WO2017080408A1 - 自动工作系统及其控制方法及自动行走设备 - Google Patents

自动工作系统及其控制方法及自动行走设备 Download PDF

Info

Publication number
WO2017080408A1
WO2017080408A1 PCT/CN2016/104718 CN2016104718W WO2017080408A1 WO 2017080408 A1 WO2017080408 A1 WO 2017080408A1 CN 2016104718 W CN2016104718 W CN 2016104718W WO 2017080408 A1 WO2017080408 A1 WO 2017080408A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
value
point
detection signal
detection
Prior art date
Application number
PCT/CN2016/104718
Other languages
English (en)
French (fr)
Inventor
多尔夫⋅达维德
康蒂伊⋅曼纽尔
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to US15/775,222 priority Critical patent/US11003192B2/en
Priority to EP16787704.2A priority patent/EP3376329B1/en
Publication of WO2017080408A1 publication Critical patent/WO2017080408A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • A47L9/2826Parameters or conditions being sensed the condition of the floor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles

Definitions

  • the present invention relates to an automated working system, and more particularly to a system for controlling the operation of an automated walking device in a work area.
  • the present invention relates to a control method, and more particularly to a control method for controlling the operation of an automatic walking device in a work area.
  • the present invention relates to an automatic walking device, and more particularly to an automatic walking device that automatically operates and walks in a work area.
  • Such an autonomous walking device should normally automatically move within a preset working area without leaving the preset working area.
  • the outer boundary of the preset working area is usually determined by an electrical boundary line.
  • the boundary line is usually a normal wire.
  • a current is applied to the boundary line that marks the outer boundary of the work area.
  • the generated electric or magnetic field can be detected by an appropriate sensor in the automatic walking device, and the detected signal is transmitted to the controller built in the automatic walking device, and the controller sets the obtained signal and the preset condition in the memory. In comparison, it is concluded whether the autonomous walking device is in the work area.
  • the automated working system includes a signal generating device 80', a boundary line 50' electrically connected to the signal generating device, and an autonomous walking device 10'.
  • the boundary line 50' plans a working area 30' surrounded by a boundary line 50' and a non-working area 70' located outside the boundary line 50'.
  • the signal generating means 80' produces a periodic current signal SS as shown in FIG.
  • an electromagnetic field 90' which varies around the boundary line 50' is generated.
  • the polarity of the electromagnetic field 90' is reversed in both the working area 30' and the non-working area 70'.
  • the automatic walking device 10' further includes a signal detecting device 20' and a controller 190' (not shown) Out).
  • the signal detecting means 20' is typically an inductive coil that senses a varying electromagnetic field 90' to produce a detection signal SJ', such as an alternating voltage or an alternating current.
  • the controller 190' receives the detection signal SJ' and compares the detection signal SJ' with a preset threshold. When the magnitude of the voltage or current exceeds a threshold, the controller 190' instructs the autonomous device 10' to leave.
  • the boundary line 50' of the work area is typically an inductive coil that senses a varying electromagnetic field 90' to produce a detection signal SJ', such as an alternating voltage or an alternating current.
  • the controller 190' receives the detection signal SJ' and compares the detection signal SJ' with a preset threshold. When the magnitude of the voltage or current exceeds a threshold, the controller 190' instructs the autonomous device 10' to leave.
  • the phase of the detection signal SJ' sensed by the signal detecting device 110' is reversed due to the inversion of the polarity of the magnetic field 90'.
  • the controller 190' judges that the automatic working device is in the non-working area 70' by recognizing that the phase of the detection signal SJ' is different from the preset phase direction.
  • the automatic working device 10' is bound to have a motor that drives the automatic working equipment to travel or/and a motor that drives the automatic working equipment to perform working parts such as mowing or dust removal, and the operation of the motor generates an electromagnetic field. .
  • the electromagnetic field is also sensed by the signal detecting device 110' to generate a voltage or current signal. Therefore, the detection signal SJ' received by the controller 190' actually contains an interference signal brought about by the motor.
  • the controller 190' judges and controls the detected signal SJ' that has been disturbed, it is often judged internally and externally and a control command that gives an unrealistic condition.
  • the detection signals induced by the automatic working equipment in the respective working areas necessarily contain the interference caused by the electromagnetic fields adjacent thereto. Therefore, the detection signal SJ' received by the respective controller 190' actually contains an interference signal caused by an electromagnetic field in an adjacent work area.
  • the controller 190' judges and controls the detected signal SJ' that has been disturbed, it is often judged internally and externally and a control command that gives an unrealistic condition.
  • the automatic working device 10' In the actual working scenario, the automatic working device 10' must be in a free space, and there are various electromagnetic waves emitted by various types of radio devices or other types of devices in the free space. Perhaps a particular electromagnetic wave signal at a certain time can be sensed by the signal detecting device 110'. Therefore, the detection signal SJ' received by the controller 190' actually contains an interference signal caused by electromagnetic waves in the free space. When the controller 190' judges and controls the detected signal SJ' that has been disturbed, it is often judged internally and externally and a control command that gives an unrealistic condition.
  • the technical problem solved by the present invention is to provide an automatic working system and a control method capable of eliminating or reducing interference signals.
  • the technical solution of the present invention is: a control method of an automatic working system, comprising the steps of: providing a signal generating device for generating a current signal, the current signal flowing through a boundary line to generate an electromagnetic field; providing automatic a walking device, the automatic walking device having a plurality of detecting devices for detecting the electromagnetic field; the plurality of detecting devices detecting the electromagnetic field, respectively generating respective plurality of detecting signals; and performing the plurality of detecting signals Generating a product signal, the direction of the product signal remaining the same as the direction of one of the plurality of detection signals; determining the first signal point and the second signal point by the product signal; The signal point and the parameter of the second signal point generate a feature value, compare the feature value with a preset threshold, and determine, according to the comparison result, whether one of the detection signals is subjected to noise interference.
  • the plurality of detecting devices include a first detecting device and a second detecting device; the first detecting device and the second detecting device detecting the electromagnetic field to generate a first detecting signal and a second detecting signal, respectively; And multiplying the first detection signal and the second detection signal to generate a product signal, the direction of the product signal being the same as the direction of the first detection signal; wherein the one of the detection signals is the first detection signal.
  • the first signal point is a point at which a maximum point of the product signal corresponds to a point on the first detection signal; and the second signal point is a position at which a minimum point of the product signal corresponds to a position a point on the detection signal
  • the first signal point is a point at which a maximum point of the product signal corresponds to a point on the second detection signal; and the second signal point is a position at which a minimum point of the product signal corresponds to a position Second, the point on the detection signal.
  • the first signal point is a maximum point of the product signal; and the second signal point is a minimum point of the product signal.
  • the characteristic value includes a magnitude of the first signal point, and the amplitude value is defined as a peak value; the characteristic value further includes a magnitude of the second signal point, and the amplitude value is defined as a valley value; the preset threshold value a threshold value is included; the absolute value of the peak value and the bottom value are respectively compared with the threshold value, and if the absolute value of the peak value and the bottom value are both greater than or equal to the threshold value, determining The first detection signal is not interfered by noise, otherwise, the first detection signal is determined to be interfered by noise.
  • the characteristic value includes a difference between a time of the first signal point and the second signal point, and is defined as a peak-to-valley time difference;
  • the preset threshold value includes a range lower limit value and a range upper limit value; when the peak value is After the absolute value of the valley value is greater than or equal to the threshold value, the peak-to-valley time difference is compared with the interval lower limit value and the interval upper limit value, and if the peak-to-valley time difference is greater than or equal to the interval lower limit value and If the upper limit value is less than or equal to the interval, it is determined that the first detection signal is not interfered, otherwise, the first detection signal is determined to be interfered by noise.
  • the characteristic value includes a difference between a time of the first signal point and the second signal point, and is defined as a peak-to-valley time difference;
  • the preset threshold value includes a range lower limit value and a range upper limit value; Comparing with the interval lower limit value and the interval upper limit value, if the peak-to-valley time difference is greater than or equal to the interval lower limit value and less than or equal to the interval upper limit value, determining that the first detection signal is not interfered, otherwise, determining The first detection signal is disturbed by noise.
  • the range of the interval lower limit value and the interval upper limit value is based on a period of the current signal.
  • the characteristic value includes a difference between the amplitudes of the first signal point and the second signal point, defined as a peak-to-valley amplitude difference;
  • the preset threshold value includes an amplitude value; and when the peak-to-valley time difference is greater than or equal to a lower limit of the interval
  • the peak-to-valley difference is compared with the amplitude value, and if the peak-to-valley difference is less than or equal to the amplitude value, determining that the first detection signal is not subjected to noise Interference, otherwise, the first detection signal is judged to be interfered by noise.
  • the characteristic value includes a difference between the amplitudes of the first signal point and the second signal point, defined as a peak-to-valley amplitude difference; the preset threshold value includes an amplitude value; and the peak-to-valley difference value and the amplitude The value is compared. If the peak-to-valley difference is less than or equal to the amplitude value, it is determined that the first detection signal is not interfered by noise, otherwise, the first detection signal is determined to be interfered by noise.
  • the first detection signal is not interfered by noise, comparing a time sequence relationship between the first signal point and the second signal point, determining a first detecting device that generates a first detection signal and the boundary The internal and external relationship of the work area enclosed by the line.
  • the method of maintaining the direction of the product signal is the same as the direction of the first detection signal: first taking an absolute value of the second detection signal, and then performing an absolute value of the second detection signal and the first detection signal Multiply to generate a product signal.
  • the multiplication processing is performed.
  • the feature value includes a position coordinate index corresponding to the maximum value of the product signal, and the index is defined as a large value index; the feature value further includes a corresponding value of the minimum value of the product signal. Position coordinate index, and define the index as a small value index.
  • the feature value includes a magnitude of the first detection signal at the large value index, defined as a peak value; and the feature value further includes a width of the first detection signal at the small value index The value is defined as the valley value.
  • the first signal point and the second signal point are determined based on the optimal filtered product signal.
  • the optimally filtered optimal filter kernel is associated with a current signal generated by the signal generating device.
  • the optimal filtered optimal filter kernel is a detection signal detected by the detecting device in a working area planned by the boundary line.
  • an automatic working system comprising: a signal generating device for generating a current signal; a boundary line forming an electrical circuit with the signal generating device, the current signal flowing through the boundary line Generating an electromagnetic field; the automatic walking device automatically moves and works in a working area planned by the boundary line; the automatic walking device includes a processor, a controller, and a plurality of detecting devices for detecting the electromagnetic field; The detecting device detects the electromagnetic field to generate a corresponding plurality of detection signals respectively; the processor receives the plurality of detection signals, and multiplies the plurality of detection signals to generate a product signal, and the direction of the product signal is One of the plurality of detection signals remains the same; the first signal point and the second signal point are determined by the product signal; and the feature value is generated based on parameters of the first signal point and the second signal point, The feature value is compared with a preset threshold to generate a comparison result, and the comparison result is transmitted to the controller; According to the comparison result, wherein
  • the plurality of detecting devices comprise a first detecting device and a second detecting device; the first detecting device and the second detecting device detecting the electromagnetic field to generate a first detecting signal and a second detecting signal, respectively;
  • the processor receives the first detection signal and the second detection signal, and multiplies the first detection signal and the second detection signal to generate a product signal, the direction of the product signal remains the same as the first detection signal
  • One of the detection signals is the first detection signal.
  • the first signal point is a point at which a maximum point of the product signal corresponds to a point on the first detection signal; and the second signal point is a position at which a minimum point of the product signal corresponds to a position A point on the detection signal.
  • the first signal point is a point at which a maximum point of the product signal corresponds to a point on the second detection signal; and the second signal point is a position at which a minimum point of the product signal corresponds to a position Second, the point on the detection signal.
  • the first signal point is a maximum point of the product signal; and the second signal point is a minimum point of the product signal.
  • the characteristic value includes a magnitude of the first signal point, and the amplitude value is defined as a peak value; the characteristic value further includes a magnitude of the second signal point, and the amplitude value is defined as a valley value; the preset threshold value a threshold value is included; the absolute value of the peak value and the bottom value are respectively compared with the threshold value, and if the absolute value of the peak value and the bottom value are both greater than or equal to the threshold value, determining The first detection signal is not interfered by noise, otherwise, it is determined that the first detection signal has been interfered by noise.
  • the characteristic value includes a difference between a time of the first signal point and the second signal point, and is defined as a peak-to-valley time difference;
  • the preset threshold value includes a range lower limit value and a range upper limit value; Comparing with the interval lower limit value and the interval upper limit value, if the peak-to-valley time difference is greater than or equal to the interval lower limit value and less than or equal to the interval upper limit value, determining that the first detection signal is not interfered, otherwise, determining The first detection signal is disturbed by noise.
  • the range of the interval lower limit value and the interval upper limit value is based on a period of the current signal.
  • the characteristic value includes a difference between the amplitudes of the first signal point and the second signal point, defined as a peak-to-valley amplitude difference; the preset threshold value includes an amplitude value; and the peak-to-valley difference value and the amplitude The value is compared. If the peak-to-valley difference is less than or equal to the amplitude value, it is determined that the first detection signal is not interfered by noise, otherwise, the first detection signal is determined to have been interfered by noise.
  • the multiplication processing is performed.
  • the method of maintaining the direction of the product signal is the same as the direction of the first detection signal: first taking an absolute value of the second detection signal, and then performing an absolute value of the second detection signal and the first detection signal Multiply to generate a product signal.
  • the processor compares a time sequence relationship between the first signal point and the second signal point, and determines to generate a first detection signal.
  • the controller issues a corresponding control command according to the internal and external relationship between the first detecting device and the working area enclosed by the boundary line, and controls the walking direction of the automatic walking device.
  • the controller determines that the first detection signal is interfered by noise, the controller determines that a valid signal is not received within the processing period.
  • the processor further includes an optimal filter, after the product signal is optimally filtered, and then determining the first signal point and the second signal point based on the optimal filtered product signal.
  • the optimal filter kernel of the optimal filter is associated with a current signal generated by the signal generating device.
  • the optimal filtering kernel of the optimal filter is a detection signal detected by the detecting device in a working area planned by the boundary line.
  • the invention also provides a technical solution, an automatic walking device, which automatically walks and works in a working area of a boundary line plan, the automatic walking device comprises: a processor, a controller and a plurality of detections for detecting a boundary line And detecting, by the plurality of detecting devices, the boundary lines, respectively generating a plurality of detection signals; the processor receiving the plurality of detection signals, and multiplying the plurality of detection signals to generate a product signal, The direction of the product signal remains the same as one of the plurality of detection signals; the first signal point and the second signal point are determined by the product signal; parameters based on the first signal point and the second signal point Generating a feature value, comparing the feature value with a preset threshold, generating a comparison result, and transmitting the comparison result to the controller; the controller determining, according to the comparison result, whether the one of the detection signals is Subject to noise interference.
  • the plurality of detecting devices comprise a first detecting device and a second detecting device, wherein the first detecting device and the second detecting device detect the boundary line to generate a first detecting signal and a second detecting signal respectively Receiving, by the processor, the first detection signal and the second detection signal, and multiplying the first detection signal and the second detection signal to generate a product signal, the direction of the product signal and the first detection The signals remain the same; one of the detection signals is the first detection signal.
  • the first detecting device and the second detecting device are symmetrical about a central axis of the autonomous walking device.
  • the lateral distance between the first detecting device and the second detecting device is greater than or equal to 80 mm.
  • the first detecting device and the second detecting device are respectively located on different sides of the motor of the automatic traveling device.
  • the present invention also provides a technical solution, a control method of an automatic working system, comprising the steps of: providing a signal generating device for generating a current signal, the current signal flowing through a boundary line to generate an electromagnetic field; providing an automatic walking device, The automatic walking device has a plurality of detecting devices for detecting the electromagnetic field; the plurality of detecting devices detecting the electromagnetic field to generate a corresponding plurality of detecting signals; multiplying the plurality of detecting signals to generate a product signal And determining, according to the product signal, whether one of the plurality of detection signals is subjected to noise interference.
  • the first signal point and the second signal point are determined based on the product signal, and the feature value is generated based on the parameter of the first signal point and the parameter of the second signal point, and the feature value is compared with a preset threshold Comparing, according to the comparison result, determining whether one of the plurality of detection signals is interfered by noise.
  • filtering a signal below a specific intensity value, and determining, according to the filtering result, whether one of the plurality of detection signals is subjected to noise interference.
  • an automatic working system comprising: a signal generating device for generating a current signal; a boundary line forming an electrical circuit with the signal generating device, the current signal flowing through the boundary line Generating an electromagnetic field; the automatic walking device automatically moves and works in a working area planned by the boundary line; the automatic walking device includes a processor, a controller, and a plurality of detecting devices for detecting the electromagnetic field; The detecting device detects the electromagnetic field to generate a corresponding plurality of detection signals respectively; the processor receives the plurality of detection signals, and multiplies the plurality of detection signals to generate a product signal; the controller is based on the The product signal determines whether one of the plurality of detection signals is interfered by noise.
  • the invention also provides a technical solution, an automatic walking device, which automatically walks and works in a working area of a boundary line plan, the automatic walking device comprises: a processor, a controller and a plurality of detections for detecting a boundary line
  • the plurality of detecting devices detect the boundary lines to respectively generate a plurality of corresponding detection signals
  • the processor receives the plurality of detection signals, and multiplies the plurality of detection signals to generate a product signal
  • the controller determines whether one of the plurality of detection signals is interfered based on the product signal.
  • the invention has the beneficial effects that the effective signal recognition of the detected signal effectively removes signal interference caused by the environment and the motor, and improves the anti-interference ability of the automatic working system.
  • the effective signal recognition control algorithm includes a multiplication step, a corresponding step, and a comparison judging step, and the effective signal recognition control algorithm is not only effective but also simple. By digitizing the detected signals and then performing an effective signal recognition process, not only the efficiency of the automatic working system is improved but also the hardware implementation difficulty of identifying the effective signals is reduced.
  • FIG. 1 is a schematic diagram of an automatic working system in the prior art
  • FIG. 2 is a schematic diagram of a current signal in the automatic working system shown in FIG. 1;
  • FIG. 3 is a schematic diagram of an automatic working system according to a preferred embodiment of the present application.
  • FIG. 4 is a schematic block diagram of an automatic walking device of a preferred embodiment of the automatic working system shown in FIG. 2;
  • Figure 5 is a schematic diagram of signal waveforms of an analog to digital conversion process
  • FIG. 6 is a block diagram showing the steps of a denoising algorithm according to a preferred embodiment of the present application.
  • step 7 is a specific product flow chart of step 1 in the step block diagram shown in FIG. 6;
  • FIG. 8 is a schematic diagram of signal waveforms according to the processing procedure of FIG. 7 according to a preferred embodiment of the present application.
  • step 9 is a specific corresponding flowchart of step 2 in the step block diagram shown in FIG. 6;
  • Figure 10 is a flow chart showing a first embodiment of the specific judgment valid signal of the third step in the step block diagram shown in Figure 6;
  • Figure 11 is a flow chart showing a second embodiment of the specific judgment valid signal of the third step in the step block diagram shown in Figure 6;
  • Figure 12 is a flow chart showing a third embodiment of the specific judgment valid signal of the third step in the step block diagram shown in Figure 6;
  • Figure 13 is a flow chart showing a fourth embodiment of the specific judgment valid signal of the third step in the step block diagram shown in Figure 6;
  • Figure 14 is a flow chart showing the internal and external determination of the fourth step in the step block diagram of Figure 6;
  • Figure 15 is a specific flow chart corresponding to the step block diagram shown in Figure 6;
  • 16 is a schematic diagram of a waveform of a detection signal in an actual working scenario and a waveform diagram after a multiplication step according to a preferred embodiment of the present application;
  • 17 is a block diagram showing the steps of a denoising algorithm according to another preferred embodiment of the present application.
  • FIG. 19 is a block diagram showing the steps of a denoising algorithm according to another embodiment of the present application.
  • first detecting device 1102 the second detecting device 1301, first adjustment circuit 1302, second adjustment circuit 150, microprocessor 170, differential digital-to-analog converter 1702, memory 190/190’, controller
  • the automatic working system shown in FIG. 3 includes a signal generating device 80, an autonomous traveling device 10, a boundary line 50, and the signal generating device 80 is electrically connected to the boundary line 50.
  • the signal generating means 80 generates a current signal SS as described in FIG. 2 which is sent to the boundary line 50, and the current signal SS flows through the boundary line 50 to produce a varying electromagnetic field 90.
  • the current signal SS may also use the periodic pulse voltage signal shown in FIG. 2 instead of other types of signals that produce a varying magnetic field.
  • the boundary line 50 is used to divide a specific area into two inner and outer areas, wherein a range located within the boundary line 50 is defined as a work area 30, and a range outside the boundary line 50 is defined as a non-work area 70.
  • the automatic walking device 10 can be an automatic or semi-automatic machine such as a smart lawn mower or a cleaning robot.
  • the automatic walking device 10 is a smart lawn mower.
  • the automatic walking device 10 includes a housing 102, a plurality of wheels 104 at the bottom of the housing 102, and a motor 106 (not shown) located inside the housing 102 to control the automatic working device 10 to automatically operate and automatically A controller 190 (not shown) that walks.
  • the number of motors 106 may be one or more.
  • the motor 106 is used to drive the wheels 104 to move or to drive the working components of the autonomous vehicle 10 (not shown) for mowing. jobs.
  • the normal traveling direction of the automatic traveling device 10 is defined as the front of the automatic traveling device 10, and the opposite side to the front is the rear of the automatic traveling device 10, and based on the front and rear directions of the defined automatic traveling device 10, the automatic traveling device 10 further Includes the left and right sides between the front and rear.
  • the automatic walking device 10 includes at least two detecting means for detecting the electromagnetic field 90.
  • the automatic walking device includes a first detecting device 1101 and a second detecting device 1102.
  • the first detecting device 1101 and the second detecting device 1102 respectively induce a change in the magnetic field 90 to generate a first detection signal SJ1 and a second detection signal SJ2.
  • the first detecting device 1101 and the second detecting device 1102 are specifically inductor coils.
  • the automatic walking device 10 may also be provided with a plurality of detecting devices, and the plurality of detecting devices detecting the electromagnetic field 90 respectively generate a plurality of corresponding detecting signals.
  • the inductor coil is usually vertically disposed on the autonomous walking device 10, so that The effective area of the electromagnetic field 90 induced by the inductor coil is the largest, and the effective area refers to the area perpendicular to the direction of the magnetic field.
  • the inductive coils may also be disposed on the autonomous device 10 non-perpendicularly, such as at an angle of 75°, 45°, etc., on the autonomous walking device 10. Regardless of the angle at which the inductor coil is disposed on the autonomous vehicle 10, it is only necessary to ensure that the inductor coil has an effective area and can sense the detection signal.
  • the first detecting device 1101 and the second detecting device 1102 are respectively located on the left and right sides of the axis Y of the automatic traveling device 10, and are specifically symmetrical about the central axis Y.
  • the first detecting device 1101 and the second detecting device 1102 can also be located at other positions of the autonomous walking device 10.
  • the positions of the first detecting device 1101 and the second detecting device 1102 are symmetrical with respect to the central axes of the two charging docking terminals.
  • the first detecting device 1101 and the second detecting device 1102 are respectively located on opposite sides of the motor 106.
  • the first detecting device 1101 is located on the right side of the motor 106
  • the second detecting device 1102 is located on the left side of the motor 106.
  • the automatic traveling device 10 is provided with more than two detecting devices, only one of the detecting devices and the other detecting devices may be located on different sides of the motor 106.
  • the autonomous walking apparatus 10 includes more than two detecting devices, there are various options for the specific positions of the respective detecting devices on the autonomous walking device 10. Specifically, when the autonomous traveling apparatus 10 includes three detecting devices, two of the detecting devices are respectively located on the left and right sides of the symmetry axis, and the other detecting device is located at a certain point of the symmetry axis. There are too many embodiments of specific location settings, and will not be described in detail herein. Hereinafter, the automatic walking device 10 has two detecting devices as an embodiment for detailed description.
  • the present embodiment performs analog-to-digital conversion on the detected detection signal, and then performs denoising processing using a digital signal processor.
  • a digital signal processor As known to those skilled in the art, if analog-to-digital conversion is not performed, the denoising process in this embodiment can also be implemented by using a corresponding hardware circuit.
  • the automatic walking device 10 further includes a first adjusting circuit 1301 electrically connected to the first detecting device 1101, and a second adjusting circuit 1302 electrically connected to the second detecting device 1102, respectively, and the first adjusting circuit.
  • a differential analog-to-digital converter 170 electrically coupled to the second regulator circuit 1302 and a processor 150 electrically coupled to the differential analog-to-digital converter 170.
  • the first adjustment circuit 1301 performs amplification processing on the first detection signal SJ1 transmitted from the first detecting device 1101 to obtain a first adjustment signal ST1 such that the first adjustment signal ST1 conforms to the input requirement of the differential analog-to-digital converter 170.
  • the second adjustment circuit 1302 performs amplification processing on the second detection signal SJ2 transmitted from the second detection device 1102 to obtain a second adjustment signal ST2 such that the second adjustment signal ST1 conforms to the input requirement of the differential analog-to-digital converter 170.
  • the amplification parameters built in the first adjustment circuit 1301 and the second adjustment circuit 1302 are the same to ensure the first adjustment obtained.
  • the correspondence between the node signal ST1 and the second adjustment signal ST2 is equivalent to the correspondence between the first detection signal SJ1 and the second detection signal SJ2.
  • the differential analog-to-digital converter 170 is used to perform analog-to-digital conversion on the first adjustment signal ST1 and the second adjustment signal ST2, respectively.
  • the first adjustment signal ST1 and the second adjustment signal ST2 can be analog-to-digital converted by using two analog-to-digital converters with the same parameters.
  • the selected analog to digital conversion has a sampling frequency of 50 kHz.
  • the sampling frequency can also be other values, and the sampling frequency does not constitute a limitation of the present invention.
  • the differential digital-to-analog converter 170 After passing through the differential digital-to-analog converter 170, the first adjustment signal ST1 and the second adjustment signal ST2 are converted into a first digital signal SD1 and a second digital signal SD2, respectively.
  • the differential analog to digital converter 170 transmits the first digital signal SD1 and the second digital signal SD2 to the processor 150 for the next denoising process.
  • the differential digital-to-analog converter 170 also includes a memory 1702 for storing the first digital signal SD1 and/or the second digital signal SD2.
  • a differential digital-to-analog converter that does not include a memory may be selected, and a microprocessor including a memory space is selected, and only the first digital signal SD1 and/or the second digital signal SD2 are stored in the micro. Just inside the processor.
  • the processor 150 After receiving the first digital signal SD1 and the second digital signal SD2, the processor 150 processes the received digital signal according to the built-in denoising control algorithm, and transmits the processed result to the controller 190.
  • the result of the processing includes whether the first detecting device 1101 detects a valid signal, whether the second detecting device 1102 detects a valid signal, whether the first detecting device 1101 is in the working area 30, and whether the second detecting device 1102 is in the working area 30. .
  • the controller 190 issues a corresponding control command to the automatic working device based on the result of the processing. For example, when neither the first detecting device 1101 nor the second detecting device 1102 detects a valid signal, the controller 190 does not issue any action instruction, so that the automatic working device 10 no longer walks; when the first detecting device 1101 is in the working area 30 The second detecting device 1102 is in the non-working area 70. If the automatic working device is in the working mode, the controller 190 issues a command to turn left and advance. If the automatic working device is in the return mode, the controller 190 issues the maintenance. The direction to continue the command.
  • the specific control instructions can be designed by the user or the designer according to the different results of the processing. Therefore, the logic is not described.
  • the denoising control algorithm executed by the processor 150 and the controller 190 is specifically described below.
  • the first adjustment signal ST1 outputted by the first adjustment circuit 1301 is sampled by the differential analog-to-digital converter 170 as shown in FIG. 5(a) to become the first digital signal SD1 as shown in FIG. 5(b).
  • the first digital signal SD1 maintains the physical characteristics of the first adjustment signal ST1, such as signal period, signal amplitude, signal phase and the like.
  • the time characteristic t of the first adjustment signal ST1 corresponds to the index characteristic i of the first digital signal SD1.
  • the second adjustment signal ST2 outputted by the second adjustment circuit 1302 is sampled by the differential analog-to-digital converter 170 as shown in FIG. 5(c) to become the second digital signal SD2 as shown in FIG. 5(d).
  • the second digital signal SD2 maintains the physical characteristics of the second adjustment signal ST2, such as signal period, signal amplitude, signal phase and the like.
  • the time characteristic t of the second adjustment signal ST2 corresponds to the index characteristic i of the second digital signal SD2.
  • Step T1 Performing a multiplication step on the obtained digital signal to obtain a product signal SM.
  • the direction of the product signal SM remains the same as the direction of the first digital signal SD1. The specific details within this step are described later in the text.
  • Step T2 Perform a corresponding value step by the product signal SM.
  • the first signal point S_Point1 and the second signal point S_Point1 are determined by the product signal SM. And generating a feature value based on the parameters of the first signal point S_Point1 and the second signal point S_Point1, comparing the feature value with a preset threshold, and determining, according to the determination result, whether the first detection signal is subjected to noise interference.
  • the specific details within this step are described later in the text.
  • Step T3 Compare the feature value obtained in step T2 with a preset threshold value in the autonomous walking device 10, thereby determining whether the first detection signal SJ1 is subjected to noise interference, that is, whether it is a valid signal. The specific details within this step are described later in the text. If it is determined to be a valid signal, the process proceeds to step T4; if it is determined to be an invalid signal, the process proceeds to step T5.
  • Step T4 Continue to judge whether the first detecting device 1101 is inside or outside the work area 30.
  • Step T5 According to the situation determined by step T3 and step T4, different results are transmitted to the controller 80.
  • a one-step amplification step may be further added, that is, the first digital signal SD1 and the second digital signal SD2 are respectively subjected to amplification processing.
  • the generation and variation characteristics of the electromagnetic field 90 vary depending on the current signal SS.
  • the flow of the denoising algorithm in this embodiment is not affected by the change of the specific current signal SS.
  • the signal detection device is constantly detecting electricity.
  • the magnetic field 90 produces a corresponding detection signal. Therefore, from the time axis, the detection signal, the adjustment signal, and the digital signal are continuously updated and changed.
  • the memory 1702 of the differential analog to digital converter 170 stores signals in a period of time as data in the denoising control algorithm.
  • the sampling frequency of the differential analog-to-digital converter 170 selected in this embodiment is 50 kHz, that is, the first adjustment signal ST1 is sampled once every 20 us to obtain a corresponding digital amplitude.
  • the processing period of the denoising control algorithm is 14 ms, that is, the index period corresponding to the digital signal is 700 points.
  • the processing cycle can vary depending on the hardware selected or the constraints imposed. Therefore, this processing cycle does not constitute a limitation of the present invention.
  • the signal multiplication step T1 further includes the following two steps:
  • Step T11 In the processing cycle, each point of the second digital signal SD2 is subjected to absolute value processing, that is,
  • abs(SD2[i]).
  • FIG. 8(a) is a waveform diagram of the second digital signal SD2
  • FIG. 8(b) is a waveform diagram showing an absolute value of the second digital signal SD2.
  • Step T12 Multiply each point of the first digital signal SD1 and the second digital signal absolute value
  • corresponding to the point in the processing cycle to obtain a product signal SM, that is, SM[i] SD1[i] ⁇
  • the specific schematic process is shown in FIG. Multiplying the second digital signal absolute value
  • FIG. 8(d) it can be seen that the direction of the product signal SM obtained by the product operation is the same as the direction of the first digital signal.
  • the magnitude of the magnitude of the SM is obtained by multiplying the absolute value of the amplitude of the second digital signal SD2 by the amplitude of the first digital signal. Therefore, the product signal SM includes phase information of the first digital signal SD1 and amplitude information of the first digital signal SD1 and the second digital signal SD2.
  • the absolute value of the second digital signal SD2 is taken such that the direction of the product signal SM remains the same as the direction of the first digital signal SD1.
  • those skilled in the art can also achieve this by other means.
  • the digital signal is obtained by adjusting and sampling the detection signal, and the signal is The sign is corresponding to the detection signal. Therefore, in this embodiment, the next step is to assign some characteristics of the product signal to the digital signal to obtain a judgment value for comparison judgment with the preset threshold.
  • step T2 further includes the following two steps:
  • the large value index Index_Pos and the small value index Index_Neg are obtained by taking the index at the maximum value of the product signal SM and the index at the minimum value.
  • the large value index Index_Pos may also be an index of a certain point within a preset range of the maximum value of the product signal SM.
  • the amplitude at the maximum value of the product signal SM is A
  • the large value index Index_Pos may be equal to 0.9A-A.
  • the small value index Index_Neg can also be an index of a certain point within a preset range at the minimum value of the product signal SM.
  • Step T22 During the processing period, the first digital signal SD1 corresponds to the point at the large value index Index_Pos, that is, the first signal point S_Point1, and the first digital signal SD1 corresponds to the point at the small value index Index_Neg, which is the second signal.
  • the control algorithm obtains four feature values for judgment, namely, a large value index Index_Pos, a small value index Index_Neg, a peak Peak_Pos, and a valley value Peak_Neg.
  • step T3 After obtaining the judgment value, the control algorithm enters step T3 of determining whether the signal is valid.
  • Figure 10 discloses a first embodiment of step T3.
  • Step T31 comparing the peak Peak_Pos with the preset threshold value V; after taking the absolute value of the valley Peak_Neg, comparing the absolute value with the preset threshold value V; if both comparison results are greater than or equal to the threshold value V , that is, Peak_Pos ⁇ V & &
  • the threshold value V is a variable whose specific values may differ in different processing cycles.
  • the processor 150 determines the specific value of the threshold value V based on the peak values of all the signals in step T2.
  • the threshold value V has a lower limit value V0, that is, V ⁇ V0.
  • the lower limit value V0 is determined experimentally, and its specific value is related to the automatic working system. In the automatic working system, the point farthest from the boundary line 50 is selected, and the peak value of the signal measured at this point is the lower limit range value V0.
  • the T31 judging step determines whether the detected signal is a valid signal from the signal amplitude, thereby removing the interference noise.
  • Figure 11 discloses a second embodiment of step T3.
  • Step T32 Difference between the large value index Index_Pos and the small value index Index_Neg, and take the absolute value of the difference, and compare the absolute value with the preset interval value; if the absolute value is between the intervals [P, K] , that is, P ⁇
  • the interval lower limit value P and the interval upper limit value K are related to the automatic working system. According to the boundary signal SS generated by the signal generating device 80, it is possible to theoretically estimate the index point, which is the time point at which the rising edge of the detected signal of the detecting device changes in any one of the processing cycles, and the index point. Defined as P; and the time node of the rising edge of the detected signal is the index point, which is defined as K.
  • the T32 judging step determines whether the detected signal is a valid signal from the signal period, thereby removing interference noise.
  • Figure 12 discloses a third embodiment of step T3.
  • Step T33 After the peak Peak_Pos is compared with the valley value Peak_Neg, the difference is compared with the preset amplitude value Z; if the difference is less than or equal to the amplitude value, that is, Peak_Pos-Peak_Neg ⁇ Z, the process proceeds to step T4. Otherwise, it is judged that the first digital signal SD1 is an invalid signal, and the process proceeds directly to step T51, and the conclusion output to the controller 190 is no signal.
  • the amplitude value Z is a signal amplitude span set according to the automatic working system. In the absence of noise interference, the amplitude span of the signal detected by the detection device does not exceed the amplitude value Z.
  • the T33 determination step determines whether the detected signal is a valid signal from the signal amplitude, thereby preventing the controller from making an unsuitable control command based on the signal that has been subjected to noise interference.
  • FIG. 13 discloses a fourth embodiment of step T3.
  • the fourth embodiment includes the above three determining steps.
  • the specific steps are as follows:
  • Step T31 comparing the peak Peak_Pos with the preset threshold value V; after taking the absolute value of the valley Peak_Neg, comparing the absolute value with the preset threshold value V; if both comparison results are greater than or equal to the threshold value V , that is, Peak_Pos ⁇ V & &
  • Step T32 Difference between the large value index Index_Pos and the small value index Index_Neg, and take the absolute value of the difference, and compare the absolute value with the preset interval value; if the absolute value is between the intervals [P, K] , that is, P ⁇
  • Step T33 After the peak Peak_Pos is compared with the valley value Peak_Neg, the difference is compared with the preset amplitude value Z; if the difference is less than or equal to the amplitude value, that is, Peak_Pos-Peak_Neg ⁇ Z, the process proceeds to step T4. Otherwise, it is judged that the first digital signal SD1 is an invalid signal, and the process proceeds directly to step T51, and the conclusion output to the controller 190 is no signal.
  • Steps T33 and T31 are both denoised from the signal amplitude, step T33 is a further confirmation of step T31, and step T32 is denoising from the signal period to improve the accuracy of the determination signal. .
  • step T4 the process proceeds to step T4 of determining the inside and the outside. The specific process of step T4 is as shown in FIG.
  • Step T4 The large value index Index_Pos is compared with the small value index Index_Neg; if the large value index Index_Pos is smaller than the small value index Index_Neg, it is determined that the first detecting device 1101 for obtaining the first digital signal SD1 is in the working area 30, and the step is entered. T52, the conclusion that the output of the 190 is controlled is that the first detecting device is in the working area; otherwise, it is determined that the first detecting device 1101 for obtaining the first digital signal SD1 is outside the working area 30, and proceeds to step T53 to control it. The 190 output concludes that the first detection device is outside the working area.
  • the signal detecting device in the working region 30 is detected first in any processing cycle.
  • the valley value is detected after the peak, and the signal detecting device in the non-working area 70 detects the peak after detecting the valley value. Therefore, it can be judged that the detecting means for detecting the signal is in or outside the working area by judging the order in which the signal peak and the valley appear, thereby judging whether the autonomous walking device is in or outside the working area.
  • Figure 15 is a complete flow chart for integrating step T1, step T2, step T3, step T4 and step T5.
  • the first signal point S_Point1 and the second signal point S_Point2 are taken on the first digital signal SD1.
  • the first signal point S_Point1 and the second signal point S_Point2 may also be taken on the second digital signal SD2.
  • the point of the second digital signal SD2 at the large value index Index_Pos is the first signal point S_Point1
  • the point of the second digital signal SD2 at the small value index Index_Neg is the second signal point S_Point2.
  • the first signal point S_Point1 and the second signal point S_Point2 may also be taken on the product signal SM.
  • the point of the product signal SM at the large value index Index_Pos is the first signal point S_Point1
  • the point of the product signal SM at the small value index Index_Neg is the second signal point S_Point2.
  • the flow of the denoising control algorithm of the present invention is not affected.
  • the first signal point S_Point1 and the second signal point S_Point2 are taken in different signals, based on the first letter
  • the specific values of the feature values generated by the parameters of the point S_Point1 and the second signal point S_Point2 may vary. Therefore, it is only necessary to adaptively change the range of the value of the preset threshold value.
  • the effective signal obtained by the denoising control algorithm can be used not only to judge whether the automatic walking device is in or outside the working area, but also to determine the distance of the automatic walking device from the boundary line by using the strength of the effective signal (ie, the amplitude of the waveform signal). the distance. Further, the working route of the autonomous walking device or the path of the return charging station is planned by the distance of the automatic walking device from the boundary line, thereby avoiding damage to the lawn. After the denoising control algorithm, the anti-interference ability of the automatic working system is effectively improved. Therefore, the automatic working system is applicable not only to a small working area but also to a wide working area (for example, the working area 30 has an area larger than 2800 square meters). Meter).
  • the above described embodiment is a control process for determining whether the first detecting device 1101 is in the work area.
  • the control process for determining whether the second detecting device 1102 is in the working area is similar to the above process, and only the step of taking the absolute value in step T2 needs to be changed to the absolute value of the first digital signal SD1.
  • the value of the second value signal SD2 is taken in the subsequent step T3, and the control step is not described herein again.
  • the actual signal waveform is detected in the actual working scene as shown in FIG. 16(a), wherein the red waveform is the first detection signal SJ1 detected by the first detecting device 1101, and the blue waveform is The second detecting device 1102 detects the obtained second detecting signal SJ2, and the actual detecting signal contains a lot of points where the noise influence is large.
  • the relevant simulation software such as Matlab
  • the actual signal is directly subjected to the step T1 operation, and the actual waveform of the product signal SM is obtained as shown in Fig. 16(b).
  • the large value index Index_Pos and the small value index Index_Neg corresponding to the product signal SM are just the points where the noise influence in the actual detection signal is small.
  • the flow steps are similar to the embodiments of the two detection signals described above. The specific difference is that in the signal multiplication step, a plurality of detection signals are multiplied to obtain a product signal.
  • FIG 17 is a block diagram showing the steps of another preferred embodiment of the application.
  • the specific steps of this embodiment add an optimal filtering step T1' to the embodiment shown in Fig. 6, maximizing the signal-to-noise ratio of the signal, and further improving the anti-interference ability of the automatic working system.
  • the optimum filtering step T1' sets between the step T1 of obtaining a product signal SM for the multiplication step of the obtained digital signal and the step T2 of the corresponding value taking step by the product signal SM.
  • the product signal obtained in step T1 is optimally filtered, and the product signal after the optimum filtering is used as the input signal of step T2.
  • an optimal filter is further disposed in the processor 150.
  • the optimal filter has an optimal filtering kernel h, and the optimal filtering kernel h is a basic signal for filtering noise.
  • the specific algorithm formula of the optimal filter is as follows: Where h is the optimal filter kernel preset by the optimal filter, x is the input signal of the optimal filter, and y is the output signal of the optimal filter.
  • the optimal filtering kernel h selects a detection signal of the boundary signal sensed by the automatic walking device 10 at a preset location in the automatic working system.
  • the optimal filtering kernel h can also use the average of the signals measured by the plurality of detecting devices at the weakest position.
  • the optimal filtering kernel h can also adopt a composite signal, and according to the specific scenario of the automatic working system, the optimal filtering kernel h is calculated according to the following formula: Where S is the ideal signal and R is the covariance of the predicted noise.
  • the boundary signal of the automatic working system is determined, and the ideal signal S can be derived from the boundary signal.
  • the covariance R can be estimated based on the specific scenario in which the automated working system is located.
  • FIG. 18 is a specific flowchart of the embodiment shown in FIG. 17. This embodiment only adds an optimal filtering step in the flow of the denoising algorithm shown in FIG. The specific flow of FIG. 18 is explained below, and the same parts as the denoising algorithm described in FIG. 15 will not be described again.
  • Step T11 In the processing cycle, each point of the second digital signal SD2 is subjected to absolute value processing, that is,
  • abs(SD2[i]).
  • Step T12 Multiply each point of the first digital signal SD1 and the second digital signal absolute value
  • corresponding to the point in the processing cycle to obtain a product signal SM, that is, SM[i] SD1[i] ⁇
  • Step T13' in the processing cycle, the filter kernel h is used to optimally filter the input product signal SM to obtain the filtered product signal SMF, that is,
  • FIG. 19 is a block diagram showing the steps of another embodiment of the present application for implementing noise immunity. This embodiment differs from the embodiment shown in Fig. 6 in the decision step after the signal multiplication step.
  • the feature value is obtained by the corresponding value taking step, and then the feature value is compared with the preset threshold to determine the first detection signal or the second Whether the detection signal is interfered, that is, whether the first detection signal or the second detection signal is a valid signal, whether the internal and external relationship between the automatic walking device and the boundary line can be further determined based on the signal.
  • the first detection signal and the second detection signal are still multiplied to obtain a product signal, and the signal below the specific intensity value is filtered out, and finally, whether the signal is valid or not is determined according to the filtering result.
  • S1 Multiplying the first detection signal and the second detection signal detected by the detecting device to obtain a product signal.
  • the product signal effectively amplifies the synchronization signal between the first detection signal and the second detection signal, suppressing the asynchronous signal between the first detection signal and the second detection signal.
  • a filtering signal is obtained by performing a filtering step under a specific intensity value on the product signal.
  • a specific intensity value is set in the controller. When the intensity value in the product signal is greater than or equal to a specific intensity value, the filtered signal retains the partial product signal; when the intensity value in the product signal is less than the specific intensity value, the filtered signal does not retain the partial product signal.
  • the specific intensity value set in the controller may be a maximum intensity value of the signal detected by the detecting device, or an intensity value in other functional relationship with the maximum intensity value, such as a specific intensity value of 30 of the maximum intensity value. %, or 10% of the maximum intensity value, and the like.
  • the specific intensity value can be determined by multiplying a base value by a number of magnifications. Specifically, according to different intensity values of the detected signals of the detecting device, the specific intensity values are multiplied by different magnifications, so that the sensitivity of the entire working system can be adaptively adjusted according to the position of the autonomous walking device.
  • step S3 Determine, according to the filtering signal of step S2, whether the first detection signal or the second detection signal is interfered by noise, that is, whether it is a valid signal.
  • the specific judging logic is that, in the sampling period, the remaining portion of the product signal is filtered out, and then the first detection signal or the second detection signal is not subjected to noise interference, and is an effective signal; otherwise, the first period in the sampling period is determined.
  • the detection signal or the second detection signal is not disturbed by noise and is a failure signal.
  • the filtering signal is a valid signal
  • the internal and external judgments are continued.
  • the internal and external judgments can be directly judged by the positive or negative of the first detection signal or the second detection signal; or in the embodiment of FIG. 6, the judgment can be made by comparing the threshold values of some feature points in the product signal.
  • the specific step of determining whether the detection signal is a valid signal in the embodiment shown in FIG. 19 can be combined with the embodiment shown in FIG. 15 and its related variations and preferred embodiments to form a new embodiment.
  • the specific step of determining whether the detection signal is a valid signal by the embodiment shown in Fig. 19 is also applicable to the embodiment of the addition filtering step shown in Fig. 18. Since the description of each individual embodiment is clear to the present application, it is readily accomplished by those skilled in the art based on the single embodiment, as Therefore, the combination of the various embodiments will not be described herein.
  • the automatic traveling device 10 may be in various forms such as a lawn mower, a vacuum cleaner, an industrial robot, and the like.
  • the automatic walking device 10 is a lawn mower, it further includes a cutting mechanism including a cutting motor and a cutting blade.
  • the cutting motor drives the cutting blade to rotate and cut the lawn. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Harvester Elements (AREA)

Abstract

一种自动工作系统的控制方法,所述控制方法包括如下步骤:信号发生装置(80)生成边界信号(SS);边界信号(SS)流经边界线(50)生成电磁场(90);自动行走设备(10)检测电磁场(90)至少生成第一检测信号(SJ1)和第二检测信号(SJ2),对第一检测信号(SJ1)和第二检测信号(SJ2)进行相乘处理生成乘积信号(SM)(T1);通过所述乘积信号(SM)确定第一信号点(S_Point1)和第二信号点(S_Point2),基于第一信号点(S_Point1)与第二信号点(S_Point2)的参数生成特征值(T2),将所述特征值与预设阈值进行比较,判断所述第一检测信号(SJ1)是否受到噪声干扰(T3),从而有效地去除干扰信号。还涉及一种执行上述控制方法的自动工作系统。所述控制方法及自动工作系统具有较强的抗电机干扰、抗相邻干扰及抗环境干扰的能力。

Description

自动工作系统及其控制方法及自动行走设备 技术领域
本发明涉及一种自动工作系统,特别是一种控制自动行走设备在工作区域内工作的系统。
本发明涉及一种控制方法,特别是一种控制自动行走设备在工作区域内工作的控制方法。
本发明涉及一种自动行走设备,特别是一种自动在工作区域内工作及行走的自动行走设备。
背景技术
随着科学技术的发展,智能的自动行走设备为人们所熟知,由于自动行走设备可以自动预先设置的程序执行预先设置的相关任务,无须人为的操作与干预,因此在工业应用及家居产品上的应用非常广泛。工业上的应用如执行各种功能的机器人,家居产品上的应用如割草机、吸尘器等,这些智能的自动行走设备极大地节省了人们的时间,给工业生产及家居生活都带来了极大的便利。
这种自动行走设备通常应该自动地在一个预设的工作区域内移动,而不离开预设的工作区域。预设的工作区域的外边界通常采用可以通过电气的边界线来确定。边界线通常为普通的电线。
对工作区域的外边界进行标记的边界线流过电流。所产生的电场或磁场可以被所述自动行走设备中的适当传感器而被探测,探测所得的信号再传输给自动行走设备内置的控制器,控制器将所得的信号与内存中预置的判断条件相比较,从而得出自动行走设备是否处在工作区域内。
如图1所示,在一种简单的实施中,自动工作系统包括信号发生装置80’,与信号发生装置电性连接的边界线50’,以及自动行走设备10’。边界线50’规划出由边界线50’围绕而成的工作区域30’和位于边界线50’圈外的非工作区域70’。信号发生装置80’产生如图2所示的周期性的电流信号SS。电流信号SS流经边界线50’时会产生以边界线50’为中心变化的电磁场90’。在任一时刻,电磁场90’的极性在工作区域30’和非工作区域70’都是相反的。
自动行走设备10’进一步包括信号检测装置20’和控制器190’(图中未示 出)。信号检测装置20’通常为感应线圈,所述感应线圈感应变化的电磁场90’而产生检测信号SJ’,如交流电压或交流电流。控制器190’接收所述检测信号SJ’,并将该检测信号SJ’与预置的阈值进行比较,当电压或电流的幅值超过阈值时,控制器190’给自动行走设备10’指示离开工作区域的边界线50’。当自动工作设备越过边界线50’而进入非工作区域70’内时,由于磁场90’的极性发生反转,信号检测装置110’所感应的检测信号SJ’的相位也随之发生反转。控制器190’通过识别检测信号SJ’的相位与预置的相位方向不一样,从而判断自动工作设备处于非工作区域70’内。
在实际工作场景中,自动工作设备10’上必然会设有驱动自动工作设备行走的电机或/和驱动自动工作设备进行割草或除尘等工作部件工作的电机,该电机的运转会产生一电磁场。该电磁场也会被信号检测装置110’所感应,而产生电压或电流信号。因此,控制器190’所接收到的检测信号SJ’实际上包含了由电机所带来的干扰信号。控制器190’采用已被干扰过的检测信号SJ’进行判断和控制时,经常会将内外判断错以及发出不合实际状况的控制指令。
在实际工作场景中,当存在相邻的不同工作区域时,不同工作区域边界线所产生的电磁场会相互交叉。因此,在各自工作区域内的自动工作设备所感应得到的检测信号,必然包含了与其相邻的电磁场所带来的干扰。因此,各自的控制器190’所接收到的检测信号SJ’实际上包含了由相邻工作区域内的电磁场所带来的干扰信号。控制器190’采用已被干扰过的检测信号SJ’进行判断和控制时,经常会将内外判断错以及发出不合实际状况的控制指令。
在实际工作场景中,自动工作设备10’必然是处于自由空间内工作,而自由空间内会存在有各类无线电设备或其他类型设备所发出的各种各样的电磁波。也许在某一时刻某一特定的电磁波信号,就能被信号检测装置110’所感应。因此,控制器190’所接收到的检测信号SJ’实际上包含了自由空间内的电磁波所带来的干扰信号。控制器190’采用已被干扰过的检测信号SJ’进行判断和控制时,经常会将内外判断错以及发出不合实际状况的控制指令。
因此,为了避免由于噪声干扰而产生的误判问题,为了使得控制器能够发出更准确的控制指令,必须设计一种能够有效排除或降低上述各类干扰噪声的控制方法以及应用该控制方法的自动工作系统。
发明内容
本发明解决的技术问题为:提供一种能够排除或降低干扰信号的自动工作系统及控制方法。
为解决上述技术问题,本发明的技术方案是:一种自动工作系统的控制方法,包括如下步骤:提供用于产生电流信号的信号发生装置,所述电流信号流经边界线生成电磁场;提供自动行走设备,所述自动行走设备具有多个用于检测所述电磁场的检测装置;所述多个检测装置检测所述电磁场,分别生成相应的多个检测信号;将所述多个检测信号进行互乘处理而生成乘积信号,所述乘积信号的方向与所述多个检测信号中的其中一个检测信号的方向保持相同;通过所述乘积信号确定第一信号点和第二信号点;基于第一信号点与第二信号点的参数生成特征值,将所述特征值与预设阈值进行比较,根据比较结果,判断所述的其中一个检测信号是否受到噪声干扰。
优选的,所述多个检测装置包括第一检测装置和第二检测装置;所述第一检测装置和所述第二检测装置检测所述电磁场,分别生成第一检测信号和第二检测信号;将第一检测信号和第二检测信号进行相乘处理而生成乘积信号,所述乘积信号的方向与所述第一检测信号的方向保持相同;所述其中一个检测信号为第一检测信号。
优选的,所述第一信号点为所述乘积信号的最大值点的位置对应在第一检测信号上的点;所述第二信号点为所述乘积信号的最小值点的位置对应在第一检测信号上的点
优选的,所述第一信号点为所述乘积信号的最大值点的位置对应在第二检测信号上的点;所述第二信号点为所述乘积信号的最小值点的位置对应在第二检测信号上的点。
优选的,所述第一信号点为所述乘积信号的最大值点;所述第二信号点为所述乘积信号的最小值点。
优选的,所述特征值包括第一信号点的幅值,定义该幅值为峰值;所述特征值还包括第二信号点的幅值,定义该幅值为谷值;所述预设阈值包括门限值;将所述峰值与所述谷值的绝对值分别与所述门限值进行比较,若所述峰值和所述谷值的绝对值都大于等于所述门限值,则判断所述第一检测信号未受到噪声干扰,否则,判断所述第一检测信号受到噪声干扰。
优选的,所述特征值包括第一信号点与第二信号点的时间之差,定义为峰谷时差;所述预设阈值包括区间下限值和区间上限值;当所述峰值和所述谷值的绝对值都大于等于所述门限值之后,将所述峰谷时差与所述区间下限值和区间上限值进行比较,若所述峰谷时差大于等于区间下限值且小于等于区间上限值,则判断所述第一检测信号未受到干扰,否则,判断所述第一检测信号受到噪声干扰。
优选的,所述特征值包括第一信号点与第二信号点的时间之差,定义为峰谷时差;所述预设阈值包括区间下限值和区间上限值;将所述峰谷时差与所述区间下限值和区间上限值进行比较,若所述峰谷时差大于等于区间下限值且小于等于区间上限值,则判断所述第一检测信号未受到干扰,否则,判断所述第一检测信号受到噪声干扰。
优选的,所述区间下限值和区间上限值的取值范围基于所述电流信号的周期。
优选的,所述特征值包括第一信号点与第二信号点的幅值之差,定义为峰谷幅差;所述预设阈值包括幅度值;当所述峰谷时差大于等于区间下限值且小于等于区间上限值时,将所述峰谷差值与所述幅度值进行比较,若所述峰谷幅差小于等于所述幅度值,则判断所述第一检测信号未受到噪声干扰,否则,判断所述第一检测信号受到噪声干扰。
优选的,所述特征值包括第一信号点与第二信号点的幅值之差,定义为峰谷幅差;所述预设阈值包括幅度值;将所述峰谷差值与所述幅度值进行比较,若所述峰谷幅差小于等于所述幅度值,则判断所述第一检测信号未受到噪声干扰,否则,判断所述第一检测信号受到噪声干扰。
优选的,若所述第一检测信号未受到噪声干扰,则比较所述第一信号点与所述第二信号点的时间顺序关系,判断生成第一检测信号的第一检测装置与所述边界线围成的工作区域的内外关系。
优选的,保持所述乘积信号的方向与所述第一检测信号方向相同的方法为:先对第二检测信号取绝对值,再将第二检测信号的绝对值与所述第一检测信号进行相乘,而生成乘积信号。
优选的,将所述第一检测信号与第二检测信号进行模数转换后,再进行相乘处理。
优选的,所述特征值包括所述乘积信号最大值处所对应的位置坐标索引,且定义该索引为大值索引;所述特征值还包括所述乘积信号最小值处所对应的 位置坐标索引,且定义该索引为小值索引。
优选的,所述特征值包括所述第一检测信号在所述大值索引处的幅值,定义为峰值;所述特征值还包括所述第一检测信号在所述小值索引处的幅值,定义为谷值。
优选的,将所述乘积信号进行最优滤波后,再基于最优滤波后的乘积信号确定第一信号点和第二信号点。
优选的,所述最优滤波的最优滤波核与所述信号发生装置产生的电流信号相关联。
优选的,所述最优滤波的最优滤波核为所述检测装置在边界线规划的工作区域内所检测得到的检测信号。
本发明还提供一种技术方案,一种自动工作系统,包括:信号发生装置,用于产生电流信号;边界线,与所述信号发生装置形成电回路,所述电流信号流经所述边界线产生电磁场;自动行走设备,在所述边界线规划的工作区域内自动行走及工作;所述自动行走设备包括处理器、控制器以及用于检测所述电磁场的多个检测装置;所述多个检测装置检测所述电磁场,分别生成相应的多个检测信号;所述处理器接收所述多个检测信号,并且将多个检测信号进行互乘处理而生成乘积信号,所述乘积信号的方向与所述多个检测信号中的其中一个检测信号保持相同;通过所述乘积信号确定第一信号点和第二信号点;基于第一信号点与第二信号点的参数生成特征值,将所述特征值与预设阈值进行比较,产生比较结果,并且将该比较结果传输给所述控制器;所述控制器根据所述比较结果,判断所述其中一个检测信号是否受到噪声干扰。
优选的,所述多个检测装置包括第一检测装置和第二检测装置;所述第一检测装置和第二检测装置检测所述电磁场,分别生成第一检测信号和第二检测信号;所述处理器接收所述第一检测信号和第二检测信号,并且将第一检测信号和第二检测信号进行相乘处理而生成乘积信号,所述乘积信号的方向与所述第一检测信号保持相同;所述其中一个检测信号为第一检测信号。
优选的,所述第一信号点为所述乘积信号的最大值点的位置对应在第一检测信号上的点;所述第二信号点为所述乘积信号的最小值点的位置对应在第一检测信号上的点。
优选的,所述第一信号点为所述乘积信号的最大值点的位置对应在第二检测信号上的点;所述第二信号点为所述乘积信号的最小值点的位置对应在第二检测信号上的点。
优选的,所述第一信号点为所述乘积信号的最大值点;所述第二信号点为所述乘积信号的最小值点。
优选的,所述特征值包括第一信号点的幅值,定义该幅值为峰值;所述特征值还包括第二信号点的幅值,定义该幅值为谷值;所述预设阈值包括门限值;将所述峰值与所述谷值的绝对值分别与所述门限值进行比较,若所述峰值和所述谷值的绝对值都大于等于所述门限值,则判断所述第一检测信号未受到噪声干扰,否则,判断所述第一检测信号已受到噪声干扰。
优选的,所述特征值包括第一信号点与第二信号点的时间之差,定义为峰谷时差;所述预设阈值包括区间下限值和区间上限值;将所述峰谷时差与所述区间下限值和区间上限值进行比较,若所述峰谷时差大于等于区间下限值且小于等于区间上限值,则判断所述第一检测信号未受到干扰,否则,判断所述第一检测信号受到噪声干扰。
优选的,所述区间下限值和区间上限值的取值范围基于所述电流信号的周期。
优选的,所述特征值包括第一信号点与第二信号点的幅值之差,定义为峰谷幅差;所述预设阈值包括幅度值;将所述峰谷差值与所述幅度值进行比较,若所述峰谷幅差小于等于所述幅度值,则判断所述第一检测信号未受到噪声干扰,否则,判断所述第一检测信号已受到噪声干扰。
优选的,将所述第一检测信号与第二检测信号进行模数转换后,再进行相乘处理。
优选的,保持所述乘积信号的方向与所述第一检测信号方向相同的方法为:先对第二检测信号取绝对值,再将第二检测信号的绝对值与所述第一检测信号进行相乘,而生成乘积信号。
优选的,当所述控制器判断所述第一检测信号未受到噪声干扰时,所述处理器比较所述第一信号点与所述第二信号点的时间顺序关系,判断生成第一检测信号的第一检测装置与所述边界线围成的工作区域的内外关系。
优选的,所述控制器依据所述第一检测装置与所述边界线围成的工作区域的内外关系而发出相应控制指令,控制所述自动行走设备的行走方向。
优选的,当所述控制器判断所述第一检测信号受到噪声干扰时,所述控制器判断该处理周期内未收到有效信号。
优选的,所述处理器还包括最优滤波器,将所述乘积信号进行最优滤波后,再基于最优滤波后的乘积信号确定第一信号点和第二信号点。
优选的,所述最优滤波器的最优滤波核与所述信号发生装置产生的电流信号相关联。
优选的,所述最优滤波器的最优滤波核为所述检测装置在边界线规划的工作区域内所检测得到的检测信号。
本发明还提供一种技术方案,一种自动行走设备,在边界线规划的工作区域内自动行走及工作,所述自动行走设备包括:处理器、控制器和用于检测边界线的多个检测装置;所述多个检测装置检测所述边界线,分别生成多个检测信号;所述处理器接收所述多个检测信号,并且将多个检测信号进行互乘处理而生成乘积信号,所述乘积信号的方向与所述多个检测信号中的其中一个检测信号保持相同;通过所述乘积信号确定第一信号点和第二信号点;基于所述第一信号点与第二信号点的参数生成特征值,将所述特征值与预设阈值进行比较,产生比较结果,并且将该比较结果传输给所述控制器;所述控制器根据所述比较结果,判断所述其中一个检测信号是否受到噪声干扰。
优选的,所述多个检测装置包括第一检测装置和第二检测装置,所述第一检测装置和所述第二检测装置检测所述边界线,分别生成第一检测信号和第二检测信号;所述处理器接收所述第一检测信号和第二检测信号,并且将第一检测信号与第二检测信号进行相乘处理而生成乘积信号,所述乘积信号的方向与所述第一检测信号保持相同;所述其中一个检测信号为第一检测信号。
优选的,所述第一检测装置和所述第二检测装置关于所述自动行走设备的中轴线对称。
优选的,所述第一检测装置和所述第二检测装置之间的横向距离大于等于80毫米。
优选的,所述第一检测装置和所述第二检测装置分别位于所述自动行走设备的电机的不同侧。
本发明还提供一种技术方案,一种自动工作系统的控制方法,包括如下步骤:提供用于产生电流信号的信号发生装置,所述电流信号流经边界线生成电磁场;提供自动行走设备,所述自动行走设备具有用于检测所述电磁场的多个检测装置;所述多个检测装置检测所述电磁场而生成相应的多个检测信号;将所述多个检测信号进行互乘而生成乘积信号;基于所述乘积信号,判断所述多个检测信号中的其中一个检测信号是否受到噪声干扰。
优选的,基于所述乘积信号确定第一信号点和第二信号点,基于所述第一信号点的参数和所述第二信号点的参数生成特征值,将所述特征值与预设阈值 进行比较,根据比较结果,判断所述多个检测信号中的其中一个检测信号是否受到噪声干扰。
优选的,基于所述乘积信号,滤除特定强度值以下的信号,根据所述滤除结果判断所述多个检测信号中的其中一个检测信号是否受到噪声干扰。
本发明还提供一种技术方案,一种自动工作系统,包括:信号发生装置,用于产生电流信号;边界线,与所述信号发生装置形成电回路,所述电流信号流经所述边界线产生电磁场;自动行走设备,在所述边界线规划的工作区域内自动行走及工作;所述自动行走设备包括处理器、控制器以及用于检测所述电磁场的多个检测装置;所述多个检测装置检测所述电磁场,分别生成相应的多个检测信号;所述处理器接收所述多个检测信号,并且将多个检测信号进行互乘处理而生成乘积信号;所述控制器基于所述乘积信号,判断所述多个检测信号中的其中一个检测信号是否受到噪声干扰。
本发明还提供一种技术方案,一种自动行走设备,在边界线规划的工作区域内自动行走及工作,所述自动行走设备包括:处理器、控制器和用于检测边界线的多个检测装置;所述多个检测装置检测所述边界线,分别生成相应的多个检测信号;所述处理器接收所述多个检测信号,并且将多个检测信号进行互乘处理而生成乘积信号;所述控制器基于所述乘积信号,判断所述多个检测信号中的其中一个检测信号是否受到干扰。
本发明的有益效果为:通过对所检测的信号进行有效信号识别,从而有效地去除由环境及电机所带来的信号干扰,提高了自动工作系统的抗干扰能力。有效信号识别控制算法包括相乘步骤、对应步骤及比较判断步骤,该有效信号识别控制算法不仅有效而且简单。通过将所检测得到的信号进行数字化处理后再进行有效信号识别过程,不仅提高了自动工作系统的效率而且还降低了识别有效信号的硬件实现难度。
附图说明
以上所述的本发明解决的技术问题、技术方案以及有益效果可以通过下面的能够实现本发明的较佳的具体实施例的详细描述,同时结合附图描述而清楚地获得。
附图以及说明书中的相同的标号和符号用于代表相同的或者等同的元件。
图1为现有技术中自动工作系统的示意图;
图2为图1所示自动工作系统中电流信号的示意图;
图3为本申请一较佳实施例的自动工作系统的示意图;
图4为图2所示自动工作系统的一较佳实施例的自动行走设备的模块示意图;
图5为模数转换过程的信号波形示意图;
图6为本申请一较佳实施例的去噪算法步骤框图;
图7为图6所示步骤框图中步骤一的具体乘积流程图;
图8为本申请一较佳实施例按照图7步骤处理过程的信号波形示意图;
图9为图6所示步骤框图中步骤二的具体对应流程图;
图10为图6所示步骤框图中步骤三的具体判断有效信号第一实施例的流程图;
图11为图6所示步骤框图中步骤三的具体判断有效信号第二实施例的流程图;
图12为图6所示步骤框图中步骤三的具体判断有效信号第三实施例的流程图;
图13为图6所示步骤框图中步骤三的具体判断有效信号第四实施例的流程图;
图14为图6所述步骤框图中的步骤四的具体判断内外的流程图;
图15为与图6所示步骤框图相对应的具体流程图;
图16为本申请一较佳实施例在实际工作场景中的检测信号波形示意图及经过相乘步骤后的波形示意图;
图17为本申请另一优选实施例的去噪算法步骤框图;
图18与图17所示步骤框图相对应的具体流程图;
图19为本申请另一实施例的去噪算法步骤框图。
10/10’、自动工作设备 30/30’、工作区域
50/50’、边界线 70/70’、非工作区域
80/80’、信号发生装置 90/90’、磁场
102、壳体 104、轮子
106、电机 110’、信号检测装置
1101、第一检测装置 1102、第二检测装置
1301、第一调节电路 1302、第二调节电路
150、微处理器 170、差分数模转换器
1702、内存 190/190’、控制器
具体实施方式
有关本发明的详细说明和技术内容,配合附图说明如下,然而所附附图仅提供参考与说明,并非用来对本发明加以限制。
图3所示的自动工作系统包括信号发生装置80、自动行走设备10、边界线50,且信号发生装置80与边界线50电性连接。信号发生装置80产生如图2所述的电流信号SS发送给边界线50,电流信号SS流经边界线50时产生变化的电磁场90。如本领域技术人员所知,电流信号SS也可以不采用图2所示的周期性脉冲电压信号,而改为采用其他类型能产生变化磁场的信号形式。边界线50用于将特定区域划分为内外两个区域,其中位于边界线50内的范围定义为工作区域30,位于边界线50外范围定义为非工作区域70。
自动行走设备10可以智能割草机或清洁机器人等自动、半自动机器。在本实施例中,自动行走设备10为智能割草机。如图3所示,自动行走设备10包括壳体102、位于壳体102底部的若干轮子104,位于壳体102内部的电机106(图中未示出),控制自动工作设备10自动工作及自动行走的控制器190(图中未示出)。如本领域技术人员所知,电机106的数量可以为一个也可以为多个,电机106用来驱动轮子104移动或者用来驱动自动行走设备10的工作部件(图中未示出)进行割草工作。
此处定义自动行走设备10的正常行走方向为自动行走设备10的前方,与前方相对的一方为自动行走设备10的后方,基于定义的自动行走设备10的前、后方向,自动行走设备10还包括位于前、后方之间的左、右两侧。
自动行走设备10包括至少两个用于检测电磁场90的检测装置。在本实施例中,如图3所示,自动行走设备包括第一检测装置1101和第二检测装置1102。第一检测装置1101和第二检测装置1102分别感应磁场90的变化而生成第一检测信号SJ1和第二检测信号SJ2。在该实施例中,第一检测装置1101与第二检测装置1102具体为电感线圈。当然,自动行走设备10也可以设置多个检测装置,多个检测装置检测电磁场90分别生成多个相应的检测信号。
为了更好地感应电磁场90的变化,电感线圈通常是垂直设置在自动行走设备10上的,使 得电感线圈所感应电磁场90的有效面积最大,该有效面积指与磁场方向垂直的面积。当然,电感线圈也可以非垂直地设置在自动行走设备10上,如呈75°、45°等不同的夹角设置在自动行走设备10上。无论该电感线圈以何种角度设置在自动行走设备10上,只需保证该电感线圈存在有效面积,能够感应产生检测信号即可。
在本实施例中,第一检测装置1101和第二检测装置1102分别位于自动行走设备10中轴线Y左右两侧,具体如关于中轴线Y左右对称。当然,第一检测装置1101和第二检测装置1102也可以位于自动行走设备10其他位置。当自动行走设备10具有两个充电对接端子时,第一检测装置1101和第二检测装置1102的位置关于两个充电对接端子的中轴线对称。第一检测装置1101和第二检测装置1102分别位于电机106的异侧,具体如:第一检测装置1101位于电机106的右侧,而第二检测装置1102位于电机106的左侧。当自动行走设备10设有多于两个检测装置时,只有其中一个检测装置与其他检测装置位于电机106的不同侧即可。
当自动行走设备10包括两个以上的检测装置时,各个检测装置在自动行走设备10上的具体位置,可以有多种选择。具体地,当自动行走设备10包括3个检测装置时,其中两个检测装置分别位于对称轴的左右两侧,另一个检测装置位于对称轴的某一点上。具体的位置设置的实施例过多,本文不再赘述。下文以自动行走设备10具有两个检测装置为实施例进行详细地介绍。
为了避免模拟信号处理过程的复杂性,本实施例对检测得到的检测信号进行模数转换,然后再采用数字信号处理器进行去噪处理。如本领域技术人员所知,如果不进行模数转换,本实施例中的去噪处理过程也可以利用相应的硬件电路实现。
如图4所示,自动行走设备10进一步包括与第一检测装置1101电性连接的第一调节电路1301,与第二检测装置1102电性连接的第二调节电路1302,分别与第一调节电路1301和第二调节电路1302电性连接的一个差分模数转换器170,与差分模数转换器170电性连接的处理器150。
第一调节电路1301对第一检测装置1101传输过来的第一检测信号SJ1进行放大处理得到第一调节信号ST1,以使得第一调节信号ST1符合差分模数转换器170的输入要求。
第二调节电路1302对第二检测装置1102传输过来的第二检测信号SJ2进行放大处理得到第二调节信号ST2,以使得第二调节信号ST1符合差分模数转换器170的输入要求。
第一调节电路1301和第二调节电路1302内置的放大参数是一样的,以保证所得到第一调 节信号ST1与第二调节信号ST2之间的对应关系等同于第一检测信号SJ1与第二检测信号SJ2之间的对应关系。
为了获取更好的精度,在本实施例采用了差分模数转换器170分别对第一调节信号ST1与第二调节信号ST2进行模数转换。如本领域技术人员所知,也可以采用两个参数一样的模数转换器分别对第一调节信号ST1与第二调节信号ST2进行模数转换。在该实施例中,所选用的模数转换的采样频率为50KHz。如本领域技术人员所知,采样频率也可以为其他数值,该采样频率不构成对本发明的限制。
经过差分数模转换器170之后,第一调节信号ST1和第二调节信号ST2分别转换为第一数字信号SD1和第二数字信号SD2。差分模数转换器170将第一数字信号SD1和第二数字信号SD2传输给处理器150进行下一步去噪处理。在该实施例中,差分数模转换器170还包含一个用于存储第一数字信号SD1和/或第二数字信号SD2的内存1702。如本领域技术人员所知,也可以选用不包含内存的差分数模转换器,而选用包含内存空间的微处理器,只需将第一数字信号SD1和/或第二数字信号SD2存储于微处理器内即可。
处理器150接收到第一数字信号SD1和第二数字信号SD2后,按照内置的去噪控制算法对所接收到的数字信号进行处理,并且将处理所得的结果传输给控制器190。处理所得的结果包括第一检测装置1101是否检测到有效信号,第二检测装置1102是否检测到有效信号,第一检测装置1101是否处于工作区域30内,第二检测装置1102是否处于工作区域30内。
控制器190基于处理所得的结果对自动工作设备发出相应的控制指令。例如,当第一检测装置1101与第二检测装置1102都没检测到有效信号,则控制器190不发出任何行动指令,使得自动工作设备10不再行走;当第一检测装置1101处于工作区域30内而第二检测装置1102处于非工作区域70内,若自动工作设备正在工作模式,则控制器190发出向左转并前进的命令,若自动工作设备正在回归模式,则控制器190发出维持原方向继续前进的命令。具体的控制指令,根据处理所得的结果不同,用户或者设计者可以自我设计,因此,不再赘述其中的逻辑。
以下具体地介绍,处理器150和控制器190所执行的去噪控制算法。
由于在实际场景中,干扰信号(即本文中所述的噪声)是随机的,具有不确定性。因此,本文在介绍去噪控制算法过程时,仅仅采用一个假设的理想信号对算法的具体过程加以说明。图示中的信号波形并不是实际场景中所获得的信号,图示波形内容不够成对本发明的限制。图 中仅呈现在一个处理周期内的信号波形。
由于对第一数字信号SD1和第二数字信号SD2的去噪控制算法流程是类似的,因此,在本文中仅以对第一数字信号SD1的处理过程作为举例说明,即仅对第一检测信号SJ1的有效性及第一检测装置1101处于工作区域30的内外进行判断。
第一调节电路1301输出的第一调节信号ST1如图5(a)所示,经过差分模数转换器170采样后变为如图5(b)所示的第一数字信号SD1。如图5(a)与图5(b)所示,第一数字信号SD1维持了第一调节信号ST1的物理特性,如信号周期、信号幅值、信号相位等特性。在该转换过程中,第一调节信号ST1的时间特性t对应成了第一数字信号SD1的索引特性i。
同理,第二调节电路1302输出的第二调节信号ST2如图5(c)所示,经过差分模数转换器170采样后变为如图5(d)所示的第二数字信号SD2。如图5(c)与图5(d)所示,第二数字信号SD2维持了第二调节信号ST2的物理特性,如信号周期、信号幅值、信号相位等特性。在该转换过程中,第二调节信号ST2的时间特性t对应成了第二数字信号SD2的索引特性i。
具体的去噪控制算法步骤如图6所示,
步骤T1:对所获得的数字信号进行相乘步骤获得一个乘积信号SM。在该步骤中,乘积信号SM的方向与第一数字信号SD1的方向保持相同。该步骤内的具体细节,文中后续阐述。
步骤T2:通过乘积信号SM进行对应取值步骤。在该步骤中,通过乘积信号SM确定第一信号点S_Point1和第二信号点S_Point1。基于第一信号点S_Point1与第二信号点S_Point1的参数生成特征值,将所述特征值与预设阈值进行比较,根据判断结果,判断所述第一检测信号是否受到噪声干扰。该步骤内的具体细节,文中后续阐述。
步骤T3:将步骤T2中所获得的特征值与自动行走设备10中预设的阈值进行比较,从而判断第一检测信号SJ1是否受到噪声干扰,即是否为有效信号。该步骤内的具体细节,文中后续阐述。若判断为有效信号,则进入步骤T4;若判断为无效信号,则进入步骤T5。
步骤T4:继续判断第一检测装置1101是在工作区域30内或外。
步骤T5:根据步骤T3和步骤T4所判断的情况,传输不同的结果给控制器80。
在进行步骤T1之前,也可以增加一步放大步骤,即分别对第一数字信号SD1和第二数字信号SD2进行放大处理。
电磁场90的产生及变化特性,因不同的电流信号SS而有所不同。本实施例中的去噪算法的流程,不受具体电流信号SS的变化而影响。请参考图5,信号检测装置是在不停地检测电 磁场90以产生相应的检测信号。因此,从时间轴上看,检测信号、调节信号、数字信号都是持续不断地在更新和变化的。差分模数转换器170的内存1702是存储一个时间段内的信号作为去噪控制算法中的数据的。在实际的工作场景中,本实施例所选的差分模数转换器170的采样频率为50KHz,即每隔20us对第一调节信号ST1采样一次获得一个对应的数字幅值。根据内存1702的容量,每一次可以存储700个数值点,对应到时间上即为14ms。因此,本实施例中,去噪控制算法的处理周期为14ms,即数字信号对应的索引周期为700个点。如本领域技术人员所知,该处理周期可以根据所选用的硬件或者加入限制条件而发生变化。因此,该处理周期并不构成对本发明的限制。
如文中前面提到,模拟信号的时间特性t与数字信号的索引特性i存在一一对应的关系。在实际工作场景中,本实施例的时间特性t与索引特性i的对应关系如下表所示:
表一、时间特性t与索引特性i之间的对应关系
t/us 0 20 40 60 80 100 120 ....................... 139960 13980 14000
i/点 0 1 2 3 4 5 6 ....................... 698 699 700
如图7所示,信号相乘步骤T1还包括以下两个步骤:
步骤T11:在处理周期内,对第二数字信号SD2的每一点进行取绝对值处理,即|SD2[i]|=abs(SD2[i])。具体的示意过程,如图8所示。图8(a)为第二数字信号SD2的波形示意图,图8(b)为对第二数字信号SD2取绝对值后的波形示意图。
步骤T12:在处理周期内,将第一数字信号SD1的每一点与对应该点的第二数字信号绝对值|SD2|进行乘积运算获得乘积信号SM,即SM[i]=SD1[i]×|SD2[i]|。具体的示意过程,如图8所示。将图8(b)中的第二数字信号绝对值|SD2|与图8(c)中的第一数字信号SD1在相对应的索引点上的值进行相乘运算,获得如图8(d)中所示的乘积信号SM。如图8(d)所示,可知该乘积运算所获得乘积信号SM的方向与第一数字信号的方向相同。SM的幅值大小是用第二数字信号SD2的幅值绝对值与第一数字信号幅值乘积获得的。因此,乘积信号SM包含了第一数字信号SD1的相位信息,及同时包含了第一数字信号SD1与第二数字信号SD2的幅值信息。
在本实施例中,采用对第二数字信号SD2取绝对值的方式,使得乘积信号SM的方向与第一数字信号SD1的方向保持相同。当然,本领域技术人员也可以采用其他方式达到该目的。
在获得乘积信号之后,可以利用乘积信号的一些特征对应至检测信号得到用于与预置阈值进行判断的判断值。在该实施例中,数字信号是由检测信号经过调节及采样获得的,其信号特 征是与检测信号对应的。因此,在该实施例中,下一步骤是将乘积信号的一些特征对应至数字信号得到用于与预置阈值进行对比判断的判断值。
如图9所示,对应取值步骤T2还包括以下两个步骤:
步骤T21:在处理周期内,取乘积信号SM最大值处的索引而得到大值索引Index_Pos,即Index_Pos=Max_index(SM[i]);在处理周期内,取乘积信号SM最小值处的索引而得到小值索引Index_Neg,即Index_Neg=Min_index(SM[i])。
在本实施例中,通过取乘积信号SM最大值处的索引和最小值处的索引而得到大值索引Index_Pos和小值索引Index_Neg。大值索引Index_Pos也可以为乘积信号SM最大值处一个预设范围内某一点的索引,例如乘积信号SM最大值处的幅值为A,则大值索引Index_Pos可以为幅值等于0.9A—A该范围内的某一个信号点处所对应的索引。同理,小值索引Index_Neg也可以为乘积信号SM最小值处一个预设范围内某一点的索引。
步骤T22:在处理周期内,第一数字信号SD1对应于大值索引Index_Pos处的点即为第一信号点S_Point1,第一数字信号SD1对应于小值索引Index_Neg处的点即为和第二信号点S_Point2。取第一信号点S_Point1的幅值而得到峰值Peak_Pos,即Peak_Pos=SD1(Index_Pos);取第二信号点S_Point2的幅值而得到谷值Peak_Neg,即Peak_Neg=SD1(Index_Neg)。
如上所示,在对应取值步骤T2内,控制算法获得了四个用于判断的特征值,即大值索引Index_Pos、小值索引Index_Neg、峰值Peak_Pos和谷值Peak_Neg。
控制算法在获得判断值之后,即进入判断信号是否有效的步骤T3。图10揭示了步骤T3的第一实施例。
步骤T31:将峰值Peak_Pos与预置的门限值V比较;将谷值Peak_Neg取绝对值后,用绝对值与预置的门限值V比较;若两个比较结果都大于等于门限值V,即Peak_Pos≥V&&|Peak_Neg|≥V,则进行步骤T4。否则,判断第一数字信号SD1为无效信号,直接进入步骤T51,给控制器190输出的结论为无信号。
门限值V是一个变量,其具体的数值在不同的处理周期内可能不同。处理器150根据步骤T2中所有信号的峰值来确定门限值V的具体数值。门限值V有一个下限值V0,即V≥V0。下限值V0是通过实验测定的,其具体的数值与自动工作系统有关。在自动工作系统中,选取离边界线50最远距离的点,在该点所测量得到的信号峰值即为下限范围值V0。T31判断步骤从信号幅值方面确定所检测得到的信号是否为有效信号,从而去除干扰噪声。
图11揭示了步骤T3的第二实施例。
步骤T32:将大值索引Index_Pos和小值索引Index_Neg作差,并且取差值的绝对值,用该绝对值与预置的区间值进行比较;若该绝对值处于区间[P,K]之间,即P≤|Index_Pos-Index_Neg|≤K,则进入步骤T4。否则,判断第一数字信号SD1为无效信号,直接进入步骤T51,给控制器190输出的结论为无效信号。
区间下限值P与区间上限值K与自动工作系统有关。根据信号发生装置80所产生的边界信号SS,可以理论推算出在无噪声干扰的情况下,在任一个处理周期内,检测装置所检测信号的上升沿变化的时间节点即索引点,将该索引点定义为P;以及所检测信号的上升沿变化的时间节点即索引点,将该索引点定义为K。
T32判断步骤从信号周期方面确定所检测得到的信号是否为有效信号,从而去除干扰噪声。
图12揭示了步骤T3的第三实施例。
步骤T33:将峰值Peak_Pos与谷值Peak_Neg作差之后,用差值与预置的幅度值Z进行比较;若差值小于等于幅度值,即Peak_Pos-Peak_Neg≤Z,则进入步骤T4。否则,判断第一数字信号SD1为无效信号,直接进入步骤T51,给控制器190输出的结论为无信号。
幅度值Z是根据自动工作系统而设定的一个信号幅值跨度。在无噪声干扰的情况下,检测装置所检测信号的幅值跨度是不会超出幅度值Z的。
T33判断步骤从信号幅值方面确定所检测得到的信号是否为有效信号,从而防止控制器根据已受到噪声干扰的信号而做出不适宜的控制指令。
图13揭示了步骤T3的第四实施例,第四实施例包括上述3个判断步骤,具体步骤流程如下所示:
步骤T31:将峰值Peak_Pos与预置的门限值V比较;将谷值Peak_Neg取绝对值后,用绝对值与预置的门限值V比较;若两个比较结果都大于等于门限值V,即Peak_Pos≥V&&|Peak_Neg|≥V,则进行步骤T32。否则,判断第一数字信号SD1为无效信号,直接进入步骤T51,给控制器190输出的结论为无信号。
步骤T32:将大值索引Index_Pos和小值索引Index_Neg作差,并且取差值的绝对值,用该绝对值与预置的区间值进行比较;若该绝对值处于区间[P,K]之间,即P≤|Index_Pos-Index_Neg|≤K,则进入步骤T33。否则,判断第一数字信号SD1为无效信号,直接进入步骤T51,给控制器190输出的结论为无效信号。
步骤T33:将峰值Peak_Pos与谷值Peak_Neg作差之后,用差值与预置的幅度值Z进行比较;若差值小于等于幅度值,即Peak_Pos-Peak_Neg≤Z,则进入步骤T4。否则,判断第一数字信号SD1为无效信号,直接进入步骤T51,给控制器190输出的结论为无信号。
步骤T33与T31都是从信号幅值方面进行去噪的,步骤T33是对步骤T31的一个更进一步的确认,步骤T32是从信号周期方面进行去噪的,从而提高判断信号是否有效的准确性。当步骤T3的判断结果为第一数字信号SD1为有效信号之后,进入判断内外的步骤T4。步骤T4的具体过程如图11所示。
步骤T4:大值索引Index_Pos与小值索引Index_Neg进行比较;若大值索引Index_Pos小于小值索引Index_Neg,则判断用于获得第一数字信号SD1的第一检测装置1101处于工作区域30内,进入步骤T52,给控制其190输出的结论为第一检测装置在工作区域内;否则,则判断用于获得第一数字信号SD1的第一检测装置1101处于工作区域30外,进入步骤T53,给控制其190输出的结论为第一检测装置在工作区域外。
在自动工作系统中,根据信号发生装置80所产生的边界信号SS,可以理论推算出在无噪声干扰的情况下,在任一个处理周期内,在工作区域30内的信号检测装置都是先检测到峰值后检测到谷值的,而在非工作区域70内的信号检测装置都是先检测到谷值后检测到峰值的。因此,可以通过判断信号峰值与谷值所出现的顺序来判断用于检测该信号的检测装置是处于工作区域内或外,从而判断自动行走设备是处于工作区域内或外。
控制算法的整个流程,如图15所示。图15是将步骤T1、步骤T2、步骤T3、步骤T4和步骤T5整合在一起的一个完整的流程图。
在本实施例中,第一信号点S_Point1和第二信号点S_Point2是取在第一数字信号SD1上的。在另一实施例中,第一信号点S_Point1和第二信号点S_Point2也可以取在第二数字信号SD2上的。具体地,第二数字信号SD2在大值索引Index_Pos处的点即为第一信号点S_Point1,第二数字信号SD2在小值索引Index_Neg处的点即为第二信号点S_Point2。在另一实施例中,第一信号点S_Point1和第二信号点S_Point2也可以取在乘积信号SM上。具体地,乘积信号SM在大值索引Index_Pos处的点即为第一信号点S_Point1,乘积信号SM在小值索引Index_Neg处的点即为第二信号点S_Point2。
第一信号点S_Point1和第二信号点S_Point2取在不同的信号时,不影响本发明去噪控制算法的流程。当第一信号点S_Point1和第二信号点S_Point2取在不同的信号时,基于第一信 号点S_Point1和第二信号点S_Point2的参数所生成的特征值的具体值可能会有所变化,因此,只需要适应性地对预设阈值的值的范围做一些适应性的变化即可。
经过去噪控制算法后所得的有效信号不仅可以用来判断自动行走设备是否处于工作区域内或外,还可以利用该有效信号的强度(即波形信号的幅值)来判断自动行走设备离边界线的距离。进一步地,通过自动行走设备离边界线的距离来规划自动行走设备的工作路线或者回归充电站的路径,从而避免破坏草坪。经过去噪控制算法之后,自动工作系统的抗干扰能力得到有效提高,因此,该自动工作系统不仅适用小范围的工作区域,也可以适用大范围的工作区域(如工作区域30的面积大于2800平方米)。
以上所述实施例为判断第一检测装置1101是否在工作区域内的控制过程。如本领域技术人员所知,判断第二检测装置1102是否在工作区域内的控制过程与上述过程类似,只需要将步骤T2中的取绝对值步骤改为对第一数字信号SD1取绝对值,后续步骤T3取值过程取第二数值信号SD2对应的值即可,本文不再赘述该控制步骤。
在阐述上述去噪控制过程中,是采用一个假设的理想信号对算法的具体过程加以说明的。本实施例的自动工作系统,在实际工作场景所检测得到实际信号波形图如图16(a)所示,其中红色波形为第一检测装置1101检测得到的第一检测信号SJ1,蓝色波形为第二检测装置1102检测得到的第二检测信号SJ2,其实际检测信号包含了很多噪声影响大的点。在相关的模拟软件(如Matlab)中直接对实际信号进行步骤T1运算,得到乘积信号SM的实际波形如图16(b)所示。经过乘积处理步骤后,乘积信号SM所对应的大值索引Index_Pos与小值索引Index_Neg刚好为实际检测信号中的噪声影响小的点。通过对实际检测信号的模拟运算,本领域技术人员很容易得出本文所述的控制算法对噪声引起的干扰有很强的抑制效果,从而控制器由于干扰而发出错误控制指令的情况大幅减少。
在多于两个检测信号的实施例中,流程步骤与上述两个检测信号的实施例类似。具体不同点在于:在信号相乘步骤中,将多个检测信号进行互乘获得乘积信号。
如图17所示为申请另一优选实施例的步骤框图。该实施例的具体步骤比图6所示实施例增加了最优滤波步骤T1’,最大化信号的信噪比,进一步提高自动工作系统的抗干扰能力。最优滤波步骤T1’设定对所获得的数字信号进行相乘步骤获得一个乘积信号SM的步骤T1和通过乘积信号SM进行对应取值步骤的步骤T2之间。在最优滤波步骤T1’中,对步骤T1中所获得的乘积信号进行最优滤波,在将最优滤波后的乘积信号作为步骤T2的输入信号。
在该实施例中,处理器150内还设有最优滤波器,最优滤波器具有最优滤波核h,最优滤波核h为滤除噪声的基础信号。最优滤波器的具体算法公式,如下式所示:
Figure PCTCN2016104718-appb-000001
Figure PCTCN2016104718-appb-000002
其中h为最优滤波器预设的最优滤波核,x为最优滤波器的输入信号,y为最优滤波器的输出信号。在该实施例中,结合具体的去噪环境,最优滤波核h选取自动行走设备10在自动工作系统中预设地点处所感应边界信号的检测信号。具体如,在自动工作系统中,选取离边界线50最远距离的点,在该点检测装置所测量得到的信号值即作为最优滤波核h。当然,最优滤波核h也可以采用多个检测装置在最弱位置点所测量得到的信号的均值。优选的,最优滤波核h也可以采用合成信号,根据自动工作系统的具体场景,按照下式计算出最优滤波核h:
Figure PCTCN2016104718-appb-000003
其中S为理想信号,R为预估噪声的协方差。自动工作系统的边界信号是确定的,根据边界信号可以推算出理想信号S。根据自动工作系统所处的具体场景,协方差R可以进行预估。
如图18为图17所示实施例的具体流程图,该实施例只是在图15所示去噪算法流程中增添最优滤波步骤。下文阐述图18的具体流程是,对与图15所述去噪算法相同部分则不再赘述。
步骤T11:在处理周期内,对第二数字信号SD2的每一点进行取绝对值处理,即|SD2[i]|=abs(SD2[i])。
步骤T12:在处理周期内,将第一数字信号SD1的每一点与对应该点的第二数字信号绝对值|SD2|进行乘积运算获得乘积信号SM,即SM[i]=SD1[i]×|SD2[i]|。
步骤T13’:在处理周期内,采用滤波核h,对输入的乘积信号SM进行最优滤波,获得滤波后的乘积信号SMF,即
Figure PCTCN2016104718-appb-000004
步骤T21:在处理周期内,取滤波后的乘积信号SMF最大值处的索引而得到大值索引Index_Pos,即Index_Pos=Max_index(SMF[i]);在处理周期内,取乘积信号SMF最小值处的索引而得到小值索引Index_Neg,即Index_Neg=Min_index(SMF[i])。
后续步骤的具体内容和图15所示实施例相同,因此不再赘述。同理,对图15所示实施例的变型及优选方案,同样适用图18所示的增添滤波步骤的实施例。
图19揭示了本申请实现抗噪声干扰的另一实施例的步骤框图。该实施例与图6所示实施例不同之处在于,信号相乘步骤之后的判断步骤。图6所示实施例,在信号相乘步骤之后,通过对应取值步骤获得特征值,再将特征值与预设阈值进行比较,从而判断第一检测信号或第二 检测信号是否受到干扰,即判断第一检测信号或第二检测信号是否为有效信号,能否基于该信号进一步判断自动行走设备与边界线的内外关系。图19所示实施例,首先仍将第一检测信号和第二检测信号进行相乘而获得乘积信号,再滤除特定强度值之下的信号,最后根据滤除结果判断信号是否有效。
下文具体阐述,该实施例进行抗干扰的步骤:
S1:对检测装置所检测获得的第一检测信号和第二检测信号进行相乘以获得乘积信号。通过相乘步骤,乘积信号有效地放大了第一检测信号和第二检测信号之间同步信号,抑制了第一检测信号和第二检测信号之间异步信号。
S2:对乘积信号进行特定强度值之下的滤除步骤而获得滤除信号。控制器内设定特定强度值。当乘积信号中的强度值大于等于特定强度值时,滤除信号就保留该部分乘积信号;当乘积信号中的强度值小于该特定强度值时,滤除信号不保留该部分乘积信号。控制器内所设定的特定强度值可以为检测装置所检测信号的最大强度值,或者为与所述最大强度值成其他函数关系的强度值,如特定强度值为所述最大强度值的30%,或所述最大强度值的10%等。在一优选实施例中,所述特定强度值可以由一个基本值和若干个放大倍数相乘而确定。具体如,根据检测装置的所检测信号的强度值不同,特定强度值乘以不同的放大倍数,使得整个工作系统的灵敏度可以根据自动行走设备所处的位置不同而发生自适应调节。
S3:根据步骤S2的滤除信号,判断第一检测信号或第二检测信号是否受到噪声干扰,即是否为有效信号。具体的判断逻辑为,在采样周期内滤除信号存在乘积信号的保留部分,则判断第一检测信号或第二检测信号未受到噪声干扰,为有效信号;否则,则判断该采样周期内第一检测信号或第二检测信号未受到噪声干扰,为失效信号。
S4:当滤除信号为有效信号时,继续进行内外判断。该步骤中,内外判断可以直接由第一检测信号或第二检测信号的正负来进行判断;也可以借助图6实施例中,通过对乘积信号中某些特征点的阈值比较来进行判断。
S5:根据步骤S3和步骤S4所判断的情况,传输不同的结果给控制器80。
图19所示实施例具体的判断检测信号是否为有效信号的步骤,可以结合图15所示实施例及其相关的变型及优选方案,组成新的实施例。同样,图19所示实施例具体的判断检测信号是否为有效信号的步骤也适用图18所示的增添滤波步骤的实施例。由于本申请对各个单个实施例的阐述已经非常清楚,本领域技术人员基于所述单个实施例进行组合是很容易完成的,因 此,本文不再赘述各个实施例的组合方式。
在本发明中,自动行走设备10的可以为割草机、吸尘器、工业机器人等多种形式。自动行走设备10为割草机时,还进一步包括切割机构,切割机构包括切割电机和切割刀片,割草机在边界线50规划的工作区域30内工作时,切割电机驱动切割刀片旋转,切割草坪。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (46)

  1. 一种自动工作系统的控制方法,其特征在于,包括如下步骤:
    提供用于产生电流信号的信号发生装置,所述电流信号流经边界线生成电磁场;
    提供自动行走设备,所述自动行走设备具有多个用于检测所述电磁场的检测装置;
    所述多个检测装置检测所述电磁场,分别生成相应的多个检测信号;
    将所述多个检测信号进行互乘处理而生成乘积信号,所述乘积信号的方向与所述多个检测信号中的其中一个检测信号的方向保持相同;
    通过所述乘积信号确定第一信号点和第二信号点;
    基于第一信号点与第二信号点的参数生成特征值,将所述特征值与预设阈值进行比较,根据比较结果,判断所述的其中一个检测信号是否受到噪声干扰。
  2. 根据权利要求1所述的自动工作系统的控制方法,其特征在于,所述多个检测装置包括第一检测装置和第二检测装置;所述第一检测装置和所述第二检测装置检测所述电磁场,分别生成第一检测信号和第二检测信号;所述其中一个检测信号为第一检测信号。
  3. 根据权利要求2所述的自动工作系统的控制方法,其特征在于,所述第一信号点为所述乘积信号的最大值点的位置对应在第一检测信号上的点;所述第二信号点为所述乘积信号的最小值点的位置对应在第一检测信号上的点
  4. 根据权利要求2所述的自动工作系统的控制方法,其特征在于,所述第一信号点为所述乘积信号的最大值点的位置对应在第二检测信号上的点;所述第二信号点为所述乘积信号的最小值点的位置对应在第二检测信号上的点。
  5. 根据权利要求2所述的自动工作系统的控制方法,其特征在于,所述第一信号点为所述乘积信号的最大值点;所述第二信号点为所述乘积信号的最小值点。
  6. 根据权利要求2所述的自动工作系统的控制方法,其特征在于,所述特征值包括第一信号点的幅值,定义该幅值为峰值;所述特征值还包括第二信号点的幅值,定义该幅值为谷值;所述预设阈值包括门限值;将所述峰值与所述谷值的绝对值分别与所述门限值进行比较,若所述峰值和所述谷值的绝对值都大于等于所述门限值,则判断所述第一检测信号未受到噪声干 扰,否则,判断所述第一检测信号受到噪声干扰。
  7. 根据权利要求6所述的自动工作系统的控制方法,其特征在于,所述特征值包括第一信号点与第二信号点的时间之差,定义为峰谷时差;所述预设阈值包括区间下限值和区间上限值;当所述峰值和所述谷值的绝对值都大于等于所述门限值之后,将所述峰谷时差与所述区间下限值和区间上限值进行比较,若所述峰谷时差大于等于区间下限值且小于等于区间上限值,则判断所述第一检测信号未受到干扰,否则,判断所述第一检测信号受到噪声干扰。
  8. 根据权利要求2所述的自动工作系统的控制方法,其特征在于,所述特征值包括第一信号点与第二信号点的时间之差,定义为峰谷时差;所述预设阈值包括区间下限值和区间上限值;将所述峰谷时差与所述区间下限值和区间上限值进行比较,若所述峰谷时差大于等于区间下限值且小于等于区间上限值,则判断所述第一检测信号未受到干扰,否则,判断所述第一检测信号受到噪声干扰。
  9. 根据权利要求8所述的自动工作系统的控制方法,其特征在于,所述区间下限值和区间上限值的取值范围基于所述电流信号的周期。
  10. 根据权利要求8所述的自动工作系统的控制方法,其特征在于,所述特征值包括第一信号点与第二信号点的幅值之差,定义为峰谷幅差;所述预设阈值包括幅度值;当所述峰谷时差大于等于区间下限值且小于等于区间上限值时,将所述峰谷差值与所述幅度值进行比较,若所述峰谷幅差小于等于所述幅度值,则判断所述第一检测信号未受到噪声干扰,否则,判断所述第一检测信号受到噪声干扰。
  11. 根据权利要求2所述的自动工作系统的控制方法,其特征在于,所述特征值包括第一信号点与第二信号点的幅值之差,定义为峰谷幅差;所述预设阈值包括幅度值;将所述峰谷差值与所述幅度值进行比较,若所述峰谷幅差小于等于所述幅度值,则判断所述第一检测信号未受到噪声干扰,否则,判断所述第一检测信号受到噪声干扰。
  12. 根据权利要求2、6、7、8、10或11中任一项所述的自动工作系统的控制方法,其特征在于,若所述第一检测信号未受到噪声干扰,则比较所述第一信号点与所述第二信号点的时间顺序关系,判断生成第一检测信号的第一检测装置与所述边界线围成的工作区域的内外关系。
  13. 根据权利要求2所述的自动工作系统的控制方法,其特征在于,保持所述乘积信号的方向与所述第一检测信号方向相同的方法为:先对第二检测信 号取绝对值,再将第二检测信号的绝对值与所述第一检测信号进行相乘,而生成乘积信号。
  14. 根据权利要求2所述的自动工作系统的控制方法,其特征在于,将所述第一检测信号与第二检测信号进行模数转换后,再进行相乘处理。
  15. 根据权利要求14所述的自动工作系统的控制方法,其特征在于,所述特征值包括所述乘积信号最大值处所对应的位置坐标索引,且定义该索引为大值索引;所述特征值还包括所述乘积信号最小值处所对应的位置坐标索引,且定义该索引为小值索引。
  16. 根据权利要求14所述的自动工作系统的控制方法,其特征在于,所述特征值包括所述第一检测信号在所述大值索引处的幅值,定义为峰值;所述特征值还包括所述第一检测信号在所述小值索引处的幅值,定义为谷值。
  17. 根据权利要求1所述的自动工作系统的控制方法,其特征在于,将所述乘积信号进行最优滤波后,再基于最优滤波后的乘积信号确定第一信号点和第二信号点。
  18. 根据权利要求17所述的自动工作系统的控制方法,其特征在于,所述最优滤波的最优滤波核与所述信号发生装置产生的电流信号相关联。
  19. 根据权利要求17所述的自动工作系统的控制方法,其特征在于,所述最优滤波的最优滤波核为所述检测装置在边界线规划的工作区域内所检测得到的检测信号。
  20. 一种自动工作系统,包括:
    信号发生装置,用于产生电流信号;
    边界线,与所述信号发生装置形成电回路,所述电流信号流经所述边界线产生电磁场;
    自动行走设备,在所述边界线规划的工作区域内自动行走及工作;
    其特征在于,所述自动行走设备包括处理器、控制器以及用于检测所述电磁场的多个检测装置;
    所述多个检测装置检测所述电磁场,分别生成相应的多个检测信号;
    所述处理器接收所述多个检测信号,并且将多个检测信号进行互乘处理而生成乘积信号,所述乘积信号的方向与所述多个检测信号中的其中一个检测信号保持相同;
    通过所述乘积信号确定第一信号点和第二信号点;
    基于第一信号点与第二信号点的参数生成特征值,将所述特征值与预设阈值进行比较,产生比较结果,并且将该比较结果传输给所述控制器;
    所述控制器根据所述比较结果,判断所述其中一个检测信号是否受到噪声干扰。
  21. 根据权利要求20所述的自动工作系统,其特征在于,所述多个检测装置包括第一检测装置和第二检测装置;所述第一检测装置和第二检测装置检测所述电磁场,分别生成第一检测信号和第二检测信号;所述处理器接收所述第一检测信号和第二检测信号,并且将第一检测信号和第二检测信号进行相乘处理而生成乘积信号,所述乘积信号的方向与所述第一检测信号保持相同;所述其中一个检测信号为第一检测信号。
  22. 根据权利要求21所述的自动工作系统,其特征在于,所述第一信号点为所述乘积信号的最大值点的位置对应在第一检测信号上的点;所述第二信号点为所述乘积信号的最小值点的位置对应在第一检测信号上的点。
  23. 根据权利要求21所述的自动工作系统,其特征在于,所述第一信号点为所述乘积信号的最大值点的位置对应在第二检测信号上的点;所述第二信号点为所述乘积信号的最小值点的位置对应在第二检测信号上的点。
  24. 根据权利要求21所述的自动工作系统,其特征在于,所述第一信号点为所述乘积信号的最大值点;所述第二信号点为所述乘积信号的最小值点。
  25. 根据权利要求21所述的自动工作系统,其特征在于,所述特征值包括第一信号点的幅值,定义该幅值为峰值;所述特征值还包括第二信号点的幅值,定义该幅值为谷值;所述预设阈值包括门限值;将所述峰值与所述谷值的绝对值分别与所述门限值进行比较,若所述峰值和所述谷值的绝对值都大于等于所述门限值,则判断所述第一检测信号未受到噪声干扰,否则,判断所述第一检测信号已受到噪声干扰。
  26. 根据权利要求21所述的自动工作系统,其特征在于,所述特征值包括第一信号点与第二信号点的时间之差,定义为峰谷时差;所述预设阈值包括区间下限值和区间上限值;将所述峰谷时差与所述区间下限值和区间上限值进行比较,若所述峰谷时差大于等于区间下限值且小于等于区间上限值,则判断所述第一检测信号未受到干扰,否则,判断所述第一检测信号受到噪声干扰。
  27. 根据权利要求26所述的自动工作系统,其特征在于,所述区间下限值和区间上限值的取值范围基于所述电流信号的周期。
  28. 根据权利要求21所述的自动工作系统,其特征在于,所述特征值包括第一信号点与第二信号点的幅值之差,定义为峰谷幅差;所述预设阈值包括幅度值;将所述峰谷差值与所述幅度值进行比较,若所述峰谷幅差小于等于 所述幅度值,则判断所述第一检测信号未受到噪声干扰,否则,判断所述第一检测信号已受到噪声干扰。
  29. 根据权利要求21所述的自动工作系统,其特征在于,将所述第一检测信号与第二检测信号进行模数转换后,再进行相乘处理。
  30. 根据权利要求21所述的自动工作系统,其特征在于,保持所述乘积信号的方向与所述第一检测信号方向相同的方法为:先对第二检测信号取绝对值,再将第二检测信号的绝对值与所述第一检测信号进行相乘,而生成乘积信号。
  31. 根据权利要求21所述的自动工作系统,其特征在于,当所述控制器判断所述第一检测信号未受到噪声干扰时,所述处理器比较所述第一信号点与所述第二信号点的时间顺序关系,判断生成第一检测信号的第一检测装置与所述边界线围成的工作区域的内外关系。
  32. 根据权利要求31所述的自动工作系统,其特征在于,所述控制器依据所述第一检测装置与所述边界线围成的工作区域的内外关系而发出相应控制指令,控制所述自动行走设备的行走方向。
  33. 根据权利要求21所述的自动工作系统,其特征在于,当所述控制器判断所述第一检测信号受到噪声干扰时,所述控制器判断该处理周期内未收到有效信号。
  34. 根据权利要求20所述的自动工作系统的控制方法,其特征在于,所述处理器还包括最优滤波器,将所述乘积信号进行最优滤波后,再基于最优滤波后的乘积信号确定第一信号点和第二信号点。
  35. 根据权利要求34所述的自动工作系统的控制方法,其特征在于,所述最优滤波器的最优滤波核与所述信号发生装置产生的电流信号相关联。
  36. 根据权利要求34所述的自动工作系统的控制方法,其特征在于,所述最优滤波器的最优滤波核为所述检测装置在边界线规划的工作区域内所检测得到的检测信号。
  37. 一种自动行走设备,在边界线规划的工作区域内自动行走及工作,所述自动行走设备包括:处理器、控制器和用于检测边界线的多个检测装置;
    所述多个检测装置检测所述边界线,分别生成多个检测信号;
    所述处理器接收所述多个检测信号,并且将多个检测信号进行互乘处理而生成乘积信号,所述乘积信号的方向与所述多个检测信号中的其中一个检测信号保持相同;
    通过所述乘积信号确定第一信号点和第二信号点;
    基于所述第一信号点与第二信号点的参数生成特征值,将所述特征值与预设阈值进行比较,产生比较结果,并且将该比较结果传输给所述控制器;
    所述控制器根据所述比较结果,判断所述其中一个检测信号是否受到噪声干扰。
  38. 根据权利要求37所述的一种自动行走设备,其特征在于,所述多个检测装置包括第一检测装置和第二检测装置,所述第一检测装置和所述第二检测装置检测所述边界线,分别生成第一检测信号和第二检测信号;所述处理器接收所述第一检测信号和第二检测信号,并且将第一检测信号与第二检测信号进行相乘处理而生成乘积信号,所述乘积信号的方向与所述第一检测信号保持相同;所述其中一个检测信号为第一检测信号。
  39. 根据权利要求38所述的一种自动行走设备,其特征在于,所述第一检测装置和所述第二检测装置关于所述自动行走设备的中轴线对称。
  40. 根据权利要求38所述的一种自动行走设备,其特征在于,所述第一检测装置和所述第二检测装置之间的横向距离大于等于80毫米。
  41. 根据权利要求38所述的一种自动行走设备,其特征在于,所述第一检测装置和所述第二检测装置分别位于所述自动行走设备的电机的不同侧。
  42. 一种自动工作系统的控制方法,其特征在于,包括如下步骤:
    提供用于产生电流信号的信号发生装置,所述电流信号流经边界线生成电磁场;
    提供自动行走设备,所述自动行走设备具有用于检测所述电磁场的多个检测装置;
    所述多个检测装置检测所述电磁场而生成相应的多个检测信号;
    将所述多个检测信号进行互乘而生成乘积信号;
    基于所述乘积信号,判断所述多个检测信号中的其中一个检测信号是否受到噪声干扰。
  43. 根据权利要求42所述的一种自动工作系统的控制方法,其特征在于,基于所述乘积信号确定第一信号点和第二信号点,基于所述第一信号点的参数和所述第二信号点的参数生成特征值,将所述特征值与预设阈值进行比较,根据比较结果,判断所述多个检测信号中的其中一个检测信号是否受到噪声干扰。
  44. 根据权利要求42所述的一种自动工作系统的控制方法,其特征在于,基于所述乘积信号,滤除特定强度值以下的信号,根据所述滤除结果判断所述多个检测信号中的其中一个检测信号是否受到噪声干扰。
  45. 一种自动工作系统,包括:
    信号发生装置,用于产生电流信号;
    边界线,与所述信号发生装置形成电回路,所述电流信号流经所述边界线产生电磁场;
    自动行走设备,在所述边界线规划的工作区域内自动行走及工作;
    其特征在于,所述自动行走设备包括处理器、控制器以及用于检测所述电磁场的多个检测装置;
    所述多个检测装置检测所述电磁场,分别生成相应的多个检测信号;
    所述处理器接收所述多个检测信号,并且将多个检测信号进行互乘处理而生成乘积信号;
    所述控制器基于所述乘积信号,判断所述多个检测信号中的其中一个检测信号是否受到噪声干扰。
  46. 一种自动行走设备,在边界线规划的工作区域内自动行走及工作,所述自动行走设备包括:
    处理器、控制器和用于检测边界线的多个检测装置;
    所述多个检测装置检测所述边界线,分别生成相应的多个检测信号;
    所述处理器接收所述多个检测信号,并且将多个检测信号进行互乘处理而生成乘积信号;
    所述控制器基于所述乘积信号,判断所述多个检测信号中的其中一个检测信号是否受到干扰。
PCT/CN2016/104718 2015-11-10 2016-11-04 自动工作系统及其控制方法及自动行走设备 WO2017080408A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/775,222 US11003192B2 (en) 2015-11-10 2016-11-04 Automatic working system and control method thereof and automatic moving device
EP16787704.2A EP3376329B1 (en) 2015-11-10 2016-11-04 Automatic working system and control method therefor, and automatic walking device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510771679.9 2015-11-10
CN201510771679 2015-11-10

Publications (1)

Publication Number Publication Date
WO2017080408A1 true WO2017080408A1 (zh) 2017-05-18

Family

ID=58694445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104718 WO2017080408A1 (zh) 2015-11-10 2016-11-04 自动工作系统及其控制方法及自动行走设备

Country Status (4)

Country Link
US (1) US11003192B2 (zh)
EP (1) EP3376329B1 (zh)
CN (1) CN106843199B (zh)
WO (1) WO2017080408A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020156518A1 (zh) 2019-02-03 2020-08-06 苏州宝时得电动工具有限公司 一种自移动设备,其障碍检测方法及障碍检测模块

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2560868B (en) * 2016-09-29 2023-02-15 Mtd Products Inc Demarcating system
CN108536136B (zh) * 2017-03-06 2021-03-16 苏州宝时得电动工具有限公司 自动行走设备以及边界距离检测方法、装置和系统
CN107728217A (zh) * 2017-09-09 2018-02-23 浙江亚特电器有限公司 用于智能割草机的区域边界检测电路及方法
CN110296743B (zh) * 2018-03-21 2020-10-09 上海凡宜科技电子有限公司 使用电磁式流量计计算流量的方法
CN108415433B (zh) * 2018-03-22 2021-12-07 杭州苏珀曼智能科技有限公司 越线的识别方法及其防越线的控制系统
CN112520258B (zh) * 2019-09-17 2022-11-18 苏州宝时得电动工具有限公司 智能垃圾桶在充电站和停靠点之间移动的方法
CN113552874B (zh) * 2020-04-03 2024-01-23 南京泉峰科技有限公司 智能割草系统
CN114510014A (zh) * 2020-10-26 2022-05-17 莱克电气绿能科技(苏州)有限公司 自动移动设备的边界识别方法、装置及存储介质
JP2022142377A (ja) * 2021-03-16 2022-09-30 本田技研工業株式会社 自律作業機
CN116541691B (zh) * 2023-05-05 2023-12-22 杭州轨物科技有限公司 一种用于自动行走设备的抗干扰检测边界线信号的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399304A (ja) * 1989-09-12 1991-04-24 Mitsubishi Electric Corp 車両の自動操縦走行制御装置
US6300737B1 (en) * 1997-09-19 2001-10-09 Aktiebolaget Electrolux Electronic bordering system
EP1612631A2 (en) * 2004-07-02 2006-01-04 Zucchetti Centro Sistemi S.p.a. Perimeter tracking system
CN102187289A (zh) * 2008-10-20 2011-09-14 罗伯特·博世有限公司 用于对移动的工具进行工作区域识别的方法和系统
US20120041594A1 (en) * 2006-09-29 2012-02-16 F Robotics Acquisitions Ltd. System and Method for Determining the Location of a Machine
CN103542800A (zh) * 2012-07-09 2014-01-29 迪尔公司 用于机器人割草机的边界传感器组件、机器人割草机和机器人割草机系统
CN103941600A (zh) * 2013-01-22 2014-07-23 苏州宝时得电动工具有限公司 自动工作系统
CN104981747A (zh) * 2012-12-07 2015-10-14 维京有限责任公司 用于控制自行式割草机的方法
CN105009014A (zh) * 2013-02-21 2015-10-28 胡斯华纳有限公司 改进的机器人作业工具

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT226740B (de) 1960-09-22 1963-04-10 Nils Anders Lennart Wikdahl Zyklonabscheidereinrichtung
JPS6062967A (ja) 1983-09-13 1985-04-11 Fuji Oil Co Ltd 飲料の製造法
US7787989B2 (en) * 2002-01-31 2010-08-31 Husqvarna Method for controlling an autonomous mobile robot and related device
SE0201739D0 (sv) 2002-06-07 2002-06-07 Electrolux Ab Elektroniskt avgränsningssystem
US7729801B2 (en) * 2004-02-03 2010-06-01 F Robotics Acquisitions Ltd. Robot docking station and robot for use therewith
EP2013671B1 (en) * 2006-03-17 2018-04-25 iRobot Corporation Lawn care robot
GB0909148D0 (en) * 2009-05-28 2009-07-01 F Robotics Acquisitions Ltd Localisation system
GB201005259D0 (en) * 2010-03-29 2010-05-12 F Robotics Acquisitions Ltd Improvements relating to lawnmowers
DE202010008800U1 (de) * 2010-10-13 2012-01-19 Robocut Gmbh Führungssystem für steuerbare Fahrzeuge
EP2648307B1 (en) * 2010-11-30 2019-08-28 Positec Power Tools (Suzhou) Co., Ltd Automatic walking device, charging station, docking system and docking method
EP2502481B1 (en) 2011-03-23 2013-02-13 Fabrizio Bernini Apparatus for cutting grass
CN103197672A (zh) 2012-01-05 2013-07-10 苏州宝时得电动工具有限公司 边界信号识别方法及其边界系统
JP5869954B2 (ja) 2012-05-23 2016-02-24 本田技研工業株式会社 無人走行作業システム
CN103488172B (zh) 2012-06-13 2016-10-05 苏州宝时得电动工具有限公司 自动工作系统及其控制方法
CN103543745B (zh) 2012-07-16 2016-12-21 苏州宝时得电动工具有限公司 导引系统及其控制方法
ITRM20120350A1 (it) 2012-07-19 2014-01-20 Univ Degli Studi Milano Nanocostrutti con attività farmacologica.
CN103809592A (zh) 2012-11-09 2014-05-21 苏州宝时得电动工具有限公司 自动工作系统及其控制方法
CN103869813B (zh) 2012-12-14 2017-02-01 苏州宝时得电动工具有限公司 自动工作系统
EP2959350B1 (en) * 2013-02-20 2018-04-04 Husqvarna AB A method and a robotic work tool system with a charging station and a boundary wire
CN104252175B (zh) 2013-06-28 2017-09-22 苏州宝时得电动工具有限公司 自动工作系统及其抗信号干扰的方法
CN104252174B (zh) 2013-06-28 2017-08-22 苏州宝时得电动工具有限公司 自动工作设备
US9375842B2 (en) * 2014-05-15 2016-06-28 Irobot Corporation Autonomous mobile robot confinement system
JP6307748B2 (ja) 2014-10-21 2018-04-11 本田技研工業株式会社 自律走行作業車の制御装置
WO2016184398A1 (zh) 2015-05-19 2016-11-24 苏州宝时得电动工具有限公司 边界线的脉冲信号识别系统、方法及智能割草系统
US9903947B2 (en) 2015-08-10 2018-02-27 Deere & Company Boundary signal detection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399304A (ja) * 1989-09-12 1991-04-24 Mitsubishi Electric Corp 車両の自動操縦走行制御装置
US6300737B1 (en) * 1997-09-19 2001-10-09 Aktiebolaget Electrolux Electronic bordering system
EP1612631A2 (en) * 2004-07-02 2006-01-04 Zucchetti Centro Sistemi S.p.a. Perimeter tracking system
US20120041594A1 (en) * 2006-09-29 2012-02-16 F Robotics Acquisitions Ltd. System and Method for Determining the Location of a Machine
CN102187289A (zh) * 2008-10-20 2011-09-14 罗伯特·博世有限公司 用于对移动的工具进行工作区域识别的方法和系统
CN103542800A (zh) * 2012-07-09 2014-01-29 迪尔公司 用于机器人割草机的边界传感器组件、机器人割草机和机器人割草机系统
CN104981747A (zh) * 2012-12-07 2015-10-14 维京有限责任公司 用于控制自行式割草机的方法
CN103941600A (zh) * 2013-01-22 2014-07-23 苏州宝时得电动工具有限公司 自动工作系统
CN105009014A (zh) * 2013-02-21 2015-10-28 胡斯华纳有限公司 改进的机器人作业工具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020156518A1 (zh) 2019-02-03 2020-08-06 苏州宝时得电动工具有限公司 一种自移动设备,其障碍检测方法及障碍检测模块
EP4365697A2 (en) 2019-02-03 2024-05-08 Positec Power Tools (Suzhou) Co., Ltd. Self-moving device and associated obstacle detection method

Also Published As

Publication number Publication date
US20190064842A1 (en) 2019-02-28
US11003192B2 (en) 2021-05-11
CN106843199B (zh) 2021-11-16
CN106843199A (zh) 2017-06-13
EP3376329A1 (en) 2018-09-19
EP3376329B1 (en) 2020-07-22
EP3376329A4 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
WO2017080408A1 (zh) 自动工作系统及其控制方法及自动行走设备
CN108536136B (zh) 自动行走设备以及边界距离检测方法、装置和系统
US11106215B2 (en) Automatic moving device, automatic working system and control method thereof
US10335964B2 (en) Method and system for controlling robot
WO2016184398A1 (zh) 边界线的脉冲信号识别系统、方法及智能割草系统
WO2014079363A1 (zh) 自动工作系统
WO2015083393A1 (ja) 機器状態推定装置、機器消費電力推定装置、およびプログラム
CN109346066B (zh) 一种语音降噪的方法及装置
CN110120772A (zh) 推定杂散电容的电动机驱动装置
US20130177057A1 (en) Method and apparatus for canceling a peak of an input signal
Pan et al. Auto-disturbance rejection controller for novel planar switched reluctance motor
CN111615437B (zh) 用于机器人加工的方法和装置
CN109036810B (zh) 一种变压器有源噪声降噪装置及控制方法
CN110658379B (zh) 换向组件的功率检测方法、装置、空调器以及存储介质
WO2018103178A1 (zh) 自动移动设备、自动工作系统及其控制方法
CN103259471A (zh) 基于平滑自适应的步进电机驱动方法
WO2022001022A1 (zh) 边界信号的产生和检测方法、产生系统和割草机器人
Dou et al. Filtering algorithm and direction identification in relative position estimation based on induction loop-cable
CN113358012B (zh) 电磁感应式坐标定位装置
TWI793692B (zh) 馬達控制裝置及馬達控制之自動調整方法
Chen et al. Highly Efficient Smart 3-Coil Wireless Power Transfer System with Automatic Tracking
CN108618331B (zh) 吹风机出风量的调节方法、装置、吹风机及存储介质
Tang et al. Optimization of Wireless Charging Power Transmission Efficiency Based on Decoupling Equivalent Circuit Model
Krüger et al. Tool support for probabilistic intention recognition using plan synthesis
CN109346379A (zh) 一种基于运动反电势估算的接触器闭环控制方法及系统

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016787704

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016787704

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16787704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE