system 1 is mounted on a vehicle and circulates engine oil for lubricating each part in the engine 2.
 エンジンオイル循環システム1は、オイルパン3と、オイルポンプ4と、オイルクーラ5と、熱交換器6とを備えている。オイルパン3は、エンジンオイルを溜めておく。エンジン2内の各部を流れたエンジンオイルは、オイルパン3に戻る。オイルポンプ4は、オイルパン3に溜められたエンジンオイルを吸い上げて圧送する。 The engine oil circulation system 1 includes an oil pan 3, an oil pump 4, an oil cooler 5, and a heat exchanger 6. The oil pan 3 stores engine oil. The engine oil that has flowed through each part in the engine 2 returns to the oil pan 3. The oil pump 4 sucks up and pumps the engine oil stored in the oil pan 3.
 オイルクーラ5は、オイルポンプ4により吸い上げられたエンジンオイルの温度が高くなり過ぎたときに、冷却水によりエンジンオイルを所定温度に冷却する。なお、エンジンオイルを冷却する理由は、エンジンオイルの過昇温による劣化を防ぐためである。熱交換器6は、オイルクーラ5とエンジン2との間に配置されている。熱交換器6は、エンジンオイルを通過させて、エンジンオイルと後述する反応器11との間で熱交換を行う。 The oil cooler 5 cools the engine oil to a predetermined temperature with cooling water when the temperature of the engine oil sucked up by the oil pump 4 becomes too high. The reason for cooling the engine oil is to prevent deterioration due to excessive temperature rise of the engine oil. The heat exchanger 6 is disposed between the oil cooler 5 and the engine 2. The heat exchanger 6 allows the engine oil to pass therethrough and performs heat exchange between the engine oil and a reactor 11 described later.
 また、エンジンオイル循環システム1は、エンジンオイルの早期昇温を可能とする化学蓄熱装置10を備えている。化学蓄熱装置10は、電力等の外部エネルギーを必要とせずに、エンジンオイルを熱交換器6を介して加熱(暖機)する。具体的には、化学蓄熱装置10は、エンジンオイルの熱により反応器11の反応材17(後段にて詳述する。)から反応媒体を脱離させ、その脱離した反応媒体を蓄えると共に、蓄えられた反応媒体を反応器11に供給して反応材17と反応媒体とを化学反応させ、その時の反応熱によりエンジンオイルを加熱する。即ち、化学蓄熱装置10は、可逆的な化学反応を利用して、エンジンオイルからの熱を蓄えると共にエンジンオイルに熱を供給する装置である。本実施形態では、反応媒体はアンモニア(NH)である。 Further, the engine oil circulation system 1 includes a chemical heat storage device 10 that enables an early temperature increase of the engine oil. The chemical heat storage device 10 heats (warms up) the engine oil via the heat exchanger 6 without requiring external energy such as electric power. Specifically, the chemical heat storage device 10 desorbs the reaction medium from the reaction material 17 (described in detail later) of the reactor 11 by the heat of the engine oil, stores the desorbed reaction medium, The stored reaction medium is supplied to the reactor 11 to cause the reaction material 17 and the reaction medium to chemically react, and the engine oil is heated by the reaction heat at that time. That is, the chemical heat storage device 10 is a device that stores heat from the engine oil and supplies heat to the engine oil using a reversible chemical reaction. In this embodiment, the reaction medium is ammonia (NH 3 ).
 化学蓄熱装置10は、反応器11と、吸着器12と、これらの反応器11と吸着器12とを接続する反応媒体流路13と、この反応媒体流路13に対して並列となるように反応器11と吸着器12とを接続する反応媒体流路14と、反応媒体流路13に配設されたバルブ15と、反応媒体流路14に配設された回収ポンプ16を備えている。反応媒体流路13,14、バルブ15及び回収ポンプ16は、反応器11と吸着器12との間に配置された反応媒体供給系26を構成している。 The chemical heat storage device 10 is arranged in parallel with the reactor 11, the adsorber 12, the reaction medium flow path 13 that connects the reactor 11 and the adsorber 12, and the reaction medium flow path 13. A reaction medium flow path 14 for connecting the reactor 11 and the adsorber 12, a valve 15 disposed in the reaction medium flow path 13, and a recovery pump 16 disposed in the reaction medium flow path 14 are provided. The reaction medium flow paths 13 and 14, the valve 15 and the recovery pump 16 constitute a reaction medium supply system 26 disposed between the reactor 11 and the adsorber 12.
 反応器11は、熱交換器6の周囲にエンジンオイルに対して熱交換可能に配置されている。反応器11は、NHが供給されるとNHとの化学反応により発熱すると共にエンジンオイルの熱が与えられるとNHを脱離する反応材17を含んでいる。反応材17としては、組成式MXaで表されるハロゲン化物が用いられる。Mは、Mg、CaまたはSr等のアルカリ土類金属、若しくはCr、Mn、Fe、Co、Ni、CuまたはZn等の遷移金属である。Xは、Cl、BrまたはI等である。aは、Mの価数により特定される数であり、2~3である。 The reactor 11 is arranged around the heat exchanger 6 so as to exchange heat with engine oil. The reactor 11 includes a reaction material 17 that generates heat due to a chemical reaction with NH 3 when NH 3 is supplied and desorbs NH 3 when heat of engine oil is applied. As the reaction material 17, a halide represented by the composition formula MXa is used. M is an alkaline earth metal such as Mg, Ca or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu or Zn. X is Cl, Br, I or the like. a is a number specified by the valence of M, and is 2 to 3.
 吸着器12は、NHを貯蔵する貯蔵器である。吸着器12は、NHの物理吸着及び脱離が可能な吸着材18を含んでいる。吸着材18としては、活性炭、カーボンブラック、メソポーラスカーボン、ナノカーボンまたはゼオライト等が用いられる。なお、NHは吸着材18に化学吸着されてもよい。 The adsorber 12 is a reservoir that stores NH 3 . The adsorber 12 includes an adsorbent 18 capable of physical adsorption and desorption of NH 3 . As the adsorbent 18, activated carbon, carbon black, mesoporous carbon, nanocarbon, zeolite, or the like is used. NH 3 may be chemically adsorbed on the adsorbent 18.
 反応媒体流路13,14の一端は反応器11にそれぞれ接続され、反応媒体流路13,14の他端は吸着器12にそれぞれ接続されている。反応媒体流路13は、反応器11と吸着器12との間で双方向にNHを流通させる第1反応媒体流路である。反応媒体流路14は、反応器11から吸着器12にNHを流通させる第2反応媒体流路である。バルブ15は、反応媒体流路13を開閉する電磁弁である。回収ポンプ16は、反応器11内を吸引することで反応器11から吸着器12にNHを回収する。 One end of each of the reaction medium channels 13 and 14 is connected to the reactor 11, and the other end of each of the reaction medium channels 13 and 14 is connected to the adsorber 12. The reaction medium channel 13 is a first reaction medium channel that allows NH 3 to flow in both directions between the reactor 11 and the adsorber 12. The reaction medium flow path 14 is a second reaction medium flow path for allowing NH 3 to flow from the reactor 11 to the adsorber 12. The valve 15 is an electromagnetic valve that opens and closes the reaction medium flow path 13. The recovery pump 16 recovers NH 3 from the reactor 11 to the adsorber 12 by sucking the inside of the reactor 11.
 なお、吸着器12の初期状態では、吸着器12の吸着材18には、バルブ15が開弁された際に反応器11、吸着器12及び反応媒体流路13,14からなる反応系内を所定の圧力に保持するための圧力保持用NHと、反応器11において所望の発熱温度を得るために反応材17との化学反応に使用される移動用NHとが吸着されている。圧力保持用NH及び移動用NHの量は、反応材17の材料等に応じて適宜決められている。 In the initial state of the adsorber 12, the adsorbent 18 of the adsorber 12 has a reaction system comprising the reactor 11, the adsorber 12, and the reaction medium channels 13 and 14 when the valve 15 is opened. The pressure maintaining NH 3 for maintaining a predetermined pressure and the moving NH 3 used for the chemical reaction with the reactant 17 in order to obtain a desired exothermic temperature in the reactor 11 are adsorbed. The amounts of the pressure holding NH 3 and the transfer NH 3 are appropriately determined according to the material of the reaction material 17 and the like.
 このような化学蓄熱装置10において、エンジン2の始動直後におけるエンジンオイルの温度が低いときは、バルブ15が開弁されると、吸着器12と反応器11との圧力差によって、吸着器12の吸着材18から移動用NHが脱離し、その移動用NHが反応媒体流路13を通って反応器11に供給される。そして、反応器11の反応材17(例えばMgBr)と移動用NHとが化学反応(化学吸着)して熱が発生する。つまり、下記の反応式(A)における左辺から右辺への反応(発熱反応)が起こる。そして、反応器11で発生した熱が熱交換器6を通してエンジンオイルに伝えられ、エンジンオイルが加熱(暖機)される。暖められたエンジンオイルは、エンジン2内の各部に送られる。
    MgBr+xNH ⇔ Mg(NH)xBr+熱   …(A)
In such a chemical heat storage device 10, when the temperature of the engine oil immediately after the start of the engine 2 is low, when the valve 15 is opened, the pressure difference between the adsorber 12 and the reactor 11 causes the adsorber 12 to is moving NH 3 from the adsorbent 18 desorbed, the movement NH 3 is supplied to the reactor 11 through the reaction medium flow path 13. Then, the reaction material 17 of the reactor 11 (e.g. MgBr 2) and moving NH 3 is the chemical reaction (chemical adsorption) and heat is generated. That is, a reaction from the left side to the right side (exothermic reaction) in the following reaction formula (A) occurs. Then, the heat generated in the reactor 11 is transmitted to the engine oil through the heat exchanger 6, and the engine oil is heated (warmed up). The warmed engine oil is sent to each part in the engine 2.
MgBr 2 + xNH 3 MgMg (NH 3 ) xBr 2 + heat (A)
 その後、エンジンオイルの温度が高くなると、エンジンオイルの熱が熱交換器6を通して反応器11の反応材17に与えられることで、反応材17から移動用NHが脱離する。つまり、上記の反応式(A)における右辺から左辺への反応(再生反応)が起こる。このとき、バルブ15が開弁されることで、反応器11と吸着器12との圧力差によって移動用NHが反応媒体流路13を通って吸着器12に戻るか、或いは回収ポンプ16が稼動されることで、移動用NHが反応媒体流路14を通って吸着器12に戻る。吸着器12に戻った移動用NHは、吸着器12の吸着材18に物理吸着される。これにより、移動用NHが吸着器12に回収されることとなる。 Thereafter, when the temperature of the engine oil increases, the heat of the engine oil is applied to the reaction material 17 of the reactor 11 through the heat exchanger 6, so that the moving NH 3 is desorbed from the reaction material 17. That is, a reaction (regeneration reaction) from the right side to the left side in the above reaction formula (A) occurs. At this time, when the valve 15 is opened, the NH 3 for movement returns to the adsorber 12 through the reaction medium flow path 13 due to the pressure difference between the reactor 11 and the adsorber 12, or the recovery pump 16 By being operated, the NH 3 for movement returns to the adsorber 12 through the reaction medium flow path 14. The moving NH 3 returned to the adsorber 12 is physically adsorbed by the adsorbent 18 of the adsorber 12. Thereby, NH 3 for movement will be collected by the adsorber 12.
 また、化学蓄熱装置10は、温度センサ19と、温度センサ20と、圧力センサ21と、コントローラ22とを備えている。温度センサ19は、反応器11の温度を検出する温度検出部である。温度センサ19は、反応器11の温度として反応材17の温度を検出する。なお、温度検出部としては、温度センサ19により反応器11の温度を直接検出する代わりに、例えば反応器11よりも下流側を流れるエンジンオイルの温度を温度センサにより検出し、エンジンオイルの温度から反応器11の温度を推定してもよい。温度センサ20は、吸着器12の温度を検出する。圧力センサ21は、吸着器12内の圧力を検出する。 The chemical heat storage device 10 includes a temperature sensor 19, a temperature sensor 20, a pressure sensor 21, and a controller 22. The temperature sensor 19 is a temperature detection unit that detects the temperature of the reactor 11. The temperature sensor 19 detects the temperature of the reaction material 17 as the temperature of the reactor 11. As the temperature detector, instead of directly detecting the temperature of the reactor 11 by the temperature sensor 19, for example, the temperature of the engine oil flowing downstream from the reactor 11 is detected by the temperature sensor, and the temperature of the engine oil is detected. The temperature of the reactor 11 may be estimated. The temperature sensor 20 detects the temperature of the adsorber 12. The pressure sensor 21 detects the pressure in the adsorber 12.
 コントローラ22は、CPU、RAM、ROM及び入出力インターフェース等により構成されている。コントローラ22は、回収制御部23と、記憶部24と、故障検知部25とを有している。 The controller 22 includes a CPU, a RAM, a ROM, an input / output interface, and the like. The controller 22 includes a collection control unit 23, a storage unit 24, and a failure detection unit 25.
 回収制御部23は、温度センサ19,20及び圧力センサ21の検出値に基づいて、反応器11から吸着器12への移動用NHの回収を行うようにバルブ15及び回収ポンプ16を制御する。記憶部24は、反応器11から吸着器12への移動用NHの回収量に関する推定値として、吸着器12に対する移動用NHの回収率の推定値(後段にて詳述する。)を記憶する。故障検知部25は、温度センサ19,20及び圧力センサ21の検出値と記憶部24に記憶された移動用NHの回収率の推定値とに基づいて、反応器11と吸着器12との間の反応媒体供給系26の故障を検知する。 The recovery control unit 23 controls the valve 15 and the recovery pump 16 so as to recover the moving NH 3 from the reactor 11 to the adsorber 12 based on the detection values of the temperature sensors 19 and 20 and the pressure sensor 21. . The storage unit 24 uses an estimated value of the recovery rate of NH 3 for transfer to the adsorber 12 (described in detail later) as an estimated value related to the recovery amount of NH 3 for transfer from the reactor 11 to the adsorber 12. Remember. The failure detection unit 25 determines whether the reaction between the reactor 11 and the adsorber 12 is based on the detected values of the temperature sensors 19, 20 and the pressure sensor 21 and the estimated value of the recovery rate of NH 3 for movement stored in the storage unit 24. In the meantime, the failure of the reaction medium supply system 26 is detected.
 図2は、反応器11の温度と反応器11の平衡圧との関係を示すグラフである。なお、反応器11の平衡圧とは、反応器11において反応材17とNHとが平衡状態となる圧力であり、より具体的には反応器11から吸着器12へNHが移動しない閉鎖系において、反応材17から脱離することができるNHの圧力である。 FIG. 2 is a graph showing the relationship between the temperature of the reactor 11 and the equilibrium pressure of the reactor 11. The equilibrium pressure of the reactor 11 is a pressure at which the reactant 17 and NH 3 are in an equilibrium state in the reactor 11, and more specifically, a closed state where NH 3 does not move from the reactor 11 to the adsorber 12. This is the pressure of NH 3 that can be desorbed from the reactant 17 in the system.
 図2において、実線Xは、反応器11の平衡圧を表している。反応器11の温度が高くなるほど、反応器11の平衡圧が高くなる。1点鎖線Yは、吸着器12に収容された圧力保持用NHの量によって決まる吸着器12の基準圧力Psである。図中のT2は、反応器11の平衡圧が吸着器12の基準圧力Psと等しくなるような温度(第2温度)であり、例えば80℃程度である(図3参照)。図中のT1は、T2よりも低い温度(第1温度)であり、例えば50℃程度である(図3参照)。なお、T2は、反応器11の平衡圧が吸着器12の基準圧力Ps以上となるような温度であればよい。 In FIG. 2, the solid line X represents the equilibrium pressure of the reactor 11. The higher the temperature of the reactor 11, the higher the equilibrium pressure of the reactor 11. A one-dot chain line Y is the reference pressure Ps of the adsorber 12 determined by the amount of the pressure holding NH 3 accommodated in the adsorber 12. T2 in the figure is a temperature (second temperature) at which the equilibrium pressure of the reactor 11 becomes equal to the reference pressure Ps of the adsorber 12, and is about 80 ° C., for example (see FIG. 3). T1 in the figure is a temperature (first temperature) lower than T2, for example, about 50 ° C. (see FIG. 3). T2 may be a temperature at which the equilibrium pressure of the reactor 11 is equal to or higher than the reference pressure Ps of the adsorber 12.
 反応器11の温度がT1以下であるときは、回収ポンプ16を使用しても、移動用NHの再生が十分に行われない。反応器11の温度がT1よりも高く且つT2よりも低いときは、回収ポンプ16を使用することにより、ある程度の時間で移動用NHを十分再生することができる。反応器11の温度がT2よりも高いときは、回収ポンプ16を使用しなくても、ある程度の時間で移動用NHを十分再生することができる。 When the temperature of the reactor 11 is equal to or lower than T1, even if the recovery pump 16 is used, the NH 3 for movement is not sufficiently regenerated. When the temperature of the reactor 11 is higher than T1 and lower than T2, by using the recovery pump 16, the moving NH 3 can be sufficiently regenerated in a certain time. When the temperature of the reactor 11 is higher than T2, the moving NH 3 can be sufficiently regenerated in a certain amount of time without using the recovery pump 16.
 図3は、エンジンオイルの温度の変動状況の一例を示すグラフである。図3に示す例では、時間と共にエンジンオイルの温度が上昇し、所定時間(2000秒)経過後にエンジン2を停止させている。反応器11の温度がT2よりも高い領域において、回収ポンプ16を使用しない通常の再生動作を行うと、再生時間がtaと短く、移動用NHを十分に再生することができない。この場合には、次回の発熱反応時に反応器11の発熱の効果が十分に得られない。反応器11の温度がT1よりも高く且つT2よりも低い領域において、回収ポンプ16を使用した再生動作を行うことにより、再生時間がtbと長くなり、移動用NHを十分に再生することが可能となる。 FIG. 3 is a graph showing an example of a fluctuation state of the temperature of the engine oil. In the example shown in FIG. 3, the temperature of the engine oil increases with time, and the engine 2 is stopped after a predetermined time (2000 seconds) has elapsed. When a normal regeneration operation without using the recovery pump 16 is performed in a region where the temperature of the reactor 11 is higher than T2, the regeneration time is as short as ta, and the moving NH 3 cannot be sufficiently regenerated. In this case, the heat generation effect of the reactor 11 cannot be sufficiently obtained during the next exothermic reaction. By performing the regeneration operation using the recovery pump 16 in the region where the temperature of the reactor 11 is higher than T1 and lower than T2, the regeneration time becomes as long as tb and the mobile NH 3 can be sufficiently regenerated. It becomes possible.
 回収制御部23は、温度センサ19により検出された反応器11の温度がT1よりも高く且つT2よりも低いときは、回収ポンプ16を稼動するように制御し、温度センサ19により検出された反応器11の温度がT2以上であるときは、反応器11から吸着器12に移動用NHが回収可能となるようにバルブ15を開制御する。 The recovery controller 23 controls the recovery pump 16 to operate when the temperature of the reactor 11 detected by the temperature sensor 19 is higher than T1 and lower than T2, and the reaction detected by the temperature sensor 19 is detected. When the temperature of the vessel 11 is equal to or higher than T2, the valve 15 is controlled to open so that the transfer NH 3 can be recovered from the reactor 11 to the adsorber 12.
 図4は、回収制御部23により実行される回収制御処理手順の詳細を示すフローチャートである。なお、初期状態では、バルブ15は閉弁しており、回収ポンプ16は停止している。 FIG. 4 is a flowchart showing details of the collection control processing procedure executed by the collection control unit 23. In the initial state, the valve 15 is closed and the recovery pump 16 is stopped.
 図4において、回収制御部23は、まず温度センサ19の検出値に基づいて、反応器11の温度がT1よりも高いかどうかを判断する(ステップS101)。回収制御部23は、反応器11の温度がT1よりも高いと判断したときは、温度センサ19の検出値に基づいて、反応器11の温度がT2よりも低いかどうかを判断する(ステップS102)。 In FIG. 4, the recovery control unit 23 first determines whether the temperature of the reactor 11 is higher than T1 based on the detection value of the temperature sensor 19 (step S101). When the recovery control unit 23 determines that the temperature of the reactor 11 is higher than T1, it determines whether or not the temperature of the reactor 11 is lower than T2 based on the detection value of the temperature sensor 19 (step S102). ).
 回収制御部23は、反応器11の温度がT2よりも低いと判断したときは(ステップS102:YES)、バルブ15を閉制御すると共に、回収ポンプ16を稼動するように制御する(ステップS103)。このとき、バルブ15が閉弁状態であるときは、バルブ15を閉弁状態に維持するように制御する。回収ポンプ16が稼動状態であるときは、回収ポンプ16を稼動状態に維持するように制御する。これにより、移動用NHが反応器11から吸着器12に反応媒体流路14を通って強制的に回収される。 When the recovery control unit 23 determines that the temperature of the reactor 11 is lower than T2 (step S102: YES), the recovery control unit 23 controls to close the valve 15 and operate the recovery pump 16 (step S103). . At this time, when the valve 15 is in the closed state, control is performed so that the valve 15 is maintained in the closed state. When the recovery pump 16 is in the operating state, control is performed so that the recovery pump 16 is maintained in the operating state. Thereby, NH 3 for movement is forcibly recovered from the reactor 11 to the adsorber 12 through the reaction medium flow path 14.
 一方、回収制御部23は、反応器11の温度がT2以上であると判断したときは(ステップS102:NO)、バルブ15を開制御すると共に、回収ポンプ16を停止するように制御する(ステップS104)。このとき、バルブ15が開弁状態であるときは、バルブ15を開弁状態に維持するように制御する。回収ポンプ16が停止状態であるときは、回収ポンプ16を停止状態に維持するように制御する。これにより、移動用NHが反応器11から吸着器12に反応媒体流路13を通って回収される。 On the other hand, when the recovery control unit 23 determines that the temperature of the reactor 11 is equal to or higher than T2 (step S102: NO), the recovery control unit 23 controls to open the valve 15 and stop the recovery pump 16 (step S102). S104). At this time, when the valve 15 is in the open state, control is performed so that the valve 15 is maintained in the open state. When the recovery pump 16 is in a stopped state, control is performed so that the recovery pump 16 is maintained in the stopped state. Thereby, NH 3 for movement is recovered from the reactor 11 to the adsorber 12 through the reaction medium flow path 13.
 回収制御部23は、ステップS103またはステップS104を実行した後、温度センサ20及び圧力センサ21の検出値に基づいて、吸着器12のNH回収率を求める(ステップS105)。吸着器12のNH回収率は、吸着器12に対する移動用NHの回収率であり、より具体的には移動用NHの総量と吸着器12に対する移動用NHの回収量との比率である。 After executing Step S103 or Step S104, the recovery control unit 23 obtains the NH 3 recovery rate of the adsorber 12 based on the detection values of the temperature sensor 20 and the pressure sensor 21 (Step S105). NH 3 recovery of adsorber 12 is a recovery of movement NH 3 for adsorber 12, the ratio between the recoverable amount of the transfer NH 3 to the total amount and the adsorber 12 of the transfer NH 3 and more specifically It is.
 このとき、回収制御部23は、温度センサ20により検出された吸着器12の温度と圧力センサ21により検出された吸着器12内の圧力とに基づいて、吸着器12の吸着材18に吸着されているNH量(吸着器12のNH吸着量)を推定する。 At this time, the collection controller 23 is adsorbed by the adsorbent 18 of the adsorber 12 based on the temperature of the adsorber 12 detected by the temperature sensor 20 and the pressure in the adsorber 12 detected by the pressure sensor 21. The amount of NH 3 (NH 3 adsorption amount of the adsorber 12) is estimated.
 NH吸着量の推定は、図5に示されるNH飽和蒸気圧特性及びNH吸着特性を用いて行われる。図5(a)に示されるNH飽和蒸気圧特性は、吸着器12の温度とNH飽和蒸気圧との関係を示すグラフであり、吸着器12の温度が高くなるに従ってNH飽和蒸気圧が高くなるような特性を有している。図5(b)に示されるNH吸着特性は、相対圧力と吸着器12のNH吸着量との関係を示すグラフであり、相対圧力が高くなるに従って吸着器12のNH吸着量が多くなるような特性を有している。相対圧力は、NH飽和蒸気圧Psatと吸着器12内の圧力Pとの比(P/Psat)である。 The estimation of the NH 3 adsorption amount is performed using the NH 3 saturated vapor pressure characteristics and the NH 3 adsorption characteristics shown in FIG. The NH 3 saturated vapor pressure characteristic shown in FIG. 5A is a graph showing the relationship between the temperature of the adsorber 12 and the NH 3 saturated vapor pressure, and the NH 3 saturated vapor pressure increases as the temperature of the adsorber 12 increases. It has the characteristic that becomes high. The NH 3 adsorption characteristic shown in FIG. 5 (b) is a graph showing the relationship between the relative pressure and the NH 3 adsorption amount of the adsorber 12, and the NH 3 adsorption amount of the adsorber 12 increases as the relative pressure increases. It has the characteristic which becomes. The relative pressure is a ratio (P / Psat) between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 12.
 回収制御部23は、まずNH飽和蒸気圧特性を用いて、温度センサ20により検出された吸着器12の温度Tに対応するNH飽和蒸気圧Psatを求める。そして、回収制御部23は、NH飽和蒸気圧Psatと圧力センサ21により検出された吸着器12内の圧力Pとの比である相対圧力を算出する。そして、回収制御部23は、NH吸着特性を用いて、相対圧力に対応するNH吸着量Snh3を求める。これにより、吸着器12のNH吸着量が推定される。 Recovery control unit 23 first with NH 3 saturated vapor pressure characteristics, determine the NH 3 saturated vapor pressure Psat corresponding to the temperature T of the adsorber 12 detected by the temperature sensor 20. Then, the recovery control unit 23 calculates a relative pressure that is a ratio between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 12 detected by the pressure sensor 21. Then, the recovery control section 23, using the NH 3 adsorption properties, determine the adsorbed NH 3 amount Snh3 corresponding to the relative pressure. Thereby, the NH 3 adsorption amount of the adsorber 12 is estimated.
 そして、回収制御部23は、吸着器12のNH吸着量から、吸着器12のNH回収率を求める。例えば、吸着器12のNH吸着量が圧力保持用NHに相当する量であるときは、吸着器12のNH回収率は0%であり、吸着器12のNH吸着量が圧力保持用NHに相当する量と移動用NHの総量に相当する量との合計値であるときは、吸着器12のNH回収率は100%である。 Then, the recovery control unit 23 obtains the NH 3 recovery rate of the adsorber 12 from the NH 3 adsorption amount of the adsorber 12. For example, when the NH 3 adsorption amount of the adsorber 12 is an amount corresponding to NH 3 for maintaining the pressure, the NH 3 recovery rate of the adsorber 12 is 0%, and the NH 3 adsorption amount of the adsorber 12 is the pressure holding. when the amount corresponding to use NH 3 which is the sum of the amount corresponding to the total amount of the transfer NH 3 is, NH 3 recovery of the adsorber 12 is 100%.
 続いて、回収制御部23は、吸着器12のNH回収率が目標値(例えば80%)以上であるかどうかを判断する(ステップS106)。回収制御部23は、吸着器12のNH回収率が目標値以上でないと判断したときは、上記のステップS101を再度実行する。 Subsequently, the recovery control unit 23 determines whether the NH 3 recovery rate of the adsorber 12 is equal to or higher than a target value (for example, 80%) (step S106). When the recovery control unit 23 determines that the NH 3 recovery rate of the adsorber 12 is not equal to or higher than the target value, the recovery control unit 23 executes the above step S101 again.
 一方、回収制御部23は、吸着器12のNH回収率が目標値以上であると判断したときは、バルブ15を閉制御すると共に、回収ポンプ16を停止するように制御し(ステップS107)、本処理を終了する。このとき、回収ポンプ16が停止状態であるときは、回収ポンプ16を停止状態に維持するように制御する。 On the other hand, when the recovery control unit 23 determines that the NH 3 recovery rate of the adsorber 12 is equal to or higher than the target value, the recovery control unit 23 controls to close the valve 15 and stop the recovery pump 16 (step S107). This process is terminated. At this time, when the recovery pump 16 is in a stopped state, control is performed so that the recovery pump 16 is maintained in the stopped state.
 記憶部24は、図6(a)及び図6(b)に示されるような吸着器12のNH回収率推定値のパターンを記憶する。吸着器12のNH回収率推定値は、吸着器12に対する移動用NHの回収率の推定値である。NH回収率推定値のパターンは、NH回収率が目標値に達するまでの時間経過を表す推定値のパターンであり、反応器11の温度によって異なる。NH回収率推定値のパターンは、予め実験等により求められ設定されている。 The storage unit 24 stores the NH 3 recovery rate estimated value pattern of the adsorber 12 as shown in FIGS. 6 (a) and 6 (b). The NH 3 recovery rate estimated value of the adsorber 12 is an estimated value of the transfer NH 3 recovery rate with respect to the adsorber 12. The NH 3 recovery rate estimated value pattern is an estimated value pattern representing the time elapsed until the NH 3 recovery rate reaches the target value, and varies depending on the temperature of the reactor 11. The NH 3 recovery rate estimated value pattern is obtained and set in advance by experiments or the like.
 図6(a)は、回収ポンプ16の稼動時における吸着器12のNH回収率推定値のパターン、つまり反応器11の温度がT1よりも高く且つT2よりも低いときの吸着器12のNH回収率推定値のパターンである。本パターンでは、反応器11の温度がT1からT2まで高くなるに従って、NH回収率が目標値Mに達するまでの時間が短くなる。 FIG. 6A shows an NH 3 recovery rate estimated value pattern of the adsorber 12 during operation of the recovery pump 16, that is, the NH of the adsorber 12 when the temperature of the reactor 11 is higher than T1 and lower than T2. 3 is a pattern of estimated recovery rate. In this pattern, the time until the NH 3 recovery rate reaches the target value M becomes shorter as the temperature of the reactor 11 increases from T1 to T2.
 図6(b)は、バルブ15の開弁時における吸着器12のNH回収率推定値のパターン、つまり反応器11の温度がT2以上であるときの吸着器12のNH回収率推定値のパターンである。本パターンでは、反応器11の温度がT2から高くなるに従って、NH回収率が目標値Mに達するまでの時間が短くなる。 6 (b) is a pattern of NH 3 recovery rate estimated value of the adsorber 12 during the opening of the valve 15, i.e. NH 3 recovery rate estimated value of the adsorber 12 when the temperature of the reactor 11 is equal to or higher than T2 Pattern. In this pattern, the time until the NH 3 recovery rate reaches the target value M becomes shorter as the temperature of the reactor 11 increases from T2.
 故障検知部25は、反応器11から吸着器12への移動用NHの回収量に関する実測値として、吸着器12に対する移動用NHの回収率の実測値(吸着器12のNH回収率実測値という)を求め、吸着器12のNH回収率実測値と記憶部24に記憶された吸着器12のNH回収率推定値とのずれ量に基づいて、反応器11と吸着器12との間の反応媒体供給系26の故障を判定する。 The failure detection unit 25 uses an actual measurement value of the recovery rate of NH 3 for transfer to the adsorber 12 (an NH 3 recovery rate of the adsorber 12 as an actual value related to the recovery amount of the transfer NH 3 from the reactor 11 to the adsorber 12. seek) of measured values, on the basis of the shift amount between NH 3 recovery estimate adsorber 12 stored in the storage unit 24 and the NH 3 recovery measured values of adsorber 12, the reactor 11 and adsorber 12 The failure of the reaction medium supply system 26 is determined.
 図7及び図8は、故障検知部25により実行される故障検知処理手順の詳細を示すフローチャートである。なお、初期状態では、ポンプ故障フラグ及びバルブ故障フラグは、OFFとなっている。 7 and 8 are flowcharts showing details of the failure detection processing procedure executed by the failure detection unit 25. In the initial state, the pump failure flag and the valve failure flag are OFF.
 図7及び図8において、故障検知部25は、まず温度センサ19の検出値に基づいて、反応器11の温度がT1よりも高く且つT2よりも低いかどうかを判断する(ステップS111)。反応器11の温度がT1よりも高く且つT2よりも低い場合は、上述したように回収ポンプ16が稼動される。 7 and 8, the failure detection unit 25 first determines whether the temperature of the reactor 11 is higher than T1 and lower than T2 based on the detection value of the temperature sensor 19 (step S111). When the temperature of the reactor 11 is higher than T1 and lower than T2, the recovery pump 16 is operated as described above.
 故障検知部25は、反応器11の温度がT1よりも高く且つT2よりも低いと判断したときは、温度センサ20及び圧力センサ21の検出値に基づいて、回収ポンプ16の稼動時における吸着器12のNH回収率実測値を求める(ステップS112)。具体的には、故障検知部25は、図4に示されるフローチャートのステップS105と同様に、温度センサ20により検出された吸着器12の温度と圧力センサ21により検出された吸着器12内の圧力とに基づいて、吸着器12のNH吸着量を推定し、その吸着器12のNH吸着量から、回収ポンプ16の稼動時における吸着器12のNH回収率実測値を求める。 When the failure detection unit 25 determines that the temperature of the reactor 11 is higher than T1 and lower than T2, the adsorber during operation of the recovery pump 16 based on the detection values of the temperature sensor 20 and the pressure sensor 21. 12 actual measurement values of NH 3 recovery are obtained (step S112). Specifically, the failure detection unit 25 detects the temperature of the adsorber 12 detected by the temperature sensor 20 and the pressure in the adsorber 12 detected by the pressure sensor 21 as in step S105 of the flowchart shown in FIG. Based on the above, the NH 3 adsorption amount of the adsorber 12 is estimated, and the NH 3 recovery rate actual measurement value of the adsorber 12 when the recovery pump 16 is operated is obtained from the NH 3 adsorption amount of the adsorber 12.
 続いて、故障検知部25は、回収ポンプ16の稼動時における吸着器12のNH回収率実測値と記憶部24に記憶された回収ポンプ16の稼動時における吸着器12のNH回収率推定値とのずれ量を算出し、そのずれ量がポンプ故障判定用閾値以下であるかどうかを判断する(ステップS113)。ポンプ故障判定用閾値は、実験等により予め決められている。本ステップは、反応器11の温度がT1よりも高く且つT2よりも低い期間中、複数回実行される。このとき、故障検知部25は、例えば複数の時間においてNH回収率実測値とNH回収率推定値とのずれ量を算出し、そのずれ量の平均値または最大値がポンプ故障判定用閾値以下であるかどうかを判断する。 Then, the failure detection unit 25, NH 3 recovery estimator adsorber 12 during operation of the NH 3 recovery measured value storage unit recovery pump 16 which is stored in 24 of the adsorber 12 during the operation of recovery pump 16 A deviation amount from the value is calculated, and it is determined whether or not the deviation amount is equal to or less than a pump failure determination threshold value (step S113). The threshold value for determining a pump failure is determined in advance through experiments or the like. This step is performed a plurality of times during a period in which the temperature of the reactor 11 is higher than T1 and lower than T2. In this case, the failure detection unit 25, for example, a plurality of calculating the shift amount of the NH 3 recovery measured value and the NH 3 recovery rate estimated value at time, average or maximum pump failure determination threshold of the shift amount Determine whether:
 故障検知部25は、回収ポンプ16の稼動時における吸着器12のNH回収率実測値と回収ポンプ16の稼動時における吸着器12のNH回収率推定値とのずれ量がポンプ故障判定用閾値よりも大きいと判断したときは、回収ポンプ16が故障している可能性があると推測し、ポンプ故障フラグをONに設定する(ステップS114)。 The failure detection unit 25 determines that the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is for determining pump failure. If it is determined that the value is larger than the threshold value, it is estimated that there is a possibility that the recovery pump 16 has failed, and the pump failure flag is set to ON (step S114).
 故障検知部25は、回収ポンプ16の稼動時における吸着器12のNH回収率実測値と回収ポンプ16の稼動時における吸着器12のNH回収率推定値とのずれ量がポンプ故障判定用閾値以下であると判断したとき、またはステップS114を実行した後、温度センサ19の検出値に基づいて、反応器11の温度がT2以上であるかどうかを判断する(ステップS115)。反応器11の温度がT2以上である場合は、上述したようにバルブ15が開弁されていると共に回収ポンプ16が停止している。 The failure detection unit 25 determines that the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is for determining pump failure. When it is determined that the temperature is equal to or lower than the threshold value or after step S114 is executed, it is determined whether the temperature of the reactor 11 is equal to or higher than T2 based on the detected value of the temperature sensor 19 (step S115). When the temperature of the reactor 11 is T2 or higher, the valve 15 is opened and the recovery pump 16 is stopped as described above.
 故障検知部25は、反応器11の温度がT2以上であると判断したときは、温度センサ20及び圧力センサ21の検出値に基づいて、バルブ15の開弁時における吸着器12のNH回収率実測値を求める(ステップS116)。バルブ15の開弁時における吸着器12のNH回収率実測値を求める手法は、上記のステップS112と同様である。 When the failure detection unit 25 determines that the temperature of the reactor 11 is equal to or higher than T2, the NH 3 recovery of the adsorber 12 when the valve 15 is opened based on the detection values of the temperature sensor 20 and the pressure sensor 21. A rate actual measurement value is obtained (step S116). The method for obtaining the actual measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened is the same as in step S112 described above.
 続いて、故障検知部25は、バルブ15の開弁時における吸着器12のNH回収率実測値と記憶部24に記憶されたバルブ15の開弁時における吸着器12のNH回収率推定値とのずれ量を算出し、そのずれ量がバルブ故障判定用閾値以下であるかどうかを判断する(ステップS117)。バルブ故障判定用閾値は、実験等により予め決められている。バルブ故障判定用閾値は、ポンプ故障判定用閾値と同じ値でもよいし異なる値でもよい。本ステップは、反応器11の温度がT2よりも高い期間中、複数回実行される。このとき、故障検知部25は、例えば複数の時間においてNH回収率実測値とNH回収率推定値とのずれ量を算出し、そのずれ量の平均値または最大値がバルブ故障判定用閾値以下であるかどうかを判断する。 Then, the failure detection unit 25, NH 3 recovery estimator adsorber 12 during opening of the NH 3 recovery measured value storage unit 24 valve 15 which is stored in the adsorber 12 during opening of the valve 15 A deviation amount from the value is calculated, and it is determined whether or not the deviation amount is equal to or less than a valve failure determination threshold value (step S117). The valve failure determination threshold value is determined in advance by experiments or the like. The valve failure determination threshold value may be the same as or different from the pump failure determination threshold value. This step is executed a plurality of times during a period in which the temperature of the reactor 11 is higher than T2. In this case, the failure detection unit 25, for example, a plurality of calculating the shift amount of the NH 3 recovery measured value and the NH 3 recovery rate estimated value at time, average or maximum valve failure determination threshold of the shift amount Determine whether:
 故障検知部25は、バルブ15の開弁時における吸着器12のNH回収率実測値とバルブ15の開弁時における吸着器12のNH回収率推定値とのずれ量がバルブ故障判定用閾値以下であると判断したときは、ポンプ故障フラグがONであるかどうかを判断する(ステップS118)。故障検知部25は、ポンプ故障フラグがONでないと判断したときは、ポンプ故障フラグ及びバルブ故障フラグが何れもOFFであるということから、反応器11、吸着器12及び反応媒体供給系26が正常であると判定し(ステップS119)、本処理を終了する。 The failure detection unit 25 determines the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened. If it is determined that the value is equal to or less than the threshold value, it is determined whether the pump failure flag is ON (step S118). When the failure detection unit 25 determines that the pump failure flag is not ON, since the pump failure flag and the valve failure flag are both OFF, the reactor 11, the adsorber 12, and the reaction medium supply system 26 are normal. Is determined (step S119), and the process is terminated.
 一方、故障検知部25は、ポンプ故障フラグがONであると判断したときは、ポンプ故障フラグがONであると共にバルブ故障フラグがOFFであるということから、回収ポンプ16を含むポンプラインの故障であると判定し(ステップS120)、本処理を終了する。 On the other hand, when the failure detecting unit 25 determines that the pump failure flag is ON, the pump failure flag is ON and the valve failure flag is OFF. It determines with there existing (step S120), and complete | finishes this process.
 故障検知部25は、ステップS117においてバルブ15の開弁時における吸着器12のNH回収率実測値とバルブ15の開弁時における吸着器12のNH回収率推定値とのずれ量がバルブ故障判定用閾値よりも大きいと判断したときは、バルブ15が故障している可能性があると推測し、バルブ故障フラグをONに設定する(ステップS121)。 In step S117, the failure detection unit 25 determines whether the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened. If it is determined that the value is larger than the failure determination threshold value, it is estimated that the valve 15 may be broken, and the valve failure flag is set to ON (step S121).
 続いて、故障検知部25は、ポンプ故障フラグがONであるかどうかを判断する(ステップS122)。故障検知部25は、ポンプ故障フラグがONであると判断したときは、ポンプ故障フラグ及びバルブ故障フラグが何れもONであるということから、化学蓄熱装置10の故障、具体的には反応器11、吸着器12、回収ポンプ16を含むポンプライン及びバルブ15を含むバルブラインの何れかの故障であると判定し(ステップS123)、本処理を終了する。 Subsequently, the failure detection unit 25 determines whether or not the pump failure flag is ON (step S122). When the failure detection unit 25 determines that the pump failure flag is ON, since both the pump failure flag and the valve failure flag are ON, failure of the chemical heat storage device 10, specifically, the reactor 11 Then, it is determined that there is a failure in any of the adsorber 12, the pump line including the recovery pump 16 and the valve line including the valve 15 (step S123), and the process is terminated.
 一方、故障検知部25は、ポンプ故障フラグがONでないと判断したときは、回収ポンプ16を稼動するように制御する(ステップS124)。これにより、回収ポンプ16が稼動される。 On the other hand, when the failure detection unit 25 determines that the pump failure flag is not ON, the failure detection unit 25 controls the recovery pump 16 to operate (step S124). Thereby, the collection pump 16 is operated.
 続いて、故障検知部25は、上記のステップS112と同様に、温度センサ20及び圧力センサ21の検出値に基づいて、回収ポンプ16の稼動時における吸着器12のNH回収率実測値を求める(ステップS125)。そして、故障検知部25は、回収ポンプ16の稼動時における吸着器12のNH回収率実測値と記憶部24に記憶された回収ポンプ16の稼動時における吸着器12のNH回収率推定値とのずれ量を算出し、そのずれ量がポンプ故障判定用閾値以下であるかどうかを判断する(ステップS126)。この時の判断手法は、上記のステップS113と同様である。 Subsequently, the failure detection unit 25 obtains the measured NH 3 recovery rate of the adsorber 12 during the operation of the recovery pump 16 based on the detection values of the temperature sensor 20 and the pressure sensor 21 as in step S112 described above. (Step S125). The failure detection unit 25 then measures the actual NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is in operation and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is stored and stored in the storage unit 24. Is calculated, and it is determined whether the amount of deviation is equal to or less than a pump failure determination threshold value (step S126). The determination method at this time is the same as that in step S113.
 故障検知部25は、回収ポンプ16の稼動時における吸着器12のNH回収率実測値と回収ポンプ16の稼動時における吸着器12のNH回収率推定値とのずれ量がポンプ故障判定用閾値以下であると判断したときは、両者のずれ量が小さいと共にバルブ故障フラグがONであることから、バルブ15を含むバルブラインの故障であると判定する(ステップS127)。 The failure detection unit 25 determines that the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is for determining pump failure. When it is determined that the value is equal to or less than the threshold value, since the amount of deviation between the two is small and the valve failure flag is ON, it is determined that the valve line including the valve 15 is in failure (step S127).
 一方、故障検知部25は、回収ポンプ16の稼動時における吸着器12のNH回収率実測値と回収ポンプ16の稼動時における吸着器12のNH回収率推定値とのずれ量がポンプ故障判定用閾値よりも大きいと判断したときは、両者のずれ量が大きいと共にバルブ故障フラグがONであることから、化学蓄熱装置10の故障、具体的には反応器11、吸着器12、回収ポンプ16を含むポンプライン及びバルブ15を含むバルブラインの何れかの故障であると判定する(ステップS128)。 On the other hand, the failure detection unit 25 determines that the deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is a pump failure. When it is determined that the value is larger than the threshold for determination, since the deviation amount between the two is large and the valve failure flag is ON, failure of the chemical heat storage device 10, specifically, the reactor 11, the adsorber 12, and the recovery pump It is determined that there is a failure in either the pump line including 16 or the valve line including valve 15 (step S128).
 故障検知部25は、ステップS127またはステップS128を実行した後、回収ポンプ16を停止するように制御し(ステップS129)、本処理を終了する。なお、故障判定の結果は、例えば図示しない表示部に表示される。 After executing step S127 or step S128, the failure detection unit 25 controls to stop the recovery pump 16 (step S129), and ends this process. The failure determination result is displayed, for example, on a display unit (not shown).
 以上のように本実施形態にあっては、反応器11の温度がT1よりも高く且つT2よりも低いときは、回収ポンプ16が稼動されることで、移動用NHが反応媒体流路14を通って反応器11から吸着器12に回収され、反応器11の温度がT2以上であるときは、バルブ15が開弁されることで、移動用NHが反応媒体流路13を通って反応器11から吸着器12に回収される。このとき、回収ポンプ16の稼動時及びバルブ15の開弁時における吸着器12のNH回収率実測値と回収ポンプ16の稼動時及びバルブ15の開弁時における吸着器12のNH回収率推定値とのずれ量に基づいて、反応器11と吸着器12との間の反応媒体供給系26の故障が判定される。これにより、回収ポンプ16及びバルブ15を含む反応媒体供給系26の故障を検知することができる。 As described above, in the present embodiment, when the temperature of the reactor 11 is higher than T1 and lower than T2, the recovery pump 16 is operated so that the NH 3 for movement is transferred to the reaction medium flow path 14. When the reactor 11 is recovered from the reactor 11 to the adsorber 12, and the temperature of the reactor 11 is equal to or higher than T2, the valve 15 is opened so that the moving NH 3 passes through the reaction medium flow path 13. Recovered from the reactor 11 to the adsorber 12. At this time, operating time, and NH 3 recovery of adsorber 12 during opening of the operating time and the valve 15 of the NH 3 recovery observed value and a recovery pump 16 of the adsorber 12 during the opening of the valve 15 of the recovery pump 16 Based on the amount of deviation from the estimated value, a failure of the reaction medium supply system 26 between the reactor 11 and the adsorber 12 is determined. Thereby, the failure of the reaction medium supply system 26 including the recovery pump 16 and the valve 15 can be detected.
 また、回収ポンプ16の稼動時における吸着器12のNH回収率実測値と回収ポンプ16の稼動時における吸着器12のNH回収率推定値とのずれ量がポンプ故障判定用閾値よりも大きいと判断された後、バルブ15の開弁時における吸着器12のNH回収率実測値とバルブ15の開弁時における吸着器12のNH回収率推定値とのずれ量がバルブ故障判定用閾値以下であると判断されたときに、回収ポンプ16の故障であると判定される。このように回収ポンプ16が故障している可能性があると推測された後、バルブ15の故障でないことが明らかとされたときに、回収ポンプ16の故障であると判定されるため、回収ポンプ16の故障を確実に検知することができる。 Further, the deviation amount between the measured NH 3 recovery rate of the adsorber 12 during operation of the recovery pump 16 and the estimated NH 3 recovery rate of the adsorber 12 during operation of the recovery pump 16 is greater than the pump failure determination threshold. After the determination, the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened is used for valve failure determination. When it is determined that the value is equal to or less than the threshold value, it is determined that the recovery pump 16 is out of order. Since it is determined that there is no failure in the valve 15 after it is estimated that there is a possibility that the recovery pump 16 has failed in this way, it is determined that the recovery pump 16 is in failure. Sixteen failures can be reliably detected.
 また、バルブ15の開弁時における吸着器12のNH回収率実測値とバルブ15の開弁時における吸着器12のNH回収率推定値とのずれ量がバルブ故障判定用閾値よりも大きいと判断された後、回収ポンプ16の稼動時における吸着器12のNH回収率実測値と回収ポンプ16の稼動時における吸着器12のNH回収率推定値とのずれ量がポンプ故障判定用閾値以下であると判断されたときに、バルブ15の故障であると判定される。このようにバルブ15が故障している可能性があると推測された後、回収ポンプ16の故障でないことが明らかとされたときに、バルブ15の故障であると判定されるため、バルブ15の故障を確実に検知することができる。 Further, the deviation amount between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened is larger than the valve failure determination threshold value. After that, the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is used for determining a pump failure. When it is determined that the value is equal to or less than the threshold value, it is determined that the valve 15 is malfunctioning. Since it is determined that there is no failure in the recovery pump 16 after it is assumed that the valve 15 may have failed in this way, it is determined that the valve 15 is in failure. A failure can be detected reliably.
 このとき、バルブ15の開弁時における吸着器12のNH回収率実測値とバルブ15の開弁時における吸着器12のNH回収率推定値とのずれ量がバルブ故障判定用閾値よりも大きいと判断された後、回収ポンプ16を強制的に稼動することにより、反応器11の温度がT1よりも高く且つT2よりも低い状態になることを待たなくても、回収ポンプ16の稼動時における吸着器12のNH回収率実測値と回収ポンプ16の稼動時における吸着器12のNH回収率推定値とのずれ量がポンプ故障判定用閾値以下であるかどうかが判断される。従って、回収ポンプ16の故障でないことを迅速に明らかにして、バルブ15の故障を迅速に検知することができる。 At this time, the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened is smaller than the valve failure determination threshold. When the recovery pump 16 is forcibly operated after being determined to be large, the recovery pump 16 can be operated without waiting for the temperature of the reactor 11 to be higher than T1 and lower than T2. It is determined whether the amount of deviation between the actual measured NH 3 recovery rate of the adsorber 12 and the estimated NH 3 recovery rate of the adsorber 12 during operation of the recovery pump 16 is equal to or less than the pump failure determination threshold value. Therefore, it is possible to quickly identify that the recovery pump 16 is not malfunctioning and to quickly detect the malfunction of the valve 15.
 なお、本発明の一側面は、上記実施形態には限定されない。例えば上記実施形態では、バルブ15の開弁時における吸着器12のNH回収率実測値とバルブ15の開弁時における吸着器12のNH回収率推定値とのずれ量がバルブ故障判定用閾値よりも大きいと判断された後、回収ポンプ16が強制的に稼動されるが、特にその形態には限られず、反応器11の温度が自然にT1よりも高く且つT2よりも低い状態になることを待って、回収ポンプ16の稼動時における吸着器12のNH回収率実測値と回収ポンプ16の稼動時における吸着器12のNH回収率推定値とのずれ量がポンプ故障判定用閾値以下であるかどうかを判断してもよい。この場合には、故障検知部25による処理手順を簡素化することができる。 Note that one aspect of the present invention is not limited to the above embodiment. For example, in the above embodiment, the deviation amount between the measured NH 3 recovery rate of the adsorber 12 when the valve 15 is opened and the estimated NH 3 recovery rate of the adsorber 12 when the valve 15 is opened is used for determining a valve failure. After it is determined that the value is larger than the threshold value, the recovery pump 16 is forcibly operated. However, the present invention is not limited to this configuration, and the temperature of the reactor 11 is naturally higher than T1 and lower than T2. After that, the amount of deviation between the measured NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating and the estimated NH 3 recovery rate of the adsorber 12 when the recovery pump 16 is operating is the threshold for pump failure determination. It may be determined whether or not: In this case, the processing procedure by the failure detection unit 25 can be simplified.
 また、上記実施形態では、反応器11から吸着器12への移動用NHの回収量に関する推定値として、吸着器12のNH回収率の推定値を用いているが、特にそれには限られず、吸着器12に対する移動用NHの回収量の推定値を用いてもよい。この場合には、反応器11から吸着器12への移動用NHの回収量に関する実測値として、吸着器12に対する移動用NHの回収量の実測値が用いられる。 Further, in the above embodiment, the estimated value of the NH 3 recovery rate of the adsorber 12 is used as the estimated value related to the recovery amount of NH 3 for transfer from the reactor 11 to the adsorber 12, but it is not particularly limited thereto. Alternatively, an estimated value of the amount of NH 3 recovered for the adsorber 12 may be used. In this case, as the actual measurement value relating to the recovery amount of the transfer NH 3 into adsorber 12 from the reactor 11, the measured value of the recovered amount of the transfer NH 3 is used for adsorber 12.
 また、上記実施形態では、吸着器12のNH回収率が目標値以上であるときに、回収制御処理を終了させているが、特にその形態には限られず、例えばエンジン2の駆動時には回収制御処理を継続し、エンジン2の停止時に回収制御処理を終了させてもよい。この場合には、吸着器12のNH回収率が目標値以上となっても、エンジン2が停止するまでは、バルブ15を閉じると共に回収ポンプ16を稼動する制御、またはバルブ15を開くと共に回収ポンプ16を停止する制御が継続されるため、反応器11が過圧状態になることを回避できる。 In the above embodiment, the recovery control process is terminated when the NH 3 recovery rate of the adsorber 12 is equal to or higher than the target value. However, the present invention is not limited to this mode. For example, the recovery control is performed when the engine 2 is driven. The process may be continued and the collection control process may be terminated when the engine 2 is stopped. In this case, even if the NH 3 recovery rate of the adsorber 12 exceeds the target value, until the engine 2 stops, the valve 15 is closed and the recovery pump 16 is operated, or the valve 15 is opened and recovered. Since the control for stopping the pump 16 is continued, the reactor 11 can be prevented from being in an overpressure state.
 さらに、上記実施形態では、反応媒体流路13,14の一端が反応器11にそれぞれ接続され、反応媒体流路13,14の他端が吸着器12にそれぞれ接続されているが、反応媒体流路13,14が並列となるように接続されるのであれば、特にその形態には限られない。例えば、反応媒体流路13の一端が反応器11に接続され、反応媒体流路13の他端が吸着器12に接続されていると共に、反応媒体流路14の両端が反応媒体流路13に接続されていてもよいし、或いは反応媒体流路14の一端が反応器11に接続され、反応媒体流路14の他端が吸着器12に接続されていると共に、反応媒体流路13の両端が反応媒体流路14に接続されていてもよい。 Furthermore, in the above-described embodiment, one end of the reaction medium channels 13 and 14 is connected to the reactor 11 and the other end of the reaction medium channels 13 and 14 is connected to the adsorber 12, respectively. If it connects so that the path | routes 13 and 14 may become parallel, it will not restrict to the form in particular. For example, one end of the reaction medium flow path 13 is connected to the reactor 11, the other end of the reaction medium flow path 13 is connected to the adsorber 12, and both ends of the reaction medium flow path 14 are connected to the reaction medium flow path 13. One end of the reaction medium flow path 14 may be connected to the reactor 11, the other end of the reaction medium flow path 14 is connected to the adsorber 12, and both ends of the reaction medium flow path 13 may be connected. May be connected to the reaction medium flow path 14.
 また、上記実施形態では、反応媒体であるNHと組成式MXaで表される反応材17とを化学反応させて熱を発生させているが、反応媒体としては、特にNHには限られず、COまたはHO等を使用してもよい。反応媒体としてCOを使用する場合、COと化学反応させる反応材17としては、MgO、CaO、BaO、Ca(OH)、Mg(OH)、Fe(OH)、Fe(OH)、FeO、FeまたはFe等が用いられる。反応媒体としてHOを使用する場合、HOと化学反応させる反応材17としては、CaO、MnO、CuOまたはAl等が用いられる。 In the above embodiment, the reaction medium NH 3 and the reaction material 17 represented by the composition formula MXa are chemically reacted to generate heat. However, the reaction medium is not particularly limited to NH 3. CO 2 or H 2 O may be used. When CO 2 is used as the reaction medium, the reaction material 17 chemically reacted with CO 2 includes MgO, CaO, BaO, Ca (OH) 2 , Mg (OH) 2 , Fe (OH) 2 , Fe (OH) 3 , FeO, Fe 2 O 3, Fe 3 O 4 or the like is used. When H 2 O is used as the reaction medium, CaO, MnO, CuO, Al 2 O 3 or the like is used as the reaction material 17 to be chemically reacted with H 2 O.
 さらに、上記実施形態では、反応器11が熱交換器6の周囲に配置されているが、特にその形態には限られず、例えばエンジンオイルを通過させる熱交換器と反応器とが交互に積層されてなる構造としてもよい。また、熱交換器6を使用せずに、エンジンオイルが流れるオイル流路の周囲に反応器11をエンジンオイルに対して熱交換可能に配置してもよい。 Furthermore, in the above embodiment, the reactor 11 is disposed around the heat exchanger 6, but is not particularly limited to that form, for example, a heat exchanger that passes engine oil and a reactor are alternately stacked. The structure may be Further, without using the heat exchanger 6, the reactor 11 may be arranged around the oil flow path through which the engine oil flows so as to be able to exchange heat with the engine oil.
 また、上記実施形態では、オイルクーラ5とエンジン2との間に反応器11が配置されているが、特にその形態には限られず、例えばオイルパン3とオイルポンプ4との間に反応器11を配置してもよいし、或いはオイルポンプ4とオイルクーラ5との間に反応器11を配置してもよい。 Moreover, in the said embodiment, although the reactor 11 is arrange | positioned between the oil cooler 5 and the engine 2, it is not restricted to the form in particular, For example, the reactor 11 between the oil pan 3 and the oil pump 4 is used. Alternatively, the reactor 11 may be disposed between the oil pump 4 and the oil cooler 5.
 さらに、上記実施形態では、化学蓄熱装置10によりエンジンオイルを加熱しているが、加熱対象としては、特にエンジンオイルには限られず、例えば排気ガス、冷却水または冷却空気等であってもよい。 Furthermore, in the above embodiment, the engine oil is heated by the chemical heat storage device 10, but the heating target is not particularly limited to engine oil, and may be, for example, exhaust gas, cooling water, cooling air, or the like.
 10…化学蓄熱装置、11…反応器、12…吸着器(貯蔵器)、13…反応媒体流路(第1反応媒体流路)、14…反応媒体流路(第2反応媒体流路)、15…バルブ、16…回収ポンプ(ポンプ)、17…反応材、19…温度センサ(温度検出部)、23…回収制御部、24…記憶部、25…故障検知部、26…反応媒体供給系。 DESCRIPTION OF SYMBOLS 10 ... Chemical heat storage apparatus, 11 ... Reactor, 12 ... Adsorber (reservoir), 13 ... Reaction medium flow path (1st reaction medium flow path), 14 ... Reaction medium flow path (2nd reaction medium flow path), DESCRIPTION OF SYMBOLS 15 ... Valve, 16 ... Recovery pump (pump), 17 ... Reaction material, 19 ... Temperature sensor (temperature detection part), 23 ... Recovery control part, 24 ... Memory | storage part, 25 ... Failure detection part, 26 ... Reaction medium supply system .

Claims (4)

  1.  反応媒体が供給されると前記反応媒体との化学反応により発熱すると共に熱が与えられると前記反応媒体が脱離する反応材を含む反応器と、
     前記反応媒体を貯蔵する貯蔵器と、
     前記反応器と前記貯蔵器とを接続し、前記反応器と前記貯蔵器との間で前記反応媒体を双方向に流通させる第1反応媒体流路と、
     前記第1反応媒体流路に配設され、前記第1反応媒体流路を開閉するバルブと、
     前記反応器と前記貯蔵器とを接続し、前記反応器から前記貯蔵器に前記反応媒体を流通させる第2反応媒体流路と、
     前記第2反応媒体流路に配設され、前記反応器内を吸引することで前記反応器から前記貯蔵器に前記反応媒体を回収するポンプと、
     前記反応器の温度を検出する温度検出部と、
     前記温度検出部により検出された前記反応器の温度が第1温度よりも高く且つ第2温度よりも低いときは、前記ポンプを稼動するように制御し、前記温度検出部により検出された前記反応器の温度が前記第2温度以上であるときは、前記反応器から前記貯蔵器に前記反応媒体が回収可能となるように前記バルブを開制御する回収制御部と、
     前記ポンプの稼動時及び前記バルブの開弁時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する推定値を記憶する記憶部と、
     前記ポンプの稼動時及び前記バルブの開弁時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する実測値を求め、前記反応媒体の回収量に関する実測値と前記記憶部に記憶された前記反応媒体の回収量に関する推定値とのずれ量に基づいて、前記反応器と前記貯蔵器との間の反応媒体供給系の故障を判定する故障検知部とを備える、化学蓄熱装置。
    A reactor containing a reaction material that generates heat when a reaction medium is supplied and from which the reaction medium desorbs when heated by a chemical reaction with the reaction medium;
    A reservoir for storing the reaction medium;
    A first reaction medium flow path for connecting the reactor and the reservoir and allowing the reaction medium to flow in both directions between the reactor and the reservoir;
    A valve disposed in the first reaction medium flow path to open and close the first reaction medium flow path;
    A second reaction medium flow path for connecting the reactor and the reservoir and flowing the reaction medium from the reactor to the reservoir;
    A pump that is disposed in the second reaction medium flow path and sucks the inside of the reactor to recover the reaction medium from the reactor to the reservoir;
    A temperature detector for detecting the temperature of the reactor;
    When the temperature of the reactor detected by the temperature detector is higher than the first temperature and lower than the second temperature, the pump is operated to control the reaction detected by the temperature detector. A recovery controller that controls the opening of the valve so that the reaction medium can be recovered from the reactor to the reservoir when the temperature of the reactor is equal to or higher than the second temperature;
    A storage unit that stores an estimated value related to the recovery amount of the reaction medium from the reactor to the reservoir when the pump is operated and the valve is opened;
    An actual measurement value relating to the recovery amount of the reaction medium from the reactor to the reservoir during operation of the pump and opening of the valve is obtained, and an actual measurement value relating to the recovery amount of the reaction medium and stored in the storage unit. A chemical heat storage device comprising: a failure detection unit that determines a failure of the reaction medium supply system between the reactor and the storage based on an amount of deviation from the estimated value related to the recovery amount of the reaction medium.
  2.  前記故障検知部は、前記ポンプの稼動時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する実測値と前記ポンプの稼動時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する推定値とのずれ量がポンプ故障判定用閾値よりも大きいと判断した後、前記バルブの開弁時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する実測値と前記バルブの開弁時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する推定値とのずれ量がバルブ故障判定用閾値以下であると判断したときに、前記ポンプの故障であると判定する、請求項1記載の化学蓄熱装置。 The failure detection unit includes an actual measurement value relating to a recovery amount of the reaction medium from the reactor to the reservoir during operation of the pump, and an amount of the reaction medium from the reactor to the reservoir during operation of the pump. After determining that the amount of deviation from the estimated value related to the recovery amount is larger than the threshold value for determining pump failure, the actual measurement value related to the recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened and the When it is determined that the amount of deviation from the estimated value related to the recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened is equal to or less than a threshold for valve failure determination, the pump is in failure. The chemical heat storage device according to claim 1 to be determined.
  3.  前記故障検知部は、前記バルブの開弁時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する実測値と前記バルブの開弁時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する推定値とのずれ量がバルブ故障判定用閾値よりも大きいと判断した後、前記ポンプの稼動時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する実測値と前記ポンプの稼動時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する推定値とのずれ量がポンプ故障判定用閾値以下であると判断したときに、前記バルブの故障であると判定する、請求項1または2記載の化学蓄熱装置。 The failure detection unit includes an actual measurement value related to a recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened, and the reaction from the reactor to the reservoir when the valve is opened. After determining that the amount of deviation from the estimated value related to the recovery amount of the medium is larger than the valve failure determination threshold value, the actual measurement value related to the recovery amount of the reaction medium from the reactor to the reservoir during operation of the pump; When it is determined that the amount of deviation from the estimated value related to the recovery amount of the reaction medium from the reactor to the reservoir during operation of the pump is equal to or less than a pump failure determination threshold, The chemical heat storage device according to claim 1 or 2, which is determined.
  4.  前記故障検知部は、前記バルブの開弁時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する実測値と前記バルブの開弁時における前記反応器から前記貯蔵器への前記反応媒体の回収量に関する推定値とのずれ量が前記バルブ故障判定用閾値よりも大きいと判断した後、前記ポンプを稼動するように制御する、請求項3記載の化学蓄熱装置。 The failure detection unit includes an actual measurement value related to a recovery amount of the reaction medium from the reactor to the reservoir when the valve is opened, and the reaction from the reactor to the reservoir when the valve is opened. The chemical heat storage device according to claim 3, wherein the pump is controlled to operate after it is determined that an amount of deviation from an estimated value related to a medium recovery amount is greater than the valve failure determination threshold value.
PCT/JP2016/079296 2015-11-10 2016-10-03 Chemical heat storage apparatus WO2017081955A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015220326A JP2017089971A (en) 2015-11-10 2015-11-10 Chemical heat storage device
JP2015-220326 2015-11-10

Publications (1)

Publication Number Publication Date
WO2017081955A1 true WO2017081955A1 (en) 2017-05-18

Family

ID=58695114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079296 WO2017081955A1 (en) 2015-11-10 2016-10-03 Chemical heat storage apparatus

Country Status (2)

Country Link
JP (1) JP2017089971A (en)
WO (1) WO2017081955A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007500A (en) * 2008-06-24 2010-01-14 Toyota Motor Corp Heat storage system
JP2012225566A (en) * 2011-04-19 2012-11-15 Toyota Motor Corp Heat control device
JP2015042929A (en) * 2013-08-26 2015-03-05 株式会社豊田自動織機 Chemical heat storage device
JP2015059717A (en) * 2013-09-19 2015-03-30 株式会社豊田自動織機 Chemical heat storage device
JP2015165178A (en) * 2014-02-05 2015-09-17 株式会社豊田自動織機 chemical heat storage device
JP2016196988A (en) * 2015-04-06 2016-11-24 株式会社豊田自動織機 Chemical heat storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007500A (en) * 2008-06-24 2010-01-14 Toyota Motor Corp Heat storage system
JP2012225566A (en) * 2011-04-19 2012-11-15 Toyota Motor Corp Heat control device
JP2015042929A (en) * 2013-08-26 2015-03-05 株式会社豊田自動織機 Chemical heat storage device
JP2015059717A (en) * 2013-09-19 2015-03-30 株式会社豊田自動織機 Chemical heat storage device
JP2015165178A (en) * 2014-02-05 2015-09-17 株式会社豊田自動織機 chemical heat storage device
JP2016196988A (en) * 2015-04-06 2016-11-24 株式会社豊田自動織機 Chemical heat storage device

Also Published As

Publication number Publication date
JP2017089971A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP5479949B2 (en) Measuring device, measuring method, and carbon dioxide recovery system
EP2679295A2 (en) Carbon dioxide recovering apparatus and method for operating the same
JP5511494B2 (en) Chemical heat storage system for vehicles
WO2017081955A1 (en) Chemical heat storage apparatus
JP2013204856A (en) Chemical heat-accumulating system
EP2998011B1 (en) Carbon dioxide separation and capture apparatus and method of controlling operation of carbon dioxide separation and capture apparatus
JP5103757B2 (en) Fuel cell oxidant gas purification device
WO2017069062A1 (en) Engine oil warming device
JP4845899B2 (en) Fuel cell system
JP2014181162A (en) Carbon dioxide recovery apparatus
WO2017038397A1 (en) Exhaust-gas treatment equipment and gas-capture-material deterioration-state estimating method
JP2018017434A (en) Chemical heat storage device
CA2954234C (en) Co2 recovery unit and co2 recovery method
JP2017125421A (en) Engine oil temperature control device
CN112473322A (en) Carbon dioxide recovery system and method for operating same
JP2018009766A (en) Chemical heat storage device
WO2017086062A1 (en) Chemical heat storage apparatus
CA2950569C (en) Co2 recovery unit and co2 recovery method
JP2018017433A (en) Chemical heat storage device
WO2013145899A1 (en) Carbon dioxide recovery system
JP3758131B2 (en) Gas absorption / release device using gas absorption / release material and method of operating the same
JP6111905B2 (en) Chemical heat storage device
JP2017115635A (en) Chemical heat storage device
JP2018145920A (en) Vehicle oil circulation system
JP7474441B2 (en) Chemical heat storage system and heat storage method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863919

Country of ref document: EP

Kind code of ref document: A1