WO2017080133A1 - 一种基于开放磁路的磁致伸缩导波检测方法及装置 - Google Patents

一种基于开放磁路的磁致伸缩导波检测方法及装置 Download PDF

Info

Publication number
WO2017080133A1
WO2017080133A1 PCT/CN2016/078676 CN2016078676W WO2017080133A1 WO 2017080133 A1 WO2017080133 A1 WO 2017080133A1 CN 2016078676 W CN2016078676 W CN 2016078676W WO 2017080133 A1 WO2017080133 A1 WO 2017080133A1
Authority
WO
WIPO (PCT)
Prior art keywords
elongate member
coil
elongated member
magnetic field
signal
Prior art date
Application number
PCT/CN2016/078676
Other languages
English (en)
French (fr)
Inventor
武新军
从明
沈功田
陈杰
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US15/305,988 priority Critical patent/US10175202B2/en
Publication of WO2017080133A1 publication Critical patent/WO2017080133A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/85Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields using magnetographic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Definitions

  • the invention belongs to the field of non-destructive testing, and more particularly to a magnetostrictive guided wave detecting method and sensor based on an open magnetic circuit.
  • Ultrasonic guided wave detection technology can realize the rapid detection of a section in a single point excitation. It does not need to move the sensor during the detection process, so it is widely used in this field.
  • the magnetostrictive guided wave detection has the advantages of non-contact, no need for polishing on the surface of the member to be inspected, and high detection efficiency, and is suitable for on-site detection of elongated members.
  • a magnetostrictive guided wave detecting method suitable for a bridge cable is disclosed in U.S. Patent No. 005, 456, 133 A.
  • a magnetostrictive guided wave detecting method suitable for a pipe is disclosed in U.S. Patent No. 005,581,037.
  • the detection methods involved in the above two patents use the magnetization of the conventional closed magnetic circuit to axially magnetize the cable or pipe to be inspected, that is, to provide a uniform axis by arranging a certain number of magnetizers circumferentially on the surface of the cable or pipe.
  • the non-contact detection method it is not necessary to perform surface grinding treatment on the sensor mounting position, and the detection efficiency is high, but the single magnetizer is large in volume and heavy in weight, and a plurality of magnetizers need to be assembled and disassembled in one guided wave detection process, to some extent.
  • the detection efficiency is reduced; at the same time, in the actual detection, the number of elongate members to be inspected is large, and the detection mode of the axial static magnetic field by the magnetizer is inconvenient to install, which is time consuming and labor intensive.
  • the present invention provides a magnetostrictive guided wave detecting method and apparatus based on an open magnetic circuit, which aims to utilize an axial static magnetic field and a spiral coil generated at the edge of a permanent magnet.
  • the axial alternating magnetic field interacts to realize the excitation and reception of the magnetostrictive longitudinal mode guided wave, and completes the detection process.
  • a magnetostrictive guided wave detecting sensor based on an open magnetic circuit characterized in that the detecting sensor comprises an exciting coil, a receiving coil and a magnetic device, wherein
  • the magnetic device includes a plurality of detection modules, and the detection modules are uniformly arranged circumferentially for adsorption to an outer side of the elongate member to be inspected;
  • Each of the detecting modules includes a housing, a permanent magnet, and a magnetically permeable plate, wherein the permanent magnet is fixedly mounted in the housing, and a polarization direction thereof is perpendicular to an axial direction of the detected elongated member, and the magnetic conductive plate is fixed Mounted on the outer casing and capable of contacting the elongate member to be inspected;
  • All permanent magnets have the same polarity near one end of the elongate member
  • each adjusting device comprises an adjusting sliding rod and two adjusting bolts, wherein the adjusting sliding rod is provided with a long hole, and the two adjusting bolts are all from the long hole Through the adjusting slide bar, each adjusting bolt is fixedly connected to the outer casing;
  • the excitation coil and the receiving coil are coaxially sleeved on the outer side of the elongate member to be tested, and the excitation coil can generate an axial direction along the elongate member on the surface of the elongate member to be tested after inputting the sinusoidal alternating current An alternating magnetic field, and the alternating magnetic field interacts with a static magnetic field formed by the permanent magnet along the axial direction of the elongated member, thereby exciting the longitudinal mode ultrasonic guided wave in the elongated member and generating an induced voltage in the receiving coil So that the computer receives the signal of the induced voltage and determines whether there is a defect in the elongate member to be inspected.
  • the outer casing comprises a casing and an end cover, the casing and the end cover are both made of a non-magnetic material, and the end cover is closed on the casing to cooperate with the casing to close the enclosure. Said permanent magnet.
  • the magnetic conductive plate is made of industrial pure iron or low carbon steel.
  • the excitation coil and/or the receiving coil are respectively wound of a plurality of layers of wires.
  • the excitation coil and the receiving coil are respectively disposed adjacent to both sides of the outer casing.
  • a detection system comprising: a detection sensor, and further comprising a signal generator, a power amplifier, a signal preprocessor, an A/D converter and a computer, Wherein the power amplifier is electrically connected to the excitation coil, and the signal pre-processor is electrically connected to the receiving coil.
  • the computer control signal generator generates a sinusoidal pulse current signal, which is amplified by the power amplifier and input to the detecting sensor, and excites the longitudinal mode ultrasonic guided wave in the elongate member to be tested, and simultaneously receives the ultrasonic guided wave in the receiving coil.
  • the electrical signal is processed by the signal pre-processor and the A/D converter, and then input into the computer to finally obtain an ultrasonic guided wave detecting signal to determine whether there is a defect in the elongate member to be inspected.
  • a magnetostrictive guided wave detecting method based on an open magnetic circuit for exciting and receiving longitudinal mode guided waves on an elongated member and realizing defect detection of the elongated member,
  • the method is characterized in that the method comprises the following steps:
  • the computer inputs a sinusoidal alternating current to the excitation coil through the signal generator and the power amplifier, thereby generating an alternating magnetic field along the axial direction of the elongated member on the surface of the elongated member to be inspected, and the alternating magnetic field is formed with the permanent magnet Static magnetic field interaction along the axial direction of the elongate member, thereby exciting the longitudinal mode guided wave in the elongated member and generating an induced voltage in the receiving coil;
  • the computer receives the signal of the induced voltage through the signal processor and the A/D converter to determine whether there is a defect in the elongated member.
  • a magnetostrictive guided wave detecting method based on an open magnetic circuit for exciting and receiving longitudinal mode guided waves on an elongated member and realizing elongated structure Defect detection of a piece, characterized in that the method comprises the following steps:
  • the elongate members are respectively axially disposed with two second solenoid coils, the two second solenoid coils being connected together by a second wire to constitute a receiving coil, and each of the second solenoid coils Separatingly disposed on the first solenoid coil at a corresponding position, wherein the two first solenoid coils are wound in opposite directions, and the two second solenoid coils are wound in opposite directions;
  • the computer inputs a sinusoidal alternating current to the excitation coil through the signal generator and the power amplifier, thereby generating an alternating magnetic field along the axial direction of the elongated member on the surface of the elongated member to be inspected, and the alternating magnetic field is formed with the permanent magnet Static magnetic field interaction along the axial direction of the elongate member, thereby exciting the longitudinal mode guided wave in the elongated member and generating an induced voltage in the receiving coil;
  • the computer receives the signal of the induced voltage through the signal processor and the A/D converter to determine whether there is a defect in the elongated member.
  • a magnetostrictive guided wave detecting method based on an open magnetic circuit for exciting and receiving longitudinal mode guided waves on an elongated member and realizing defect detection of the elongated member,
  • the method is characterized in that the method comprises the following steps:
  • each detecting means comprises a plurality of permanent magnets arranged circumferentially along the outer side of the elongate member to be inspected, each of said permanent magnets
  • the direction of polarization is perpendicular to the axis of the elongate member for magnetizing the elongate member to produce a progressively attenuated axial static magnetic field at the surface of the elongate member; in addition, all permanent magnets are near elongated One end of the member has the same polarity;
  • the computer inputs a sinusoidal alternating current to the excitation coil through the signal generator and the power amplifier, thereby generating an alternating magnetic field along the axial direction of the elongated member on the surface of the elongated member to be inspected, and the alternating magnetic field is formed with the permanent magnet Static magnetic field interaction along the axial direction of the elongate member, thereby exciting the longitudinal mode guided wave in the elongated member and generating an induced voltage in the receiving coil;
  • the computer receives the signal of the induced voltage through the signal processor and the A/D converter to determine whether there is a defect in the elongated member.
  • each of the first solenoid coil and/or the second solenoid coil is wound by a plurality of layers of wires.
  • the magnetostrictive guided wave sensor based on the open magnetic circuit of the present invention is different from the conventional closed magnetic circuit sensor (providing a uniform axial static magnetic field by the magnetizer), and only needs the axial direction provided by the single row of circumferential array magnets.
  • the static magnetic field provides an open magnetic circuit.
  • the magnetic circuit is different from the traditional closed magnetic circuit sensor, and the sensor has a simple structure, small size, light weight and convenient installation. At the same time, the sensor passes through two series of permanent magnets.
  • the multi-layer detection coil on the side can increase the amplitude of the detection signal and improve the detection sensitivity.
  • FIG. 1 is a schematic diagram of a detection principle of a magnetostrictive guided wave sensor based on an open magnetic circuit according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a single module of a magnetostrictive guided wave sensor based on an open magnetic circuit according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing the installation of a magnetostrictive guided wave detecting device based on an open magnetic circuit according to an embodiment of the present invention
  • FIG. 4 is a waveform diagram of a detection signal obtained by using a guided wave detecting sensor according to an embodiment of the present invention to obtain a detection signal on a standard tube by using a self-excited self-receiving form;
  • FIG. 5 is a waveform diagram of acquiring a detection signal on a standard tube by using a guided wave detecting sensor according to an embodiment of the present invention.
  • a magnetostrictive guided wave detecting sensor based on an open magnetic circuit, wherein the detecting sensor includes an exciting coil 7, a receiving coil 8, and a magnetic device, wherein
  • the magnetic device includes a plurality of detection modules, and the detection modules are evenly arranged circumferentially for adsorption to the outside of the elongate member 9 to be inspected;
  • Each of the detecting modules includes a housing, a permanent magnet 5, and a magnetically permeable plate 6, wherein the permanent magnet 5 is fixedly mounted in the housing with a polarization direction perpendicular to an axial direction of the elongate member 9 to be inspected,
  • the magnetic conductive plate 6 is fixedly mounted on the outer casing and can be in contact with the elongate member 9 to be inspected; preferably, the outer casing includes a casing 3 and an end cover 4, both of which are not guided
  • the magnetic cover is made of the end cover 4 which is closed on the casing 3 to cooperate with the casing 3 to close the permanent magnet.
  • the magnetic conductive plate 6 is made of industrial pure iron.
  • All permanent magnets have the same polarity near one end of the elongate member
  • each adjusting device comprises an adjusting sliding rod 1 and two adjusting bolts 2, wherein the adjusting sliding rod 1 is provided with a long hole, and the two adjusting bolts 2 are all from the a long hole runs through the adjusting slide bar 1, and each adjusting bolt 2 is fixedly connected to a casing;
  • the excitation coil 7 and the receiving coil 8 are coaxially sleeved on the outer side of the elongate member 9 to be tested, and the excitation coil 7 inputs a sinusoidal alternating current, thereby generating a thin layer on the surface of the elongate member 9 to be inspected.
  • the wave generates an induced voltage in the receiving coil 8 to cause the computer 10 to receive the signal of the induced voltage and determine whether or not there is a defect in the elongated member 9 to be inspected.
  • the excitation coil 7 and/or the receiving coil 8 are respectively wound of a plurality of layers of wires.
  • the excitation coil 7 and the receiving coil 8 are respectively arranged near both ends of the casing, and the ultrasonic waveguide is excited and received by the peak point of the axial magnetic field at the edge of the permanent magnet 5 to enhance the detection signal amplitude.
  • the excitation coil 7 is connected to an alternating current to form an alternating magnetic field along the axial direction of the member to be tested, and the alternating magnetic field interacts with an axial static magnetic field provided by the square magnet to generate a magnetostrictive strain in the member to be excited to excite the ultrasonic guide.
  • the wave signal is subjected to non-destructive testing; at the same time, the ultrasonic guided wave signal with the component information causes a change in the magnetic induction intensity of the detected component, and an electrical signal with detection information is generated at the receiving coil 8, and the detection result can be obtained according to the electrical signal.
  • the detecting modules are arranged in a circumferential array form, and both the hollow casing 3 and the end cover 4 are preferably made of a nylon material;
  • the magnetic conductive plate 6 is placed on a square magnet and fixed to the casing by a set screw 33, the direction of polarization of the square magnet is perpendicular to the axial direction of the elongate member 9 to be inspected;
  • the excitation coil 7 and the receiving coil 8 are wound on the outer surface of the pipe to be inspected against both sides of the magnetic conductive plate 6, and are connected in series or in multiple layers.
  • the amplitude of the detection signal is increased to improve the detection sensitivity, wherein the coils on both sides of the square magnet are wound in opposite directions, and the coils on the same side are wound in the same direction; the adjusting bolt 2 is connected to the casing 3 through the adjustment slider 1.
  • a plurality of detecting modules form the detecting sensor in a circumferential array form, and the adjusting slider 1 is connected to each detecting module, and at the same time, the adjacent detecting module is controlled by changing the relative position of the adjusting bolt 2 and the adjusting slider 1.
  • the spacing between the two to accommodate the inspection of different diameter pipes or cables.
  • the adjacent detecting modules are connected by the adjusting sliding rod 1 along both sides of the axis of the pipeline to be inspected to ensure that the axial mounting positions of the respective detecting modules are the same.
  • the number of individual detection modules that meet the detection requirements can be determined, which has good reconfigurability, and the whole sensor is small in size, light in weight and convenient to install.
  • the computer 10 controls the signal generator 11 to generate a sinusoidal pulse current signal, which is amplified by the power amplifier 12 and input to the above-mentioned detection sensor, and the ultrasonic guided wave is excited by the excitation coil 7 in the pipeline to be inspected based on the magnetostrictive effect, and is based on magnetostrictive inverse
  • the effect generates an electrical signal at the receiving coil 8, passes through the signal pre-processor 13 and the A/D converter 14, inputs the computer 10, and finally acquires the ultrasonic guided wave detecting signal to complete the detecting process.
  • the excitation coil 7 and the receiving coil 8 are sleeved along the axial direction of the elongated member, and the winding directions of the excitation coil 7 and the receiving coil 8 are opposite;
  • the computer 10 inputs a sinusoidal alternating current to the excitation coil 7 through the signal generator 11 and the power amplifier 12, thereby generating an alternating magnetic field along the axial direction of the elongated member at the surface of the elongated member 9 to be inspected, and the alternating magnetic field is
  • the static magnetic field formed by the permanent magnet 5 along the axial direction of the elongated member interacts to excite the longitudinal mode guided wave in the elongated member and generate an inductance in the receiving coil 8. Voltage;
  • the computer 10 receives the signal of the induced voltage through the signal processor and the A/D converter 14 to determine whether or not there is a defect in the elongated member.
  • a second magnetostrictive guided wave detecting method based on an open magnetic circuit for exciting and receiving longitudinal mode guided waves on an elongated member and realizing defect detection of the elongated member characterized in that the method comprises the following steps:
  • a plurality of permanent magnets 5 are circumferentially arranged on the outer side of the elongate member to be inspected, and the polarization directions in each of the permanent magnets 5 are perpendicular to the axis of the elongate member for the pair of elongate members Magnetizing to produce a progressively attenuated axial static magnetic field at the surface of the elongate member; furthermore, all of the permanent magnets have the same polarity near one end of the elongate member;
  • the elongate members are respectively axially disposed with two second solenoid coils, the two second solenoid coils being connected together by a second wire to constitute a receiving coil 8, and each of the second spirals
  • the tube coils are respectively sleeved on the first solenoid coils at a corresponding position, wherein the two first solenoid coils are wound in opposite directions, and the two second solenoid coils are wound in opposite directions;
  • the computer 10 inputs a sinusoidal alternating current to the excitation coil 7 through the signal generator 11 and the power amplifier 12, thereby generating an alternating magnetic field along the axial direction of the elongated member at the surface of the elongated member 9 to be inspected, and the alternating magnetic field is
  • the static magnetic field formed by the permanent magnet 5 along the axial direction of the elongated member interacts to excite the longitudinal mode guided wave in the elongated member and generate an induced voltage in the receiving coil 8;
  • the computer 10 receives the signal of the induced voltage through the signal processor and the A/D converter 14 to determine whether or not there is a defect in the elongated member.
  • Self-excited self-receiving means that the permanent magnet 5, the excitation coil 7 and the receiving coil 8 disposed at one portion of the elongated member constitute a sensor, and the sensor itself can generate an excitation signal and obtain an induced signal.
  • the standard tube is a carbon steel tube with an outer diameter of 90 mm, a wall thickness of 8 mm, and a length of 2.8 m.
  • the guided wave detecting sensor is installed at the left end of the standard tube, and a total of 9 detecting modules are circumferentially arranged.
  • the coil connecting method shown in FIG. 3 is adopted, and the exciting coil 7 and the receiving coil 8 on both sides of the square magnet are single layers. Coil.
  • the excitation frequency is 50 kHz.
  • M represents the electromagnetic pulse signal generated by the direct coupling of the excitation coil 7 and the receiving coil 8.
  • E1, E2 and E3 respectively represent the first and second after the ultrasonic guided wave is reflected by the right end of the standard tube. Secondary and third echo signals.
  • the detection signal amplitude is obvious, and the signal-to-noise ratio is good, indicating that the magnetostrictive guided wave detection method using open magnetic circuit is feasible, and the detection effect is good.
  • a magnetostrictive guided wave detecting method based on an open magnetic circuit for exciting and receiving longitudinal mode guided waves on an elongated member and realizing defect detection of the elongated member characterized in that the method comprises the following steps:
  • each detecting means includes a plurality of permanent magnets 5 arranged circumferentially along the outer side of the elongate member 9 to be inspected, each of said The direction of polarization in the permanent magnet 5 is perpendicular to the axis of the elongate member for magnetizing the elongate member to produce a progressively attenuated axial static magnetic field at the surface of the elongate member; moreover, all permanent magnets The polarity is the same at one end of the elongated member;
  • the computer 10 inputs to the excitation coil 7 through the signal generator 11 and the power amplifier 12 Sinusoidal alternating current, thereby generating an alternating magnetic field along the axial direction of the elongate member at the surface of the elongate member 9 to be inspected, and this alternating magnetic field interacts with the static magnetic field formed by the permanent magnet 5 along the axial direction of the elongate member And exciting the longitudinal mode guided wave in the elongated member and generating an induced voltage in the receiving coil 8;
  • the computer 10 receives the signal of the induced voltage through the signal processor and the A/D converter 14 to determine whether or not there is a defect in the elongated member.
  • One shock and one charge is a combination of a permanent magnet 5 and a solenoid coil placed in one of the elongated members, and a component composed of a permanent magnet 5 and a solenoid coil.
  • the component is equivalent to receiving the sensor, so one is for excitation and one for reception.
  • FIG. 5 is a waveform diagram of acquiring a detection signal on a standard tube by using a guided wave detecting sensor according to an embodiment of the present invention.
  • the excitation coil 7 is the same as that of Fig. 4, and the excitation sensor is still mounted at the left end of the standard tube.
  • the receiving sensor is installed at a distance of 0.8 m from the excitation sensor, and a double-layer coil is used and a coil on both sides of the square magnet is connected in series as a receiving coil 8 to increase the amplitude of the detection signal.
  • the excitation frequency is increased to 120 kHz.
  • M represents the electromagnetic pulse signal generated by the direct coupling of the excitation coil 7 and the receiving coil 8
  • P represents the passing signal through the receiving sensor
  • ER represents the ultrasonic guided wave reflected by the right end of the standard tube.
  • the echo signal, EL represents the echo signal after the ultrasonic guided wave is reflected by the right end and the left end of the standard tube.
  • the excitation conditions of FIG. 5 are the same, and the receiving coil 8 is connected in series by the double-layer coil, and the amplitude of the detection signal is increased, indicating that the multi-layer coil is connected in series, and the high-frequency excitation ultrasonic guided wave is guaranteed. Under the condition of detecting the amplitude of the signal, the detection accuracy is improved. It can be seen from the experimental results that the detection method and the detection device provided by the invention have good detection effect, the sensor installation is convenient and fast, the detection efficiency is high, and the on-site detection requirement is met.

Abstract

一种基于开放磁路的磁致伸缩导波检测传感器,该检测传感器包括激励线圈(7)、接收线圈(8)和磁性装置,磁性装置包括多个检测模块,并且这些检测模块周向均匀布置,以用于吸附到被检细长构件(9)的外侧;每个检测模块均包括外壳、永磁铁(5)和导磁板(6);相邻两外壳通过一调节装置连接;激励线圈(7)和接收线圈(8)靠近检测模块并同轴套设于被检细长构件(9)的外侧,激励线圈(7)输入正弦交变电流,以在接收线圈(8)中产生感应电压,并使计算机(10)接收此感应电压并判断被检细长构件(9)内是否存在缺陷。本传感器结构简单,具有体积小、重量轻、安装方便的特点;通过串联或多层线圈的方式,可增大检测信号幅值,提高检测灵敏度。

Description

一种基于开放磁路的磁致伸缩导波检测方法及装置 【技术领域】
本发明属于无损检测领域,更具体地,涉及一种基于开放磁路的磁致伸缩导波检测方法及传感器。
【背景技术】
随着石油、化工、交通等行业的迅速发展,管道和缆索被大量应用,其中管道因高温、高压、冲刷等原因易出现腐蚀、穿孔或壁厚减薄等失效形式;缆索因疲劳、雨水等原因易出现断丝、锈蚀等失效形式。为避免事故的发生,需要对管道和缆索进行定期检测维护。超声导波检测技术具有单点激励即可实现一段区域快速检测的特点,在检测过程中,无需移动传感器,因此在该领域被广泛应用。
磁致伸缩导波检测具有非接触、被检构件表面无需打磨处理、检测效率高的优点,适用于细长构件的现场检测。美国专利US005456113A中公布了一种适用于大桥缆索的磁致伸缩导波检测方法,美国专利US005581037A中公布了一种适用于管道的磁致伸缩导波检测方法。上述两个专利中涉及的检测方法皆采用传统闭合磁路的磁化方式对被检缆索或管道进行轴向磁化,即通过在缆索或管道表面沿周向布置一定数量的磁化器来提供均匀的轴向静态磁场。虽然采用非接触式检测方法,无需对传感器安装位置进行表面打磨处理,检测效率高,但单个磁化器体积大,重量大,在一次导波检测过程中需要装拆多个磁化器,一定程度上降低了检测效率;同时在实际检测中,被检细长构件的数量较多,采用磁化器提供轴向静态磁场的检测方式存在安装不方便,费时费力的不足。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于开放磁路的磁致伸缩导波检测方法与装置,其目的在于,利用永磁铁边缘处产生的轴向静态磁场与螺旋线圈的轴向交变磁场相互作用,实现磁致伸缩纵向模态导波的激励和接收,完成检测过程。
为实现上述目的,按照本发明,提供了一种基于开放磁路的磁致伸缩导波检测传感器,其特征在于,该检测传感器包括激励线圈、接收线圈和磁性装置,其中,
所述磁性装置包括多个检测模块,并且这些检测模块周向均匀布置,以用于吸附到被检细长构件的外侧;
每个检测模块均包括外壳、永磁铁和导磁板,其中,所述永磁铁固定安装在所述外壳内,其极化方向与被检细长构件的轴线方向垂直,所述导磁板固定安装在所述外壳上并能与被检细长构件接触;
所有永磁体靠近细长构件的一端的极性相同;
相邻两外壳通过一调节装置连接,每个调节装置均包括一调节滑杆和两调节螺栓,其中,所述调节滑杆上设置有长条孔,两调节螺栓均从所述长条孔处贯穿所述调节滑杆,每颗调节螺栓分别固定连接在外壳上;
所述激励线圈和所述接收线圈用于同轴套设于被检细长构件的外侧,所述激励线圈能在输入正弦交变电流后在被检细长构件表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中激励纵向模态超声导波并在接收线圈中产生感应电压,以使计算机接收到此感应电压的信号并判断被检细长构件内是否存在缺陷。
优选地,所述外壳包括壳体和端盖,所述壳体和端盖均由不导磁材料制成,所述端盖盖合在所述壳体上,以与壳体共同配合封闭所述永磁体。
优选地,所述导磁板由工业纯铁或低碳钢制成。
优选地,所述激励线圈和/或接收线圈分别为多层导线绕制而成。
优选地,所述激励线圈和接收线圈分别靠近所述外壳的两侧布置。
按照本发明的另一个方面,还提供了一种检测系统,其特征在于,包括检测传感器,另外,该装置还包括信号发生器、功率放大器、信号预处理器、A/D转换器和计算机,其中,所述功率放大器与激励线圈电连接,所述信号预处理器与接收线圈电连接。所述计算机控制信号发生器产生正弦脉冲电流信号,经功率放大器放大后输入到所述检测传感器,在被检细长构件中激励纵向模态超声导波,同时接收超声导波在接收线圈中产生的电信号,经所述信号预处理器和A/D转换器处理后,输入所述计算机,最终获取超声导波检测信号,以判断被检细长构件内是否存在缺陷。
按照本发明的另一个方面,还提供了一种基于开放磁路的磁致伸缩导波检测方法,用于在细长构件上激励和接收纵向模态导波以及实现细长构件的缺陷检测,其特征在于,该方法包括以下步骤:
1)在被检的细长构件的外侧周向布置多个永磁铁,其中每个所述永磁铁中的极化方向均与所述细长构件的轴线垂直,以用于对细长构件进行磁化,从而在细长构件的表层产生逐渐衰减的轴向静态磁场;此外,所有永磁体靠近细长构件的一端的极性相同;
2)沿所述细长构件的轴向分别套设激励线圈和接收线圈,并且激励线圈和接收线圈的绕向相反;
3)计算机通过信号发生器和功率放大器向激励线圈输入正弦交变电流,从而在被检细长构件表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中激励纵向模态导波并在接收线圈中产生感应电压;
4)计算机通过信号处理器和A/D转换器接收此感应电压的信号,以判断细长构件中是否存在缺陷。
按照本发明的另一个方面,还提供了一种基于开放磁路的磁致伸缩导波检测方法,用于在细长构件上激励和接收纵向模态导波以及实现细长构 件的缺陷检测,其特征在于,该方法包括以下步骤:
1)在被检的细长构件的外侧周向布置多个永磁铁,其中每个所述永磁铁中的极化方向均并与所述细长构件的轴线垂直,以用于对细长构件进行磁化,从而在细长构件的表层产生逐渐衰减的轴向静态磁场;此外,所有永磁体靠近细长构件的一端的极性相同;
2)沿所述细长构件轴向分别套设两个第一螺线管线圈,所述的两个第一螺线管线圈通过第一导线连接在一起以共同构成激励线圈;再沿所述细长构件轴向分别设置两个第二螺线管线圈,所述的两个第二螺线管线圈通过第二导线连接在一起以构成接收线圈,并且每个所述第二螺线管线圈分别套设在一对应位置处的第一螺线管线圈上,其中,两个第一螺线管线圈绕向相反,两个第二螺线管线圈绕向相反;
3)计算机通过信号发生器和功率放大器向激励线圈输入正弦交变电流,从而在被检细长构件表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中激励纵向模态导波并在接收线圈中产生感应电压;
4)计算机通过信号处理器和A/D转换器接收此感应电压的信号,以判断细长构件中是否存在缺陷。
按照本发明的另一个方面,还提供了一种基于开放磁路的磁致伸缩导波检测方法,用于在细长构件上激励和接收纵向模态导波以及实现细长构件的缺陷检测,其特征在于,该方法包括以下步骤:
1)沿被检的细长构件的轴向分别套设两个检测装置,其中,每个检测装置均包括沿被检细长构件的外侧周向布置多个永磁铁,每个所述永磁铁中的极化方向均与所述细长构件的轴线垂直,以用于对细长构件进行磁化,从而在细长构件的表层产生逐渐衰减的轴向静态磁场;此外,所有永磁体靠近细长构件的一端的极性相同;
2)在细长构件对应于其中一个所述检测装置的部位分别套设两个第一 螺线管线圈,所述的两个第一螺线管线圈通过第一导线连接在一起以共同构成激励线圈;然后在细长构件对应于另一个所述检测装置的部位分别套设两个第二螺线管线圈,所述两个第二螺线管线圈通过第二导线连接在一起以共同构成接收线圈,其中,两个第一螺线管线圈绕向相反,两个第二螺线管线圈绕向相反;
3)计算机通过信号发生器和功率放大器向激励线圈输入正弦交变电流,从而在被检细长构件表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中激励纵向模态导波并在接收线圈中产生感应电压;
4)计算机通过信号处理器和A/D转换器接收此感应电压的信号,以判断细长构件中是否存在缺陷。
优选地,每个所述第一螺线管线圈和/或第二螺线管线圈由多层导线绕制。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
本发明提出的基于开放磁路的磁致伸缩导波传感器有别于传统的闭合磁路传感器(由磁化器提供均匀的轴向静态磁场),只需利用单排周向阵列磁铁提供的轴向静态磁场,其提供的是一种开放的磁路,磁路与传统的闭合磁路传感器不一样,并且传感器结构简单,具有体积小、重量轻、安装方便的特点;同时传感器通过串联永磁铁两侧的多层检测线圈,可增大检测信号幅值,提高检测灵敏度。
【附图说明】
图1为本发明实施例的基于开放磁路的磁致伸缩导波传感器的检测原理示意图;
图2为本发明实施例的基于开放磁路的磁致伸缩导波传感器的单个模块结构示意图;
图3为本发明实施例的基于开放磁路的磁致伸缩导波检测装置的安装示意图;
图4为使用本发明实施例的导波检测传感器,采用“自激自收”形式在标样管上获取检测信号的波形图;
图5为使用本发明实施例的导波检测传感器,采用“一激一收”形式在标样管上获取检测信号的波形图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1-调节滑杆 2-调节螺栓 3-壳体 4-端盖 5-永磁铁 6-导磁板 7-激励线圈 8-接收线圈 9-被检细长构件 10-计算机 11-信号发生器 12-功率放大器 13-信号预处理器 14-A/D转换器
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
参照图1~图3,一种基于开放磁路的磁致伸缩导波检测传感器,其特征在于,该检测传感器包括激励线圈7、接收线圈8和磁性装置,其中,
所述磁性装置包括多个检测模块,并且这些检测模块周向均匀布置,以用于吸附到被检细长构件9的外侧;
每个检测模块均包括外壳、永磁铁5和导磁板6,其中,所述永磁铁5固定安装在所述外壳内,其极化方向与被检细长构件9的轴线方向垂直,所述导磁板6固定安装在所述外壳上并能与被检细长构件9接触;优选地,所述外壳包括壳体3和端盖4,所述壳体3和端盖4均由不导磁材料制成,所述端盖4盖合在所述壳体3上,以与壳体3共同配合封闭所述永磁体,所述导磁板6由工业纯铁制成。
所有永磁体靠近细长构件的一端的极性相同;
相邻两外壳通过一调节装置连接,每个调节装置均包括一调节滑杆1和两调节螺栓2,其中,所述调节滑杆1上设置有长条孔,两调节螺栓2均从所述长条孔处贯穿所述调节滑杆1,每颗调节螺栓2分别固定连接在一外壳上;
所述激励线圈7和所述接收线圈8用于同轴套设于被检细长构件9的外侧,所述激励线圈7输入正弦交变电流,从而在被检细长构件9表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁5形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中产生沿细长构件纵向的模态导波并在接收线圈8中产生感应电压,以使计算机10接收到此感应电压的信号并判断被检细长构件9内是否存在缺陷。优选地,所述激励线圈7和/或接收线圈8分别为多层导线绕制而成。所述激励线圈7和接收线圈8分别靠近所述外壳的两端布置,利用永磁铁5边缘处轴向磁场的峰值点激励和接收超声导波,以增强检测信号幅值。
激励线圈7通以交流电,形成沿被检构件轴线方向的交变磁场,该交变磁场与方形磁铁提供的轴向静态磁场相互作用,在被检构件中产生磁致伸缩应变从而激励出超声导波信号进行无损检测;同时带有构件信息的超声导波信号引起被检构件磁感应强度变化,在接收线圈8产生带有检测信息的电信号,根据该电信号可获取检测结果。
参照图2,检测模块以周向阵列形式布置,所述中空壳体3和端盖4均优选采用尼龙材料制作;导磁板6放置在方形磁铁上,并由紧定螺钉固定在壳体33上,方形磁铁极化方向与被检细长构件9的轴线方向垂直;激励线圈7和接收线圈8紧靠导磁板6两侧绕制在被检管道外表面,并通过串联或多层线圈的方式,增大检测信号幅值,以提高检测灵敏度,其中方形磁铁两侧的线圈绕向相反,同侧线圈绕向相同;调节螺栓2贯穿调节滑杆1与壳体3连接。
参照图3,多个检测模块以周向阵列形式组成所述检测传感器,由调节滑杆1连接各个检测模块,同时通过改变调节螺栓2与调节滑杆1的相对位置来控制相邻检测模块之间的间距,以适应不同直径管道或缆索的检测工况。其中,相邻检测模块之间沿被检管道轴线方向两侧均采用调节滑杆1连接,以确保各个检测模块的轴向安装位置相同。同时,可根据被检管道的直径,确定满足检测需要的单个检测模块的个数,具有良好的可重构性,且整个传感器体积小,重量轻,方便安装。
计算机10控制信号发生器11产生正弦脉冲电流信号,经功率放大器12放大后输入到上述检测传感器,基于磁致伸缩效应由激励线圈7在被检管道激励出超声导波,同时基于磁致伸缩逆效应在接收线圈8产生电信号,经所述信号预处理器13和A/D转换器14后,输入所述计算机10,最终获取超声导波检测信号,完成检测过程。
下面介绍两种“自激自收”形式的检测方法。
第一种基于开放磁路的磁致伸缩导波检测方法,用于在细长构件上激励和接收纵向模态导波以及实现细长构件的缺陷检测,该方法包括以下步骤:
1)在被检的细长构件的外侧周向布置多个永磁铁5,其中每个所述永磁铁5中的极化方向与所述细长构件的轴线垂直,以用于对细长构件进行磁化,从而在细长构件的表层产生逐渐衰减的轴向静态磁场;此外,所有永磁体靠近细长构件的一端的极性相同;
2)沿所述细长构件的轴向分别套设激励线圈7和接收线圈8,并且激励线圈7和接收线圈8的绕向相反;
3)计算机10通过信号发生器11和功率放大器12向激励线圈7输入正弦交变电流,从而在被检细长构件9表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁5形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中激励纵向模态导波并在接收线圈8中产生感应 电压;
4)计算机10通过信号处理器和A/D转换器14接收此感应电压的信号,以判断细长构件中是否存在缺陷。
第二种基于开放磁路的磁致伸缩导波检测方法,用于在细长构件上激励和接收纵向模态导波以及实现细长构件的缺陷检测,其特征在于,该方法包括以下步骤:
1)在被检的细长构件的外侧周向布置多个永磁铁5,每个所述永磁铁5中的极化方向均与所述细长构件的轴线垂直,以用于对细长构件进行磁化,从而在细长构件的表层产生逐渐衰减的轴向静态磁场;此外,所有永磁体靠近细长构件的一端的极性相同;
2)沿所述细长构件轴向分别套设两个第一螺线管线圈,所述的两个第一螺线管线圈通过第一导线连接在一起以共同构成激励线圈7;再沿所述细长构件轴向分别设置两个第二螺线管线圈,所述的两个第二螺线管线圈通过第二导线连接在一起以构成接收线圈8,并且每个所述第二螺线管线圈分别套设在一对应位置处的第一螺线管线圈上,其中,两个第一螺线管线圈绕向相反,两个第二螺线管线圈绕向相反;
3)计算机10通过信号发生器11和功率放大器12向激励线圈7输入正弦交变电流,从而在被检细长构件9表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁5形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中激励纵向模态导波并在接收线圈8中产生感应电压;
4)计算机10通过信号处理器和A/D转换器14接收此感应电压的信号,以判断细长构件中是否存在缺陷。
“自激自收”的意思是上述设置在细长构件一个部位处的永磁铁5、激励线圈7和接收线圈8等组成一个传感器,此传感器自身可以产生激励信号和获得感应信号。
图4为使用本发明实施例的导波检测传感器,采用第一种的“自激自收”的方法在标样管上获取检测信号的波形图。标样管为外径90mm,壁厚8mm,长度2.8m的碳钢管。将所述导波检测传感器安装在标样管的左端部,周向共9个检测模块,采用图3所示的线圈连接方式,方形磁铁两侧的激励线圈7和接收线圈8均为单层线圈。激励频率为50kHz,图4中M表示激励线圈7和接收线圈8直接耦合产生的电磁脉冲信号,E1、E2和E3分别表示超声导波经标样管右端部反射后的第一次、第二次和第三次回波信号。检测信号幅值明显,信噪比好,说明采用开放磁路的磁致伸缩导波检测方法可行,且检测效果较好。
下面介绍“一激一收”的测量方法。
一种基于开放磁路的磁致伸缩导波检测方法,用于在细长构件上激励和接收纵向模态导波以及实现细长构件的缺陷检测,其特征在于,该方法包括以下步骤:
1)沿被检的细长构件的轴向分别套设两个检测装置,其中,每个检测装置均包括沿被检细长构件9的外侧周向布置多个永磁铁5,每个所述永磁铁5中的极化方向均与所述细长构件的轴线垂直,以用于对细长构件进行磁化,从而在细长构件的表层产生逐渐衰减的轴向静态磁场;此外,所有永磁体靠近细长构件的一端的极性相同;
2)在细长构件对应于其中一个所述检测装置的部位分别套设两个第一螺线管线圈,所述的两个第一螺线管线圈通过第一导线连接在一起以共同构成激励线圈7;然后在细长构件对应于另一个所述检测装置的部位分别套设两个第二螺线管线圈,所述两个第二螺线管线圈通过第二导线连接在一起以共同构成激励线圈7,其中,两个第一螺线管线圈绕向相反,两个第二螺线管线圈绕向相反;优选地,每个所述第一螺线管线圈和/或第二螺线管线圈由多层导线绕制。
3)计算机10通过信号发生器11和功率放大器12向激励线圈7输入 正弦交变电流,从而在被检细长构件9表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁5形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中激励纵向模态导波并在接收线圈8中产生感应电压;
4)计算机10通过信号处理器和A/D转换器14接收此感应电压的信号,以判断细长构件中是否存在缺陷。
“一激一收”是在细长构件的其中一个部位放置的永磁铁5与螺线管线圈共同构成的组件相当于激励传感器,另一个部位放置的永磁铁5与螺线管线圈共同构成的组件相当于接收传感器,因此一个作激励,一个作接收。
图5为使用本发明实施例的导波检测传感器,采用“一激一收”的方法在标样管上获取检测信号的波形图。激励线圈7与图4的检测方式相同,激励传感器仍安装在标样管左端部。接收传感器则安装在距激励传感器0.8m处,采用双层线圈且将方形磁铁两侧的线圈串联作为接收线圈8以增大检测信号幅值。将激励频率增大至120kHz,图5中M表示激励线圈7和接收线圈8直接耦合产生的电磁脉冲信号,P表示经过接收传感器的通过信号,ER表示超声导波经标样管右端部反射后的回波信号,EL表示超声导波依次经过标样管右端部和左端部反射后的回波信号。相比较于图4,图5的激励条件相同,接收线圈8则通过双层线圈串联的方式,检测信号幅值增大,说明采用多层线圈串联的方式,高频激励超声导波,在保证检测信号幅值的条件下,提高了检测精度。从实验结果可看出,利用本发明提供的检测方法和检测装置,检测效果良好,传感器安装方便快捷,检测效率高,满足现场检测需求。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于开放磁路的磁致伸缩导波检测传感器,其特征在于,该检测传感器包括激励线圈、接收线圈和磁性装置,其中,
    所述磁性装置包括多个检测模块,并且这些检测模块周向均匀布置,以用于吸附到被检细长构件的外侧;
    每个检测模块均包括外壳、永磁铁和导磁板,其中,所述永磁铁固定安装在所述外壳内,其极化方向与被检细长构件的轴线方向垂直,所述导磁板固定安装在所述外壳上并能与被检细长构件接触;
    所有永磁体靠近细长构件的一端的极性相同;
    相邻两外壳通过一调节装置连接,每个调节装置均包括一调节滑杆和两调节螺栓,其中,所述调节滑杆上设置有长条孔,两调节螺栓均从所述长条孔处贯穿所述调节滑杆,每颗调节螺栓分别固定连接在外壳上;
    所述激励线圈和所述接收线圈用于同轴套设于被检细长构件的外侧,所述激励线圈能在输入正弦交变电流后在被检细长构件表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中激励纵向模态超声导波并在接收线圈中产生感应电压,以使计算机接收到此感应电压的信号并判断被检细长构件内是否存在缺陷。
  2. 根据权利要求1所述的基于开放磁路的磁致伸缩导波检测传感器,其特征在于,所述外壳包括壳体和端盖,所述壳体和端盖均由不导磁材料制成,所述端盖盖合在所述壳体上,以与壳体共同配合封闭所述永磁体。
  3. 根据权利要求1所述的单个检测模块,其特征在于,所述导磁板由工业纯铁或低碳钢制成。
  4. 根据权利要求1所述的单个检测模块,其特征在于,所述激励线圈和/或接收线圈分别为多层导线绕制而成。
  5. 根据权利要求1所述的单个检测模块,其特征在于,所述激励线圈 和接收线圈分别靠近所述外壳的两侧布置。
  6. 一种检测系统,其特征在于,包括权利要求1所述的检测传感器,另外,该装置还包括信号发生器、功率放大器、信号预处理器、A/D转换器和计算机,其中,所述功率放大器与激励线圈电连接,所述信号预处理器与接收线圈电连接。所述计算机控制信号发生器产生正弦脉冲电流信号,经功率放大器放大后输入到所述检测传感器,在被检细长构件中激励纵向模态超声导波,同时接收超声导波在接收线圈中产生的电信号,经所述信号预处理器和A/D转换器处理后,输入所述计算机,最终获取超声导波检测信号,以判断被检细长构件内是否存在缺陷。
  7. 一种基于开放磁路的磁致伸缩导波检测方法,用于在细长构件上激励和接收纵向模态导波以及实现细长构件的缺陷检测,其特征在于,该方法包括以下步骤:
    1)在被检的细长构件的外侧周向布置多个永磁铁,其中每个所述永磁铁中的极化方向均与所述细长构件的轴线垂直,以用于对细长构件进行磁化,从而在细长构件的表层产生逐渐衰减的轴向静态磁场;此外,所有永磁体靠近细长构件的一端的极性相同;
    2)沿所述细长构件的轴向分别套设激励线圈和接收线圈,并且激励线圈和接收线圈的绕向相反;
    3)计算机通过信号发生器和功率放大器向激励线圈输入正弦交变电流,从而在被检细长构件表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中激励纵向模态导波并在接收线圈中产生感应电压;
    4)计算机通过信号处理器和A/D转换器接收此感应电压的信号,以判断细长构件中是否存在缺陷。
  8. 一种基于开放磁路的磁致伸缩导波检测方法,用于在细长构件上激励和接收纵向模态导波以及实现细长构件的缺陷检测,其特征在于,该方 法包括以下步骤:
    1)在被检的细长构件的外侧周向布置多个永磁铁,其中每个所述永磁铁中的极化方向均并与所述细长构件的轴线垂直,以用于对细长构件进行磁化,从而在细长构件的表层产生逐渐衰减的轴向静态磁场;此外,所有永磁体靠近细长构件的一端的极性相同;
    2)沿所述细长构件轴向分别套设两个第一螺线管线圈,所述的两个第一螺线管线圈通过第一导线连接在一起以共同构成激励线圈;再沿所述细长构件轴向分别设置两个第二螺线管线圈,所述的两个第二螺线管线圈通过第二导线连接在一起以构成接收线圈,并且每个所述第二螺线管线圈分别套设在一对应位置处的第一螺线管线圈上,其中,两个第一螺线管线圈绕向相反,两个第二螺线管线圈绕向相反;
    3)计算机通过信号发生器和功率放大器向激励线圈输入正弦交变电流,从而在被检细长构件表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中激励纵向模态导波并在接收线圈中产生感应电压;
    4)计算机通过信号处理器和A/D转换器接收此感应电压的信号,以判断细长构件中是否存在缺陷。
  9. 一种基于开放磁路的磁致伸缩导波检测方法,用于在细长构件上激励和接收纵向模态导波以及实现细长构件的缺陷检测,其特征在于,该方法包括以下步骤:
    1)沿被检的细长构件的轴向分别套设两个检测装置,其中,每个检测装置均包括沿被检细长构件的外侧周向布置多个永磁铁,每个所述永磁铁中的极化方向均与所述细长构件的轴线垂直,以用于对细长构件进行磁化,从而在细长构件的表层产生逐渐衰减的轴向静态磁场;此外,所有永磁体靠近细长构件的一端的极性相同;
    2)在细长构件对应于其中一个所述检测装置的部位分别套设两个第一 螺线管线圈,所述的两个第一螺线管线圈通过第一导线连接在一起以共同构成激励线圈;然后在细长构件对应于另一个所述检测装置的部位分别套设两个第二螺线管线圈,所述两个第二螺线管线圈通过第二导线连接在一起以共同构成接收线圈,其中,两个第一螺线管线圈绕向相反,两个第二螺线管线圈绕向相反;
    3)计算机通过信号发生器和功率放大器向激励线圈输入正弦交变电流,从而在被检细长构件表层产生沿细长构件轴向的交变磁场,并且此交变磁场与所述永磁铁形成的沿细长构件轴向的静态磁场相互作用,进而在细长构件中激励纵向模态导波并在接收线圈中产生感应电压;
    4)计算机通过信号处理器和A/D转换器接收此感应电压的信号,以判断细长构件中是否存在缺陷。
  10. 根据权利要求8或9所述的一种基于开放磁路的磁致伸缩导波检测方法,其特征在于,每个所述第一螺线管线圈和/或第二螺线管线圈由多层导线绕制。
PCT/CN2016/078676 2015-11-13 2016-04-07 一种基于开放磁路的磁致伸缩导波检测方法及装置 WO2017080133A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/305,988 US10175202B2 (en) 2015-11-13 2016-04-07 Magnetostrictively induced guided wave sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510777045.4 2015-11-13
CN201510777045.4A CN105445362B (zh) 2015-11-13 2015-11-13 一种基于开放磁路的磁致伸缩导波检测传感器及检测方法

Publications (1)

Publication Number Publication Date
WO2017080133A1 true WO2017080133A1 (zh) 2017-05-18

Family

ID=55555803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078676 WO2017080133A1 (zh) 2015-11-13 2016-04-07 一种基于开放磁路的磁致伸缩导波检测方法及装置

Country Status (3)

Country Link
US (1) US10175202B2 (zh)
CN (1) CN105445362B (zh)
WO (1) WO2017080133A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342566A (zh) * 2018-11-22 2019-02-15 江苏方天电力技术有限公司 一种基于超声导波的盆式绝缘子缺陷检测定位装置及方法
CN110887512A (zh) * 2019-11-15 2020-03-17 东北林业大学 一种双磁聚焦转速、扭矩、角度传感器及转速、扭矩、角度的计算方法
CN111157610A (zh) * 2020-01-03 2020-05-15 国家电网有限公司 一种基于磁声发射技术断路器弹簧缺陷检测装置
CN111665266A (zh) * 2020-06-19 2020-09-15 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种管道磁致伸缩扭转波传感器及其检测方法
CN113176343A (zh) * 2021-04-19 2021-07-27 西安交通大学 一种柔性贴片式磁致伸缩导波传感器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445362B (zh) 2015-11-13 2018-07-06 华中科技大学 一种基于开放磁路的磁致伸缩导波检测传感器及检测方法
CN109490406B (zh) * 2017-09-11 2020-11-20 清华大学 动态磁检测系统、检测方法及电磁控阵方法
CN109187749B (zh) * 2018-09-27 2020-01-21 华中科技大学 一种弯曲模态导波传感器
CN109752449A (zh) * 2019-03-11 2019-05-14 山东交通学院 一种汽车转向桥内部缺陷成像装置
CN109752448A (zh) * 2019-03-11 2019-05-14 山东交通学院 一种基于电磁激励的汽车转向桥内部缺陷检测装置
CN110849399A (zh) * 2019-12-17 2020-02-28 东北林业大学 一种磁聚焦分体式一体化传感器及转速、扭矩、角度计算方法
JP7147801B2 (ja) * 2020-03-13 2022-10-05 横河電機株式会社 磁気探傷方法、磁界計測処理装置及び磁気探傷装置
CN113777170A (zh) * 2021-09-14 2021-12-10 福州大学 高效激励纵向超声导波模态的纵向粘贴磁化的磁致伸缩贴片式传感器及其工作方法
CN114062394A (zh) * 2021-11-18 2022-02-18 哈尔滨工业大学(深圳) 基于磁致伸缩扭转波的管道检测传感器及方法
CN114337370B (zh) * 2021-12-14 2023-06-09 华东师范大学 一种动态调节频响特性的磁电换能装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456113A (en) * 1992-11-06 1995-10-10 Southwest Research Institute Nondestructive evaluation of ferromagnetic cables and ropes using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions
CN1183142A (zh) * 1995-03-09 1998-05-27 西南研究院 利用磁致伸缩传感器的管道和管子无损检验
JP2001174343A (ja) * 1999-12-17 2001-06-29 Tadashi Onishi ボルト軸力の測定方法及び装置
CN101451976A (zh) * 2008-08-29 2009-06-10 华中科技大学 一种确定磁致伸缩导波检测工作点的方法
CN101545755A (zh) * 2009-04-30 2009-09-30 浙江大学 一种基于铁磁体磁致伸缩效应的锚杆长度检测方法
CN105445362A (zh) * 2015-11-13 2016-03-30 华中科技大学 一种基于开放磁路的磁致伸缩导波检测方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504277A (en) * 1967-09-13 1970-03-31 Mogilevsky V M Vibration magnetometer for measuring the tangential component of a field on surfaces of ferromagnetic specimens utilizing a magnetostrictive autooscillator
WO1999053282A1 (en) * 1998-04-13 1999-10-21 Southwest Research Institute Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes
US6396262B2 (en) * 1999-03-17 2002-05-28 Southwest Research Institute Method and apparatus for short term inspection or long term structural health monitoring
US8098065B2 (en) * 2008-08-29 2012-01-17 Southwest Research Institute Magnetostrictive sensor probe for guided-wave inspection and monitoring of wire ropes/cables and anchor rods
CN104028445B (zh) * 2014-06-11 2016-08-24 北京工业大学 基于一发一收法的全向性Lamb 波单体磁致伸缩传感器
CN104198594A (zh) * 2014-06-11 2014-12-10 北京工业大学 一种多主频组合的扭转模态电磁声阵列传感器
CN104122330B (zh) * 2014-07-22 2016-08-17 华中科技大学 基于电磁超声纵向导波的管道缺陷检测方法与装置
CN205210021U (zh) * 2015-11-13 2016-05-04 华中科技大学 一种基于开放磁路的磁致伸缩导波检测传感器和检测系统
US10641741B2 (en) * 2017-01-27 2020-05-05 Fbs, Inc. High-temperature magnetostrictive guided wave pipe inspection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456113A (en) * 1992-11-06 1995-10-10 Southwest Research Institute Nondestructive evaluation of ferromagnetic cables and ropes using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions
CN1183142A (zh) * 1995-03-09 1998-05-27 西南研究院 利用磁致伸缩传感器的管道和管子无损检验
JP2001174343A (ja) * 1999-12-17 2001-06-29 Tadashi Onishi ボルト軸力の測定方法及び装置
CN101451976A (zh) * 2008-08-29 2009-06-10 华中科技大学 一种确定磁致伸缩导波检测工作点的方法
CN101545755A (zh) * 2009-04-30 2009-09-30 浙江大学 一种基于铁磁体磁致伸缩效应的锚杆长度检测方法
CN105445362A (zh) * 2015-11-13 2016-03-30 华中科技大学 一种基于开放磁路的磁致伸缩导波检测方法及装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342566A (zh) * 2018-11-22 2019-02-15 江苏方天电力技术有限公司 一种基于超声导波的盆式绝缘子缺陷检测定位装置及方法
CN109342566B (zh) * 2018-11-22 2023-09-22 江苏方天电力技术有限公司 一种基于超声导波的盆式绝缘子缺陷检测定位装置及方法
CN110887512A (zh) * 2019-11-15 2020-03-17 东北林业大学 一种双磁聚焦转速、扭矩、角度传感器及转速、扭矩、角度的计算方法
CN111157610A (zh) * 2020-01-03 2020-05-15 国家电网有限公司 一种基于磁声发射技术断路器弹簧缺陷检测装置
CN111665266A (zh) * 2020-06-19 2020-09-15 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种管道磁致伸缩扭转波传感器及其检测方法
CN113176343A (zh) * 2021-04-19 2021-07-27 西安交通大学 一种柔性贴片式磁致伸缩导波传感器
CN113176343B (zh) * 2021-04-19 2023-10-24 西安交通大学 一种柔性贴片式磁致伸缩导波传感器

Also Published As

Publication number Publication date
CN105445362A (zh) 2016-03-30
US10175202B2 (en) 2019-01-08
US20170269037A1 (en) 2017-09-21
CN105445362B (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
WO2017080133A1 (zh) 一种基于开放磁路的磁致伸缩导波检测方法及装置
CN103808794B (zh) 基于acfm的外穿式管柱缺陷快速检测阵列探头
CN104122330B (zh) 基于电磁超声纵向导波的管道缺陷检测方法与装置
US6294912B1 (en) Method and apparatus for nondestructive inspection of plate type ferromagnetic structures using magnetostrictive techniques
US20090139335A1 (en) Device and Method for the Material Testing and/or Thickness Measurements of a Test Object That Contains at Least Fractions of Electrically Conductive and Ferromagnetic Material
CN103336062B (zh) 一种用于检测钢轨轨头踏面缺陷的电磁超声换能器
CN204008560U (zh) 基于电磁超声纵向导波的管道缺陷检测传感器与装置
CN108562642A (zh) 纵向模态超声导波的电磁换能装置、管道检测系统及方法
CN209745873U (zh) 一种电磁声复合无损检测装置及系统
US10473730B2 (en) Defect detection device enabling easy removal of magnetic impurities
KR20150048141A (ko) 와류 탐상용 프로브 및 와류 탐상 검사 장치
CN102967658A (zh) 一种用于钢棒表面自动化检测的电磁超声换能器
CN104833720B (zh) 单一线圈电磁谐振检测金属管道损伤的方法
WO2014192012A1 (en) Novel segmented strip design for a magnetostriction sensor (mss) using amorphous material for long range inspection of defects and bends in pipes at high temperatures
CN110568060A (zh) 一种线圈自激励的铁磁性管道电磁超声换能器、激发装置和接收装置
CN205210021U (zh) 一种基于开放磁路的磁致伸缩导波检测传感器和检测系统
CN104122329B (zh) 基于磁致伸缩导波的检测传感器、检测系统及应用
CN202101974U (zh) 一种冷凝器不锈钢波纹管检测电磁声换能器
CN202854097U (zh) 一种用于圆钢缺陷检测的磁致伸缩传感器
Cai et al. Enhancement of Lamb-EMAT signal using a modified one-side pitch-catch design
CN202159035U (zh) 一种油套管用缺陷定量无损检测设备
CN105546359A (zh) 便携式承压工业管道在线恒磁检测装置
RU142323U1 (ru) Сканирующий дефектоскоп
Panda et al. Generation and detection of guided waves in a defective pipe using rapidly quenched magnetostrictive ribbons
CN102901771B (zh) 一种油套管用缺陷定量无损检测设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15305988

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863323

Country of ref document: EP

Kind code of ref document: A1