WO2017081406A1 - Aircraft used in a system for generating electrical energy - Google Patents

Aircraft used in a system for generating electrical energy Download PDF

Info

Publication number
WO2017081406A1
WO2017081406A1 PCT/FR2016/052904 FR2016052904W WO2017081406A1 WO 2017081406 A1 WO2017081406 A1 WO 2017081406A1 FR 2016052904 W FR2016052904 W FR 2016052904W WO 2017081406 A1 WO2017081406 A1 WO 2017081406A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
aircraft
axis
orientation
wind
Prior art date
Application number
PCT/FR2016/052904
Other languages
French (fr)
Inventor
Garrett Smith
Original Assignee
Wind Fisher
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wind Fisher filed Critical Wind Fisher
Publication of WO2017081406A1 publication Critical patent/WO2017081406A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/40Balloons
    • B64B1/50Captive balloons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/40Balloons
    • B64B1/50Captive balloons
    • B64B1/56Captive balloons stabilised by rotary motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/92Mounting on supporting structures or systems on an airbourne structure
    • F05B2240/921Mounting on supporting structures or systems on an airbourne structure kept aloft due to aerodynamic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/92Mounting on supporting structures or systems on an airbourne structure
    • F05B2240/922Mounting on supporting structures or systems on an airbourne structure kept aloft due to buoyancy effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy

Definitions

  • the present invention is in the field of devices capable of transforming the kinetic energy of the wind into electrical energy, and more particularly relates to an aircraft implemented in a system for producing electrical energy.
  • This type of wind turbine is the most widespread but finds its limits in the fact that the winds blowing at low altitude (from 0 to 100 meters (m) above ground level), in addition to having a low kinetic energy because of their low speed (about 0 to 6 meters per second (m / s)), they are intermittent, so that the electrical energy is not produced constantly.
  • the load factor that is to say the ratio between the electrical energy actually produced over a given period of time and the electrical energy it would have produced if it had operated at its nominal power during the same period, for a wind turbine, is relatively low (about 25% to 35%).
  • Another disadvantage of this type of wind turbine is its high energy production cost (about 50 to 80 € / MWh), due in part to the very high cost of manufacturing and installing the wind turbine.
  • This type of aircraft frees itself from several structural elements, complex and expensive, terrestrial wind turbines, such as the mast and large blades. Indeed, these aircraft have a less complex structure than onshore wind turbines, allowing them to have a lower manufacturing cost.
  • kites are known, intended to evolve at altitude, connected to the ground by a cable connecting said kites to the rotor of an electric generator. These kites can be intended to perform movements back and forth so as to rotate said rotor in one direction or the other. This type of kites is in particular presented in the document FR2475148.
  • kites typically include complex onboard systems in order to be able to change flight configurations based on wind parameters.
  • a wind parameter we refer to the speed, direction and direction of the winds.
  • These systems are intended to limit the mechanical stresses in the cable connecting at least one kite to the ground, by continuously adjusting the orientation of said kite along the pitch axis.
  • Aircraft are also known comprising a turbine lighter than air, intended to evolve at altitude and connected to the ground by a cable.
  • the turbine comprises an electric generator and is rotated by the kinetic energy of the wind around the rotor of said electric generator.
  • the present invention aims to propose a new type of aircraft implemented in a system for producing electrical energy.
  • the aircraft according to the invention comprises:
  • a balloon extending between two lateral ends of said balloon, said two lateral ends of the balloon defining an axis R of said balloon,
  • connecting means comprising at least two lateral branches respectively connected to the two lateral ends of said balloon, said balloon being mounted on said two lateral branches, rotatable about the axis R, said connecting means preferably being intended to be connected to the ground,
  • a motor adapted to drive the balloon in rotation about the axis R
  • means for controlling the orientation of the balloon with respect to the wind comprising a drift arranged at a distance from the balloon, said drift being provided with a steering member capable of modifying the orientation of the balloon around an axis of yaw AA .
  • the drift can generate an angle of incidence of the stabilizing member of about twenty degrees.
  • the angle of incidence is the angle formed by the relative wind speed vector blowing on the aircraft and the stabilizing member.
  • the aircraft Since the aircraft has a balloon, it is not subject to certain mechanical stresses to which state-of-the-art aircraft are subjected, especially along a pitch axis.
  • connection means By “connected to the ground”, it is meant that the connecting means are connected with a terrestrial, maritime or submarine device.
  • the means for controlling the orientation of the balloon with respect to the wind are capable of being controlled according to the characteristics of the wind, in particular its direction, its direction and its speed, so that the orientation of the balloon is controlled at least according to the a yaw axis and / or a roll axis.
  • the aircraft is able to be directed by the means for controlling the orientation of the balloon with respect to the wind.
  • the aircraft is able to evolve with respect to the characteristics of the wind. It is therefore able to anticipate the mechanical stresses to which it may be exposed, and thus to avoid them. Also, the aircraft is able to evolve in areas whose wind is blowing optimally for the production of electrical energy, so that the production of electrical energy is no longer intermittent but permanent.
  • the ball is advantageously rotated so as to exploit the physical phenomenon called "Magnus effect" to increase its lift.
  • Magnus effect the physical phenomenon called "Magnus effect” to increase its lift.
  • the invention also fulfills the following characteristics, implemented separately or in each of their technically operating combinations.
  • the balloon is formed of an envelope developing around a structure of arches.
  • the arch structure is composed of a plurality of arches arranged so that said arches are joined to each other at each of the lateral ends of the balloon.
  • the aircraft is relatively simple to design and therefore inexpensive.
  • the aircraft comprises at least one stabilizing member comprising a substantially flat surface, called “orientation surface”, perpendicular to the axis R.
  • the stabilizing member allows the R axis of the balloon to be substantially perpendicular to the direction of the wind, in order to exploit the kinetic energy of the wind optimally, especially for the exploitation of the Magnus effect.
  • the stabilizing member comprises a ring, developing around the balloon, preferably fixed relative to the balloon. Additionally or alternatively, the stabilizing member comprises at least two lateral fins respectively arranged at the lateral ends of the balloon.
  • the aircraft comprises at least one propeller secured to a rotor of at least one rotating machine adapted to generate electrical energy and / or to drive a rotating propeller.
  • These propellers can advantageously allow the control of the orientation of the balloon along a roll axis and / or a yaw axis, and / or
  • They can be arranged on the lateral branches, or on the lateral fins.
  • the means for controlling the orientation of the balloon comprise means adapted to modify the respective lengths of the lateral branches so as to control the ratio between said lengths.
  • This characteristic advantageously allows the control of the orientation of the balloon along a roll axis.
  • the balloon, the connecting means and the engine, forming a first set of the aircraft, the means for controlling the orientation of the balloon of the first set, with respect to the wind comprise a second assembly also comprising a balloon, connecting means and a motor, the orientation of the balloon of the first set being controlled by controlling the rotational speed of the balloon of the second set relative to the rotational speed of the balloon of the first set.
  • the present invention aims, in another aspect, a power generation system comprising an aircraft and a reversible rotary machine, for example fixed to the ground, comprising a rotor, wherein the connecting means are connected to a cable attached to the rotor of the rotating machine, said rotating machine being adapted to generate electrical energy and / or to drive the aircraft in motion.
  • the invention relates to a power generation system comprising an aircraft and a vehicle to be towed, wherein the vehicle comprises means for producing electrical energy from the kinetic energy of the vehicle, and means for storing the electrical energy produced, the connecting means being connected to the vehicle by a cable.
  • the vehicle of the power generation system is an underwater vehicle.
  • the means for producing electrical energy from the kinetic energy of the submarine are hydro-generators.
  • the means for storing the electrical energy produced are batteries and / or ammonia synthesizing means.
  • FIG. 1 a perspective view of an exemplary embodiment of an aircraft according to a first embodiment
  • FIG. 2 is a side view schematically showing another embodiment of a balloon of an aircraft according to FIG. 1;
  • FIG. 3 is a perspective view of one of the lateral ends of a balloon of an aircraft; according to Figure 1,
  • FIG. 4 is a perspective view of the other lateral end of a balloon of an aircraft according to FIG. 1;
  • FIG. 5 a perspective view of means for controlling the orientation of the balloon of an aircraft according to FIG. 1, around a yaw axis,
  • FIG. 6 a perspective view of an exemplary embodiment of an aircraft according to a second embodiment
  • FIG. 7 a perspective view of an exemplary embodiment of an aircraft according to a third embodiment in a first position
  • FIG. 8 a perspective view of an aircraft of Figure 7 in a second position.
  • the present invention relates, in a first aspect, to an aircraft 10 comprising a balloon 100 extending between two lateral ends 101 and 101 'along an axis R of rotation.
  • the balloon 100 may be substantially of elongate spheroidal shape developing around the axis R, the axis R being preferably an axis of revolution of said balloon 100, as represented by FIG. 1.
  • the balloon 100 may be of cylindrical, toric, or any other shape.
  • the balloon 100 is inscribed in a median plane P, perpendicular to the axis R, placed equidistant from each of the lateral ends 101 and 101 'of the balloon 100.
  • the balloon 100 may be formed by a gas-tight envelope 102, developing, for example, around an arch structure 103.
  • the arch structure 103 of the balloon 100 is preferably composed of a plurality of arches arranged so that said arches are joined to each other at each of the lateral ends 101 and 101 'of the balloon 100.
  • the arches are mechanically connected to each other by means of two flanges 104 and 104 'to which they are fixed by each of their ends, as shown in Figures 1, 3 and 4..
  • the balloon 100 is of cylindrical shape, and the hoops are mechanically connected to one another by means of two rims to which they are fixed by each of their ends. More precisely, as illustrated in FIG. 2, the arches are fixed at the periphery of the rims, so that the axis R coincides with the center of each rim.
  • the center of each rim is defined in a manner known per se as being the point towards which rays 105 whose rim is endowed extend.
  • the arches are, for example, arranged in housings of the envelope 102 extending from one lateral end 101 and 101 'to the other of the 100. More precisely, each housing forms a sheath containing a hoop.
  • the balloon 100 is filled with a gas under pressure, for example, between 20mbars and 50mbars depending on the dimensions of the balloon 100, so that the pressure of the gas inside the balloon is greater than the atmospheric pressure and that the envelope is under tension.
  • a gas under pressure for example, between 20mbars and 50mbars depending on the dimensions of the balloon 100, so that the pressure of the gas inside the balloon is greater than the atmospheric pressure and that the envelope is under tension.
  • the gas under pressure has the effect of stiffening the balloon 100, and thus avoiding the radial buckling of the structure of hoops 103, thereby decreasing the mechanical stresses, such as bending forces, to which said structure can be subjected. hoops 103.
  • the gas under pressure is advantageously a gas lighter than air, such as hydrogen, so that the mass of the aircraft 10 is less than the mass of the air.
  • the forces generated by the weight of the aircraft 10 are compensated, it can then climb at altitude without a dedicated complex device, such as a propulsion device.
  • the casing 102 may advantageously comprise cushions 106 distributed around its periphery, containing a gas under pressure. These cushions 106 are, for example, formed between each arch and develop between the two lateral ends 101 and 101 'of the balloon 100.
  • the cross section of each cushion 106 comprises a concave portion connected to a convex portion. The radius of the concave portion is greater than the radius of the convex portion.
  • the aircraft 10 comprises connecting means 1 10 intended to be connected to the ground by a cable 109.
  • the connecting means 1 10 comprise two lateral branches 1 1 1 and 1 1 1 'joined to one another at a connection point 1 15.
  • the balloon 100 is mounted on said two lateral branches 1 1 1 and 1 1 1 ', mobile in rotation about the axis R.
  • each lateral branch 11 or 1 1 ' can comprise a rigid section 12 or 12' comprising pivot means, by which it is articulated to one of the lateral ends 101 or 101 'of the balloon 100.
  • the balloon 100 is thus able to pivot about the axis R, between the two lateral branches 1 1 1 and 1 1 1'.
  • the rigid sections 1 12 and 1 12 ' are parallel to the median plane P.
  • the rigid sections 1 12 and 1 12 ' can be joined to each other by means of by means of a link 1 13 fixed at one of their ends, on the opposite side to the connection point 1 15, as represented by FIG. 1.
  • This link is for example made of high density polyethylene.
  • the pivot means can be made by any means within the reach of those skilled in the art, such as a shaft engaged in rotation in a housing by means of a sliding bearing, etc.
  • the lateral branches 1 1 1 1 and 1 1 1 ' are flexible over a portion of their length, on the side of the connection point 1 15, and have no elongation capacity or elastic property.
  • connection means 1 10 and the cable 109 have a high voltage resistance and are made, for example, of a polymer material, such as high density polyethylene.
  • the cable 109 may comprise a gas duct supplied with gas under pressure by a gas tank, said duct being able to supply the casing 102 of the balloon 100 with pressurized gas.
  • the aircraft 10 advantageously comprises at least one motor 120 integral with one of the lateral branches 1 1 1 or 1 1 1 'connecting means 1 10, adapted to drive the balloon 100 in rotation about the axis R according to a speed variable rotation.
  • the rotation of the balloon 100 is intended to drive the aircraft 10 in displacement, for example, in the ascent phase, as explained below.
  • the motor 120 can be fastened to one of the lateral branches 1 1 1 1 or 1 1 1 ', by any means known per se.
  • the motor 120 is supplied with electrical energy by a power supply source such as batteries powered by an electric generator, not shown in the figures, for example attached to one of the lateral ends 101 or 101 'of the 100, and whose rotor is adapted to be rotated by one or more propellers.
  • a power supply source such as batteries powered by an electric generator, not shown in the figures, for example attached to one of the lateral ends 101 or 101 'of the 100, and whose rotor is adapted to be rotated by one or more propellers.
  • These propellers may advantageously be fixed on each rigid section 1 12 or 1 12 '.
  • the power source may also come from any electrical power generating means, on the ground, connected to the motor 120 via an electric cable running in the cable 109.
  • the motor 120 is capable of driving the balloon 100 at an angular velocity such that the tangential velocity at a point of the balloon 100 is greater than the speed of the wind blowing in the vicinity of this point.
  • the balloon 100 can exploit the physical phenomenon called "Magnus effect” to increase its lift.
  • Magnus effect is the physical phenomenon by which, when a body is rotating in the air, it causes, by friction, a volume of air in contact with its surface.
  • the velocity of the air volume is accelerated when it is in the same direction as the tangential velocity of a point on the body surface, forming a zone of depression.
  • the speed of the air volume is slowed when it is in the opposite direction to the tangential velocity of a point on the surface of the body, forming a zone of overpressure.
  • the balloon 100 when the balloon 100 is arranged so that the axis R is substantially horizontal, as illustrated in FIG. 1, the balloon 100 is driven in a direction of rotation in which an overpressure zone is able to form at near the surface below the balloon 100, that is to say between the balloon 100 and the ground.
  • a depression zone is able to form in the vicinity of the surface situated above the balloon 100, that is to say symmetrically opposite to the zone of overpressure with respect to the R axis
  • the overpressure and depression zones generate an increase in the lift of the balloon 100.
  • the lift generated is able to allow the displacement of the aircraft 10.
  • the variation of the lift is thus controlled by controlling the variation of the rotational speed of the balloon.
  • the aircraft 10 comprises means for controlling the orientation of the balloon 100 relative to the direction of the wind, and more particularly, with respect to an axis called “yaw axis" AA 'and an axis called “axis of roll »BB '.
  • the yaw axis AA 'and the roll axis BB', substantially perpendicular to each other, are included in the median plane P and are perpendicular to the axis R of the balloon 100. More precisely, as shown in FIG. 1, when the balloon 100 is arranged so that the axis R is substantially horizontal, the yaw axis AA 'is substantially vertical, and the roll axis BB' is substantially horizontal.
  • the aircraft 10 comprises at least one stabilizing member comprising a flat surface called "orienting surface", for example, perpendicular to the axis R.
  • the stabilizing member is intended to ensure the stability of the plane.
  • balloon 100 relative to the yaw axis AA ', when the wind blows on the balloon 100.
  • the balloon 100 tends to be arranged, with respect to the wind, so that the wind blows in a direction perpendicular to the R axis, as shown for example in Figure 1.
  • the stabilizing member comprises, for example, a rigid ring 131 developing around the balloon 100, about the axis R, as illustrated in FIG.
  • the ring 131 extends between an inner peripheral edge, through which it is joined to the casing 102 or to the arch structure 103 of the balloon 100, and an outer peripheral edge.
  • the ring 131 is fixed relative to the balloon 100, so that when the balloon 100 is rotated, the ring 131 is also rotated.
  • the ring 131 develops in the median plane P.
  • a central branch 1 14 can connect the point of connection 1 15 side branches 1 1 1 and 1 1 1 'and said ring 131.
  • the central branch 1 14 advantageously distributes the internal stresses, such as tensile and compressive forces, on either side of the balloon 100, due to the overpressure and depression zones.
  • the motor 120 may be rigidly fixed to the central branch 1 14 and be provided with a drive member intended to evolve on a raceway developing along the outer periphery of the ring 131.
  • the raceway can develop around the periphery of the balloon 100, on the arch structure 103.
  • the drive member and the raceway are respectively formed by one or more rollers and a rail, the roller or rollers being engaged in rolling without sliding in the rail.
  • the drive member and the raceway are formed by a rack, wherein the drive member is a gear in meshing relationship with a toothed raceway.
  • the stabilizing member may advantageously comprise a plurality of rings, identical to the ring 131, along the axis R, arranged, for example, on either side of the median plane P.
  • the stabilizing member comprises two lateral wings 132 and 132 'mounted rotatably with respect to the balloon 100, respectively at each of its lateral ends 101 and 101'.
  • the lateral wings 132 and 132 ' can advantageously be respectively attached to each of the rigid sections.
  • the lateral wings 132 and 132 ' comprise a substantially flat surface perpendicular to the axis R. This feature makes it possible to increase the lift of the balloon 100 and to limit a physical phenomenon called "drag induced" by the lift.
  • the lateral fins 132 and 132 ' also generate a so-called "lateral" lift for the stability of the balloon during, in particular, the modification of its orientation along the yaw axis AA'.
  • this phenomenon is characterized by vortices generated by a displacement of the air in the state of overpressure, along each lateral end 101 and 101 'of the balloon 100, towards the air in a state of depression, combined with the progress of the balloon 100 and its rotation about the axis R.
  • This induced drag provides additional resistance to the advancement of the balloon 100, in addition to the trail of the balloon 100.
  • the means for controlling the orientation of the balloon 100 around the yaw axis AA ' preferably comprise a fin 133 fixed at a distance from the balloon 100 by two arms respectively integral with each of the lateral ends 101 and 101' of said balloon 100, such as as shown in Figures 1, 3, 4 and 5.
  • the two arms are each rigidly fixed to the rigid section 1 12 or 1 12 'of a lateral branch 1 1 1 or 1 1 1' connecting means 1 10, so that each arm forms an angle, for example a right angle, with the rigid section 1 12 or 1 12 'to which it is attached.
  • the shape of the fin 133 comprises a substantially planar surface whose orientation relative to the axis R changes the yaw balloon orientation with respect to the wind.
  • the fin 133 is advantageously provided with a steering member capable of modifying the orientation of the balloon 100 around the yaw axis AA '.
  • This steering member 134 may advantageously be constituted by a motor, in kinematic relation with the fin 133, able to modify the orientation of the fin 133 with respect to the median plane P so that it forms a non-zero angle with said plane P.
  • a motor is represented by FIG. 4.
  • the steering member may alternatively comprise a rudder disposed on a portion of the periphery of the rudder 133. The rudder is able to pivot relative to the rudder 133 by means of actuating means for forming a non-zero angle with the median plane P.
  • the stabilizing member has the effect of promoting rotation along the yaw axis AA ', insofar as its flat surface materializes a support surface favoring the appearance of a moment of force at the origin of the rotation of the balloon 100.
  • the drift 133 can generate an angle of incidence of the stabilizing member of about twenty degrees. This angle of incidence is such that it makes it possible to generate a lateral lift of the aircraft 10 that is sufficient when the orientation of the aircraft 10 is modified.
  • the angle of incidence is the angle formed by the relative wind speed vector blowing on the aircraft 10 and the stabilizing member.
  • the means for controlling the orientation of the balloon 100 comprise means adapted to modify the respective lengths of the lateral branches 1 1 1, 1 1 1 'so as to control the ratio between said lengths in order to control the orientation of the ball around the roll axis BB '.
  • Said means are, for example, a motor fixed to the connection point 1 15 of the side branches 1 1 1 and 1 1 1 '.
  • the motor is able to act on the two lateral branches 1 1 1 and 1 1 1 'connecting means 1 10 to rotate the balloon 100 about said roll axis BB'.
  • the motor is in drive relation with the two lateral branches 1 1 1 1 and 1 1 1 ', so as to be able to move along the cable forming said side branches 1 1 1 and 1 1 1', and thus to reduce the length of one of the side branches 1 1 1 and 1 1 1 while extending the length of the other side branch.
  • the modification of the relative length of the branches has the effect of inclining the balloon 100 around the roll axis BB '.
  • the aircraft 10 is able to acquire data representative of the characteristics of the winds and to control the control means of the aircraft. the orientation of the balloon 100 according to these characteristics.
  • the aircraft 10 comprises means for acquiring the characteristics of the wind blowing on the balloon 100, such as an anemometer, able to send data representative of the characteristics of the wind to processing and control means, such as than a microcontroller.
  • the aircraft 10 also comprises means for acquiring parameters specific to the balloon 100, such as an inertial unit, known per se, capable of transmitting data representative of the orientation, for example, of the balloon 100 with respect to the wind. the processing and control means.
  • the means for acquiring parameters specific to the balloon 100 may be able to transmit data representative of the speed and the acceleration of the balloon 100 to the processing and control means.
  • the processing and control means may, advantageously, be embedded on the balloon 100 and are able to slave the motor 120 and the means for controlling the orientation of the balloon 100 as a function of the data received from the means for acquiring the characteristics of the balloon 100. Wind and parameters specific to the balloon 100.
  • the aircraft 10 is able to modify, in particular, the orientation and the rotational speed of the balloon 100 as a function of the speed, the direction and / or the direction of the wind.
  • the processing and control means may be on the ground.
  • the processing and control means may be connected to the means for acquiring the characteristics of the wind and parameters specific to the balloon 100, and to the engine 120 and to the means for controlling the orientation of the balloon 100 via a cable suitable for transmit data, running in the cable 109 and secured to the connecting means 1 10.
  • the balloon 100, the connecting means 1 10 and the engine capable of driving the balloon 100 in rotation about the axis R form a first set of the aircraft 10.
  • the means for controlling the orientation of the balloon 100 of the first set, with respect to the wind, comprise a second set.
  • the second set is substantially identical to the first set in that it also comprises a balloon 100 ", connecting means 1 10" and a motor adapted to rotate the balloon 100 "about an axis R", by a motor integral with one of the branches of the connecting means 1 10, similarly to the first balloon 100.
  • the orientation of the balloon 100 of the first set is controlled by controlling the speed of rotation of the balloon 100 "of the second set relative to the rotational speed of the balloon 100 of the first set.
  • the axis R of the balloon 100 of the first set and the axis R "of the balloon 100 'of the second set are intended to form a non-zero angle, so as to form a dihedron.
  • R is adjustable by the rotation of one or more balloons 100 and 100" around their respective roll axis.
  • the first and second balloons 100 and 100 may also comprise at least one stabilizing member, as defined above.
  • the aircraft 10 according to the first and second embodiments can advantageously perform so-called "dynamic" flights, that is to say flights during which the aircraft 10 is moving constantly and continuously adapts to the characteristics of the wind.
  • the balloon 100 when the wind speed is low, for example from zero to about eight or nine meters per second, the balloon 100 is intended to adopt a circular trajectory or in the form of a lemniscate or a sinusoid.
  • the balloon 100 maximizes the forces generated by the kinetic energy of the wind such as the lift force and the driving force of the wind.
  • the balloon 100 is then, for example, in a substantially vertical position, that is to say that the axis R of the balloon 100 is substantially vertical. In this position, the yaw angle AA 'is then substantially horizontal, as is the roll angle BB'.
  • the tangential velocity of a point of the envelope 102 of the balloon 100 included in the median plane P is equal to two or three times the speed of the wind blowing in the vicinity of this point.
  • the balloon 100 is also intended to adopt a substantially vertical position.
  • the balloon 100 is intended to follow a rectilinear trajectory and to move in the direction of the wind.
  • the tangential velocity of a point of the envelope 102 of the balloon 100 included in the median plane P is equal to one or two times the speed of the wind blowing in the vicinity of this point.
  • the balloon 100 When the wind speed is high, for example from about twenty meters per second to about forty meters per second, the balloon 100 is intended to adopt a substantially horizontal position, that is to say that the axis R of the balloon is substantially horizontal. In addition, the balloon 100 is intended to follow a rectilinear trajectory and to move in the direction of the wind.
  • the aircraft 10 as described previously in the first and second embodiments can be implemented in a power generation system, wherein said aircraft 10 is intended to be connected to the rotor of a reversible rotary machine by the cable 109.
  • the cable 109 is intended to be wound around the rotor of the rotating machine.
  • the rotating machine may advantageously be a reversible electric generator, capable of generating energy and / or driving the aircraft 10 on the move.
  • the electric generator is fixed to the ground.
  • the aircraft 10 is intended to cycle back and forth between a high point and a low point, during which, it is successively in the ascent phase and in the descent phase.
  • the rotating machine When the aircraft 10 is driven in the ascent phase by the rotation of the balloon 100, as described above, the rotating machine operates as an electric generator.
  • the aircraft 10 In the ascent phase, the aircraft 10 is intended to gradually unwind the cable 109 wound around the rotor, driving the latter in rotation.
  • the electric generator becomes actuator and rotates the rotor so as to wind the cable 109 and to drive the aircraft 10 in the descent phase.
  • the rotor of the electric generator is rotated by the aircraft 10 in the ascent phase.
  • the electric generator is, for example, electrically connected to an electrical network so as to power this network with the electricity it produces.
  • the power source of the motors may be formed by ground batteries, connected to the rotating machine on the ground, to which the motors are connected by a cable capable of conducting electricity, running in the cable 109 and secured to connecting means 1 10.
  • the balloon 100 when the wind speed is very high, for example greater than forty meters per second, the balloon 100 is intended to remain on the ground.
  • the cable 109 is then preferably wound on substantially all of its length, around the rotor of the electric generator.
  • the aircraft 10 as described previously in the first and second embodiments can be implemented in a power generation system, wherein said aircraft 10 is intended to tow a vehicle at ground equipped with means for producing electrical energy according to the kinetic energy of the vehicle.
  • the vehicle is a submarine comprising means for producing electrical energy, such as hydro-generators, able to be actuated by the displacement of the underwater vehicle.
  • a hydro-generator comprises a turbine adapted to rotate a rotor of an electric generator for producing electrical energy.
  • the electrical energy is partly consumed by means of ammonia synthesis, for example, by ceramic catalyst. Additionally or alternatively, the electrical energy is partly or entirely stored in batteries.
  • the driving force of the wind applied to the balloon 100 is sufficient for the aircraft 10 to generate a traction force necessary for the displacement of the underwater vehicle. .
  • said balloon 100 is rotated so that the tangential velocity of a point of the envelope 102 of the balloon 100, included in the median plane P, is lower than the speed of the wind blowing in the vicinity of this point.
  • the marine turbines of the underwater vehicle are deactivated.
  • the aircraft 10 can be directed to winds whose speed is optimal for the production of energy.
  • the speed of the winds whose kinetic energy is exploitable for the production of energy is about eight to nine meters per second to forty meters per second.
  • the aircraft 10 has been described, in an energy production system, as intended for towing a submarine vehicle, but it can alternatively be intended for towing a ship or any other type of vehicle marine or terrestrial equipped with means of producing electrical energy depending on the kinetic energy of the vehicle.
  • the aircraft 10 is intended to produce electrical energy from propellers 150, 150 'able to drive in rotation a rotor of at least one rotating machine fixed on said aircraft 10, said machine being able to generate electrical energy.
  • the aircraft 10 according to this third embodiment is different from the aircraft 10 described in the previous embodiments, in particular in that the means for controlling the orientation of the balloon 100 around of the yaw axis AA 'comprise propellers 150, 150' rotatably mounted on the lateral wings 132 and 132 'respectively fixed to each of the lateral ends 101 and 101' of the balloon 100.
  • the means for controlling the orientation of the balloon 100 around of the yaw axis AA ' comprise propellers 150, 150' rotatably mounted on the lateral wings 132 and 132 'respectively fixed to each of the lateral ends 101 and 101' of the balloon 100.
  • the lateral wings 132 and 132 ' are identical to those described above, and extend respectively along a longitudinal axis CC and DD', parallel to the median plane P, between two longitudinal ends.
  • At least one propeller 150, 150 ' is disposed at each of the longitudinal ends of the fins, so that each lateral fin 132 or 132' carries a pair of helices 150, 150 '.
  • the pairs of helices 150, 150 ' are preferably symmetrical with respect to each other along the median plane P.
  • the propellers 150, 150' are mounted on the leading edge of each lateral fin 132 or 132 .
  • the "leading edge" is defined as the surface intended to face the wind.
  • the propellers 150, 150 ' are able to drive in rotation a rotor of at least one reversible rotary machine.
  • each propeller 150, 150 ' is fixed to the rotor of a reversible rotary machine.
  • Each propeller 150, 150 ' is therefore able to produce electrical energy by driving the rotor of the rotating machine in rotation, under the effect of wind or to be rotated by the rotor, and to generate a driving force.
  • the balloon 100 is also filled with a gas under pressure, which is preferentially lighter than air, but the mass of the aircraft 10 may be larger than that of the air.
  • the propellers 150, 150 'when they are rotated, are capable of generating a driving force greater than the force generated by the weight of the aircraft 10.
  • the lateral wings 132 and 132 ' are arranged so that their longitudinal axis is substantially horizontal, as schematically represented by FIG. 8.
  • the lateral wings 132 and 132 ' are arranged so that their longitudinal axis is substantially vertical as schematically represented in FIG. 7.
  • each pair of helices 150 and 150 ' may or may not exert a driving force.
  • each pair of helices 150 and 150 ' may or may not exert a driving force.
  • a pair of helices 150 or 150' can be rotated. Indeed, the driving force generated by the propellers 150 or
  • the connecting means 1 10 are preferably fixed to the ground by their first end, at a fixed point.
  • the balloon 100 when the wind speed is very high, for example greater than forty meters per second, the balloon 100 is intended to remain on the ground.
  • the aircraft 10 is therefore trained to land by the pairs of propellers 150 and 150 'if it is aloft when a wind having such a speed is detected.
  • the aircraft may comprise, in place of the lateral wings 132 and 132 ', one or more crowns 131 as defined previously.
  • the pairs of propellers 150 and 150 ' are then respectively disposed on the rigid sections 1 12 and 1 12'.
  • the rotating machine or machines are connected to means for storing electrical energy, such as batteries, or to the electrical distribution network, via a cable capable of conducting electricity.
  • the aircraft 10 comprises batteries, advantageously fixed to the ground, connected to the rotating machines by a cable capable of conducting electricity, running in the cable 109 and secured to the connecting means 1 10.
  • the motors are supplied with electrical energy by the rotating machine or machines.
  • the means for controlling the orientation of the balloon 100 may be constituted by the propellers, and be devoid of, in particular, drift 133.
  • the means for controlling the orientation of the balloon 100 around the roll axis BB ' are the same as those described above.
  • the aircraft 10 may comprise, in this third embodiment, a landing gear, for example, non-retractable, known per se.
  • a landing gear for example, non-retractable, known per se.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The invention relates to an aircraft (10) which comprises: a balloon (100) extending between two side ends (101, 101') of said balloon, said two side ends of the balloon defining an axis R of said balloon; connection means (110) comprising at least two side arms (111), (111') respectively connected to the two side ends of said balloon, said balloon being mounted on said two side arms, and rotatable about the axis R, said connection means being intended for being connected to the ground; a motor (120) suitable for rotating the balloon about the axis R; and means for controlling the orientation of the balloon relative to the wind.

Description

AÉRONEF MIS EN ŒUVRE DANS UN SYSTÈME DE PRODUCTION  AIRCRAFT IMPLEMENTED IN A PRODUCTION SYSTEM
D'ÉNERGIE ÉLECTRIQUE  OF ELECTRICAL ENERGY
Domaine de l'invention  Field of the invention
La présente invention est du domaine des dispositifs aptes à transformer l'énergie cinétique du vent en énergie électrique, et concerne plus particulièrement un aéronef mis en oeuvre dans un système de production d'énergie électrique.  The present invention is in the field of devices capable of transforming the kinetic energy of the wind into electrical energy, and more particularly relates to an aircraft implemented in a system for producing electrical energy.
État de l'art  State of the art
Les réserves de combustibles dits « fossiles », tels que les hydrocarbures (pétrole, charbon, etc.), s'amenuisant et le besoin énergétique mondial ne cessant de croître, la production d'énergie dite « renouvelable », en tant qu'alternative à la combustion des combustibles fossiles, prend une part de plus en plus importante dans la production énergétique mondiale.  So-called "fossil" fuel reserves, such as hydrocarbons (oil, coal, etc.), are dwindling and the world's energy needs continue to grow, the so-called "renewable" energy production, as an alternative fossil fuel combustion, is becoming an increasingly important part of global energy production.
Parmi les modes de production d'énergie renouvelable, on connaît la production d'énergie électrique à partir de l'énergie cinétique du vent.  Among the modes of production of renewable energy, we know the production of electrical energy from the kinetic energy of the wind.
En effet, il existe les éoliennes dites « terrestres » comprenant un mât à une extrémité duquel est disposée une nacelle contenant un générateur électrique, ledit générateur électrique comportant un rotor sur lequel sont agencées des pales de grande dimension (plusieurs dizaines de mètres) qui sont entraînées en rotation par le vent et convertissent ainsi l'énergie cinétique du vent en énergie mécanique. La rotation des pales entraîne la rotation du rotor, de sorte que l'énergie mécanique est convertie en énergie électrique.  Indeed, there exist so-called "terrestrial" wind turbines comprising a mast at one end of which is disposed a nacelle containing an electric generator, said electric generator comprising a rotor on which are arranged large blades (several tens of meters) which are driven in rotation by the wind and thus convert the kinetic energy of the wind into mechanical energy. The rotation of the blades causes the rotation of the rotor, so that the mechanical energy is converted into electrical energy.
Ce type d'éolienne est le plus répandu mais trouve cependant ses limites dans le fait que les vents soufflant en basse altitude (de 0 à 100 mètres (m) par rapport au niveau du sol), en plus de présenter une énergie cinétique peu élevée du fait de leur faible vitesse (environ de 0 à 6 mètres par seconde (m/s)), sont intermittents, de sorte que l'énergie électrique n'est pas produite de façon constante. Ainsi, le facteur de charge, c'est-à-dire le rapport entre l'énergie électrique effectivement produite sur une période donnée et l'énergie électrique qu'elle aurait produit si elle avait fonctionné à sa puissance nominale durant la même période, pour une éolienne terrestre, est relativement faible (environ 25% à 35%). Un autre inconvénient de ce type d'éolienne se trouve dans son coût de production énergétique élevé (environ de 50 à 80€/MWh), dû en partie au coût très important de fabrication et d'installation de l'éolienne. En vue de palier les inconvénients susmentionnés, il a été développé des aéronefs mis en œuvre dans un système de production d'énergie électrique destinés à voler à moyenne ou haute altitude. En effet, il est connu que les vents de plus haute altitude soufflent à plus grande vitesse, présentant ainsi une importante énergie cinétique. A titre d'exemple, la vitesse du vent soufflant entre 500 et 1500m est environ deux fois supérieure à la vitesse du vent soufflant à 100m. Il est également connu que la régularité de la vitesse des vents croît avec l'altitude. This type of wind turbine is the most widespread but finds its limits in the fact that the winds blowing at low altitude (from 0 to 100 meters (m) above ground level), in addition to having a low kinetic energy because of their low speed (about 0 to 6 meters per second (m / s)), they are intermittent, so that the electrical energy is not produced constantly. Thus, the load factor, that is to say the ratio between the electrical energy actually produced over a given period of time and the electrical energy it would have produced if it had operated at its nominal power during the same period, for a wind turbine, is relatively low (about 25% to 35%). Another disadvantage of this type of wind turbine is its high energy production cost (about 50 to 80 € / MWh), due in part to the very high cost of manufacturing and installing the wind turbine. In order to overcome the aforementioned drawbacks, it has been developed aircraft implemented in a power generation system intended to fly at medium or high altitude. In fact, it is known that the winds of higher altitude blow at higher speed, thus presenting a significant kinetic energy. For example, the speed of the wind blowing between 500 and 1500m is about twice the speed of the wind blowing at 100m. It is also known that the regularity of wind speeds increases with altitude.
Ce type d'aéronef s'affranchit de plusieurs éléments structurels, complexes et onéreux, des éoliennes terrestres, tel que le mât et les pales de grandes dimensions. En effet, ces aéronefs présentent une structure moins complexe que les éoliennes terrestres, leur permettant de présenter un coût de fabrication moindre.  This type of aircraft frees itself from several structural elements, complex and expensive, terrestrial wind turbines, such as the mast and large blades. Indeed, these aircraft have a less complex structure than onshore wind turbines, allowing them to have a lower manufacturing cost.
Parmi les aéronefs de l'état de l'art, mis en œuvre dans un système de production d'énergie électrique, on connaît des cerfs-volants, destinés à évoluer en altitude, reliés au sol par un câble reliant lesdits cerfs-volants au rotor d'un générateur électrique. Ces cerfs-volants peuvent être destinés à réaliser des mouvements de va et vient de manière à entraîner en rotation ledit rotor dans un sens ou dans l'autre. Ce type de cerfs-volants est notamment présenté dans le document FR2475148.  Among the state-of-the-art aircraft, implemented in an electrical energy production system, kites are known, intended to evolve at altitude, connected to the ground by a cable connecting said kites to the rotor of an electric generator. These kites can be intended to perform movements back and forth so as to rotate said rotor in one direction or the other. This type of kites is in particular presented in the document FR2475148.
De tels cerfs-volants comprennent généralement des systèmes embarqués complexes afin de pouvoir changer de configuration de vol en fonction des paramètres des vents. Lorsqu'on parle de paramètre des vents, on fait référence à la vitesse, la direction et le sens des vents. Ces systèmes ont pour but de limiter les contraintes mécaniques dans le câble reliant au moins un cerf-volant au sol, en ajustant de manière continue l'orientation dudit cerf- volant selon l'axe de tangage.  Such kites typically include complex onboard systems in order to be able to change flight configurations based on wind parameters. When we talk about a wind parameter, we refer to the speed, direction and direction of the winds. These systems are intended to limit the mechanical stresses in the cable connecting at least one kite to the ground, by continuously adjusting the orientation of said kite along the pitch axis.
On connaît également des aéronefs comprenant une turbine plus légère que l'air, destinés à évoluer en altitude et relié au sol par un câble. La turbine comprend un générateur électrique et est entraînée en rotation par l'énergie cinétique du vent autour du rotor dudit générateur électrique. Ces aéronefs sont notamment présentés dans le document WO2010/007466. Exposé de l'invention Aircraft are also known comprising a turbine lighter than air, intended to evolve at altitude and connected to the ground by a cable. The turbine comprises an electric generator and is rotated by the kinetic energy of the wind around the rotor of said electric generator. These aircraft are in particular presented in document WO2010 / 007466. Presentation of the invention
La présente invention vise à proposer un nouveau type d'aéronef mis en œuvre dans un système de production d'énergie électrique.  The present invention aims to propose a new type of aircraft implemented in a system for producing electrical energy.
L'aéronef selon l'invention comporte :  The aircraft according to the invention comprises:
- un ballon s'étendant entre deux extrémités latérales dudit ballon, lesdites deux extrémités latérales du ballon définissant un axe R dudit ballon,  a balloon extending between two lateral ends of said balloon, said two lateral ends of the balloon defining an axis R of said balloon,
- des moyens de liaison comportant au moins deux branches latérales reliées respectivement aux deux extrémités latérales dudit ballon, ledit ballon étant monté, sur lesdites deux branches latérales, mobile en rotation autour de l'axe R, lesdits moyens de liaison étant, de préférence, destinés à être reliés au sol,  connecting means comprising at least two lateral branches respectively connected to the two lateral ends of said balloon, said balloon being mounted on said two lateral branches, rotatable about the axis R, said connecting means preferably being intended to be connected to the ground,
- un moteur, adapté à entraîner le ballon en rotation autour de l'axe R, et  a motor adapted to drive the balloon in rotation about the axis R, and
- des moyens de contrôle de l'orientation du ballon par rapport au vent comprenant une dérive agencée à distance du ballon, ladite dérive étant pourvue d'un organe de direction apte à modifier l'orientation du ballon autour d'un axe de lacet AA'.  means for controlling the orientation of the balloon with respect to the wind, comprising a drift arranged at a distance from the balloon, said drift being provided with a steering member capable of modifying the orientation of the balloon around an axis of yaw AA .
Cette caractéristique permet avantageusement le contrôle de l'orientation du ballon selon un axe de lacet. Avantageusement, la dérive peut générer un angle d'incidence de l'organe stabilisateur d'environ vingt degrés.  This characteristic advantageously allows the control of the orientation of the balloon along a yaw axis. Advantageously, the drift can generate an angle of incidence of the stabilizing member of about twenty degrees.
L'angle d'incidence est l'angle formé par le vecteur vitesse du vent relatif soufflant sur l'aéronef et l'organe stabilisateur.  The angle of incidence is the angle formed by the relative wind speed vector blowing on the aircraft and the stabilizing member.
L'aéronef comportant un ballon, il n'est pas soumis à certaines contraintes mécaniques auxquelles sont soumis les aéronefs de l'état de l'art, notamment selon un axe de tangage.  Since the aircraft has a balloon, it is not subject to certain mechanical stresses to which state-of-the-art aircraft are subjected, especially along a pitch axis.
Par « reliés au sol », on entend que les moyens de liaison sont reliés avec un dispositif terrestre, maritime ou sous-marin.  By "connected to the ground", it is meant that the connecting means are connected with a terrestrial, maritime or submarine device.
Par ailleurs, on entend par « orientation du ballon par rapport au vent », l'orientation du ballon par rapport au sens et/ou à la direction du vent. Les moyens de contrôle de l'orientation du ballon par rapport au vent sont aptes à être pilotés en fonction des caractéristiques du vent, notamment, sa direction, son sens et sa vitesse, de sorte que l'orientation du ballon est contrôlée au moins selon un axe de lacet et/ou un axe de roulis. Ainsi, l'aéronef est apte à être dirigé par les moyens de contrôle de l'orientation du ballon par rapport au vent. Furthermore, the term "orientation of the balloon with respect to the wind", the orientation of the balloon with respect to the direction and / or direction of the wind. The means for controlling the orientation of the balloon with respect to the wind are capable of being controlled according to the characteristics of the wind, in particular its direction, its direction and its speed, so that the orientation of the balloon is controlled at least according to the a yaw axis and / or a roll axis. Thus, the aircraft is able to be directed by the means for controlling the orientation of the balloon with respect to the wind.
De plus, l'aéronef est apte à évoluer par rapport aux caractéristiques du vent. Il est donc apte à anticiper les contraintes mécaniques auxquelles il risque d'être exposé, et donc à les éviter. Aussi, l'aéronef est apte à évoluer dans des zones dont le vent souffle de manière optimale pour la production d'énergie électrique, de sorte que la production d'énergie électrique ne soit plus intermittente mais permanente.  In addition, the aircraft is able to evolve with respect to the characteristics of the wind. It is therefore able to anticipate the mechanical stresses to which it may be exposed, and thus to avoid them. Also, the aircraft is able to evolve in areas whose wind is blowing optimally for the production of electrical energy, so that the production of electrical energy is no longer intermittent but permanent.
Le ballon est avantageusement entraîné en rotation de façon à exploiter le phénomène physique dit « effet Magnus » pour augmenter sa portance. Ainsi, il est possible de faire varier la portance du ballon, et donc l'altitude dudit ballon par rapport au sol, en faisant varier la vitesse de rotation du moteur.  The ball is advantageously rotated so as to exploit the physical phenomenon called "Magnus effect" to increase its lift. Thus, it is possible to vary the balloon lift, and therefore the altitude of said balloon relative to the ground, by varying the speed of rotation of the engine.
Dans des modes particuliers de réalisation, l'invention répond en outre aux caractéristiques suivantes, mises en œuvre séparément ou en chacune de leurs combinaisons techniquement opérantes.  In particular embodiments, the invention also fulfills the following characteristics, implemented separately or in each of their technically operating combinations.
Dans des modes particuliers de réalisation de l'invention, le ballon est formé d'une enveloppe se développant autour d'une structure d'arceaux. La structure d'arceaux est composée d'une pluralité d'arceaux agencée de sorte que lesdits arceaux sont joints les uns aux autres à chacune des extrémités latérales du ballon.  In particular embodiments of the invention, the balloon is formed of an envelope developing around a structure of arches. The arch structure is composed of a plurality of arches arranged so that said arches are joined to each other at each of the lateral ends of the balloon.
Grâce à ces caractéristiques, l'aéronef est relativement simple de conception et par conséquent peu onéreux.  Thanks to these characteristics, the aircraft is relatively simple to design and therefore inexpensive.
Dans des modes particuliers de réalisation, l'aéronef comporte au moins un organe stabilisateur comprenant une surface sensiblement plane, dite « surface d'orientation », perpendiculaire à l'axe R.  In particular embodiments, the aircraft comprises at least one stabilizing member comprising a substantially flat surface, called "orientation surface", perpendicular to the axis R.
L'organe stabilisateur permet à l'axe R du ballon d'être sensiblement perpendiculaire à la direction du vent, afin de pouvoir exploiter l'énergie cinétique du vent de manière optimale, notamment pour l'exploitation de l'effet Magnus.  The stabilizing member allows the R axis of the balloon to be substantially perpendicular to the direction of the wind, in order to exploit the kinetic energy of the wind optimally, especially for the exploitation of the Magnus effect.
Dans des modes particuliers de réalisation, l'organe stabilisateur comprend une couronne, se développant autour du ballon, préférentiellement fixe par rapport au ballon. Additionnellement ou alternativement, l'organe stabilisateur comprend au moins deux ailettes latérales agencées respectivement aux extrémités latérales du ballon. In particular embodiments, the stabilizing member comprises a ring, developing around the balloon, preferably fixed relative to the balloon. Additionally or alternatively, the stabilizing member comprises at least two lateral fins respectively arranged at the lateral ends of the balloon.
Selon d'autres caractéristiques, l'aéronef comprend au moins une hélice solidaire d'un rotor d'au moins une machine tournante adaptée à générer de l'énergie électrique et/ou à entraîner une hélice en rotation.  According to other characteristics, the aircraft comprises at least one propeller secured to a rotor of at least one rotating machine adapted to generate electrical energy and / or to drive a rotating propeller.
Ces hélices peuvent avantageusement permettre le contrôle de l'orientation du ballon selon un axe de roulis et/ou un axe de lacet, et/ou  These propellers can advantageously allow the control of the orientation of the balloon along a roll axis and / or a yaw axis, and / or
Elles peuvent être disposées sur les branches latérales, ou sur les ailettes latérales.  They can be arranged on the lateral branches, or on the lateral fins.
Selon d'autres caractéristiques, les moyens de contrôle de l'orientation du ballon comprennent des moyens adaptés à modifier les longueurs respectives des branches latérales de sorte à contrôler le rapport entre lesdites longueurs.  According to other features, the means for controlling the orientation of the balloon comprise means adapted to modify the respective lengths of the lateral branches so as to control the ratio between said lengths.
Cette caractéristique permet avantageusement le contrôle de l'orientation du ballon selon un axe de roulis.  This characteristic advantageously allows the control of the orientation of the balloon along a roll axis.
Dans des modes de réalisation de l'invention, le ballon, les moyens de liaison et le moteur, formant un premier ensemble de l'aéronef, les moyens de contrôle de l'orientation du ballon du premier ensemble, par rapport au vent, comportent un second ensemble comportant également un ballon, des moyens de liaison et un moteur, l'orientation du ballon du premier ensemble étant contrôlée en contrôlant la vitesse de rotation du ballon du second ensemble par rapport à la vitesse de rotation du ballon du premier ensemble.  In embodiments of the invention, the balloon, the connecting means and the engine, forming a first set of the aircraft, the means for controlling the orientation of the balloon of the first set, with respect to the wind, comprise a second assembly also comprising a balloon, connecting means and a motor, the orientation of the balloon of the first set being controlled by controlling the rotational speed of the balloon of the second set relative to the rotational speed of the balloon of the first set.
La présente invention vise, selon un autre aspect, un système de production d'énergie comprenant un aéronef et une machine tournante réversible, par exemple fixée au sol, comprenant un rotor, dans lequel les moyens de liaison sont reliés à un câble fixé au rotor de la machine tournante, ladite machine tournante étant adaptée à générer de l'énergie électrique et/ou à entraîner l'aéronef en déplacement.  The present invention aims, in another aspect, a power generation system comprising an aircraft and a reversible rotary machine, for example fixed to the ground, comprising a rotor, wherein the connecting means are connected to a cable attached to the rotor of the rotating machine, said rotating machine being adapted to generate electrical energy and / or to drive the aircraft in motion.
Selon un autre aspect, l'invention vise un système de production d'énergie comportant un aéronef et un véhicule à tracter, dans lequel le véhicule comporte des moyens de production d'énergie électrique à partir de l'énergie cinétique du véhicule, et des moyens de stockage de l'énergie électrique produite, les moyens de liaison étant reliés au véhicule par un câble. According to another aspect, the invention relates to a power generation system comprising an aircraft and a vehicle to be towed, wherein the vehicle comprises means for producing electrical energy from the kinetic energy of the vehicle, and means for storing the electrical energy produced, the connecting means being connected to the vehicle by a cable.
Avantageusement, le véhicule du système de production d'énergie est un véhicule sous-marin.  Advantageously, the vehicle of the power generation system is an underwater vehicle.
Dans des modes particuliers de réalisation, les moyens de production d'énergie électrique à partir de l'énergie cinétique du sous-marin sont des hydro-générateurs.  In particular embodiments, the means for producing electrical energy from the kinetic energy of the submarine are hydro-generators.
Dans des modes particuliers de réalisation, les moyens de stockage de l'énergie électrique produite sont des batteries et/ou des moyens de synthétisation d'ammoniac.  In particular embodiments, the means for storing the electrical energy produced are batteries and / or ammonia synthesizing means.
Présentation des figures Presentation of figures
L'invention sera mieux comprise à la lecture de la description suivante, donnée à titre d'exemple nullement limitatif, et faite en se référant aux figures qui représentent :  The invention will be better understood on reading the following description, given by way of non-limiting example, and with reference to the figures which represent:
- figure 1 : une vue en perspective d'un exemple de réalisation d'un aéronef selon un premier mode de réalisation,  FIG. 1: a perspective view of an exemplary embodiment of an aircraft according to a first embodiment,
- figure 2 : une vue de coté représentant schématiquement un autre exemple de réalisation d'un ballon d'un aéronef selon la figure 1 , - figure 3 : une vue en perspective d'une des extrémités latérale d'un ballon d'un aéronef selon la figure 1 ,  FIG. 2 is a side view schematically showing another embodiment of a balloon of an aircraft according to FIG. 1; FIG. 3 is a perspective view of one of the lateral ends of a balloon of an aircraft; according to Figure 1,
- figure 4 : une vue en perspective de l'autre extrémité latérale d'un ballon d'un aéronef selon la figure 1 ,  FIG. 4 is a perspective view of the other lateral end of a balloon of an aircraft according to FIG. 1;
- figure 5 : une vue en perspective de moyens de contrôle de l'orientation du ballon d'un aéronef selon la figure 1 , autour d'un axe de lacet,  FIG. 5: a perspective view of means for controlling the orientation of the balloon of an aircraft according to FIG. 1, around a yaw axis,
- figure 6 : une vue en perspective d'un exemple de réalisation d'un aéronef selon un deuxième mode de réalisation,  FIG. 6: a perspective view of an exemplary embodiment of an aircraft according to a second embodiment,
- figure 7 : une vue en perspective d'un exemple de réalisation d'un aéronef selon un troisième mode de réalisation dans une première position,  FIG. 7: a perspective view of an exemplary embodiment of an aircraft according to a third embodiment in a first position,
- figure 8 : une vue en perspective d'un aéronef de la figure 7 dans une seconde position. Description détaillée de l'invention - Figure 8: a perspective view of an aircraft of Figure 7 in a second position. Detailed description of the invention
La présente invention est relative, selon un premier aspect, à un aéronef 10 comprenant un ballon 100 s'étendant entre deux extrémités latérales 101 et 101 ' selon un axe R de rotation. Le ballon 100 peut être sensiblement de forme sphéroïde allongée se développant autour de l'axe R, l'axe R étant préférentiellement un axe de révolution dudit ballon 100, tel que représenté par la figure 1 . De manière alternative, dans d'autres exemples de réalisation, le ballon 100 peut être de forme cylindrique, torique, ou de toute autre forme.  The present invention relates, in a first aspect, to an aircraft 10 comprising a balloon 100 extending between two lateral ends 101 and 101 'along an axis R of rotation. The balloon 100 may be substantially of elongate spheroidal shape developing around the axis R, the axis R being preferably an axis of revolution of said balloon 100, as represented by FIG. 1. Alternatively, in other exemplary embodiments, the balloon 100 may be of cylindrical, toric, or any other shape.
Comme représenté par la figure 1 , le ballon 100 est inscrit dans un plan médian P, perpendiculaire à l'axe R, disposé à égale distance de chacune des extrémités latérales 101 et 101 ' du ballon 100.  As represented by FIG. 1, the balloon 100 is inscribed in a median plane P, perpendicular to the axis R, placed equidistant from each of the lateral ends 101 and 101 'of the balloon 100.
Le ballon 100 peut être formé par une enveloppe 102 étanche au gaz, se développant, par exemple, autour d'une structure d'arceaux 103.  The balloon 100 may be formed by a gas-tight envelope 102, developing, for example, around an arch structure 103.
La structure d'arceaux 103 du ballon 100 est préférentiellement composée d'une pluralité d'arceaux agencée de sorte que lesdits arceaux sont joints les uns aux autres à chacune des extrémités latérales 101 et 101 ' du ballon 100.  The arch structure 103 of the balloon 100 is preferably composed of a plurality of arches arranged so that said arches are joined to each other at each of the lateral ends 101 and 101 'of the balloon 100.
Par exemple, les arceaux sont mécaniquement liés les uns aux autres par l'intermédiaire de deux flasques 104 et 104' auxquels ils sont fixés par chacune de leurs extrémités, tel que représenté par les figures 1 , 3 et 4. .  For example, the arches are mechanically connected to each other by means of two flanges 104 and 104 'to which they are fixed by each of their ends, as shown in Figures 1, 3 and 4..
Dans l'exemple de réalisation de l'invention représenté par la figure 2, le ballon 100 est de forme cylindrique, et les arceaux sont mécaniquement liés les uns aux autres par le biais de deux jantes auxquels ils sont fixés par chacune de leurs extrémités. Plus précisément, comme illustré sur la figure 2, les arceaux sont fixés à la périphérie des jantes, de sorte que l'axe R coïncide avec le centre de chaque jante. Le centre de chaque jante est définit de manière connu en soi comme étant le point vers lequel s'étendent des rayons 105 dont la jante est dotée.  In the exemplary embodiment of the invention shown in FIG. 2, the balloon 100 is of cylindrical shape, and the hoops are mechanically connected to one another by means of two rims to which they are fixed by each of their ends. More precisely, as illustrated in FIG. 2, the arches are fixed at the periphery of the rims, so that the axis R coincides with the center of each rim. The center of each rim is defined in a manner known per se as being the point towards which rays 105 whose rim is endowed extend.
Les arceaux sont, par exemple, disposés dans des logements de l'enveloppe 102 s'étendant d'une extrémité latérale 101 et 101 ' à l'autre du ballon 100. Plus précisément, chaque logement forme une gaine contenant un arceau. The arches are, for example, arranged in housings of the envelope 102 extending from one lateral end 101 and 101 'to the other of the 100. More precisely, each housing forms a sheath containing a hoop.
Préférentiellement, le ballon 100 est rempli d'un gaz sous pression, par exemple, entre 20mbars et 50mbars suivant les dimensions du ballon 100, de manière à ce que la pression du gaz à l'intérieur du ballon soit supérieure à la pression atmosphérique et que l'enveloppe soit sous tension.  Preferably, the balloon 100 is filled with a gas under pressure, for example, between 20mbars and 50mbars depending on the dimensions of the balloon 100, so that the pressure of the gas inside the balloon is greater than the atmospheric pressure and that the envelope is under tension.
Le gaz sous pression a pour effet de rigidifier le ballon 100, et ainsi d'éviter le flambage radial de la structure d'arceaux 103, diminuant de fait les contraintes mécaniques, telles que des efforts de flexion, auxquelles peut être soumise ladite structure d'arceaux 103.  The gas under pressure has the effect of stiffening the balloon 100, and thus avoiding the radial buckling of the structure of hoops 103, thereby decreasing the mechanical stresses, such as bending forces, to which said structure can be subjected. hoops 103.
Le gaz sous pression est avantageusement un gaz plus léger que l'air, tel que l'hydrogène, de sorte que la masse de l'aéronef 10 soit inférieure à la masse de l'air.  The gas under pressure is advantageously a gas lighter than air, such as hydrogen, so that the mass of the aircraft 10 is less than the mass of the air.
Grâce à cette caractéristique, les forces générées par le poids de l'aéronef 10 sont compensées, il peut alors s'élever en altitude sans dispositif complexe dédié, tel qu'un dispositif de propulsion.  Thanks to this characteristic, the forces generated by the weight of the aircraft 10 are compensated, it can then climb at altitude without a dedicated complex device, such as a propulsion device.
Comme illustré par la figure 2, l'enveloppe 102 peut avantageusement comprendre des coussins 106 répartis autour de sa périphérie, contenant un gaz sous pression. Ces coussins 106 sont, par exemple, formés entre chaque arceau et se développent entre les deux extrémités latérales 101 et 101 ' du ballon 100. La section droite de chaque coussin 106 comprend une portion concave reliée à une portion convexe. Le rayon de la portion concave est supérieur au rayon de la portion convexe. Ces coussins 106 permettent de réduire les contraintes mécaniques subies par l'enveloppe 102, et permettent de diminuer la traînée du ballon 100 en formant des reliefs sur ledit ballon 100.  As illustrated in Figure 2, the casing 102 may advantageously comprise cushions 106 distributed around its periphery, containing a gas under pressure. These cushions 106 are, for example, formed between each arch and develop between the two lateral ends 101 and 101 'of the balloon 100. The cross section of each cushion 106 comprises a concave portion connected to a convex portion. The radius of the concave portion is greater than the radius of the convex portion. These cushions 106 make it possible to reduce the mechanical stresses experienced by the envelope 102, and make it possible to reduce the drag of the balloon 100 by forming reliefs on said balloon 100.
L'aéronef 10 comprend des moyens de liaison 1 10 destinés à être reliés au sol par un câble 109.  The aircraft 10 comprises connecting means 1 10 intended to be connected to the ground by a cable 109.
Préférentiellement, les moyens de liaison 1 10 comportent deux branches latérales 1 1 1 et 1 1 1 ' jointes l'une à l'autre en un point de liaison 1 15. Le ballon 100 est monté, sur lesdites deux branches latérales 1 1 1 et 1 1 1 ', mobile en rotation autour de l'axe R.  Preferably, the connecting means 1 10 comprise two lateral branches 1 1 1 and 1 1 1 'joined to one another at a connection point 1 15. The balloon 100 is mounted on said two lateral branches 1 1 1 and 1 1 1 ', mobile in rotation about the axis R.
Avantageusement, les deux branches latérales 1 1 1 et 1 1 1 ' sont formées par un même câble. Dans l'exemple non limitatif illustré par les figures 1 , 3 et 4, chaque branche latérale 1 1 1 ou 1 1 1 ' peut comprendre un tronçon rigide 1 12 ou 1 12' comportant des moyens de pivot, par lesquels elle est articulée à l'une des extrémités latérales 101 ou 101 ' du ballon 100. Le ballon 100 est ainsi apte à pivoter autour de l'axe R, entre les deux branches latérales 1 1 1 et 1 1 1 '. Préférentiellement, les tronçons rigides 1 12 et 1 12' sont parallèles au plan médian P. Advantageously, the two lateral branches 1 1 1 and 1 1 1 'are formed by the same cable. In the nonlimiting example illustrated by FIGS. 1, 3 and 4, each lateral branch 11 or 1 1 'can comprise a rigid section 12 or 12' comprising pivot means, by which it is articulated to one of the lateral ends 101 or 101 'of the balloon 100. The balloon 100 is thus able to pivot about the axis R, between the two lateral branches 1 1 1 and 1 1 1'. Preferably, the rigid sections 1 12 and 1 12 'are parallel to the median plane P.
Afin de diminuer les contraintes mécaniques, dans les moyens de pivot, générées par les efforts de tension auxquels sont soumis les moyens de liaison 1 10, les tronçons rigides 1 12 et 1 12' peuvent être joints l'un à l'autre, par le biais d'un lien 1 13 fixé à une de leurs extrémités, du côté opposé au point de liaison 1 15, tel que représenté par la figure 1 . Ce lien est par exemple réalisé en polyéthylène haute densité.  In order to reduce the mechanical stresses, in the pivot means, generated by the tension forces to which the connecting means 1 10 are subjected, the rigid sections 1 12 and 1 12 'can be joined to each other by means of by means of a link 1 13 fixed at one of their ends, on the opposite side to the connection point 1 15, as represented by FIG. 1. This link is for example made of high density polyethylene.
Les moyens de pivot peuvent être réalisés par tout moyen à la portée de l'homme de l'art, tel qu'un arbre engagé en rotation dans un logement par l'intermédiaire d'un palier lisse, etc.  The pivot means can be made by any means within the reach of those skilled in the art, such as a shaft engaged in rotation in a housing by means of a sliding bearing, etc.
Préférentiellement, les branches latérales 1 1 1 et 1 1 1 ' sont flexibles sur une portion de leur longueur, du côté du point de liaison 1 15, et ne présentent pas de capacité d'allongement ou de propriété élastique.  Preferably, the lateral branches 1 1 1 and 1 1 1 'are flexible over a portion of their length, on the side of the connection point 1 15, and have no elongation capacity or elastic property.
Avantageusement, les moyens de liaison 1 10 et le câble 109 présentent une résistance importante en tension et sont réalisés, par exemple, en matériau polymère, tel qu'en polyéthylène haute densité.  Advantageously, the connection means 1 10 and the cable 109 have a high voltage resistance and are made, for example, of a polymer material, such as high density polyethylene.
Avantageusement, le câble 109 peut comprendre un conduit de gaz alimenté en gaz sous pression par un réservoir de gaz, ledit conduit étant apte à alimenter l'enveloppe 102 du ballon 100 en gaz sous pression.  Advantageously, the cable 109 may comprise a gas duct supplied with gas under pressure by a gas tank, said duct being able to supply the casing 102 of the balloon 100 with pressurized gas.
L'aéronef 10 comprend avantageusement au moins un moteur 120 solidaire d'une des branches latérales 1 1 1 ou 1 1 1 ' des moyens de liaison 1 10, apte à entraîner le ballon 100 en rotation autour de l'axe R selon une vitesse de rotation variable. La rotation du ballon 100 est destinée à entraîner l'aéronef 10 en déplacement, par exemple, en phase d'ascension, comme expliqué ci- après.  The aircraft 10 advantageously comprises at least one motor 120 integral with one of the lateral branches 1 1 1 or 1 1 1 'connecting means 1 10, adapted to drive the balloon 100 in rotation about the axis R according to a speed variable rotation. The rotation of the balloon 100 is intended to drive the aircraft 10 in displacement, for example, in the ascent phase, as explained below.
Comme représenté par les figures 1 et 4, le moteur 120 peut être fixé à une des branches latérales 1 1 1 ou 1 1 1 ', par tout moyen connu en soi. Avantageusement, le moteur 120 est alimenté en énergie électrique par une source d'alimentation électrique telle que des batteries alimentées en énergie par un générateur électrique, non représenté sur les figures, par exemple fixé à l'une des extrémités latérales 101 ou 101 ' du ballon 100, et dont le rotor est apte à être entraîné en rotation par une ou des hélices. Ces hélices peuvent avantageusement être fixées sur chaque tronçon rigide 1 12 ou 1 12'. La source d'alimentation électrique peut également provenir de moyens de production d'énergie électrique quelconques, au sol, reliés au moteur 120 via un câble électrique cheminant dans le câble 109. As represented by FIGS. 1 and 4, the motor 120 can be fastened to one of the lateral branches 1 1 1 or 1 1 1 ', by any means known per se. Advantageously, the motor 120 is supplied with electrical energy by a power supply source such as batteries powered by an electric generator, not shown in the figures, for example attached to one of the lateral ends 101 or 101 'of the 100, and whose rotor is adapted to be rotated by one or more propellers. These propellers may advantageously be fixed on each rigid section 1 12 or 1 12 '. The power source may also come from any electrical power generating means, on the ground, connected to the motor 120 via an electric cable running in the cable 109.
Avantageusement, le moteur 120 est apte à entraîner le ballon 100 à une vitesse angulaire telle que la vitesse tangentielle en un point du ballon 100, est supérieure à la vitesse du vent soufflant au voisinage de ce point.  Advantageously, the motor 120 is capable of driving the balloon 100 at an angular velocity such that the tangential velocity at a point of the balloon 100 is greater than the speed of the wind blowing in the vicinity of this point.
Grâce à cette caractéristique, le ballon 100 peut exploiter le phénomène physique appelé « effet Magnus » pour augmenter sa portance. Pour rappel, l'effet Magnus est le phénomène physique par lequel, lorsqu'un corps est en rotation dans l'air, il entraîne, par frottement, un volume d'air en contact avec sa surface. De ce fait, lorsque le corps se déplace dans l'air, la vitesse du volume d'air est accélérée lorsqu'elle est de même sens que la vitesse tangentielle d'un point de la surface du corps, formant alors une zone de dépression. A l'inverse, la vitesse du volume d'air est freinée lorsqu'elle est de sens inverse à la vitesse tangentielle d'un point de la surface du corps, formant alors une zone de surpression.  With this feature, the balloon 100 can exploit the physical phenomenon called "Magnus effect" to increase its lift. As a reminder, the Magnus effect is the physical phenomenon by which, when a body is rotating in the air, it causes, by friction, a volume of air in contact with its surface. As a result, as the body moves through the air, the velocity of the air volume is accelerated when it is in the same direction as the tangential velocity of a point on the body surface, forming a zone of depression. . Conversely, the speed of the air volume is slowed when it is in the opposite direction to the tangential velocity of a point on the surface of the body, forming a zone of overpressure.
Préférentiellement, lorsque le ballon 100 est disposé de sorte que l'axe R est sensiblement horizontal, tel qu'illustré par la figure 1 , le ballon 100 est entraîné dans un sens de rotation selon lequel une zone de surpression est apte à se former au voisinage de la surface située au-dessous du ballon 100, c'est-à-dire entre le ballon 100 et le sol. Selon ce sens de rotation du ballon 100, une zone de dépression est apte à se former au voisinage de la surface située au-dessus du ballon 100, c'est-à-dire symétriquement opposé à la zone de surpression par rapport à l'axe R. Les zones de surpression et de dépression génèrent une augmentation de la portance du ballon 100. De ce fait, la portance générée est apte à permettre le déplacement de l'aéronef 10. On contrôle donc la variation de la portance en contrôlant la variation de la vitesse de rotation du ballon. Preferably, when the balloon 100 is arranged so that the axis R is substantially horizontal, as illustrated in FIG. 1, the balloon 100 is driven in a direction of rotation in which an overpressure zone is able to form at near the surface below the balloon 100, that is to say between the balloon 100 and the ground. According to this direction of rotation of the balloon 100, a depression zone is able to form in the vicinity of the surface situated above the balloon 100, that is to say symmetrically opposite to the zone of overpressure with respect to the R axis The overpressure and depression zones generate an increase in the lift of the balloon 100. As a result, the lift generated is able to allow the displacement of the aircraft 10. The variation of the lift is thus controlled by controlling the variation of the rotational speed of the balloon.
De manière avantageuse, l'aéronef 10 comprend des moyens de contrôle de l'orientation du ballon 100 par rapport au sens du vent, et plus particulièrement, par rapport à un axe dit « axe de lacet » AA' et un axe dit « axe de roulis » BB'.  Advantageously, the aircraft 10 comprises means for controlling the orientation of the balloon 100 relative to the direction of the wind, and more particularly, with respect to an axis called "yaw axis" AA 'and an axis called "axis of roll »BB '.
L'axe de lacet AA' et l'axe de roulis BB', sensiblement perpendiculaires l'un à l'autre, sont compris dans le plan médian P et sont perpendiculaires à l'axe R du ballon 100. Plus précisément, tel qu'illustré par la figure 1 , lorsque le ballon 100 est disposé de sorte que l'axe R est sensiblement horizontal, l'axe de lacet AA' est sensiblement vertical, et l'axe de roulis BB' est sensiblement horizontal.  The yaw axis AA 'and the roll axis BB', substantially perpendicular to each other, are included in the median plane P and are perpendicular to the axis R of the balloon 100. More precisely, as shown in FIG. 1, when the balloon 100 is arranged so that the axis R is substantially horizontal, the yaw axis AA 'is substantially vertical, and the roll axis BB' is substantially horizontal.
Dans des modes particuliers de réalisation, l'aéronef 10 comprend au moins un organe stabilisateur comprenant une surface plane dite « surface d'orientation », par exemple, perpendiculaire à l'axe R. L'organe stabilisateur est destiné à assurer la stabilité du ballon 100 par rapport à l'axe de lacet AA', lorsque le vent souffle sur le ballon 100. Ainsi, le ballon 100 tend à être disposé, par rapport au vent, de sorte que le vent souffle selon une direction perpendiculaire à l'axe R, comme par exemple représenté par la figure 1 .  In particular embodiments, the aircraft 10 comprises at least one stabilizing member comprising a flat surface called "orienting surface", for example, perpendicular to the axis R. The stabilizing member is intended to ensure the stability of the plane. balloon 100 relative to the yaw axis AA ', when the wind blows on the balloon 100. Thus, the balloon 100 tends to be arranged, with respect to the wind, so that the wind blows in a direction perpendicular to the R axis, as shown for example in Figure 1.
L'organe stabilisateur comprend, par exemple, une couronne 131 rigide se développant autour du ballon 100, autour de l'axe R, telle qu'illustrée par la figure 1 . La couronne 131 s'étend entre un bord périphérique interne, par lequel elle est jointe à l'enveloppe 102 ou à la structure d'arceaux 103 du ballon 100, et un bord périphérique externe. La couronne 131 est fixe par rapport au ballon 100, de sorte que, lorsque le ballon 100 est entraîné en rotation, la couronne 131 l'est également. Préférentiellement, mais non limitativement, la couronne 131 se développe dans le plan médian P.  The stabilizing member comprises, for example, a rigid ring 131 developing around the balloon 100, about the axis R, as illustrated in FIG. The ring 131 extends between an inner peripheral edge, through which it is joined to the casing 102 or to the arch structure 103 of the balloon 100, and an outer peripheral edge. The ring 131 is fixed relative to the balloon 100, so that when the balloon 100 is rotated, the ring 131 is also rotated. Preferably, but not exclusively, the ring 131 develops in the median plane P.
Lorsque l'organe stabilisateur comprend une couronne 131 , une branche centrale 1 14 peut relier le point de liaison 1 15 des branches latérales 1 1 1 et 1 1 1 ' et ladite couronne 131 . La branche centrale 1 14 permet avantageusement de répartir les contraintes internes, tels que des efforts de traction et de compression, de part et d'autre du ballon 100, dus aux zones de surpression et dépression. De plus, le moteur 120 peut être rigidement fixé à la branche centrale 1 14 et être pourvu d'un organe d'entraînement destiné à évoluer sur un chemin de roulement se développant le long de la périphérie externe de la couronne 131 . Alternativement, le chemin de roulement peut se développer autour de la périphérie du ballon 100, sur la structure en arceaux 103. When the stabilizing member comprises a ring 131, a central branch 1 14 can connect the point of connection 1 15 side branches 1 1 1 and 1 1 1 'and said ring 131. The central branch 1 14 advantageously distributes the internal stresses, such as tensile and compressive forces, on either side of the balloon 100, due to the overpressure and depression zones. In addition, the motor 120 may be rigidly fixed to the central branch 1 14 and be provided with a drive member intended to evolve on a raceway developing along the outer periphery of the ring 131. Alternatively, the raceway can develop around the periphery of the balloon 100, on the arch structure 103.
Dans un exemple de réalisation, l'organe d'entraînement et le chemin de roulement sont respectivement formés par un ou plusieurs galets et un rail, le ou les galets étant engagés en roulement sans glissement dans le rail. Suivant un autre exemple non limitatif, l'organe d'entraînement et le chemin de roulement sont formés par une crémaillère, dans laquelle l'organe d'entraînement est une roue dentée en relation d'engrènement avec un chemin de roulement cranté.  In an exemplary embodiment, the drive member and the raceway are respectively formed by one or more rollers and a rail, the roller or rollers being engaged in rolling without sliding in the rail. According to another nonlimiting example, the drive member and the raceway are formed by a rack, wherein the drive member is a gear in meshing relationship with a toothed raceway.
Dans un exemple alternatif de réalisation non représenté sur les figures, l'organe stabilisateur peut avantageusement comprendre une pluralité de couronnes, identiques à la couronne 131 , le long de l'axe R, disposées, par exemple, de part et d'autre du plan médian P.  In an alternative embodiment not shown in the figures, the stabilizing member may advantageously comprise a plurality of rings, identical to the ring 131, along the axis R, arranged, for example, on either side of the median plane P.
Additionnellement ou alternativement, l'organe stabilisateur comprend deux ailettes latérales 132 et 132' montées mobiles en rotation par rapport au ballon 100, respectivement à chacune de ses extrémités latérales 101 et 101 '. Les ailettes latérales 132 et 132' peuvent avantageusement être respectivement fixées à chacun des tronçons rigides. Les ailettes latérales 132 et 132' comprennent une surface sensiblement plane, perpendiculaire à l'axe R. Cette caractéristique permet d'augmenter la portance du ballon 100 et de limiter un phénomène physique appelé « traînée induite » par la portance. Les ailettes latérales 132 et 132' génèrent également une portance dite « latérale » permettant la stabilité du ballon lors, notamment, de la modification de son orientation selon l'axe de lacet AA'.  Additionally or alternatively, the stabilizing member comprises two lateral wings 132 and 132 'mounted rotatably with respect to the balloon 100, respectively at each of its lateral ends 101 and 101'. The lateral wings 132 and 132 'can advantageously be respectively attached to each of the rigid sections. The lateral wings 132 and 132 'comprise a substantially flat surface perpendicular to the axis R. This feature makes it possible to increase the lift of the balloon 100 and to limit a physical phenomenon called "drag induced" by the lift. The lateral fins 132 and 132 'also generate a so-called "lateral" lift for the stability of the balloon during, in particular, the modification of its orientation along the yaw axis AA'.
Pour rappel ce phénomène est caractérisé par des vortex générés par un déplacement de l'air en état de surpression, le long de chaque extrémité latérale 101 et 101 ' du ballon 100, vers l'air en état de dépression, combiné à l'avancement du ballon 100 et sa rotation autour de l'axe R. Cette traînée induite apporte une résistance supplémentaire à l'avancement du ballon 100, en plus de la traînée du ballon 100. Les moyens de contrôle de l'orientation du ballon 100 autour de l'axe de lacet AA' comprennent préférentiellement une dérive 133 fixée à distance du ballon 100 par deux bras respectivement solidaires de chacune des extrémités latérales 101 et 101 ' dudit ballon 100, tel que représenté par les figures 1 , 3, 4 et 5. As a reminder, this phenomenon is characterized by vortices generated by a displacement of the air in the state of overpressure, along each lateral end 101 and 101 'of the balloon 100, towards the air in a state of depression, combined with the progress of the balloon 100 and its rotation about the axis R. This induced drag provides additional resistance to the advancement of the balloon 100, in addition to the trail of the balloon 100. The means for controlling the orientation of the balloon 100 around the yaw axis AA 'preferably comprise a fin 133 fixed at a distance from the balloon 100 by two arms respectively integral with each of the lateral ends 101 and 101' of said balloon 100, such as as shown in Figures 1, 3, 4 and 5.
Avantageusement, les deux bras sont chacun rigidement fixés au tronçon rigide 1 12 ou 1 12' d'une branche latérale 1 1 1 ou 1 1 1 ' des moyens de liaison 1 10, de sorte que chacun des bras forme un angle, par exemple un angle droit, avec le tronçon rigide 1 12 ou 1 12' auquel il est fixé.  Advantageously, the two arms are each rigidly fixed to the rigid section 1 12 or 1 12 'of a lateral branch 1 1 1 or 1 1 1' connecting means 1 10, so that each arm forms an angle, for example a right angle, with the rigid section 1 12 or 1 12 'to which it is attached.
La forme de la dérive 133 comprend une surface, sensiblement plane, dont l'orientation par rapport à l'axe R modifie l'orientation du ballon en lacet par rapport au vent.  The shape of the fin 133 comprises a substantially planar surface whose orientation relative to the axis R changes the yaw balloon orientation with respect to the wind.
La dérive 133 est avantageusement pourvue d'un organe de direction, apte à modifier l'orientation du ballon 100 autour de l'axe du lacet AA'. Cet organe de direction 134 peut avantageusement être constitué par un moteur, en relation cinématique avec la dérive 133, apte à modifier l'orientation de la dérive 133 par rapport au plan médian P de sorte qu'elle forme un angle non nul avec ledit plan P. Un tel moteur est représenté par la figure 4. L'organe de direction peut alternativement comprendre une gouverne disposée sur une portion de la périphérie de la dérive 133. La gouverne est apte à pivoter par rapport à la dérive 133 grâce à des moyens d'actionnement, en vue de former un angle non nul avec le plan médian P.  The fin 133 is advantageously provided with a steering member capable of modifying the orientation of the balloon 100 around the yaw axis AA '. This steering member 134 may advantageously be constituted by a motor, in kinematic relation with the fin 133, able to modify the orientation of the fin 133 with respect to the median plane P so that it forms a non-zero angle with said plane P. Such a motor is represented by FIG. 4. The steering member may alternatively comprise a rudder disposed on a portion of the periphery of the rudder 133. The rudder is able to pivot relative to the rudder 133 by means of actuating means for forming a non-zero angle with the median plane P.
Avantageusement, l'organe stabilisateur a pour effet de favoriser la rotation selon l'axe de lacet AA', dans la mesure où sa surface plane matérialise une surface d'appui favorisant l'apparition d'un moment de force à l'origine de la rotation du ballon 100.  Advantageously, the stabilizing member has the effect of promoting rotation along the yaw axis AA ', insofar as its flat surface materializes a support surface favoring the appearance of a moment of force at the origin of the rotation of the balloon 100.
Avantageusement, la dérive 133 peut générer un angle d'incidence de l'organe stabilisateur d'environ vingt degrés. Cet angle d'incidence est tel qu'il permet de générer une portance latérale de l'aéronef 10 suffisante lors de la modification de l'orientation de l'aéronef 10.  Advantageously, the drift 133 can generate an angle of incidence of the stabilizing member of about twenty degrees. This angle of incidence is such that it makes it possible to generate a lateral lift of the aircraft 10 that is sufficient when the orientation of the aircraft 10 is modified.
L'angle d'incidence est l'angle formé par le vecteur vitesse du vent relatif soufflant sur l'aéronef 10 et l'organe stabilisateur. Dans des modes particuliers de réalisation, les moyens de contrôle de l'orientation du ballon 100 comprennent des moyens adaptés à modifier les longueurs respectives des branches latérales 1 1 1 , 1 1 1 ' de sorte à contrôler le rapport entre lesdites longueurs afin de contrôler l'orientation du ballon autour de l'axe de roulis BB'. The angle of incidence is the angle formed by the relative wind speed vector blowing on the aircraft 10 and the stabilizing member. In particular embodiments, the means for controlling the orientation of the balloon 100 comprise means adapted to modify the respective lengths of the lateral branches 1 1 1, 1 1 1 'so as to control the ratio between said lengths in order to control the orientation of the ball around the roll axis BB '.
Lesdits moyens sont, par exemple, un moteur fixé au point de liaison 1 15 des branches latérales 1 1 1 et 1 1 1 '. Le moteur est apte à agir sur les deux branches latérales 1 1 1 et 1 1 1 ' des moyens de liaison 1 10 en vue d'entraîner en rotation le ballon 100 autour dudit axe de roulis BB'.  Said means are, for example, a motor fixed to the connection point 1 15 of the side branches 1 1 1 and 1 1 1 '. The motor is able to act on the two lateral branches 1 1 1 and 1 1 1 'connecting means 1 10 to rotate the balloon 100 about said roll axis BB'.
Plus précisément, le moteur est en relation d'entraînement avec les deux branches latérales 1 1 1 et 1 1 1 ', de manière à être apte à se déplacer le long du câble formant lesdites branches latérales 1 1 1 et 1 1 1 ', et ainsi à diminuer la longueur d'une des branches latérales 1 1 1 et 1 1 1 ' tout en allongeant la longueur de l'autre branche latérale. On comprend que la modification de la longueur relative des branches a pour effet d'incliner le ballon 100 autour de l'axe de roulis BB'.  More specifically, the motor is in drive relation with the two lateral branches 1 1 1 and 1 1 1 ', so as to be able to move along the cable forming said side branches 1 1 1 and 1 1 1', and thus to reduce the length of one of the side branches 1 1 1 and 1 1 1 while extending the length of the other side branch. It is understood that the modification of the relative length of the branches has the effect of inclining the balloon 100 around the roll axis BB '.
Par ailleurs, afin de pouvoir exploiter des vents soufflants dans une large plage de vitesses, et dont le sens et la direction sont variables, l'aéronef 10 est apte à acquérir des données représentatives des caractéristiques des vents et à piloter les moyens de contrôle de l'orientation du ballon 100 en fonction de ces caractéristiques.  Furthermore, in order to be able to exploit blowing winds in a wide range of speeds, and whose direction and direction are variable, the aircraft 10 is able to acquire data representative of the characteristics of the winds and to control the control means of the aircraft. the orientation of the balloon 100 according to these characteristics.
A cet effet, l'aéronef 10 comprend des moyens d'acquisition des caractéristiques du vent soufflant sur le ballon 100, tel qu'un anémomètre, apte à envoyer des données représentatives des caractéristiques du vent à des moyens de traitement et de commande, tel qu'un microcontrôleur. L'aéronef 10 comprend également des moyens d'acquisition de paramètres propres au ballon 100, tel qu'une centrale inertielle, connue en soi, apte à transmettre des données représentatives de l'orientation, par exemple, du ballon 100 par rapport au vent aux moyens de traitement et de commande. Les moyens d'acquisition de paramètres propres au ballon 100 peuvent être aptes à transmettre des données représentatives de la vitesse et de l'accélération du ballon 100 aux moyens de traitement et de commande. Les moyens de traitement et de commande peuvent, avantageusement, être embarqués sur le ballon 100 et sont aptes à asservir le moteur 120 et les moyens de contrôle de l'orientation du ballon 100 en fonction des données reçues des moyens d'acquisition des caractéristiques du vent et de paramètres propres au ballon 100. Ainsi, l'aéronef 10 est apte à modifier, notamment, l'orientation et la vitesse de rotation du ballon 100 en fonction de la vitesse, de la direction et/ou du sens du vent. For this purpose, the aircraft 10 comprises means for acquiring the characteristics of the wind blowing on the balloon 100, such as an anemometer, able to send data representative of the characteristics of the wind to processing and control means, such as than a microcontroller. The aircraft 10 also comprises means for acquiring parameters specific to the balloon 100, such as an inertial unit, known per se, capable of transmitting data representative of the orientation, for example, of the balloon 100 with respect to the wind. the processing and control means. The means for acquiring parameters specific to the balloon 100 may be able to transmit data representative of the speed and the acceleration of the balloon 100 to the processing and control means. The processing and control means may, advantageously, be embedded on the balloon 100 and are able to slave the motor 120 and the means for controlling the orientation of the balloon 100 as a function of the data received from the means for acquiring the characteristics of the balloon 100. Wind and parameters specific to the balloon 100. Thus, the aircraft 10 is able to modify, in particular, the orientation and the rotational speed of the balloon 100 as a function of the speed, the direction and / or the direction of the wind.
Alternativement, les moyens de traitement et de commande peuvent être au sol. Avantageusement, les moyens de traitement et de commande peuvent être reliés aux moyens d'acquisition des caractéristiques du vent et de paramètres propres au ballon 100, et au moteur 120 et aux moyens de contrôle de l'orientation du ballon 100 via un câble apte à transmettre des données, cheminant dans le câble 109 et solidaire des moyens de liaison 1 10.  Alternatively, the processing and control means may be on the ground. Advantageously, the processing and control means may be connected to the means for acquiring the characteristics of the wind and parameters specific to the balloon 100, and to the engine 120 and to the means for controlling the orientation of the balloon 100 via a cable suitable for transmit data, running in the cable 109 and secured to the connecting means 1 10.
Dans un deuxième mode de réalisation de l'aéronef 10, tel que représenté schématiquement par la figure 6, le ballon 100, les moyens de liaison 1 10 et le moteur apte à entraîner le ballon 100 en rotation autour de l'axe R, forment un premier ensemble de l'aéronef 10. Les moyens de contrôle de l'orientation du ballon 100 du premier ensemble, par rapport au vent, comportent un second ensemble. Le second ensemble est sensiblement identique au premier ensemble en ce qu'il comporte également un ballon 100", des moyens de liaison 1 10" et un moteur apte à entraîner en rotation le ballon 100" autour d'un axe R", par un moteur solidaire d'une des branches des moyens de liaison 1 10, de manière similaire au premier ballon 100.  In a second embodiment of the aircraft 10, as shown schematically in FIG. 6, the balloon 100, the connecting means 1 10 and the engine capable of driving the balloon 100 in rotation about the axis R, form a first set of the aircraft 10. The means for controlling the orientation of the balloon 100 of the first set, with respect to the wind, comprise a second set. The second set is substantially identical to the first set in that it also comprises a balloon 100 ", connecting means 1 10" and a motor adapted to rotate the balloon 100 "about an axis R", by a motor integral with one of the branches of the connecting means 1 10, similarly to the first balloon 100.
L'orientation du ballon 100 du premier ensemble est contrôlée en contrôlant la vitesse de rotation du ballon 100" du second ensemble par rapport à la vitesse de rotation du ballon 100 du premier ensemble.  The orientation of the balloon 100 of the first set is controlled by controlling the speed of rotation of the balloon 100 "of the second set relative to the rotational speed of the balloon 100 of the first set.
Avantageusement, l'axe R du ballon 100 du premier ensemble et l'axe R" du ballon 100' du second ensemble sont destinés à former un angle non nul, de sorte à former un dièdre.  Advantageously, the axis R of the balloon 100 of the first set and the axis R "of the balloon 100 'of the second set are intended to form a non-zero angle, so as to form a dihedron.
De manière avantageuse, la valeur de l'angle formé par les axes R et Advantageously, the value of the angle formed by the axes R and
R" est ajustable par la rotation d'un ou des ballons 100 et 100" autour de leur axe de roulis respectif. Les premier et second ballons 100 et 100" peuvent également comprendre au moins un organe stabilisateur, tel que défini précédemment. R "is adjustable by the rotation of one or more balloons 100 and 100" around their respective roll axis. The first and second balloons 100 and 100 "may also comprise at least one stabilizing member, as defined above.
L'aéronef 10 selon les premier et deuxième modes de réalisation, peut avantageusement réaliser des vols dits « dynamiques », c'est-à-dire des vols durant lesquels l'aéronef 10 est en mouvement de manière constante et s'adapte en continu aux caractéristiques du vent.  The aircraft 10 according to the first and second embodiments, can advantageously perform so-called "dynamic" flights, that is to say flights during which the aircraft 10 is moving constantly and continuously adapts to the characteristics of the wind.
Ainsi, préférentiellement, lorsque la vitesse du vent est faible, par exemple de zéro à environ huit ou neuf mètres par seconde, le ballon 100 est destiné à adopter une trajectoire circulaire ou de la forme d'une lemniscate ou d'une sinusoïde. De ce fait, le ballon 100 exploite au maximum les forces générées par l'énergie cinétique du vent telles que la force de portance et la force motrice du vent. Le ballon 100 est alors, par exemple, en position sensiblement verticale, c'est-à-dire que l'axe R du ballon 100 est sensiblement vertical. Dans cette position, l'angle de lacet AA' est alors sensiblement horizontal, de même que l'angle de roulis BB'.  Thus, preferably, when the wind speed is low, for example from zero to about eight or nine meters per second, the balloon 100 is intended to adopt a circular trajectory or in the form of a lemniscate or a sinusoid. As a result, the balloon 100 maximizes the forces generated by the kinetic energy of the wind such as the lift force and the driving force of the wind. The balloon 100 is then, for example, in a substantially vertical position, that is to say that the axis R of the balloon 100 is substantially vertical. In this position, the yaw angle AA 'is then substantially horizontal, as is the roll angle BB'.
A titre d'exemple non limitatif, la vitesse tangentielle d'un point de l'enveloppe 102 du ballon 100 compris dans le plan médian P est égale à deux ou trois fois la vitesse du vent soufflant au voisinage de ce point.  By way of nonlimiting example, the tangential velocity of a point of the envelope 102 of the balloon 100 included in the median plane P is equal to two or three times the speed of the wind blowing in the vicinity of this point.
Lorsque la vitesse du vent est moyenne, par exemple d'environ huit ou neuf mètres par seconde à environ vingt mètres par seconde, le ballon 100 est également destiné à adopter une position sensiblement verticale. De plus, le ballon 100 est destiné à suivre une trajectoire rectiligne et à se déplacer dans le sens du vent.  When the wind speed is average, for example from about eight or nine meters per second to about twenty meters per second, the balloon 100 is also intended to adopt a substantially vertical position. In addition, the balloon 100 is intended to follow a rectilinear trajectory and to move in the direction of the wind.
A titre d'exemple, la vitesse tangentielle d'un point de l'enveloppe 102 du ballon 100 compris dans le plan médian P est égale à une ou deux fois la vitesse du vent soufflant au voisinage de ce point.  For example, the tangential velocity of a point of the envelope 102 of the balloon 100 included in the median plane P is equal to one or two times the speed of the wind blowing in the vicinity of this point.
Lorsque la vitesse du vent est élevée, par exemple d'environ vingt mètres par seconde à environ quarante mètres par seconde, le ballon 100 est destiné à adopter une position sensiblement horizontale, c'est-à-dire que l'axe R du ballon est sensiblement horizontal. De plus, le ballon 100 est destiné à suivre une trajectoire rectiligne et à se déplacer dans le sens du vent.  When the wind speed is high, for example from about twenty meters per second to about forty meters per second, the balloon 100 is intended to adopt a substantially horizontal position, that is to say that the axis R of the balloon is substantially horizontal. In addition, the balloon 100 is intended to follow a rectilinear trajectory and to move in the direction of the wind.
Dans un premier mode de fonctionnement, l'aéronef 10 tel que décrit précédemment dans les premier et deuxième modes de réalisation, peut être mis en œuvre dans un système de production d'énergie, dans lequel ledit aéronef 10 est destiné à être relié au rotor d'une machine tournante réversible par le câble 109. In a first mode of operation, the aircraft 10 as described previously in the first and second embodiments, can be implemented in a power generation system, wherein said aircraft 10 is intended to be connected to the rotor of a reversible rotary machine by the cable 109.
Avantageusement, le câble 109 est destiné à être enroulé autour du rotor de la machine tournante.  Advantageously, the cable 109 is intended to be wound around the rotor of the rotating machine.
La machine tournante peut avantageusement être un générateur électrique réversible, apte à générer de l'énergie et/ou à entraîner l'aéronef 10 en déplacement. Préférentiellement, mais non limitativement, le générateur électrique est fixé au sol.  The rotating machine may advantageously be a reversible electric generator, capable of generating energy and / or driving the aircraft 10 on the move. Preferably, but not exclusively, the electric generator is fixed to the ground.
Dans ce premier mode de fonctionnement, l'aéronef 10 est destiné à réaliser des cycles de va et vient entre un point haut et un point bas, lors desquels, il est successivement en phase d'ascension et en phase de descente.  In this first mode of operation, the aircraft 10 is intended to cycle back and forth between a high point and a low point, during which, it is successively in the ascent phase and in the descent phase.
Lorsque l'aéronef 10 est entraîné en phase d'ascension par la rotation du ballon 100, tel que décrit précédemment, la machine tournante fonctionne en générateur électrique. En phase d'ascension, l'aéronef 10 est destiné à dérouler progressivement le câble 109 enroulé autour du rotor, entraînant ce dernier en rotation. Lorsqu'une longueur prédéterminée du câble 109 est déroulée, le générateur électrique devient actionneur et entraîne en rotation le rotor de sorte à enrouler le câble 109 et à entraîner l'aéronef 10 en phase de descente. Une fois le câble 109 enroulé autour du rotor, sur une longueur prédéterminée, le rotor du générateur électrique est entraîné en rotation par l'aéronef 10 en phase d'ascension. Le générateur électrique est, par exemple, relié électriquement à un réseau électrique de sorte à pouvoir alimenter ce réseau avec l'électricité qu'il produit.  When the aircraft 10 is driven in the ascent phase by the rotation of the balloon 100, as described above, the rotating machine operates as an electric generator. In the ascent phase, the aircraft 10 is intended to gradually unwind the cable 109 wound around the rotor, driving the latter in rotation. When a predetermined length of the cable 109 is unwound, the electric generator becomes actuator and rotates the rotor so as to wind the cable 109 and to drive the aircraft 10 in the descent phase. Once the cable 109 wound around the rotor, over a predetermined length, the rotor of the electric generator is rotated by the aircraft 10 in the ascent phase. The electric generator is, for example, electrically connected to an electrical network so as to power this network with the electricity it produces.
Avantageusement, la source d'alimentation électrique des moteurs peut être formée par des batteries au sol, reliées à la machine tournante au sol, auxquelles les moteurs sont connectés par un câble apte à conduire l'électricité, cheminant dans le câble 109 et solidaire des moyens de liaison 1 10.  Advantageously, the power source of the motors may be formed by ground batteries, connected to the rotating machine on the ground, to which the motors are connected by a cable capable of conducting electricity, running in the cable 109 and secured to connecting means 1 10.
A titre d'exemple, lorsque la vitesse du vent est très élevée, par exemple supérieure à quarante mètre par seconde, le ballon 100 est destiné à demeurer au sol. Le câble 109 est alors préférentiellement enroulé, sur sensiblement l'ensemble de sa longueur, autour du rotor du générateur électrique. For example, when the wind speed is very high, for example greater than forty meters per second, the balloon 100 is intended to remain on the ground. The cable 109 is then preferably wound on substantially all of its length, around the rotor of the electric generator.
Dans un deuxième mode de fonctionnement, l'aéronef 10 tel que décrit précédemment dans les premier et deuxième modes de réalisation, peut être mis en œuvre dans un système de production d'énergie, dans lequel ledit aéronef 10 est destiné à tracter un véhicule au sol équipé de moyens de production d'énergie électrique en fonction de l'énergie cinétique du véhicule.  In a second mode of operation, the aircraft 10 as described previously in the first and second embodiments, can be implemented in a power generation system, wherein said aircraft 10 is intended to tow a vehicle at ground equipped with means for producing electrical energy according to the kinetic energy of the vehicle.
Préférentiellement, le véhicule est un sous-marin comprenant des moyens de production d'énergie électrique, tel que des hydro-générateurs, aptes à être actionnés par le déplacement du véhicule sous-marin. Pour mémoire, un hydro-générateur comprend une turbine apte à entraîner en rotation un rotor d'un générateur électrique destiné à produire de l'énergie électrique.  Preferably, the vehicle is a submarine comprising means for producing electrical energy, such as hydro-generators, able to be actuated by the displacement of the underwater vehicle. For the record, a hydro-generator comprises a turbine adapted to rotate a rotor of an electric generator for producing electrical energy.
Préférentiellement, l'énergie électrique est en partie consommée par des moyens de synthétisation d'ammoniac, par exemple, par voie de catalyseur céramique. Additionnellement ou alternativement, l'énergie électrique est en partie ou entièrement stockée dans des batteries.  Preferably, the electrical energy is partly consumed by means of ammonia synthesis, for example, by ceramic catalyst. Additionally or alternatively, the electrical energy is partly or entirely stored in batteries.
A titre d'exemple non limitatif, lorsque la vitesse du vent est très élevée, la force motrice du vent, appliquée sur le ballon 100 est suffisante pour que l'aéronef 10 puisse générer une force de traction nécessaire au déplacement du véhicule sous-marin. Pour cette raison, et pour limiter les forces de tension dans les moyens de liaison 1 10, et les contraintes mécaniques dans la structure d'arceaux 103 du ballon 100, ledit ballon 100 est entraîné en rotation de sorte que la vitesse tangentielle d'un point de l'enveloppe 102 du ballon 100, compris dans le plan médian P, est moins élevée que la vitesse du vent soufflant au voisinage de ce point. De plus, pour limiter les efforts de tension dans les moyens de liaison 1 10, les hydroliennes du véhicule sous-marin sont désactivées.  By way of non-limiting example, when the wind speed is very high, the driving force of the wind applied to the balloon 100 is sufficient for the aircraft 10 to generate a traction force necessary for the displacement of the underwater vehicle. . For this reason, and to limit the tension forces in the connecting means 1 10, and the mechanical stresses in the hoops structure 103 of the balloon 100, said balloon 100 is rotated so that the tangential velocity of a point of the envelope 102 of the balloon 100, included in the median plane P, is lower than the speed of the wind blowing in the vicinity of this point. In addition, to limit the voltage stresses in the connecting means 1 10, the marine turbines of the underwater vehicle are deactivated.
Avantageusement, suivant ce mode de réalisation, l'aéronef 10 peut être dirigé vers les vents dont la vitesse est optimale pour la production d'énergie. A titre d'exemple, la vitesse des vents dont l'énergie cinétique est exploitable pour la production d'énergie, est d'environ de huit à neuf mètres par seconde à quarante mètres par seconde. Dans ce deuxième mode de fonctionnement, l'aéronef 10 a été décrit, dans un système de production d'énergie, comme destiné à tracter un véhicule sous-marin, mais il peut alternativement être destiné à tracter un navire ou tout autre type de véhicule marin ou terrestre équipé de moyens de production d'énergie électrique en fonction de l'énergie cinétique du véhicule. Advantageously, according to this embodiment, the aircraft 10 can be directed to winds whose speed is optimal for the production of energy. For example, the speed of the winds whose kinetic energy is exploitable for the production of energy, is about eight to nine meters per second to forty meters per second. In this second mode of operation, the aircraft 10 has been described, in an energy production system, as intended for towing a submarine vehicle, but it can alternatively be intended for towing a ship or any other type of vehicle marine or terrestrial equipped with means of producing electrical energy depending on the kinetic energy of the vehicle.
Dans un troisième mode de réalisation, l'aéronef 10 est destiné à produire de l'énergie électrique à partir d'hélices 150, 150' aptes à entraîner en rotation un rotor d'au moins une machine tournante fixée sur ledit aéronef 10, ladite machine étant apte à générer de l'énergie électrique.  In a third embodiment, the aircraft 10 is intended to produce electrical energy from propellers 150, 150 'able to drive in rotation a rotor of at least one rotating machine fixed on said aircraft 10, said machine being able to generate electrical energy.
Comme illustré par les figures 7 et 8, l'aéronef 10 selon ce troisième mode de réalisation est différent de l'aéronef 10 décrit dans les précédents modes de réalisation, notamment en ce que les moyens de contrôle de l'orientation du ballon 100 autour de l'axe du lacet AA' comprennent des hélices 150, 150' montées mobiles en rotation sur les ailettes latérales 132 et 132' respectivement fixées à chacune des extrémités latérales 101 et 101 ' du ballon 100.  As illustrated by FIGS. 7 and 8, the aircraft 10 according to this third embodiment is different from the aircraft 10 described in the previous embodiments, in particular in that the means for controlling the orientation of the balloon 100 around of the yaw axis AA 'comprise propellers 150, 150' rotatably mounted on the lateral wings 132 and 132 'respectively fixed to each of the lateral ends 101 and 101' of the balloon 100.
Avantageusement, les ailettes latérales 132 et 132' sont identiques à celles décrites précédemment, et s'étendent respectivement selon un axe longitudinal CC et DD', parallèle au plan médian P, entre deux extrémités longitudinales.  Advantageously, the lateral wings 132 and 132 'are identical to those described above, and extend respectively along a longitudinal axis CC and DD', parallel to the median plane P, between two longitudinal ends.
Préférentiellement, mais non limitativement, au moins une hélice 150, 150' est disposée à chacune des extrémités longitudinales des ailettes, de sorte que chaque ailette latérale 132 ou 132' porte une paire d'hélice 150, 150'. Les paires d'hélices 150, 150' sont préférentiellement symétriques l'une par rapport à l'autre selon le plan médian P. Avantageusement, les hélices 150, 150' sont montées sur le bord d'attaque de chaque ailette latérale 132 ou 132'. Pour rappel, le « bord d'attaque » est défini comme étant la surface destinée à faire face au vent.  Preferably, but not exclusively, at least one propeller 150, 150 'is disposed at each of the longitudinal ends of the fins, so that each lateral fin 132 or 132' carries a pair of helices 150, 150 '. The pairs of helices 150, 150 'are preferably symmetrical with respect to each other along the median plane P. Advantageously, the propellers 150, 150' are mounted on the leading edge of each lateral fin 132 or 132 . As a reminder, the "leading edge" is defined as the surface intended to face the wind.
Avantageusement, les hélices 150, 150' sont aptes à entraîner en rotation un rotor d'au moins une machine tournante réversible. Préférentiellement, chaque hélice 150, 150' est fixée au rotor d'une machine tournante réversible. Chaque hélice 150, 150' est donc apte à produire de l'énergie électrique en entraînant le rotor de la machine tournante en rotation, sous l'effet du vent ou à être entraînée en rotation par le rotor, et à générer une force motrice. Advantageously, the propellers 150, 150 'are able to drive in rotation a rotor of at least one reversible rotary machine. Preferably, each propeller 150, 150 'is fixed to the rotor of a reversible rotary machine. Each propeller 150, 150 'is therefore able to produce electrical energy by driving the rotor of the rotating machine in rotation, under the effect of wind or to be rotated by the rotor, and to generate a driving force.
Dans ce mode de réalisation, le ballon 100 est également rempli d'un gaz sous pression, préférentiellement plus léger que l'air, mais la masse de l'aéronef 10 peut être plus importante que celle de l'air.  In this embodiment, the balloon 100 is also filled with a gas under pressure, which is preferentially lighter than air, but the mass of the aircraft 10 may be larger than that of the air.
Afin d'élever l'aéronef 10 en altitude, les hélices 150, 150' lorsqu'elles sont entraînées en rotation, sont aptes à générer une force motrice supérieure à la force générée par le poids de l'aéronef 10.  In order to raise the aircraft 10 at altitude, the propellers 150, 150 'when they are rotated, are capable of generating a driving force greater than the force generated by the weight of the aircraft 10.
Plus particulièrement, pour faire atterrir et décoller l'aéronef 10, les ailettes latérales 132 et 132' sont disposées de sorte que leur axe longitudinal soit sensiblement horizontal, tel que schématiquement représenté par la figure 8.  More particularly, to land and take off the aircraft 10, the lateral wings 132 and 132 'are arranged so that their longitudinal axis is substantially horizontal, as schematically represented by FIG. 8.
Lorsque l'aéronef 10 atteint une altitude suffisante pour que la portance générée par le ballon 100 en rotation suffise à maintenir en sustentation ou à déplacer ledit aéronef 10, les ailettes latérales 132 et 132' sont disposées de sorte que leur axe longitudinal soit sensiblement vertical, tel que schématiquement représenté par la figure 7.  When the aircraft 10 reaches an altitude sufficient for the lift generated by the rotating balloon 100 is sufficient to maintain levitation or move said aircraft 10, the lateral wings 132 and 132 'are arranged so that their longitudinal axis is substantially vertical as schematically represented in FIG. 7.
Avantageusement, chaque paire d'hélice 150 et 150', indépendamment l'une de l'autre, peut exercer ou non une force motrice. Ainsi, lorsque l'aéronef 10 est en altitude, en vue de modifier l'orientation du ballon Advantageously, each pair of helices 150 and 150 ', independently of one another, may or may not exert a driving force. Thus, when the aircraft 10 is at altitude, with a view to modifying the orientation of the balloon
100 autour de l'axe de lacet AA', une paire d'hélice 150 ou 150' peut être entraînée en rotation. En effet, la force motrice générée par les hélices 150 ou100 around the yaw axis AA ', a pair of helices 150 or 150' can be rotated. Indeed, the driving force generated by the propellers 150 or
150' d'une paire engendre un moment de force provoquant la rotation du ballon150 'of a pair generates a moment of force causing the rotation of the ball
100 autour de l'axe de lacet AA'. 100 around the yaw axis AA '.
Dans ce mode de réalisation, les moyens de liaison 1 10 sont préférentiellement fixés au sol par leur première extrémité, en un point fixe.  In this embodiment, the connecting means 1 10 are preferably fixed to the ground by their first end, at a fixed point.
A titre d'exemple, lorsque la vitesse du vent est très élevée, par exemple supérieure à quarante mètre par seconde, le ballon 100 est destiné à demeurer au sol. L'aéronef 10 est donc entraîné à atterrir par les paires d'hélices 150 et 150' s'il est en altitude lorsqu'un vent présentant une telle vitesse est détecté.  For example, when the wind speed is very high, for example greater than forty meters per second, the balloon 100 is intended to remain on the ground. The aircraft 10 is therefore trained to land by the pairs of propellers 150 and 150 'if it is aloft when a wind having such a speed is detected.
Alternativement, l'aéronef peut comprendre, à la place des ailettes latérales 132 et 132', une ou plusieurs couronnes 131 telles que définies précédemment. Les paires d'hélices 150 et 150' sont alors respectivement disposées sur les tronçons rigides 1 12 et 1 12'. Alternatively, the aircraft may comprise, in place of the lateral wings 132 and 132 ', one or more crowns 131 as defined previously. The pairs of propellers 150 and 150 'are then respectively disposed on the rigid sections 1 12 and 1 12'.
Le ou les machines tournantes sont reliés à des moyens de stockage de l'énergie électrique, tel que des batteries, ou au réseau de distribution électrique, via un câble apte à conduire l'électricité.  The rotating machine or machines are connected to means for storing electrical energy, such as batteries, or to the electrical distribution network, via a cable capable of conducting electricity.
A titre d'exemple non limitatif, l'aéronef 10 comprend des batteries, avantageusement fixées au sol, reliées aux machines tournantes par un câble apte à conduire l'électricité, cheminant dans le câble 109 et solidaire des moyens de liaison 1 10.  By way of nonlimiting example, the aircraft 10 comprises batteries, advantageously fixed to the ground, connected to the rotating machines by a cable capable of conducting electricity, running in the cable 109 and secured to the connecting means 1 10.
Avantageusement, les moteurs sont alimentés en énergie électrique par le ou les machines tournantes.  Advantageously, the motors are supplied with electrical energy by the rotating machine or machines.
Préférentiellement, dans ce mode de réalisation, les moyens de contrôle de l'orientation du ballon 100 peuvent être constitués par les hélices, et être dépourvus, notamment, de dérive 133.  Preferably, in this embodiment, the means for controlling the orientation of the balloon 100 may be constituted by the propellers, and be devoid of, in particular, drift 133.
Par ailleurs, les moyens de contrôle de l'orientation du ballon 100 autour de l'axe de roulis BB' sont les même que ceux décrits précédemment.  Furthermore, the means for controlling the orientation of the balloon 100 around the roll axis BB 'are the same as those described above.
L'aéronef 10 peut comprendre, dans ce troisième mode de réalisation, un train d'atterrissage, par exemple, non escamotable, connu en soi. Avantageusement, les ailettes latérales 132 et 132' peuvent former le train d'atterrissage, tel qu'illustré par la figure 8.  The aircraft 10 may comprise, in this third embodiment, a landing gear, for example, non-retractable, known per se. Advantageously, the lateral wings 132 and 132 'can form the landing gear, as illustrated by FIG. 8.
De manière plus générale, il est à noter que les modes de fonctionnement et de réalisation considérés ci-dessus ont été décrits à titre d'exemples non limitatifs, et que d'autres variantes sont par conséquent envisageables.  More generally, it should be noted that the modes of operation and embodiment considered above have been described by way of non-limiting examples, and that other variants are therefore possible.
Notamment, rien n'exclut, suivant d'autres exemples, de combiner les différents moyens de contrôle de l'orientation du ballon 100 dans chacun des différents modes de réalisation de l'aéronef 10, et/ou de combiner les différents modes de fonctionnement décrits précédemment.  In particular, nothing precludes, according to other examples, combining the various means for controlling the orientation of the balloon 100 in each of the different embodiments of the aircraft 10, and / or combining the different operating modes. previously described.

Claims

REVENDICATIONS
1 - Aéronef (10) caractérisé en ce qu'il comporte :  1 - Aircraft (10) characterized in that it comprises:
- un ballon (100) s'étendant entre deux extrémités latérales (101 , 101 ') dudit ballon, lesdites deux extrémités latérales du ballon définissant un axe R dudit ballon,  a balloon (100) extending between two lateral ends (101, 101 ') of said balloon, said two lateral ends of the balloon defining an axis R of said balloon,
- des moyens de liaison (1 10) comportant au moins deux branches latérales (1 1 1 , 1 1 1 ') reliées respectivement aux deux extrémités latérales dudit ballon, ledit ballon étant monté, sur lesdites deux branches latérales, mobile en rotation autour de l'axe R, lesdits moyens de liaison étant, de préférence, destinés à être reliés au sol,  connecting means (1 10) comprising at least two lateral branches (1 1 1, 1 1 1 ') respectively connected to the two lateral ends of said balloon, said balloon being mounted on said two lateral branches, rotatable about the axis R, said connecting means being preferably intended to be connected to the ground,
- un moteur (120), adapté à entraîner le ballon en rotation autour de l'axe R,  a motor (120) adapted to drive the balloon in rotation about the axis R,
- des moyens de contrôle de l'orientation du ballon par rapport au vent comprenant une dérive (133) agencée à distance du ballon, ladite dérive (133) étant pourvue d'un organe de direction apte à modifier l'orientation du ballon (100) autour d'un axe de lacet AA'.  - Means for controlling the orientation of the balloon with respect to the wind comprising a fin (133) arranged at a distance from the balloon, said fin (133) being provided with a steering member capable of modifying the balloon orientation (100). ) around a yaw axis AA '.
2 - Aéronef (10) selon la revendication 1 , dans lequel le ballon (100) est formé d'une enveloppe (102) se développant autour d'une structure d'arceaux (103) composée d'une pluralité d'arceaux agencée de sorte que lesdits arceaux sont joints les uns aux autres à chacune des extrémités latérales (101 , 101 ') du ballon (100).  2 - Aircraft (10) according to claim 1, wherein the balloon (100) is formed of a casing (102) developing around a structure of arches (103) composed of a plurality of arches arranged so that said hoops are joined to each other at each of the lateral ends (101, 101 ') of the balloon (100).
3 - Aéronef (10) selon l'une des revendications 1 ou 2, comprenant au moins un organe stabilisateur comprenant une surface sensiblement plane, dite « surface d'orientation », perpendiculaire à l'axe R.  3 - Aircraft (10) according to one of claims 1 or 2, comprising at least one stabilizing member comprising a substantially flat surface, called "orientation surface" perpendicular to the axis R.
4 - Aéronef (10) selon la revendication 3, dans lequel l'organe stabilisateur comprend une couronne (131 ), se développant autour du ballon (100). 4 - Aircraft (10) according to claim 3, wherein the stabilizing member comprises a ring (131), developing around the balloon (100).
5 - Aéronef (10) selon l'une des revendications 3 ou 4, dans lequel l'organe stabilisateur comprend au moins deux ailettes latérales (132, 132') agencés respectivement aux extrémités latérales (101 , 101 ') du ballon.5 - Aircraft (10) according to one of claims 3 or 4, wherein the stabilizing member comprises at least two lateral fins (132, 132 ') respectively arranged at the lateral ends (101, 101') of the balloon.
6 - Aéronef (10) selon l'une des revendications 1 à 5, comprenant au moins une hélice (150, 150') solidaire d'un rotor d'une machine tournante adaptée à générer de l'énergie électrique et/ou à entraîner ladite hélice en rotation. 7 - Aéronef (10) selon l'une des revendications 1 à 6, dans lequel les moyens de contrôle de l'orientation du ballon (100) comprennent des moyens adaptés à modifier les longueurs respectives des branches latérales (1 1 1 , 1 1 1 ') de sorte à contrôler le rapport entre lesdites longueurs. 6 - Aircraft (10) according to one of claims 1 to 5, comprising at least one propeller (150, 150 ') integral with a rotor of a rotating machine adapted to generate electrical energy and / or to drive said rotating propeller. 7 - Aircraft (10) according to one of claims 1 to 6, wherein the means for controlling the orientation of the balloon (100) comprise means adapted to modify the respective lengths of the lateral branches (1 1 1, 1 1 1 ') so as to control the ratio between said lengths.
8 - Aéronef (10) selon l'une des revendications 1 à 7, dans lequel le ballon (100), les moyens de liaison (1 10) et le moteur, formant un premier ensemble de l'aéronef, les moyens de contrôle de l'orientation du ballon du premier ensemble, par rapport au vent, comportent un second ensemble comportant également un ballon (100"), des moyens de liaison (1 10") et un moteur, l'orientation du ballon du premier ensemble étant contrôlée en contrôlant la vitesse de rotation du ballon du second ensemble par rapport à la vitesse de rotation du ballon du premier ensemble. 8 - Aircraft (10) according to one of claims 1 to 7, wherein the balloon (100), the connecting means (1 10) and the motor, forming a first set of the aircraft, the control means of the orientation of the balloon of the first set, with respect to the wind, comprises a second set also comprising a balloon (100 "), connecting means (1 10") and a motor, the orientation of the balloon of the first set being controlled by controlling the rotational speed of the balloon of the second set relative to the rotational speed of the balloon of the first set.
9 - Système de production d'énergie comportant un aéronef (10) selon l'une des revendications 1 à 8 et une machine tournante comprenant un rotor, dans lequel les moyens de liaison (1 10) sont reliés à un câble (109) fixé au rotor de la machine tournante, ladite machine tournante étant adaptée à générer de l'énergie électrique et/ou à entraîner l'aéronef en déplacement.  9 - A power generation system comprising an aircraft (10) according to one of claims 1 to 8 and a rotating machine comprising a rotor, wherein the connecting means (1 10) are connected to a cable (109) fixed the rotor of the rotating machine, said rotating machine being adapted to generate electrical energy and / or to drive the aircraft in motion.
10 - Système de production d'énergie comportant un aéronef (10) selon l'une des revendications 1 à 8 et un véhicule à tracter, dans lequel le véhicule comporte des moyens de production d'énergie électrique à partir de l'énergie cinétique du véhicule, et des moyens de stockage de l'énergie électrique produite, les moyens de liaison (1 10) étant reliés au véhicule par un câble (109). 10 - A power generation system comprising an aircraft (10) according to one of claims 1 to 8 and a vehicle to be towed, wherein the vehicle comprises means for producing electrical energy from the kinetic energy of the vehicle, and storage means of the electrical energy produced, the connecting means (1 10) being connected to the vehicle by a cable (109).
1 1 - Système de production d'énergie selon la revendication 10, dans lequel le véhicule est un véhicule sous-marin.  The power generation system of claim 10, wherein the vehicle is an underwater vehicle.
PCT/FR2016/052904 2015-11-09 2016-11-09 Aircraft used in a system for generating electrical energy WO2017081406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1560720 2015-11-09
FR1560720A FR3043386B1 (en) 2015-11-09 2015-11-09 AIRCRAFT IMPLEMENTED IN A SYSTEM FOR GENERATING ELECTRICAL ENERGY

Publications (1)

Publication Number Publication Date
WO2017081406A1 true WO2017081406A1 (en) 2017-05-18

Family

ID=55135357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052904 WO2017081406A1 (en) 2015-11-09 2016-11-09 Aircraft used in a system for generating electrical energy

Country Status (2)

Country Link
FR (1) FR3043386B1 (en)
WO (1) WO2017081406A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108860558A (en) * 2018-08-23 2018-11-23 广东高空风能技术有限公司 A kind of universal fairlead

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112329B1 (en) * 2020-07-09 2022-08-12 Centre Nat Rech Scient Vertical take-off flying device
FR3123317B1 (en) * 2021-05-27 2023-08-25 Wind Fisher SAS Remote piloting system for a Magnus effect aircraft

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980002680A1 (en) * 1979-06-04 1980-12-11 Lloyd I Biscomb Multiple wind turbine tethered airfoil wind energy conversion system
FR2475148A1 (en) 1980-02-06 1981-08-07 Guerin Jean Lighter-than-air wind generator - has parallel inflatable blades attached to fin and connected by cables, with device tethered to ground by cable
FR2479127A1 (en) * 1980-03-26 1981-10-02 France Parachutes Supporting system for naval distress signaller - comprises aerial sail supporting signalling equipment and attached to dinghy
US4365772A (en) * 1979-08-06 1982-12-28 Ferguson F D Aircraft having buoyant gas balloon
WO1997015492A2 (en) * 1995-10-24 1997-05-01 Bothe Hans Jurgen Hybrid aircraft
US6422506B1 (en) * 2000-10-12 2002-07-23 The United States Of America As Represented By The Secretary Of The Navy Towed airborne array system
US20080296905A1 (en) * 2005-05-03 2008-12-04 Ferguson Frederick D Systems and methods for tethered wind turbines
US20140001308A1 (en) * 2011-03-15 2014-01-02 Omnidea Lda. Airborne platform
DE102013205781A1 (en) * 2013-04-02 2014-10-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wind turbine
WO2015065433A1 (en) * 2013-10-31 2015-05-07 Tp Aerospace, Inc. Rigid airship utilizing a rigid frame formed by high pressure inflated tubes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980002680A1 (en) * 1979-06-04 1980-12-11 Lloyd I Biscomb Multiple wind turbine tethered airfoil wind energy conversion system
US4365772A (en) * 1979-08-06 1982-12-28 Ferguson F D Aircraft having buoyant gas balloon
FR2475148A1 (en) 1980-02-06 1981-08-07 Guerin Jean Lighter-than-air wind generator - has parallel inflatable blades attached to fin and connected by cables, with device tethered to ground by cable
FR2479127A1 (en) * 1980-03-26 1981-10-02 France Parachutes Supporting system for naval distress signaller - comprises aerial sail supporting signalling equipment and attached to dinghy
WO1997015492A2 (en) * 1995-10-24 1997-05-01 Bothe Hans Jurgen Hybrid aircraft
US6422506B1 (en) * 2000-10-12 2002-07-23 The United States Of America As Represented By The Secretary Of The Navy Towed airborne array system
US20080296905A1 (en) * 2005-05-03 2008-12-04 Ferguson Frederick D Systems and methods for tethered wind turbines
WO2010007466A1 (en) 2008-07-15 2010-01-21 Magenn Power, Inc. Systems and methods for tethered wind turbines
US20140001308A1 (en) * 2011-03-15 2014-01-02 Omnidea Lda. Airborne platform
DE102013205781A1 (en) * 2013-04-02 2014-10-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wind turbine
WO2015065433A1 (en) * 2013-10-31 2015-05-07 Tp Aerospace, Inc. Rigid airship utilizing a rigid frame formed by high pressure inflated tubes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108860558A (en) * 2018-08-23 2018-11-23 广东高空风能技术有限公司 A kind of universal fairlead
CN108860558B (en) * 2018-08-23 2024-02-02 广东高空风能技术有限公司 Universal cable guiding device

Also Published As

Publication number Publication date
FR3043386A1 (en) 2017-05-12
FR3043386B1 (en) 2018-10-19

Similar Documents

Publication Publication Date Title
US7188808B1 (en) Aerialwind power generation system and method
EP2572100B1 (en) Turbogenerator with rotor having blades adapting to the apparent wind
US8134251B2 (en) Wind turbine
WO2017081406A1 (en) Aircraft used in a system for generating electrical energy
WO2009132348A2 (en) Wind driven power generator with moveable cam
FR3048956B1 (en) AIRCRAFT WITH ROTATING WING
EP3172435A1 (en) Airborne device
WO2013175123A1 (en) Floating wind turbine comprising transverse-flow turbines with aerodynamic regulation
WO2013079638A1 (en) Water turbine
WO2016067251A1 (en) Improvements to rotating machines with fluid rotor having adjustable blades
WO2015171347A1 (en) A structurally optimized tilted or horizontal axis wind turbine
WO2015158754A1 (en) Adaptative wind turbine
FR2541732A1 (en) Compound anemodynamic motor with its applications to propulsion
FR2991007A1 (en) Method for converting wind energy into mechanical energy by wind mill, involves rotating cylinder opposite to rotation direction when wind flows under cylinder, so that Magnus effect produced under effect of wind results in torque
FR2992031A3 (en) Wave powered generator float device for recovering ocean energy of e.g. waves, for converting energy into kinetic energy, has beam whose oscillations drive rotation of inertial wheels, and sensors measuring kinetic energy of wheels
EP3259182A1 (en) Device with a circumferentially driven propeller and a static assembly, with self-adjustable blades mounted downstream
FR3051440A1 (en) VERTICAL VERTICAL TAKE-OFF ENDURING DRONE OPTIMIZED FOR MISSIONS IN COMPLEX ENVIRONMENT
FR2607557A1 (en) Device actuating moving bodies using wind energy
EP4347397A1 (en) Remote control system for a magnus-effect aircraft
EP0554241A1 (en) Device for orienting rotor blades in a transverse fluid flow and applications
FR3025006A1 (en) LARGE AEROGENERATOR
WO2013114136A1 (en) Wind turbine
FR3079208A1 (en) AIRBORNE DEVICE
CH714054A1 (en) A device with an oscillating rectilinear wing for the transformation of the kinetic energy from the wind or an aquatic current into a mechanical energy and method for such a transformation.
FR2520814A1 (en) Circular rail trolley mounted vert. axis aero generator - has trolley fitted with guide wheels supporting outer rim of turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16809485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16809485

Country of ref document: EP

Kind code of ref document: A1