WO2017079948A1 - 一种核电站堆芯状态的监测方法、服务器及系统 - Google Patents

一种核电站堆芯状态的监测方法、服务器及系统 Download PDF

Info

Publication number
WO2017079948A1
WO2017079948A1 PCT/CN2015/094494 CN2015094494W WO2017079948A1 WO 2017079948 A1 WO2017079948 A1 WO 2017079948A1 CN 2015094494 W CN2015094494 W CN 2015094494W WO 2017079948 A1 WO2017079948 A1 WO 2017079948A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
power plant
nuclear power
measurement data
monitoring
Prior art date
Application number
PCT/CN2015/094494
Other languages
English (en)
French (fr)
Inventor
曾力
张睿
李天友
任立永
田亚杰
史觊
汪伟
彭华清
陈卫华
黄伟军
江辉
黄美良
Original Assignee
中广核工程有限公司
中国广核集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 中国广核集团有限公司 filed Critical 中广核工程有限公司
Priority to PCT/CN2015/094494 priority Critical patent/WO2017079948A1/zh
Publication of WO2017079948A1 publication Critical patent/WO2017079948A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to the field of nuclear power reactor reactor core monitoring technology, and in particular, to a nuclear power plant core state monitoring method, server and system.
  • a nuclear power plant is a power plant that uses electrical energy released by nuclear fission or nuclear fusion to generate electrical energy.
  • a reactor in a nuclear power plant is a device that initiates, controls, and maintains a nuclear fission or nuclear fusion chain reaction. The rate of nuclear change needs to be precisely controlled so that its energy can be released outwards at a slower rate for safe use.
  • the core is the heart of the reactor, is placed in the middle of the pressure vessel, and is composed of a fuel assembly; in addition, the core has a control rod and boron-containing cooling water (ie, coolant) to prevent the reactor from being destroyed by overheating and overpressure. Pressure vessels, and even explosions, cause nuclear leaks. Therefore, it is necessary to strictly control the fuel consumption of the core, the temperature and pressure of the primary circuit cooling system, etc., in order to ensure the safe operation of the reactor, that is, the fuel consumption of the core, the temperature and pressure of the primary circuit cooling system can reflect the reactor.
  • the running state It can be seen that monitoring the core state plays a vital role in the safe and reliable operation of the nuclear power plant.
  • LSS Loss of Coolant Accident Surveillance System
  • the prior art lacks the technical problem of the core state monitoring scheme based on the self-powered neutron detector.
  • the present invention is directed to the technical problem of lacking a core state monitoring scheme based on a self-powered neutron detector in the prior art, and provides a monitoring method, a server and a system for a nuclear power plant core state, which are suitable for self-sufficiency Sub-detector technology, which provides a more comprehensive core data support for the entire nuclear power plant system, while providing the necessary and correct information for the reliable operation of the unit and the correct operation of the operator.
  • the solution of the present invention provides a method for monitoring a core state of a nuclear power plant, and the monitoring method includes the following steps:
  • the first measurement data includes: a core outlet temperature, a primary circuit temperature, a primary circuit pressure, a core boron concentration, and a control rod position signal;
  • the second measurement data includes a self-powered neutron The signal measured by the detector.
  • the core state parameter comprises: a core axial power deviation, a line power density, and a deviation nucleate boiling ratio; the core margin includes a coolant water loss accident margin.
  • the step S1 is specifically: acquiring first measurement data from the nuclear power plant distributed control system, and storing the first measurement data in the first database.
  • the monitoring method further includes: verifying integrity and correctness of the first measurement data.
  • the step S2 is specifically: acquiring second measurement data from the self-powered neutron detector of the nuclear power plant core measurement system, and storing the second measurement data in the second database.
  • the monitoring method further includes: verifying integrity and correctness of the second measurement data.
  • the monitoring method further includes:
  • step S3 is specifically:
  • the monitoring method further comprises: storing the core state parameter and the core margin in a third database .
  • step S4 is specifically:
  • the core outlet temperature is collected by a core outlet thermocouple detector disposed at an interface layer of a nuclear power plant process system and sent to the distributed control system;
  • the first loop temperature and the first loop pressure are collected by a reactor coolant system disposed at an interface layer of a nuclear power plant process system and sent to the distributed control system;
  • the core boron concentration is collected by a chemical and volume control system disposed at an interface layer of a nuclear power plant process system and sent to the distributed control system;
  • the control rod position signal is collected by a rod control rod system disposed at an interface layer of a nuclear power plant process system and sent to the distributed control system.
  • the core outlet temperature is collected by the core outlet thermocouple detector and forwarded to the distributed control via a core measurement system signal conditioning unit disposed in a nuclear power plant automatic control and protection layer system.
  • the step S4 is specifically: [0032] Displaying and outputting the core state monitoring data by a client disposed at the nuclear power plant automatic control and protection layer or the operation and management information layer.
  • the solution of the present invention further provides a monitoring server for a nuclear power plant core state, comprising: [0034] a first measurement data acquiring unit, configured to acquire first measurement data from a nuclear power plant distributed control system; 0035] a second measurement data acquisition unit, configured to acquire second measurement data from a self-powered neutron detector of a nuclear power plant core measurement system;
  • a data processing unit configured to acquire a core state parameter and a core margin according to the first measurement data and the second measurement data
  • a data output unit configured to output the core state parameter and the core margin.
  • the first measurement data includes: a core outlet temperature, a primary circuit temperature, a primary circuit pressure, a core boron concentration, and a control rod position signal;
  • the second measurement data includes a self-powered neutron The signal measured by the detector.
  • the core state parameter comprises: a core axial power deviation, a line power density, and a deviation nucleate boiling ratio; the core margin includes a coolant water loss accident margin.
  • the monitoring server further includes:
  • the first database is configured to store first measurement data acquired from the nuclear power plant distributed control system.
  • the monitoring server further includes:
  • the first verification unit is configured to verify integrity and correctness of the first measurement data after the first database stores the first measurement data.
  • the optional monitoring server further includes:
  • a second database for storing second measurement data acquired from a self-powered neutron detector of the nuclear power plant core measurement system.
  • the monitoring server further includes:
  • a second verification unit configured to verify integrity and correctness of the second measurement data after the second database stores the second measurement data.
  • the monitoring server further includes:
  • an application management unit configured to: after the first measurement data acquiring unit acquires the first measurement data, and the second measurement data acquiring unit acquires the second measurement data, and the data processing list Before acquiring the core state parameter and the core margin, the entity receives an application call request of the client, and determines, according to the application call request, whether the client has an application call permission.
  • the application management unit is further configured to configure and maintain an operating parameter of the monitoring server.
  • the data processing unit is specifically configured to perform a reconstruction correction of the three-dimensional power distribution on the core theoretical calculation unit according to the first measurement data and the second measurement data, and correct the reconstruction
  • the subsequent three-dimensional power distribution is processed, and the reconstructed three-dimensional power distribution is combined with the sub-channel thermal hydraulic calculation to obtain a core state parameter and a core margin.
  • the monitoring server further includes:
  • a third database configured to: after the data processing unit acquires the core state parameter and the core margin
  • core state parameter and the core margin are stored before the data output unit outputs the core state parameter and the core margin.
  • the data output unit is specifically configured to: process the core state parameter and the core margin to obtain tracking and monitoring data and prediction data of a core state, and display an output Tracking monitoring data and the prediction data.
  • the core outlet temperature is acquired by a core outlet thermocouple detector disposed at an interface layer of a nuclear power plant process system and sent to the distributed control system;
  • the first loop temperature and the first loop pressure are collected by a reactor coolant system disposed at an interface layer of a nuclear power plant process system and sent to the distributed control system;
  • the core boron concentration is collected by a chemical and volume control system disposed at an interface layer of a nuclear power plant process system and sent to the distributed control system;
  • the control rod position signal is collected by a rod control rod system disposed at an interface layer of a nuclear power plant process system and sent to the distributed control system.
  • the core outlet temperature is collected by the core outlet thermocouple detector and forwarded to the distributed control via a core measurement system signal conditioning unit disposed in a nuclear power plant automatic control and protection layer system.
  • the data output unit is specifically configured to: output the core state parameter and the core margin to a client disposed at a nuclear power plant automatic control and protection layer or an operation and management information layer for display.
  • the monitoring server further includes:
  • an interface unit configured to communicate with the distributed control system, the core measurement system, and a client based on a TCP protocol.
  • the solution of the present invention further provides a monitoring system for a nuclear power plant core state, including: a server and a client;
  • the server is configured to acquire first measurement data and second measurement data, and acquire a core state parameter and a core margin according to the first measurement data and the second measurement data, and the heap a core state parameter and the core margin are output to the client;
  • the client is configured to display and output the core state parameter and the core margin.
  • the monitoring system further includes: a nuclear power plant distributed control system, and a nuclear power plant core measurement system having a self-powered neutron detector;
  • the distributed control system is configured to provide the first measurement data to the server
  • the core measurement system is configured to provide the second measurement data to the server.
  • the first measurement data includes: a core outlet temperature, a primary circuit temperature, a primary circuit pressure, a core boron concentration, and a control rod position signal;
  • the second measurement data includes a self-powered neutron The signal measured by the detector.
  • the core state parameter comprises: a core axial power deviation, a line power density, and a deviation nucleate boiling ratio; the core margin includes a coolant water loss accident margin.
  • the solution of the present invention in the nuclear power plant core state monitoring, by obtaining from the nuclear power plant distributed control system The first measurement data, the second measurement data is obtained from the self-powered neutron detector of the nuclear power plant core measurement system, and the core state parameter and the core margin are obtained according to the first measurement data and the second measurement data, Finally, the core state parameter and core margin are output. That is to say, the solution provides a core monitoring instrument control scheme suitable for the self-powered neutron detector technology, and acquires the core state parameter and the core margin by processing the system signal and combining the core parameters.
  • FIG. 1 is a flowchart of a method for monitoring a core state of a nuclear power plant according to an embodiment of the present invention
  • FIG. 2A is a structural block diagram of a monitoring server for a core state of a nuclear power plant according to an embodiment of the present invention
  • FIG. 2B is a structural block diagram of a monitoring server for a core state of a nuclear power plant according to an embodiment of the present invention
  • 3A is a structural block diagram of a nuclear power plant core state monitoring system according to an embodiment of the present invention
  • FIG. 3B is a schematic diagram of an interface structure of a nuclear power plant core state monitoring system according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of a monitoring server for a core state of a nuclear power plant according to an embodiment of the present invention.
  • the embodiment of the present invention solves the technical problem of the lack of a core state monitoring scheme based on a self-powered neutron detector in the prior art by providing a monitoring method for the core state of a nuclear power plant, and the method is suitable for self-sufficiency.
  • the neutron detector technology provides a more comprehensive core data support for the entire nuclear power plant system, while providing the necessary and correct information for the reliable operation of the unit and the correct operation of the operator.
  • Embodiments of the present invention provide a method for monitoring a core state of a nuclear power plant, including the steps of: Sl, obtaining first measurement data from a distributed control system of a nuclear power plant; S2, self-powered neutron detection from a nuclear power plant core measurement system Obtaining second measurement data; S3, acquiring a core state parameter and a core margin according to the first measurement data and the second measurement data; S4, outputting the core state parameter and the core margin .
  • the solution of the present invention provides a core monitoring instrument control scheme suitable for self-powered neutron detector technology, which generates a reactor power distribution by collecting system signals and combining core parameters.
  • the nuclear power plant system provides more comprehensive core data support and provides the necessary and correct information for the reliable operation of the unit and the correct operation of the operator.
  • the technical problem of the lack of a core state monitoring scheme based on self-powered neutron detectors in the prior art is effectively solved.
  • an embodiment of the present application provides a monitoring method for a nuclear power plant core state suitable for a self-powered neutron detector technology, which is applied to a nuclear power plant core state monitoring server, and the monitoring method includes Steps:
  • Sl obtaining first measurement data from a distributed control system (DCS) of a nuclear power plant.
  • DCS distributed control system
  • the nuclear power plant DCS integrates various technologies such as computer, communication, display and control, and is used for centralized collection and control of nuclear power plant control systems (such as rod control system, nuclear instrument system, reactor coolant system, etc.).
  • nuclear power plant control systems such as rod control system, nuclear instrument system, reactor coolant system, etc.
  • Data and centralized management and centralized control of each of the above control management systems provide more advanced control and management tools for nuclear power plant operation, which plays a vital role in the field of nuclear power;
  • the first measurement data includes core outlets. Temperature, primary loop temperature, primary circuit pressure, core boron concentration, and control rod position signal.
  • the core outlet temperature is collected by the core outlet thermocouple detector and sent to the DCS;
  • the first loop temperature and the first loop pressure are collected by the reactor coolant system (RCP) and sent to the DCS;
  • the core boron concentration is collected by a chemical and volume control system (RCV) and sent to D CS;
  • the control rod position signal is acquired by a rod control rod system (RGL) and sent to the DCS.
  • the first measurement data further includes an out-of-stack neutron detection signal collected by an off-chip neutron detector (RPN) and transmitted to the DCS.
  • RPN off-chip neutron detector
  • the nuclear power plant monitoring system structure is generally divided into a process system interface layer, an automatic control and protection layer, an operation and management information layer; wherein the process system interface layer includes field measurement devices (such as RCP, RCV, RGL, RPN, etc.), The automatic control and protection layer includes a security control device (such as DCS, etc.), and the operation and management information layer includes a client (such as an operator workstation, etc.).
  • the above-mentioned division of the structure of the nuclear power plant monitoring system is not based on the spatial area as the division standard, but The process of signal acquisition-processing-operation is used as a division criterion.
  • the client can be an operator workstation (OWP, Operator Work Place) of the plant computer information and control system (KIC, Plant Computer Information & Control) installed in the DCS main control room. ).
  • S2 obtaining second measurement data from a self-powered neutron detector (SPND) of a nuclear power plant core measurement system (RIC, In-Core Instrumentation System).
  • SPND self-powered neutron detector
  • RIC nuclear power plant core measurement system
  • the RIC may be disposed at a process system interface layer
  • the second measurement data includes a signal measured by a self-powered neutron detector.
  • the RIC further includes a core outlet thermocouple detector for measuring the core outlet temperature to obtain.
  • the signal measured by the RIC includes the signal measured by the self-powered neutron detector and the core outlet temperature.
  • a core measurement system signal conditioning unit is provided in the automatic control and protection layer. The signal measured by the self-powered neutron detector is sent directly to the monitoring server of the nuclear power plant core state through the core measurement system signal conditioning unit, and the core outlet temperature is sent via the core measurement system signal conditioning unit. To D CS, and sent by the DCS to the monitoring server of the nuclear power plant core state.
  • the core state parameter comprises: core axial power deviation, line power density (LPD, Lini ng Power Density) and Departure From Nucleate Boiling Ratio (DNBR); the core margin includes a LOCA (Loss of Coolant Accident) margin.
  • LPD line power density
  • DNBR Departure From Nucleate Boiling Ratio
  • Step S3 is specifically: performing, according to the first measurement data and the second measurement data, a reconstruction correction of a three-dimensional power distribution of a core theoretical calculation unit in the monitoring server, and correcting the reconstruction
  • the subsequent three-dimensional power distribution is processed, and the reconstructed three-dimensional power distribution is combined with the sub-channel thermal hydraulic calculation to obtain a core state parameter and a core margin.
  • the core theoretical calculation unit calculates a core theoretical calculation result based on a core model and a fuel concentration according to a general core calculation method of the nuclear power plant, including the three-dimensional theory of the core theory. Power distribution, fuel consumption, nucleon density, hotspot factor, etc.
  • step S3 the core theoretical calculation result is corrected or recalculated at step S3 to obtain a comprehensive core state parameter and core margin.
  • the step S3 can be performed at the same level as the core theoretical calculation unit.
  • processing the reconstructed three-dimensional power distribution is used to obtain the axial power deviation of the core, Parameters such as LOCA margin and LPD;
  • combining the reconstructed three-dimensional power distribution with sub-channel thermal hydraulic calculation is used to obtain parameters such as DNBR; the obtained LPD and DNBR can more directly reflect the current core Operating status parameters and safety margins.
  • performing the above step S3 can basically obtain all the parameters of the core operation, not just the instrument measurement signals, thereby providing more comprehensive data support for the entire power station system.
  • the step S4 is specifically: processing the core state parameter and the core margin to obtain tracking monitoring data and prediction data of the core state, and displaying the output of the tracking
  • the monitoring data and the predicted data are used to enable the field operator to know the current core operating state, evaluate the core operating trend, and safety based on the tracking monitoring data and the predicted data of the core state.
  • the selected display outputs the core state parameters and the core margin based on the user's viewing or operational requirements.
  • the tracking monitoring data includes core thermal power, core fuel consumption, boron concentration, LPD, DNBR, SPND, average axial power, LOCA margin, minimum DNBR, DNBR limit.
  • the predicted data includes: boron concentration, Xe concentration, core power level/coolant temperature, effective multiplication coefficient, control rod position, control rod restriction interval, and the like.
  • the above tracking monitoring data and prediction data can be output in the form of coordinate curve screen, and the horizontal axis of the coordinate is the value of each tracking monitoring data and prediction data.
  • the steps S1 and S2 are performed, and the acquired data amount of the first measurement data and the second measurement data is large.
  • the step S1 is specifically Obtaining the first measurement data from the nuclear power plant distributed control system, and storing the first measurement data in the first database;
  • the step S2 is specifically: obtaining the second from the self-powered neutron detector of the nuclear power plant core measurement system The data is measured and stored in a second database.
  • the step S3 is performed, the first measurement data and the second measurement data are called from the first database and the second database, wherein the first database and the second database may be the same database.
  • the monitoring method further comprises: verifying the integrity and correctness of the first measurement data
  • the monitoring method further comprises: verifying the integrity and correctness of the second measurement data.
  • the above is to store the first measurement data and the second measurement data in a database, and then verify the integrity and correctness of the measurement data.
  • the first measurement may also be verified first. After the data and the second measurement data are complete and correct, they are stored in the database. No specific restrictions are made here.
  • the monitoring server supports interaction with the client, and calculates a core state parameter and a core margin based on the client's call request, in order to implement management of the client authority, After the steps S1 and S2, and before the step S3 is performed, the monitoring method further includes: receiving an application call request of the client, determining, according to the application call request, whether the client has an application calling permission, and determining The result is YES, and the step S3 is performed.
  • the core state parameter and the core margin are stored in a third database, and based on different types of data output requests from the client from the third
  • the database selects and outputs the core state parameter and the core margin, such as only outputting tracking data of the core state, or outputting only predicted data of the core state, or tracking and monitoring data of the same core output state and Forecasting data and the like, wherein the first database, the second database, and the third database may be the same database.
  • the monitoring of the core state parameters plays a crucial role in the safe and reliable operation of the nuclear power plant, especially the monitoring of core axial power deviation, LOCA margin, LPD and DNBR.
  • the reconstruction of the three-dimensional power distribution of the core based on the self-powered neutron detector signal can be analyzed to obtain comprehensive and accurate core operating parameters and safety margin.
  • the program generates the core state parameters by collecting the core self-powered detector signal, the nuclear instrument system (RPN), the rod control system (RGL), the reactor coolant system (RCP) and other system signals.
  • the machine interface provides the parameters directly to the operator for monitoring and analysis through various graphs and tables.
  • an embodiment of the present invention further provides a nuclear power plant core state.
  • Monitoring server including:
  • the first measurement data acquiring unit 21 is configured to acquire first measurement data from a nuclear power plant distributed control system (DCS), where the first measurement data includes: a core outlet temperature, a primary circuit temperature , primary circuit pressure, core boron concentration and control rod position signal.
  • the core outlet temperature is collected by the core outlet thermocouple detector and sent to the DCS;
  • the first loop temperature and the first loop pressure are collected by the reactor coolant system (RCP) and sent to the DCS;
  • the core boron concentration is collected by a chemical and volume control system (RCV) and sent to the DCS;
  • the control rod position signal is collected by a rod-controlled rod system (RGL) and sent to the DCS.
  • DCS nuclear power plant distributed control system
  • the first measurement data further includes an out-of-stack neutron detection signal collected by an off-chip neutron detector (RPN) and transmitted to the DCS.
  • the nuclear power plant monitoring system structure is generally divided into a process system interface layer, an automatic control and protection layer, an operation and management information layer; wherein the process system interface layer includes field measurement devices (such as RCP, RCV, RGL, RPN, etc.), The automatic control and protection layer includes a security control device (such as DCS, etc.), and the operation and management information layer includes a client (such as an operator workstation, etc.).
  • the above-mentioned division of the monitoring system structure of the nuclear power plant is not based on the spatial area as the division standard, but the signal acquisition-processing-operation flow is used as the division standard.
  • the client can be a power station set in the DCS main control room.
  • Operator's Workstation OPT, Operator Work Place
  • Second measurement data acquisition unit 22 for use from a nuclear power plant core measurement system (RIC, In-Core)
  • the self-powered neutron detector of the Instrumentation System acquires second measurement data; wherein the RIC can be set at the process system interface layer, and the second measurement data includes the signal measured by the self-powered neutron detector.
  • the RIC further includes a core outlet thermocouple detector for measuring the core outlet temperature to obtain.
  • the signal measured by the RIC includes the signal measured by the self-powered neutron detector and the core outlet temperature.
  • a core measurement system signal conditioning unit is provided in the automatic control and protection layer.
  • the signal measured by the self-powered neutron detector is sent directly to the monitoring server of the nuclear power plant core state through the core measurement system signal conditioning unit, and the core outlet temperature is sent via the core measurement system signal conditioning unit.
  • D CS and sent by the DCS to the monitoring server of the nuclear power plant core state.
  • the data processing unit 23 is configured to acquire a core shape according to the first measurement data and the second measurement data.
  • State parameters and core margin wherein, the core state parameters include: core axial power deviation, line power density (LPD, Lining Power Density) and deviation nucleate boiling ratio (DNBR, Departure From Nucleate Boiling
  • the core margin includes a coolant water loss accident (LOCA, Loss of Coolant
  • the data processing unit 23 performs a reconstruction correction of the three-dimensional power distribution on the core theoretical calculation unit in the monitoring server according to the first measurement data and the second measurement data, and corrects the reconstructed
  • the three-dimensional power distribution is processed, and the reconstructed three-dimensional power distribution is combined with the sub-channel thermal hydraulic calculation to obtain a core state parameter and a core margin.
  • the data output unit 24 is configured to output the core state parameter and the core margin. Specifically, the core state parameter and the core margin are output to a client disposed at the nuclear power plant automatic control and protection layer or the operation and management information layer for display.
  • the data output unit 24 outputs the core state parameter and the core margin, specifically: processing the core state parameter and the core margin to obtain tracking and monitoring data of the core state. And predicting data, and displaying the tracking monitoring data and the prediction data, so that the field operator can know the current core operating state, evaluate the core running trend and safety based on the tracking monitoring data and the predicted data of the core state. Sex.
  • the monitoring server further includes:
  • the first database 25 is configured to store first measurement data acquired from the nuclear power plant distributed control system.
  • the first verification unit 26 is configured to verify the integrity and correctness of the first measurement data after the first database 25 stores the first measurement data.
  • the second database 27 is configured to store the second measurement data from the self-powered neutron detector of the nuclear power plant core measurement system.
  • the second verification unit 28 is configured to verify the integrity and correctness of the second measurement data after the second database 27 stores the second measurement data.
  • the monitoring server further includes:
  • the application management unit 29 is configured to: after the first measurement data acquiring unit 21 acquires the first measurement data, and the second measurement data acquiring unit 22 acquires the second measurement data, and the data processing unit 23 acquires the Before the core state parameter and the core margin, receiving an application call request of the client, determining, according to the application call request, whether the client has an application call permission; the application management unit 29 further It is used to configure and maintain the working parameters (such as database, interface library) of the monitoring server; the application management unit 29 is also used for user configuration management and server software and hardware maintenance.
  • the monitoring server further includes:
  • the third database 210 is configured to: after the data processing unit 23 acquires the core state parameter and the core margin, and before the data output unit 24 outputs the core state parameter and the core margin, The core state parameter and the core margin are described.
  • the first database 25, the second database 27, and the third database 2 10 may be the same database.
  • the monitoring server further includes:
  • the interface unit 211 is configured to communicate with the distributed control system, the core measurement system, and the client according to a TCP protocol.
  • the monitoring server of the core state of the nuclear power plant is used to implement the monitoring method of the core state of the nuclear power plant, and therefore, the implementation manner of the server is the same as the one or more embodiments of the foregoing method, where I will not go into details one by one.
  • an embodiment of the present invention further provides a monitoring system for a nuclear power plant core state, comprising: a server 31 and a client 32;
  • the server 31 is configured to acquire first measurement data and second measurement data, and acquire a core state parameter and a core margin according to the first measurement data and the second measurement data, and The core state parameter and the core margin are output to the client 32;
  • the client 32 is configured to display and output the core state parameter and the core margin.
  • the monitoring system further includes: a nuclear power plant distributed control system DCS, and a nuclear power plant core measurement system RIC having a self-powered neutron detector;
  • the distributed control system DCS is configured to provide the first measurement data to the server 31;
  • the core measurement system RIC is used to provide the second measurement data to the server 31.
  • the first measurement data comprises: a core outlet temperature, a primary circuit temperature, a primary circuit pressure, a core boron concentration, and a control rod position signal;
  • the second measurement data includes a self-powered neutron detector The measured signal;
  • the core state parameters include: core axial power deviation, line power density, and deviation nucleate boiling ratio;
  • the core margin includes a coolant water loss accident margin.
  • FIG. 3A a structural block diagram of a nuclear power plant core state monitoring system according to the present embodiment, in the specific implementation process, the nuclear power plant core state monitoring system includes a core online monitoring system ( K SS, Core Online Surveillance System), server 31 carries all the functions of the KSS system.
  • K SS Core Online Surveillance System
  • the server 31 is disposed in the KSS cabinet 30, and a router 33 and a switch 34 connected to the server 31 are further disposed in the KSS cabinet 30; wherein the router 33 and the switch 34 are used for DCS, RK:, the client 32, and the printer 35, etc.
  • the reserved network interface on the KSS cabinet 30 is connected to the client 32.
  • the client 33 can be an in-situ client located near the KSS cabinet 30, or a remote client set in the DCS main control room. End, when it is a local client, the client connects to the display through a VGA video cable, and when it is a remote client, it can be a power station computer information and control system (K IC, Plant) set in the DCS main control room. Computer Information & Control) Client.
  • KSS system data can be output by means of display output, printout and disk output.
  • a data acquisition module 41 (corresponding to the first measurement data acquisition unit 21 and the second measurement data acquisition unit 22 in FIG. 2B) and a function calculation module are provided in any of the servers 31. 42
  • the data acquisition module 41 is configured to collect core and loop measurement data from the DCS processing cabinet and the RIC processing cabinet.
  • the data collected from the DCS processing cabinet includes the core outlet temperature, the primary circuit temperature, the pressure, the core boron concentration, the control rod position signal, etc.
  • the data collected from the RIC processing cabinet is mainly the core self-powered neutron detection.
  • the database module 43 is configured to store the core and loop measurement data acquired by the data acquisition module 41, After obtaining the core and loop measurement data, the integrity and correctness of the data are verified, and the verification result is sent to the function calculation module 42 for calculation processing, and the data obtained by the function calculation module 42 is calculated (ie, Core status parameters and safety margins are stored for human interaction and display on the local client.
  • the application module 44 accepts the call of the client 32, and the database module 43 is connected to other functional modules, that is, the database module 43 is a link for connecting other functional modules.
  • the function calculation module 42 is configured to read the core and loop measurement data from the database module 43 to perform reconstruction correction on the three-dimensional power distribution of the core theoretical calculation unit, and calculate the reconstructed three-dimensional power distribution. Processing, and combining the reconstructed corrected three-dimensional power distribution with sub-channel thermal hydraulic calculation to obtain a comprehensive core operating parameter and safety margin; the function calculation module 42 is further configured to operate parameters based on the core And safety margin to track and predict the core state, obtain the core state tracking monitoring data and prediction data, so that the field operation personnel can track the current core operation state and the evaluation reactor based on the core state tracking monitoring data and prediction data. Core operation trends and safety. Wherein, the calculated core operating parameters and safety margins, as well as the core state tracking monitoring data and prediction data are stored in the database module 43.
  • the application management module 44 completes the configuration maintenance management function of the KSS system, including configuration of system parameters (such as database, interface library configuration), user configuration and rights management, regular maintenance of system software and hardware, and with the client 32 and each Function modules interact. For example, a call instruction from the client 32 is received by the application management module 44 to trigger the function calculation module 42 to perform a core reconstruction calculation.
  • the communication interface module 45 acquires the calculation result and various function parameters (including the calculated core operation parameters and safety margins, and the core state tracking monitoring data and prediction data, etc.) from the database module 43 and monitors through the screen.
  • the module 46 processes to obtain the core operation status screen monitoring data for transmission to the client 32 for display.
  • KSS system screen can be divided into: core parameter tracking screen
  • the monitoring contents supported by it include: main screen monitoring, LPD and LOCA margin screen monitoring, operation map screen monitoring, bar position information screen monitoring, power tilt screen monitoring, 3D screen information monitoring, input parameter screen monitoring, Alarm display screen monitoring, historical parameter point screen monitoring, historical parameter curve screen monitoring, core prediction screen monitoring, etc.
  • any of the servers 31 further includes: an operation and maintenance monitoring subsystem module 47 and a print and log query module 48.
  • the system operation and maintenance monitoring subsystem module 47 is configured to monitor the running status of the CPU and memory of the KSS server and display it on the screen;
  • the printing and log query module 48 is configured to maintain the printing output function of the system, for the core Some important parameters of the state, the operator can print out the output to better assist the operator in the analysis and judgment of the operating conditions of the power station.
  • the Print and Log Query Module 48 also supports the log query function and records the system's various alarm logs.
  • FIG. 3B a schematic diagram of an interface structure of a nuclear power plant core state monitoring system according to the embodiment is provided.
  • the system interface of the solution includes an interface with the client 32 and the printer 35, and is located in the computer room.
  • the main functions include: providing an interface for each functional module call, and providing client 32 with key function parameter monitoring information, as well as system and device status indication information.
  • key function parameter monitoring information (including LPD, DNBR, etc.) is used for key function parameter display; alarm information is used for important alarms of related parameters exceeding limit, specifically, sound and light alarm can be used to prompt the operator; system and equipment status indication information Status indication or alarm for system or equipment, mainly including equipment (such as card) abnormal or fault alarm, communication failure alarm, these alarms and indications are based on the corresponding alarm, indication setting principle using alarm light or video display device (VDU) Display.
  • equipment such as card
  • VDU video display device
  • the interface between the KSS and the external device is specifically described below with reference to FIG. 3B.
  • the dotted line indicates the hardware connection line, and the solid line indicates the communication network based on the TCP protocol.
  • the entire interface diagram includes LEVEL0 (ie, the process system interface layer). , LEVELl (that is, the automatic control and protection layer) and LEVEL2 (that is, the operation and management information layer), some measurement systems respectively connected to RIC and DCS are set in LEVEL0, and KSS, DCS, etc. are set in LEVELl.
  • An operator workstation (KIC-OWP) connected to the KSS is set in LEVEL2.
  • the DCS is connected to a rod control system (RGL), a nuclear instrumentation system (RPN), a primary coolant system (RC P), a chemical and volume control system (RCV) to obtain a CRDM signal of the RGL (ie, a control rod) Bar signal), RPN's MA signal (ie, extra-stack neutron detection signal), RCP's TC/MP signal (ie, the first loop temperature and the first loop pressure), RCV's MG signal (ie, the core) Boron concentration), and It is sent to KSS via the network (based on TCP communication protocol).
  • the trigger mechanism is that the DCS sends data to the KSS system according to a certain period; the trigger period frequency is consistent with the period in which the DCS reads data.
  • the input signal data such as a neutron self-sufficient detector (SPND) and a core outlet temperature (TC) required for receiving the KSS from the RIC based on the TCP communication protocol.
  • the trigger mechanism is that the RIC sends data to the KSS system according to a certain period; the trigger period frequency is consistent with the data reading frequency of the RIC system.
  • the input signal data from the RI C received by the KSS needs to be processed by the RIC signal conditioning unit 36, and the SPND signal can be directly transmitted to the KSS; the RIC signal of the RIC needs to be sent to the DCS and output to the KSS via the DCS.
  • the trigger mechanism is KSS system picture software; the trigger cycle frequency is adjustable on demand.
  • the server is interacted with the KSS client 321 for data collection, image generation, and application management.
  • the communication protocol is TCP; the trigger mechanism is to start the relevant application of the client; the trigger cycle frequency is adjustable on demand.
  • the signal is sent from the KSS system to the KSS printing device.
  • the communication protocol is TCP; the trigger mechanism is the print execution command; the trigger cycle frequency is adjustable on demand.
  • the solution of the invention is to generate a stable and reliable information display and alarm by collecting the system signal and combining the core parameters to provide a stable and reliable information display and alarm, realizing the core three-dimensional power distribution, LOCA margin monitoring, and the axis.
  • the functions of monitoring, displaying and alarm output for power deviation, line power density and DNBR status parameters provide the necessary and correct information for the reliable operation of the unit and the correct operation of the operator.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Further, the present invention may take the form of a computer program product embodied in one or more of which comprises a computer usable storage medium having computer-usable program code (including but not limited to, disk storage, CD-R 0 M, optical memory, etc.).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明公开了一种核电站堆芯状态的监测方法、服务器及系统,解决了现有技术中缺乏基于自给能中子探测器的堆芯状态监测方案的技术问题,本方案通过从核电站分布式控制系统获取第一测量数据,从核电站堆芯测量系统的自给能中子探测器获取第二测量数据,并根据所述第一测量数据和所述第二测量数据获取堆芯状态参数和堆芯裕量,最后输出所述堆芯状态参数和堆芯裕量。提供了一种适用于自给能中子探测器技术的堆芯监测仪控方案,通过采集系统信号,结合堆芯参数,进行处理后获取堆芯状态参数和堆芯裕量,为整个核电站系统提供了更全面的堆芯数据支持,同时为机组的可靠运行及操作员的正确操作提供必要且正确的信息。

Description

一种核电站堆芯状态的监测方法、 服务器及系统 技术领域
[0001] 本发明涉及核电站反应堆堆芯监测技术领域, 尤其涉及一种核电站堆芯状态的 监测方法、 服务器及系统。
背景技术
[0002] 核电站是利用核裂变或核聚变反应所释放的能量产生电能的发电厂, 核电站中 的反应堆是一种启动、 控制并维持核裂变或核聚变链式反应的装置, 在反应堆 之中, 核变的速率需要得到精确的控制, 使得其能量能够以较慢的速度向外释 放, 以供人们安全利用。
[0003] 堆芯是反应堆的心脏, 装在压力容器中间, 由燃料组件构成; 此外, 堆芯还有 控制棒和含硼的冷却水 (即冷却剂) , 以防止反应堆因过热过压而破坏压力容 器、 甚至发生爆炸导致核泄漏。 因此, 需要对堆芯的燃耗、 一回路冷却系统的 温度和压力等进行严格控制, 才能保证反应堆的安全运行, 即堆芯的燃耗、 一 回路冷却系统的温度和压力等能够反映出反应堆的运行状态。 可见, 对堆芯状 态进行监测, 对核电站的安全可靠运行起着至关重要的作用。
[0004] 一种已知的堆芯状态参数的在线监测系统主要为基于可移动式探测器和堆外 ( 即中子活性区外) 探测器的冷却剂失水事故监测系统 (LSS , Loss of Coolant Accident Surveillance System) , LSS系统已在某些核电站的反应堆中得到广泛应 用且具有成熟的应用业绩。 但是, 由于上述堆芯状态监测系统在堆外进行监测 获得的堆芯状态参数有限, 通常采用冷却剂平均温度等间接信号反映当前堆芯 运行状态和安全裕量。
[0005] 为了解决上述堆芯状态监测系统在堆外监测获得的堆芯状态参数有限且不能准 确反映当前堆芯运行状态和安全裕量的技术问题, 有的核电机构投入到对自给 能中子探测器的研究中, 其中自给能中子探测器能够直接对堆芯中子通量进行 监测, 能够直接反映出堆芯的中子通量 (即堆芯状态参数中至关重要的一种参 数) , 但是目前对自给能中子探测器的研究尚处于起步阶段, 并没有相关的系 p¾ 口
儿厂口口。
[0006] 也就是说, 现有技术中缺乏基于自给能中子探测器的堆芯状态监测方案的技术 问题。
技术问题
[0007] 本发明针对现有技术中存在的缺乏基于自给能中子探测器的堆芯状态监测方案 的技术问题, 提供一种核电站堆芯状态的监测方法、 服务器及系统, 适用于自 给能中子探测器技术, 该方法及系统为整个核电站系统提供了更全面的堆芯数 据支持, 同吋为机组的可靠运行及操作员的正确操作提供必要且正确的信息。 问题的解决方案
技术解决方案
[0008] 第一方面, 本发明方案提供了一种核电站堆芯状态的监测方法, 所述监测方法 包括步骤:
[0009] Sl、 从核电站分布式控制系统获取第一测量数据;
[0010] S2、 从核电站堆芯测量系统的自给能中子探测器获取第二测量数据;
[0011] S3、 根据所述第一测量数据和所述第二测量数据获取堆芯状态参数和堆芯裕量
[0012] S4、 输出所述堆芯状态参数和所述堆芯裕量。
[0013] 可选的, 所述第一测量数据包括: 堆芯出口温度、 一回路温度、 一回路压力、 堆芯硼浓度和控制棒棒位信号; 所述第二测量数据包括自给能中子探测器测得 的信号。
[0014] 可选的, 所述堆芯状态参数包括: 堆芯轴向功率偏差、 线功率密度和偏离泡核 沸腾比; 所述堆芯裕量包括冷却剂失水事故裕度。
[0015] 可选的, 所述步骤 S1具体为: 从核电站分布式控制系统获取第一测量数据, 并 将所述第一测量数据存储在第一数据库。
[0016] 可选的, 在所述步骤 S1之后, 所述监测方法还包括: 验证所述第一测量数据的 完整性和正确性。
[0017] 可选的, 所述步骤 S2具体为: 从核电站堆芯测量系统的自给能中子探测器获取 第二测量数据, 并将所述第二测量数据存储在第二数据库。 [0018] 可选的, 在所述步骤 S2之后, 所述监测方法还包括: 验证所述第二测量数据的 完整性和正确性。
[0019] 可选的, 在执行所述步骤 S1及 S2之后, 且在执行所述步骤 S3之前, 所述监测方 法还包括:
[0020] 接收客户端的应用调用请求, 基于所述应用调用请求判断所述客户端是否具有 应用调用权限, 并在判断结果为是吋, 执行所述步骤 S3。
[0021] 可选的, 所述步骤 S3具体为:
[0022] 根据所述第一测量数据和所述第二测量数据, 对堆芯理论计算单元进行三维功 率分布的重构修正, 并对重构修正后的三维功率分布进行处理, 以及将所述重 构修正后的三维功率分布与子通道热工水利计算相结合, 获得堆芯状态参数和 堆芯裕量。
[0023] 可选的, 在执行所述步骤 S3之后, 且在执行所述步骤 S4之前, 所述监测方法还 包括: 将所述堆芯状态参数和所述堆芯裕量存储在第三数据库。
[0024] 可选的, 所述步骤 S4具体为:
[0025] 对所述堆芯状态参数和所述堆芯裕量进行处理, 以获得堆芯状态的跟踪监测数 据和预测数据, 并显示输出所述跟踪监测数据和所述预测数据。
[0026] 可选的, 所述堆芯出口温度由设置在核电站工艺系统接口层的堆芯出口热电偶 探测器采集并发送于所述分布式控制系统;
[0027] 所述一回路温度和所述一回路压力均由设置在核电站工艺系统接口层的反应堆 冷却剂系统采集并发送于所述分布式控制系统;
[0028] 所述堆芯硼浓度由设置在核电站工艺系统接口层的化学和容积控制系统采集并 发送于所述分布式控制系统;
[0029] 所述控制棒棒位信号由设置在核电站工艺系统接口层的棒控棒位系统采集并发 送于所述分布式控制系统。
[0030] 可选的, 所述堆芯出口温度由所述堆芯出口热电偶探测器采集, 并经由设置在 核电站自动控制和保护层的堆芯测量系统信号调理单元转发至所述分布式控制 系统。
[0031] 可选的, 所述步骤 S4具体为: [0032] 通过设置在核电站自动控制和保护层或操作和管理信息层的客户端对所述堆芯 状态监测数据进行显示输出。
[0033] 第二方面, 本发明方案还提供了一种核电站堆芯状态的监测服务器, 包括: [0034] 第一测量数据获取单元, 用于从核电站分布式控制系统获取第一测量数据; [0035] 第二测量数据获取单元, 用于从核电站堆芯测量系统的自给能中子探测器获取 第二测量数据;
[0036] 数据处理单元, 用于根据所述第一测量数据和所述第二测量数据获取堆芯状态 参数和堆芯裕量;
[0037] 数据输出单元, 用于输出所述堆芯状态参数和所述堆芯裕量。
[0038] 可选的, 所述第一测量数据包括: 堆芯出口温度、 一回路温度、 一回路压力、 堆芯硼浓度和控制棒棒位信号; 所述第二测量数据包括自给能中子探测器测得 的信号。
[0039] 可选的, 所述堆芯状态参数包括: 堆芯轴向功率偏差、 线功率密度和偏离泡核 沸腾比; 所述堆芯裕量包括冷却剂失水事故裕度。
[0040] 可选的, 所述监测服务器还包括:
[0041] 第一数据库, 用于存储从核电站分布式控制系统获取的第一测量数据。
[0042] 可选的, 所述监测服务器还包括:
[0043] 第一验证单元, 用于在所述第一数据库存储所述第一测量数据后, 验证所述第 一测量数据的完整性和正确性。
[0044] 可选的所述监测服务器还包括:
[0045] 第二数据库, 用于存储从核电站堆芯测量系统的自给能中子探测器获取的第二 测量数据。
[0046] 可选的, 所述监测服务器还包括:
[0047] 第二验证单元, 用于在所述第二数据库存储所述第二测量数据后, 验证所述第 二测量数据的完整性和正确性。
[0048] 可选的, 所述监测服务器还包括:
[0049] 应用管理单元, 用于在所述第一测量数据获取单元获取所述第一测量数据、 以 及所述第二测量数据获取单元获取所述第二测量数据之后, 且所述数据处理单 元获取所述堆芯状态参数和所述堆芯裕量之前, 接收客户端的应用调用请求, 基于所述应用调用请求判断所述客户端是否具有应用调用权限。
[0050] 可选的, 所述应用管理单元还用于对所述监测服务器的工作参数进行配置和维 护。
[0051] 可选的, 所述数据处理单元具体用于根据所述第一测量数据和所述第二测量数 据, 对堆芯理论计算单元进行三维功率分布的重构修正, 并对重构修正后的三 维功率分布进行处理, 以及将所述重构修正后的三维功率分布与子通道热工水 利计算相结合, 获得堆芯状态参数和堆芯裕量。
[0052] 可选的, 所述监测服务器还包括:
[0053] 第三数据库, 用于在所述数据处理单元获取所述堆芯状态参数和堆芯裕量之后
, 且所述数据输出单元输出所述堆芯状态参数和所述堆芯裕量之前, 存储所述 堆芯状态参数和所述堆芯裕量。
[0054] 可选的, 所述数据输出单元具体用于: 对所述堆芯状态参数和所述堆芯裕量进 行处理, 以获得堆芯状态的跟踪监测数据和预测数据, 并显示输出所述跟踪监 测数据和所述预测数据。
[0055] 可选的, 所述堆芯出口温度由设置在核电站工艺系统接口层的堆芯出口热电偶 探测器获取并发送于所述分布式控制系统;
[0056] 所述一回路温度和所述一回路压力均由设置在核电站工艺系统接口层的反应堆 冷却剂系统采集并发送于所述分布式控制系统;
[0057] 所述堆芯硼浓度由设置在核电站工艺系统接口层的化学和容积控制系统采集并 发送于所述分布式控制系统;
[0058] 所述控制棒棒位信号由设置在核电站工艺系统接口层的棒控棒位系统采集并发 送于所述分布式控制系统。
[0059] 可选的, 所述堆芯出口温度由所述堆芯出口热电偶探测器采集, 并经由设置在 核电站自动控制和保护层的堆芯测量系统信号调理单元转发至所述分布式控制 系统。
[0060] 可选的, 所述数据输出单元具体用于: 将所述堆芯状态参数和堆芯裕量输出至 设置在核电站自动控制和保护层或操作和管理信息层的客户端进行显示。 [0061] 可选的, 所述监测服务器还包括:
[0062] 接口单元, 用于基于 TCP协议与所述分布式控制系统、 所述堆芯测量系统和客 户端进行通讯。
[0063] 第三方面, 本发明方案还提供了一种核电站堆芯状态的监测系统, 包括: 服务 器和客户端;
[0064] 所述服务器用于获取第一测量数据和第二测量数据, 以及根据所述第一测量数 据和所述第二测量数据获取堆芯状态参数和堆芯裕量, 并将所述堆芯状态参数 和所述堆芯裕量输出至所述客户端;
[0065] 所述客户端用于显示输出所述堆芯状态参数和所述堆芯裕量。
[0066] 可选的, 所述监测系统还包括: 核电站分布式控制系统, 以及具有自给能中子 探测器的核电站堆芯测量系统;
[0067] 所述分布式控制系统用于向所述服务器提供所述第一测量数据;
[0068] 所述堆芯测量系统用于向所述服务器提供所述第二测量数据。
[0069] 可选的, 所述第一测量数据包括: 堆芯出口温度、 一回路温度、 一回路压力、 堆芯硼浓度和控制棒棒位信号; 所述第二测量数据包括自给能中子探测器测得 的信号。
[0070] 可选的, 所述堆芯状态参数包括: 堆芯轴向功率偏差、 线功率密度和偏离泡核 沸腾比; 所述堆芯裕量包括冷却剂失水事故裕度。
发明的有益效果
有益效果
[0071] 本发明方案提供的一个或多个技术方案, 至少具有如下技术效果或优点: [0072] 由于在本发明方案中, 在进行核电站堆芯状态监测吋, 通过从核电站分布式控 制系统获取第一测量数据, 从核电站堆芯测量系统的自给能中子探测器获取第 二测量数据, 并根据所述第一测量数据和所述第二测量数据获取堆芯状态参数 和堆芯裕量, 最后输出所述堆芯状态参数和堆芯裕量。 也就是说, 本方案提供 一种适用于自给能中子探测器技术的堆芯监测仪控方案, 通过采集系统信号, 结合堆芯参数, 进行处理后获取堆芯状态参数和堆芯裕量, 为整个核电站系统 提供了更全面的堆芯数据支持, 同吋为机组的可靠运行及操作员的正确操作提 供必要且正确的信息。 有效地解决了现有技术中缺乏基于自给能中子探测器的 堆芯状态监测方案的技术问题。
对附图的简要说明
附图说明
[0073] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的实施例, 对于本领域普通技术人员来讲, 在不付出创造性 劳动的前提下, 还可以根据提供的附图获得其他的附图。
[0074] 图 1为本发明实施例提供的一种核电站堆芯状态的监测方法流程图;
[0075] 图 2A为本发明实施例提供的第一种核电站堆芯状态的监测服务器结构框图; [0076] 图 2B为本发明实施例提供的第二种核电站堆芯状态的监测服务器结构框图; [0077] 图 3A为本发明实施例提供的一种核电站堆芯状态的监测系统的结构框图; [0078] 图 3B为本发明实施例提供的一种核电站堆芯状态的监测系统的接口结构示意图
[0079] 图 4为本发明实施例提供的第三种核电站堆芯状态的监测服务器结构框图。
本发明的实施方式
[0080] 本发明实施例通过提供一种核电站堆芯状态的监测方法, 解决了现有技术中存 在的缺乏基于自给能中子探测器的堆芯状态监测方案的技术问题, 该方法适用 于自给能中子探测器技术, 为整个核电站系统提供了更全面的堆芯数据支持, 同吋为机组的可靠运行及操作员的正确操作提供必要且正确的信息。
[0081] 本发明实施例的技术方案为解决上述技术问题, 总体思路如下:
[0082] 本发明实施例提供了一种核电站堆芯状态的监测方法, 包括步骤: Sl、 从核电 站分布式控制系统获取第一测量数据; S2、 从核电站堆芯测量系统的自给能中 子探测器获取第二测量数据; S3、 根据所述第一测量数据和所述第二测量数据 获取堆芯状态参数和堆芯裕量; S4、 输出所述堆芯状态参数和所述堆芯裕量。
[0083] 可见, 本发明方案提供一种适用于自给能中子探测器技术的堆芯监测仪控方案 , 通过采集系统信号, 结合堆芯参数, 进行处理后产生反应堆功率分布, 为整 个核电站系统提供了更全面的堆芯数据支持, 同吋为机组的可靠运行及操作员 的正确操作提供必要、 正确的信息。 有效地解决了现有技术中缺乏基于自给能 中子探测器的堆芯状态监测方案的技术问题。
[0084] 为了更好的理解上述技术方案, 下面将结合说明书附图以及具体的实施方式对 上述技术方案进行详细的说明, 应当理解本发明实施例以及实施例中的具体特 征是对本申请技术方案的详细的说明, 而不是对本申请技术方案的限定, 在不 冲突的情况下, 本发明实施例以及实施例中的技术特征可以相互组合。
[0085] 实施例一
[0086] 请参考图 1, 本申请实施例提供了一种适用于自给能中子探测器技术的核电站 堆芯状态的监测方法, 应用于核电站堆芯状态的监测服务器中, 所述监测方法 包括步骤:
[0087] Sl、 从核电站分布式控制系统 (DCS , Distributed Control System) 获取第一测 量数据。
[0088] 具体的, 核电站 DCS综合了计算机、 通讯、 显示和控制等多项技术, 用于从核 电站各控制管理系统 (如棒控棒位系统、 核仪表系统、 反应堆冷却剂系统等) 集中获取数据、 并对上述各控制管理系统集中管理和集中控制, 为核电站运行 提供了更加先进的控制和管理手段, 其在核电领域起着至关重要的作用; 所述 第一测量数据包括堆芯出口温度、 一回路温度、 一回路压力、 堆芯硼浓度和控 制棒棒位信号。 其中, 所述堆芯出口温度由堆芯出口热电偶探测器采集并发送 于 DCS; 所述一回路温度和所述一回路压力均由反应堆冷却剂系统 (RCP) 采集 并发送于 DCS; 所述堆芯硼浓度由化学和容积控制系统 (RCV) 采集并发送于 D CS; 所述控制棒棒位信号由棒控棒位系统 (RGL) 采集并发送于 DCS。 当然, 所述第一测量数据还包括由堆外中子探测器 (RPN) 采集并发送于 DCS的堆外中 子探测信号。 核电站监控系统结构通常分为工艺系统接口层、 自动控制和保护 层、 操作和管理信息层; 其中, 所述工艺系统接口层包括现场测量设备 (如 RCP 、 RCV、 RGL、 RPN等) , 所述自动控制和保护层包括安全控制设备 (如 DCS等 ) , 所述操作和管理信息层包括客户端 (如操作员工作站等) 。 需要注意的是 , 上述关于核电站监控系统结构的划分并非以空间区域作为划分标准, 而是以 信号采集-处理-操作的流程作为划分标准, 例如, 客户端可为设置在 DCS主控室 的电站计算机信息和控制系统 (KIC, Plant Computer Information & Control) 的 操作员工作站 (OWP, Operator Work Place) 。
[0089] S2、 从核电站堆芯测量系统 (RIC, In-Core Instrumentation System) 的自给能 中子探测器 (SPND) 获取第二测量数据。 其中, RIC可设置在工艺系统接口层 , 所述第二测量数据包括自给能中子探测器测得的信号。
[0090] 在具体实施过程中, RIC还包括堆芯出口热电偶探测器, 所述堆芯出口热电偶 探测器用于对堆芯出口温度进行测量以获得。 RIC测量的信号包括自给能中子探 测器测得的信号和所述堆芯出口温度, 为了对 RIC测量的信号进行传输管理, 在 自动控制和保护层设置有堆芯测量系统信号调理单元, 所述自给能中子探测器 测得的信号直接经过所述堆芯测量系统信号调理单元发送于核电站堆芯状态的 监测服务器, 所述堆芯出口温度则经由所述堆芯测量系统信号调理单元发送至 D CS, 并由 DCS发送于核电站堆芯状态的监测服务器。
[0091] S3、 根据所述第一测量数据和所述第二测量数据获取堆芯状态参数和堆芯裕量 ; 其中, 所述堆芯状态参数包括: 堆芯轴向功率偏差、 线功率密度 (LPD, Lini ng Power Density) 和偏离泡核沸腾比 (DNBR, Departure From Nucleate Boiling Ratio) 等; 所述堆芯裕量包括冷却剂失水事故 (LOCA, Loss of Coolant Accident) 裕度等。
[0092] 上述步骤 S3具体为: 根据所述第一测量数据和所述第二测量数据, 对所述监测 服务器中的堆芯理论计算单元进行三维功率分布的重构修正, 并对重构修正后 的三维功率分布进行处理, 以及将所述重构修正后的三维功率分布与子通道热 工水利计算相结合, 获得堆芯状态参数和堆芯裕量。 其中, 在执行步骤 S3之前 , 所述堆芯理论计算单元会根据核电站通用的一套堆芯理论计算方法, 基于堆 芯模型和燃料浓度等计算出堆芯理论计算结果, 包括堆芯理论的三维功率分布 、 燃耗、 核子密度、 热点因子等。 之后, 在执行步骤 S3吋对所述堆芯理论计算 结果进行修正或再计算以得到全面的堆芯状态参数和堆芯裕量。 当然, 在具体 实施过程中, 可在所述堆芯理论计算单元进行堆芯理论计算的同吋执行步骤 S3 。 其中, "对重构修正后的三维功率分布进行处理 "用于获得堆芯轴向功率偏差、 LOCA裕度、 LPD等参数; "将所述重构修正后的三维功率分布与子通道热工水 利计算相结合 "用于获得 DNBR等参数; 获得的 LPD和 DNBR能更直接地反映当前 堆芯运行状态参数和安全裕量。 总之, 执行上述步骤 S3基本可以得到堆芯运行 的所有参数, 而不仅仅是仪器测量信号, 从而为整个电站系统提供更全面的数 据支持。
[0093] S4、 输出所述堆芯状态参数和堆芯裕量; 具体的, 将所述堆芯状态参数和堆芯 裕量输出至设置在核电站自动控制和保护层或操作和管理信息层的客户端进行 显示。
[0094] 在具体实施过程中, 所述步骤 S4具体为: 对所述堆芯状态参数和堆芯裕量进行 处理, 以获得堆芯状态的跟踪监测数据和预测数据, 并显示输出所述跟踪监测 数据和所述预测数据, 以使现场运行人员基于所述堆芯状态的跟踪监测数据和 预测数据获知当前堆芯运行状态、 评估堆芯运行趋势及安全性。 在具体实施过 程中, 根据用户的査看或操作需求, 有选择的显示输出所述堆芯状态参数和堆 芯裕量。 例如, 在进行堆芯状态跟踪监测吋, 所述跟踪监测数据包括堆芯热功 率、 堆芯燃耗、 硼浓度、 LPD、 DNBR、 SPND、 平均轴向功率、 LOCA裕度、 最 小 DNBR、 DNBR限值等; 在进行堆芯状态预测吋, 所述预测数据包括: 硼浓度 、 Xe浓度、 堆芯功率水平 /冷却剂温度、 有效增殖系数、 控制棒棒位、 控制棒限 制区间等。 在具体实施过程中, 上述跟踪监测数据和预测数据均可以坐标曲线 画面形式输出, 其坐标横轴为吋间、 纵轴为各个跟踪监测数据和预测数据的数 值。
[0095] 在具体实施过程中, 执行步骤 S1和 S2吋, 获取的第一测量数据和第二测量数据 的数据量较大, 为了减轻执行步骤 S3吋的处理数据量, 所述步骤 S1具体为: 从 核电站分布式控制系统获取第一测量数据, 并将所述第一测量数据存储在第一 数据库; 所述步骤 S2具体为: 从核电站堆芯测量系统的自给能中子探测器获取 第二测量数据, 并将所述第二测量数据存储在第二数据库。 当执行步骤 S3吋, 从所述第一数据库和所述第二数据库调用所述第一测量数据和所述第二测量数 据, 其中所述第一数据库和所述第二数据库可为同一数据库。 进一步, 为了确 保执行步骤 S3吋从所述第一数据库和所述第二数据库调用的数据的完整性和正 确性, 进而确保最终获得的堆芯状态参数和堆芯裕量的可靠性, 在所述步骤 S1 之后, 所述监测方法还包括: 验证所述第一测量数据的完整性和正确性, 以及 在所述步骤 S2之后, 所述监测方法还包括: 验证所述第二测量数据的完整性和 正确性。
[0096] 上述是将所述第一测量数据和所述第二测量数据存储到数据库之后, 再验证测 量数据的完整性和正确性, 在其它实施方式中, 也可先验证所述第一测量数据 和所述第二测量数据的完整性和正确性之后, 再存储到数据库中。 这里不做具 体限定。
[0097] 在具体实施过程中, 所述监测服务器支持与客户端进行交互, 以及基于客户端 的调用请求计算获得堆芯状态参数和堆芯裕量, 为了实现对客户端权限的管理 , 在执行所述步骤 S1及 S2之后, 且在执行所述步骤 S3之前, 所述监测方法还包 括: 接收客户端的应用调用请求, 基于所述应用调用请求判断所述客户端是否 具有应用调用权限, 并在判断结果为是吋, 执行所述步骤 S3。 进一步, 在获得 堆芯状态参数和堆芯裕量之后将所述堆芯状态参数和所述堆芯裕量存储在第三 数据库, 并基于来自客户端的不同类型的数据输出请求从所述第三数据库选择 输出所述堆芯状态参数和所述堆芯裕量, 如仅输出堆芯状态的跟踪监测数据、 或仅输出堆芯状态的预测数据、 或同吋输出堆芯状态的跟踪监测数据和预测数 据等, 其中, 所述第一数据库、 所述第二数据库和所述第三数据库可为同一数 据库。
[0098] 总而言之, 堆芯状态参数的监测对核电站的安全可靠运行起着至关重要的作用 , 特别是对堆芯轴向功率偏差、 LOCA裕度、 LPD及 DNBR等堆芯状态参数的监 测尤为重要, 以自给能中子探测器信号为基础进行堆芯三维功率分布的重构修 正, 可分析得到全面而准确的堆芯运行参数和安全裕量。 本方案通过采集堆芯 自给能探测器信号、 核仪表系统 (RPN) 、 棒控棒位系统 (RGL) 、 反应堆冷却 剂系统 (RCP) 等系统信号, 进行处理后产生堆芯状态参数, 通过人机界面把堆 芯参数通过各种图形、 表格把参数直接提供给操作员进行监测分析。
[0099] 实施例二
[0100] 基于同一发明构思, 请参考图 2A, 本发明实施例还提供了一种核电站堆芯状态 的监测服务器, 包括:
[0101] 第一测量数据获取单元 21, 用于从核电站分布式控制系统 (DCS , Distributed Control System) 获取第一测量数据; 其中, 所述第一测量数据包括: 堆芯出口 温度、 一回路温度、 一回路压力、 堆芯硼浓度和控制棒棒位信号。 具体的, 所 述堆芯出口温度由堆芯出口热电偶探测器采集并发送于 DCS; 所述一回路温度和 所述一回路压力均由反应堆冷却剂系统 (RCP) 采集并发送于 DCS; 所述堆芯硼 浓度由化学和容积控制系统 (RCV) 采集并发送于 DCS; 所述控制棒棒位信号 由棒控棒位系统 (RGL) 采集并发送于 DCS。 当然, 所述第一测量数据还包括由 堆外中子探测器 (RPN) 采集并发送于 DCS的堆外中子探测信号。 核电站监控系 统结构通常分为工艺系统接口层、 自动控制和保护层、 操作和管理信息层; 其 中, 所述工艺系统接口层包括现场测量设备 (如 RCP、 RCV、 RGL、 RPN等) , 所述自动控制和保护层包括安全控制设备 (如 DCS等) , 所述操作和管理信息层 包括客户端 (如操作员工作站等) 。 需要注意的是, 上述关于核电站监控系统 结构的划分并非以空间区域作为划分标准, 而是以信号采集 -处理 -操作的流程作 为划分标准, 例如, 客户端可为设置在 DCS主控室的电站计算机信息和控制系统
(KIC, Plant Computer Information &
Control) 的操作员工作站 (OWP, Operator Work Place) 。
[0102] 第二测量数据获取单元 22, 用于从核电站堆芯测量系统 (RIC, In-Core
Instrumentation System) 的自给能中子探测器获取第二测量数据; 其中, RIC可 设置在工艺系统接口层, 所述第二测量数据包括自给能中子探测器测得的信号 。 在具体实施过程中, RIC还包括堆芯出口热电偶探测器, 所述堆芯出口热电偶 探测器用于对堆芯出口温度进行测量以获得。 RIC测量的信号包括自给能中子探 测器测得的信号和所述堆芯出口温度, 为了对 RIC测量的信号进行传输管理, 在 自动控制和保护层设置有堆芯测量系统信号调理单元, 所述自给能中子探测器 测得的信号直接经过所述堆芯测量系统信号调理单元发送于核电站堆芯状态的 监测服务器, 所述堆芯出口温度则经由所述堆芯测量系统信号调理单元发送至 D CS, 并由 DCS发送于核电站堆芯状态的监测服务器。
[0103] 数据处理单元 23, 用于根据所述第一测量数据和所述第二测量数据获取堆芯状 态参数和堆芯裕量; 其中, 所述堆芯状态参数包括: 堆芯轴向功率偏差、 线功 率密度 (LPD, Lining Power Density) 和偏离泡核沸腾比 (DNBR, Departure From Nucleate Boiling
Ratio) 等; 所述堆芯裕量包括冷却剂失水事故 (LOCA, Loss of Coolant
Accident) 裕度等。 具体的, 数据处理单元 23根据所述第一测量数据和所述第二 测量数据, 对所述监测服务器中的堆芯理论计算单元进行三维功率分布的重构 修正, 并对重构修正后的三维功率分布进行处理, 以及将所述重构修正后的三 维功率分布与子通道热工水利计算相结合, 获得堆芯状态参数和堆芯裕量。
[0104] 数据输出单元 24, 用于输出所述堆芯状态参数和堆芯裕量。 具体的, 将所述堆 芯状态参数和堆芯裕量输出至设置在核电站自动控制和保护层或操作和管理信 息层的客户端进行显示。 在具体实施过程中, 数据输出单元 24输出所述堆芯状 态参数和堆芯裕量, 具体为: 对所述堆芯状态参数和堆芯裕量进行处理, 以获 得堆芯状态的跟踪监测数据和预测数据, 并显示输出所述跟踪监测数据和所述 预测数据, 以使现场运行人员基于所述堆芯状态的跟踪监测数据和预测数据获 知当前堆芯运行状态、 评估堆芯运行趋势及安全性。
[0105] 在具体实施过程中, 请参考图 2B, 所述监测服务器还包括:
[0106] 第一数据库 25, 用于存储从核电站分布式控制系统获取的第一测量数据。
[0107] 第一验证单元 26, 用于在第一数据库 25存储所述第一测量数据后, 验证所述第 一测量数据的完整性和正确性。
[0108] 第二数据库 27, 用于存储从核电站堆芯测量系统的自给能中子探测器获取第二 测量数据。
[0109] 第二验证单元 28, 用于在第二数据库 27存储所述第二测量数据后, 验证所述第 二测量数据的完整性和正确性。
[0110] 在具体实施过程中, 仍请参考图 2B, 所述监测服务器还包括:
[0111] 应用管理单元 29, 用于在第一测量数据获取单元 21获取所述第一测量数据、 以 及第二测量数据获取单元 22获取所述第二测量数据之后, 且数据处理单元 23获 取所述堆芯状态参数和所述堆芯裕量之前, 接收客户端的应用调用请求, 基于 所述应用调用请求判断所述客户端是否具有应用调用权限; 应用管理单元 29还 用于对所述监测服务器的工作参数 (如数据库、 界面库) 进行配置和维护; 应 用管理单元 29还用于用户配置管理和服务器软硬件维护。
[0112] 进一步, 所述监测服务器还包括:
[0113] 第三数据库 210, 用于在数据处理单元 23获取所述堆芯状态参数和堆芯裕量之 后, 且数据输出单元 24输出所述堆芯状态参数和堆芯裕量之前, 存储所述堆芯 状态参数和所述堆芯裕量。 其中, 第一数据库 25、 第二数据库 27和第三数据库 2 10可为同一数据库。
[0114] 在具体实施过程中, 仍请参考图 2B, 所述监测服务器还包括:
[0115] 接口单元 211, 用于基于 TCP协议与所述分布式控制系统、 所述堆芯测量系统 和客户端进行通讯。
[0116] 根据上面的描述, 上述核电站堆芯状态的监测服务器用于实施上述核电站堆芯 状态的监测方法, 所以, 该服务器的实施方式与上述方法的一个或多个实施方 式相同, 在此就不再一一赘述了。
[0117] 实施例三
[0118] 基于同一发明构思, 请参考图 3A, 本发明实施例还提供了一种核电站堆芯状态 的监测系统, 包括: 服务器 31和客户端 32;
[0119] 所述服务器 31用于获取第一测量数据和第二测量数据, 以及根据所述第一测量 数据和所述第二测量数据获取堆芯状态参数和堆芯裕量, 并将所述堆芯状态参 数和所述堆芯裕量输出至客户端 32;
[0120] 客户端 32用于显示输出所述堆芯状态参数和所述堆芯裕量。
[0121] 进一步, 所述监测系统还包括: 核电站分布式控制系统 DCS , 以及具有自给能 中子探测器的核电站堆芯测量系统 RIC;
[0122] 分布式控制系统 DCS用于向服务器 31提供所述第一测量数据;
[0123] 堆芯测量系统 RIC用于向服务器 31提供所述第二测量数据。
[0124] 其中, 所述第一测量数据包括: 堆芯出口温度、 一回路温度、 一回路压力、 堆 芯硼浓度和控制棒棒位信号; 所述第二测量数据包括自给能中子探测器测得的 信号; 所述堆芯状态参数包括: 堆芯轴向功率偏差、 线功率密度和偏离泡核沸 腾比; 所述堆芯裕量包括冷却剂失水事故裕度。 [0125] 如图 3A所示, 为本实施例提供的一种核电站堆芯状态的监测系统的结构框图, 在具体实施过程中, 所述核电站堆芯状态的监测系统包括堆芯在线监测系统 (K SS, Core Online Surveillance System) , 服务器 31承载了 KSS系统的所有功能。 服务器 31设置在 KSS机柜 30中, 在 KSS机柜 30中还设置有与服务器 31连接的路由 器 33和交换机 34; 其中, 路由器 33和交换机 34用于与 DCS、 RK:、 客户端 32和打 印机 35等进行通讯; 具体的, KSS机柜 30上可预留网络接口与客户端 32连接, 该 客户端 33可为位于 KSS机柜 30附近的就地客户端, 也可为设置在 DCS主控室内的 远程客户端, 当其为就地客户端吋, 该客户端通过 VGA视频线连接显示器, 当 其为远程客户端吋, 其可为设置在 DCS主控室的电站计算机信息和控制系统 (K IC, Plant Computer Information & Control) 客户端。
[0126] 也就是说, 为了实现对堆芯状态的监测功能, 在具体实施过程中采用服务器加 客户端的处理方案, 并利用当前成熟的计算机技术, 采用高速网络实现 KSS系统 内部模块之间、 KSS系统与外部模块之间的数据交换, 同吋采用数据库作为内部 功能计算模块与画面监控模块数据交换的接口。 其中, 设置两台处于热备用关 系的服务器 31, 即当其中正在使用的一台服务器发生故障后, 另一台服务器将 马上代替故障服务器。 另外, KSS系统数据可通过显示器输出、 打印输出和磁盘 输出的方式进行输出。
[0127] 结合图 2B、 图 3A和图 4, 在任一服务器 31中设置有数据获取模块 41 (对应图 2B 中的第一测量数据获取单元 21和第二测量数据获取单元 22) 、 功能计算模块 42
(对应图 2B中的数据处理单元 23) 、 数据库模块 43 (对应图 2B中的第一数据库 2 5、 第二数据库 27和第三数据库 210) 、 应用管理模块 44 (对应图 2B中的应用管 理单元 29) 、 通讯接口模块 45 (对应图 2B中的接口单元 211) 和画面监控模块 46 (对应图 2B中的数据输出单元 24) ; 其中:
[0128] 数据获取模块 41用于从 DCS处理机柜和 RIC处理机柜采集堆芯和回路测量数据
(即所述第一测量数据和所述第二测量数据) 。 具体的, 从 DCS处理机柜采集的 数据包括堆芯出口温度、 一回路温度、 压力、 堆芯硼浓度、 控制棒棒位信号等 , 从 RIC处理机柜采集的数据主要是堆芯自给能中子探测器信号 (SPND) ; [0129] 数据库模块 43用于储存数据获取模块 41所获取的堆芯和回路测量数据, 同吋在 获取堆芯和回路测量数据后对其数据的完整性和正确性进行验证, 并将验证结 果为合格的数据送往功能计算模块 42进行计算处理, 以及对功能计算模块 42计 算获得的数据 (即堆芯状态参数和安全裕量) 进行存储, 以用于就地客户端的 人机交互和显示。 通过应用管理模块 44接受客户端 32的调用, 数据库模块 43与 其他功能模块均存在连接, 即数据库模块 43为连接其他各个功能模块的纽带。
[0130] 功能计算模块 42用于从数据库模块 43读取所述堆芯和回路测量数据对堆芯理论 计算单元进行三维功率分布的重构修正, 并对重构修正后的三维功率分布进行 计算处理, 以及将所述重构修正后的三维功率分布与子通道热工水利计算相结 合, 获得全面的堆芯运行参数和安全裕量; 功能计算模块 42还用于基于所述堆 芯运行参数和安全裕量对堆芯状态进行跟踪和预测, 获得堆芯状态跟踪监测数 据和预测数据, 以使现场运行人员基于所述堆芯状态跟踪监测数据和预测数据 获知当前堆芯运行状态、 评估堆芯运行趋势及安全性。 其中, 计算获得的堆芯 运行参数和安全裕量、 以及堆芯状态跟踪监测数据和预测数据存储到数据库模 块 43中。
[0131] 应用管理模块 44完成 KSS系统的配置维护管理功能, 包括系统参数的配置 (如 数据库、 界面库配置) , 用户配置及权限管理, 系统软硬件的定期维护, 并与 客户端 32及各功能模块进行交互。 例如, 通过应用管理模块 44接收来自客户端 3 2的调用指令, 以触发功能计算模块 42进行堆芯重构计算。
[0132] 通讯接口模块 45从数据库模块 43获取计算结果和各种功能参数 (包括计算获得 的堆芯运行参数和安全裕量、 以及堆芯状态跟踪监测数据和预测数据等) , 并 通过画面监控模块 46进行处理获得堆芯运行状态画面监控数据, 以送往客户端 3 2进行显示。
[0133] 画面监控模块 46根据系统功能需求, 辅助现场运行人员更好地了解当前堆芯运 行状态, 评估堆芯运行趋势及安全性, 并提供后续运行指导, 同吋也为核电站 设计人员提供在线运行技术支持窗口。 KSS系统画面可分为: 堆芯参数跟踪画面
、 堆芯预测参数画面、 堆芯历史参数画面和系统配置维护画面。 其所支持的监 控内容包括: 主画面监控、 LPD及 LOCA裕度画面监控、 运行图画面监控、 棒位 信息画面监控、 功率倾斜画面监控、 三维画面信息监控、 输入参数画面监控、 报警显示画面监控、 历史参数点画面监控、 历史参数曲线画面监控、 堆芯预测 画面监控等。
[0134] 另外, 仍请参考图 4, 任一服务器 31中还包括: 运维监控子系统模块 47和打印 与日志査询模块 48。 其中, 系统运维监控子系统模块 47用于对 KSS服务器的 CPU 、 内存等资源运行情况进行监控并在画面显示; 打印与日志査询模块 48, 用于 保持系统的打印输出功能, 对于堆芯状态的某些重要参数, 操作员可通过打印 输出, 更好的辅助操作员对电站运行工况的分析判断。 打印与日志査询模块 48 还支持日志査询功能, 并记录系统各项报警日志。
[0135] 进一步, 如图 3B所示, 为本实施例提供的一种核电站堆芯状态的监测系统的接 口结构示意图, 本方案系统接口包含与客户端 32和打印机 35的接口, 位于计算 机房中, 其主要功能包括: 为各功能模块的调用提供接口, 以及为客户端 32提 供关键功能参数监视信息、 以及系统和设备状态指示信息。 其中, 关键功能参 数监视信息 (包括 LPD、 DNBR等) 用于关键功能参数显示; 报警信息用于相关 参数超限吋的重要报警, 具体可采用声光报警提示操纵员; 系统和设备状态指 示信息用于系统或设备的状态指示或报警, 主要包括设备 (如卡件) 异常或故 障报警、 通信故障报警, 这些报警和指示信息根据相应报警、 指示设置原则采 用报警灯或者视频显示装置 (VDU) 进行显示。
[0136] 下面结合图 3B对 KSS与外部设备的接口进行具体介绍, 其中, 虚线表示硬件连 接线, 实线表示基于 TCP协议的通信网络, 整个接口示意图包括 LEVEL0 (即所 述工艺系统接口层) 、 LEVELl (即所述自动控制和保护层) 和 LEVEL2 (即所 述操作和管理信息层) , 在 LEVEL0内设置有分别与 RIC和 DCS相连的一些测量 系统, 在 LEVELl内设置有 KSS、 DCS等, 在 LEVEL2内设置有与 KSS连接的操作 员工作站 (KIC-OWP) 。
[0137] (1) 与 DCS的接口
[0138] DCS与棒控棒位系统 (RGL) 、 核仪表系统 (RPN) 、 一回路冷却剂系统 (RC P) 、 化学和容积控制系统 (RCV) 相连, 获取 RGL的 CRDM信号 (即控制棒棒 位信号) 、 RPN的 MA信号 (即堆外中子探测信号) 、 RCP的 TC/MP信号 (即所 述一回路温度和所述一回路压力) 、 RCV的 MG信号 (即所述堆芯硼浓度) , 并 通过网络 (基于 TCP通讯协议) 送到 KSS中。 其触发机制为 DCS按照一定周期向 KSS系统发送数据; 触发周期频率与 DCS读取数据的周期一致。
[0139] (2) 与 RIC的接口
[0140] 基于 TCP通讯协议从 RIC接收 KSS所需的中子自给能探测器 (SPND) 、 堆芯出 口温度 (TC) 等输入信号数据。 其触发机制为 RIC按照一定周期向 KSS系统发送 数据; 触发周期频率为与 RIC系统数据读取频率一致。 其中, KSS接收的来自 RI C的输入信号数据需要通过 RIC信号调理单元 36进行处理, SPND信号可直接传送 至 KSS; RIC的 TC信号则需要发送至 DCS , 并经 DCS输出至 KSS。
[0141] (3) 与操作员工作站 (KIC-OWP) 的接口
[0142] 基于 TCP通讯协议从 KSS系统输送信号至 KIC-OWP, 通过调取相应画面以展示
。 其触发机制为 KSS系统画面软件; 触发周期频率为按需可调。
[0143] (4) 就地客户端 (即 KSS客户端 321) 接口
[0144] 实现服务器与 KSS客户端 321的交互, 以进行数据采集、 图像生成以及应用管 理等。 通信协议为 TCP; 触发机制为启动客户端的相关应用程序; 触发周期频率 为按需可调。
[0145] (5) 打印机 35接口
[0146] 从 KSS系统输送信号至 KSS打印设备。 其通信协议为 TCP; 触发机制为打印执 行命令; 触发周期频率为按需可调。
[0147] 总而言之, 本发明方案是通过采集系统信号, 结合堆芯参数, 进行处理后产生 反应堆功率分布, 提供稳定、 可靠的信息显示和报警, 实现堆芯三维功率分布 、 LOCA裕度监测、 轴向功率偏差, 线功率密度和 DNBR等状态参数的监测、 显 示和报警输出的功能, 为机组的可靠运行及操作员的正确操作提供必要且正确 的信息。
[0148] 本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机 程序产品。 因此, 本发明可采用完全硬件实施例、 完全软件实施例、 或结合软 件和硬件方面的实施例的形式。 而且, 本发明可采用在一个或多个其中包含有 计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘存储器、 CD-R 0M、 光学存储器等) 上实施的计算机程序产品的形式。 [0149] 这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在 计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从 而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能的步骤。
[0150] 尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创 造性概念, 则可对这些实施例做出另外的变更和修改。 所以, 所附权利要求意 欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
[0151] 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的 精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其等 同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
[权利要求 1] 一种核电站堆芯状态的监测方法, 其特征在于, 所述监测方法包括步 骤:
51、 从核电站分布式控制系统获取第一测量数据;
52、 从核电站堆芯测量系统的自给能中子探测器获取第二测量数据; S3、 根据所述第一测量数据和所述第二测量数据获取堆芯状态参数和 堆芯裕量;
S4、 输出所述堆芯状态参数和所述堆芯裕量。
[权利要求 2] 如权利要求 1所述的核电站堆芯状态的监测方法, 其特征在于, 所述 第一测量数据包括: 堆芯出口温度、 一回路温度、 一回路压力、 堆芯 硼浓度和控制棒棒位信号; 所述第二测量数据包括自给能中子探测器 测得的信号。
[权利要求 3] 如权利要求 1所述的核电站堆芯状态的监测方法, 其特征在于, 所述 堆芯状态参数包括: 堆芯轴向功率偏差、 线功率密度和偏离泡核沸腾 比; 所述堆芯裕量包括冷却剂失水事故裕度。
[权利要求 4] 如权利要求 1所述的核电站堆芯状态的监测方法, 其特征在于, 所述 步骤 S1具体为: 从核电站分布式控制系统获取第一测量数据, 并将所 述第一测量数据存储在第一数据库。
[权利要求 5] 如权利要求 4所述的核电站堆芯状态的监测方法, 其特征在于, 在所 述步骤 S1之后, 所述监测方法还包括: 验证所述第一测量数据的完整 性和正确性。
[权利要求 6] 如权利要求 1所述的核电站堆芯状态的监测方法, 其特征在于, 所述 步骤 S2具体为: 从核电站堆芯测量系统的自给能中子探测器获取第二 测量数据, 并将所述第二测量数据存储在第二数据库。
[权利要求 7] 如权利要求 6所述的核电站堆芯状态的监测方法, 其特征在于, 在所 述步骤 S2之后, 所述监测方法还包括: 验证所述第二测量数据的完整 性和正确性。
[权利要求 8] 如权利要求 1所述的核电站堆芯状态的监测方法, 其特征在于, 在执 行所述步骤 S1及 S2之后, 且在执行所述步骤 S3之前, 所述监测方法 还包括:
接收客户端的应用调用请求, 基于所述应用调用请求判断所述客户端 是否具有应用调用权限, 并在判断结果为是吋, 执行所述步骤 S3。
[权利要求 9] 如权利要求 1所述的核电站堆芯状态的监测方法, 其特征在于, 所述 步骤 S3具体为:
根据所述第一测量数据和所述第二测量数据, 对堆芯理论计算单元进 行三维功率分布的重构修正, 并对重构修正后的三维功率分布进行处 理, 以及将所述重构修正后的三维功率分布与子通道热工水利计算相 结合, 获得堆芯状态参数和堆芯裕量。
[权利要求 10] 如权利要求 1所述的核电站堆芯状态的监测方法, 其特征在于, 在执 行所述步骤 S3之后, 且在执行所述步骤 S4之前, 所述监测方法还包 括: 将所述堆芯状态参数和所述堆芯裕量存储在第三数据库。
[权利要求 11] 如权利要求 1所述的核电站堆芯状态的监测方法, 其特征在于, 所述 步骤 S4具体为:
对所述堆芯状态参数和所述堆芯裕量进行处理, 以获得堆芯状态的跟 踪监测数据和预测数据, 并显示输出所述跟踪监测数据和所述预测数 据。
[权利要求 12] 如权利要求 2所述的核电站堆芯状态的监测方法, 其特征在于, 所述 堆芯出口温度由设置在核电站工艺系统接口层的堆芯出口热电偶探测 器采集并发送于所述分布式控制系统;
所述一回路温度和所述一回路压力均由设置在核电站工艺系统接口层 的反应堆冷却剂系统采集并发送于所述分布式控制系统;
所述堆芯硼浓度由设置在核电站工艺系统接口层的化学和容积控制系 统采集并发送于所述分布式控制系统;
所述控制棒棒位信号由设置在核电站工艺系统接口层的棒控棒位系统 采集并发送于所述分布式控制系统。
[权利要求 13] 如权利要求 12所述的核电站堆芯状态的监测方法, 其特征在于, 所述 堆芯出口温度由所述堆芯出口热电偶探测器采集, 并经由设置在核电 站自动控制和保护层的堆芯测量系统信号调理单元转发至所述分布式 控制系统。
[权利要求 14] 如权利要求 1所述的核电站堆芯状态的监测方法, 其特征在于, 所述 步骤 S4具体为:
通过设置在核电站自动控制和保护层或操作和管理信息层的客户端对 所述堆芯状态监测数据进行显示输出。
[权利要求 15] 一种核电站堆芯状态的监测服务器, 其特征在于, 所述监测服务器包 括:
第一测量数据获取单元, 用于从核电站分布式控制系统获取第一测量 数据;
第二测量数据获取单元, 用于从核电站堆芯测量系统的自给能中子探 测器获取第二测量数据;
数据处理单元, 用于根据所述第一测量数据和所述第二测量数据获取 堆芯状态参数和堆芯裕量;
数据输出单元, 用于输出所述堆芯状态参数和所述堆芯裕量。
[权利要求 16] 如权利要求 15所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述第一测量数据包括: 堆芯出口温度、 一回路温度、 一回路压力、 堆 芯硼浓度和控制棒棒位信号; 所述第二测量数据包括自给能中子探测 器测得的信号。
[权利要求 17] 如权利要求 15所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述堆芯状态参数包括: 堆芯轴向功率偏差、 线功率密度和偏离泡核沸 腾比; 所述堆芯裕量包括冷却剂失水事故裕度。
[权利要求 18] 如权利要求 15所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述监测服务器还包括:
第一数据库, 用于存储从核电站分布式控制系统获取的第一测』
[权利要求 19] 如权利要求 18所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述监测服务器还包括:
第一验证单元, 用于在所述第一数据库存储所述第一测量数据后, 验 证所述第一测量数据的完整性和正确性。
如权利要求 15所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述监测服务器还包括:
第二数据库, 用于存储从核电站堆芯测量系统的自给能中子探测器获 取的第二测量数据。
如权利要求 20所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述监测服务器还包括:
第二验证单元, 用于在所述第二数据库存储所述第二测量数据后, 验 证所述第二测量数据的完整性和正确性。
如权利要求 15所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述监测服务器还包括:
应用管理单元, 用于在所述第一测量数据获取单元获取所述第一测量 数据、 以及所述第二测量数据获取单元获取所述第二测量数据之后, 且所述数据处理单元获取所述堆芯状态参数和所述堆芯裕量之前, 接 收客户端的应用调用请求, 基于所述应用调用请求判断所述客户端是 否具有应用调用权限。
如权利要求 22所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述应用管理单元还用于对所述监测服务器的工作参数进行配置和维护 如权利要求 15所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述数据处理单元具体用于根据所述第一测量数据和所述第二测量数据 , 对堆芯理论计算单元进行三维功率分布的重构修正, 并对重构修正 后的三维功率分布进行处理, 以及将所述重构修正后的三维功率分布 与子通道热工水利计算相结合, 获得堆芯状态参数和堆芯裕量。 如权利要求 15所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述监测服务器还包括: 第三数据库, 用于在所述数据处理单元获取所述堆芯状态参数和堆芯 裕量之后, 且所述数据输出单元输出所述堆芯状态参数和所述堆芯裕 量之前, 存储所述堆芯状态参数和所述堆芯裕量。
[权利要求 26] 如权利要求 15所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述数据输出单元具体用于: 对所述堆芯状态参数和所述堆芯裕量进行 处理, 以获得堆芯状态的跟踪监测数据和预测数据, 并显示输出所述 跟踪监测数据和所述预测数据。
[权利要求 27] 如权利要求 16所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述堆芯出口温度由设置在核电站工艺系统接口层的堆芯出口热电偶探 测器获取并发送于所述分布式控制系统;
所述一回路温度和所述一回路压力均由设置在核电站工艺系统接口层 的反应堆冷却剂系统采集并发送于所述分布式控制系统;
所述堆芯硼浓度由设置在核电站工艺系统接口层的化学和容积控制系 统采集并发送于所述分布式控制系统;
所述控制棒棒位信号由设置在核电站工艺系统接口层的棒控棒位系统 采集并发送于所述分布式控制系统。
[权利要求 28] 如权利要求 27所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述堆芯出口温度由所述堆芯出口热电偶探测器采集, 并经由设置在核 电站自动控制和保护层的堆芯测量系统信号调理单元转发至所述分布 式控制系统。
[权利要求 29] 如权利要求 15所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述数据输出单元具体用于: 将所述堆芯状态参数和堆芯裕量输出至设 置在核电站自动控制和保护层或操作和管理信息层的客户端进行显示
[权利要求 30] 如权利要求 15所述的核电站堆芯状态的监测服务器, 其特征在于, 所 述监测服务器还包括:
接口单元, 用于基于 TCP协议与所述分布式控制系统、 所述堆芯测量 系统和客户端进行通讯。 [权利要求 31] —种核电站堆芯状态的监?! 系统, 其特征在于, 所述监测系统包括: 服务器和客户端;
所述服务器用于获取第一! 量数据和第二测量数据, 以及根据所述第 一测量数据和所述第二测』 数据获取堆芯状态参数和堆芯裕量, 并将 所述堆芯状态参数和所述堆芯裕量输出至所述客户端;
所述客户端用于显示输出所述堆芯状态参数和所述堆芯裕量。
[权利要求 32] 如权利要求 31所述的核电站堆芯状态的监测系统, 其特征在于, 所述 监测系统还包括: 核电站分布式控制系统, 以及具有自给能中子探测 器的核电站堆芯测量系统;
所述分布式控制系统用于向所述服务器提供所述第一测量数据; 所述堆芯测量系统用于向所述服务器提供所述第二测量数据。
[权利要求 33] 如权利要求 31或 32所述的核电站堆芯状态的监测系统, 其特征在于, 所述第一测量数据包括: 堆芯出口温度、 一回路温度、 一回路压力、 堆芯硼浓度和控制棒棒位信号; 所述第二测量数据包括自给能中子探 测器测得的信号。
[权利要求 34] 如权利要求 31或 32所述的核电站堆芯状态的监测系统, 其特征在于, 所述堆芯状态参数包括: 堆芯轴向功率偏差、 线功率密度和偏离泡核 沸腾比; 所述堆芯裕量包括冷却剂失水事故裕度。
PCT/CN2015/094494 2015-11-12 2015-11-12 一种核电站堆芯状态的监测方法、服务器及系统 WO2017079948A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094494 WO2017079948A1 (zh) 2015-11-12 2015-11-12 一种核电站堆芯状态的监测方法、服务器及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094494 WO2017079948A1 (zh) 2015-11-12 2015-11-12 一种核电站堆芯状态的监测方法、服务器及系统

Publications (1)

Publication Number Publication Date
WO2017079948A1 true WO2017079948A1 (zh) 2017-05-18

Family

ID=58694694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094494 WO2017079948A1 (zh) 2015-11-12 2015-11-12 一种核电站堆芯状态的监测方法、服务器及系统

Country Status (1)

Country Link
WO (1) WO2017079948A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1684203A (zh) * 2004-04-09 2005-10-19 法玛通Anp公司 用于监测核反应堆堆芯的方法和装置
CN101669176A (zh) * 2007-03-19 2010-03-10 阿海珐核能公司 确定核反应堆堆芯三维功率分布的方法
CN101740153A (zh) * 2009-12-01 2010-06-16 中国广东核电集团有限公司 核电站机组正常运行状态监视显示装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1684203A (zh) * 2004-04-09 2005-10-19 法玛通Anp公司 用于监测核反应堆堆芯的方法和装置
CN101669176A (zh) * 2007-03-19 2010-03-10 阿海珐核能公司 确定核反应堆堆芯三维功率分布的方法
CN101740153A (zh) * 2009-12-01 2010-06-16 中国广东核电集团有限公司 核电站机组正常运行状态监视显示装置及系统

Similar Documents

Publication Publication Date Title
CN105448361B (zh) 一种核电站堆芯状态的监测方法、服务器及系统
JP6899884B2 (ja) 原子炉保護システム
CN101449259B (zh) 计算机化过程系统
JP6015178B2 (ja) 安全システム
CN102142291B (zh) 一种核电站事故后监视参数的显示方法及系统
KR101022606B1 (ko) 원자력 발전소의 디지털 신호 전자제어 처리를 위한 장치 및 방법
EP3241219B1 (en) Remote monitoring of critical reactor parameters
WO2016091158A1 (zh) 核电站多样性驱动方法、装置及系统
CA2773370C (en) A method and system to validate wired sensors
JP2016095317A (ja) 原子炉の運転支援方法
CN106448764B (zh) 核电站乏燃料水池监测系统、方法
CN109213108B (zh) 一种核电站操纵员运行辅助支持系统以及方法
CN106448775A (zh) 一种核电站反应堆保护系统安全参数监控装置与方法
KR101199625B1 (ko) 원자력 발전소의 디지털 신호 전자제어 처리를 위한 장치 및 방법
WO2017079948A1 (zh) 一种核电站堆芯状态的监测方法、服务器及系统
Han et al. The application of EPICS in TMSR radiation protection and access control system
CN203786885U (zh) 电力设备状态信息采集器
Zhao et al. Reliability of digital reactor protection system based on extenics
CN203520894U (zh) 一种用于核电站压水堆堆芯冷却监测的数字化仪控装置
WO2023159938A1 (zh) 反应堆在线保护方法、系统及可读存储介质
Li et al. HIRFL cooling water-monitoring system design and construct
CN209488267U (zh) 一种电力检测现场和后台交互的管理系统
Végh et al. Improving research reactor accident response capability at the Hungarian nuclear safety authority
CN112635086A (zh) 一种核电厂主控制室事故后监控系统和方法
Végh et al. Building up an on-line plant information system for the emergency response center of the hungarian nuclear safety directorate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908078

Country of ref document: EP

Kind code of ref document: A1