WO2017069062A1 - Engine oil warming device - Google Patents

Engine oil warming device Download PDF

Info

Publication number
WO2017069062A1
WO2017069062A1 PCT/JP2016/080572 JP2016080572W WO2017069062A1 WO 2017069062 A1 WO2017069062 A1 WO 2017069062A1 JP 2016080572 W JP2016080572 W JP 2016080572W WO 2017069062 A1 WO2017069062 A1 WO 2017069062A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
flow path
engine oil
engine
reactor
Prior art date
Application number
PCT/JP2016/080572
Other languages
French (fr)
Japanese (ja)
Inventor
聡 針生
慶大 片桐
昭人 柘植
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2017069062A1 publication Critical patent/WO2017069062A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/08Arrangements of lubricant coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to an engine oil warm-up device.
  • the engine oil warming device described in Patent Document 1 includes a reaction container that stores a heat storage material that generates heat by a chemical reaction with water and absorbs heat by a dehydration reaction, and a condensation container that stores liquid water. .
  • a reaction container that stores a heat storage material that generates heat by a chemical reaction with water and absorbs heat by a dehydration reaction
  • a condensation container that stores liquid water.
  • an oil cooler for cooling the engine oil may be arranged on the circulation path of the engine oil. In this case, if the reaction vessel is simply arranged on the downstream side of the oil cooler on the engine oil circulation path, the temperature of the engine oil during the regeneration reaction decreases, resulting in a decrease in the regeneration speed of the reaction medium. End up.
  • An object of the present invention is to provide an engine oil warm-up device that can improve the regeneration speed of a reaction medium while preventing high-temperature deterioration of engine oil.
  • One aspect of the present invention is an engine oil warming device for warming up engine oil, which is arranged so as to be able to exchange heat with the engine oil.
  • Reactor including a reaction material that is desorbed when heat of oil is applied, a reservoir for storing the reaction medium, and a reaction medium channel for circulating the reaction medium between the reactor and the reservoir
  • an oil cooler for cooling the engine oil, a first oil passage for flowing the engine oil through the oil cooler, and a first oil flow for flowing the engine oil so that heat can be exchanged with the reactor without passing through the oil cooler.
  • a valve for switching the engine oil flow path between the first oil flow path and the second oil flow path.
  • the engine oil warm-up device when the temperature of the engine oil detected by the temperature detector detects the temperature of the engine oil upstream of the oil cooler and downstream of the engine, and when the temperature of the engine oil detected by the temperature detector exceeds a predetermined temperature And a first control unit that controls the valve so that the engine oil flow path is switched from the first oil flow path to the second oil flow path.
  • a first control unit that controls the valve so that the engine oil flow path is switched from the first oil flow path to the second oil flow path.
  • the first control unit determines that the movement of the reaction medium from the reactor to the reservoir is complete, the first control unit controls the valve so that the engine oil flow path is switched from the second oil flow path to the first oil flow path. You may control. In such a configuration, when the regeneration of the reaction medium is completed, the engine oil flows to the oil cooler, so that an excessive temperature rise of the engine oil is prevented.
  • the engine oil warming device may further include a second control unit that controls the valve so that the engine oil flow path is switched from the first oil flow path to the second oil flow path when the engine is started. Good.
  • the engine oil passage is automatically switched from the first oil passage to the second oil passage.
  • the reaction medium is supplied from the reservoir to the reactor, heat is generated from the reaction material by a chemical reaction between the reaction material of the reactor and the reaction medium, and the engine oil is reliably heated by the heat.
  • the oil cooler is disposed in the first oil flow path, the second oil flow path is connected to the first oil flow path so as to bypass the oil cooler, and the reactor is connected to the second oil flow path.
  • the engine oil flowing through the engine oil may be arranged so as to be able to exchange heat.
  • the second oil flow path for flowing engine oil can be simply configured so that heat exchange with the reactor can be performed without passing through the oil cooler.
  • an engine oil warm-up device that can improve the regeneration speed of the reaction medium while preventing the engine oil from deteriorating at a high temperature.
  • FIG. 1 is a schematic configuration diagram showing an engine oil circulation system including an engine oil warm-up device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing details of a control processing procedure executed by the exothermic reaction control unit shown in FIG.
  • FIG. 3A is a graph showing an example of NH 3 saturated vapor pressure characteristics
  • FIG. 3B is a graph showing an example of NH 3 adsorption characteristics.
  • FIG. 4 is a flowchart showing details of a control processing procedure executed by the regeneration reaction control unit shown in FIG.
  • FIG. 5 is a schematic configuration diagram showing an engine oil circulation system provided with a modification of the engine oil warm-up device shown in FIG.
  • FIG. 6 is a schematic configuration diagram showing an engine oil circulation system provided with another modification of the engine oil warm-up device shown in FIG.
  • FIG. 1 is a schematic configuration diagram showing an engine oil circulation system including an engine oil warm-up device according to an embodiment of the present invention.
  • an engine oil circulation system 1 is mounted on a vehicle and circulates engine oil for lubricating each part in the engine 2.
  • the engine oil circulation system 1 includes an oil pan 3, an oil pump 4, and an engine oil warm-up device 5.
  • the oil pan 3 stores engine oil.
  • the engine oil that has flowed through each part in the engine 2 returns to the oil pan 3.
  • the oil pump 4 sucks up the engine oil stored in the oil pan 3 and pumps it into the engine 2.
  • the engine oil warm-up device 5 warms up the engine oil in order to reduce friction when the vehicle is cold-started.
  • the engine oil warm-up device 5 is connected to a main oil passage 6 that connects the oil pump 4 and the engine 2, an oil cooler 7 that is disposed in the main oil passage 6, and the main oil passage 6.
  • An oil flow path 8 and a heat exchanger 9 disposed in the oil flow path 8 are provided.
  • the main oil passage 6 has an oil passage 6a in which an oil cooler 7 is disposed.
  • the oil flow path 8 is connected to the oil flow path 6a so as to bypass the oil cooler 7.
  • the oil passage 6 a constitutes a first oil passage for flowing engine oil to the oil cooler 7.
  • the oil cooler 7 cools the engine oil sucked up by the oil pump 4.
  • a cooling water passage (not shown) is disposed as a cooling means so as to be able to exchange heat with engine oil passing through the oil cooler 7.
  • the cooling water is kept at a predetermined temperature.
  • the engine oil is heat-exchanged with the cooling water and maintained at a constant temperature. That is, when the engine oil becomes too hot, the engine oil is cooled to a predetermined temperature by the cooling water.
  • the reason for cooling the engine oil is to prevent the deterioration of the engine oil due to excessive temperature rise.
  • the heat exchanger 9 allows the engine oil sucked up by the oil pump 4 to pass through and exchanges heat between the engine oil and a reactor 12 described later.
  • a three-way valve 10 is disposed at a connection portion between the oil flow path 8 and the upstream side of the oil cooler 7 in the main oil flow path 6.
  • the three-way valve 10 is an electromagnetic valve that switches the engine oil flow path between the oil flow path 6 a and the oil flow path 8.
  • the engine oil warm-up device 5 of the present embodiment includes a chemical heat storage unit 11 that enables an early temperature increase of the engine oil.
  • the chemical heat storage unit 11 heats the engine oil via the heat exchanger 9 without requiring external energy such as electric power.
  • the chemical heat storage unit 11 desorbs the reaction medium from the reaction material 16 (described later) of the reactor 12 by heat supplied from the engine oil, stores the desorbed reaction medium, and is stored.
  • the reaction medium is a device that stores heat from the engine oil and supplies heat to the engine oil using a reversible chemical reaction.
  • the reaction medium is ammonia (NH 3 ).
  • the chemical heat storage unit 11 includes a reactor 12, an adsorber 13, and a reaction medium flow path 14 that connects the reactor 12 and the adsorber 13.
  • the reaction medium flow path 14 is a flow path for circulating NH 3 between the reactor 12 and the adsorber 13.
  • the reaction medium flow path 14 is provided with an electromagnetic valve 15 for opening and closing the NH 3 flow path.
  • the reactor 12 is arranged around the heat exchanger 9 so as to be able to exchange heat with engine oil. Therefore, the reactor 12 is arranged so as to be able to exchange heat with the engine oil flowing through the oil passage 8.
  • the oil flow path 8 constitutes a second oil flow path for flowing engine oil so that heat exchange with the reactor 12 can be performed without passing through the oil cooler 7.
  • the reactor 12 includes a reaction material 16.
  • the reaction material 16 generates heat due to a chemical reaction with NH 3 when NH 3 is supplied, and desorbs NH 3 when heat of engine oil is applied.
  • a halide represented by the composition formula MXa is used as the reaction material 16.
  • M is an alkaline earth metal such as Mg, Ca or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu or Zn.
  • X is Cl, Br, I or the like.
  • a is a number specified by the valence of M, and is 2 to 3.
  • the adsorber 13 is a reservoir that stores NH 3 .
  • the adsorber 13 includes an adsorbent 17 capable of physical adsorption and desorption of NH 3 .
  • adsorbent 17 capable of physical adsorption and desorption of NH 3 .
  • activated carbon, carbon black, mesoporous carbon, nanocarbon, zeolite, or the like is used.
  • NH 3 may be chemically adsorbed on the adsorbent 17.
  • the adsorber 13 includes a pressure holding NH 3 for holding the reaction system including the reactor 12, the adsorber 13 and the reaction medium flow path 14 at a predetermined pressure when the electromagnetic valve 15 is opened, and a reaction.
  • NH 3 for transfer used for a chemical reaction with the reactant 16 is accommodated.
  • the amount of NH 3 for holding pressure and NH 3 for movement is appropriately determined according to the material of the reaction material 16 and the like.
  • the pressure difference between the adsorber 13 and the reactor 12 causes a difference in the adsorber 13.
  • the moving NH 3 is desorbed from the adsorbent 17, and the desorbed moving NH 3 is supplied to the reactor 12 through the reaction medium flow path 14.
  • the reaction material 16 of the reactor 12 e.g. MgBr 2
  • moving NH 3 is the chemical reaction (chemical adsorption) and heat is generated. That is, a reaction from the left side to the right side (exothermic reaction) in the following reaction formula (A) occurs.
  • the engine oil warming-up device 5 includes a temperature sensor 18, a temperature sensor 19, a pressure sensor 20, and a controller 21.
  • the temperature sensor 18 is a temperature detection unit that detects the temperature of the engine oil upstream of the oil cooler 7 and downstream of the engine 2.
  • the temperature sensor 18 detects the temperature of the engine oil flowing between the oil pump 4 and the three-way valve 10 in the main oil passage 6.
  • the temperature sensor 19 detects the temperature of the adsorber 13.
  • the pressure sensor 20 detects the pressure in the adsorber 13.
  • the controller 21 includes a CPU, a RAM, a ROM, an input / output interface, and the like.
  • the controller 21 includes an exothermic reaction control unit 22 (second control unit) and a regeneration reaction control unit 23 (first control unit).
  • the exothermic reaction control unit 22 controls the three-way valve 10 and the electromagnetic valve 15 based on the detection values of the temperature sensor 19 and the pressure sensor 20 during the exothermic reaction.
  • the regeneration reaction control unit 23 controls the three-way valve 10 and the electromagnetic valve 15 based on the detection values of the temperature sensors 18 and 19 and the pressure sensor 20 during the regeneration reaction.
  • FIG. 2 is a flowchart showing details of a control processing procedure executed by the exothermic reaction control unit 22.
  • the three-way valve 10 is in a position where the oil passage 6a (first oil passage) is opened and the oil passage 8 (second oil passage) is closed.
  • the electromagnetic valve 15 is in a closed state. In the initial state, moving NH 3 in adsorber 13 is almost Kalimantan state, moving NH 3 in the reactor 12 is almost empty.
  • the exothermic reaction control unit 22 first determines whether or not the engine 2 has been started based on an operation signal of an ignition switch (not shown) (step S101).
  • the exothermic reaction control unit 22 controls the three-way valve 10 so that the oil flow path 6a is switched from the open state to the closed state and the oil flow path 8 is switched from the closed state to the open state ( Step S102).
  • Step S101 engine oil from the oil pump 4 flows through the oil passage 8 and passes through the heat exchanger 9.
  • the exothermic reaction control unit 22 controls the electromagnetic valve 15 to be switched from the closed state to the open state (step S103). Thereby, the moving NH 3 desorbed from the adsorbent 17 of the adsorber 13 moves to the reactor 12 through the reaction medium flow path 14, and an exothermic reaction is performed.
  • the exothermic reaction control unit 22 determines whether or not the movement of the moving NH 3 from the adsorber 13 to the reactor 12 is completed based on the detection values of the temperature sensor 19 and the pressure sensor 20 (step S104). ). Specifically, the exothermic reaction control unit 22 uses the adsorbent 17 of the adsorber 13 based on the temperature of the adsorber 13 detected by the temperature sensor 19 and the pressure in the adsorber 13 detected by the pressure sensor 20. amount NH 3 which is adsorbed a (NH 3 adsorption of adsorber 13) for estimating a. Further, the exothermic reaction control unit 22 determines from the NH 3 adsorption amount of the adsorber 13 whether or not the movement of NH 3 for movement from the adsorber 13 to the reactor 12 is completed.
  • the estimation of the NH 3 adsorption amount is performed using the NH 3 saturated vapor pressure characteristic and the NH 3 adsorption characteristic shown in FIG.
  • the NH 3 saturated vapor pressure characteristics shown in FIG. 3A are graphs showing the relationship between the temperature of the adsorber 13 and the NH 3 saturated vapor pressure, and the NH 3 saturated vapor pressure increases as the temperature of the adsorber 13 increases. It has the characteristic that becomes high.
  • the NH 3 adsorption characteristic shown in FIG. 3B is a graph showing the relationship between the relative pressure and the NH 3 adsorption amount of the adsorber 13, and the NH 3 adsorption amount of the adsorber 13 increases as the relative pressure increases. It has the characteristic which becomes.
  • the relative pressure is a ratio (P / Psat) between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 13.
  • Exothermic reaction control unit 22 first with NH 3 saturated vapor pressure characteristics, determine the NH 3 saturated vapor pressure Psat corresponding to the temperature T of the adsorber 13, which is detected by the temperature sensor 19.
  • the exothermic reaction control unit 22 calculates a relative pressure that is a ratio between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 13 detected by the pressure sensor 20.
  • the exothermic reaction control unit 22 by using the NH 3 adsorption properties, determine the adsorbed NH 3 amount SNH 3 corresponding to the relative pressure. From the above, the NH 3 adsorption amount of the adsorber 13 is estimated.
  • the exothermic reaction control unit 22 determines that the moving NH 3 is almost empty and reacts from the adsorber 13. It is determined that the movement of the NH 3 for movement to the vessel 12 has been completed.
  • the exothermic reaction control unit 22 determines that the movement of the moving NH 3 from the adsorber 13 to the reactor 12 is completed, the exothermic reaction control unit 22 controls the electromagnetic valve 15 to be switched from the open state to the closed state (step S105). . Then, the exothermic reaction control unit 22 controls the three-way valve 10 to switch the oil flow path 6a from the closed state to the open state and to switch the oil flow path 8 from the open state to the closed state (step S106). As a result, the engine oil from the oil pump 4 flows through the oil passage 6 a and passes through the oil cooler 7.
  • FIG. 4 is a flowchart showing details of a control processing procedure executed by the regeneration reaction control unit 23.
  • the three-way valve 10 is in a position where the oil passage 6a is opened and the oil passage 8 is closed.
  • the electromagnetic valve 15 is in a closed state. In the initial state, it has a substantially empty state moving NH 3 in adsorber 13, moving NH 3 in the reactor 12 is almost Kalimantan state.
  • the regeneration reaction control unit 23 first determines whether or not the temperature of the engine oil detected by the temperature sensor 18 has become equal to or higher than the regeneration temperature (predetermined temperature) (step S111).
  • the regeneration temperature is a temperature at which NH 3 can be regenerated and is determined by the material of the reaction material 16 and the like.
  • the regeneration temperature is 90 ° C.
  • the regeneration reaction control unit 23 switches the oil flow path 6a from the open state to the closed state and switches the oil flow path 8 from the closed state to the open state when the temperature of the engine oil exceeds the regeneration temperature. 10 is controlled (step S112). As a result, engine oil from the oil pump 4 flows through the oil passage 8 and passes through the heat exchanger 9. Thereby, the regeneration reaction of NH 3 for movement is performed by the heat of the engine oil.
  • the regeneration reaction control unit 23 controls the electromagnetic valve 15 to switch from the closed state to the open state (step S113). Thereby, NH 3 for movement desorbed from the reaction material 16 of the reactor 12 moves to the adsorber 13 through the reaction medium flow path 14.
  • the regeneration reaction control unit 23 determines whether or not the movement of the moving NH 3 from the reactor 12 to the adsorber 13 is completed based on the detection values of the temperature sensor 19 and the pressure sensor 20 (step S114). ). Specifically, the regeneration reaction control unit 23 determines the NH 3 adsorption amount of the adsorber 13 based on the temperature of the adsorber 13 detected by the temperature sensor 19 and the pressure in the adsorber 13 detected by the pressure sensor 20. Is estimated. The regeneration reaction control unit 23 determines from the NH 3 adsorption amount of the adsorber 13 whether the movement of NH 3 for movement from the reactor 12 to the adsorber 13 is completed. The method for estimating the NH 3 adsorption amount of the adsorber 13 is the same as the procedure S104 shown in FIG.
  • the regeneration reaction control unit 23 for example, when the adsorption amount of NH 3 of the adsorber 13 is a total value of an amount corresponding to the pressure holding NH 3 and an amount substantially corresponding to the total amount of NH 3 for movement, 3 is almost full, it is determined that the transfer of NH 3 for transfer from the reactor 12 to the adsorber 13 is completed.
  • the regeneration reaction control unit 23 determines that the movement of the moving NH 3 from the reactor 12 to the adsorber 13 is completed, the regeneration reaction control unit 23 controls the electromagnetic valve 15 to be switched from the open state to the closed state (step S115). . Then, the regeneration reaction control unit 23 controls the three-way valve 10 so as to switch the oil flow path 6a from the closed state to the open state and to switch the oil flow path 8 from the open state to the closed state (step S116).
  • the engine oil from the oil pump 4 flows through the oil passage 6 a and passes through the oil cooler 7. Therefore, the engine oil is supplied to each part in the engine 2 while being cooled to a constant temperature by the oil cooler 7. A so-called normal operation is performed.
  • the engine oil is flowed so as to be able to exchange heat with the reactor 12 without passing through the oil cooler 7 and the oil flow path 6a for flowing engine oil to the oil cooler 7.
  • a three-way valve 10 for switching the engine oil flow path between the oil flow path 6 a and the oil flow path 8.
  • the heat of the engine oil NH 3 is desorbed from the reaction member 16 provided on the reaction member 16 of the reactor 12, the NH 3 is recovered into the adsorber 13 from the reactor 12.
  • the engine oil flow path is switched from the oil flow path 6 a to the oil flow path 8 by the three-way valve 10, so that hot engine oil that is not cooled by the oil cooler 7 can exchange heat with the reactor 12.
  • the flow path of the engine oil is automatically switched from the oil flow path 6a to the oil flow path 8. Therefore, the heat of the high-temperature engine oil is reliably given to the reaction material 16 of the reactor 12.
  • the engine oil flow path is automatically switched from the oil flow path 8 to the oil flow path 6a. Accordingly, when the regeneration of NH 3 is completed, the engine oil flows into the oil cooler 7, and thus the excessive temperature rise of the engine oil is prevented.
  • the flow path of the engine oil is automatically switched from the oil flow path 6a to the oil flow path 8.
  • NH 3 is supplied from the adsorber 13 to the reactor 12, and heat is generated from the reaction material 16 by a chemical reaction between the reaction material 16 of the reactor 12 and NH 3, and the engine oil is reliably heated by the heat. Is done.
  • the oil flow path 8 is connected to the main oil flow path 6 so as to bypass the oil cooler 7, and the reactor 12 is arranged so as to be able to exchange heat with engine oil flowing through the oil flow path 8.
  • the oil flow path 8 for flowing engine oil can be simply configured so that heat exchange with the reactor 12 can be performed without passing through the oil cooler 7. Further, the heat generated from the reaction material 16 is prevented from being taken away by the oil cooler 7 when the reaction material 16 generates heat.
  • FIG. 5 is a schematic configuration diagram showing an engine oil circulation system provided with a modified example of the engine oil warm-up device shown in FIG.
  • the engine oil warming-up device 5 of the present modified example is replaced with the electromagnetic valve 31 (valve) disposed upstream of the oil cooler 7 in the oil passage 6a, instead of the three-way valve 10 described above.
  • An electromagnetic valve 32 (valve) disposed upstream of the heat exchanger 9 in the oil flow path 8 is provided.
  • the electromagnetic valve 31 is opened, and when flowing engine oil through the heat exchanger 9 so that heat can be exchanged with the reactor 12, the electromagnetic valve 32 is opened. Is done.
  • FIG. 6 is a schematic configuration diagram showing an engine oil circulation system provided with another modification of the engine oil warming-up device shown in FIG.
  • the main oil passage 6 has an oil passage 6 b that connects the oil passage 6 a and the engine 2.
  • the heat exchanger 9 is disposed not in the oil passage 8 but in the oil passage 6b. That is, the heat exchanger 9 is disposed downstream of the oil cooler 7 in the main oil passage 6.
  • the oil flow paths 8 and 6b constitute a second oil flow path for flowing engine oil so that heat exchange with the reactor 12 can be performed without passing through the oil cooler 7.
  • the oil flow path 6a When flowing engine oil through the oil cooler 7, the oil flow path 6a is opened by the three-way valve 10 and the oil flow path 8 is closed.
  • the oil flow path 8 When flowing engine oil through the heat exchanger 9 so that heat exchange with the reactor 12 is possible, the oil flow path 8 is opened and the oil flow path 6a is closed by the three-way valve 10.
  • the present invention is not limited to the above embodiment.
  • the present invention provides a first oil passage for flowing engine oil through the oil cooler 7 and a second oil for flowing engine oil so that heat can be exchanged with the reactor 12 without passing through the oil cooler 7.
  • a first oil passage for flowing engine oil through the oil cooler 7 and a second oil for flowing engine oil so that heat can be exchanged with the reactor 12 without passing through the oil cooler 7.
  • the flow path and the valve for switching the flow path of the engine oil between the first oil flow path and the second oil flow path are provided, configurations other than those in the above embodiment and the modified example may be used.
  • the reaction medium NH 3 and the reaction material 16 represented by the composition formula MXa are chemically reacted to generate heat.
  • the reaction medium is not particularly limited to NH 3.
  • CO 2 or H 2 O may be used.
  • the reactants to be chemically reacted with CO 2 include MgO, CaO, BaO, Ca (OH) 2 , Mg (OH) 2 , Fe (OH) 2 , and Fe (OH) 3. FeO, Fe 2 O 3, Fe 3 O 4 or the like is used.
  • H 2 O is used as the reaction medium, CaO, MnO, CuO, Al 2 O 3 or the like is used as a reaction material that chemically reacts with H 2 O.
  • the reactor 12 is arranged around the heat exchanger 9, but is not particularly limited to that form, for example, a heat exchanger that passes engine oil and a reactor are alternately stacked. It is good also as a structure which consists of. Further, without using a heat exchanger, the reactor may be arranged around the oil flow path through which the engine oil flows so as to be able to exchange heat with the engine oil.
  • the oil cooler 7 and the reactor 12 are arranged between the oil pump 4 and the engine 2, but the form is not particularly limited, and for example, between the oil pan 3 and the oil pump 4.
  • the oil cooler 7 and the reactor 12 may be disposed in the tank.
  • the temperature sensor 18 is arrange
  • the temperature sensor 18 may be disposed so as to detect the temperature of the engine oil upstream of the oil cooler 7 and downstream of the engine 2.
  • a temperature sensor 18 may be arranged so as to detect the temperature of engine oil flowing between the engine 2 and the oil pan 3, or the temperature of engine oil flowing between the oil pan 3 and the oil pump 4.
  • the temperature sensor 18 may be arranged so as to detect the temperature, or the temperature sensor 18 may be arranged so as to detect the temperature of the engine oil in the oil pan 3 or the oil pump 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

This engine oil warming device, for warming engine oil, is characterized by being provided with: a reactor which is arranged so as to be capable of heat exchange with the engine oil, and which contains a reaction material which, when a reaction medium is supplied, generates heat by a chemical reaction with the reaction medium and from which the reaction medium is desorbed when imparted with the heat of the engine oil; a reservoir which stores the reaction medium; a reaction medium flow path for circulating the reaction medium between the reactor and the reservoir; an oil cooler which cools the engine oil; a first oil flow path for circulating the engine oil to the oil cooler; a second oil flow path for circulating the engine oil so as to enable heat exchange with the reactor without passing through the oil cooler; and a valve which switches the flow path of the engine oil between the first oil flow path and the second oil flow path.

Description

エンジンオイル暖機装置Engine oil warm-up device
 本発明は、エンジンオイル暖機装置に関する。 The present invention relates to an engine oil warm-up device.
 従来のエンジンオイル暖機装置としては、例えば特許文献1に記載されている装置が知られている。特許文献1に記載のエンジンオイル暖機装置は、水との化学反応により発熱し脱水反応により吸熱する蓄熱材が収納された反応容器と、液体の水が貯留された凝縮容器とを備えている。エンジンオイルの温度が例えば40℃以下の場合には、凝縮容器に貯留されている水が第1流路を通じて反応容器へ向かい、ノズルから反応容器の蓄熱材に噴霧される。すると、蓄熱材が化学反応により発熱し、その熱エネルギーによってエンジンオイルが加熱される(発熱反応)。一方、エンジンオイルが高温になると、脱水反応によって蓄熱材から水蒸気が発生し、第2流路を通じて凝縮して液体の水となって凝縮容器に戻る(再生反応)。 As a conventional engine oil warm-up device, for example, a device described in Patent Document 1 is known. The engine oil warming device described in Patent Document 1 includes a reaction container that stores a heat storage material that generates heat by a chemical reaction with water and absorbs heat by a dehydration reaction, and a condensation container that stores liquid water. . When the temperature of the engine oil is 40 ° C. or less, for example, water stored in the condensing container is directed to the reaction container through the first flow path and sprayed from the nozzle onto the heat storage material of the reaction container. Then, the heat storage material generates heat by a chemical reaction, and the engine oil is heated by the thermal energy (exothermic reaction). On the other hand, when the engine oil reaches a high temperature, water vapor is generated from the heat storage material by a dehydration reaction, condenses through the second flow path, and becomes liquid water to return to the condensation container (regeneration reaction).
特開2010-230268号公報JP 2010-230268 A
 ところで、車両のコールドスタート時のフリクションを低減するために、エンジンオイルを暖機してエンジンオイルの粘性を下げる必要があるが、エンジンオイルは高温になり過ぎると劣化することがある。このため、エンジンオイルの循環経路上に、エンジンオイルを冷却するオイルクーラが配置される場合がある。この場合、反応容器が単純にエンジンオイルの循環経路上におけるオイルクーラよりも下流側に配置されていると、再生反応時におけるエンジンオイルの温度が下がり、結果的に反応媒体の再生速度が低下してしまう。 By the way, in order to reduce the friction at the time of cold start of the vehicle, it is necessary to warm up the engine oil to lower the viscosity of the engine oil. However, the engine oil may be deteriorated when the temperature becomes too high. For this reason, an oil cooler for cooling the engine oil may be arranged on the circulation path of the engine oil. In this case, if the reaction vessel is simply arranged on the downstream side of the oil cooler on the engine oil circulation path, the temperature of the engine oil during the regeneration reaction decreases, resulting in a decrease in the regeneration speed of the reaction medium. End up.
 本発明の目的は、エンジンオイルの高温劣化を防止しつつ、反応媒体の再生速度を向上させることができるエンジンオイル暖機装置を提供することである。 An object of the present invention is to provide an engine oil warm-up device that can improve the regeneration speed of a reaction medium while preventing high-temperature deterioration of engine oil.
 本発明の一態様は、エンジンオイルを暖機するエンジンオイル暖機装置において、エンジンオイルに対して熱交換可能に配置され、反応媒体が供給されると反応媒体との化学反応により発熱すると共にエンジンオイルの熱が与えられると反応媒体が脱離する反応材を含む反応器と、反応媒体を貯蔵する貯蔵器と、反応器と貯蔵器との間で反応媒体を流通させるための反応媒体流路と、エンジンオイルを冷却するオイルクーラと、オイルクーラにエンジンオイルを流すための第1オイル流路と、オイルクーラを通さずに反応器と熱交換可能となるようにエンジンオイルを流すための第2オイル流路と、第1オイル流路と第2オイル流路との間でエンジンオイルの流路を切り換えるバルブとを備えることを特徴とする。 One aspect of the present invention is an engine oil warming device for warming up engine oil, which is arranged so as to be able to exchange heat with the engine oil. When the reaction medium is supplied, heat is generated by a chemical reaction with the reaction medium. Reactor including a reaction material that is desorbed when heat of oil is applied, a reservoir for storing the reaction medium, and a reaction medium channel for circulating the reaction medium between the reactor and the reservoir And an oil cooler for cooling the engine oil, a first oil passage for flowing the engine oil through the oil cooler, and a first oil flow for flowing the engine oil so that heat can be exchanged with the reactor without passing through the oil cooler. And a valve for switching the engine oil flow path between the first oil flow path and the second oil flow path.
 このようなエンジンオイル暖機装置において、反応媒体の再生時には、エンジンオイルの熱が反応器の反応材に与えられて反応材から反応媒体が脱離し、その反応媒体が反応器から貯蔵器に回収される。このとき、バルブによってエンジンオイルの流路が第1オイル流路から第2オイル流路に切り換えられると、オイルクーラにより冷却されていない高温のエンジンオイルが反応器と熱交換可能となるように第2オイル流路を流れる。この場合には、高温のエンジンオイルの熱が反応器の反応材に与えられることになる。これにより、反応媒体の再生速度を向上させることができる。また、高温のエンジンオイルが第2オイル流路を流れるときは、高温のエンジンオイルが反応器と熱交換されて冷却されるため、エンジンオイルをオイルクーラに流さなくても、エンジンオイルの高温劣化が防止される。 In such an engine oil warm-up device, when the reaction medium is regenerated, the heat of the engine oil is applied to the reaction material of the reactor, the reaction medium is desorbed from the reaction material, and the reaction medium is recovered from the reactor to the reservoir. Is done. At this time, when the engine oil flow path is switched from the first oil flow path to the second oil flow path by the valve, the high-temperature engine oil that is not cooled by the oil cooler can exchange heat with the reactor. 2 Flows through the oil flow path. In this case, the heat of the high-temperature engine oil is given to the reaction material of the reactor. Thereby, the reproduction speed of the reaction medium can be improved. In addition, when hot engine oil flows through the second oil flow path, the hot engine oil is cooled by exchanging heat with the reactor, so that the engine oil deteriorates at a high temperature without flowing the engine oil through the oil cooler. Is prevented.
 エンジンオイル暖機装置において、オイルクーラよりも上流側かつエンジンの下流側におけるエンジンオイルの温度を検出する温度検出部と、温度検出部により検出されたエンジンオイルの温度が所定温度以上となったときに、エンジンオイルの流路が第1オイル流路から第2オイル流路に切り換わるようにバルブを制御する第1制御部とを更に備えてもよい。このような構成では、オイルクーラよりも上流側かつエンジンの下流側におけるエンジンオイルの温度が所定温度以上となると、エンジンオイルの流路が第1オイル流路から第2オイル流路に自動的に切り換えられる。従って、高温のエンジンオイルの熱が反応器の反応材に確実に与えられる。 In the engine oil warm-up device, when the temperature of the engine oil detected by the temperature detector detects the temperature of the engine oil upstream of the oil cooler and downstream of the engine, and when the temperature of the engine oil detected by the temperature detector exceeds a predetermined temperature And a first control unit that controls the valve so that the engine oil flow path is switched from the first oil flow path to the second oil flow path. In such a configuration, when the temperature of the engine oil on the upstream side of the oil cooler and on the downstream side of the engine becomes equal to or higher than a predetermined temperature, the engine oil flow path is automatically changed from the first oil flow path to the second oil flow path. Can be switched. Therefore, the heat of the hot engine oil is surely given to the reaction material of the reactor.
 第1制御部は、反応器から貯蔵器への反応媒体の移動が終了したと判断したときに、エンジンオイルの流路が第2オイル流路から第1オイル流路に切り換わるようにバルブを制御してもよい。このような構成では、反応媒体の再生が終了すると、エンジンオイルがオイルクーラに流れるため、エンジンオイルの過昇温が防止される。 When the first control unit determines that the movement of the reaction medium from the reactor to the reservoir is complete, the first control unit controls the valve so that the engine oil flow path is switched from the second oil flow path to the first oil flow path. You may control. In such a configuration, when the regeneration of the reaction medium is completed, the engine oil flows to the oil cooler, so that an excessive temperature rise of the engine oil is prevented.
 エンジンオイル暖機装置において、エンジンが起動されたときに、エンジンオイルの流路が第1オイル流路から第2オイル流路に切り換わるようにバルブを制御する第2制御部を更に備えてもよい。このような構成では、エンジンが起動されると、エンジンオイルの流路が第1オイル流路から第2オイル流路に自動的に切り換えられる。このとき、貯蔵器から反応器に反応媒体が供給され、反応器の反応材と反応媒体との化学反応によって反応材から熱が発生し、その熱によりエンジンオイルが確実に加熱される。 The engine oil warming device may further include a second control unit that controls the valve so that the engine oil flow path is switched from the first oil flow path to the second oil flow path when the engine is started. Good. In such a configuration, when the engine is started, the engine oil passage is automatically switched from the first oil passage to the second oil passage. At this time, the reaction medium is supplied from the reservoir to the reactor, heat is generated from the reaction material by a chemical reaction between the reaction material of the reactor and the reaction medium, and the engine oil is reliably heated by the heat.
 オイルクーラは、第1オイル流路に配設されており、第2オイル流路は、オイルクーラをバイパスするように第1オイル流路に接続されており、反応器は、第2オイル流路を流れるエンジンオイルに対して熱交換可能に配置されていてもよい。この場合には、オイルクーラを通さずに反応器と熱交換可能となるようにエンジンオイルを流すための第2オイル流路を簡単に構成することができる。 The oil cooler is disposed in the first oil flow path, the second oil flow path is connected to the first oil flow path so as to bypass the oil cooler, and the reactor is connected to the second oil flow path. The engine oil flowing through the engine oil may be arranged so as to be able to exchange heat. In this case, the second oil flow path for flowing engine oil can be simply configured so that heat exchange with the reactor can be performed without passing through the oil cooler.
 本発明によれば、エンジンオイルの高温劣化を防止しつつ、反応媒体の再生速度を向上させることができるエンジンオイル暖機装置が提供される。 According to the present invention, there is provided an engine oil warm-up device that can improve the regeneration speed of the reaction medium while preventing the engine oil from deteriorating at a high temperature.
図1は、本発明の一実施形態に係るエンジンオイル暖機装置を備えたエンジンオイル循環システムを示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an engine oil circulation system including an engine oil warm-up device according to an embodiment of the present invention. 図2は、図1に示された発熱反応制御部により実行される制御処理手順の詳細を示すフローチャートである。FIG. 2 is a flowchart showing details of a control processing procedure executed by the exothermic reaction control unit shown in FIG. 図3(a)はNH飽和蒸気圧特性の一例を示すグラフであり、図3(b)はNH吸着特性の一例を示すグラフである。FIG. 3A is a graph showing an example of NH 3 saturated vapor pressure characteristics, and FIG. 3B is a graph showing an example of NH 3 adsorption characteristics. 図4は、図1に示された再生反応制御部により実行される制御処理手順の詳細を示すフローチャートである。FIG. 4 is a flowchart showing details of a control processing procedure executed by the regeneration reaction control unit shown in FIG. 図5は、図1に示されたエンジンオイル暖機装置の変形例を備えたエンジンオイル循環システムを示す概略構成図である。FIG. 5 is a schematic configuration diagram showing an engine oil circulation system provided with a modification of the engine oil warm-up device shown in FIG. 図6は、図1に示されたエンジンオイル暖機装置の他の変形例を備えたエンジンオイル循環システムを示す概略構成図である。FIG. 6 is a schematic configuration diagram showing an engine oil circulation system provided with another modification of the engine oil warm-up device shown in FIG.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明の一実施形態に係るエンジンオイル暖機装置を備えたエンジンオイル循環システムを示す概略構成図である。図1において、エンジンオイル循環システム1は、車両に搭載され、エンジン2内の各部を潤滑するためのエンジンオイルを循環させる。 FIG. 1 is a schematic configuration diagram showing an engine oil circulation system including an engine oil warm-up device according to an embodiment of the present invention. In FIG. 1, an engine oil circulation system 1 is mounted on a vehicle and circulates engine oil for lubricating each part in the engine 2.
 エンジンオイル循環システム1は、オイルパン3と、オイルポンプ4と、エンジンオイル暖機装置5とを備えている。オイルパン3は、エンジンオイルを溜めておく。エンジン2内の各部を流れたエンジンオイルは、オイルパン3に戻る。オイルポンプ4は、オイルパン3に溜められたエンジンオイルを吸い上げてエンジン2内に圧送する。 The engine oil circulation system 1 includes an oil pan 3, an oil pump 4, and an engine oil warm-up device 5. The oil pan 3 stores engine oil. The engine oil that has flowed through each part in the engine 2 returns to the oil pan 3. The oil pump 4 sucks up the engine oil stored in the oil pan 3 and pumps it into the engine 2.
 エンジンオイル暖機装置5は、車両のコールドスタート時のフリクションを低減するために、エンジンオイルを暖機する。エンジンオイル暖機装置5は、オイルポンプ4とエンジン2とを接続する主オイル流路6と、この主オイル流路6に配設されたオイルクーラ7と、主オイル流路6に接続されたオイル流路8と、このオイル流路8に配設された熱交換器9とを備えている。主オイル流路6は、オイルクーラ7が配設されたオイル流路6aを有している。オイル流路8は、オイルクーラ7をバイパスするようにオイル流路6aに接続されている。オイル流路6aは、オイルクーラ7にエンジンオイルを流すための第1オイル流路を構成している。 The engine oil warm-up device 5 warms up the engine oil in order to reduce friction when the vehicle is cold-started. The engine oil warm-up device 5 is connected to a main oil passage 6 that connects the oil pump 4 and the engine 2, an oil cooler 7 that is disposed in the main oil passage 6, and the main oil passage 6. An oil flow path 8 and a heat exchanger 9 disposed in the oil flow path 8 are provided. The main oil passage 6 has an oil passage 6a in which an oil cooler 7 is disposed. The oil flow path 8 is connected to the oil flow path 6a so as to bypass the oil cooler 7. The oil passage 6 a constitutes a first oil passage for flowing engine oil to the oil cooler 7.
 オイルクーラ7は、オイルポンプ4により吸い上げられたエンジンオイルを冷却する。オイルクーラ7には、冷却手段として例えば冷却水流路(不図示)がオイルクーラ7を通過するエンジンオイルとの間で熱交換可能に配設されている。冷却水は、所定温度に保たれている。エンジンオイルは、オイルクーラ7を通過することで冷却水との間で熱交換されて一定温度に維持される。つまり、エンジンオイルが高温になり過ぎた場合は、冷却水によりエンジンオイルが所定温度に冷却される。なお、エンジンオイルを冷却する理由は、エンジンオイルの過昇温による劣化を防ぐことである。熱交換器9は、オイルポンプ4により吸い上げられたエンジンオイルを通過させて、エンジンオイルと後述する反応器12との間で熱交換を行う。 The oil cooler 7 cools the engine oil sucked up by the oil pump 4. In the oil cooler 7, for example, a cooling water passage (not shown) is disposed as a cooling means so as to be able to exchange heat with engine oil passing through the oil cooler 7. The cooling water is kept at a predetermined temperature. By passing through the oil cooler 7, the engine oil is heat-exchanged with the cooling water and maintained at a constant temperature. That is, when the engine oil becomes too hot, the engine oil is cooled to a predetermined temperature by the cooling water. The reason for cooling the engine oil is to prevent the deterioration of the engine oil due to excessive temperature rise. The heat exchanger 9 allows the engine oil sucked up by the oil pump 4 to pass through and exchanges heat between the engine oil and a reactor 12 described later.
 主オイル流路6におけるオイルクーラ7よりも上流側の部分とオイル流路8との接続部には、三方弁10が配置されている。三方弁10は、オイル流路6aとオイル流路8との間でエンジンオイルの流路を切り換える電磁式のバルブである。 A three-way valve 10 is disposed at a connection portion between the oil flow path 8 and the upstream side of the oil cooler 7 in the main oil flow path 6. The three-way valve 10 is an electromagnetic valve that switches the engine oil flow path between the oil flow path 6 a and the oil flow path 8.
 本実施形態のエンジンオイル暖機装置5は、エンジンオイルの早期昇温を可能とする化学蓄熱ユニット11を備えている。化学蓄熱ユニット11は、電力等の外部エネルギーを必要とせずに、エンジンオイルを熱交換器9を介して加熱する。具体的には、化学蓄熱ユニット11は、エンジンオイルから供給される熱により反応器12の反応材16(後述)から反応媒体を脱離させ、その脱離した反応媒体を蓄えると共に、蓄えられた反応媒体を反応器12に供給することで反応材16と反応媒体とを化学反応させ、その化学反応時の反応熱によりエンジンオイルを加熱する。即ち、化学蓄熱ユニット11は、可逆的な化学反応を利用して、エンジンオイルからの熱を蓄えると共にエンジンオイルに熱を供給する装置である。本実施形態では、反応媒体はアンモニア(NH)である。 The engine oil warm-up device 5 of the present embodiment includes a chemical heat storage unit 11 that enables an early temperature increase of the engine oil. The chemical heat storage unit 11 heats the engine oil via the heat exchanger 9 without requiring external energy such as electric power. Specifically, the chemical heat storage unit 11 desorbs the reaction medium from the reaction material 16 (described later) of the reactor 12 by heat supplied from the engine oil, stores the desorbed reaction medium, and is stored. By supplying the reaction medium to the reactor 12, the reaction material 16 and the reaction medium are chemically reacted, and the engine oil is heated by reaction heat during the chemical reaction. That is, the chemical heat storage unit 11 is a device that stores heat from the engine oil and supplies heat to the engine oil using a reversible chemical reaction. In this embodiment, the reaction medium is ammonia (NH 3 ).
 化学蓄熱ユニット11は、反応器12と、吸着器13と、これらの反応器12と吸着器13とを接続する反応媒体流路14とを備えている。反応媒体流路14は、反応器12と吸着器13との間でNHを流通させるための流路である。反応媒体流路14には、NHの流路を開閉する電磁弁15が配設されている。 The chemical heat storage unit 11 includes a reactor 12, an adsorber 13, and a reaction medium flow path 14 that connects the reactor 12 and the adsorber 13. The reaction medium flow path 14 is a flow path for circulating NH 3 between the reactor 12 and the adsorber 13. The reaction medium flow path 14 is provided with an electromagnetic valve 15 for opening and closing the NH 3 flow path.
 反応器12は、熱交換器9の周囲にエンジンオイルに対して熱交換可能に配置されている。従って、反応器12は、オイル流路8を流れるエンジンオイルに対して熱交換可能に配置されている。オイル流路8は、オイルクーラ7を通さずに反応器12と熱交換可能となるようにエンジンオイルを流すための第2オイル流路を構成している。 The reactor 12 is arranged around the heat exchanger 9 so as to be able to exchange heat with engine oil. Therefore, the reactor 12 is arranged so as to be able to exchange heat with the engine oil flowing through the oil passage 8. The oil flow path 8 constitutes a second oil flow path for flowing engine oil so that heat exchange with the reactor 12 can be performed without passing through the oil cooler 7.
 反応器12は、反応材16を含んでいる。反応材16は、NHが供給されるとNHとの化学反応により発熱すると共にエンジンオイルの熱が与えられるとNHを脱離する。反応材16としては、組成式MXaで表されるハロゲン化物が用いられる。Mは、Mg、CaまたはSr等のアルカリ土類金属、若しくはCr、Mn、Fe、Co、Ni、CuまたはZn等の遷移金属である。Xは、Cl、BrまたはI等である。aは、Mの価数により特定される数であり、2~3である。 The reactor 12 includes a reaction material 16. The reaction material 16 generates heat due to a chemical reaction with NH 3 when NH 3 is supplied, and desorbs NH 3 when heat of engine oil is applied. As the reaction material 16, a halide represented by the composition formula MXa is used. M is an alkaline earth metal such as Mg, Ca or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu or Zn. X is Cl, Br, I or the like. a is a number specified by the valence of M, and is 2 to 3.
 吸着器13は、NHを貯蔵する貯蔵器である。吸着器13は、NHの物理吸着及び脱離が可能な吸着材17を含んでいる。吸着材17としては、活性炭、カーボンブラック、メソポーラスカーボン、ナノカーボンまたはゼオライト等が用いられる。なお、NHは吸着材17に化学吸着されていてもよい。 The adsorber 13 is a reservoir that stores NH 3 . The adsorber 13 includes an adsorbent 17 capable of physical adsorption and desorption of NH 3 . As the adsorbent 17, activated carbon, carbon black, mesoporous carbon, nanocarbon, zeolite, or the like is used. NH 3 may be chemically adsorbed on the adsorbent 17.
 吸着器13には、電磁弁15を開弁した際に反応器12、吸着器13及び反応媒体流路14からなる反応系内を所定の圧力に保持するための圧力保持用NHと、反応器12において所望の発熱温度を得るために反応材16との化学反応に使用される移動用NHとが収容されている。圧力保持用NH及び移動用NHの収容量は、反応材16の材料等に応じて適宜決められている。 The adsorber 13 includes a pressure holding NH 3 for holding the reaction system including the reactor 12, the adsorber 13 and the reaction medium flow path 14 at a predetermined pressure when the electromagnetic valve 15 is opened, and a reaction. In order to obtain a desired exothermic temperature in the vessel 12, NH 3 for transfer used for a chemical reaction with the reactant 16 is accommodated. The amount of NH 3 for holding pressure and NH 3 for movement is appropriately determined according to the material of the reaction material 16 and the like.
 このような化学蓄熱ユニット11を備えたエンジンオイル暖機装置5において、エンジン2の始動直後におけるエンジンオイルの温度が低いときは、吸着器13と反応器12との圧力差によって、吸着器13の吸着材17から移動用NHが脱離し、その脱離した移動用NHが反応媒体流路14を通って反応器12に供給される。そして、反応器12の反応材16(例えばMgBr)と移動用NHとが化学反応(化学吸着)して熱が発生する。つまり、下記の反応式(A)における左辺から右辺への反応(発熱反応)が起こる。そして、反応器12で発生した熱が熱交換器9に伝えられ、その熱交換器9を通してエンジンオイルが加熱(暖機)される。暖められたエンジンオイルは、エンジン2内の各部に送られる。
    MgBr+xNH ⇔ Mg(NH)xBr+熱   …(A)
In the engine oil warm-up device 5 having such a chemical heat storage unit 11, when the temperature of the engine oil immediately after the engine 2 is started is low, the pressure difference between the adsorber 13 and the reactor 12 causes a difference in the adsorber 13. The moving NH 3 is desorbed from the adsorbent 17, and the desorbed moving NH 3 is supplied to the reactor 12 through the reaction medium flow path 14. Then, the reaction material 16 of the reactor 12 (e.g. MgBr 2) and moving NH 3 is the chemical reaction (chemical adsorption) and heat is generated. That is, a reaction from the left side to the right side (exothermic reaction) in the following reaction formula (A) occurs. The heat generated in the reactor 12 is transmitted to the heat exchanger 9, and the engine oil is heated (warmed up) through the heat exchanger 9. The warmed engine oil is sent to each part in the engine 2.
MgBr 2 + xNH 3 MgMg (NH 3 ) xBr 2 + heat (A)
 その後、エンジンオイルの温度が再生温度以上になると、エンジンオイルの熱が熱交換器9を通して反応器12の反応材16に与えられることで、反応材16から移動用NHが脱離する。つまり、上記の反応式(A)における右辺から左辺への反応(再生反応)が起こる。そして、反応器12と吸着器13との圧力差によって、反応材16から脱離した移動用NHが反応媒体流路14を通って吸着器13に戻り、吸着器13の吸着材17に移動用NHが物理吸着される。これにより、移動用NHが吸着器13に回収される。 Thereafter, when the temperature of the engine oil becomes equal to or higher than the regeneration temperature, the heat of the engine oil is given to the reaction material 16 of the reactor 12 through the heat exchanger 9, so that the moving NH 3 is desorbed from the reaction material 16. That is, a reaction (regeneration reaction) from the right side to the left side in the above reaction formula (A) occurs. Then, due to the pressure difference between the reactor 12 and the adsorber 13, the moving NH 3 desorbed from the reaction material 16 returns to the adsorber 13 through the reaction medium flow path 14 and moves to the adsorbent 17 of the adsorber 13. NH 3 is physically adsorbed. Thereby, NH 3 for movement is recovered in the adsorber 13.
 また、エンジンオイル暖機装置5は、温度センサ18と、温度センサ19と、圧力センサ20と、コントローラ21とを備えている。温度センサ18は、オイルクーラ7よりも上流側かつエンジン2の下流側におけるエンジンオイルの温度を検出する温度検出部である。ここでは、温度センサ18は、主オイル流路6におけるオイルポンプ4と三方弁10との間を流れるエンジンオイルの温度を検出する。温度センサ19は、吸着器13の温度を検出する。圧力センサ20は、吸着器13内の圧力を検出する。 Further, the engine oil warming-up device 5 includes a temperature sensor 18, a temperature sensor 19, a pressure sensor 20, and a controller 21. The temperature sensor 18 is a temperature detection unit that detects the temperature of the engine oil upstream of the oil cooler 7 and downstream of the engine 2. Here, the temperature sensor 18 detects the temperature of the engine oil flowing between the oil pump 4 and the three-way valve 10 in the main oil passage 6. The temperature sensor 19 detects the temperature of the adsorber 13. The pressure sensor 20 detects the pressure in the adsorber 13.
 コントローラ21は、CPU、RAM、ROM、入出力インターフェース等により構成されている。コントローラ21は、発熱反応制御部22(第2制御部)と、再生反応制御部23(第1制御部)とを有している。発熱反応制御部22は、発熱反応時に、温度センサ19及び圧力センサ20の検出値等に基づいて三方弁10及び電磁弁15を制御する。再生反応制御部23は、再生反応時に、温度センサ18,19及び圧力センサ20の検出値に基づいて三方弁10及び電磁弁15を制御する。 The controller 21 includes a CPU, a RAM, a ROM, an input / output interface, and the like. The controller 21 includes an exothermic reaction control unit 22 (second control unit) and a regeneration reaction control unit 23 (first control unit). The exothermic reaction control unit 22 controls the three-way valve 10 and the electromagnetic valve 15 based on the detection values of the temperature sensor 19 and the pressure sensor 20 during the exothermic reaction. The regeneration reaction control unit 23 controls the three-way valve 10 and the electromagnetic valve 15 based on the detection values of the temperature sensors 18 and 19 and the pressure sensor 20 during the regeneration reaction.
 図2は、発熱反応制御部22により実行される制御処理手順の詳細を示すフローチャートである。なお、三方弁10は、オイル流路6a(第1オイル流路)を開状態とすると共にオイル流路8(第2オイル流路)を閉状態とする位置にある。電磁弁15は、閉状態となっている。また、初期状態では、吸着器13において移動用NHはほぼ満タンの状態となっており、反応器12において移動用NHはほぼ空の状態となっている。 FIG. 2 is a flowchart showing details of a control processing procedure executed by the exothermic reaction control unit 22. The three-way valve 10 is in a position where the oil passage 6a (first oil passage) is opened and the oil passage 8 (second oil passage) is closed. The electromagnetic valve 15 is in a closed state. In the initial state, moving NH 3 in adsorber 13 is almost Kalimantan state, moving NH 3 in the reactor 12 is almost empty.
 図2において、発熱反応制御部22は、まずイグニッションスイッチ(図示せず)の操作信号に基づいて、エンジン2が起動されたかどうかを判断する(手順S101)。発熱反応制御部22は、エンジン2が起動されたときは、オイル流路6aを開状態から閉状態に切り換えると共にオイル流路8を閉状態から開状態に切り換えるように三方弁10を制御する(手順S102)。これにより、オイルポンプ4からのエンジンオイルは、オイル流路8を流れて熱交換器9を通過するようになる。 In FIG. 2, the exothermic reaction control unit 22 first determines whether or not the engine 2 has been started based on an operation signal of an ignition switch (not shown) (step S101). When the engine 2 is started, the exothermic reaction control unit 22 controls the three-way valve 10 so that the oil flow path 6a is switched from the open state to the closed state and the oil flow path 8 is switched from the closed state to the open state ( Step S102). As a result, engine oil from the oil pump 4 flows through the oil passage 8 and passes through the heat exchanger 9.
 そして、発熱反応制御部22は、電磁弁15を閉状態から開状態に切り換えるように制御する(手順S103)。これにより、吸着器13の吸着材17から脱離した移動用NHが反応媒体流路14を通って反応器12に移動し、発熱反応が行われる。 Then, the exothermic reaction control unit 22 controls the electromagnetic valve 15 to be switched from the closed state to the open state (step S103). Thereby, the moving NH 3 desorbed from the adsorbent 17 of the adsorber 13 moves to the reactor 12 through the reaction medium flow path 14, and an exothermic reaction is performed.
 続いて、発熱反応制御部22は、温度センサ19及び圧力センサ20の検出値に基づいて、吸着器13から反応器12への移動用NHの移動が終了したかどうかを判断する(手順S104)。具体的には、発熱反応制御部22は、温度センサ19により検出された吸着器13の温度と圧力センサ20により検出された吸着器13内の圧力とに基づいて、吸着器13の吸着材17に吸着されているNH量(吸着器13のNH吸着量)を推定する。また、発熱反応制御部22は、その吸着器13のNH吸着量から、吸着器13から反応器12への移動用NHの移動が終了したかどうかを判断する。 Subsequently, the exothermic reaction control unit 22 determines whether or not the movement of the moving NH 3 from the adsorber 13 to the reactor 12 is completed based on the detection values of the temperature sensor 19 and the pressure sensor 20 (step S104). ). Specifically, the exothermic reaction control unit 22 uses the adsorbent 17 of the adsorber 13 based on the temperature of the adsorber 13 detected by the temperature sensor 19 and the pressure in the adsorber 13 detected by the pressure sensor 20. amount NH 3 which is adsorbed a (NH 3 adsorption of adsorber 13) for estimating a. Further, the exothermic reaction control unit 22 determines from the NH 3 adsorption amount of the adsorber 13 whether or not the movement of NH 3 for movement from the adsorber 13 to the reactor 12 is completed.
 NH吸着量の推定は、図3に示されるNH飽和蒸気圧特性及びNH吸着特性を用いて行われる。図3(a)に示されるNH飽和蒸気圧特性は、吸着器13の温度とNH飽和蒸気圧との関係を表すグラフであり、吸着器13の温度が高くなるに従ってNH飽和蒸気圧が高くなるような特性を有している。図3(b)に示されるNH吸着特性は、相対圧力と吸着器13のNH吸着量との関係を表すグラフであり、相対圧力が高くなるに従って吸着器13のNH吸着量が多くなるような特性を有している。相対圧力は、NH飽和蒸気圧Psatと吸着器13内の圧力Pとの比(P/Psat)である。 The estimation of the NH 3 adsorption amount is performed using the NH 3 saturated vapor pressure characteristic and the NH 3 adsorption characteristic shown in FIG. The NH 3 saturated vapor pressure characteristics shown in FIG. 3A are graphs showing the relationship between the temperature of the adsorber 13 and the NH 3 saturated vapor pressure, and the NH 3 saturated vapor pressure increases as the temperature of the adsorber 13 increases. It has the characteristic that becomes high. The NH 3 adsorption characteristic shown in FIG. 3B is a graph showing the relationship between the relative pressure and the NH 3 adsorption amount of the adsorber 13, and the NH 3 adsorption amount of the adsorber 13 increases as the relative pressure increases. It has the characteristic which becomes. The relative pressure is a ratio (P / Psat) between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 13.
 発熱反応制御部22は、まずNH飽和蒸気圧特性を用いて、温度センサ19により検出された吸着器13の温度Tに対応するNH飽和蒸気圧Psatを求める。そして、発熱反応制御部22は、NH飽和蒸気圧Psatと圧力センサ20により検出された吸着器13内の圧力Pとの比である相対圧力を算出する。そして、発熱反応制御部22は、NH吸着特性を用いて、相対圧力に対応するNH吸着量SNHを求める。以上により、吸着器13のNH吸着量が推定される。 Exothermic reaction control unit 22, first with NH 3 saturated vapor pressure characteristics, determine the NH 3 saturated vapor pressure Psat corresponding to the temperature T of the adsorber 13, which is detected by the temperature sensor 19. The exothermic reaction control unit 22 calculates a relative pressure that is a ratio between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 13 detected by the pressure sensor 20. The exothermic reaction control unit 22, by using the NH 3 adsorption properties, determine the adsorbed NH 3 amount SNH 3 corresponding to the relative pressure. From the above, the NH 3 adsorption amount of the adsorber 13 is estimated.
 発熱反応制御部22は、例えば吸着器13のNH吸着量がほぼ圧力保持用NHに相当する量であるときに、移動用NHがほぼ空の状態であるとして、吸着器13から反応器12への移動用NHの移動が終了したと判断する。 For example, when the NH 3 adsorption amount of the adsorber 13 is substantially equivalent to the pressure holding NH 3 , the exothermic reaction control unit 22 determines that the moving NH 3 is almost empty and reacts from the adsorber 13. It is determined that the movement of the NH 3 for movement to the vessel 12 has been completed.
 発熱反応制御部22は、吸着器13から反応器12への移動用NHの移動が終了したと判断したときは、電磁弁15を開状態から閉状態に切り換えるように制御する(手順S105)。そして、発熱反応制御部22は、オイル流路6aを閉状態から開状態に切り換えると共にオイル流路8を開状態から閉状態に切り換えるように三方弁10を制御する(手順S106)。これにより、オイルポンプ4からのエンジンオイルは、オイル流路6aを流れてオイルクーラ7を通過するようになる。 When the exothermic reaction control unit 22 determines that the movement of the moving NH 3 from the adsorber 13 to the reactor 12 is completed, the exothermic reaction control unit 22 controls the electromagnetic valve 15 to be switched from the open state to the closed state (step S105). . Then, the exothermic reaction control unit 22 controls the three-way valve 10 to switch the oil flow path 6a from the closed state to the open state and to switch the oil flow path 8 from the open state to the closed state (step S106). As a result, the engine oil from the oil pump 4 flows through the oil passage 6 a and passes through the oil cooler 7.
 図4は、再生反応制御部23により実行される制御処理手順の詳細を示すフローチャートである。なお、三方弁10は、オイル流路6aを開状態とすると共にオイル流路8を閉状態とする位置にある。電磁弁15は、閉状態となっている。また、初期状態では、吸着器13において移動用NHはほぼ空の状態となっており、反応器12において移動用NHはほぼ満タンの状態となっている。 FIG. 4 is a flowchart showing details of a control processing procedure executed by the regeneration reaction control unit 23. The three-way valve 10 is in a position where the oil passage 6a is opened and the oil passage 8 is closed. The electromagnetic valve 15 is in a closed state. In the initial state, it has a substantially empty state moving NH 3 in adsorber 13, moving NH 3 in the reactor 12 is almost Kalimantan state.
 図4において、再生反応制御部23は、まず温度センサ18により検出されたエンジンオイルの温度が再生温度(所定温度)以上になったかどうかを判断する(手順S111)。再生温度は、NHの再生が可能となる温度であり、反応材16の材料等によって決まる。ここでは、再生温度は90℃である。 In FIG. 4, the regeneration reaction control unit 23 first determines whether or not the temperature of the engine oil detected by the temperature sensor 18 has become equal to or higher than the regeneration temperature (predetermined temperature) (step S111). The regeneration temperature is a temperature at which NH 3 can be regenerated and is determined by the material of the reaction material 16 and the like. Here, the regeneration temperature is 90 ° C.
 再生反応制御部23は、エンジンオイルの温度が再生温度以上になったときは、オイル流路6aを開状態から閉状態に切り換えると共にオイル流路8を閉状態から開状態に切り換えるように三方弁10を制御する(手順S112)。これにより、オイルポンプ4からのエンジンオイルは、オイル流路8を流れて熱交換器9を通過するようになる。これにより、エンジンオイルの熱によって移動用NHの再生反応が行われる。 The regeneration reaction control unit 23 switches the oil flow path 6a from the open state to the closed state and switches the oil flow path 8 from the closed state to the open state when the temperature of the engine oil exceeds the regeneration temperature. 10 is controlled (step S112). As a result, engine oil from the oil pump 4 flows through the oil passage 8 and passes through the heat exchanger 9. Thereby, the regeneration reaction of NH 3 for movement is performed by the heat of the engine oil.
 そして、再生反応制御部23は、電磁弁15を閉状態から開状態に切り換えるように制御する(手順S113)。これにより、反応器12の反応材16から脱離した移動用NHが反応媒体流路14を通って吸着器13に移動する。 Then, the regeneration reaction control unit 23 controls the electromagnetic valve 15 to switch from the closed state to the open state (step S113). Thereby, NH 3 for movement desorbed from the reaction material 16 of the reactor 12 moves to the adsorber 13 through the reaction medium flow path 14.
 続いて、再生反応制御部23は、温度センサ19及び圧力センサ20の検出値に基づいて、反応器12から吸着器13への移動用NHの移動が終了したかどうかを判断する(手順S114)。具体的には、再生反応制御部23は、温度センサ19により検出された吸着器13の温度と圧力センサ20により検出された吸着器13内の圧力とに基づいて吸着器13のNH吸着量を推定する。再生反応制御部23は、その吸着器13のNH吸着量から、反応器12から吸着器13への移動用NHの移動が終了したかどうかを判断する。吸着器13のNH吸着量を推定する方法は、図2に示される手順S104と同様である。 Subsequently, the regeneration reaction control unit 23 determines whether or not the movement of the moving NH 3 from the reactor 12 to the adsorber 13 is completed based on the detection values of the temperature sensor 19 and the pressure sensor 20 (step S114). ). Specifically, the regeneration reaction control unit 23 determines the NH 3 adsorption amount of the adsorber 13 based on the temperature of the adsorber 13 detected by the temperature sensor 19 and the pressure in the adsorber 13 detected by the pressure sensor 20. Is estimated. The regeneration reaction control unit 23 determines from the NH 3 adsorption amount of the adsorber 13 whether the movement of NH 3 for movement from the reactor 12 to the adsorber 13 is completed. The method for estimating the NH 3 adsorption amount of the adsorber 13 is the same as the procedure S104 shown in FIG.
 再生反応制御部23は、例えば吸着器13のNH吸着量が圧力保持用NHに相当する量とほぼ移動用NHの総量に相当する量との合計値であるときに、移動用NHがほぼ満タンの状態であるとして、反応器12から吸着器13への移動用NHの移動が終了したと判断する。 The regeneration reaction control unit 23, for example, when the adsorption amount of NH 3 of the adsorber 13 is a total value of an amount corresponding to the pressure holding NH 3 and an amount substantially corresponding to the total amount of NH 3 for movement, 3 is almost full, it is determined that the transfer of NH 3 for transfer from the reactor 12 to the adsorber 13 is completed.
 再生反応制御部23は、反応器12から吸着器13への移動用NHの移動が終了したと判断したときは、電磁弁15を開状態から閉状態に切り換えるように制御する(手順S115)。そして、再生反応制御部23は、オイル流路6aを閉状態から開状態に切り換えると共にオイル流路8を開状態から閉状態に切り換えるように三方弁10を制御する(手順S116)。これにより、オイルポンプ4からのエンジンオイルは、オイル流路6aを流れてオイルクーラ7を通過するようになる。従って、エンジンオイルは、オイルクーラ7により一定の温度に冷却された状態で、エンジン2内の各部に供給される。いわゆる通常の動作が行われることとなる。 When the regeneration reaction control unit 23 determines that the movement of the moving NH 3 from the reactor 12 to the adsorber 13 is completed, the regeneration reaction control unit 23 controls the electromagnetic valve 15 to be switched from the open state to the closed state (step S115). . Then, the regeneration reaction control unit 23 controls the three-way valve 10 so as to switch the oil flow path 6a from the closed state to the open state and to switch the oil flow path 8 from the open state to the closed state (step S116). As a result, the engine oil from the oil pump 4 flows through the oil passage 6 a and passes through the oil cooler 7. Therefore, the engine oil is supplied to each part in the engine 2 while being cooled to a constant temperature by the oil cooler 7. A so-called normal operation is performed.
 以上のように本実施形態にあっては、オイルクーラ7にエンジンオイルを流すためのオイル流路6aと、オイルクーラ7を通さずに反応器12と熱交換可能となるようにエンジンオイルを流すためのオイル流路8と、オイル流路6aとオイル流路8との間でエンジンオイルの流路を切り換える三方弁10とが備えられている。NHの再生時には、エンジンオイルの熱が反応器12の反応材16に与えられて反応材16からNHが脱離し、そのNHが反応器12から吸着器13に回収される。このとき、三方弁10によってエンジンオイルの流路がオイル流路6aからオイル流路8に切り換えられることで、オイルクーラ7により冷却されていない高温のエンジンオイルが反応器12と熱交換可能となるようにオイル流路8を流れる。このため、高温のエンジンオイルの熱が反応器12の反応材16に与えられることになる。これにより、NHの再生速度を向上させることができる。また、高温のエンジンオイルがオイル流路8を流れるときは、高温のエンジンオイルが反応器12と熱交換されて冷却されるため、エンジンオイルをオイルクーラ7に流さなくても、エンジンオイルの高温劣化が防止される。 As described above, in the present embodiment, the engine oil is flowed so as to be able to exchange heat with the reactor 12 without passing through the oil cooler 7 and the oil flow path 6a for flowing engine oil to the oil cooler 7. And a three-way valve 10 for switching the engine oil flow path between the oil flow path 6 a and the oil flow path 8. Of the time of reproduction NH 3, the heat of the engine oil NH 3 is desorbed from the reaction member 16 provided on the reaction member 16 of the reactor 12, the NH 3 is recovered into the adsorber 13 from the reactor 12. At this time, the engine oil flow path is switched from the oil flow path 6 a to the oil flow path 8 by the three-way valve 10, so that hot engine oil that is not cooled by the oil cooler 7 can exchange heat with the reactor 12. So as to flow through the oil flow path 8. For this reason, the heat of high-temperature engine oil is given to the reaction material 16 of the reactor 12. Thereby, the regeneration speed of NH 3 can be improved. Further, when the hot engine oil flows through the oil flow path 8, the hot engine oil is cooled by exchanging heat with the reactor 12, so that the high temperature of the engine oil does not flow through the oil cooler 7. Deterioration is prevented.
 また、オイルクーラ7よりも上流側におけるエンジンオイルの温度が再生温度以上となると、エンジンオイルの流路がオイル流路6aからオイル流路8に自動的に切り換えられる。従って、高温のエンジンオイルの熱が反応器12の反応材16に確実に与えられる。 Further, when the temperature of the engine oil upstream of the oil cooler 7 becomes equal to or higher than the regeneration temperature, the flow path of the engine oil is automatically switched from the oil flow path 6a to the oil flow path 8. Therefore, the heat of the high-temperature engine oil is reliably given to the reaction material 16 of the reactor 12.
 また、反応器12から吸着器13へのNHの移動が終了したと判断されると、エンジンオイルの流路がオイル流路8からオイル流路6aに自動的に切り換えられる。従って、NHの再生が終了したときは、エンジンオイルがオイルクーラ7に流れるため、エンジンオイルの過昇温が防止される。 When it is determined that the movement of NH 3 from the reactor 12 to the adsorber 13 is completed, the engine oil flow path is automatically switched from the oil flow path 8 to the oil flow path 6a. Accordingly, when the regeneration of NH 3 is completed, the engine oil flows into the oil cooler 7, and thus the excessive temperature rise of the engine oil is prevented.
 さらに、エンジン2が起動されると、エンジンオイルの流路がオイル流路6aからオイル流路8に自動的に切り換えられる。このとき、吸着器13から反応器12にNHが供給され、反応器12の反応材16とNHとの化学反応によって反応材16から熱が発生し、その熱によりエンジンオイルが確実に加熱される。 Further, when the engine 2 is started, the flow path of the engine oil is automatically switched from the oil flow path 6a to the oil flow path 8. At this time, NH 3 is supplied from the adsorber 13 to the reactor 12, and heat is generated from the reaction material 16 by a chemical reaction between the reaction material 16 of the reactor 12 and NH 3, and the engine oil is reliably heated by the heat. Is done.
 オイル流路8は、オイルクーラ7をバイパスするように主オイル流路6に接続されており、反応器12は、オイル流路8を流れるエンジンオイルに対して熱交換可能に配置されている。このため、オイルクーラ7を通さずに反応器12と熱交換可能となるようにエンジンオイルを流すためのオイル流路8を簡単に構成することができる。また、反応材16の発熱時に、反応材16から発生した熱がオイルクーラ7に奪われることが防止される。 The oil flow path 8 is connected to the main oil flow path 6 so as to bypass the oil cooler 7, and the reactor 12 is arranged so as to be able to exchange heat with engine oil flowing through the oil flow path 8. For this reason, the oil flow path 8 for flowing engine oil can be simply configured so that heat exchange with the reactor 12 can be performed without passing through the oil cooler 7. Further, the heat generated from the reaction material 16 is prevented from being taken away by the oil cooler 7 when the reaction material 16 generates heat.
 図5は、図1に示されたエンジンオイル暖機装置の変形例を備えたエンジンオイル循環システムを示す概略構成図である。図5において、本変形例のエンジンオイル暖機装置5は、上記の三方弁10に代えて、オイル流路6aにおけるオイルクーラ7よりも上流側に配設された電磁弁31(バルブ)と、オイル流路8における熱交換器9よりも上流側に配設された電磁弁32(バルブ)とを備えている。オイルクーラ7にエンジンオイルを流すときは、電磁弁31が開状態とされ、反応器12と熱交換可能となるように熱交換器9にエンジンオイルを流すときは、電磁弁32が開状態とされる。 FIG. 5 is a schematic configuration diagram showing an engine oil circulation system provided with a modified example of the engine oil warm-up device shown in FIG. In FIG. 5, the engine oil warming-up device 5 of the present modified example is replaced with the electromagnetic valve 31 (valve) disposed upstream of the oil cooler 7 in the oil passage 6a, instead of the three-way valve 10 described above. An electromagnetic valve 32 (valve) disposed upstream of the heat exchanger 9 in the oil flow path 8 is provided. When flowing engine oil through the oil cooler 7, the electromagnetic valve 31 is opened, and when flowing engine oil through the heat exchanger 9 so that heat can be exchanged with the reactor 12, the electromagnetic valve 32 is opened. Is done.
 図6は、図1に示されたエンジンオイル暖機装置の他の変形例を備えたエンジンオイル循環システムを示す概略構成図である。図6において、本変形例のエンジンオイル暖機装置5では、主オイル流路6は、オイル流路6aとエンジン2とを接続するオイル流路6bを有している。熱交換器9は、オイル流路8ではなくオイル流路6bに配設されている。つまり、熱交換器9は、主オイル流路6におけるオイルクーラ7よりも下流側に配設されている。オイル流路8,6bは、オイルクーラ7を通さずに反応器12と熱交換可能となるようにエンジンオイルを流すための第2オイル流路を構成している。 FIG. 6 is a schematic configuration diagram showing an engine oil circulation system provided with another modification of the engine oil warming-up device shown in FIG. In FIG. 6, in the engine oil warm-up device 5 of the present modification, the main oil passage 6 has an oil passage 6 b that connects the oil passage 6 a and the engine 2. The heat exchanger 9 is disposed not in the oil passage 8 but in the oil passage 6b. That is, the heat exchanger 9 is disposed downstream of the oil cooler 7 in the main oil passage 6. The oil flow paths 8 and 6b constitute a second oil flow path for flowing engine oil so that heat exchange with the reactor 12 can be performed without passing through the oil cooler 7.
 オイルクーラ7にエンジンオイルを流すときは、三方弁10によってオイル流路6aが開状態とされると共にオイル流路8が閉状態とされる。反応器12と熱交換可能となるように熱交換器9にエンジンオイルを流すときは、三方弁10によってオイル流路8が開状態とされると共にオイル流路6aが閉状態とされる。 When flowing engine oil through the oil cooler 7, the oil flow path 6a is opened by the three-way valve 10 and the oil flow path 8 is closed. When flowing engine oil through the heat exchanger 9 so that heat exchange with the reactor 12 is possible, the oil flow path 8 is opened and the oil flow path 6a is closed by the three-way valve 10.
 なお、本発明は、上記実施形態には限定されない。例えば、本発明は、オイルクーラ7にエンジンオイルを流すための第1オイル流路と、オイルクーラ7を通さずに反応器12と熱交換可能となるようにエンジンオイルを流すための第2オイル流路と、第1オイル流路と第2オイル流路との間でエンジンオイルの流路を切り換えるバルブとを備えていれば、上記実施形態及び変形例以外の構成であってもよい。 Note that the present invention is not limited to the above embodiment. For example, the present invention provides a first oil passage for flowing engine oil through the oil cooler 7 and a second oil for flowing engine oil so that heat can be exchanged with the reactor 12 without passing through the oil cooler 7. As long as the flow path and the valve for switching the flow path of the engine oil between the first oil flow path and the second oil flow path are provided, configurations other than those in the above embodiment and the modified example may be used.
 また、上記実施形態では、反応媒体であるNHと組成式MXaで表される反応材16とを化学反応させて熱を発生させているが、反応媒体としては、特にNHには限られず、COまたはHO等を使用してもよい。反応媒体としてCOを使用する場合、COと化学反応させる反応材としては、MgO、CaO、BaO、Ca(OH)、Mg(OH)、Fe(OH)、Fe(OH)、FeO、FeまたはFe等が用いられる。反応媒体としてHOを使用する場合、HOと化学反応させる反応材としては、CaO、MnO、CuOまたはAl等が用いられる。 In the above embodiment, the reaction medium NH 3 and the reaction material 16 represented by the composition formula MXa are chemically reacted to generate heat. However, the reaction medium is not particularly limited to NH 3. CO 2 or H 2 O may be used. When CO 2 is used as the reaction medium, the reactants to be chemically reacted with CO 2 include MgO, CaO, BaO, Ca (OH) 2 , Mg (OH) 2 , Fe (OH) 2 , and Fe (OH) 3. FeO, Fe 2 O 3, Fe 3 O 4 or the like is used. When H 2 O is used as the reaction medium, CaO, MnO, CuO, Al 2 O 3 or the like is used as a reaction material that chemically reacts with H 2 O.
 さらに、上記実施形態では、反応器12が熱交換器9の周囲に配置されているが、特にその形態には限られず、例えばエンジンオイルを通過させる熱交換器と反応器とが交互に積層されてなる構造としてもよい。また、熱交換器を使用せずに、エンジンオイルが流れるオイル流路の周囲に反応器をエンジンオイルに対して熱交換可能に配置してもよい。 Furthermore, in the above embodiment, the reactor 12 is arranged around the heat exchanger 9, but is not particularly limited to that form, for example, a heat exchanger that passes engine oil and a reactor are alternately stacked. It is good also as a structure which consists of. Further, without using a heat exchanger, the reactor may be arranged around the oil flow path through which the engine oil flows so as to be able to exchange heat with the engine oil.
 また、上記実施形態では、オイルポンプ4とエンジン2との間にオイルクーラ7及び反応器12が配置されているが、特にその形態には限られず、例えばオイルパン3とオイルポンプ4との間にオイルクーラ7及び反応器12が配置されていてもよい。また、上記実施形態では、オイルポンプ4と三方弁10との間を流れるエンジンオイルの温度を検出するように温度センサ18が配置されているが、特にその形態には限られない。オイルクーラ7よりも上流側かつエンジン2の下流側におけるエンジンオイルの温度を検出するように温度センサ18が配置されていればよい。例えば、エンジン2とオイルパン3との間を流れるエンジンオイルの温度を検出するように温度センサ18が配置されていてもよいし、オイルパン3とオイルポンプ4との間を流れるエンジンオイルの温度を検出するように温度センサ18が配置されていてもよいし、オイルパン3内又はオイルポンプ4内のエンジンオイルの温度を検出するように温度センサ18が配置されていてもよい。 In the above embodiment, the oil cooler 7 and the reactor 12 are arranged between the oil pump 4 and the engine 2, but the form is not particularly limited, and for example, between the oil pan 3 and the oil pump 4. The oil cooler 7 and the reactor 12 may be disposed in the tank. Moreover, in the said embodiment, although the temperature sensor 18 is arrange | positioned so that the temperature of the engine oil which flows between the oil pump 4 and the three-way valve 10 may be detected, it is not restricted to the form in particular. The temperature sensor 18 may be disposed so as to detect the temperature of the engine oil upstream of the oil cooler 7 and downstream of the engine 2. For example, a temperature sensor 18 may be arranged so as to detect the temperature of engine oil flowing between the engine 2 and the oil pan 3, or the temperature of engine oil flowing between the oil pan 3 and the oil pump 4. The temperature sensor 18 may be arranged so as to detect the temperature, or the temperature sensor 18 may be arranged so as to detect the temperature of the engine oil in the oil pan 3 or the oil pump 4.
 5…エンジンオイル暖機装置、6a…オイル流路(第1オイル流路)、6b…オイル流路(第2オイル流路)、7…オイルクーラ、8…オイル流路(第2オイル流路)、10…三方弁(バルブ)、12…反応器、13…吸着器(貯蔵器)、14…反応媒体流路、16…反応材、18…温度センサ(温度検出部)、22…発熱反応制御部(第2制御部)、23…再生反応制御部(第1制御部)、31…電磁弁(バルブ)、32…電磁弁(バルブ)。 DESCRIPTION OF SYMBOLS 5 ... Engine oil warming-up apparatus, 6a ... Oil flow path (1st oil flow path), 6b ... Oil flow path (2nd oil flow path), 7 ... Oil cooler, 8 ... Oil flow path (2nd oil flow path) ) 10 ... Three-way valve (valve), 12 ... Reactor, 13 ... Adsorber (reservoir), 14 ... Reaction medium flow path, 16 ... Reactant, 18 ... Temperature sensor (temperature detector), 22 ... Exothermic reaction Control part (2nd control part), 23 ... Regeneration reaction control part (1st control part), 31 ... Solenoid valve (valve), 32 ... Solenoid valve (valve).

Claims (5)

  1.  エンジンオイルを暖機するエンジンオイル暖機装置において、
     前記エンジンオイルに対して熱交換可能に配置され、反応媒体が供給されると前記反応媒体との化学反応により発熱すると共に前記エンジンオイルの熱が与えられると前記反応媒体が脱離する反応材を含む反応器と、
     前記反応媒体を貯蔵する貯蔵器と、
     前記反応器と前記貯蔵器との間で前記反応媒体を流通させるための反応媒体流路と、
     前記エンジンオイルを冷却するオイルクーラと、
     前記オイルクーラに前記エンジンオイルを流すための第1オイル流路と、
     前記オイルクーラを通さずに前記反応器と熱交換可能となるように前記エンジンオイルを流すための第2オイル流路と、
     前記第1オイル流路と前記第2オイル流路との間で前記エンジンオイルの流路を切り換えるバルブとを備えることを特徴とするエンジンオイル暖機装置。
    In the engine oil warming device that warms up the engine oil,
    A reaction material that is arranged so as to be capable of exchanging heat with respect to the engine oil, generates heat due to a chemical reaction with the reaction medium when the reaction medium is supplied, and desorbs the reaction medium when heat is applied to the engine oil. A reactor containing,
    A reservoir for storing the reaction medium;
    A reaction medium flow path for circulating the reaction medium between the reactor and the reservoir;
    An oil cooler for cooling the engine oil;
    A first oil passage for flowing the engine oil through the oil cooler;
    A second oil flow path for flowing the engine oil so that heat exchange with the reactor can be performed without passing through the oil cooler;
    An engine oil warming device comprising: a valve that switches the flow path of the engine oil between the first oil flow path and the second oil flow path.
  2.  前記オイルクーラよりも上流側かつエンジンの下流側における前記エンジンオイルの温度を検出する温度検出部と、
     前記温度検出部により検出された前記エンジンオイルの温度が所定温度以上となったときに、前記エンジンオイルの流路が前記第1オイル流路から前記第2オイル流路に切り換わるように前記バルブを制御する第1制御部とを更に備えることを特徴とする請求項1記載のエンジンオイル暖機装置。
    A temperature detector that detects the temperature of the engine oil upstream of the oil cooler and downstream of the engine;
    The valve so that the flow path of the engine oil is switched from the first oil flow path to the second oil flow path when the temperature of the engine oil detected by the temperature detection unit exceeds a predetermined temperature. The engine oil warm-up device according to claim 1, further comprising a first control unit that controls the engine.
  3.  前記第1制御部は、前記反応器から前記貯蔵器への前記反応媒体の移動が終了したと判断したときに、前記エンジンオイルの流路が前記第2オイル流路から前記第1オイル流路に切り換わるように前記バルブを制御することを特徴とする請求項2記載のエンジンオイル暖機装置。 When the first control unit determines that the movement of the reaction medium from the reactor to the reservoir is completed, the engine oil flow path is changed from the second oil flow path to the first oil flow path. The engine oil warm-up device according to claim 2, wherein the valve is controlled to switch to
  4.  エンジンが起動されたときに、前記エンジンオイルの流路が前記第1オイル流路から前記第2オイル流路に切り換わるように前記バルブを制御する第2制御部を更に備えることを特徴とする請求項2または3記載のエンジンオイル暖機装置。 The engine further includes a second control unit that controls the valve so that the flow path of the engine oil is switched from the first oil flow path to the second oil flow path when the engine is started. The engine oil warm-up device according to claim 2 or 3.
  5.  前記オイルクーラは、前記第1オイル流路に配設されており、
     前記第2オイル流路は、前記オイルクーラをバイパスするように前記第1オイル流路に接続されており、
     前記反応器は、前記第2オイル流路を流れる前記エンジンオイルに対して熱交換可能に配置されていることを特徴とする請求項1~4のいずれか一項記載のエンジンオイル暖機装置。
    The oil cooler is disposed in the first oil flow path;
    The second oil passage is connected to the first oil passage so as to bypass the oil cooler;
    The engine oil warm-up device according to any one of claims 1 to 4, wherein the reactor is arranged so as to be able to exchange heat with the engine oil flowing through the second oil passage.
PCT/JP2016/080572 2015-10-20 2016-10-14 Engine oil warming device WO2017069062A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-206472 2015-10-20
JP2015206472A JP2017078353A (en) 2015-10-20 2015-10-20 Engine oil warming-up device

Publications (1)

Publication Number Publication Date
WO2017069062A1 true WO2017069062A1 (en) 2017-04-27

Family

ID=58557389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080572 WO2017069062A1 (en) 2015-10-20 2016-10-14 Engine oil warming device

Country Status (2)

Country Link
JP (1) JP2017078353A (en)
WO (1) WO2017069062A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108868951B (en) * 2018-03-23 2020-05-08 浙江吉利控股集团有限公司 Heating and cooling system for automobile oil pan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065218A (en) * 1983-09-19 1985-04-15 Mazda Motor Corp Heating device of lubricating oil in engine
JPH0459313U (en) * 1990-09-29 1992-05-21
JPH0514508U (en) * 1991-03-30 1993-02-26 株式会社土屋製作所 Lubricating oil heating device for internal combustion engine
JPH11311114A (en) * 1998-04-28 1999-11-09 Aisin Seiki Co Ltd Lubricating device for engine balancer
JP2010230268A (en) * 2009-03-27 2010-10-14 Toyoda Gosei Co Ltd Chemical heat pump device and method of using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065218A (en) * 1983-09-19 1985-04-15 Mazda Motor Corp Heating device of lubricating oil in engine
JPH0459313U (en) * 1990-09-29 1992-05-21
JPH0514508U (en) * 1991-03-30 1993-02-26 株式会社土屋製作所 Lubricating oil heating device for internal combustion engine
JPH11311114A (en) * 1998-04-28 1999-11-09 Aisin Seiki Co Ltd Lubricating device for engine balancer
JP2010230268A (en) * 2009-03-27 2010-10-14 Toyoda Gosei Co Ltd Chemical heat pump device and method of using the same

Also Published As

Publication number Publication date
JP2017078353A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US11518212B2 (en) Systems and methods for thermal battery control
JP5511494B2 (en) Chemical heat storage system for vehicles
WO2017069062A1 (en) Engine oil warming device
JP5817617B2 (en) Chemical heat storage system
JP2010053830A (en) Vehicle warming-up system
JPWO2010109790A1 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP6493338B2 (en) Chemical heat storage device
JP2017125421A (en) Engine oil temperature control device
JP2018145920A (en) Vehicle oil circulation system
WO2017086062A1 (en) Chemical heat storage apparatus
JP2004092585A (en) Warming-up device
WO2017081955A1 (en) Chemical heat storage apparatus
JP2018003793A (en) Chemical heat storage device
JP2017115635A (en) Chemical heat storage device
JP6658303B2 (en) Heat storage system and heat storage method for vehicle
JP2011196345A (en) Exhaust heat recovery device
JP2018017434A (en) Chemical heat storage device
WO2017110405A1 (en) Chemical heat storage apparatus
JP2010077933A (en) Exhaust heat recovery apparatus
JP2018009766A (en) Chemical heat storage device
JP2018169126A (en) Chemical heat storage device
JP2012122374A (en) Heat control device of vehicle
JP2019027715A (en) Heat storage system
JP7474441B2 (en) Chemical heat storage system and heat storage method
JP2018084400A (en) Chemical heat storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857377

Country of ref document: EP

Kind code of ref document: A1