WO2017081772A1 - Information processing system and information processing method - Google Patents

Information processing system and information processing method Download PDF

Info

Publication number
WO2017081772A1
WO2017081772A1 PCT/JP2015/081765 JP2015081765W WO2017081772A1 WO 2017081772 A1 WO2017081772 A1 WO 2017081772A1 JP 2015081765 W JP2015081765 W JP 2015081765W WO 2017081772 A1 WO2017081772 A1 WO 2017081772A1
Authority
WO
WIPO (PCT)
Prior art keywords
cases
case
event
disaster
information processing
Prior art date
Application number
PCT/JP2015/081765
Other languages
French (fr)
Japanese (ja)
Inventor
菅谷 奈津子
小川 祐一
彰規 淺原
林 秀樹
冨田 仁志
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017549920A priority Critical patent/JP6550145B2/en
Priority to PCT/JP2015/081765 priority patent/WO2017081772A1/en
Publication of WO2017081772A1 publication Critical patent/WO2017081772A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B27/00Alarm systems in which the alarm condition is signalled from a central station to a plurality of substations
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data

Definitions

  • the present invention is an information processing system, for example, a system capable of accurately grasping the occurrence of a fire at the time of a disaster such as an earthquake and providing information useful for evacuation from fire spread and rescue activities, and therefore It relates to the information processing method.
  • an information processing system for disaster countermeasures detecting disasters such as fire, searching related cases from cases stored in the database, and predicting the impact of disasters based on related cases Therefore, there are those that can present measures for evacuation guidance, relief activities, and prevention of damage expansion.
  • Examples of this type of information search system include those described in Japanese Patent No. 4459200, Japanese Patent No. 5172227, Japanese Patent No. 3834449, Japanese Patent No. 383823, and Japanese Patent No. 3034167.
  • the present invention searches for related cases, and when trying to use related cases for future situation analysis, it is possible to acquire appropriate related cases even if there is not enough information for searching related cases. It is an object of the present invention to provide a processing system and a method therefor.
  • the present invention is an information processing system for determining an event occurring in a predetermined area range based on a plurality of cases, and stores a controller that executes information processing and the plurality of cases A storage device, wherein the controller divides the predetermined area range into a plurality of areas, determines an area where an event has occurred among the plurality of areas, and determines the event in each of the plurality of areas. Calculating the influence of the elephant, and determining a case that matches the state of the predetermined area among the plurality of cases stored in the storage device based on the determined area and the calculated influence It is characterized by.
  • the second invention is an information processing method for a computer to acquire a related case from a plurality of cases in order to determine an event occurring in a predetermined area range
  • the computer includes: The predetermined area range is divided into a plurality of areas, an area where an event occurs among the plurality of areas is determined, an influence of the event is calculated in each of the plurality of areas, and the determination is performed. Based on the calculated area and the calculated influence, a case that matches the state of the predetermined area is determined from the plurality of cases stored in the storage device.
  • an appropriate related case can be acquired even if there is not enough information for searching for the related case.
  • An information processing system determines an event occurring in a predetermined area range based on a plurality of cases.
  • An event is not limited, but is a phenomenon that occurs in a predetermined area, for example, a disaster that occurs in a predetermined area.
  • An information processing system to be described below is provided as a disaster response system that can correctly grasp a disaster occurring in a predetermined area range based on a plurality of cases.
  • a phenomenon whose scale changes every moment for example, there are traffic jams and the flow of people.
  • the disaster response system extracts a case (related case) related to, similar to, related to, or corresponding to the current state of damage from the database, and further, based on the additional information, changes the current case to the current state of damage. Determine fit, match, or equivalent case (best case).
  • the optimum case is a case that matches the condition of a predetermined area.
  • the disaster response system should accurately grasp the current disaster state based on the best case, and then support or direct various responses such as evacuation guidance, prevention of damage expansion, and relief activities from the disaster. Can do.
  • the disaster response system 1 includes a relational database management system (RDBMS) 12 that stores a plurality of cases (preceding cases) 10 created in advance.
  • the controller of the disaster response system 1 searches the RDBMS 12 based on the disaster information 14 acquired by the sensor etc. from the actual disaster that occurred in a predetermined area (16), and from the previous cases, the current disaster A related case 18 similar to the situation is extracted.
  • RDBMS relational database management system
  • the preceding case 10 includes a data group (a spatio-temporal scenario) in which the location data of the disaster and the data of the disaster situation (for example, the scale of the fire) are associated with the elapsed time since the occurrence of the disaster. It is configured. Therefore, the user of the disaster response system 1 can predict how the disaster situation such as the spread of fire spreads, progresses, changes, or progresses over time by referring to the preceding cases. Can do.
  • the position data is mainly a two-dimensional position according to the map data, and may include a three-dimensional position corresponding to the topography or the height difference position of the building.
  • Disaster information including disaster location, date and time of disaster is acquired by the disaster response system 1 through sensors such as surveillance cameras, reports to the police and fire department, and surveillance satellites.
  • the spatio-temporal scenario may be obtained by simulation in addition to the analysis of actual disaster cases in the past.
  • the simulation is performed by widely assuming disaster locations such as fire, radioactivity and toxic substance leakage, and the extent of the disaster, and applying disturbance factors (wind direction, wind force, rainfall, etc.) to this.
  • the disturbance factors may take into account properties other than the weather conditions such as the attribute of the fire occurrence position (commercial area with many fireproof buildings or residential area with few fireproof buildings).
  • the disaster response system 1 acquires the disaster information 14, based on various situations such as the location of the disaster, the date and time of the disaster, the scale of the disaster, etc., the preceding cases similar to the actual disaster situation among the previous cases stored in the RDBMS 12 To extract.
  • the preceding case 10 includes data related to an object (a person or a car) affected by the disaster in addition to the above-described space-time scenario.
  • a change or characteristic occurs in the behavior of the object, for example, when the object tries to evacuate from the disaster location.
  • the data of the target object includes various numerical values indicating the state of the target object, such as the position of the target object, the moving direction, and the moving speed.
  • the data of the object is recorded in the database 12 corresponding to the spatiotemporal scenario. Object data is also created by past case analysis or simulation.
  • the related case 18 extracted based on the acquired disaster information 14 does not match the current disaster situation.
  • the disaster response system 1 executes a combined search 22 based on additional information 20 such as position information of people and vehicles in addition to the disaster information 14 directly obtained by sensors or the like, and the actual situation of the disaster from similar cases. It is made possible to extract the optimum case 24 that is more suitable. This will be described with reference to FIG.
  • reference numeral 100 indicates an application target of the disaster response processing, and the application target 100 corresponds to the predetermined area range described above.
  • the predetermined area range is a geographical range having a predetermined area.
  • the predetermined area range may be an area in which the development and progress of the disaster are interested.
  • the predetermined area range may be a range where a relatively large number of people are located such as residential areas and commercial areas.
  • the application target 100 includes information on the application area (map data) 102 to which the disaster response processing is applied, and information on the location 104 where the disaster information such as a fire can actually be acquired. As described above, it is clear from experience that there is a high possibility that there is a damaged part other than the acquired damaged part.
  • candidate cases 1 to 6 can be extracted as related cases including the damage information in the same location 104.
  • Candidate example 1 does not include other disaster sites other than the disaster site 104, but candidate cases 2 to 6 include other disaster sites 106 in addition to the disaster site 104, respectively.
  • the disaster response system 1 is adapted to the actual disaster situation from a plurality of candidate cases by adding information 20 acquired indirectly from the disaster in addition to the disaster information 14 acquired directly from the disaster. Made it possible to determine the best case. This will be further described with reference to FIG.
  • the disaster response system 1 divides the application area 102 into a plurality of areas, for example, a plurality of equal sections.
  • the disaster response system 1 acquires, as additional information 20, information (for example, position) on an object that can be affected by the disaster, for example, a person or a vehicle, in each section (hereinafter referred to as “grid”) 300. .
  • the disaster response system 1 can actually determine the optimum case for the actual situation of the disaster from a plurality of candidate cases by comparing the disaster situation with the candidate cases.
  • the position data of the target object can be detected, for example, as GPS information of a terminal carried by a person and / or GPS information of a car navigation system (hereinafter also referred to as “car navigation”).
  • the disaster response system 1 continuously receives the GPS information 20, obtains the movement characteristics as the attribute values of the target object and / or the operation characteristics such as the movement speed, and expresses at least the movement direction as a vector, for example.
  • Reference numeral 302 is a vector representing the moving direction of the object belonging to each grid. When a plurality of objects belong to one grid, for example, the average of the movement directions of each of the plurality of objects may be used as the characteristic value or representative value of the grid.
  • the disaster response system 1 divides the application area 102 of each candidate case into a plurality of grids 300 in the same manner as the application target 100, and calculates the movement direction of the target object belonging to each grid.
  • the disaster response system 1 calculates the moving direction of the target data by referring to the position data of the target object corresponding to the candidate case from the preceding case 10.
  • the disaster response system 1 compares the grid 300 of the application area 102 of the application target 100 with the grid 300 of each candidate case for each grid existing at the same position, and the mode of the target object (the moving direction of the target object) for each grid. ) Match or are similar, and all grids are taken into consideration and the best case with the closest moving direction of the object is determined.
  • the disaster response system 1 determines the candidate case 2 as the optimum case.
  • the moving direction 108 of the target object is different from the moving direction of the target object in the application target 100 in one or a plurality of grids.
  • the disaster response system 1 could not acquire the disaster information at the point 106, it can be understood from the candidate case 2 that the disaster actually occurred at the point 106 or that the possibility is high. Therefore, the disaster response system 1 can search for cases that match the actual disaster situation even if the disaster information is insufficient.
  • the disaster response system 1 includes a central computer 400, a peripheral system 404 connected to the central computer 400 via a network device 406, and a storage device 402 connected to the central computer 400.
  • the central computer 400 executes related processing (400A to 400C) for disaster response.
  • the central computer 400 includes well-known hardware (hard disk device, main memory, CPU, etc.) necessary for performing related processing. Application programs and data for performing related processing are recorded in the hard disk device (non-temporary storage medium), and the CPU 401 implements the related processing described above by executing the application program. A work area is configured in the main memory. Further, a management computer 408 is connected to the central computer 400 via the LAN 410. The management computer 408 applies predetermined management processing such as transmitting a command for causing the central computer 400 to execute processing for disaster response.
  • predetermined management processing such as transmitting a command for causing the central computer 400 to execute processing for disaster response.
  • the storage device 402 is equipped with the RDBMS 12 described above.
  • the RDBMS 12 stores a parameter file 402A, a case database 402B, and a location database 402C.
  • the case database 402B includes a data table in which the position information on the occurrence of the disaster and the damage information corresponding to the position information are stored in time series. Accordingly, the scenario database 402B realizes a scenario of transition of the disaster situation, for example, a scenario of fire spread. Details of the case database 402B will be described later.
  • the position database 402C records the position data of the target affected by the transition of the disaster in the form of a table.
  • the position data of the target object includes time-series information of the position of the target object evacuating from or trying to evacuate. Details of the position database 402C will be described later.
  • the parameter file 402A is a file in which a plurality of parameters are stored in a definition file format.
  • the parameter is control information necessary for processing for determining an optimum case based on the acquired disaster information. Details of the parameters will also be described later.
  • the network device 406 is connected to the fire station server 420, the communication carrier server 440, and the telematics service server 446 as the peripheral system 404 via the communication network 412. Therefore, the central computer 400 communicates with these servers via the network device 406.
  • the fire station operator 422 records disaster information on the fire station server 420.
  • the fire department acquires disaster information through the security company 414, the local government 430, and the 119 call 425.
  • Information 416 such as a fire alarm and a monitoring camera is supplied to a security company, and information 424 of a monitoring camera in a public place such as an intersection is supplied to a local government such as a police.
  • the location information of the mobile portable terminal 442 such as a smartphone is supplied to the communication carrier server 440 via the base station 444.
  • the position information of the car navigation system 448 is supplied to the telematics service server 446.
  • the central computer 400 can obtain the person position information 20 from the communication carrier server 440, the car position information 20 from the telematics service server 446, and the disaster information 14 via the fire department server 420, respectively.
  • the central computer 400 continuously stores the disaster information 14 and the person / vehicle information 20 in the storage device 402 or the built-in hard disk device.
  • the data table of the case database 402B described above is configured as shown in FIG. 5, for example.
  • This table stores disaster data such as the location and scale of fire determined or calculated by simulation or past case analysis, for example.
  • the disaster data includes a predetermined time range (Time_min, Time_max) and a disaster state (Status) for each predetermined geographical section (X_min, X_max, Y_min, Y_max). Damage data is stored in one row of the table for each Case_ID.
  • [Case_ID] is a unique identifier assigned to each simulation or past case analysis result.
  • the row information of the table based on the same ID indicates the analysis result of one simulation or past case.
  • methods disclosed in Japanese Patent Application Laid-Open No. 2007-164625 and Japanese Patent Application Laid-Open No. 8-249313 are known as methods for simulating fire spread.
  • the disaster state is determined based on the characteristics of the disaster, such as the scale of the disaster and the type of damage, for each predetermined time range and each predetermined geographical section. Damaged states are, for example, 0: before fire, 1: flames are ejected only from openings, 2: openings and roofs or flames are ejected, 3: the entire compartment is burned as an integral flame, and 4: fire extinguishing is classified. Is done.
  • the above-described position database 402C is configured as a table (FIG. 6) that stores position information of the object.
  • position data table for example, position data of the target object calculated as a result of evacuation simulation of the target object or behavior analysis of the target object in the actual case is stored based on the case database.
  • the position data is stored in one row of the table as coordinates (X, Y) existing at a certain time (Time) with a specific person or car (Object_ID).
  • Obeject_ID is an identifier of the object.
  • an evacuation simulation method for example, those described in Japanese Patent Application Laid-Open Nos. 5-40887 and 2006-163837 are known.
  • the parameter file 402A There are a plurality of types of parameters, and the first parameter is a parameter for acquiring the disaster information and defining an application area where it is desired to determine a transition such as the expansion of the disaster.
  • This parameter includes the start point X coordinate, start point Y coordinate, end point X coordinate, and end point Y coordinate of the application area.
  • the second parameter is the size of the grid 300 described above.
  • the size of the grid is defined by the length of the grid.
  • the size of the grid may be set as appropriate by the administrator.
  • the administrator can determine the grid size in consideration of the road width, the position of the intersection, and the like. For example, if the size of the grid is small, the search accuracy of the object state is improved, but on the other hand, the search takes time due to the increase in the number of grids.
  • the size may be determined as appropriate.
  • the third parameter is a parameter that defines the characteristics of the grid, and in particular, a parameter that defines the characteristics of the object.
  • the feature of the target object is, for example, the average moving direction (vector) of the target object, the number of target objects, or the average moving speed of the target object.
  • the administrator can also freely define the third parameter.
  • the fourth parameter is a parameter that defines a time range for calculating the characteristics of the grid
  • the fifth parameter is a parameter that defines a method for calculating the similarity between the application target 100 and the candidate case.
  • cosine similarity an index indicating similarity in vector direction
  • deviation sum of squares an index indicating the magnitude of variation in numerical values
  • FIG. 7 is a flowchart showing the disaster response processing of the controller 401 of the central computer 400.
  • the controller 401 When the management computer 408 receives the disaster information from the fire department server 420, for example, the occurrence of a fire after the occurrence of the earthquake, the controller 401 starts the disaster response processing.
  • the controller 401 first executes parameter management 400A.
  • the controller 401 receives the parameter file 402A from the storage device 402 (S1100), and provides the parameter list to the management computer 408.
  • the administrator inputs predetermined values for a plurality of parameters according to the parameter list.
  • the controller acquires input information from the management computer 408 and records parameter setting information in the work area (S1102).
  • the controller 401 executes the case search control 400B.
  • the controller 401 receives the disaster information from the server 420 (S1104), and continuously stores the disaster information of the application area 102. Further, the controller 401 receives the position information of the target object from the server 440 and the server 446, and continuously stores the position information of the target object in the application area.
  • the controller 401 reads the setting information of the application area 102 and the setting information of the grid 300 as set parameters from the work area, and further reads the disaster information to calculate the bitmap control information (FIG. 8) ( S1106).
  • reference numeral 700 denotes a bit area corresponding to the grid 300.
  • FIG. 8 shows that disaster information (for example, a fire occurrence) is set in a bit area with a gray color.
  • a fire occurrence flag is set in bits (1, 2) and bits (2, 3).
  • the controller 401 stores the created bitmap control information in the work area.
  • the controller 401 refers to the case database 402B and calculates bitmap control information corresponding to the application area 102 (S1108).
  • the controller 401 can determine the presence or absence of a disaster for each grid (bit area) by referring to the disaster status: Status (FIG. 5).
  • the disaster response system 1 may determine that the damage state is 1 to 3 as a disaster occurrence.
  • the controller 401 stores the created bitmap control information in the work area.
  • the controller 401 refers to the bitmap control information stored in the work area, the bitmap control information (FIG. 8) created based on the actual disaster situation, and the bitmap created based on the case database 402B. Compared with the control information, out of the plurality of bitmap control information, the bitmap control information in which the damage is recorded in the same bit area as the former bitmap control information is extracted as the candidate case described above. (S1110), this is recorded in the work area.
  • FIG. 9 shows bitmap control information of a plurality of candidate cases.
  • the controller 401 executes similarity calculation control in order to select an optimal case that matches the disaster situation from the candidate cases.
  • the controller 401 reads the third parameter, the fourth parameter, and the fifth parameter from the work area, and performs bitmap control of a plurality of candidate cases for the bitmap control information (FIG. 8) corresponding to the disaster situation.
  • bitmap control information FOG. 8
  • FOG. 9 bitmap control information
  • similarity calculation conditions are determined (S1112).
  • Candidate examples with a higher degree of similarity are more suitable for the actual situation of the disaster.
  • the controller 401 employs, for example, the moving direction (grid feature value) of the object in each grid as a condition for calculating the similarity.
  • the controller 401 calculates the feature value of the grid corresponding to each bit area for each of the bitmap control information corresponding to the disaster situation (FIG. 8) and the bitmap control information corresponding to the candidate case (FIG. 9). (S1114).
  • the feature value may be calculated by averaging the moving directions of a plurality of objects belonging to the grid.
  • the controller 401 can calculate the moving direction of the target object from the position of the target object and the time range determined by the fourth parameter.
  • the controller 401 sets the moving direction of the target object, which is a grid feature, in each bit area of the bitmap control information.
  • FIG. 10 shows bitmap control information corresponding to a disaster situation in which a vector 710 is set in each bit area.
  • FIG. 11 shows bitmap control information corresponding to a candidate case in which a vector 710 is set in each bit area.
  • the controller 401 compares the feature value for each bit area corresponding to the bitmap control information corresponding to the disaster situation (FIG. 10) and the bitmap control information corresponding to the candidate case (FIG. 11). The similarity is calculated based on the method set by the parameter 5 (S1116).
  • the controller 401 applies the calculation of the total similarity by adding the similarities of all the bit areas of the bitmap control information to all the plurality of candidate cases (S1118). Next, the controller 401 sorts the total similarity of the plurality of candidate cases in descending order, and determines the candidate case having the highest total similarity as the optimum case that best matches the actual situation of the disaster situation. According to FIG. 11, the controller 401 determines the candidate case 2 as the optimum case (S1120).
  • the controller 401 extracts a data group having the same ID as the case ID of the optimum case from the case database 402B.
  • the extracted data group corresponds to the deployment scenario of the disaster situation.
  • the controller 401 configures a disaster situation development prediction data file from the extracted data group (S1122), and transmits it to the servers 420, 440, and 446.
  • FIG. 12 is a display example 132 of the application area 102 displayed on the client computer 130, and shows the current disaster situation (fire spread location).
  • the client computer displays the progress of the disaster situation (fire spread simulation) based on the disaster situation development prediction data file.
  • a plurality of search buttons 140 are provided, and the administrator operates the search buttons in place of each other, so that the client computer displays the fire spread location (the location where the fire was actually confirmed and the occurrence of the fire) It is also possible to display it separately from the estimated location), display of fire spread simulation, display of the object (density of the object), or display of the moving direction of the object, or overlay these can do.
  • the central computer 400 or the servers 420, 440, and 446 calculates the direction in which the object should evacuate based on the disaster situation development prediction data file and the object evacuation simulation program, and transmits the calculation result to the client computer.
  • the evacuation direction of the object can be displayed on the client computer.
  • the central computer 400 repeatedly executes the above-described flowchart every predetermined time so that the optimum case corresponding to the current disaster situation can be updated every predetermined time, and the disaster response simulation based on the latest optimum case is performed.
  • the client device can be continuously deployed.
  • the feature value of the grid is not limited to the value of the movement mode of the target object such as the moving direction of the target object.
  • “not damaged” is also an influence of the disaster in a broad sense, and may be adopted as a characteristic value of the grid.
  • FIG. 14 shows bitmap control information in which non-disaster information is set.
  • a non-damaged flag (shown in gray color) is set in the bit area 120 corresponding to the grid where it has been confirmed that no damage has actually occurred.
  • the controller 401 extracts candidate cases based on the bit area in which the disaster information 104 is set, the candidate cases shown in FIG. 15 are extracted.
  • the non-disaster flag (shown in gray) is set in the bit area corresponding to the bit area 120 of the bitmap control information corresponding to the actual disaster situation. , 4, these candidate cases are determined as cases that match the current disaster state.
  • the controller 401 calculates the moving speed of the target object in the grid corresponding to each bit area of the candidate case, and when the moving speed is moving below a predetermined value (for example, the walking speed of a person), the target object It can be determined that there is no urgency in the movement of the grid and that there is no damage to the grid. When there are a plurality of objects, the controller 401 may determine that the grid is not damaged if the average value of the moving speeds of the objects is equal to or less than a predetermined value.
  • a predetermined value for example, the walking speed of a person
  • the controller 401 can afford to use the mobile portable terminal if there is a record of SNS transmission such as mail transmission and Twitter on the mobile portable terminal belonging to the grid. Since there is no urgent need to evacuate, a non-damaged flag is set in the bit area corresponding to this grid.
  • the disaster response system may refer to the non-disaster information in calculating the similarity of cases.
  • candidate cases 3, 5, and 6 shown in FIG. 15 in the bitmap control information corresponding to the actual disaster situation, the disaster information 104 is set in the bit area 120 in which the non-damage information is set.
  • the controller 401 adjusts the total similarity by deducting the similarity of the candidate cases 3, 5, and 6 in accordance with the presence / absence of the disaster information 104 set in the non-damaged bit area 120, the number thereof, and the like.
  • the disaster response system 1 can determine the similarity between the candidate case and the current damage situation by adding non-damage information to the data of the target object. Can be improved.
  • the information processing system has been described as a disaster response system, but the information processing system can also be realized as a traffic accident response system.
  • the database 10 stores past traffic accident history (date and time, location of occurrence, scale, etc.).
  • the traffic accident response system stores vehicle travel information (date and time, position, etc.) acquired from the car navigation system in the storage device 402.
  • the traffic accident case response system searches a database by occurrence location, scale, and the like. From the obtained multiple cases, a case where the surrounding situation (number of cars) at the time of the accident is similar is selected. According to the traffic accident response system, it is possible to acquire a case suitable for the accident situation as the subsequent traffic congestion or the location of the secondary disaster changes depending on the surrounding situation of the vehicle at the time of the accident.
  • the information processing system can be realized as an evacuation response system.
  • the database 10 stores past evacuation training history (date and time, assumed disaster location, etc.) conducted at a shopping mall or the like.
  • the evacuation response system stores the location information (date and time, location, etc.) of a person acquired from a mobile terminal or the like in the storage device 402.
  • the evacuation system detects any disaster where the occurrence location is unknown, it acquires all the dates and times of past evacuation training history, searches the person's location information at the obtained date and time, in the direction of movement of the person, Acquire the assumed disaster location of an evacuation drill example similar to the surrounding situation (movement direction) at the time of the disaster.
  • the evacuation response system not only a disaster that can be determined by a fire alarm, such as a fire, but also a disaster that cannot be acquired can be registered.
  • the information processing system can be realized as a sales support system for forecasting sales when opening a new store.
  • the database 10 stores past store opening history (date and time, location, store form, store size, store sales).
  • the sales support system stores the location information (date and time, location, etc.) of the person acquired from the mobile terminal in the storage device 402.
  • the sales support system searches the database based on the store form and scale being planned for opening a store, searches for the location information of people at the date and time of multiple cases, and out of the number of people at that date and time.
  • a store opening example similar to the surrounding situation (number of people) of the store opening planned place is acquired.
  • sales vary depending not only on the store form and scale, but also on the surrounding situation of the person, so it is possible to obtain more useful examples.
  • each of the above-described configurations, functions, processing units, processing means, and the like are realized by hardware by designing some or all of them, for example, with an integrated circuit Also good.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a storage device such as a memory, a hard disk, and SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, and a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all components are connected to each other.
  • the present invention is an information processing system, for example, applied to a system capable of accurately grasping the occurrence of a fire at the time of a disaster such as an earthquake and providing information useful for evacuation and relief activities from a fire spread. Is preferred.

Landscapes

  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Educational Administration (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

[Problem] To provide an information processing system which, when attempting to search for related case histories and use same in future situational analyses, is capable of acquiring appropriate related case histories even if there is insufficient information for use in searching for the related case histories. [Solution] Provided is an information processing system comprising a controller which executes an information process, and a storage device which stores a plurality of case histories. The controller: segments a prescribed area range into a plurality of regions; determines, among the plurality of regions, the region in which an event is occurring; computes the impact which the event will have on each of the plurality of regions; and, on the basis of the determined region and the computed impact, determines which of the case histories, among the plurality of case histories which is stored in the storage device, is pertinent to the status of the prescribed area.

Description

情報処理システム、及び、情報処理方法Information processing system and information processing method
 本発明は、情報処理システムであって、例えば、地震等の災害時での火災の発生状況を正確に把握して、延焼からの避難や救護活動に有用な情報を提供できるシステム、及び、そのための情報処理方法等に関する。 The present invention is an information processing system, for example, a system capable of accurately grasping the occurrence of a fire at the time of a disaster such as an earthquake and providing information useful for evacuation from fire spread and rescue activities, and therefore It relates to the information processing method.
 複数の産業分野において、様々な情報処理システムが考案され、例えば、火災等の被災への対応を支援するシステムも検討されている。このシステムは、監視カメラ等によって火災の発生を検知し、そして、移動端末のGPS情報から、人や車の動きを検出して、人や車の避難誘導等を行おうとするものである。最近では、センサの小型化・低価格化、移動端末の普及に伴い、災害から起因する、大量の時間・空間・被災状況に係るデータが見込めるため、このデータを被災対策に活用しようとする取り組みも始められている。 In various industrial fields, various information processing systems have been devised. For example, systems that support the response to disasters such as fires are being studied. This system detects the occurrence of a fire with a monitoring camera or the like, and detects the movement of a person or a car from the GPS information of a mobile terminal, and tries to guide the evacuation of the person or the car. Recently, along with the downsizing and cost reduction of sensors and the widespread use of mobile terminals, a large amount of data related to time, space, and disaster status can be expected due to disasters, so efforts to utilize this data for disaster countermeasures Has also started.
 被災対策のための情報処理システムの一例として、火災等の被災を検出して、データベースに蓄積されている事例の中から関連事例を検索し、関連事例に基づいて、災害の影響を予測することにより、被災からの避難誘導、救援活動、被害の拡大防止のための方策を提示できるものが存在する。この種の情報検索システムとして、例えば、特許第4459200号、特許第5172227号、特許第3834449号、特許第383823号、及び、特許第3034167号に記載されたものが存在する。 As an example of an information processing system for disaster countermeasures, detecting disasters such as fire, searching related cases from cases stored in the database, and predicting the impact of disasters based on related cases Therefore, there are those that can present measures for evacuation guidance, relief activities, and prevention of damage expansion. Examples of this type of information search system include those described in Japanese Patent No. 4459200, Japanese Patent No. 5172227, Japanese Patent No. 3834449, Japanese Patent No. 383823, and Japanese Patent No. 3034167.
特許第4459200号公報Japanese Patent No. 4459200 特許第5172227号公報Japanese Patent No. 5172227 特許第3834449号公報Japanese Patent No. 3834449 特許第383823号公報Japanese Patent No. 383823 特許第3034167号公報Japanese Patent No. 3034167
 情報処理システムにおいて、取得される情報に基づいて、データベースに蓄積されている事例の中から関連事例を検索するといっても、情報が正確に取得されないかぎり、関連事例を特定することはそもそも難しい。例えば、大規模地震災害では、火災が多くの場所で分散して発生し得るため、全ての火災発生箇所を特定できない。一部の箇所の火災に基づいて関連事例を検索しても、最適な事例にはならない。また、交通事故による渋滞の発生や拡大等を予測しようする場合であっても、事故発生場所周辺の交通量や道路状態等の周辺状況によって、渋滞の進展の態様は大きく変わってくるが、周辺状況を正確に把握することは容易でなく、その結果、適切な関連事例を見出すことほぼ無理である。 In an information processing system, even if a related case is searched from cases stored in a database based on acquired information, it is difficult to identify the related case unless the information is acquired accurately. For example, in a large-scale earthquake disaster, fires can occur in many places and cannot be identified. Searching for related cases based on fires in some places will not be the best case. In addition, even when predicting the occurrence or expansion of traffic jams due to traffic accidents, the progress of traffic jams will vary greatly depending on the traffic volume and road conditions around the accident location. It is not easy to accurately grasp the situation, and as a result, it is almost impossible to find appropriate relevant cases.
 そこで、本願発明は、関連事例を検索して、今後の状況分析に関連事例を利用しようとする際、関連事例の検索のための情報が十分でなくても、適切な関連事例を取得できる情報処理システム、及び、そのための方法を提供することを目的とする。 Therefore, the present invention searches for related cases, and when trying to use related cases for future situation analysis, it is possible to acquire appropriate related cases even if there is not enough information for searching related cases. It is an object of the present invention to provide a processing system and a method therefor.
 前記目的を達成するために、本願発明は、所定の地域範囲に発生する事象を複数の事例に基づいて判定する情報処理システムであって、情報処理を実行するコントローラと前記複数の事例を記憶する記憶装置とを備え、前記コントローラは、前記所定の地域範囲を複数の領域に分割し、前記複数の領域のうち、事象が発生している領域を決定し、前記複数の領域の夫々において前記事象による影響を演算し、前記決定された領域と前記演算された影響とに基づいて、前記記憶装置に記憶された前記複数の事例のうち前記所定の地域の状態に適合する事例を決定することを特徴とする。さらに、第2の発明は、所定の地域範囲に発生する事象を判定するために、コンピュータが、複数の事例の中から、関連事例を取得するための情報処理方法であって、前記コンピュータは、前記所定の地域範囲を複数の領域に分割し、前記複数の領域のうち、事象が発生している領域を決定し、前記複数の領域の夫々において前記事象による影響を演算し、前記決定された領域と前記演算された影響とに基づいて、前記記憶装置に記憶された前記複数の事例のうち前記所定の地域の状態に適合する事例を決定することを特徴とする。 In order to achieve the above object, the present invention is an information processing system for determining an event occurring in a predetermined area range based on a plurality of cases, and stores a controller that executes information processing and the plurality of cases A storage device, wherein the controller divides the predetermined area range into a plurality of areas, determines an area where an event has occurred among the plurality of areas, and determines the event in each of the plurality of areas. Calculating the influence of the elephant, and determining a case that matches the state of the predetermined area among the plurality of cases stored in the storage device based on the determined area and the calculated influence It is characterized by. Further, the second invention is an information processing method for a computer to acquire a related case from a plurality of cases in order to determine an event occurring in a predetermined area range, and the computer includes: The predetermined area range is divided into a plurality of areas, an area where an event occurs among the plurality of areas is determined, an influence of the event is calculated in each of the plurality of areas, and the determination is performed. Based on the calculated area and the calculated influence, a case that matches the state of the predetermined area is determined from the plurality of cases stored in the storage device.
 本発明によれば、関連事例を検索して、今後の状況分析に関連事例を利用しようとする際、関連事例の検索のための情報が十分でなくても、適切な関連事例を取得できる。 According to the present invention, when searching for a related case and using the related case for future situation analysis, an appropriate related case can be acquired even if there is not enough information for searching for the related case.
本発明の第1の実施形態に係る情報処理システムとしての被災対応システムの基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the disaster response system as an information processing system which concerns on the 1st Embodiment of this invention. 先行事例の中から、被災の実態に適した事例を選択する原理を説明する図である。It is a figure explaining the principle which selects the example suitable for the actual condition of a disaster from a prior example. 先行事例の中から、被災の実態に適した事例を選択する原理を説明するさらに他の図である。It is another figure explaining the principle which selects the example suitable for the actual condition of a disaster from a prior example. 被災対応システムのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of a disaster response system. 事例データテーブルの一例を示す図である。It is a figure which shows an example of a case data table. 位置データテーブルの一例を示す図である。It is a figure which shows an example of a position data table. 中央計算機コントローラの被災対応処理を示すフローチャートである。It is a flowchart which shows the disaster response process of a central computer controller. 所定の地域範囲の被災情報に対応するビットマップ制御情報の構成を示す図である。It is a figure which shows the structure of the bitmap control information corresponding to the disaster information of a predetermined area range. 候補事例のビットマップ制御情報の構成を示す図である。It is a figure which shows the structure of the bitmap control information of a candidate example. 夫々のビット領域にベクトルが設定された、被災状況に対応するビットマップ制御情報の構成を示す図である。It is a figure which shows the structure of the bitmap control information corresponding to a disaster situation where the vector was set to each bit area. 夫々のビット領域にベクトル710が設定された、候補事例に対応するビットマップ制御情報の構成を示す図である。It is a figure which shows the structure of the bitmap control information corresponding to a candidate example by which the vector 710 was set to each bit area | region. クライアント計算機に表示された適用エリアの表示例である。It is an example of a display of the application area displayed on the client computer. クライアント計算機に表示された適用エリアの他の表示例である。It is another example of a display of the application area displayed on the client computer. 実際の被災状況に対応するビットマップ制御情報に非被災情報が設定されていることを示す図である。It is a figure which shows that non-disaster information is set to the bitmap control information corresponding to an actual disaster situation. 候補事例に対応するビットマップ制御情報に非被災情報が設定されていることを示す図である。It is a figure which shows that non-disaster information is set to the bitmap control information corresponding to a candidate example.
 次に、情報処理システムの実施形態について説明する。情報処理システム(計算機システム)は、所定の地域範囲に発生する事象を複数の事例に基づいて判定するものである。事象とは、限定されるものではないが、所定の地域範囲に発生する現象、例えば、所定の地域範囲に発生している被災である。被災には、火災によるもの、地震によるもの、風水害によるもの等複数の態様が存在するが、延焼等規模が刻々と変化する火災による被災の現状をより正しく判定、評価し、避難誘導等に役立てることが望まれる。以下に説明する情報処理システムは、所定の地域範囲に発生している被災を、複数の事例に基づいて、正しく把握できるようにした被災対応システムとして提供される。なお、規模が刻々と変化する現象として、その他、例えば、交通渋滞や人の流れがある。 Next, an embodiment of the information processing system will be described. An information processing system (computer system) determines an event occurring in a predetermined area range based on a plurality of cases. An event is not limited, but is a phenomenon that occurs in a predetermined area, for example, a disaster that occurs in a predetermined area. There are multiple modes of damage, such as those due to fire, earthquakes, and storms and floods, but more accurately determine and evaluate the current state of fire damage caused by fires that change in scale, such as the spread of fire. It is desirable. An information processing system to be described below is provided as a disaster response system that can correctly grasp a disaster occurring in a predetermined area range based on a plurality of cases. In addition, as a phenomenon whose scale changes every moment, for example, there are traffic jams and the flow of people.
 被災対応システムは、現在の被災状態に関連、類似、関係、又は、対応する事例(関連事例)をデータベースから抽出し、さらに、追加情報に基づいて、関連事例の中から、現在の被災状態に適合、合致、又は、相当する事例(最適事例)を決定する。最適事例とは、所定の地域の状態に適合する事例をいう。 The disaster response system extracts a case (related case) related to, similar to, related to, or corresponding to the current state of damage from the database, and further, based on the additional information, changes the current case to the current state of damage. Determine fit, match, or equivalent case (best case). The optimum case is a case that matches the condition of a predetermined area.
 被災対応システムは、最適事例に基づいて、現在の被災状態を正確に把握してから、被災からの避難誘導、被害の拡大防止、救援活動等の諸対応を支援、又は、指揮等に役立てることができる。 The disaster response system should accurately grasp the current disaster state based on the best case, and then support or direct various responses such as evacuation guidance, prevention of damage expansion, and relief activities from the disaster. Can do.
 図1に示すように、被災対応システム1は、予め作成された複数の事例(先行事例)10を格納したリレーショナルデータベース管理システム(RDBMS)12を備えている。被災対応システム1のコントローラは、所定の地域範囲において、実際に発生した被災から、センサ等によって取得した被災情報14に基づいて、RDBMS12を検索し(16)、先行事例の中から、現在の被災状況に類似する関連事例18を抽出する。 As shown in FIG. 1, the disaster response system 1 includes a relational database management system (RDBMS) 12 that stores a plurality of cases (preceding cases) 10 created in advance. The controller of the disaster response system 1 searches the RDBMS 12 based on the disaster information 14 acquired by the sensor etc. from the actual disaster that occurred in a predetermined area (16), and from the previous cases, the current disaster A related case 18 similar to the situation is extracted.
 先行事例10は、被災の位置データと、被災の状況(例えば、火災の規模等)のデータとが、被災が発生してからの経過時間とともに関連付けられたデータ群(時空間シナリオ)を含んで構成されている。従って、被災対応システム1のユーザは、先行事例を参照することによって、火災の延焼等の被災状況が時間の経過と共にどのように展開、進行、推移、或いは、進展する等の経過を予測することができる。 The preceding case 10 includes a data group (a spatio-temporal scenario) in which the location data of the disaster and the data of the disaster situation (for example, the scale of the fire) are associated with the elapsed time since the occurrence of the disaster. It is configured. Therefore, the user of the disaster response system 1 can predict how the disaster situation such as the spread of fire spreads, progresses, changes, or progresses over time by referring to the preceding cases. Can do.
 位置データは、主として、地図データに従った2次元位置であり、地形や建物の高低差位置に対応する3次元位置を含んでもよい。 The position data is mainly a two-dimensional position according to the map data, and may include a three-dimensional position corresponding to the topography or the height difference position of the building.
 被災の場所、被災日時を含む災害情報は、監視カメラ等のセンサ、警察・消防への通報、そして、監視衛星等によって、被災対応システム1が取得する。 Disaster information including disaster location, date and time of disaster is acquired by the disaster response system 1 through sensors such as surveillance cameras, reports to the police and fire department, and surveillance satellites.
 時空間シナリオは、過去に実際にあった被災事例の分析によるものの他、シミュレーションによって得られたものでもよい。シミュレーションは、火災、放射能や有毒物質漏洩等の被災位置と、被災の程度とを、広く想定し、これに外乱要因(風向き、風力、降雨量等の気象)を適用することによって行われる。外乱要因には、気象条件の他、火災発生位置の属性(耐火性建造物が多い商業地か、耐火性建造物が少ない住宅地)等の気象条件外の性質が考慮されてもよい。 The spatio-temporal scenario may be obtained by simulation in addition to the analysis of actual disaster cases in the past. The simulation is performed by widely assuming disaster locations such as fire, radioactivity and toxic substance leakage, and the extent of the disaster, and applying disturbance factors (wind direction, wind force, rainfall, etc.) to this. In addition to the weather conditions, the disturbance factors may take into account properties other than the weather conditions such as the attribute of the fire occurrence position (commercial area with many fireproof buildings or residential area with few fireproof buildings).
 被災対応システム1が、被災情報14を取得すると、被災位置と被災日時と被災規模等の諸状況に基づいて、RDBMS12に格納されている先行事例の中から、実際の被災状況に類似する先行事例を抽出する。 When the disaster response system 1 acquires the disaster information 14, based on various situations such as the location of the disaster, the date and time of the disaster, the scale of the disaster, etc., the preceding cases similar to the actual disaster situation among the previous cases stored in the RDBMS 12 To extract.
 先行事例10は、既述の時空間シナリオの他、被災によって影響を受ける対象体(人又は車等)に関するデータを含む。対象体が被災位置から避難しようとする等によって、対象体の挙動に変化や特徴が発生する。対象体のデータは、対象体の位置、移動方向、移動速度等、対象体の状態を示す種々の数値を含む。対象体のデータは、時空間シナリオに対応されて、データベース12に記録されている。対象体のデータも、過去の事例分析、或いはシミュレーションによって作成される。 The preceding case 10 includes data related to an object (a person or a car) affected by the disaster in addition to the above-described space-time scenario. A change or characteristic occurs in the behavior of the object, for example, when the object tries to evacuate from the disaster location. The data of the target object includes various numerical values indicating the state of the target object, such as the position of the target object, the moving direction, and the moving speed. The data of the object is recorded in the database 12 corresponding to the spatiotemporal scenario. Object data is also created by past case analysis or simulation.
 ところで、取得された被災情報14に基づいて抽出された関連事例18は、現在発生している被災状況に合致していないおそれが高い。そもそも、被災状況を管理すべき所定の対象範囲を想定した場合、被災情報を正確、或いは、十分に取得することは容易ではない。なぜなら、被災情報を発見するためのセンサの数は足りているとは言えないし、地震や火災等によってセンサが破壊されることも当然にある。したがって、不足している被災情報によって抽出された事例は、実際に生じている被災の実態に合致してなく、この事例によって被災の展開を予測しても、これは正しくはない。 Incidentally, there is a high possibility that the related case 18 extracted based on the acquired disaster information 14 does not match the current disaster situation. In the first place, it is not easy to acquire the damage information accurately or sufficiently when a predetermined target range in which the damage situation should be managed is assumed. This is because the number of sensors for discovering the disaster information is not sufficient, and the sensors are naturally destroyed by earthquakes or fires. Therefore, the case extracted by the missing damage information does not match the actual situation of the damage that has actually occurred, and it is not correct to predict the development of the damage by this case.
 そこで、被災対応システム1は、センサ等によって直接得られる被災情報14に加えて、人や車の位置情報等の追加情報20に基づく複合検索22を実行して、類似事例の中から被災の実態により適した最適事例24を抽出できるようにした。このことを図2に基づいて説明する。 Therefore, the disaster response system 1 executes a combined search 22 based on additional information 20 such as position information of people and vehicles in addition to the disaster information 14 directly obtained by sensors or the like, and the actual situation of the disaster from similar cases. It is made possible to extract the optimum case 24 that is more suitable. This will be described with reference to FIG.
 図2において、符号100は被災対応処理の適用対象を示し、適用対象100は、既述の所定の地域範囲に該当する。所定の地域範囲とは、所定の面積を有する地理的範囲である。所定の地域範囲とは、被災の展開や進展に関心がもたれる範囲でもよい。所定の地域範囲とは、住宅地や商業地等比較的多くの人が所在する範囲でもよい。適用対象100は、被災の対応処理が適用される適用エリア(地図データ)102の情報と、火災等の被災情報を実際に取得できた箇所104の情報を含む。既述のとおり、取得できた被災箇所以外にも被災箇所が存在する可能性が高いことは、経験上明らかである。 In FIG. 2, reference numeral 100 indicates an application target of the disaster response processing, and the application target 100 corresponds to the predetermined area range described above. The predetermined area range is a geographical range having a predetermined area. The predetermined area range may be an area in which the development and progress of the disaster are interested. The predetermined area range may be a range where a relatively large number of people are located such as residential areas and commercial areas. The application target 100 includes information on the application area (map data) 102 to which the disaster response processing is applied, and information on the location 104 where the disaster information such as a fire can actually be acquired. As described above, it is clear from experience that there is a high possibility that there is a damaged part other than the acquired damaged part.
 被災対応システム1が、RDBMS12から、被災情報14に基づいて先行事例10を検索すると、同一の箇所104に被災情報を含む関連事例として、候補事例1乃至6を抽出することができる。候補事例1は、被災箇所104以外に他の被災箇所を含まないが、候補事例2乃至6は、夫々、被災箇所104以外に他の被災箇所106を含んでいる。しかしながら、システム1は、候補事例1乃至6のどれが、実際の被災状況に適しているかを決定することは困難である。 When the disaster response system 1 searches the RDBMS 12 for the preceding case 10 based on the damage information 14, candidate cases 1 to 6 can be extracted as related cases including the damage information in the same location 104. Candidate example 1 does not include other disaster sites other than the disaster site 104, but candidate cases 2 to 6 include other disaster sites 106 in addition to the disaster site 104, respectively. However, it is difficult for the system 1 to determine which of the candidate cases 1 to 6 is suitable for the actual disaster situation.
 そこで、被災対応システム1は、被災から直接取得される被災情報14に加えて、被災から間接的に取得される情報20を加えて、複数の候補事例の中から、実際の被災状況に適合した最適事例を決定できるようにした。このことを、さらに、図3を用いて説明する。 Therefore, the disaster response system 1 is adapted to the actual disaster situation from a plurality of candidate cases by adding information 20 acquired indirectly from the disaster in addition to the disaster information 14 acquired directly from the disaster. Made it possible to determine the best case. This will be further described with reference to FIG.
 被災対応システム1は、適用エリア102を複数の領域、例えば、夫々等しい複数の区画に分割する。被災対応システム1は、個々の区画(以下、「グリッド」という。)300において、被災によって影響を受け得る対象体、例えば、人や車の情報(例えば、位置)を、追加情報20として取得する。 The disaster response system 1 divides the application area 102 into a plurality of areas, for example, a plurality of equal sections. The disaster response system 1 acquires, as additional information 20, information (for example, position) on an object that can be affected by the disaster, for example, a person or a vehicle, in each section (hereinafter referred to as “grid”) 300. .
 被災箇所から対象体は離れようとする等、被災箇所の周辺では対象の状態に変化が現れるため、対象体の状態、例えば、対象体の移動方向、移動速度、対象体の数等(対象体の動作特性)を、被災対応システム1が、実際に被災状況と候補事例との間で比較することによって、複数の候補事例の中から、被災の実態に最適な事例を決定することができる。 Since the state of the object changes around the disaster area, such as when the object is about to leave the disaster area, the state of the object, for example, the direction of movement of the object, the movement speed, the number of objects, etc. The disaster response system 1 can actually determine the optimum case for the actual situation of the disaster from a plurality of candidate cases by comparing the disaster situation with the candidate cases.
 対象体の位置データは、例えば、人が携行する端末のGPS情報、及び/又は、車のカーナビゲーションシステム(以下、「カーナビ」ともいう。)のGPS情報として、検出可能である。被災対応システム1は、GPS情報20を継続的に受信して、対象体の属性値としての移動方向、及び/又は、移動速度等の動作特性を求め、例えば、少なくとも、移動方向をベクトルとして表現する。符号302は、各グリッドに属する対象体の移動方向を表すベクトルである。一つのグリッドに複数の対象体が属する場合には、例えば、複数の対象体夫々の移動方向の平均をグリッドの特徴値、或いは、代表値にすればよい。 The position data of the target object can be detected, for example, as GPS information of a terminal carried by a person and / or GPS information of a car navigation system (hereinafter also referred to as “car navigation”). The disaster response system 1 continuously receives the GPS information 20, obtains the movement characteristics as the attribute values of the target object and / or the operation characteristics such as the movement speed, and expresses at least the movement direction as a vector, for example. To do. Reference numeral 302 is a vector representing the moving direction of the object belonging to each grid. When a plurality of objects belong to one grid, for example, the average of the movement directions of each of the plurality of objects may be used as the characteristic value or representative value of the grid.
 被災対応システム1は、各候補事例の適用エリア102を、適用対象100と同様に複数のグリッド300に区分けし、夫々のグリッドに属する対象体の移動方向を計算する。被災対応システム1は、先行事例10から、候補事例に対応する対象体の位置データを参照して、対象データの移動方向を演算する。 The disaster response system 1 divides the application area 102 of each candidate case into a plurality of grids 300 in the same manner as the application target 100, and calculates the movement direction of the target object belonging to each grid. The disaster response system 1 calculates the moving direction of the target data by referring to the position data of the target object corresponding to the candidate case from the preceding case 10.
 被災対応システム1は、適用対象100の適用エリア102のグリッド300と各候補事例のグリッド300とを、同じ位置に存在するグリッド毎で比較し、グリッド毎に対象体の態様(対象体の移動方向)が一致するか、又は、類似するかを判定して、全てのグリッドを考慮に入れて、対象体の移動方向が最も近い最適事例を決定する。 The disaster response system 1 compares the grid 300 of the application area 102 of the application target 100 with the grid 300 of each candidate case for each grid existing at the same position, and the mode of the target object (the moving direction of the target object) for each grid. ) Match or are similar, and all grids are taken into consideration and the best case with the closest moving direction of the object is determined.
 図3に従えば、被災対応システム1は、候補事例2を最適事例として決定する。候補事例1、3-6では、一つ又は複数のグリッドにおいて、対象体の移動方向108は、適用対象100における対象体の移動方向と相違する。被災対応システム1は、地点106において被災情報を取得できなかったが、候補事例2によって、地点106に被災が実際には発生していたか、あるいはその可能性が高いことが判る。したがって、被災対応システム1は被災情報が不足していても、実際の被災状況に適合する事例を検索することができる。 3. According to FIG. 3, the disaster response system 1 determines the candidate case 2 as the optimum case. In candidate cases 1 and 3-6, the moving direction 108 of the target object is different from the moving direction of the target object in the application target 100 in one or a plurality of grids. Although the disaster response system 1 could not acquire the disaster information at the point 106, it can be understood from the candidate case 2 that the disaster actually occurred at the point 106 or that the possibility is high. Therefore, the disaster response system 1 can search for cases that match the actual disaster situation even if the disaster information is insufficient.
 次に、図4にしたがって、被災対応システム1のハードウェア構成を説明する。被災対応システム1は、中央計算機400と、中央計算機400にネットワーク装置406を介して接続する周辺システム404と、中央計算機400に接続するストレージ装置402とを備える。中央計算機400は、被災対応のための関連処理(400A~400C)を実行する。 Next, the hardware configuration of the disaster response system 1 will be described with reference to FIG. The disaster response system 1 includes a central computer 400, a peripheral system 404 connected to the central computer 400 via a network device 406, and a storage device 402 connected to the central computer 400. The central computer 400 executes related processing (400A to 400C) for disaster response.
 中央計算機400は、関連処理を行うために必要な、周知のハードウェア(ハードディスク装置、メインメモリ、CPU等)を備える。ハードディスク装置(非一時的記憶媒体)には関連処理を行うためのアプリケーションプログラムやデータが記録され、CPU401はアプリケーションプログラムを実行することにより、既述の関連処理を実現する。メインメモリには、ワークエリアが構成される。さらに、中央計算機400にはLAN410を経由して管理計算機408が接続されている。管理計算機408は、中央計算機400に、被災対応のための処理を実行させるための命令を送信する等所定の管理処理を適用する。 The central computer 400 includes well-known hardware (hard disk device, main memory, CPU, etc.) necessary for performing related processing. Application programs and data for performing related processing are recorded in the hard disk device (non-temporary storage medium), and the CPU 401 implements the related processing described above by executing the application program. A work area is configured in the main memory. Further, a management computer 408 is connected to the central computer 400 via the LAN 410. The management computer 408 applies predetermined management processing such as transmitting a command for causing the central computer 400 to execute processing for disaster response.
 ストレージ装置402は、既述のRDBMS12を搭載している。RDBMS12には、パラメータファイル402A、事例データベース402B、そして、位置データベース402Cが格納されている。事例データベース402Bは、被災発生の位置情報と、位置情報に対応する被災情報とが時系列に記憶されたデータテーブルから構成される。従って、事例データベース402Bによって、被災状況の推移のシナリオ、例えば、延焼のシナリオが実現される。事例データベース402Bの詳細は後述される。 The storage device 402 is equipped with the RDBMS 12 described above. The RDBMS 12 stores a parameter file 402A, a case database 402B, and a location database 402C. The case database 402B includes a data table in which the position information on the occurrence of the disaster and the damage information corresponding to the position information are stored in time series. Accordingly, the scenario database 402B realizes a scenario of transition of the disaster situation, for example, a scenario of fire spread. Details of the case database 402B will be described later.
 位置データベース402Cは、被災の推移に影響を受ける対象体の位置データがテーブルの形式で記録する。対象体の位置データは、被災箇所から避難している、あるいは、避難しようとしている対象体の位置の時系列情報を含む。位置データベース402Cの詳細は後述される。 The position database 402C records the position data of the target affected by the transition of the disaster in the form of a table. The position data of the target object includes time-series information of the position of the target object evacuating from or trying to evacuate. Details of the position database 402C will be described later.
 パラメータファイル402Aは、複数のパラメータが定義ファイルの形式で保存されたものである。パラメータは、取得された被災情報に基づいて最適な事例を決定する処理に必要な制御情報である。パラメータの詳細についても後述される。 The parameter file 402A is a file in which a plurality of parameters are stored in a definition file format. The parameter is control information necessary for processing for determining an optimum case based on the acquired disaster information. Details of the parameters will also be described later.
 ネットワーク装置406は通信網412を介して、周辺システム404としての、消防署のサーバ420、通信キャリアのサーバ440、テレマティクスサービス用サーバ446に接続する。したがって、中央計算機400はネットワーク装置406を介して、これらサーバと通信する。 The network device 406 is connected to the fire station server 420, the communication carrier server 440, and the telematics service server 446 as the peripheral system 404 via the communication network 412. Therefore, the central computer 400 communicates with these servers via the network device 406.
 消防署のサーバ420には消防署のオペレータ422が被災情報を記録する。消防署は災害情報を、警備会社414、自治体430、及び、119番通報425によって取得する。火災報知器、監視カメラ等の情報416は警備会社に、交差点等の公共場所の監視カメラの情報424は、警察等自治体に供給される。 The fire station operator 422 records disaster information on the fire station server 420. The fire department acquires disaster information through the security company 414, the local government 430, and the 119 call 425. Information 416 such as a fire alarm and a monitoring camera is supplied to a security company, and information 424 of a monitoring camera in a public place such as an intersection is supplied to a local government such as a police.
 さらに、スマートフォン等の移動携帯端末442の位置情報は、基地局444を介して通信キャリアのサーバ440に供給される。さらにまた、カーナビ448の位置情報はテレマティクスサービス用サーバ446に供給される。中央計算機400は、通信キャリアサーバ440から人の位置情報20を、テレマティクスサービス用サーバ446から車の位置情報20を、消防署サーバ420を介して被災情報14を夫々得ることができる。中央計算機400は、被災情報14、人や車の情報20を、継続的にストレージ装置402、又は、内蔵ハードディスク装置に累積記憶する。 Further, the location information of the mobile portable terminal 442 such as a smartphone is supplied to the communication carrier server 440 via the base station 444. Furthermore, the position information of the car navigation system 448 is supplied to the telematics service server 446. The central computer 400 can obtain the person position information 20 from the communication carrier server 440, the car position information 20 from the telematics service server 446, and the disaster information 14 via the fire department server 420, respectively. The central computer 400 continuously stores the disaster information 14 and the person / vehicle information 20 in the storage device 402 or the built-in hard disk device.
 既述の事例データベース402Bのデータテーブルは、例えば、図5に示すように構成されている。このテーブルには、例えば、シミュレーションや過去事例分析によって、決定、又は、算出等された、火災の場所、規模等の被災データが格納される。被災のデータは、所定の時間範囲(Time_min, Time_max)と所定の地理区画(X_min, X_max, Y_min, Y_max)毎の被災状態(Status)とを含む。Case_ID毎にテーブルの一行に被災データが格納されている。 The data table of the case database 402B described above is configured as shown in FIG. 5, for example. This table stores disaster data such as the location and scale of fire determined or calculated by simulation or past case analysis, for example. The disaster data includes a predetermined time range (Time_min, Time_max) and a disaster state (Status) for each predetermined geographical section (X_min, X_max, Y_min, Y_max). Damage data is stored in one row of the table for each Case_ID.
 Case_IDは、シミュレーションや過去事例の分析結果毎に付与される固有の識別子であり、同じIDに基づくテーブルの行の情報が1つのシミュレーション又は過去事例の分析結果を示す。延焼のシミュレーションの手法として、例えば、特開2007-164625号公報、特開平8-249313号公報に記載されたものが知られている。 [Case_ID] is a unique identifier assigned to each simulation or past case analysis result. The row information of the table based on the same ID indicates the analysis result of one simulation or past case. For example, methods disclosed in Japanese Patent Application Laid-Open No. 2007-164625 and Japanese Patent Application Laid-Open No. 8-249313 are known as methods for simulating fire spread.
 被災状態は、所定の時間範囲と所定の地理区画毎で、例えば、被災規模、被災種類等の被災の特徴に基づいて決定される。被災状態は、例えば、0:出火前、1:開口部からのみ火炎が噴出、2:開口部および屋根か炎が噴出、3:区画全体が一体の火炎となって燃焼、4:鎮火に分類される。 The disaster state is determined based on the characteristics of the disaster, such as the scale of the disaster and the type of damage, for each predetermined time range and each predetermined geographical section. Damaged states are, for example, 0: before fire, 1: flames are ejected only from openings, 2: openings and roofs or flames are ejected, 3: the entire compartment is burned as an integral flame, and 4: fire extinguishing is classified. Is done.
 既述の位置データベース402Cは、対象体の位置情報を格納するテーブル(図6)として構成されている。位置データテーブルには、事例データベースに基づいて、例えば、対象体の避難シミュレーション、又は、実事例での対象体の挙動分析の結果算出された、対象体の位置データが格納されている。位置データは、特定の人、又は、車(Object_ID)がある時刻(Time)に存在した座標(X, Y)として、テーブルの一行に格納されている。Obeject_IDは、対象体の識別子である。避難シミュレーションの手法として、例えば、特開平5-40887号公報、そして、特開2006-163837号公報に記載されたものが知られている。 The above-described position database 402C is configured as a table (FIG. 6) that stores position information of the object. In the position data table, for example, position data of the target object calculated as a result of evacuation simulation of the target object or behavior analysis of the target object in the actual case is stored based on the case database. The position data is stored in one row of the table as coordinates (X, Y) existing at a certain time (Time) with a specific person or car (Object_ID). Obeject_ID is an identifier of the object. As an evacuation simulation method, for example, those described in Japanese Patent Application Laid-Open Nos. 5-40887 and 2006-163837 are known.
 次に、パラメータファイル402Aについて説明する。パラメータとして複数の種類があり、第1のパラメータは、被災情報を取得して、被災の拡大等の推移を見極めようとする適用エリアを定義するためのパラメータである。このパラメータは、適用エリアの始点X座標、始点Y座標、終点X座標、終点Y座標から構成される。 Next, the parameter file 402A will be described. There are a plurality of types of parameters, and the first parameter is a parameter for acquiring the disaster information and defining an application area where it is desired to determine a transition such as the expansion of the disaster. This parameter includes the start point X coordinate, start point Y coordinate, end point X coordinate, and end point Y coordinate of the application area.
 第2のパラメータは、既述のグリッド300のサイズである。グリッドのサイズはグリッドの縦横の長さによって規定される。グリッドのサイズは管理者によって適宜設定されてもよい。管理者は、道幅、交差点の位置等を勘案してグリッドサイズを決めることができる。例えば、グリッドのサイズが小さければ、対象体の状態の検索精度は向上されるが、一方でグリッド数が多くなるために検索に時間が掛かるため、検索精度と検索時間との関係から、グリッドのサイズは適宜決定されてよい。 The second parameter is the size of the grid 300 described above. The size of the grid is defined by the length of the grid. The size of the grid may be set as appropriate by the administrator. The administrator can determine the grid size in consideration of the road width, the position of the intersection, and the like. For example, if the size of the grid is small, the search accuracy of the object state is improved, but on the other hand, the search takes time due to the increase in the number of grids. The size may be determined as appropriate.
 第3のパラメータは、グリッドの特徴を規定するパラメータであり、特に、対象体の特徴を規定するパラメータである。対象体の特徴とは、既述のとおり、例えば、対象体の平均移動方向(ベクトル)、対象体の数、又は、対象体の平均移動速度である。第3のパラメータを管理者が自由に定義することもできる。 The third parameter is a parameter that defines the characteristics of the grid, and in particular, a parameter that defines the characteristics of the object. As described above, the feature of the target object is, for example, the average moving direction (vector) of the target object, the number of target objects, or the average moving speed of the target object. The administrator can also freely define the third parameter.
 第4のパラメータは、グリッドの特徴を算出する時間範囲を規定するパラメータであり、第5のパラメータは、適用対象100と候補事例との類似度の算出方法を規定するパラメータである。例えば、コサイン類似度(ベクトルの向きの類似性を表す指標)(特開2015-139454号公報段落0024を参照されたい。)、及び、偏差平方和(数値のばらつきの大きさを表す指標)(特開平10-244892号公報段落0034,0035を参照されたい。)がある。第4のパラメータ、第5のパラメータを管理者が自由に定義することもできる。 The fourth parameter is a parameter that defines a time range for calculating the characteristics of the grid, and the fifth parameter is a parameter that defines a method for calculating the similarity between the application target 100 and the candidate case. For example, cosine similarity (an index indicating similarity in vector direction) (see paragraph 0024 of JP-A-2015-139454) and deviation sum of squares (an index indicating the magnitude of variation in numerical values) ( (See paragraphs 0034 and 0035 of JP-A-10-244892). The administrator can also freely define the fourth parameter and the fifth parameter.
 次に、被災対応システムの動作について説明する。中央計算機400のコントローラ401は、既述のとおり、被災対応処理として、パラメータ管理400A、事例検索制御400B、そして、類似度算出制御400Cの各処理を実行する。図7は、中央計算機400のコントローラ401の被災対応処理を示すフローチャートである。 Next, the operation of the disaster response system will be described. As described above, the controller 401 of the central computer 400 executes each process of the parameter management 400A, the case search control 400B, and the similarity calculation control 400C as the disaster response process. FIG. 7 is a flowchart showing the disaster response processing of the controller 401 of the central computer 400.
 管理計算機408が消防署サーバ420から被災情報、例えば、地震発生後の火災の発生を受信すると、コントローラ401は被災対応処理を開始する。コントローラ401は、最初に、パラメータ管理400Aを実行する。コントローラ401は、ストレージ装置402からパラメータファイル402Aを受信して(S1100)、パラメータリストを管理計算機408に提供する。管理者はパラメータリストに従って、複数のパラメータに対して、所定値を入力する。コントローラは、管理計算機408から入力情報を取得して、ワークエリアにパラメータの設定情報を記録する(S1102)。 When the management computer 408 receives the disaster information from the fire department server 420, for example, the occurrence of a fire after the occurrence of the earthquake, the controller 401 starts the disaster response processing. The controller 401 first executes parameter management 400A. The controller 401 receives the parameter file 402A from the storage device 402 (S1100), and provides the parameter list to the management computer 408. The administrator inputs predetermined values for a plurality of parameters according to the parameter list. The controller acquires input information from the management computer 408 and records parameter setting information in the work area (S1102).
 次に、コントローラ401は、事例検索制御400Bを実行する。コントローラ401は、サーバ420から被災情報を受信して(S1104)、適用エリア102の被災情報を継続的に記憶する。さらに、コントローラ401は、サーバ440とサーバ446から対象体の位置情報を受信して、適用エリアでの対象体の位置情報を継続的に記憶する。 Next, the controller 401 executes the case search control 400B. The controller 401 receives the disaster information from the server 420 (S1104), and continuously stores the disaster information of the application area 102. Further, the controller 401 receives the position information of the target object from the server 440 and the server 446, and continuously stores the position information of the target object in the application area.
 コントローラ401は、ワークエリアから、設定されたパラメータとしての適用エリア102の設定情報とグリッド300の設定情報とを読み込み、さらに、被災情報も読み込んで、ビットマップ制御情報(図8)を計算する(S1106)。図8において、符号700はグリッド300に対応するビット領域である。図8は、グレー色が付されたビット領域に被災情報(例えば、火災発生)が設定されていることを示している。図8に示すビットマップ制御情報によれば、ビット(1,2)とビット(2,3)に火災の発生フラグが設定されている。コントローラ401は作成したビットマップ制御情報をワークエリアに格納する。 The controller 401 reads the setting information of the application area 102 and the setting information of the grid 300 as set parameters from the work area, and further reads the disaster information to calculate the bitmap control information (FIG. 8) ( S1106). In FIG. 8, reference numeral 700 denotes a bit area corresponding to the grid 300. FIG. 8 shows that disaster information (for example, a fire occurrence) is set in a bit area with a gray color. According to the bitmap control information shown in FIG. 8, a fire occurrence flag is set in bits (1, 2) and bits (2, 3). The controller 401 stores the created bitmap control information in the work area.
 そして、コントローラ401は、事例データベース402Bを参照して、適用エリア102に対応するビットマップ制御情報を計算する(S1108)。コントローラ401は、被災状態:Status(図5)を参照することによって、グリッド(ビット領域)毎での被災の有無を決めることができる。被災対応システム1は、被災状態が1から3を被災発生と判定すればよい。コントローラ401は作成したビットマップ制御情報をワークエリアに格納する。 Then, the controller 401 refers to the case database 402B and calculates bitmap control information corresponding to the application area 102 (S1108). The controller 401 can determine the presence or absence of a disaster for each grid (bit area) by referring to the disaster status: Status (FIG. 5). The disaster response system 1 may determine that the damage state is 1 to 3 as a disaster occurrence. The controller 401 stores the created bitmap control information in the work area.
 コントローラ401は、ワークエリアに格納されたビットマップ制御情報を参照して、実際の被災状況に基づいて作成されたビットマップ制御情報(図8)と、事例データベース402Bに基づいて作成されたビットマップ制御情報とを比較し、後者の複数のビットマップ制御情報のうち、前者のビットマップ制御情報と同一のビット領域に被災が記録されているビットマップ制御情報を、既述の候補事例として抽出し(S1110)、これをワークエリアに記録する。図9は複数の候補事例のビットマップ制御情報を示したものである。 The controller 401 refers to the bitmap control information stored in the work area, the bitmap control information (FIG. 8) created based on the actual disaster situation, and the bitmap created based on the case database 402B. Compared with the control information, out of the plurality of bitmap control information, the bitmap control information in which the damage is recorded in the same bit area as the former bitmap control information is extracted as the candidate case described above. (S1110), this is recorded in the work area. FIG. 9 shows bitmap control information of a plurality of candidate cases.
 次に、コントローラ401は、候補事例の中から被災状況に合致した最適な事例を選択するために、類似度算出制御を実行する。コントローラ401は、ワークエリアから、第3のパラメータ、第4のパラメータ、そして、第5のパラメータを読み込んで、被災状況に対応するビットマップ制御情報(図8)に対する複数の候補事例のビットマップ制御情報(図9)夫々の類似度を算出するために、類似度算出条件を決定する(S1112)。類似度が高い候補事例ほど、被災状況の実態に適合している。コントローラ401は、類似度を算出するための条件として、例えば、夫々のグリッドにおける対象体の移動方向(グリッド特徴値)を採用する。 Next, the controller 401 executes similarity calculation control in order to select an optimal case that matches the disaster situation from the candidate cases. The controller 401 reads the third parameter, the fourth parameter, and the fifth parameter from the work area, and performs bitmap control of a plurality of candidate cases for the bitmap control information (FIG. 8) corresponding to the disaster situation. In order to calculate each information (FIG. 9) similarity, similarity calculation conditions are determined (S1112). Candidate examples with a higher degree of similarity are more suitable for the actual situation of the disaster. The controller 401 employs, for example, the moving direction (grid feature value) of the object in each grid as a condition for calculating the similarity.
 コントローラ401は、続けて、被災状況に対応するビットマップ制御情報(図8)と候補事例に対応するビットマップ制御情報(図9)の夫々について、各ビット領域に対応するグリッドの特徴値を算出する(S1114)。特徴値は、グリッドに属する複数の対象体の移動方向を平均することによって算出すればよい。コントローラ401は、対象体の位置と第4のパラメータによって定まる時間範囲とから、対象体の移動方向を算出することができる。 Subsequently, the controller 401 calculates the feature value of the grid corresponding to each bit area for each of the bitmap control information corresponding to the disaster situation (FIG. 8) and the bitmap control information corresponding to the candidate case (FIG. 9). (S1114). The feature value may be calculated by averaging the moving directions of a plurality of objects belonging to the grid. The controller 401 can calculate the moving direction of the target object from the position of the target object and the time range determined by the fourth parameter.
 コントローラ401は、ビットマップ制御情報の各ビット領域に、グリッド特徴である、対象体の移動方向を設定する。図10は、夫々のビット領域にベクトル710が設定された、被災状況に対応するビットマップ制御情報を示す。図11は、夫々のビット領域にベクトル710が設定された、候補事例に対応するビットマップ制御情報を示す。 The controller 401 sets the moving direction of the target object, which is a grid feature, in each bit area of the bitmap control information. FIG. 10 shows bitmap control information corresponding to a disaster situation in which a vector 710 is set in each bit area. FIG. 11 shows bitmap control information corresponding to a candidate case in which a vector 710 is set in each bit area.
 次いで、コントローラ401は、被災状況に対応するビットマップ制御情報(図10)と候補事例に対応するビットマップ制御情報(図11)について、互いに対応するビット領域毎に特徴値を比較して、第5のパラメータで設定した手法に基づいて類似度を算出する(S1116)。 Next, the controller 401 compares the feature value for each bit area corresponding to the bitmap control information corresponding to the disaster situation (FIG. 10) and the bitmap control information corresponding to the candidate case (FIG. 11). The similarity is calculated based on the method set by the parameter 5 (S1116).
 コントローラ401は、ビットマップ制御情報の全ビット領域の類似度を加算して合計類似度を算出することを、複数の候補事例全てに適用する(S1118)。次いで、コントローラ401は、複数の候補事例の合計類似度を降順にソートして、最も合計類似度が高い候補事例を被災状況の実態に最も適合する最適事例として決定する。図11によれば、コントローラ401は候補事例2を最適事例として決定する(S1120)。 The controller 401 applies the calculation of the total similarity by adding the similarities of all the bit areas of the bitmap control information to all the plurality of candidate cases (S1118). Next, the controller 401 sorts the total similarity of the plurality of candidate cases in descending order, and determines the candidate case having the highest total similarity as the optimum case that best matches the actual situation of the disaster situation. According to FIG. 11, the controller 401 determines the candidate case 2 as the optimum case (S1120).
 次いで、コントローラ401は最適事例のケースIDと同一なIDを持つデータ群を事例データベース402Bから抽出する。抽出データ群は、被災状況の展開シナリオに対応する。コントローラ401は、抽出データ群から被災状況展開予測データファイルを構成し(S1122)、これを、サーバ420,440,446に送信する。 Next, the controller 401 extracts a data group having the same ID as the case ID of the optimum case from the case database 402B. The extracted data group corresponds to the deployment scenario of the disaster situation. The controller 401 configures a disaster situation development prediction data file from the extracted data group (S1122), and transmits it to the servers 420, 440, and 446.
 これらのサーバに接続するクライアント計算機が被災状況展開予測データファイルを再生することによって、クライアント計算機は適用エリア102の被災状況を管理者に表示することができる。図12は、クライアント計算機130に表示された適用エリア102の表示例132であり、現在の被災状況(延焼箇所)が示されている。管理者が検索開始ボタン134を操作すると、クライアント計算機は、被災状況展開予測データファイルに基づいて、被災状況の進展(延焼シミュレーション)を表示する。 When the client computer connected to these servers reproduces the disaster situation development prediction data file, the client computer can display the disaster situation in the application area 102 to the administrator. FIG. 12 is a display example 132 of the application area 102 displayed on the client computer 130, and shows the current disaster situation (fire spread location). When the administrator operates the search start button 134, the client computer displays the progress of the disaster situation (fire spread simulation) based on the disaster situation development prediction data file.
 図13に示すように、複数の検索ボタン140を設け、管理者が、検索ボタンを代えて操作することにより、クライアント計算機は、延焼箇所の表示(実際に火災が確認された箇所と火災の発生が推定された箇所とを区別して表示することも可能)、延焼シミュレーションの表示、対象体の表示(対象体の密度)、又は、対象体の移動方向の表示を切り替えたり、これらを重ねて表示することができる。 As shown in FIG. 13, a plurality of search buttons 140 are provided, and the administrator operates the search buttons in place of each other, so that the client computer displays the fire spread location (the location where the fire was actually confirmed and the occurrence of the fire) It is also possible to display it separately from the estimated location), display of fire spread simulation, display of the object (density of the object), or display of the moving direction of the object, or overlay these can do.
 中央計算機400、又は、サーバ420,440,446は、被災状況展開予測データファイルと対象体の避難シミュレーションプログラムとに基づいて対象体が避難すべき方向を演算し、演算結果をクライアント計算機に送信して、クライアント計算機に、対象体の避難方向を表示させることができる。 The central computer 400 or the servers 420, 440, and 446 calculates the direction in which the object should evacuate based on the disaster situation development prediction data file and the object evacuation simulation program, and transmits the calculation result to the client computer. Thus, the evacuation direction of the object can be displayed on the client computer.
 中央計算機400は、既述のフローチャートを所定時間毎繰り返し実行することにより、現在の被災状況に応じた最適事例を所定時間毎に更新できるようにして、最新の最適事例に基づいた被災対応シミュレーションをクライアント装置に継続的に展開させることができる。 The central computer 400 repeatedly executes the above-described flowchart every predetermined time so that the optimum case corresponding to the current disaster situation can be updated every predetermined time, and the disaster response simulation based on the latest optimum case is performed. The client device can be continuously deployed.
 グリッドの特徴値は、対象体の移動方向等対象体の動作態様の値に限られるものではない。例えば、「被災していない」ことも、広い意味で、被災による影響であるので、グリッドの特徴値として採用されてもよい。図14は、非被災情報が設定されたビットマップ制御情報である。実際に被災が生じていないことが確認されたグリッドに対応するビット領域120に、非被災フラグ(グレーの色彩で示す。)が設定されている。 The feature value of the grid is not limited to the value of the movement mode of the target object such as the moving direction of the target object. For example, “not damaged” is also an influence of the disaster in a broad sense, and may be adopted as a characteristic value of the grid. FIG. 14 shows bitmap control information in which non-disaster information is set. A non-damaged flag (shown in gray color) is set in the bit area 120 corresponding to the grid where it has been confirmed that no damage has actually occurred.
 コントローラ401は、被災情報104が設定されているビット領域に基づいて、候補事例を抽出すると、候補事例として図15に示すものが抽出される。候補事例のうち、実際の被災状況に対応するビットマップ制御情報のビット領域120に対応するビット領域に非被災フラグ(グレーの色彩で示す。)が設定されているのが、候補事例1,2,4であるので、これら候補事例が、現在の被災状態に適合する事例として決定される。 When the controller 401 extracts candidate cases based on the bit area in which the disaster information 104 is set, the candidate cases shown in FIG. 15 are extracted. Among the candidate cases, the non-disaster flag (shown in gray) is set in the bit area corresponding to the bit area 120 of the bitmap control information corresponding to the actual disaster situation. , 4, these candidate cases are determined as cases that match the current disaster state.
 コントローラ401は、候補事例の各ビット領域に対応するグリッドでの対象体の移動速度を演算し、移動速度が所定値(例えば、人の歩行速度)以下で移動している場合には、対象体の移動に緊急性はなく、グリッドに被災がないと判定することができる。対象体が複数ある場合には、コントローラ401は、対象体の移動速度の平均値が所定値以下であれば、グリッドに被災がないと判定すればよい。 The controller 401 calculates the moving speed of the target object in the grid corresponding to each bit area of the candidate case, and when the moving speed is moving below a predetermined value (for example, the walking speed of a person), the target object It can be determined that there is no urgency in the movement of the grid and that there is no damage to the grid. When there are a plurality of objects, the controller 401 may determine that the grid is not damaged if the average value of the moving speeds of the objects is equal to or less than a predetermined value.
 コントローラ401は、キャリアサーバ440からの情報に基づいて、グリッドに属する移動携帯端末にメール送信、ツイッター等のSNS送信の記録があれば、移動携帯端末が使用される余裕があり、このグリッドに人が急いで避難するような差し迫った事態はないとして、このグリッドに対応するビット領域に非被災フラグを設定する。 Based on the information from the carrier server 440, the controller 401 can afford to use the mobile portable terminal if there is a record of SNS transmission such as mail transmission and Twitter on the mobile portable terminal belonging to the grid. Since there is no urgent need to evacuate, a non-damaged flag is set in the bit area corresponding to this grid.
 被災対応システムは、非被災情報を、事例の類似度の計算に、参照するようにしてもよい。図15に示す候補事例3,5,6では、実際の被災状況に対応するビットマップ制御情報において、非被災情報が設定されているビット領域120に、被災情報104が設定されている。コントローラ401は、非被災ビット領域120に設定されている被災情報104の有無、その数等に応じて、候補事例3,5,6の類似度を減点して、合計類似度を調整する。その結果、被災対応システム1は、対象体のデータに非被災情報も加えて候補事例と現在の被災状況との類似を判断できるため、被災情報が少ない場合でも、適合事例を検索する際の精度を向上することができる。 The disaster response system may refer to the non-disaster information in calculating the similarity of cases. In candidate cases 3, 5, and 6 shown in FIG. 15, in the bitmap control information corresponding to the actual disaster situation, the disaster information 104 is set in the bit area 120 in which the non-damage information is set. The controller 401 adjusts the total similarity by deducting the similarity of the candidate cases 3, 5, and 6 in accordance with the presence / absence of the disaster information 104 set in the non-damaged bit area 120, the number thereof, and the like. As a result, the disaster response system 1 can determine the similarity between the candidate case and the current damage situation by adding non-damage information to the data of the target object. Can be improved.
 既述の実施形態では、情報処理システムを被災対応システムとして説明したが、情報処理システムを交通事故対応システムとして実現することもできる。データベース10に、過去の交通事故履歴(日時、発生箇所、規模等)が格納されている。交通事故対応システムは、カーナビから取得した車の走行情報(日時、位置等)をストレージ装置402に記憶している。交通事故事例対応システムは、事故が発生したら、発生箇所や規模等でデータベースを検索する。得られた複数事例から、事故発生時の周辺状況(車の数)が類似している事例を選択する。交通事故対応システムによれば、事故当時の車の周辺状況によって、その後の渋滞や二次災害の発生箇所が変化するのに合わせて、事故状況に適合する事例を取得することができる。 In the above-described embodiment, the information processing system has been described as a disaster response system, but the information processing system can also be realized as a traffic accident response system. The database 10 stores past traffic accident history (date and time, location of occurrence, scale, etc.). The traffic accident response system stores vehicle travel information (date and time, position, etc.) acquired from the car navigation system in the storage device 402. When an accident occurs, the traffic accident case response system searches a database by occurrence location, scale, and the like. From the obtained multiple cases, a case where the surrounding situation (number of cars) at the time of the accident is similar is selected. According to the traffic accident response system, it is possible to acquire a case suitable for the accident situation as the subsequent traffic congestion or the location of the secondary disaster changes depending on the surrounding situation of the vehicle at the time of the accident.
 さらにまた、情報処理システムを避難対応システムとして実現することもできる。データベース10に、ショッピングモール等で行われた、過去の避難訓練履歴(日時、想定災害箇所等)が格納されている。避難対応システムは、移動端末等から取得した人の位置情報(日時、位置等)をストレージ装置402に記憶している。避難対応システムは、発生箇所が不明な何らかの災害を検知したら、過去の避難訓練履歴の日時を全て取得し、得られた日時で、人の位置情報を検索し、人の移動方向の中で、災害発生時の周辺状況(移動方向)と類似している避難訓練事例の想定災害箇所を取得する。避難対応システムによれば、火災のように火災報知器で発生箇所が判定できる災害だけでなく、発生箇所が取得できない災害が発生した場合でも、被災箇所に見当を付けることができる。 Furthermore, the information processing system can be realized as an evacuation response system. The database 10 stores past evacuation training history (date and time, assumed disaster location, etc.) conducted at a shopping mall or the like. The evacuation response system stores the location information (date and time, location, etc.) of a person acquired from a mobile terminal or the like in the storage device 402. When the evacuation system detects any disaster where the occurrence location is unknown, it acquires all the dates and times of past evacuation training history, searches the person's location information at the obtained date and time, in the direction of movement of the person, Acquire the assumed disaster location of an evacuation drill example similar to the surrounding situation (movement direction) at the time of the disaster. According to the evacuation response system, not only a disaster that can be determined by a fire alarm, such as a fire, but also a disaster that cannot be acquired can be registered.
 さらにまた、情報処理システムを、新規出店時の売上予想等の営業支援対応システムとして、実現することもできる。データベース10に、過去の出店履歴(日時、場所、店舗形態、店舗規模、店舗の売上)が格納されている。営業支援対応システムは、携帯端末から取得した人の位置情報(日時、位置等)をストレージ装置402に記憶している。営業支援対応システムは、出店計画中の店舗形態や規模を基に、データベースを検索し、得られた複数事例の日時で、人の位置情報を検索し、該当日時での人の数の中で、出店計画場所の周辺状況(人の数)と類似している出店事例を取得する。営業支援対応システムによれば、店舗形態や規模だけでなく、人の周辺状況によって売上は変わるため、より参考になる事例を取得することができる。 Furthermore, the information processing system can be realized as a sales support system for forecasting sales when opening a new store. The database 10 stores past store opening history (date and time, location, store form, store size, store sales). The sales support system stores the location information (date and time, location, etc.) of the person acquired from the mobile terminal in the storage device 402. The sales support system searches the database based on the store form and scale being planned for opening a store, searches for the location information of people at the date and time of multiple cases, and out of the number of people at that date and time. , A store opening example similar to the surrounding situation (number of people) of the store opening planned place is acquired. According to the sales support system, sales vary depending not only on the store form and scale, but also on the surrounding situation of the person, so it is possible to obtain more useful examples.
 以上、本発明の情報システムについて説明してきたが、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記憶媒体に置くことができる。 Although the information system of the present invention has been described above, each of the above-described configurations, functions, processing units, processing means, and the like are realized by hardware by designing some or all of them, for example, with an integrated circuit Also good. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a storage device such as a memory, a hard disk, and SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, and a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実施には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all components are connected to each other.
 本発明は、情報処理システムであって、例えば、地震等の災害時での火災の発生状況を正確に把握して、延焼からの避難や救護活動に有用な情報を提供できるシステムに適用されて好適なものである。 The present invention is an information processing system, for example, applied to a system capable of accurately grasping the occurrence of a fire at the time of a disaster such as an earthquake and providing information useful for evacuation and relief activities from a fire spread. Is preferred.
 1   情報処理
 10  先行事例
 12  先行事例を格納するデータベース(RDBMS)
 14  被災情報
 16  対象体の情報
 400 中央計算機
 401 コントローラ
 402 ストレージ装置 
DESCRIPTION OF SYMBOLS 1 Information processing 10 Prior example 12 Database (RDBMS) which stores previous example
14 Damage Information 16 Object Information 400 Central Computer 401 Controller 402 Storage Device

Claims (13)

  1.  所定の地域範囲に発生する事象を複数の事例に基づいて判定する情報処理システムであって、
     情報処理を実行するコントローラと、
     前記複数の事例を記憶する記憶装置と、を備え、
     前記コントローラは、
     前記所定の地域範囲を複数の領域に分割し、
     前記複数の領域のうち、事象が発生している領域を決定し、
     前記複数の領域の夫々において前記事象による影響を演算し、
     前記決定された領域と前記演算された影響とに基づいて、前記記憶装置に記憶された前記複数の事例のうち前記所定の地域の状態に適合する事例を決定する
     情報処理システム。
    An information processing system for determining an event occurring in a predetermined area range based on a plurality of cases,
    A controller that executes information processing;
    A storage device for storing the plurality of cases,
    The controller is
    Dividing the predetermined area range into a plurality of areas;
    Of the plurality of regions, determine a region where an event occurs,
    Calculating the effect of the event in each of the plurality of regions;
    An information processing system that determines a case that matches a state of the predetermined region among the plurality of cases stored in the storage device based on the determined area and the calculated influence.
  2.  前記事例は、前記所定の地域範囲に発生する事象の展開のシナリオを有し、
     前記シナリオは、前記事象の位置と発生時刻とを有する、
     請求項1記載の情報処理システム。
    The case has a scenario of deployment of events occurring in the predetermined area range,
    The scenario has a position and an occurrence time of the event,
    The information processing system according to claim 1.
  3.  前記コントローラが前記所定の地域範囲を複数の領域に分割することは、前記所定の地域範囲を夫々等しい複数の区画に分割することを含み、
     前記コントローラが、前記事象が発生していることを決定することは、測定に基づくこと、又は、通報に基づくことを含み、
     請求項1記載の情報処理システム。
    The controller dividing the predetermined area range into a plurality of areas includes dividing the predetermined area range into a plurality of equal sections, respectively.
    The controller determining that the event is occurring includes based on a measurement or based on a notification;
    The information processing system according to claim 1.
  4.  前記コントローラが、前記複数の領域の夫々において前記事象による影響を演算することは、前記複数の区画の夫々について、前記事象から影響を受ける追加情報に基づくことを含む、
     請求項3記載の情報処理システム。
    The controller calculating the influence of the event in each of the plurality of regions includes, based on additional information affected by the event, for each of the plurality of partitions.
    The information processing system according to claim 3.
  5.  前記コントローラが、前記決定された領域と前記演算された影響とに基づいて、前記記憶装置に記憶された前記複数の事例のうち前記所定の地域の状態に適合する事例を決定することは、
     前記複数の区画に対する前記事象の発生の有無に基づいて、前記複数の事例の中から、複数の候補事例を選択することと、
     前記複数の区画に対する前記演算された影響に基づいて、前記複数の候補事例の中から前記適合する事例を決定すること、
     を含む、
     請求項4記載の情報処理システム。
    Based on the determined area and the calculated influence, the controller determines a case that matches the state of the predetermined area among the plurality of cases stored in the storage device.
    Selecting a plurality of candidate cases from the plurality of cases based on the occurrence of the event for the plurality of sections;
    Determining the matching case from the plurality of candidate cases based on the computed influence on the plurality of partitions;
    including,
    The information processing system according to claim 4.
  6.  前記事象は、前記複数の区画の夫々に存在可能な対象体の動作態様に影響を与える現象を含み、
     前記コントローラは、前記複数の区画夫々の前記対象体の動作態様から、当該対象体の動作特性を演算し、当該動作特性を前記追加情報として、前記複数の区画夫々において前記事象による影響を演算する、
     請求項4記載の情報処理システム。
    The event includes a phenomenon that affects an operation mode of an object that can exist in each of the plurality of sections,
    The controller calculates the operation characteristic of the target object from the operation mode of the target object in each of the plurality of sections, and calculates the influence of the event in each of the plurality of sections using the operation characteristic as the additional information. To
    The information processing system according to claim 4.
  7.  前記コントローラは、前記複数の区画夫々の前記対象体の動作データを取得し、当該取得した動作データから前記対象体の動作特性を演算し、
     前記事例は、前記複数の区画の夫々について、前記対象体のデータを記憶しており、
     前記コントローラは、前記複数の区画夫々において、前記演算された、前記対象体の動作特性と、前記複数の候補事例の夫々から得た、前記対象体の動作特性とを比較し、比較結果に基づいて、前記複数の候補事例の中から前記適合する事例を決定する、
     請求項6記載の情報処理システム。
    The controller acquires motion data of the target object for each of the plurality of sections, calculates motion characteristics of the target object from the acquired motion data,
    The case stores the data of the object for each of the plurality of sections,
    The controller compares, in each of the plurality of sections, the calculated operation characteristic of the target object with the operation characteristic of the target object obtained from each of the plurality of candidate cases, and based on the comparison result Determining the matching case from the plurality of candidate cases,
    The information processing system according to claim 6.
  8.  前記コントローラは、前記複数の候補事例のうち、前記複数の区画夫々において、前記演算された前記対象体の動作特性に最も近い、前記対象体の動作特性を有する事例を、前記適合する事例として決定する、
     請求項7記載の情報処理システム。
    The controller determines, as the matching case, a case having the motion characteristic of the target object that is closest to the calculated motion characteristic of the target object in each of the plurality of sections among the plurality of candidate cases. To
    The information processing system according to claim 7.
  9.  前記コントローラは、前記複数の候補事例の夫々について、前記比較の結果を数値化し、数値が最も高い事例を前記適合する事例として決定する、
     請求項7記載の情報処理システム。
    The controller digitizes the result of the comparison for each of the plurality of candidate cases, and determines the case with the highest numerical value as the matching case.
    The information processing system according to claim 7.
  10.  前記コントローラは、
     前記複数の区画夫々において前記事象の発生の有無を検知し、
     前記事象が同一の区画に発生している事例を前記候補事例として選択する、
     請求項5記載の情報処理システム。
    The controller is
    Detecting the occurrence of the event in each of the plurality of sections,
    Selecting cases where the event occurs in the same partition as the candidate cases;
    The information processing system according to claim 5.
  11.  前記コントローラは、前記適合する事例に基づいて、前記事象の展開を映像情報として作成し、当該映像情報を情報端末に配信する、
     請求項5記載の情報処理システム。
    The controller creates the development of the event as video information based on the matching case, and distributes the video information to the information terminal.
    The information processing system according to claim 5.
  12.  所定の地域範囲に発生する事象を判定するために、コンピュータが、複数の事例の中から、関連事例を取得するための情報処理方法であって、
     前記コンピュータは、
     前記所定の地域範囲を複数の領域に分割し、
     前記複数の領域のうち、事象が発生している領域を決定し、
     前記複数の領域の夫々において前記事象による影響を演算し、
     前記決定された領域と前記演算された影響とに基づいて、前記複数の事例のうち前記所定の地域の状態に適合する事例を決定する
     情報処理方法。
    In order to determine an event that occurs in a predetermined area range, a computer is an information processing method for acquiring a related case from a plurality of cases,
    The computer
    Dividing the predetermined area range into a plurality of areas;
    Of the plurality of regions, determine a region where an event occurs,
    Calculating the effect of the event in each of the plurality of regions;
    An information processing method for determining a case that matches a state of the predetermined area among the plurality of cases based on the determined area and the calculated influence.
  13.  所定の地域範囲に発生する事象を判定するために、コンピュータに、複数の事例の中から、関連事例を取得することを実行させるためのプログラムであって、
     前記所定の地域範囲を複数の領域に分割し、
     前記複数の領域のうち、事象が発生している領域を決定し、
     前記複数の領域の夫々において前記事象による影響を演算し、
     前記決定された領域と前記演算された影響とに基づいて、前記複数の事例のうち前記所定の地域の状態に適合する事例を決定する
     ことを前記コンピュータに実行させるためのプログラム。
     
    A program for causing a computer to execute acquisition of a related case from a plurality of cases in order to determine an event occurring in a predetermined area range,
    Dividing the predetermined area range into a plurality of areas;
    Of the plurality of regions, determine a region where an event occurs,
    Calculating the effect of the event in each of the plurality of regions;
    A program for causing the computer to execute, based on the determined area and the calculated influence, determining a case that matches the state of the predetermined area among the plurality of cases.
PCT/JP2015/081765 2015-11-11 2015-11-11 Information processing system and information processing method WO2017081772A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017549920A JP6550145B2 (en) 2015-11-11 2015-11-11 INFORMATION PROCESSING SYSTEM AND INFORMATION PROCESSING METHOD
PCT/JP2015/081765 WO2017081772A1 (en) 2015-11-11 2015-11-11 Information processing system and information processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/081765 WO2017081772A1 (en) 2015-11-11 2015-11-11 Information processing system and information processing method

Publications (1)

Publication Number Publication Date
WO2017081772A1 true WO2017081772A1 (en) 2017-05-18

Family

ID=58694774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081765 WO2017081772A1 (en) 2015-11-11 2015-11-11 Information processing system and information processing method

Country Status (2)

Country Link
JP (1) JP6550145B2 (en)
WO (1) WO2017081772A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254697A1 (en) * 2021-06-04 2022-12-08 日本電信電話株式会社 Disaster information provision device, disaster information provision system, disaster information provision method, and disaster information provision program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163671A (en) * 1998-11-30 2000-06-16 Mitsubishi Electric Corp Crisis management system
JP2010054266A (en) * 2008-08-27 2010-03-11 Kajima Corp System for predicting inundation
JP2013517547A (en) * 2010-01-19 2013-05-16 スイス リインシュランス カンパニー リミテッド Method and system for automated location-dependent natural disaster prediction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163671A (en) * 1998-11-30 2000-06-16 Mitsubishi Electric Corp Crisis management system
JP2010054266A (en) * 2008-08-27 2010-03-11 Kajima Corp System for predicting inundation
JP2013517547A (en) * 2010-01-19 2013-05-16 スイス リインシュランス カンパニー リミテッド Method and system for automated location-dependent natural disaster prediction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254697A1 (en) * 2021-06-04 2022-12-08 日本電信電話株式会社 Disaster information provision device, disaster information provision system, disaster information provision method, and disaster information provision program

Also Published As

Publication number Publication date
JPWO2017081772A1 (en) 2018-08-09
JP6550145B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
Teizer et al. Proximity hazard indicator for workers-on-foot near miss interactions with construction equipment and geo-referenced hazard areas
CN112862153B (en) BIM-based fire rescue method, device, storage medium and device
US9070275B1 (en) Mobile entity tracking and analysis system
Veeraswamy et al. The simulation of urban-scale evacuation scenarios with application to the Swinley forest fire
US9883165B2 (en) Method and system for reconstructing 3D trajectory in real time
EP2763112B1 (en) Dynamic emergency aid
KR101825023B1 (en) Risk early warning method and device
US20150100355A1 (en) Method and apparatus for identifying early status
JP6276106B2 (en) Decision support system and decision support method
Arslan et al. Visualizing intrusions in dynamic building environments for worker safety
CN111445369B (en) Urban large-scale aggregation activity information early warning method and device based on LBS big data
JP7477483B2 (en) Semiconductor device and position movement calculation system
CN110619738B (en) Joint defense warning method and device
CN110826930A (en) Security task scheduling method, device, equipment and readable storage medium
CN111738558B (en) Visualization method, device, equipment and storage medium for behavior risk identification
Yabe et al. Estimating Evacuation Hotspots using GPS data: What happened after the large earthquakes in Kumamoto, Japan
Jiang et al. Real‐Time Safety Risk Assessment Based on a Real‐Time Location System for Hydropower Construction Sites
CN111651664A (en) Accident vehicle positioning method and device based on accident position point, storage medium and terminal
CN102629270A (en) Three-dimensional presentation method and device for geographic information of smarter cities
WO2017081772A1 (en) Information processing system and information processing method
CN113744108A (en) Intelligent fire control method and system based on big data
CN105447588A (en) Earthquake on-site rescue method based on crowd-sourcing perception, and application system thereof
CN112367397A (en) Monitoring and early warning method and system for field work, computer equipment and storage medium
CN112815951A (en) Grid path planning method based on building 3D model
AU2019222885A1 (en) A system and method for monitoring assets within a pre-defined area

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908292

Country of ref document: EP

Kind code of ref document: A1