WO2017078989A1 - Conception de fracturations hydrauliques - Google Patents

Conception de fracturations hydrauliques Download PDF

Info

Publication number
WO2017078989A1
WO2017078989A1 PCT/US2016/058725 US2016058725W WO2017078989A1 WO 2017078989 A1 WO2017078989 A1 WO 2017078989A1 US 2016058725 W US2016058725 W US 2016058725W WO 2017078989 A1 WO2017078989 A1 WO 2017078989A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracturing
wellbore
design
finalized
computer
Prior art date
Application number
PCT/US2016/058725
Other languages
English (en)
Inventor
Elizaveta GORDELIY
Romain Charles Andre Prioul
Sylvain NINTCHEU FATA
Original Assignee
Schlumberger Technology Corporation
Schlumberger Canada Limited
Services Petroliers Schlumberger
Schlumberger Technology B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corporation, Schlumberger Canada Limited, Services Petroliers Schlumberger, Schlumberger Technology B.V. filed Critical Schlumberger Technology Corporation
Priority to US15/773,301 priority Critical patent/US20180320484A1/en
Publication of WO2017078989A1 publication Critical patent/WO2017078989A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0206Price or cost determination based on market factors
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/06Sleeve valves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well

Definitions

  • Hydraulic fracturing can be employed to enhance the productivity of wellbores in hydrocarbon bearing formations, including in so-called “tight” or "unconventional organic-rich shale" formations where reservoir permeability is otherwise too low for economic production.
  • the first ramp can be used to initiate and grow a small fracture, called a "calibration fracture” in the formation (also called “initiation/breakdown” sequence), which can be used to determine the instantaneous shut-in pressure (ISIP) in the formation at the point of the calibration fracture.
  • a calibration fracture also called “initiation/breakdown” sequence
  • the main fracturing ramp can occur. This can involve re-pressurizing the wellbore with viscous gel or non-viscous "slickwater” type fluids at high rates (including, for example, up to 60 bbl/min) to force open rock in the formation against existing in-situ stresses, and generate narrow fractures, either planar or in complex network forms.
  • proppant can be tailed in at concentrations ranging from, for example, 0.5 PPAto 10 PPA.
  • Proppant (such as sand, sintered bauxite, etc.) can be used to pack the fracture and maintain conductive fluid flow channels after the fracturing pressure is removed and the in-situ stresses attempt to re-close the fracture.
  • a computer- readable tangible medium includes instructions directing a processor to access initial conditions of a wellbore as well as potential completion types.
  • the computer-readable tangible medium also has instructions directing the processor to determine a desirable finalized fracturing design for the wellbore by iteratively varying one or more fracturing properties for each of the potential completion types.
  • a computer-readable tangible medium includes instructions directing a processor to access initial conditions of a wellbore as well as potential completion types.
  • the computer-readable tangible medium also has instructions directing the processor to isolate several finalized fracturing designs associated with each of the potential completion types.
  • the computer-readable tangible medium further has instructions directing the processor to choose a desirable finalized fracturing design from the finalized fracturing designs.
  • a computer-readable tangible medium includes instructions directing a processor to access initial conditions of a wellbore along with a potential completion type.
  • the computer-readable tangible medium also has instructions directing the processor to isolate a finalized fracturing design associated with the potential completion type by varying one or more fracturing properties.
  • the finalized fracturing design includes a pressure of fracturing fluid low enough to be at or below an allowable peak pressure and high enough to initiate and propagate a fracture in a formation with an opening at or above an allowed threshold value.
  • FIG. 1 illustrates an example wellbore in which embodiments of hydraulic fracturing design can be employed
  • FIG. 2 illustrates another example wellbore in which embodiments of hydraulic fracturing design can be employed
  • FIG. 3 illustrates an example improvement workflow in accordance with embodiments of hydraulic fracturing design
  • FIG. 4 illustrates an example reduction routine in accordance with embodiments of hydraulic fracturing design
  • Fig. 5 illustrates example completion geometries of initial defects for 2D and axisymmetric modeling configurations in accordance with embodiments of hydraulic fracturing design
  • Fig. 6 illustrates example completion geometries of initial defects for 3D modeling in accordance with embodiments of hydraulic fracturing design
  • Fig. 7 illustrates an example computing environment that can be used in accordance with various implementations of hydraulic fracturing design.
  • elements of hydraulic fracturing design can be used to create desirable fractures in a formation, and properly deploy proppant in the fractures, at pressures low enough to avoid damaging equipment and structures associated with a wellbore.
  • this can include modeling hydraulic fracture initiation and propagation in the formation using a numerical algorithm coupling flow of the fracturing fluid and deformation of materials in the surrounding formation.
  • optimize can include any improvements up to and including optimization.
  • improve can include optimization.
  • Other terms like “minimize” and “maximize” can also include actions reducing and increasing, respectively, various quantities and qualities.
  • threshold can include a boundary, limit and/or value approached from any direction.
  • FIG. 1 illustrates an example wellbore 102 in which some embodiments of hydraulic fracturing design can be pursued.
  • Wellbore 102 can be onshore or offshore and can be formed in any manner known in the art.
  • Wellbore 102 can be horizontal, vertical, deviated, or any combination thereof.
  • wellbore 102 can be subjected to a variety of different fracturing operations.
  • a plug and perforation operation in wellbore 102 is illustrated.
  • a casing 104 can be fixed in place inside wellbore 102 using cement 106.
  • casing 104 can hydraulically isolate wellbore 102 from a formation 108 surrounding wellbore 102.
  • a plug 110 such as a packer, etc., can be set inside casing 104 hydraulically isolating a first section 112 of wellbore 102 from a second section 114 of wellbore 102.
  • a tool 116 such as, for example, a wireline tool, can be run into wellbore 102 to explosively perforate casing 104 and form perforations 118 into formation 108, providing hydraulic connectivity between wellbore 102 and formation 108.
  • Tool 116 can then be removed and fracturing fluid and proppant can be introduced under pressure into casing 104, expanding perforations 118 into fractures 120 in formation 108.
  • fracturing fluid can be used in initial ramps, and proppant can be added to the fracturing fluid in subsequent ramps.
  • different types of fracturing fluid can be used in various ramps.
  • one type of fracturing fluid may be used in an initial ramp, and another type of fluid may be used with proppant in a subsequent ramp such as, for example, to maintain an opening of fractures 120, created during previous ramps.
  • the pressure with which fracturing fluid(s) are pumped into formation 108 may vary during the various ramps in order to accomplish desired objectives (such as creating and/or propagating fractures 120, dispersing proppant into fractures 120, etc.) while avoiding various problems, such as, for example, damaging wellbore 102, damaging a wellhead associated with wellbore 102, damaging pumps, completions elements and/or structures associated with wellbore 102, etc.
  • Fig. 2 illustrates example wellbore 102 undergoing sliding sleeve hydraulic fracturing in accordance with some embodiments of hydraulic fracturing design.
  • sliding sleeve fracturing operations can utilize an installed completion string 124 comprising multiple isolation packers 126 and fracture sleeves 128, as well as production tubing 130, inside wellbore 102.
  • wellbore 102 undergoing sliding sleeve hydraulic fracturing can be an open -hole wellbore.
  • completion string 124 can be permanently installed in wellbore 102.
  • mechanically actuated valves in completion string 124 can be utilized to expose areas of formation 108 (for example, adjacent to fracture sleeve 128) to fracturing fluids under pressure flowing through completion string 124. These fracturing fluids, which in some ramps can also include proppant, can develop fractures 120 in formation 108.
  • desired zones of wellbore 102 can be subjected to the pressurized fracturing fluid through use of the mechanically actuated valves, while other areas of wellbore 102 can be hydraulically isolated from the fracturing fluid by isolation packers 126.
  • the mechanically actuated valves can be activated by a given diameter ball being dropped into the fracturing fluid and pumped via completion string 124 to a seat designed to receive the ball's particular diameter.
  • FIG. 1 and Fig. 2 illustrate two hydraulic fracturing methods
  • the concepts of hydraulic fracturing design can be used with any fracturing methods known in the art.
  • equipment and structures associated with wellbore 102 can include, for example, various casings, completions equipment, pumps, wellhead equipment, various structures (such as natural fractures and/or imperfections in formation 108 proximate wellbore 102), etc.
  • Fracturing fluid pressures can ebb and flow during the fracturing process.
  • the pressure of the fracturing fluid may reach a peak, known as fracture breakdown pressure, after which the fracturing fluid pressure may subside.
  • the pressure of the fracturing fluid may then ramp up again during a proppant injection stage.
  • pressures to initiate and propagate fractures 120 from wellbore 102 into formation 108 can depend on operational hydraulic parameters (such as fracturing fluid properties and injection rates) as well as on the design of completions (such as types, selections and placements of plugs 110, and/or a completion string 124— along with its isolation packers 126 and fracture sleeves 128, etc.) in wellbore 102.
  • pressures of fracturing fluids experienced during a well fracturing operation can also be associated with a geometry of an initial defect associated with the formation 108 (including in formation 108) exposed to fracturing fluids from wellbore 102.
  • Initial defects can include perforations 118, sleeves, notches, natural defects (such as naturally present small cracks), etc., at a surface of formation 108 exposed to wellbore 102.
  • fracture 120 can be reoriented towards a desired fracture plane, i.e. a plane perpendicular to the minimum far-field stress.
  • a desired fracture plane i.e. a plane perpendicular to the minimum far-field stress.
  • NWB near-wellbore
  • the opening of fracture 120 can be restricted near to wellbore 102.
  • Such a restriction of fracture 120 can result in a reduced opening of fracture 120, creating a risk of fracture pinching which may trap proppant in a pinched section of fracture 120 causing a screen-out of wellbore 102 due to proppant bridging.
  • a reduction of the opening of fracture 120 near wellbore 102 can also generate a near-wellbore pressure loss, which can contribute to over pressuring wellbore 102 and under pressuring fracture 120.
  • the use of a fracturing fluid with a higher fluid viscosity and/or a larger injection rate can result in a larger fracture reorientation distance, a less curved fracture path and a wider near-wellbore opening of fracture 120, which can reduce the risk of a screen out.
  • the pressure of fracturing fluid in wellbore 102 to propagate the fracture 120 can be larger for larger fluid viscosity and larger injection rate.
  • increased injection rate can also increase perforation friction.
  • a change of fluid properties (such as properties of fracturing fluids) with temperature and time can also affect the increase of pressure due to the NWB fracture tortuosity.
  • a fracture 120 can initiate at a tip of a perforation tunnel (away from wellbore 102) or from a base of the perforation tunnel (near wellbore 102).
  • a micro-annulus can be formed between formation 108 and cement 106, between cement 106 and casing 104, or between any other locations known in the art.
  • a perforation tunnel of a perforation 118 is long enough and is oriented with an angle from a desired fracture plane below a given threshold, fracture 120 can initiate and propagate from perforation 118.
  • the threshold angle from the desired fracture plane can be 10-20 degrees, though in others (such as in vertical wells, for example) the threshold angle can be as high as 60 degrees.
  • misalignment of perforations 118 with a desired fracture plane can also influence pressure loss and aperture reduction due to NWB fracture tortuosity.
  • a lower angle of misalignment between perforations 118 and the desired fracture plane can result in a lower viscous pressure drop near wellbore 102 and a lower breakdown pressure.
  • a larger fluid viscosity of the fracturing fluid can reduce the number of fractures 120 that propagate in response to the fracturing fluid.
  • a bi-wing fracture 120 may eventually be formed.
  • fracture competition in the near-wellbore region may have different behavior for cased perforated completions due to a larger compressive stress concentration in the vicinity of wellbore 102, and the open hole completion (such as completion string 124, for example) may be more desirable since it may potentially decrease and/or minimize any NWB fracture tortuosity problems.
  • an opening of fracture 120 can increase.
  • proppant injection can be delayed until the opening of fracture 120 is large enough to avoid such screen-out.
  • This disclosure provides several examples of issues that can be encountered during a well fracturing operation, though it will be understood that many other issues can be also encountered.
  • Various aspects of hydraulic fracturing design can be useful in ameliorating and/or avoiding such issues through customization of various design parameters including, for example, a completion type, a geometry of an initial defect, and/or the operational hydraulic parameters associated with a well fracturing operation.
  • the various design parameters can be customized to influence fracturing fluid pressures to initiate fractures 120 from initial defects not residing in a desired fracture plane, such that the fractures 120 propagate through the NWB tortuous region.
  • an improvement workflow in conjunction with aspects of hydraulic fracturing design can be useful in obtaining one or more sets of parameters to decrease and/or minimize the pressure of the fracturing fluid during the fracturing operation, while providing a fracture opening sufficient for proppant placement and screen-out avoidance in fracture 120.
  • elements of hydraulic fracturing design can be used to locate a desirable completion design as well as desirable operational hydraulic parameters to be used during the fracturing process. In one possible aspect, this can be accomplished by, for example, employing operational hydraulic fracturing parameters and a completion design configured to decrease a peak pressure of fracturing fluid pumped into formation 108, such that the fracturing fluid initiates and propagates a potentially tortuous hydraulic fracture 120 from borehole 102 into formation 108 while avoiding screen out and other potential issues.
  • Such an improved workflow can be subject to a variety of factors including, for example, a minimum allowable fracture opening constraint for each potential completion type to be considered for wellbore 102.
  • the minimum allowable fracture opening can be determined based on a type of proppant being used. For example, in some possible aspects, it may be desirable to have the minimum allowable fracture opening be 2-3 times (or more) larger than the maximum diameter of the proppant being used in order to preclude issues such as clogging of fracture 120, etc.
  • fracturing stage or simply a stage, can be a hydraulically isolated section of a well (such as, for example, sections 112, 114 in wellbore 102) for which fracturing operations can be performed.
  • a cluster can be a set of initial defects in formation 108.
  • Fig. 3 illustrates an example improved workflow 300 in accordance with embodiments of hydraulic fracturing design.
  • the initial conditions of wellbore 102 can include any information regarding wellbore 102 and formation 108, such as, for example, a geometry of wellbore 102 (e.g. vertical, horizontal, deviated, etc.), measured geomechanical properties of formation 108 (such as principal stress magnitudes and orientations, rock properties, etc.), equipment and/or structures present in wellbore 102 and/or associated with wellbore 102, etc.
  • one possible initial condition of wellbore 102 can include information associated with a specified depth of a stage (such as sections 112, 114) in wellbore 102.
  • improvement workflow 300 accesses potential completion types. These can include any type of completion types known in the art, including open hole 306, cased hole 308, cased hole with fracturing sleeves 310, and others 312. In one possible implementation, if a given completion type cannot be used with wellbore 102 and/or the given completion type is disfavored for any reason, workflow 300 can be simplified by ignoring the given completion type at block 304.
  • a finalized fracturing design is isolated having a pressure of fracturing fluid within an allowable operating range that is low enough to be at or below an acceptable peak pressure to avoid damaging wellbore 102 (and/or equipment and structures associated therewith), and high enough at the end of a pad such that a fracture opening of fracture 120 is no smaller than a given allowed threshold value, such that deleterious issues including screen-out, etc., are avoided.
  • the given allowed threshold value can be obtained from specifications of one or more proppants contemplated for use in the well fracturing operation in wellbore 102.
  • an output closure stress of fracture 120 can provide guidance on the strength of proppant to be injected into fracture 120.
  • the allowable peak pressure can be assessed through study of various specifications of equipment and/or structures associated with wellbore 102.
  • the pressure of fracturing fluid discussed herein includes the highest pressure of any fracturing fluid which may be contemplated for use in a well fracturing operation.
  • isolating a finalized fracturing design for each completion type can include creating a plurality of possible fracturing designs for each potential completion type and choosing the desirable possible fracturing design (i.e. the possible fracturing design with lowest pressure of fracturing fluid, the cheapest and/or easiest possible fracturing design to implement, etc.) to be the finalized fracturing design for the completion type.
  • the desirable possible fracturing design i.e. the possible fracturing design with lowest pressure of fracturing fluid, the cheapest and/or easiest possible fracturing design to implement, etc.
  • each finalized fracturing design is isolated by varying one or more of a variety of fracturing properties to arrive at a pressure of fracturing fluid in the allowable operating range.
  • fracturing properties can include, for example: one or more operational hydraulic parameters (such as, for example, properties of the fracturing fluid(s) contemplated for use in the well fracturing operation); one or more properties associated with one or more initial defects in formation 108 adjacent to wellbore 102, etc.
  • all or part of the functions described in block 314 can be achieved through implementation of a reduction routine, such as reduction routine 400 described in conjunction with Fig. 4 below.
  • Properties of the fracturing fluid(s) can include anything known in the art including, for example, fluid viscosities for Newtonian fluids, rheological properties for non-Newtonian fluids, injection rate schedules, etc.
  • initial defects as used herein can include any initial defects known in the art, including for example, man-made defects (such as perforations 118, notches, sleeves, etc.) and naturally occurring defects (such as cracks in formation 108, etc.).
  • the properties associated with initial defects considered at block 314 can include any properties known in the art, including, for example: geometries of the initial defects, a number of the initial defects, a diameter and/or diameters of the initial defects, a depth and/or depths of penetration of the initial defects into formation 108, a spacing and/or placement of the initial defects, etc.
  • a reduction routine such as reduction routine 400
  • a variety of factors including a depth of penetration of the notches into formation 108, an angular extent of the notches into formation 108, a location and orientation of the notches with respect to the direction of wellbore 102, etc., can be considered with the intent of decreasing and/or minimizing a pressure of fracturing fluid to safely initiate and propagate fractures 120 while avoiding the various issues described herein, including, for example, screen-out.
  • initial defects can be ignored in block 314, and other aspects of the well fracturing procedure, including, for example, other fracturing properties such as properties of the fracturing fluid(s), injection rate schedules, etc., can be considered and manipulated with the intent of decreasing and/or minimizing a pressure of fracturing fluid to safely initiate and propagate fracture 120 while avoiding the various issues described herein, including, for example, screen-out, damage to wellbore 102, and/or equipment associated therewith, etc.
  • a variety of information can be output for each finalized fracturing design isolated for each of the various completion types in block 314.
  • This variety of information can include anything isolated in block 314 and/or anything associated with the finalized fracturing designs including, for example, types of completions, fracturing properties (including hydraulic parameters and/or initial defect types and their depths, locations, etc.), minimum fracture openings at the end of each pad, closure stresses, trajectories of fractures 120, pressures of fracturing fluid calculated during each pad, improved completion designs, etc.
  • improvement workflow 300 returns to block 304. In this way improvement workflow 300 can cycle through all of the various completion types 306, 308, 310, and 312.
  • completion types 306, 308, 310, and 312 have been considered, and finalized fracturing designs have been isolated for them at block 314, improvement workflow 300 moves to block 320 where a desirable completion type can be chosen.
  • the choice of desirable completion type at block 320 can be based on a variety of factors including, for example, a minimum pressure of fracturing fluid achieved for the completion type in accordance with its associated finalized fracturing design as isolated in block 314, a cost of implementing a completion design incorporating the desirable completion type (wherein the cost can include the time and/or difficulty of implementing the completion design), possible field restrictions associated with the completion type, etc.
  • the finalized fracturing design associated with the desirable completion type can be termed the desirable finalized fracturing design.
  • the desirable completion type may be chosen because it is associated with the desirable finalized fracturing design.
  • the fracturing operation can then be performed using the finalized fracturing design associated with the desirable completion type (i.e. the desirable finalized fracturing design).
  • improvement workflow 300 could also be considered for multiple clusters at fixed locations in a single stage, whereby the locations of the clusters can be based on the properties of formation 108.
  • improvement workflow 300 could be augmented to include the improvement and/or optimization of the locations of the clusters within a stage.
  • Fig. 4 illustrates an example reduction routine 400 in accordance with embodiments of hydraulic fracturing design.
  • reduction routine 400 can be used to implement some or all of the functions (and achieve some or all of the goals) associated with block 314 in Fig. 3.
  • a trial geometry of one or more initial defects on a surface of formation 108 adjacent to wellbore 102 as well as operational hydraulic parameters are accessed for a given completion type.
  • operational hydraulic parameters such as, for example, properties of fracturing fluid(s) and injection rates contemplated for use in a well fracturing operation
  • multiple fracturing fluids may be used in the various ramps of a well fracturing operation.
  • properties of all the various fracturing fluids along with their injections rates can be accessed.
  • a numerical algorithm implemented on, for example, a computing device, can be used in conjunction with the trial geometry of each initial defect and the operational hydraulic parameters accessed at block 402 to simulate initiation and propagation of one or more fractures 120 from the initial defect(s). Any numerical algorithm known in the art can be used. In one possible aspect, the numerical algorithm can couple the flow of the fracturing fluid(s) used in the well fracturing operation to the corresponding deformation of the surrounding formation 108.
  • hydraulic fracturing such as that utilized in a well fracturing operation
  • HF hydraulic fracturing
  • hydraulic fracturing can be broadly defined as a process by which a fracture 120 initiates and propagates as a result of hydraulic loading (i.e., fluid pressure) applied by a viscous fracturing fluid inside the fracture 120.
  • hydraulic fracturing can include injecting a viscous fracturing fluid (with or without solids known as proppants) into one or more portions of wellbore 102 with sufficient pressure to initiate and propagate fracture 120 in formation 108.
  • a flow channel including potentially a high-conductivity flow channel— can be created allowing hydrocarbons, water and other substances and/or materials found in formation 108 to flow towards wellbore 102.
  • various numerical models known in the art can be used to simulate the hydraulic fracturing process. These models can include, for example, procedures to deal with (i) the mechanical deformation of the rock in reservoir 108 housing the fracture 120, (ii) the flow of fracturing fluid inside the fracture 120, and (iii) a fracture propagation aspect.
  • a numerical model used may include a robust and stable coupling algorithm between the rock deformation and the fluid flow.
  • the deformation of formation 108 during the hydraulic fracturing process can be modeled using any technique known in the art, including for instance, use of linear elasticity modeling techniques.
  • propagation of a fracture 120 together with front tracking schemes can be modeled following linear elastic fracture mechanics and fluid mechanics approaches.
  • fluid flow inside the fracture 120 can be described using the 2D Reynolds lubrication equation as: dw
  • p the fluid pressure
  • p the fluid density
  • g the gravity vector.
  • D ⁇ 3 /12 ⁇
  • the fluid viscosity
  • D can have a dependence on w as well as on the pressure gradient Vp.
  • propagation of fracture 120 can be modeled, for example, using the maximum tangential stress criterion. This condition can be implemented in the model via a comparison of the numerically computed equivalent mode I stress intensity factor and the fracture toughness.
  • the equivalent mode I stress intensity factor can be defined from the stress intensity factors Kj and K u in mode I (opening) and mode II (sliding), respectively, as:
  • K Leq cos - Ki cos - - K n sin 0 I, where 0 is the angle of fracture propagation, corresponding to the maximum tangential (hoop) stress direction ahead of the fracture 120.
  • the stress intensity factors in modes I and II can be computed from the components of the displacement jump across the fracture 120 in the directions normal and tangential to the fracture 120.
  • the normal displacement jump is the fracture width w.
  • the angle of fracture propagation 0 can be computed according to the maximum hoop stress condition from the stress intensity factors and/or from the stress field ahead of the crack.
  • the equivalent mode I stress intensity factor can be defined from the stress intensity factors K K n , and K m corresponding to the opening (mode I), sliding (mode II) and tearing (mode III) components of the displacement jump.
  • the direction of fracture propagation can be computed from the stress intensity factors and/or from the stress field ahead of the fracture 120.
  • a numerical model used to simulate the process of hydraulic fracturing can also include the initiation of a fracture 120 or multiple fractures 120.
  • the numerical model can simulate initiation of a fracture 120 or multiple fractures 120 from initial defects of the formation 108 connected to wellbore 102.
  • the numerical model can simulate fluid injection into wellbore 102 and the flow of fluid from wellbore 102 into one or more of the initial defects. Once a critical state of an initial defect has been reached during the fluid injection, a fracture 120 can be initiated from the initial defect and start to propagate into formation 108.
  • a critical state of an initial defect can be defined in the numerical model in any way known in the art, including for example, as a state at which a maximum tensile stress on the initial defect exceeds the tensile strength of formation 108 in which the initial defect is found, and/or as a state at which the averaged tensile stress over a certain area in formation 108 in the vicinity of the initial defect exceeds the tensile strength of formation 108.
  • the critical state of a pre-existing initial defect can be defined in the numerical model, for example, as a state at which the equivalent mode I stress intensity factor is equal to fracture toughness of the rock, or as a state at which the energy release rate in the direction of fracture propagation reaches its critical value, or as a state at which the traction or separation within a cohesive zone ahead of the fracture tip reaches its critical value.
  • the numerical model can model propagation of the fracture 120 into formation 108.
  • the numerical model can simulate fracture initiation from a defect-free, open -hole wellbore 102, such as, for example, when no initial defects are present.
  • the output of the simulation performed at block 404 can include a peak pressure including the highest and/or maximum pressure of fracturing fluid achieved during fracture initiation and propagation, and the fracture opening at the end of the pad and before proppant injection.
  • the output of the simulation performed at block 404 can also include fracture trajectory and closure stress on the fracture 120 at the end of fracturing fluid injection for the chosen completion type being evaluated in the simulation.
  • reduction routine 400 can proceed to block 410 where the geometry of the initial defect and/or the hydraulic parameters associated with the well fracturing operation can be altered in an attempt to produce a fracture opening large enough to meet the allowable threshold.
  • the geometry of the initial defect can be varied at block 410 in such a way as to decrease and/or minimize a peak pressure of fracturing fluids used during the simulated well fracturing operation.
  • the newly varied geometry of the initial defect and/or hydraulic parameters can then be fed back into reduction routine 400 at block 402.
  • reduction routine 400 can proceed to block 412.
  • the allowed threshold value used in block 408 can correspond to a fracture opening of fracture 120 large enough to avoid deleterious issues such as screen-out, etc., during the well fracturing operation being simulated in reduction routine 400.
  • the given allowed threshold value can be obtained from specifications of one or more proppants contemplated for use in the well fracturing operation being simulated in reduction routine 400.
  • block 410 can endeavor to isolate an initial defect geometry that results in a fracture opening greater than or equal to the allowed threshold with a lowest possible allowable peak pressure.
  • reduction routine 400 can go to block 410, where the peak pressure of fracturing fluids used during the simulated well fracturing operation can be decreased and/or minimized by varying the geometry of the initial defect and/or the hydraulic parameters associated with the well fracturing operation. The newly varied geometry of the initial defect and/or hydraulic parameters can then be fed back into reduction routine 400 at block 402.
  • the reduction criteria associated with the peak pressure of the fracturing fluid are satisfied.
  • Reduction routine 400 can then proceed to block 414, where an improved and/or optimal geometry of the initial defect as well as operational hydraulic parameters to decrease and/or minimize the peak pressure determined at the last iteration of block 402 can be the output.
  • the output of block 414 can be fed into and used by block 316.
  • Figs. 5 and 6 illustrate various example completion geometries of initial defects in accordance with embodiments of hydraulic fracturing design.
  • the completion geometries of the initial defects are configured for various 2D and axisymmetric modeling configurations
  • the completion geometries of the initial defects are configured for various 3D modeling configurations.
  • ⁇ , ⁇ 2 , and ⁇ 3 denote far field in-situ stresses in directions 1, 2 and 3, respectively.
  • the initial defects can take the form of line perforations 502 extending from wellbore 102 into formation 108.
  • Line perforations 502 can be perforations 118 having any cross-section known in art.
  • the initial defects can take the form of one or more radial notches 504 extending from wellbore 102 into formation 108.
  • Radial notches 504 are one possible type of initial defect exhibiting axisymmetry, and can be formed in any manner known in the art, including through jet blasting of formation 108. Moreover, notches 504 can be at any location.
  • a sleeve around wellbore 102 can include an opening in the form of a fracturing sleeve 506 (such as, for example, fracture sleeves 128) acting as an initial defect through which fracturing fluid(s) from wellbore 102 can be placed into contact with formation 108.
  • fracturing sleeve can include anything known in the art separating wellbore 102 from formation 108, including for example, casing 104, cement 106, one or more completions elements, any combination thereof, etc.
  • fracturing sleeve 506 can be installed using any methods known in the art, and fracturing sleeve 506 can have any size and configuration known in the art.
  • Fig. 6 illustrates yet more example configurations of an open or cased wellbore 102 with varying numbers and types of initial defects extending into formation 108.
  • initial defects can take the form of aligned perforations 602, spiral perforations 604 and/or longitudinal notches 606 extending from wellbore 102 into formation 108.
  • the initial defects can take the form of one or more radial notches 608 extending from wellbore 102 into formation 108.
  • Radial notches 608 are one possible type of initial defect which may exhibit axisymmetry, and which may have any orientation relative to wellbore 102, can take any shape, and can be formed in any manner known in the art, including through jet blasting of formation 108.
  • notches 608 can exhibit any form of angular extent, be at any location and have any orientation known in the art.
  • a sleeve around wellbore 102 can include one or more openings in the form of fracturing sleeves 610 (such as, for example, fracture sleeves 128) acting as initial defects through which fracturing fluid(s) from wellbore 102 can be placed into contact with formation 108.
  • fracturing sleeves can include anything known in the art separating wellbore 102 from formation 108 (and/or exposing at least a portion of wellbore 102 to formation 108), including for example, casing 104, cement 106, one or more completions elements, any combination thereof, etc.
  • fracturing sleeves 610 can be installed using any methods known in the art, and fracturing sleeves 610 can have any size and configuration known in the art. [0088] It will be understood that the various initial defects illustrated in Figs. 5 and 6 may be used in any possible combinations in order to model well fracturing operations in accordance with embodiments of hydraulic fracturing design.
  • the simulations can be based on one or more two-dimensional models, such as, for example, when fracture re-orientation is simulated from intervals of line perforations 502 in a vertical wellbore 102.
  • simulations can rely on one or more three-dimensional models.
  • a numerical algorithm can be used in such simulations.
  • such a numerical algorithm can be based on coupling a fluid flow scheme, such as that modeled by the Reynolds lubrication equation, with a rock deformation solver.
  • a rock deformation model can be based, for example, on the theory of linear elasticity.
  • linearly elastic 2D or axisymmetric or 3D models can be built on the basis of the extended finite element method (XFEM) and/or the displacement discontinuity method (DDM) described below, or any other methods known in the art.
  • XFEM extended finite element method
  • DDM displacement discontinuity method
  • the extended finite element method is a finite element based method that can model fractures 120 not aligned with the background finite element mesh.
  • the space of approximation functions can be enriched by adding discontinuous and singular functions corresponding to the discontinuities and singularities in the displacement and stress fields associated with fracture 120.
  • the pressure of fracturing fluid within fracture 120 can act as the traction boundary condition on the fracture faces.
  • XFEM can solve for the displacement field associated with the trial fluid pressure, and the corresponding fracture opening can be found from the displacement jump.
  • the trial fluid pressure can be updated from the solution of, for example, the Reynolds lubrication equation.
  • the coupled XFEM and the lubrication solver can provide a numerical solution for the fluid pressure and the fracture opening.
  • XFEM is a domain-based method and can include modeling of cement 106, casing 104, micro-annulus, as well as poroelastic effects in formation 108.
  • the displacement discontinuity method can include a particular class of integral equation techniques for boundary-value problems involving structural discontinuities such as cracks and faults in an infinite elastic medium.
  • the DDM can be based on the exact solution of the problem of a constant displacement discontinuity (DD) over a bounded flat area in an infinite elastic solid.
  • the primary unknowns i.e. the DD's
  • the DD's can include the aperture and rides of a fracture 120.
  • a fracture 120 can be represented as a series of DD's (with different strengths to be determined) distributed on the surface of the fracture 120.
  • FIG. 7 shows an example system 700, such as one or more computing devices, programmable logic controllers (PLCs), etc., with a processor 702 and memory 704 for hosting a variety of applications/programs such as a hydraulic fracturing design module 706 for implementing various embodiments of hydraulic fracturing design as discussed in this disclosure.
  • PLCs programmable logic controllers
  • System 700 is one example of a computing device or programmable device, and is not intended to suggest any limitation as to scope of use or functionality of system 700 and/or its possible architectures.
  • system 700 can include a laptop computer, a desktop computer, a handheld computing device, a mainframe computer, etc., or any combination or accumulation thereof.
  • system 700 includes one or more processors or processing units 702, one or more memory components 704 (on which, for example, hydraulic fracturing design module 706 may be stored in whole or in part), a bus 708 configured to allow various components and devices to communicate with each other, and local data storage 710, among other components.
  • Memory 704 may include one or more forms of volatile data storage media such as random access memory (RAM)), and/or one or more forms of nonvolatile storage media (such as read-co memory (ROM), flash memory, and so forth).
  • RAM random access memory
  • ROM read-co memory
  • Bus 708 can include one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. Bus 708 can include wired and/or wireless buses.
  • Local data storage 710 can include fixed media (e.g., RAM, ROM, a fixed hard drive, etc.) as well as removable media (e.g., a flash memory drive, a removable hard drive, optical disks, magnetic disks, and so forth).
  • a user interface (UI) device may also communicate via a user interface (UI) controller 712, which may connect with the UI device either directly or through bus 708.
  • UI user interface
  • a network interface 714 may communicate outside of system 700 via a connected network, and in some implementations may communicate with hardware, such as sensors, downhole equipment, surface equipment, etc.
  • users and devices may communicate with system 700 via one or more input/output devices 716 via bus 708 and via a USB port, for example.
  • input/output devices 716 can include various devices capable of sending and/or receiving laser and/or optical information and converting between laser and/or optical information and digital information suitable for use by system 700.
  • a media drive/interface 718 can accept removable tangible media 720, such as flash drives, optical disks, removable hard drives, software products, etc.
  • removable tangible media 720 such as flash drives, optical disks, removable hard drives, software products, etc.
  • logic, computing instructions, and/or software program comprising elements of the hydraulic fracturing design module 706 may reside on removable media 720 readable by media drive/interface 718.
  • one or more input/output devices 716 can allow a user to enter commands and information to system 700, and also allow information to be presented to the user and/or other components or devices.
  • Examples of input/output devices 716 include, in some implementations, sensors, a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, and any other input devices known in the art.
  • Examples of input/output devices 716 can also include a display device (e.g., a monitor or projector), speakers, a printer, a network card, and so on.
  • Various processes of hydraulic fracturing design module 706 may be described herein in the general context of software or program modules, or the techniques and modules may be implemented in pure computing hardware.
  • Software generally includes routines, programs, objects, components, data structures, and so forth that perform particular tasks or implement particular abstract data types.
  • An implementation of these modules and techniques may be stored on or transmitted across some form of tangible computer-readable media.
  • Computer-readable media can be any available data storage medium or media that is tangible and can be accessed by a computing device. Computer readable media may thus comprise computer storage media.
  • Computer storage media designates tangible media, and includes volatile and nonvolatile, removable and non-removable tangible media implemented for storage of information such as computer readable instructions, data structures, program modules, or other data.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other tangible medium which can be used to store the desired information, and which can be accessed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Business, Economics & Management (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Geophysics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Earth Drilling (AREA)
  • Operations Research (AREA)

Abstract

Cette invention concerne la conception de fracturations hydrauliques. Selon un mode de réalisation de l'invention, un support tangible lisible par ordinateur comprend des instructions dirigeant un processeur afin d'accéder aux conditions initiales d'un puits de forage, ainsi qu'aux types de complétion potentiels. Le support tangible lisible par ordinateur comprend en outre des instructions dirigeant le processeur afin de déterminer une conception de fracturation finalisée souhaitable pour le puits en faisant varier de manière itérative une ou plusieurs propriétés de fracturation pour chacun des types de complétion potentiels.
PCT/US2016/058725 2015-11-05 2016-10-26 Conception de fracturations hydrauliques WO2017078989A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/773,301 US20180320484A1 (en) 2015-11-05 2016-10-26 Hydraulic fracturing design

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562251238P 2015-11-05 2015-11-05
US62/251,238 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017078989A1 true WO2017078989A1 (fr) 2017-05-11

Family

ID=58662615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/058725 WO2017078989A1 (fr) 2015-11-05 2016-10-26 Conception de fracturations hydrauliques

Country Status (2)

Country Link
US (1) US20180320484A1 (fr)
WO (1) WO2017078989A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019241458A1 (fr) * 2018-06-13 2019-12-19 Schlumberger Technology Corporation Définition d'un programme de complétion pour un puits de pétrole et de gaz
US11193332B2 (en) 2018-09-13 2021-12-07 Schlumberger Technology Corporation Slider compensated flexible shaft drilling system
US11203901B2 (en) 2017-07-10 2021-12-21 Schlumberger Technology Corporation Radial drilling link transmission and flex shaft protective cover
US20220113447A1 (en) * 2020-10-14 2022-04-14 Saudi Arabian Oil Company Systems and methods for selecting hydraulic fracturing processes
US11466549B2 (en) 2017-01-04 2022-10-11 Schlumberger Technology Corporation Reservoir stimulation comprising hydraulic fracturing through extended tunnels
US11486214B2 (en) 2017-07-10 2022-11-01 Schlumberger Technology Corporation Controlled release of hose
US11840909B2 (en) 2016-09-12 2023-12-12 Schlumberger Technology Corporation Attaining access to compromised fractured production regions at an oilfield

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10738600B2 (en) * 2017-05-19 2020-08-11 Baker Hughes, A Ge Company, Llc One run reservoir evaluation and stimulation while drilling
CN111488703B (zh) * 2019-01-28 2021-08-10 西南石油大学 基于扩展有限元模拟层状岩石断裂韧性的方法
CN111322050B (zh) * 2020-04-24 2022-02-11 西南石油大学 一种页岩水平井段内密切割暂堵压裂施工优化方法
WO2023149814A1 (fr) * 2022-02-04 2023-08-10 Schlumberger Canada Limited Procédé de mesure du pontage par un agent de soutènement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040010373A1 (en) * 2002-07-11 2004-01-15 Smits Jan W. Intelligent diagnosis of environmental influence on well logs with model-based inversion
US20080091396A1 (en) * 2006-10-13 2008-04-17 Kennon Stephen R Method and system for modeling and predicting hydraulic fracture performance in hydrocarbon reservoirs
US20080164021A1 (en) * 2007-01-10 2008-07-10 Dykstra Jason D Methods and systems for fracturing subterranean wells
WO2014039036A1 (fr) * 2012-09-05 2014-03-13 Stratagen, Inc. Procédés d'optimisation de réalisation de puits de forage et de fracturation hydraulique et systèmes associés
US20140182844A1 (en) * 2011-07-11 2014-07-03 Schlumberger Technology Corporation System and method for performing wellbore stimulation operations

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836284A (en) * 1988-01-26 1989-06-06 Shell Western E&P Inc. Equilibrium fracture acidizing
US10001769B2 (en) * 2014-11-18 2018-06-19 Weatherford Technology Holdings, Llc Systems and methods for optimizing formation fracturing operations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040010373A1 (en) * 2002-07-11 2004-01-15 Smits Jan W. Intelligent diagnosis of environmental influence on well logs with model-based inversion
US20080091396A1 (en) * 2006-10-13 2008-04-17 Kennon Stephen R Method and system for modeling and predicting hydraulic fracture performance in hydrocarbon reservoirs
US20080164021A1 (en) * 2007-01-10 2008-07-10 Dykstra Jason D Methods and systems for fracturing subterranean wells
US20140182844A1 (en) * 2011-07-11 2014-07-03 Schlumberger Technology Corporation System and method for performing wellbore stimulation operations
WO2014039036A1 (fr) * 2012-09-05 2014-03-13 Stratagen, Inc. Procédés d'optimisation de réalisation de puits de forage et de fracturation hydraulique et systèmes associés

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11840909B2 (en) 2016-09-12 2023-12-12 Schlumberger Technology Corporation Attaining access to compromised fractured production regions at an oilfield
US11466549B2 (en) 2017-01-04 2022-10-11 Schlumberger Technology Corporation Reservoir stimulation comprising hydraulic fracturing through extended tunnels
US11203901B2 (en) 2017-07-10 2021-12-21 Schlumberger Technology Corporation Radial drilling link transmission and flex shaft protective cover
US11486214B2 (en) 2017-07-10 2022-11-01 Schlumberger Technology Corporation Controlled release of hose
WO2019241458A1 (fr) * 2018-06-13 2019-12-19 Schlumberger Technology Corporation Définition d'un programme de complétion pour un puits de pétrole et de gaz
US11193332B2 (en) 2018-09-13 2021-12-07 Schlumberger Technology Corporation Slider compensated flexible shaft drilling system
US20220113447A1 (en) * 2020-10-14 2022-04-14 Saudi Arabian Oil Company Systems and methods for selecting hydraulic fracturing processes
WO2022081179A1 (fr) * 2020-10-14 2022-04-21 Saudi Arabian Oil Company Systèmes et procédés de sélection de processus de fracturation hydraulique

Also Published As

Publication number Publication date
US20180320484A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
US20180320484A1 (en) Hydraulic fracturing design
Xu et al. Modeling dynamic behaviors of complex fractures in conventional reservoir simulators
Zhang et al. Initiation and growth of a hydraulic fracture from a circular wellbore
Alekseenko et al. 3D modeling of fracture initiation from perforated noncemented wellbore
Soliman et al. Geomechanics aspects of multiple fracturing of horizontal and vertical wells
US11236596B2 (en) Real-time diversion control for stimulation treatments using fiber optics with fully-coupled diversion models
AU2014242283B2 (en) Controlling net treating pressure in a subterranean region
EP2774066B1 (fr) Modélisation de l'interaction de fractures hydrauliques dans des réseaux de fractures complexes
Waters et al. The impact of geomechanics and perforations on hydraulic fracture initiation and complexity in horizontal well completions
CA3002396A1 (fr) Restimulation de puits
Sesetty et al. Simulation of hydraulic fractures and their interactions with natural fractures
Wang et al. Effects of previously created fracture on the initiation and growth of subsequent fracture during TPMSF
US10781669B2 (en) Simulated wellbore control for dynamic underbalance testing
Asala et al. Why re-fracturing works and under what conditions
WO2015069817A1 (fr) Modélisation de l'interaction de fractures hydrauliques dans des réseaux de fractures complexes
Desroches et al. Benefits of controlled hydraulic fracture placement: theory and field experiment
WO2018034652A1 (fr) Procédés et systèmes de modélisation d'opérations de traitement par déviation de fluide
WO2019014090A2 (fr) Procédés et systèmes pour fractures hydrauliques à ballonnet et inondation de bout en bout complexe
US11434730B2 (en) Stimulation treatment using accurate collision timing of pressure pulses or waves
Sesetty et al. Modeling and analysis of stimulation for fracture network generation
Sesetty et al. Modeling dense-arrays of hydraulic fracture clusters: Fracture complexity, net pressure and model calibration
Yushchenko et al. Case Studies and Operation Features of Long Horizontal Wells in Bazhenov Formation
Pongratz et al. Perforating for Fracturing—Best Practices and Case Histories
Arguijo et al. Streamlined Completions Process: An Eagle Ford Shale Case History
Johnson et al. Improving fracture initiation and potential impact on fracture coverage by implementing optimal well-planning and drilling methods for typical stress conditions in the Cooper Basin, Central Australia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862720

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15773301

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862720

Country of ref document: EP

Kind code of ref document: A1