WO2017079994A1 - Ultrasonic frequency detection method for ultrasonic biological treatment - Google Patents

Ultrasonic frequency detection method for ultrasonic biological treatment Download PDF

Info

Publication number
WO2017079994A1
WO2017079994A1 PCT/CN2015/095288 CN2015095288W WO2017079994A1 WO 2017079994 A1 WO2017079994 A1 WO 2017079994A1 CN 2015095288 W CN2015095288 W CN 2015095288W WO 2017079994 A1 WO2017079994 A1 WO 2017079994A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
signal
inductor
current
output
Prior art date
Application number
PCT/CN2015/095288
Other languages
French (fr)
Chinese (zh)
Inventor
屈百达
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to MYPI2018700037A priority Critical patent/MY185002A/en
Publication of WO2017079994A1 publication Critical patent/WO2017079994A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • SW1 is the side wall of the primary winding frame
  • Ho is the immersion paint hole
  • WP1 is the primary side winding skeleton wall
  • SW2 is the side winding skeleton side wall
  • MW is the secondary side winding skeleton wall
  • WP2 is the secondary side winding skeleton wall.
  • the inductor bobbin FrL On the stem of the inductor core MCL, the inductor bobbin FrL. In the large ring groove of the inductor bobbin FrL, the layered spacer is wound around the inductor WL. The different end of the inductor WL is led out through the inductor start terminal TL0, the first tap of the inductor WL is led out through the first terminal TL1 of the inductor, and the second tap of the inductor WL is connected through the second line of the inductor Terminal TL2 leads, ..., the same name end of the inductor WL is led out through the tenth terminal TL10 of the inductor.

Abstract

An ultrasonic frequency detection method for an executive terminal in an ultrasonic biological treatment operation, wherein a voltage detection coil Wv is additionally wound on a secondary side of an output transformer of an ultrasonic power supply to detect a voltage frequency; a secondary side is additionally provided on a resonant inductor, and a current detection coil Wi is wound on the secondary side to detect a current frequency. A dotted terminal and a non-dotted terminal of the voltage detection coil Wv respectively serve as a voltage signal wiring terminal Tv and a voltage signal beginning end wiring terminal Tv0, and are connected to a detection signal processing circuit SP. A dotted terminal and a non-dotted terminal of the current detection coil Wi respectively serve as a current signal wiring terminal Ti and a current signal beginning end wiring terminal Ti0, and are connected to the detection signal processing circuit SP. A current waveform rising-edge zero-crossing pulse signal is generated by the detection signal processing circuit SP, and then is processed to generate and output a current period signal. Ultrasonic frequency data is calculated and outputted by means of a digital signal processing function of a digital signal processor (DSP), and control processing is performed.

Description

超声波生物处理的超声波频率检测方法 技术领域  Ultrasonic frequency detection method for ultrasonic biological treatment
[0001] 本发明涉及一种超声波生物处理运行的执行终端超声波频率检测方法。  [0001] The present invention relates to an ultrasonic frequency detecting method for an execution terminal of an ultrasonic biological processing operation.
背景技术  Background technique
[0002] 超声波对对象的处理速率与超声波频率高度相关, 超声波频率不同, 处理效率 大不相同; 而且, 处理对象的生物细胞种类更与超声波频率高度相关, 不同的 生物细胞, 对不同频率超声波的敏感性大不相同。 这就造成了现有超声波生物 处理方法的初次超声波频率确定的盲目性, 进而, 对额外进行超声波频率分析 、 确定形成依赖性。 实际工作过程是: 利用某生物细胞在不同频率下的处理情 况, 进行分频带对照、 分析确定, 得到有关数据; 在以后的工作中, 沿用该特 定对象的数据, 经验地确定适合的超声波频率。 这已是习惯做法。 本质上, 这 样的方法并不能保证所工作的超声波频率就是对对象高效的最佳频率, 也不能 对不同的对象进行精确的精细频率调整, 积累的经验也就不是最佳工艺的; 加 之, 该方法不仅在初期大量耗费人力、 财力、 物力, 而且在沿用期也经常地要 求观察、 调整和维护。  [0002] The processing rate of ultrasonic waves on objects is highly correlated with the ultrasonic frequency. The ultrasonic frequencies are different and the processing efficiency is very different. Moreover, the biological cell types of the treated objects are more highly correlated with the ultrasonic frequencies, different biological cells, and ultrasonic waves of different frequencies. Sensitivity is very different. This results in the blindness of the initial ultrasonic frequency determination of the existing ultrasonic biological treatment method, and further, the ultrasonic frequency analysis is performed to determine the formation dependence. The actual working process is: using the processing of a certain biological cell at different frequencies, performing sub-band comparison, analysis and determination to obtain relevant data; in the future work, the data of the specific object is used to empirically determine the appropriate ultrasonic frequency. This is already a custom. In essence, such a method does not guarantee that the ultrasonic frequency at work is the optimal frequency for the object, nor can it accurately and finely adjust the different objects. The accumulated experience is not the best process; The method not only consumes a lot of manpower, financial resources and material resources at the beginning, but also frequently requires observation, adjustment and maintenance during the period of use.
[0003] 鉴于此, 有必要研发一种新的高效策略, 使超声波生物处理工作不再沿用先经 分频带对照、 分析确定超声波频率, 再经验地确定所需频率的低效做法, 而是 将确定所需频率的过程最大限度地高效、 自动化进行。 解决该类问题的高效方 案是超声波生物处理频率搜索控制的一体化结构, 而一体化结构的最困难问题 是宽频带换能匹配技术, 即随着搜索频率变化, 在若干不同中心频率的宽频带 振板与驱动电源之间, 如何实现谐振网络的频带搜索换能匹配。 对于这样复杂 的匹配结构, 控制是个更复杂而不可回避的问题, 而取得频率反馈信号又是控 制的首要问题。 进而, 执行终端的超声波频率检测, 就成为关键和亟待解决的 难题。 不同于单一频率超声波执行终端的频率检测, 超声波生物处理频率搜索 控制一体化系统的频率检测需要在动态执行终端上进行。 因此, 必需研发一种 非常规的, 适合该不断切换过程的系统的检测方法。 技术问题 [0003] In view of this, it is necessary to develop a new and efficient strategy, so that the ultrasonic biological processing work will no longer follow the inefficient method of determining the ultrasonic frequency by sub-band comparison, analyzing and determining the required frequency, but The process of determining the required frequency is carried out to be as efficient and automated as possible. An efficient solution to this type of problem is the integrated structure of ultrasonic bioprocessing frequency search control, and the most difficult problem of the integrated structure is the broadband transduction matching technique, ie, the wide frequency band at several different center frequencies as the search frequency changes. How to realize the frequency band search and conversion matching of the resonant network between the vibration plate and the driving power source. For such a complex matching structure, control is a more complicated and unavoidable problem, and obtaining frequency feedback signals is the primary problem of control. Furthermore, performing ultrasonic frequency detection of the terminal becomes a key and urgent problem to be solved. Different from the frequency detection of the single frequency ultrasonic execution terminal, the frequency detection of the ultrasonic biological processing frequency search and control integrated system needs to be performed on the dynamic execution terminal. Therefore, it is necessary to develop an unconventional detection method suitable for the system of the continuous switching process. technical problem
[0004] 为使超声波生物处理过程的可测、 可控, 实现生物-机-电一体化处理系统中的 宽频带搜索、 控制。  [0004] In order to make the ultrasonic biological treatment process measurable and controllable, wide-band search and control in the bio-mechanical-electrical integrated processing system is realized.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0005] 本发明提出一种超声波生物处理运行的执行终端超声波频率检测方法, 它是在 超声波电源的输出变压器副边, 增设绕制电压检测线圈, 用以检测电压频率; 对谐振电感器增设副边, 在该副边绕制电流检测线圈, 用以检测电流频率。 电 压检测线圈的同名端和异名端分别作为电压信号接线端子和电压信号始端接线 端子, 接入检测信号处理电路。 电流检测线圈的同名端和异名端分别作为电流 信号接线端子和电流信号始端接线端子, 接入检测信号处理电路。 经检测信号 处理电路产生电流波形上升沿过零脉冲信号, 再经处理产生电流周期信号输出 , 由数字信号处理芯片 DSP的数字信号处理功能, 计算出超声波频率数据输出, 并进行控制处理。  [0005] The present invention provides an ultrasonic frequency detection method for an execution terminal of an ultrasonic biological processing operation, which is provided with a winding voltage detecting coil for detecting a voltage frequency on the secondary side of an output transformer of an ultrasonic power source; On the side, a current detecting coil is wound on the secondary side for detecting the current frequency. The same-name end and the different-name end of the voltage detecting coil are respectively used as a voltage signal terminal and a voltage signal start terminal, and are connected to the detection signal processing circuit. The same name end and the different name end of the current detecting coil are respectively used as a current signal terminal and a current signal starting terminal, and are connected to the detection signal processing circuit. The detected signal processing circuit generates a rising edge zero-crossing pulse signal of the current waveform, and then processes and generates a current cycle signal output. The digital signal processing function of the digital signal processing chip DSP calculates the ultrasonic frequency data output and performs control processing.
[0006] 本发明解决其技术问题所采用的技术方案是: [0006] The technical solution adopted by the present invention to solve the technical problem thereof is:
[0007] 利用系统的功率匹配输出单元和 DSP反馈控制电路的部分功能。 [0007] Part of the functions of the power control output unit and the DSP feedback control circuit are utilized.
[0008] 在超声波电源的输出变压器副边, 增设绕制电压检测线圈 Wv, 用以检测电压 频率; 对谐振电感器增设副边, 在该副边绕制电流检测线圈 Wi, 用以检测电流 频率。 电压检测线圈 Wv的同名端和异名端分别作为电压信号接线端子 Tv和电压 信号始端接线端子 ΤνΟ, 接入检测信号处理电路 SP。 电流检测线圈 Wi的同名端和 异名端分别作为电流信号接线端子 Ti和电流信号始端接线端子 TiO, 接入检测信 号处理电路 SP。 [0008] On the secondary side of the output transformer of the ultrasonic power supply, a winding voltage detecting coil Wv is added to detect the voltage frequency; a secondary side is added to the resonant inductor, and the current detecting coil Wi is wound on the secondary side to detect the current frequency. . The same-name end and the different-name end of the voltage detecting coil Wv serve as a voltage signal terminal Tv and a voltage signal start terminal ΤνΟ, respectively, and are connected to the detection signal processing circuit SP. The same-name end and the different-name end of the current detecting coil Wi are respectively used as the current signal terminal Ti and the current signal start terminal TiO, and are connected to the detection signal processing circuit SP.
[0009] 检测信号处理电路为以 MAX9382型鉴相器芯片 IC为核心的鉴相电路。 电压信 号接线端子 Tv通过电压信号耦合电阻 Rv连接到鉴相器芯片 IC的 7脚, 电压信号始 端接线端子 TvO接地; 电压信号反相限幅二极管 Dvl和电压信号正相限幅二极管 Dv2构成反并联支路, 跨接在鉴相器芯片 IC的 7脚与地之间。 电流信号接线端子 T i通过电流信号耦合电阻 Ri连接到鉴相器芯片 IC的 6脚, 电流信号始端接线端子 Ti 0接地; 电压信号反相限幅二极管 Dvl与电压信号正相限幅二极管 Dv2构成反并联 支路, 跨接在鉴相器芯片 IC的 6脚与地之间。 鉴相器芯片 IC的 7脚连接到 DC5V工 作电源正极接线端 E。 鉴相器芯片 IC的 1脚作为电流波形上升沿过零脉冲信号输 出端, 连接到 D触发器芯片 IC2的 3脚。 D触发器芯片 IC2的 1脚作为电流波形一个 周期长度的脉宽信号输出端, 连接到数字信号处理芯片 DSP的 PA3引脚, 由数字 信号处理芯片 DSP的数字信号处理功能, 按所测电流频率 fi=l/PA3信号脉宽的关 系来计算超声波频率, 并进行控制处理。 [0009] The detection signal processing circuit is a phase detection circuit with a MAX9382 type phase detector chip IC as a core. The voltage signal terminal Tv is connected to the pin 7 of the phase detector chip IC through the voltage signal coupling resistor Rv, and the voltage signal starting terminal TvO is grounded; the voltage signal inversion limiting diode Dvl and the voltage signal positive phase limiting diode Dv2 constitute an anti-parallel The branch is connected between the 7 pin of the phase detector chip IC and the ground. The current signal terminal T i is connected to the 6 pin of the phase detector chip IC through the current signal coupling resistor Ri, and the current signal starting terminal Ti 0 is grounded; the voltage signal inverting limiting diode Dvl and the voltage signal positive phase limiting diode Dv2 are formed. Antiparallel The branch is connected between the 6 pin of the phase detector chip IC and the ground. The 7-pin of the phase detector chip IC is connected to the positive terminal E of the DC5V working power supply. The pin 1 of the phase detector chip IC is used as the current waveform rising edge zero-cross pulse signal output terminal, and is connected to the 3 pin of the D flip-flop chip IC2. The 1 pin of the D flip-flop chip IC2 serves as a pulse width signal output end of the current waveform for one cycle length, and is connected to the PA3 pin of the digital signal processing chip DSP, and the digital signal processing function of the digital signal processing chip DSP, according to the measured current frequency The relationship of fi=l/PA3 signal pulse width is used to calculate the ultrasonic frequency, and control processing is performed.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0010] 本发明的有益效果是: 采用输出变压器增设绕制电压检测线圈和谐振电感器增 设副边绕制电流检测线圈方式, 提高了输出变压器和电感线圈的效用 /体积比, 进而解决了对多抽头输出变压器和电感线圈进行一点电压、 电流检测的难题, 进而减少了机体空间占用, 大大提高了检测点利用率。  [0010] The beneficial effects of the present invention are: using an output transformer to add a winding voltage detecting coil and a resonant inductor to add a secondary winding current detecting coil method, thereby improving the utility/volume ratio of the output transformer and the inductor coil, thereby solving the problem The multi-tap output transformer and the inductor coil perform a single voltage and current detection problem, thereby reducing the space occupied by the body and greatly improving the utilization of the detection point.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0011] 下面结合附图和实施例对本发明进一步说明。  [0011] The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
[0012] 图 1是本发明实施例的系统控制功能结构框图。  1 is a block diagram showing the structure of a system control function according to an embodiment of the present invention.
[0013] 图 2是本实施例的切换执行单元电路结构图  2 is a circuit diagram of a switching execution unit of the embodiment.
[0014] 图 3是本实施例的电流、 电压检测主电路结构图。  3 is a structural diagram of a current and voltage detecting main circuit of the present embodiment.
[0015] 图 4是本实施例的检测信号处理电路结构图。  4 is a structural diagram of a detection signal processing circuit of the present embodiment.
[0016] 图 5是检测信号 DSP处理流程图。  [0016] FIG. 5 is a flow chart of the processing of the detection signal DSP.
[0017] 图 6是输出变压器实施例的结构主视图。  6 is a front elevational view showing the structure of an output transformer embodiment.
[0018] 图 7是输出变压器结构半剖左视图。  7 is a half cross-sectional left side view of the output transformer structure.
[0019] 图 8是输出变压器副边绕组骨架结构俯视图。  8 is a plan view showing a skeleton structure of an output transformer secondary winding.
[0020] 图 9是输出变压器副边绕组骨架结构半剖左视图。  9 is a half cross-sectional left side view of the skeleton structure of the output transformer secondary winding.
[0021] 图 10是变压器原边绕组骨架结构半剖视图。  [0021] FIG. 10 is a half cross-sectional view showing the skeleton structure of the primary winding of the transformer.
[0022] 图 11是谐振电感器实施例的结构主视图。  [0022] FIG. 11 is a front elevational view showing the structure of a resonant inductor embodiment.
[0023] 图 12是谐振电感器结构半剖左视图。  12 is a half cross-sectional left side view of the resonant inductor structure.
[0024] 图 13是谐振电感线圈骨架结构半剖视图。 [0025] 在图 1~6中: 1.工作电源电路组, 2.斩波调功电路, 3.正弦波信号产生单元, 4.P WM驱动单元, 5.PWM电路, 6.功率匹配输出单元, 7.频带切换电路, 8.频带匹 配、 换能网络, 9.超声波生物处理终端, 10.DSP反馈控制电路, 11.人-机交互终 端; Dr为 PWM驱动信号, TOO为功率匹配输出始端接线端子, T01为功率匹配 输出第一路接线端子, T02为功率匹配输出第二路接线端子, …, TO10为功率 匹配输出第十路接线端子; TZ1为第一路振板第一接线端子, TZ2为第二路振板 第一接线端子, ..., TZ10为第十路振板第一接线端子; PC为功率控制信号, M C为间歇控制信号, FC为频率控制信号, FT为频带切换控制数据, 其中 F1为第 一频带切换信号, F2为第二频带切换信号, …, F10为第十频带切换信号; V为 电压反馈信号, i为电流反馈信号, De为浓度反馈信号, K为系统启动信号, M 为模式给定参数, F为频率给定参数, P为功率给定参数, FS为频率状态数据, P S为功率状态数据, Ef为效率状态数据。 13 is a half cross-sectional view showing a skeleton structure of a resonant inductor. [0025] In Figures 1 to 6: 1. Working power circuit group, 2. Chopper tuning circuit, 3. Sine wave signal generating unit, 4. P WM driving unit, 5. PWM circuit, 6. Power matching output Unit, 7. Band switching circuit, 8. Band matching, transducing network, 9. Ultrasonic biological processing terminal, 10. DSP feedback control circuit, 11. Human-computer interaction terminal; Dr is PWM driving signal, TOO is power matching output The starting terminal, T01 is the power matching output first terminal, T02 is the power matching output second terminal, ..., TO10 is the power matching output terminal 10; TZ1 is the first vibration plate first terminal TZ2 is the first terminal of the second vibration plate, ..., TZ10 is the first terminal of the tenth vibration plate; PC is the power control signal, MC is the intermittent control signal, FC is the frequency control signal, FT is the frequency band Switching control data, where F1 is the first band switching signal, F2 is the second band switching signal, ..., F10 is the tenth band switching signal; V is the voltage feedback signal, i is the current feedback signal, De is the concentration feedback signal, K Open the system The dynamic signal, M is the mode given parameter, F is the frequency given parameter, P is the power given parameter, FS is the frequency state data, PS is the power state data, and Ef is the efficiency state data.
[0026] 在图 2~13中: PS为超声波电源单元, TP0为输出变压器原边绕组始端接线端子  [0026] In Figures 2~13: PS is an ultrasonic power supply unit, and TP0 is a primary terminal of the output transformer primary winding.
, TP为输出变压器原边绕组终端接线端子; J1-1为第一路切换执行继电器常幵接 点, J2-1为第二路切换执行继电器常幵接点, …, J10-1为第十路切换执行继电器 常幵接点; TZ1为匹配网络第一路振板接线端子, TZ2为匹配网络第二路振板接 线端子, …, TZ10为匹配网络第十路振板接线端子; Z1为第一路振板, Z2为第 二路振板, …, Z10为第十路振板; TL0为电感线圈始端接线端子, TL1为电感 线圈第一路接线端子, TL2为电感线圈第二路接线端子, ..., TL10为电感线圈第 十路接线端子。 W1为变压器原边绕组, W2为变压器副边绕组, Wv为电压检测 线圈, WL为电感线圈, Wi为电流检测线圈; Tv为电压信号接线端子, ΤνΟ为电 压信号始端接线端子; Ti为电流信号接线端子, TiO为电流信号始端接线端子; S P为检测信号处理电路。  TP is the terminal terminal of the primary winding of the output transformer; J1-1 is the common contact of the first switching execution relay, J2-1 is the common contact of the second switching execution relay, ..., J10-1 is the tenth switching Execute the relay common contact; TZ1 is the first vibration plate terminal of the matching network, TZ2 is the second vibration plate terminal of the matching network, ..., TZ10 is the tenth vibration plate terminal of the matching network; Z1 is the first vibration Board, Z2 is the second vibration plate, ..., Z10 is the tenth vibration plate; TL0 is the starting terminal of the inductor, TL1 is the first terminal of the inductor, and TL2 is the second terminal of the inductor, .. ., TL10 is the tenth connection terminal of the inductor. W1 is the primary winding of the transformer, W2 is the secondary winding of the transformer, Wv is the voltage detection coil, WL is the inductance coil, Wi is the current detection coil; Tv is the voltage signal terminal, ΤνΟ is the voltage signal start terminal; Ti is the current signal Terminal block, TiO is the current signal start terminal; SP is the detection signal processing circuit.
[0027] 在图 4中: Rv为电压信号耦合电阻, Ri为电流信号耦合电阻, Dvl为电压信号 反相二极管, Dv2为电压信号正相限幅二极管, Dil为电流信号反相限幅二极管 , Di2为电流信号正相限幅二极管, E为 DC5V工作电源正极接线端, IC1为鉴相 器芯片, IC2为 D触发器芯片。  [0027] In FIG. 4: Rv is a voltage signal coupling resistor, Ri is a current signal coupling resistor, Dvl is a voltage signal inverting diode, Dv2 is a voltage signal positive phase limiting diode, and Dil is a current signal inverting limiting diode. Di2 is the current signal positive phase limiting diode, E is the DC5V working power positive terminal, IC1 is the phase detector chip, IC2 is the D flip-flop chip.
[0028] 在图 6~13中: Frl为原边绕组骨架, MC为磁芯, Fr2为副边绕组骨架, Ho为浸 漆孔, FrL为电感线圈骨架, MCL为电感线圈磁芯。 [0028] In FIGS. 6-13: Frl is the primary winding skeleton, MC is the magnetic core, Fr2 is the secondary winding skeleton, and Ho is dip Paint hole, FrL is the inductor bobbin, MCL is the inductor core.
[0029] 在图 7~13中: SW1为原边绕组骨架侧壁, Ho为浸漆孔, WP1为原边绕组骨架 筒壁; SW2为副边绕组骨架侧壁, MW为副边绕组骨架间壁, WP2为副边绕组骨 架筒壁。 [0029] In FIGS. 7-13: SW1 is the side wall of the primary winding frame, Ho is the immersion paint hole, WP1 is the primary side winding skeleton wall; SW2 is the side winding skeleton side wall, and MW is the secondary side winding skeleton wall , WP2 is the secondary side winding skeleton wall.
本发明的实施方式 Embodiments of the invention
[0030] 在图 1所示的系统控制功能结构框图中: [0030] In the block diagram of the system control function shown in FIG.
[0031] 整个系统由工作电源电路组 1、 斩波调功电路 2、 正弦波信号产生单元 3、 PWM 驱动单元 4、 PWM电路 5、 功率匹配输出单元 6、 频带切换电路 7、 频带匹配、 换 能网络 8、 超声波生物处理终端 9、 DSP反馈控制电路 10、 人 -机交互终端 11和人- 机交互终端 11组成。  [0031] The whole system is composed of working power circuit group 1, chopper power regulating circuit 2, sine wave signal generating unit 3, PWM driving unit 4, PWM circuit 5, power matching output unit 6, band switching circuit 7, band matching, switching The energy network 8, the ultrasonic biological processing terminal 9, the DSP feedback control circuit 10, the human-machine interactive terminal 11 and the human-machine interactive terminal 11 are composed.
[0032] 工作电源电路组 1的交流输入端口连接到〜 220V市电接入工作网络; 工作电源 电路组 1的 DC250V输出端口与斩波调功电路 2的电源输入端口对应连接; 工作电 源电路组 1的 DC15V输出端口同吋与正弦波信号产生单元 3、 PWM驱动单元 4、 频带切换电路和人 -机交互终端 11的 DC15V工作电源端口对应连接; 工作电源电 路组 1的 DC5V输出端口同吋与超声波生物处理终端 9、 DSP反馈控制电路 10和人- 机交互终端 11的 DC5V工作电源端口对应连接。  [0032] The AC input port of the working power circuit group 1 is connected to the ~220V mains access working network; the DC250V output port of the working power circuit group 1 is connected with the power input port of the chopper power regulating circuit 2; The DC15V output port of 1 is connected to the DC15V working power port of the sine wave signal generating unit 3, the PWM driving unit 4, the band switching circuit and the human-machine interactive terminal 11; the DC5V output port of the working power circuit group 1 is the same The ultrasonic biological processing terminal 9, the DSP feedback control circuit 10, and the DC5V working power port of the human-machine interactive terminal 11 are correspondingly connected.
[0033] 斩波调功电路 2的电源输出端口与 PWM电路 5的工作电源端口对应连接; 正弦 波信号产生单元 3的信号输出端口与 PWM驱动单元 4的信号输入端口对应连接; P WM驱动单元 4的信号输出端口与 PWM电路 5的控制信号输入端口对应连接, 将 P WM驱动信号 Dr送入 PWM电路 5; PWM电路 5的功率输出端口与功率匹配输出单 元 6的功率输入端口对应连接。  [0033] The power output port of the chopper power adjustment circuit 2 is connected to the working power port of the PWM circuit 5; the signal output port of the sine wave signal generating unit 3 is connected to the signal input port of the PWM driving unit 4; P WM driving unit The signal output port of 4 is connected to the control signal input port of the PWM circuit 5, and the P WM drive signal Dr is sent to the PWM circuit 5; the power output port of the PWM circuit 5 is connected to the power input port of the power matching output unit 6.
[0034] 功率匹配输出单元 6由超声波电源的输出变压器构成。 功率匹配输出单元 6的功 率输出端口通过电压检测网络连接到 DSP反馈控制电路 10的电压反馈信号输入端 口对应端, 将电压反馈信号 V送入 DSP反馈控制电路 10; 功率匹配输出单元 6的功 率匹配输出始端接线端子 TOO连接到频带匹配、 换能网络 8的电感线圈始端接线 端子 TL0; 功率匹配输出单元 6功率输出端口的第一级输出端、 第二级输出端、 …、 第十级输出端分别通过功率匹配输出第一路接线端子 T01、 功率匹配输出第 二路接线端子 T02、 …、 功率匹配输出第十路接线端子 ΤΟ10连接到频带切换电 路 7的进线对应接线端子; 频带切换电路 7的出线对应接线端子分别连接到频带 匹配、 换能网络 8的第一路振板第一接线端子 TZ1、 第二路振板第一接线端子 ΤΖ2 、 …、 第十路振板第一接线端子 ΤΖ10。 [0034] The power matching output unit 6 is constituted by an output transformer of an ultrasonic power source. The power output port of the power matching output unit 6 is connected to the voltage feedback signal input port corresponding end of the DSP feedback control circuit 10 through the voltage detection network, and the voltage feedback signal V is sent to the DSP feedback control circuit 10; the power matching of the power matching output unit 6 The output start terminal TOO is connected to the band matching, the inductive coil start terminal TL0 of the transducing network 8; the first stage output end of the power matching output unit 6 power output port, the second stage output end, ..., the tenth stage output end Output first terminal terminal T01 and power matching output by power matching The two-way terminal T02, ..., the power matching output tenth terminal ΤΟ10 is connected to the incoming line corresponding terminal of the band switching circuit 7; the outgoing line corresponding terminal of the band switching circuit 7 is respectively connected to the band matching, the transducing network 8 The first vibration plate first terminal TZ1, the second vibration plate first terminal ΤΖ2, ..., the tenth vibration plate first terminal ΤΖ10.
[0035] 频带匹配、 换能网络 8的內浸式振板结构与处理液浓度检测装置装配于超声波 生物处理槽内, 构成超声波生物处理终端 9。 超声波生物处理终端 9通过处理液 浓度检测装置连接到 DSP反馈控制电路 10, 将浓度反馈信号 De送入 DSP反馈控制 电路 10。 [0035] The inner-immersion vibration plate structure and the treatment liquid concentration detecting device of the band matching and transducing network 8 are assembled in the ultrasonic biological treatment tank to constitute the ultrasonic biological treatment terminal 9. The ultrasonic biological treatment terminal 9 is connected to the DSP feedback control circuit 10 through the processing liquid concentration detecting means, and supplies the concentration feedback signal De to the DSP feedback control circuit 10.
[0036] DSP反馈控制电路 10通过切换数据接口的对应频带接线端连接到频带切换电路 7, 将频带切换控制数据 FT, 即其中的第一频带切换信号 Fl、 第二频带切换信号 F2、 …、 第十频带切换信号 F10同吋送入频带切换电路 7; DSP反馈控制电路 10的 频率控制信号输出接线端连接到正弦波信号产生单元 3的频率控制信号输入接线 端, 将频率控制信号 FC送入正弦波信号产生单元 3; DSP反馈控制电路 10的功率 控制信号输出接线端和间歇控制信号输出接线端分别连接到斩波调功电路 2的功 率控制信号输入接线端和间歇控制信号输入接线端, 将功率控制信号 FC和间歇 控制信号 MC为送入斩波调功电路 2。 DSP反馈控制电路 10通过相应数据接口与人 -机交互终端 11构成数据连接, 将频率状态数据 FS、 功率状态数据 FC和效率状态 数据 Ef送入人 -机交互终端 11。  [0036] The DSP feedback control circuit 10 is connected to the band switching circuit 7 by the corresponding band terminal of the switching data interface, and the band switching control data FT, that is, the first band switching signal F1, the second band switching signal F2, ... The tenth band switching signal F10 is sent to the band switching circuit 7; the frequency control signal output terminal of the DSP feedback control circuit 10 is connected to the frequency control signal input terminal of the sine wave signal generating unit 3, and the frequency control signal FC is sent. The sine wave signal generating unit 3; the power control signal output terminal of the DSP feedback control circuit 10 and the intermittent control signal output terminal are respectively connected to the power control signal input terminal of the chopper power regulating circuit 2 and the intermittent control signal input terminal, The power control signal FC and the intermittent control signal MC are sent to the chopper tuning circuit 2. The DSP feedback control circuit 10 forms a data connection with the human-machine interactive terminal 11 through the corresponding data interface, and sends the frequency state data FS, the power state data FC, and the efficiency state data Ef to the human-machine interactive terminal 11.
[0037] 人 -机交互终端 11通过相应数据接口与 DSP反馈控制电路 10构成数据连接, 将功 率给定参数 P、 模式给定参数 M和频率给定参数 F的设置值送入 DSP反馈控制电路 10; 人 -机交互终端 11通过相应信号接口与 DSP反馈控制电路 10构成信号连接, 将系统启动信号 K送入 DSP反馈控制电路 10。  [0037] The human-machine interaction terminal 11 forms a data connection with the DSP feedback control circuit 10 through the corresponding data interface, and sends the set values of the power given parameter P, the mode given parameter M and the frequency given parameter F to the DSP feedback control circuit. 10; The human-machine interaction terminal 11 forms a signal connection with the DSP feedback control circuit 10 through a corresponding signal interface, and sends the system startup signal K to the DSP feedback control circuit 10.
[0038] 在图 2所示的切换执行单元电路结构图和图 3所示的本实施例的电流、 电压检测 主电路结构图中:  [0038] In the circuit diagram of the switching execution unit shown in FIG. 2 and the structure diagram of the current and voltage detection main circuit of the embodiment shown in FIG. 3:
[0039] 第一路切换信号耦合电阻 R1的一端连接到第一频带切换信号接线端 TF1, 另一 端与第一路幵关晶体管 T1的基极连接; 第一路幵关晶体管 T1的集电极连接到 DC 15V工作电源正极接线端 E, 第一路幵关晶体管 T1的发射极连接到第一路切换执 行继电器电磁线圈 J1的一端; 第一路切换执行继电器电磁线圈 J1的另一端接地; 第一路切换执行继电器常幵接点 Jl-1进线端连接到功率匹配输出第一路接线端子 T01, 第一路切换执行继电器常幵接点 Jl-1出线端连接到第一路振板 Z1的第一路 振板第一接线端子 TZ1 ; 第一路振板 Z1的第一路振板第二接线端子连接到电感线 圈第一路接线端子 TL1。 [0039] One end of the first switching signal coupling resistor R1 is connected to the first band switching signal terminal TF1, and the other end is connected to the base of the first switching transistor T1; the collector connection of the first switching transistor T1 To the DC 15V working power positive terminal E, the emitter of the first switching transistor T1 is connected to one end of the first switching execution relay electromagnetic coil J1; the other end of the first switching execution relay electromagnetic coil J1 is grounded; The first way switching execution relay common contact point Jl-1 is connected to the power matching output first terminal T01, the first switching execution relay common contact Jl-1 outlet end is connected to the first vibration plate Z1 The first connection plate of the first vibration plate TZ1; the second connection terminal of the first vibration plate of the first vibration plate Z1 is connected to the first connection terminal TL1 of the inductor.
[0040] 第二路切换信号耦合电阻 R2的一端连接到第二频带切换信号接线端 TF2, 另一 端与第二路幵关晶体管 T2的基极连接; 第二路幵关晶体管 T2的集电极连接到 DC 15V工作电源正极接线端 E, 第二路幵关晶体管 T2的发射极连接到第二路切换执 行继电器电磁线圈 J2的一端; 第二路切换执行继电器电磁线圈 J2的另一端接地; 第二路切换执行继电器常幵接点 J2-1进线端连接到功率匹配输出第二路接线端子 T02, 第二路切换执行继电器常幵接点 J2-1出线端连接到第二路振板 Z2的第二路 振板第一接线端子 TZ2; 第二路振板 Z2的第二路振板第二接线端子连接到电感线 圈第二路接线端子 TL2。  [0040] One end of the second switching signal coupling resistor R2 is connected to the second band switching signal terminal TF2, and the other end is connected to the base of the second switching transistor T2; the collector connection of the second switching transistor T2 To the DC 15V working power positive terminal E, the emitter of the second switching transistor T2 is connected to one end of the second switching execution relay solenoid J2; the second switching execution relay electromagnetic coil J2 is grounded at the other end; The circuit switching execution relay is always connected to the J2-1 input terminal to the power matching output second terminal T02, and the second switching execution relay is always connected to the J2-1 outlet terminal to the second vibration plate Z2. The first connection terminal TZ2 of the road vibration plate; the second connection terminal of the second vibration plate of the second vibration plate Z2 is connected to the second connection terminal TL2 of the induction coil.
[0041]  [0041]
[0042] 第十路切换信号耦合电阻 R10的一端连接到第十频带切换信号接线端 TF10, 另 一端与第十路幵关晶体管 T10的基极连接; 第十路幵关晶体管 T10的集电极连接 到 DC15V工作电源正极接线端 E, 第十路幵关晶体管 T10的发射极连接到第十路 切换执行继电器电磁线圈 J10的一端; 第十路切换执行继电器电磁线圈 J10的另一 端接地; 第十路切换执行继电器常幵接点 J10-1进线端连接到功率匹配输出第十 路接线端子 TO10, 第十路切换执行继电器常幵接点 J10-1出线端连接到第十路振 板 Z10的第十路振板第十接线端子 TZ10; 第十路振板 Z10的第十路振板第二接线 端子连接到电感线圈第十路接线端子 TL10。  [0042] One end of the tenth switching signal coupling resistor R10 is connected to the tenth band switching signal terminal TF10, the other end is connected to the base of the tenth switching transistor T10; and the tenth is connected to the collector of the transistor T10 To the DC15V working power positive terminal E, the emitter of the tenth bypass transistor T10 is connected to one end of the tenth switching execution relay electromagnetic coil J10; the tenth switching execution relay electromagnetic coil J10 is grounded at the other end; Switching the relay relay, the common contact J10-1, the incoming end is connected to the power matching output, the tenth terminal, TO10, and the tenth switching relay, the common contact J10-1, the outlet is connected to the tenth of the tenth vibration plate Z10. The tenth terminal block of the vibration plate TZ10; the second terminal of the tenth vibration plate of the tenth vibration plate Z10 is connected to the tenth connection terminal TL10 of the inductor.
[0043] 频带匹配、 换能网络 8的电感线圈始端接线端子 TL0连接到功率匹配输出单元 6 的功率匹配输出始端接线端子 τοο。  [0043] The band matching, inductive coil start terminal TL0 of the transducing network 8 is connected to the power matching output start terminal τοο of the power matching output unit 6.
[0044] 在图 3所示的本实施例的电流、 电压检测主电路结构图、 图 5、 6所示的输出变 压器实施例结构视图和图 9、 10所示的谐振电感器实施例结构视图中: 在超声波 电源的输出变压器副边, 增设绕制电压检测线圈 Wv, 用以检测电压频率; 对谐 振电感器增设副边, 在该副边绕制电流检测线圈 Wi, 用以检测电流频率。 电压 检测线圈 Wv的同名端和异名端分别作为电压信号接线端子 Tv和电压信号始端接 线端子 Tv0, 接入检测信号处理电路 SP。 电流检测线圈 Wi的同名端和异名端分别 作为电流信号接线端子 Ti和电流信号始端接线端子 TiO, 接入检测信号处理电路 S P。 [0044] The current and voltage detection main circuit configuration diagram of the present embodiment shown in FIG. 3, the output transformer embodiment structure view shown in FIGS. 5 and 6, and the structural structure of the resonant inductor embodiment shown in FIGS. Medium: On the secondary side of the output transformer of the ultrasonic power supply, a winding voltage detecting coil Wv is added to detect the voltage frequency; a secondary side is added to the resonant inductor, and the current detecting coil Wi is wound on the secondary side to detect the current frequency. The same-name end and the different-name end of the voltage detecting coil Wv are respectively connected as the voltage signal terminal Tv and the voltage signal The line terminal Tv0 is connected to the detection signal processing circuit SP. The same-name end and the different-name end of the current detecting coil Wi are respectively used as the current signal terminal Ti and the current signal start terminal TiO, and are connected to the detection signal processing circuit SP.
[0045] 在图 4所示的本实施例的检测信号处理电路结构图中: 检测信号处理电路为以 MAX9382型鉴相器芯片 IC1和 CD4013型 D触发器芯片 IC2为核心的鉴相电路。 电 压信号接线端子 Tv通过电压信号耦合电阻 Rv连接到鉴相器芯片 IC的 7脚, 电压信 号始端接线端子 TvO接地; 电压信号反相限幅二极管 Dvl和电压信号正相限幅二 极管 Dv2构成反并联支路, 跨接在鉴相器芯片 IC的 7脚与地之间。 电流信号接线 端子 Ti通过电流信号耦合电阻 Ri连接到鉴相器芯片 IC的 6脚, 电流信号始端接线 端子 TiO接地; 电压信号反相限幅二极管 Dvl与电压信号正相限幅二极管 Dv2构成 反并联支路, 跨接在鉴相器芯片 IC的 6脚与地之间。 鉴相器芯片 IC的 7脚连接到 D C5V工作电源正极接线端 E。 鉴相器芯片 IC的 1脚作为电流波形上升沿过零脉冲 信号输出端, 连接到 D触发器芯片 IC2的 3脚。 D触发器芯片 IC2的 1脚作为电流波 形一个周期长度的脉宽信号输出端, 连接到数字信号处理芯片 DSP的 PA3弓 I脚, 由数字信号处理芯片 DSP的数字信号处理功能, 按频率 fi=l/两 PA2信号上升沿间 隔吋间的关系来计算所测电流频率, 并进行控制处理。 D触发器芯片 IC2的 2脚与 D触发器芯片 IC2的 5脚连接; D触发器芯片 IC2的 4脚 6脚和 7脚均接地; D触发器 芯片 IC2的 14脚连接到 DC5V工作电源正极接线端 E。  [0045] In the structure of the detection signal processing circuit of the embodiment shown in FIG. 4, the detection signal processing circuit is a phase detection circuit with a MAX9382 type phase detector chip IC1 and a CD4013 type D flip-flop chip IC2 as a core. The voltage signal terminal Tv is connected to the pin 7 of the phase detector chip IC through the voltage signal coupling resistor Rv, and the voltage signal starting terminal TvO is grounded; the voltage signal inversion limiting diode Dvl and the voltage signal positive phase limiting diode Dv2 constitute an anti-parallel The branch is connected between the 7 pin of the phase detector chip IC and the ground. The current signal terminal Ti is connected to the 6 pin of the phase detector chip IC through the current signal coupling resistor Ri, and the current signal terminal TiO is grounded; the voltage signal inversion limiting diode Dvl and the voltage signal positive phase limiting diode Dv2 form an anti-parallel connection. The branch is connected between the 6 pin of the phase detector chip IC and the ground. The 7-pin of the phase detector chip IC is connected to the positive terminal E of the D C5V working power supply. The pin of the phase detector chip IC is used as the rising edge of the current waveform and the zero-cross pulse signal output terminal is connected to the pin 3 of the D flip-flop chip IC2. The 1 pin of the D flip-flop chip IC2 serves as a pulse width signal output end of the current waveform for one cycle length, and is connected to the PA3 bow pin of the digital signal processing chip DSP, and the digital signal processing function of the digital signal processing chip DSP, according to the frequency fi= l/The relationship between the rising edge of the two PA2 signals is used to calculate the measured current frequency and perform control processing. The 2 pin of the D flip-flop chip IC2 is connected with the 5 pin of the D flip-flop chip IC2; the 4 pin 6 pin and the 7 pin of the D flip-flop chip IC2 are grounded; the 14 pin of the D flip-flop chip IC2 is connected to the positive connection of the DC5V working power supply End E.
[0046] 在图 5所示的检测信号 DSP处理流程图中: 数字信号处理芯片 DSP对检测信号处 理电路送入的脉宽信号进行数字处理。 首先读取引脚 PA3获得的信号脉宽, 然后 按所测电流频率 fi=l/PA3信号脉宽的关系, 来计算等值的超声波频率, 并送出该 频率数据。  In the processing flowchart of the detection signal DSP shown in FIG. 5, the digital signal processing chip DSP digitally processes the pulse width signal sent from the detection signal processing circuit. First, read the signal pulse width obtained by the pin PA3, and then calculate the ultrasonic frequency of the equivalent according to the measured pulse frequency of the current frequency fi=l/PA3, and send the frequency data.
[0047] 在图 6、 7所示的输出变压器实施例结构视图中:  [0047] In the structural view of the output transformer embodiment shown in FIGS.
[0048] 输出变压器由变压器原边绕组 Wl、 输出变压器原边绕组始端接线端子 TP0、 输 出变压器原边绕组终端接线端子 ΤΡ、 变压器副边绕组 W2、 功率匹配输出始端接 线端子 TO0、 功率匹配输出第一路接线端子 Τ01、 功率匹配输出第二路接线端子 Τ02、 …、 功率匹配输出第十路接线端子 ΤΟ10、 电压检测线圈 Wv、 电压信号接 线端子 Tv、 电压信号始端接线端子 Tv0、 磁芯 MC、 原边绕组骨架 Frl、 副边绕组 骨架 Fr2构成。 磁芯 MC采用 MXO-2000型号 E形结构。 [0048] The output transformer is composed of the transformer primary winding W1, the output transformer primary winding starting terminal TP0, the output transformer primary winding terminal terminal ΤΡ, the transformer secondary winding W2, the power matching output starting terminal TO0, the power matching output One way terminal Τ01, power matching output second terminal Τ02, ..., power matching output tenth terminal ΤΟ10, voltage detection coil Wv, voltage signal terminal Tv, voltage signal start terminal Tv0, core MC, Primary winding skeleton Frl, secondary winding The skeleton Fr2 is composed. The magnetic core MC adopts the MXO-2000 model E-shaped structure.
[0049] 在磁芯 MC的芯柱上, 紧套原边绕组骨架 Frl。 在原边绕组骨架 Frl的大环槽内 , 分层隔衬平绕变压器原边绕组 Wl。 变压器原边绕组 W1的异名端通过输出变压 器原边绕组始端接线端子 TP0引出, 变压器原边绕组 W1的同名端通过输出变压 器原边绕组终端接线端子 TP引出。 在原边绕组骨架 Frl的小环槽内, 绕有电压检 测线圈 Wv。 电压检测线圈 Wv的异名端通过电压信号始端接线端子 TvO引出, 电 压检测线圈 Wv的同名端通过电压信号接线端子 Tv弓 I出。  [0049] On the stem of the core MC, the primary winding skeleton Frl is tightly wound. In the large ring groove of the primary winding frame Frl, the layered spacer is wound around the primary winding Wl of the transformer. The different-name end of the primary winding W1 of the transformer is led out through the output terminal TP0 of the primary winding of the output transformer, and the same-name end of the primary winding W1 of the transformer is led out through the output transformer RIG terminal terminal TP. In the small ring groove of the primary winding frame Frl, a voltage detecting coil Wv is wound. The different name end of the voltage detecting coil Wv is taken out through the voltage signal starting terminal TvO, and the same name end of the voltage detecting coil Wv passes through the voltage signal terminal Tv bow I.
[0050] 原边绕组骨架 Frl外围, 紧套副边绕组骨架 Fr2。 在副边绕组骨架 Fr2的环槽内, 分层隔衬平绕变压器副边绕组 W2。 变压器副边绕组 W2的异名端通过功率匹配输 出始端接线端子 TOO引出, 变压器副边绕组 W2的第一抽头通过功率匹配输出第 一路接线端子 T01引出, 变压器副边绕组 W2的第二抽头通过功率匹配输出第二 路接线端子 T02引出, ......, 变压器副边绕组 W2的同名端通过功率匹配输出第 十路接线端子 TO10引出。  [0050] The outer side winding skeleton Frl is peripherally, and the secondary side winding skeleton Fr2 is tightly clamped. In the annular groove of the secondary winding frame Fr2, the layered spacer is wound around the secondary winding W2 of the transformer. The different end of the transformer secondary winding W2 is led out through the power matching output start terminal TOO, the first tap of the transformer secondary winding W2 is led out through the power matching output first terminal T01, and the second tap of the transformer secondary winding W2 is passed The power matching output second terminal T02 leads, ..., the same name end of the transformer secondary winding W2 is led out through the power matching output terminal 10 terminal TO10.
[0051] 输出变压器整体以绝缘漆浸渍、 充实、 紧固。  [0051] The output transformer is integrally impregnated, enriched, and fastened with an insulating varnish.
[0052] 在图 8、 9所示的输出变压器副边绕组骨架结构视图中: 副边绕组骨架为由上、 下两端的副边绕组骨架侧壁 SW2与中柱的副边绕组骨架筒壁 WP2构成的内腔筒- 外环槽形结构, 采用 ABS材料注塑成型。 其上、 下两端副边绕组骨架侧壁 SW2和 副边绕组骨架筒壁 WP2均制有均匀分布的浸漆孔 Ho; 在上端副边绕组骨架侧壁 S W2的腔筒短边一侧, 并排镶嵌有功率匹配输出始端接线端子 TO0、 功率匹配输 出第一路接线端子 Τ01、 功率匹配输出第二路接线端子 Τ02、 ......、 功率匹配输 出第十路接线端子 ΤΟ10。  [0052] In the skeleton structure view of the secondary winding of the output transformer shown in FIGS. 8 and 9, the secondary winding skeleton is the secondary side winding side wall SW2 of the upper and lower ends and the secondary side winding frame wall WP2 of the center column. The inner cavity tube - outer ring groove structure is formed by injection molding with ABS material. The upper and lower ends of the secondary winding frame side wall SW2 and the secondary side winding frame wall WP2 are uniformly distributed with the immersion paint hole Ho; on the short side of the upper side of the upper side winding side wall S W2, Side by side with power matching output start terminal TO0, power matching output first terminal Τ01, power matching output second terminal Τ02, ..., power matching output tenth terminal ΤΟ10.
[0053] 在图 10是变压器原边绕组骨架结构半剖视图中: 原边绕组骨架为由上、 下两端 的原边绕组骨架侧壁 SW1与中柱的原边绕组骨架筒壁 WP1、 原边绕组骨架间壁 M W构成的内腔筒 -外双环槽形结构, 采用 ABS材料注塑成型。 其上、 下两端原边 绕组骨架侧壁 SW1、 原边绕组骨架间壁 MW和原边绕组骨架筒壁 WP1均制有均匀 分布的浸漆孔 Ho。 在上端原边绕组骨架侧壁 SW1的腔筒短边与功率匹配输出各 路接线端子 TO0~TO10相对一侧, 并排镶嵌有原边绕组始端接线端子 TP0和输出 变压器原边绕组终端接线端子 TP; 在下端原边绕组骨架侧壁 SW1的腔筒短边与 输出变压器原边绕组接线端子 TP0、 TP相同一侧, 并排镶嵌有电压信号始端接线 端子 ΤνΟ和电压信号接线端子 Τν。 10 is a half cross-sectional view of the skeleton structure of the primary winding of the transformer: the primary winding skeleton is the primary side winding skeleton wall SW1 of the upper and lower ends and the primary winding frame wall WP1 of the center pillar, the primary winding The inner cylinder-outer double-ring groove structure composed of the skeleton wall MW is injection molded by ABS material. The upper and lower ends of the primary winding frame side wall SW1, the primary side winding frame wall MW and the primary side winding frame wall WP1 are uniformly distributed with the immersion paint hole Ho. The short side of the upper side of the upper side winding bobbin side wall SW1 is opposite to the power matching output terminal terminals TO0~TO10, and the primary side winding terminal terminal terminal TP0 and the output transformer primary side winding terminal terminal block TP are arranged side by side; The short side of the cavity of the lower side of the primary winding frame side wall SW1 The output transformer primary winding terminal TP0, TP is on the same side, and the voltage signal start terminal ΤνΟ and voltage signal terminal Τν are embedded side by side.
[0054] 图 11、 12所示的谐振电感器实施例结构视图中: [0054] In the structural view of the resonant inductor embodiment shown in FIGS.
[0055] 谐振电感器由电感线圈 WL、 电流检测线圈 Wi、 电流信号接线端子 Ti、 电流信 号始端接线端子 Ti0、 电感线圈始端接线端子 TL0、 电感线圈第一路接线端子 TL1 、 电感线圈第二路接线端子 TL2、 …、 电感线圈第十路接线端子 TL10、 电感线圈 骨架 FrL、 电感线圈磁芯 MCL构成。  [0055] The resonant inductor consists of an inductor WL, a current detecting coil Wi, a current signal terminal Ti, a current signal starting terminal Ti0, an inductor starting terminal TL0, an inductor first terminal TL1, and an inductor second path. The terminal TL2, ..., the tenth connection terminal TL10 of the inductor, the inductor bobbin FrL, and the inductor core MCL are formed.
[0056] 在电感线圈磁芯 MCL的芯柱上, 电感线圈骨架 FrL。 在电感线圈骨架 FrL的大环 槽内, 分层隔衬平绕电感线圈 WL。 电感线圈 WL的异名端通过电感线圈始端接 线端子 TL0引出, 电感线圈 WL的第一抽头通过电感线圈第一路接线端子 TL1弓 I 出, 电感线圈 WL的第二抽头通过电感线圈第二路接线端子 TL2引出, ......, 电 感线圈 WL的同名端通过电感线圈第十路接线端子 TL10引出。 在电感线圈骨架 Fr L的小环槽内, 绕有电流检测线圈 Wi。 电流检测线圈 Wi的异名端通过电流信号 始端接线端子 TiO引出, 电流检测线圈 Wi的同名端通过电流信号接线端子 Ti引出  [0056] On the stem of the inductor core MCL, the inductor bobbin FrL. In the large ring groove of the inductor bobbin FrL, the layered spacer is wound around the inductor WL. The different end of the inductor WL is led out through the inductor start terminal TL0, the first tap of the inductor WL is led out through the first terminal TL1 of the inductor, and the second tap of the inductor WL is connected through the second line of the inductor Terminal TL2 leads, ..., the same name end of the inductor WL is led out through the tenth terminal TL10 of the inductor. A current detecting coil Wi is wound in a small ring groove of the inductor bobbin Fr L . The different terminal of the current detecting coil Wi passes through the current signal. The terminal terminal TiO is taken out, and the same name end of the current detecting coil Wi is led out through the current signal terminal Ti.
[0057] 谐振电感器整体以绝缘漆浸渍、 充实、 紧固。 [0057] The resonant inductor is entirely impregnated, enriched, and fastened with an insulating varnish.
[0058] 在图 13是谐振电感线圈骨架结构半剖视图中: 谐振电感线圈骨架为由上、 下两 端的线圈骨架侧壁 SWL与中柱的线圈骨架筒壁 WPL、 线圈骨架间壁 MW构成的 内腔筒 -外双环槽形结构, 采用 ABS材料注塑成型。 其上、 下两端线圈骨架侧壁 S WL和线圈骨架筒壁 WPL均制有均匀分布的浸漆孔 Ho。 在上端线圈骨架侧壁 SW L的腔筒短边一侧, 并排镶嵌有电感线圈始端接线端子 TL0、 电感线圈第一路接 线端子 TL1、 电感线圈第二路接线端子 TL2、 ......、 电感线圈第十路接线端子 TL 13 is a half cross-sectional view of the resonant inductor bobbin structure: The resonant inductor bobbin is a cavity formed by the bobbin side wall SWL of the upper and lower ends, the bobbin cylinder wall WPL of the center pillar, and the bobbin partition wall MW. The barrel-outer double-ring groove structure is injection molded from ABS material. The upper and lower ends of the bobbin side wall S WL and the bobbin cylinder wall WPL are uniformly distributed with a dip coating hole Ho. On the short side of the cavity of the upper coil bobbin side wall SW L , the inductor coil start terminal TL0, the inductor first terminal TL1, the inductor second terminal TL2, ... , inductor 10th terminal block TL
10; 在下端线圈骨架侧壁 SWL的腔筒短边与电感线圈各路接线端子 TL0~TL10相 对一侧, 并排镶嵌有流信号始端接线端子 TiO和电流信号接线端子 Ti。 10; On the opposite side of the lower end bobbin side wall SWL, the short side of the barrel and the respective terminals TL0~TL10 of the inductor are side-by-side with the flow signal start terminal TiO and the current signal terminal Ti.

Claims

权利要求书 Claim
[权利要求 1] 一种超声波生物处理的超声波频率检测方法, 其特征是:  [Claim 1] An ultrasonic frequency detecting method for ultrasonic biological treatment, which is characterized by:
禾 1J用系统的功率匹配输出单元和 DSP反馈控制电路的部分功能; 在超声波电源的输出变压器副边, 增设绕制电压检测线圈 Wv, 用以 检测电压频率; 对谐振电感器增设副边, 在该副边绕制电流检测线圈 Wi, 用以检测电流频率; 电压检测线圈 Wv的同名端和异名端分别作 为电压信号接线端子 Tv和电压信号始端接线端子 Tv0, 接入检测信号 处理电路 SP; 电流检测线圈 Wi的同名端和异名端分别作为电流信号 接线端子 Ti和电流信号始端接线端子 Ti0, 接入检测信号处理电路 SP 检测信号处理电路为以 MAX9382型鉴相器芯片 IC为核心的鉴相电路 ; 电压信号接线端子 Tv通过电压信号耦合电阻 Rv连接到鉴相器芯片 I C的 7脚, 电压信号始端接线端子 TvO接地; 电压信号反相限幅二极管 Dvl和电压信号正相限幅二极管 Dv2构成反并联支路, 跨接在鉴相器 芯片 IC的 7脚与地之间; 电流信号接线端子 Ti通过电流信号耦合电阻 R i连接到鉴相器芯片 IC的 6脚, 电流信号始端接线端子 TiO接地; 电压 信号反相限幅二极管 Dvl与电压信号正相限幅二极管 Dv2构成反并联 支路, 跨接在鉴相器芯片 IC的 6脚与地之间; 鉴相器芯片 IC的 7脚连接 到 DC5V工作电源正极接线端 E; 鉴相器芯片 IC的 1脚作为电流波形上 升沿过零脉冲信号输出端, 连接到 D触发器芯片 IC2的 3脚; D触发器 芯片 IC2的 1脚作为电流波形一个周期长度的脉宽信号输出端, 连接到 数字信号处理芯片 DSP的 PA3引脚, 由数字信号处理芯片 DSP的数字 信号处理功能, 按所测电流频率 fi=l/PA3信号脉宽的关系来计算超声 波频率, 并进行控制处理。  He 1J uses the power matching output unit of the system and part of the function of the DSP feedback control circuit; on the secondary side of the output transformer of the ultrasonic power supply, a winding voltage detecting coil Wv is added to detect the voltage frequency; and a secondary side is added to the resonant inductor. The secondary side winding current detecting coil Wi is used for detecting the current frequency; the same name end and the different name end of the voltage detecting coil Wv are respectively used as the voltage signal terminal Tv and the voltage signal starting terminal Tv0, and are connected to the detection signal processing circuit SP; The same name end and the different name end of the current detecting coil Wi are respectively used as the current signal terminal Ti and the current signal starting terminal Ti0, and the access detecting signal processing circuit SP detecting signal processing circuit is based on the MAX9382 type phase detector chip IC. Phase circuit; voltage signal terminal Tv is connected to pin 7 of phase detector chip IC through voltage signal coupling resistor Rv, voltage signal start terminal TvO is grounded; voltage signal inversion limiting diode Dvl and voltage signal positive phase limiting diode Dv2 Forming an anti-parallel branch, connected across the 7-pin of the phase detector chip IC The current signal terminal Ti is connected to the 6 pin of the phase detector chip IC through the current signal coupling resistor R i , and the current signal terminal TiO is grounded; the voltage signal inverting limiting diode Dvl and the voltage signal positive phase limiting diode Dv2 constitutes an anti-parallel branch, which is connected between the 6-pin of the phase detector chip IC and the ground; the 7-pin of the phase detector chip IC is connected to the positive terminal E of the DC5V working power supply; the 1 pin of the phase detector chip IC is used as The rising edge of the current waveform is connected to the output of the zero-pulse signal signal, and is connected to the 3 pin of the D flip-flop chip IC2; the 1 pin of the D flip-flop chip IC2 is used as the pulse width signal output end of the current waveform for one cycle length, and is connected to the digital signal processing chip DSP. The PA3 pin is calculated by the digital signal processing function of the DSP of the digital signal processing chip, and the ultrasonic frequency is calculated according to the relationship of the pulse width of the measured current frequency fi=l/PA3, and the control process is performed.
[权利要求 2] 根据权利要求 1所述的超声波生物处理的超声波频率检测方法, 其特 征是: [Claim 2] The ultrasonic frequency detecting method for ultrasonic biological treatment according to claim 1, which is characterized in that:
整个超声波生物处理系统由工作电源电路组、 斩波调功电路、 正弦波 信号产生单元、 PWM驱动单元、 PWM电路、 功率匹配输出单元、 频 带切换电路、 频带匹配、 换能网络、 超声波生物处理终端、 DSP反馈 控制电路、 人-机交互终端和人 -机交互终端组成; 检测信号处理电路为以 MAX9382型鉴相器芯片 IC1和 CD4013型 D触发 器芯片 IC2为核心的鉴相电路; 电压信号接线端子 Tv通过电压信号耦 合电阻 Rv连接到鉴相器芯片 IC的 7脚, 电压信号始端接线端子 TvO接 地; 电压信号反相限幅二极管 Dvl和电压信号正相限幅二极管 Dv2构 成反并联支路, 跨接在鉴相器芯片 IC的 7脚与地之间; 电流信号接线 端子 Ti通过电流信号耦合电阻 Ri连接到鉴相器芯片 IC的 6脚, 电流信 号始端接线端子 TiO接地; 电压信号反相限幅二极管 Dvl与电压信号 正相限幅二极管 Dv2构成反并联支路, 跨接在鉴相器芯片 IC的 6脚与 地之间; 鉴相器芯片 IC的 7脚连接到 DC5V工作电源正极接线端 E; 鉴 相器芯片 IC的 1脚作为电流波形上升沿过零脉冲信号输出端, 连接到 D触发器芯片 IC2的 3脚; D触发器芯片 IC2的 1脚作为电流波形一个周 期长度的脉宽信号输出端, 连接到数字信号处理芯片 DSP的 PA3引脚 , 由数字信号处理芯片 DSP的数字信号处理功能, 按频率 fi=l/两 PA2 信号上升沿间隔吋间的关系来计算所测电流频率, 并进行控制处理; D触发器芯片 IC2的 2脚与 D触发器芯片 IC2的 5脚连接; D触发器芯片 I C2的 4脚 6脚和 7脚均接地; D触发器芯片 IC2的 14脚连接到 DC5V工作 电源正极接线端5。 The entire ultrasonic biological processing system consists of a working power circuit group, a chopper tuning circuit, a sine wave signal generating unit, a PWM driving unit, a PWM circuit, a power matching output unit, and a frequency. With switching circuit, band matching, transducing network, ultrasonic biological processing terminal, DSP feedback control circuit, human-machine interactive terminal and human-machine interactive terminal; detection signal processing circuit for MAX9382 phase detector chip IC1 and CD4013 type The D flip-flop chip IC2 is the core phase-detecting circuit; the voltage signal terminal Tv is connected to the pin 7 of the phase detector chip IC through the voltage signal coupling resistor Rv, and the voltage signal starting terminal TvO is grounded; the voltage signal inverting limiting diode Dvl And the voltage signal positive phase limiting diode Dv2 constitutes an anti-parallel branch, which is connected between the pin 7 of the phase detector chip IC and the ground; the current signal terminal Ti is connected to the phase detector chip IC through the current signal coupling resistor Ri 6 feet, the current signal starting terminal TiO is grounded; the voltage signal inverting limiting diode Dvl and the voltage signal positive phase limiting diode Dv2 form an anti-parallel branch, which is connected between the 6 feet of the phase detector chip IC and the ground; The 7-pin of the phase detector chip IC is connected to the positive terminal E of the DC5V working power supply; the 1 pin of the phase detector chip IC is used as the rising edge of the current waveform and the zero-cross pulse signal output terminal. Connected to the 3 pin of the D flip-flop chip IC2; the 1 pin of the D flip-flop chip IC2 serves as a pulse width signal output end of the current waveform for one cycle length, and is connected to the PA3 pin of the digital signal processing chip DSP, by the digital signal processing chip DSP The digital signal processing function calculates the measured current frequency according to the relationship between the rising edge interval of the frequency fi=l/two PA2 signals, and performs control processing; the 2-pin of the D flip-flop chip IC2 and the D flip-flop chip IC2 5 Pin connection; D flip-flop chip I C2 4 feet 6 feet and 7 feet are grounded; D flip-flop chip IC2 14 feet are connected to the DC5V working power positive terminal 5.
[权利要求 3] 根据权利要求 1或根据权利要求 2所述的超声波生物处理的超声波频率 检测方法, 其特征是: 数字信号处理芯片 DSP对检测信号处理电路送 入的脉宽信号进行数字处理; 首先读取引脚 PA3获得的信号脉宽, 然 后按所测电流频率 fi=l/PA3信号脉宽的关系, 来计算等值的超声波频 率, 并送出该频率数据。  [Attachment 3] The ultrasonic frequency detecting method for ultrasonic biological treatment according to claim 1 or 2, wherein: the digital signal processing chip DSP digitally processes the pulse width signal sent by the detection signal processing circuit; First, the signal pulse width obtained by the pin PA3 is read, and then the equivalent ultrasonic frequency is calculated according to the relationship of the measured current frequency fi=l/PA3 signal pulse width, and the frequency data is sent.
[权利要求 4] 根据权利要求 1所述的超声波生物处理的超声波频率检测方法, 其特 征是:  [Claim 4] The ultrasonic frequency detecting method of ultrasonic biological treatment according to claim 1, which is characterized in that:
输出变压器由变压器原边绕组 W1、 输出变压器原边绕组始端接线端 子 TP0、 输出变压器原边绕组终端接线端子 ΤΡ、 变压器副边绕组 W2 、 功率匹配输出始端接线端子 TO0、 功率匹配输出第一路接线端子 Τ 01、 功率匹配输出第二路接线端子 Τ02、 …、 功率匹配输出第十路接 线端子 ΤΟ10、 电压检测线圈 Wv、 电压信号接线端子 Tv、 电压信号始 端接线端子 ΤνΟ、 磁芯 MC、 原边绕组骨架 Frl、 副边绕组骨架 Fr2构成 ; 磁芯 MC采用 MXO-2000型号 E形结构。 The output transformer consists of the transformer primary winding W1, the output transformer primary winding starting terminal TP0, the output transformer primary winding terminal terminal ΤΡ, and the transformer secondary winding W2. , power matching output start terminal TO0, power matching output first terminal Τ 01, power matching output second terminal Τ02, ..., power matching output tenth terminal ΤΟ10, voltage detection coil Wv, voltage signal wiring The terminal Tv, the voltage signal starting terminal ΤνΟ, the magnetic core MC, the primary winding skeleton Frl, and the secondary winding skeleton Fr2 are formed; the magnetic core MC adopts the MXO-2000 model E-shaped structure.
在磁芯 MC的芯柱上, 紧套原边绕组骨架 Frl ; 在原边绕组骨架 Frl的 大环槽内, 分层隔衬平绕变压器原边绕组 W1 ; 变压器原边绕组 W1的 异名端通过输出变压器原边绕组始端接线端子 TP0引出, 变压器原边 绕组 W1的同名端通过输出变压器原边绕组终端接线端子 TP弓 I出; 在 原边绕组骨架 Frl的小环槽内, 绕有电压检测线圈 Wv; 电压检测线圈 Wv的异名端通过电压信号始端接线端子 TvO引出, 电压检测线圈 Wv 的同名端通过电压信号接线端子 Tv引出;  On the core of the core MC, the primary winding skeleton Frl is tightly wound; in the large ring groove of the primary winding skeleton Frl, the layered spacer is wound around the primary winding W1 of the transformer; the different end of the transformer primary winding W1 passes The output terminal TP0 of the primary winding of the output transformer is taken out, and the same name end of the primary winding W1 of the transformer passes through the output terminal TP bow of the primary winding terminal of the output transformer; in the small ring groove of the primary winding frame Frl, a voltage detecting coil Wv is wound. The different name end of the voltage detecting coil Wv is led out through the voltage signal starting terminal TvO, and the same name end of the voltage detecting coil Wv is led out through the voltage signal terminal Tv;
原边绕组骨架 Frl外围, 紧套副边绕组骨架 Fr2; 在副边绕组骨架 Fr2 的环槽内, 分层隔衬平绕变压器副边绕组 W2; 变压器副边绕组 W2的 异名端通过功率匹配输出始端接线端子 TOO引出, 变压器副边绕组 W 2的第一抽头通过功率匹配输出第一路接线端子 T01引出, 变压器副 边绕组 W2的第二抽头通过功率匹配输出第二路接线端子 T02引出, ......, 变压器副边绕组 W2的同名端通过功率匹配输出第十路接线端 子 TO10引出;  The outer side winding frame Frl is surrounded by the secondary winding frame Fr2; in the ring groove of the secondary winding frame Fr2, the layered spacer is wound around the secondary winding W2 of the transformer; the different end of the transformer secondary winding W2 passes the power matching The output start terminal terminal TOO is led out, the first tap of the transformer secondary winding W 2 is led out through the power matching output first terminal T01, and the second tap of the transformer secondary winding W2 is led out through the power matching output second terminal T02. ......, the same name end of the transformer secondary winding W2 is led out through the power matching output terminal 10 terminal TO10;
输出变压器整体以绝缘漆浸渍、 充实、 紧固。  The output transformer is entirely impregnated, enriched and fastened with insulating varnish.
[权利要求 5] 根据权利要求 1或根据权利要求 3所述的超声波生物处理的超声波频率 检测方法, 其特征是: 变压器副边绕组骨架为由上、 下两端的副边绕 组骨架侧壁 SW2与中柱的副边绕组骨架筒壁 WP2构成的内腔筒 -外环 槽形结构, 采用 ABS材料注塑成型; 其上、 下两端副边绕组骨架侧壁 SW2和副边绕组骨架筒壁 WP2均制有均匀分布的浸漆孔 Ho; 在上端 副边绕组骨架侧壁 SW2的腔筒短边一侧, 并排镶嵌有功率匹配输出始 端接线端子 TO0、 功率匹配输出第一路接线端子 Τ01、 功率匹配输出 第二路接线端子 Τ02、 ......、 功率匹配输出第十路接线端子 ΤΟ10。 [Claim 5] The ultrasonic frequency detecting method for ultrasonic biological treatment according to claim 1 or claim 3, wherein: the secondary winding skeleton of the transformer is a side wall SW2 of the secondary winding of the upper and lower ends The inner cylinder-outer ring groove structure composed of the secondary side winding skeleton wall WP2 of the middle column is injection-molded by ABS material; the upper and lower ends of the secondary winding frame side wall SW2 and the secondary side winding frame wall WP2 are both A uniformly distributed immersion paint hole Ho is formed; on the short side of the cavity of the upper side secondary winding bobbin side wall SW2, the power matching output start terminal terminal TO0, the power matching output first terminal block Τ01, the power matching are arranged side by side. Output the second terminal block Τ02, ..., power matching output terminal 10 terminal block ΤΟ10.
[权利要求 6] 根据权利要求 1或根据权利要求 3所述的超声波生物处理的超声波频率 检测方法, 其特征是: 变压器原边绕组骨架为由上、 下两端的原边绕 组骨架侧壁 SW1与中柱的原边绕组骨架筒壁 WP1、 原边绕组骨架间壁 MW构成的内腔筒 -外双环槽形结构, 采用 ABS材料注塑成型; 其上 、 下两端原边绕组骨架侧壁 SW1、 原边绕组骨架间壁 MW和原边绕组 骨架筒壁 WP1均制有均匀分布的浸漆孔 Ho; 在上端原边绕组骨架侧 壁 SW1的腔筒短边与功率匹配输出各路接线端子 TO0~TO10相对一侧 , 并排镶嵌有原边绕组始端接线端子 TP0和输出变压器原边绕组终端 接线端子 TP; 在下端原边绕组骨架侧壁 SW1的腔筒短边与输出变压 器原边绕组接线端子 TP0、 TP相同一侧, 并排镶嵌有电压信号始端接 线端子 TvO和电压信号接线端子 Tv。 [Attachment 6] The ultrasonic frequency detecting method for ultrasonic biological treatment according to claim 1 or claim 3, wherein: the primary winding skeleton of the transformer is a side wall SW1 of the primary winding of the upper and lower ends The inner cylinder-outer double-ring groove structure composed of the primary winding frame wall WP1 of the middle column and the outer wall winding frame wall MW is injection-molded by ABS material; the upper and lower ends of the primary winding frame side wall SW1 The side winding frame wall MW and the primary side winding frame wall WP1 are uniformly distributed with the immersion paint hole Ho; the short side of the upper side of the primary side winding frame side wall SW1 is opposite to the power matching output terminal terminals TO0~TO10 One side, side by side is embedded with the primary winding start terminal TP0 and the output transformer primary winding terminal terminal TP; the short side of the lower side of the primary winding frame side wall SW1 is the same as the output transformer primary winding terminal TP0, TP On one side, a voltage signal start terminal terminal TvO and a voltage signal terminal terminal Tv are embedded side by side.
[权利要求 7] 根据权利要求 1所述的超声波生物处理的超声波频率检测方法, 其特 征是:  [Claim 7] The ultrasonic frequency detecting method for ultrasonic biological treatment according to claim 1, which is characterized in that:
谐振电感器由电感线圈 WL、 电流检测线圈 Wi、 电流信号接线端子 Ti 、 电流信号始端接线端子 Ti0、 电感线圈始端接线端子 TL0、 电感线 圈第一路接线端子 TL1、 电感线圈第二路接线端子 TL2、 …、 电感线 圈第十路接线端子 TL10、 电感线圈骨架 FrL、 电感线圈磁芯 MCL构成 在电感线圈磁芯 MCL的芯柱上, 电感线圈骨架 FrL; 在电感线圈骨架 FrL的大环槽内, 分层隔衬平绕电感线圈 WL; 电感线圈 WL的异名端 通过电感线圈始端接线端子 TL0引出, 电感线圈 WL的第一抽头通过 电感线圈第一路接线端子 TL1引出, 电感线圈 WL的第二抽头通过电 感线圈第二路接线端子 TL2引出, ......, 电感线圈 WL的同名端通过 电感线圈第十路接线端子 TL10引出; 在电感线圈骨架 FrL的小环槽内 , 绕有电流检测线圈 Wi; 电流检测线圈 Wi的异名端通过电流信号始 端接线端子 TiO引出, 电流检测线圈 Wi的同名端通过电流信号接线端 子 Ti引出;  The resonant inductor consists of an inductor WL, a current detecting coil Wi, a current signal terminal Ti, a current signal starting terminal Ti0, an inductor starting terminal TL0, an inductor first terminal TL1, and an inductor second terminal TL2. , ..., the tenth connection terminal TL10 of the inductor, the inductor bobbin FrL, and the inductor core MCL are formed on the core of the inductor core MCL, the inductor bobbin FrL; in the large ring groove of the inductor bobbin FrL, The layered spacer is wound around the inductor WL; the different end of the inductor WL is led out through the inductor start terminal TL0, the first tap of the inductor WL is led out through the first terminal TL1 of the inductor, and the second of the inductor WL The tap is taken out through the second terminal TL2 of the inductor, ..., the same end of the inductor WL is led out through the tenth terminal TL10 of the inductor; in the small ring groove of the inductor bobbin FrL, a current is wound The detecting coil Wi; the different name end of the current detecting coil Wi is led out through the current signal starting terminal terminal TiO, Wi dot end flow detection coil terminals Ti drawn by the current sub-signal;
谐振电感器整体以绝缘漆浸渍、 充实、 紧固。 [权利要求 8] 根据权利要求 1或根据权利要求 7所述的超声波生物处理的超声波频率 检测方法, 其特征是: 谐振电感线圈骨架为由上、 下两端的线圈骨架 侧壁 SWL与中柱的线圈骨架筒壁 WPL、 线圈骨架间壁 MW构成的内腔 筒 -外双环槽形结构, 采用 ABS材料注塑成型; 其上、 下两端线圈骨 架侧壁 SWL和线圈骨架筒壁 WPL均制有均匀分布的浸漆孔 Ho; 在上 端线圈骨架侧壁 SWL的腔筒短边一侧, 并排镶嵌有电感线圈始端接 线端子 TL0、 电感线圈第一路接线端子 TL1、 电感线圈第二路接线端 子 TL2、 ......、 电感线圈第十路接线端子 TL10; 在下端线圈骨架侧壁The resonant inductor is entirely impregnated, enriched, and fastened with an insulating varnish. [Attachment 8] The ultrasonic frequency detecting method of ultrasonic biological treatment according to claim 1 or claim 7, wherein: the resonant inductor bobbin is formed by the upper and lower ends of the bobbin side wall SWL and the center pillar The inner cylinder-outer double-ring groove structure composed of the coil frame wall WPL and the coil frame wall MW is injection-molded by ABS material; the upper and lower end coil bobbin side walls SWL and the bobbin cylinder wall WPL are uniformly distributed. The immersion paint hole Ho; on the short side of the cavity of the upper end bobbin side wall SWL, side by side is embedded with an inductor coil start terminal TL0, an inductor first terminal TL1, an inductor second terminal TL2. ....., the tenth connection terminal of the inductor coil TL10; at the lower end of the bobbin side wall
SWL的腔筒短边与电感线圈各路接线端子 TL0~TL10相对一侧, 并排 镶嵌有流信号始端接线端子 TiO和电流信号接线端子 Ti。 The short side of the SWL is opposite to the respective terminals of the inductor coils TL0~TL10, and the flow signal start terminal TiO and the current signal terminal Ti are embedded side by side.
PCT/CN2015/095288 2015-11-09 2015-11-23 Ultrasonic frequency detection method for ultrasonic biological treatment WO2017079994A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2018700037A MY185002A (en) 2015-11-09 2015-11-23 Ultrasonic frequency detection method of ultrasonic biological processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510756328.0A CN105281590B (en) 2015-11-09 2015-11-09 The ultrasonic frequency detection method of ultrasonic wave biological processing
CN201510756328.0 2015-11-09

Publications (1)

Publication Number Publication Date
WO2017079994A1 true WO2017079994A1 (en) 2017-05-18

Family

ID=55150064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095288 WO2017079994A1 (en) 2015-11-09 2015-11-23 Ultrasonic frequency detection method for ultrasonic biological treatment

Country Status (3)

Country Link
CN (1) CN105281590B (en)
MY (1) MY185002A (en)
WO (1) WO2017079994A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782605A (en) * 2020-12-29 2021-05-11 深圳己道科技有限公司 Amplitude and phase isolation detection circuit for high-frequency high-voltage signal voltage and current

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950428A (en) * 2017-03-30 2017-07-14 西京学院 A kind of novel frequency measurement apparatus and its measuring method
CN112986543B (en) * 2019-12-18 2021-11-26 北部湾大学 Monitoring terminal of ultrasonic biological treatment device in laboratory
CN113009853B (en) * 2019-12-18 2022-02-11 北部湾大学 PWM driving process for ultrasonic biological treatment in laboratory
CN113073046B (en) * 2019-12-18 2022-03-22 北部湾大学 Circuit structure of ultrasonic biological treatment system in laboratory
CN112986544B (en) * 2019-12-18 2021-11-26 北部湾大学 Laboratory ultrasonic biological treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291180B1 (en) * 1999-09-29 2001-09-18 American Registry Of Pathology Ultrasound-mediated high-speed biological reaction and tissue processing
CN101774679A (en) * 2009-12-28 2010-07-14 江南大学 Frequency searching and controlling method of ultrasonic biological treatment
CN102594295A (en) * 2012-03-01 2012-07-18 江南大学 Frequency band matching structure of ultrasonic frequency search biological processing system
US20140167761A1 (en) * 2011-06-28 2014-06-19 Hitachi, Ltd. Magnetic resonance measuring equipment
CN205160394U (en) * 2015-11-09 2016-04-13 江南大学 Ultrasonic wave biological treatment's super acoustic wave frequency detects structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262423A (en) * 1988-04-13 1989-10-19 Tdk Corp Vibration sensor and vibration detecting device
CN100552390C (en) * 2005-01-10 2009-10-21 重庆微海软件开发有限公司 Real-time ultrasonic energy monitoring apparatus and method
CN101640487B (en) * 2009-07-07 2011-11-09 南京航空航天大学 Ultrasonic power system based on high frequency transformer feedback
CN103604492A (en) * 2013-12-03 2014-02-26 上海现代先进超精密制造中心有限公司 Ultrasonic frequency detection system and method of ultrasonic wave machining tool detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291180B1 (en) * 1999-09-29 2001-09-18 American Registry Of Pathology Ultrasound-mediated high-speed biological reaction and tissue processing
CN101774679A (en) * 2009-12-28 2010-07-14 江南大学 Frequency searching and controlling method of ultrasonic biological treatment
US20140167761A1 (en) * 2011-06-28 2014-06-19 Hitachi, Ltd. Magnetic resonance measuring equipment
CN102594295A (en) * 2012-03-01 2012-07-18 江南大学 Frequency band matching structure of ultrasonic frequency search biological processing system
CN205160394U (en) * 2015-11-09 2016-04-13 江南大学 Ultrasonic wave biological treatment's super acoustic wave frequency detects structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782605A (en) * 2020-12-29 2021-05-11 深圳己道科技有限公司 Amplitude and phase isolation detection circuit for high-frequency high-voltage signal voltage and current
CN112782605B (en) * 2020-12-29 2024-03-22 深圳己道科技有限公司 Amplitude and phase isolation detection circuit of high-frequency high-voltage signal voltage and current

Also Published As

Publication number Publication date
CN105281590A (en) 2016-01-27
CN105281590B (en) 2017-09-19
MY185002A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2017079994A1 (en) Ultrasonic frequency detection method for ultrasonic biological treatment
Tang et al. Determining multiple steady-state ZCS operating points of a switch-mode contactless power transfer system
CN205160394U (en) Ultrasonic wave biological treatment's super acoustic wave frequency detects structure
CN104734509B (en) system and method for power converter
Li et al. An optimized digital synchronous rectification scheme based on time-domain model of resonant CLLC circuit
CN108736727A (en) Power supply changeover device and its control method
CN105868490B (en) Modular multilevel converter multiple target particular harmonic inhibits pulse duration modulation method
CN104475394B (en) The ozone ultrasonic cleaning machine of changeable parameters based on the Internet and method of work
CN105226984A (en) The ultrasonic plastic tool power supply of pressure regulation frequency conversion grading control
CN106849686A (en) Bicyclic fixed-frequency control method based on BUCK LLC two-stage DC/DC converters
CN112928924B (en) Resonant flyback converter controller
CN110658386B (en) Capacitance switching-based household variable relation identification method and system
CN102857109A (en) High-power LLC (logical link control) resonant full-bridge converter based on DSP (digital signal processor)
CN110086344A (en) A kind of light running method of LLC resonant converter
CN202004661U (en) Driving power source for rare earth giant magnetostrictive transducer
CN112986544B (en) Laboratory ultrasonic biological treatment system
CN103887982B (en) ZVS control method in a kind of digital LLC
CN202889201U (en) High-power LLC resonant full-bridge converter based on DSP
Luan et al. Steady-state analysis of a series resonant converter with modified PWM control
CN203917293U (en) The super online anti-scale removal all-in-one of magnetic
CN104734488A (en) DCM flyback PFC convertor capable of efficiently and lowly outputting voltage ripples
CN104852557B (en) Numerical model analysis phase shift multiple-frequency modulation method applied to power inverter
CN111884515A (en) Current detection method and device of LLC resonant converter
Awaar et al. Implementation of Digital Filters to Improve Dynamic Response of a Single Phase PWM Rectifier
CN102545621A (en) Switching power supply and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908124

Country of ref document: EP

Kind code of ref document: A1