WO2017078461A1 - Expression vector for production of target protein and method for overexpression of target protein using same - Google Patents

Expression vector for production of target protein and method for overexpression of target protein using same Download PDF

Info

Publication number
WO2017078461A1
WO2017078461A1 PCT/KR2016/012658 KR2016012658W WO2017078461A1 WO 2017078461 A1 WO2017078461 A1 WO 2017078461A1 KR 2016012658 W KR2016012658 W KR 2016012658W WO 2017078461 A1 WO2017078461 A1 WO 2017078461A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
cells
dhfr
protein
expression
Prior art date
Application number
PCT/KR2016/012658
Other languages
French (fr)
Korean (ko)
Inventor
이은교
김연구
강신영
류경화
안정오
이홍원
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2017078461A1 publication Critical patent/WO2017078461A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells

Definitions

  • the present invention relates to an expression vector for producing a target protein and a method for overexpression of the target protein using the same.
  • Gene amplification techniques utilize amplifiable genes, ie amplifiable genes, in cells. Amplifiable genes are essential genes expressed in cells. When expression of amplifiable genes is inhibited, cell growth does not occur normally. Conventionally, the target protein has been increased by using the characteristics of such amplifiable genes.
  • expression vectors containing these amplifiable genes and target protein genes are introduced into cell lines that lack amplifiable genes such as dihydrofolate reductase (dhfr) and glutamine sysnthetase (gs).
  • dhfr dihydrofolate reductase
  • gs glutamine sysnthetase
  • it is a method that can increase the number of copies of the expression vector by treating methotrexate (MTX), methionine sulfoximine (MSX), and the like which are inhibitors of these genes.
  • MTX methotrexate
  • MSX methionine sulfoximine
  • Gene amplification technology was made possible in the 1980s by producing radiation on mutations in some of the Chinese hamster ovary (CHO) cell lines to produce DXB11 and DG44 cell lines that lack the dhfr gene.
  • Tissue plasminogen activator the first recombinant protein drug produced in animal cells, is produced in this DXB11 cell line.
  • the production of cell lines capable of gene amplification overcomes the limited production of recombinant proteins in animal cells. Made it possible.
  • the cell lines capable of amplifying such genes are known as CHOK1SV and NS0 cell lines with low expression of the gs gene in addition to DXB11 and DG44.
  • Recombinant protein drugs are being produced in various cell lines other than the CHO cell line, but the types of cell lines capable of gene amplification are limited. Recently, a cell line capable of gene amplification has been reported by lacking the dhfr and gs genes in the CHO-K1 cell line using zinc-finger nuclease technology.
  • RNA interference (RNAi) technology is closely associated with post-transcriptional gene silencing mechanisms, while small non-coding RNAs are used for intracellular homologous gene sequences. Recognize and cause degradation.
  • microRNA miRNA
  • small interference RNA small interference RNA
  • siRNA small interference RNA
  • siRNAs are known to be synthetic or predominantly foreign molecules that temporarily inhibit the gene of interest, while also inducing the formation of heterochromatins. miRNAs are generated from the genome in host cells and are known to affect the stability and expression of messenger RNA (mRNA) by targeting the 3'-untranslated region (3'UTR) of the gene to be regulated. .
  • siRNA short hairpin RNA
  • RNA which interferes with expression of a specific gene in a general animal cell Combining interference technology with exogenous amplifiable genes and recombinant protein expression methods using genes of the desired protein has produced a cell line with amplification-deficient genes, and has also produced an expression vector that can induce the production of recombinant proteins. It is not studied until now.
  • the inventors have established a cell line in which expression of an amplifiable gene has been suppressed in the past, introducing a recombinant vector expressing an amplifiable gene and a target protein into the established cell line, while simplifying a process for producing a recombinant protein, while efficiently reducing the target protein.
  • An object of the present invention is to provide an expression vector for producing a target protein and a method of overexpressing the target protein using the same in producing the target protein.
  • one aspect of the present invention is a gene fragment for RNA interference targeting the 3'-UTR of the mRNA of the endogenous amplifiable gene of the host cell; And a gene construct comprising a cloning site capable of cloning a gene of a target protein and an exogenous amplifiable gene.
  • another aspect of the present invention provides a transformant in which the expression vector for producing the target protein is introduced into a host cell.
  • Another aspect of the present invention provides a method comprising the following steps:
  • another aspect of the present invention comprises the steps of cloning the gene of the target protein in the cloning site of the gene construct of the expression vector; Introducing an expression vector cloned with the gene of the protein of interest into a host cell; Culturing the host cell into which the expression vector is introduced; It provides a method of overexpression of the target protein comprising a; and processing the inhibitor for the protein expressed by the amplifiable gene in the host cell in the culture.
  • ShRNA that inhibits the expression of an endogenous amplifiable gene according to the present invention. And by using a vector containing the gene of the target protein and the exogenous amplifiable gene, the target protein can be produced, so it can be usefully used to produce the protein required in the food field, medical field.
  • FIG. 1 is a vector expressing a shRNA targeting the 3'-UTR of the endogenous amplifiable gene dhfr, while having a gene construct comprising the gene of the target protein (EPO) and an exogenous dhfr, then methotrexate (MTX)
  • EPO target protein
  • MTX methotrexate
  • Figure 2 is a graph comparing the mRNA expression changes of endogenous dhfr in the CHO-K1 cell line by shRNA / pSUPER vector.
  • Figure 3a shows a pcDNA5 / FRT vector (shRNA (-) vector)
  • Figure 3b shows a shRNA / pcDNA5frt vector (shRNA (+) vector)
  • Figure 3c shows an EPO-IRES-dhfr / pcDNA5frt vector
  • Figure 3d shows a shRNA / EPO-IRES Schematic of the -dhfr / pcDNA5frt vector.
  • FIG. 4A is a graph of F-MTX-treated fluorescence analysis of the cell line and the DG44 cell line transduced with the vector of FIG. 3A (shRNA ( ⁇ ) vector) and the vector of FIG. 3B (shRNA (+) vector), and FIG. 4B. Is a graph comparing the FITC fluorescence value of the fluorescence analysis results.
  • FIG. 5 is a graph comparing sensitivity to MTX of a cell line transduced with the vector of FIG. 3A (shRNA ( ⁇ ) vector) and the vector of FIG. 3B (shRNA (+) vector).
  • FIG. 6 shows the effect of shRNA-2 on endogenous dhfr, 3'-UTR of endogenous dhfr, mRNA expression level of exogenous dhfr gene in vector by RT-PCR.
  • shRNA (+) is the vector of FIG. 3c
  • shRNA (+) is the cell group transduced with the vector of FIG. 3d, respectively.
  • FIG. 8A is a graph showing dhfr mRNA expression level
  • FIG. 8B is a graph showing dhfr gene copy number
  • FIG. 8C is a graph showing mRNA expression level of dhfr 3'-UTR
  • FIG. 8D is a graph showing dhfr 3'-UTR expression. It is a graph comparing gene copy number.
  • an "endogenous" substance refers to a substance naturally present in or derived from a cell of an organism.
  • the "exogenous" substance refers to a substance which does not exist naturally in a cell, and is a substance in which an externally-derived substance is introduced into the cell by a genetic or biochemical method.
  • nucleic acid As used herein, “nucleic acid”, “polynucleotide” and “oligonucleotide” are used interchangeably and refer to deoxyribonucleotide or ribonucleotide polymers in linear or cyclic structure and in single- or double-stranded form.
  • amplifiable gene refers to a gene encoding a protein necessary in a cell. When expression of the amplifiable gene is inhibited, cell growth does not occur normally. When an expressed protein is exposed to an inhibitor thereto, it refers to a gene in which cells increase the expression of the amplifiable gene for normal growth.
  • One aspect of the present invention provides a gene fragment for RNA interference targeting the 3'-UTR of the mRNA of the endogenous amplifiable gene of the host cell; And a gene construct comprising a cloning site capable of cloning a gene of a target protein and an exogenous amplifiable gene.
  • the expression vector of the present invention comprises a gene segment for RNA interference targeting the 3'-UTR of the mRNA of the endogenous amplifiable gene of the host cell.
  • the amplifiable gene is dihydrofolate reductase (DHFR), glutamine synthetase (GS), adenosine deaminase (ADA), aspartic acid carbamyl transferase (aspartate transcarbamylase, CAD) )
  • DHFR dihydrofolate reductase
  • GS glutamine synthetase
  • ADA adenosine deaminase
  • CAD aspartic acid carbamyl transferase
  • ODC ornithine decarboxylase
  • the gene fragment for RNA interference is a sequence complementary to the 3'-UTR of the mRNA of the amplifiable gene, and after being transcribed in a host cell, binds to the 3'-UTR of the mRNA of the amplifiable gene and binds to the amplification. Serves to reduce the expression of genes.
  • the gene segment for RNA interference may be single stranded or double stranded.
  • the base sequence for RNA interference that is single stranded may have a double stranded region, and the base sequence for double stranded RNA interference may have a single stranded region.
  • the gene segments for RNA interference may be double stranded RNA (dsRNA), microRNA (microRNA, miRNA), short interfering RNA (siRNA), antisense RNA, promoter-directed.
  • pdRNA Promoter-directed RNA
  • piRNA Piwi-interacting RNA
  • eiRNA expressed interfering RNA
  • shRNA short hairpin RNA
  • antagomir It may include any one selected from the group consisting of antagomirs, decoy RNA (decoy RNA), DNA, plasmid and aptamer, but is not limited thereto.
  • the gene segment for RNA interference may be short-hairpin RNA (shRNA) having a nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 3.
  • the present invention includes a gene consisting of a base sequence substantially the same as a gene comprising the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 3 and fragments of the gene. Genes consisting of the same base sequence means those having sequence homology of at least 80%, preferably at least 90%, most preferably at least 95%, but are not limited thereto, and at least 80% sequence homology. And is complementary to the 3'-UTR of the mRNA of the amplifiable gene and is not limited so long as it maintains a function of reducing the expression of the amplifiable gene.
  • the stem-loop structure of the shRNA molecule may be about 45 to 62 nucleotides in length, or preferably about 45 to 49 nucleotides in length.
  • the stem region may be about 18 to 24 nucleotides in length (or more) or more preferably about 18 to 20 nucleotides in length.
  • the stem may comprise two completely complementary duplexes (but not for any 3 'tail), but there may be protrusions or inner loops. The number of such overhangs and asymmetrical inner loops is preferably a minor number (eg 1, 2 or 3) and is about 3 nucleotides or less in size.
  • the terminal loop portion may comprise about 2 or more nucleotides, but may preferably comprise about 8 or less nucleotides. More specifically, the loop portion may preferably be 6-15 nucleotides in size.
  • the expression vector of the present invention includes a gene construct including a cloning site capable of cloning a gene of a target protein and an exogenous amplifiable gene.
  • the cloning site is a site where the target protein to be overexpressed through the expression vector of the present invention is inserted, and is a portion containing many restriction sites, and can be generally used during a process including cloning or subcloning. Restriction enzyme sites in the cloning site can be configured in various ways depending on the purpose, and the flexibility of such restriction element sites may allow cloning of the gene of interest for a variety of applications.
  • the exogenous amplifiable gene is preferably derived from a host cell, but any one derived from the host cell may be used without particular limitation as long as the exogenous amplifiable gene is capable of maintaining the growth of the host cell in an environment in which the expression of the endogenous amplifiable gene is suppressed.
  • the gene construct may further include an internal ribosome entry site (IRS) between the cloning site and the exogenous amplifiable gene.
  • IRES internal ribosome entry site
  • the IRES is a specific region present inside the mRNA, and is a region where ribosomes bind directly to the IRES region to initiate translation without depending on the 5 'cap. Therefore, if an IRES is interposed between the cloning site and the exogenous amplifiable gene, the gene located on one side of the IRES is translated from the cap structure at the 5 'end in the process of translation and the gene located on the other side of the IRES.
  • the use of the IRES as described above has the effect that the additional process of separating the overexpressed target protein from the exogenous amplifiable gene is omitted.
  • a base sequence encoding a 2A peptide may be included between the cloning site of the gene construct and the exogenous amplifiable gene. Since the 2A peptide sequence impairs normal peptide bond formation during the ribosomal skipping mechanism, genes contained in the gene construct are expressed as separate proteins. For this function, between the cloning site of the gene construct and the exogenous amplifiable gene, in addition to the base sequence encoding a 2A peptide, a base sequence encoding a 2A-like peptide, a ribozyme cleavage site, and a protease cleavage site are encoded. Base sequences and the like may be included, respectively.
  • the gene construct may include a promoter capable of initiating expression of an exogenous amplifiable gene in addition to an internal ribosomal inlet site (IRES) between the cloning site and the exogenous amplifiable gene, but is not limited thereto.
  • the promoter is any one selected from the group consisting of Simian virus 40 early promoter, mouse mammary cancer virus LTR promoter, cytomegalovirus Pol-II promoter, herpes thymidine kinase promoter and phosphoglycerate kinase I (PGK) promoter. Can be.
  • the gene construct may further include a gene encoding a tag for separation and purification to facilitate the purification of the expressed target protein.
  • a tag for separation and purification GST, poly-Arg, FLAG, histidine-tag (His-tag) or c-myc may be used.
  • the expression vector of the present invention can be transformed into a suitable host cell to replicate and function independently of the genome of the host cell, or in some cases can be integrated into the genome itself.
  • a plasmid vector may be used, wherein the plasmid vector is transformed into (a) a replication initiation point so that replication is efficiently carried out to include several hundred plasmid vectors per host cell, and (b) a plasmid vector.
  • It has a structure comprising a selection marker gene that allows a host cell to be selected and (c) a restriction enzyme cleavage site into which foreign DNA fragments can be inserted. Although no appropriate restriction enzyme cleavage site is present, the use of synthetic oligonucleotide adapters or linkers according to conventional methods facilitates ligation of the vector and foreign DNA.
  • the host cell may be an animal cell, more preferably a mammalian cell, and the mammalian cell may be a human cell.
  • the mammalian cells are BHK21 cell line, BHK T- cell line, NS0 cell line, Sp2 / 0 cell line, EL4 cell line, CHO cell line, CHO cell derivatives, U293 cell line, NIH / 3T3 cell line, 3T3 LI cell line, ES- It may be any one rodent cell selected from D3 cell line, H9c2 cell line, C2C12 cell line, and miMCD-3 cell line, but is not limited thereto.
  • the CHO induced cell line may be any one selected from CHO-Kl cell line, CHO-DUKX, CHO-DUKX Bl, and CHO-DG44 cell lines, but is not limited thereto.
  • the human cells are SH-SY5Y, IMR32 cell line, LAN5 cell line, HeLa cell line, MCFIOA cell line, 293T cell line, SK-BR3 cell line, U293 cell line, HEK 293 cell line, PER.C6® cell line, Jurkat cell line, HT-29 cell line, LNCap .FGC cell line, A549 cell line, MDA MB453 cell line, HepG2 cell line, THP-I cell line, MCF7 cell line, BxPC-3 cell line, Capan-1 cell line, DU145 cell line and PC-3 cell line, It is not limited to this.
  • the human cell may be any one primary cell selected from the group consisting of HuVEC cell line, HuASMC cell line, HKB-I1 cell line and hMSC cell line, but is not limited thereto.
  • the target protein may be erythropoietin (EPO), and if the target protein requires high productivity, the vector system of the present invention may be applied.
  • EPO erythropoietin
  • the expression of the endogenous amplifiable gene of the host cell is suppressed, so that the host cell expresses the exogenous amplifiable gene included in the expression vector of the present invention to maintain its growth.
  • the host cell when the host cell is exposed to an inhibitor of the exogenous amplifiable gene, the host cell again overexpresses the exogenous amplifiable gene in order to maintain its growth, wherein the host cell is linked to the exogenous amplifiable gene. Since the target protein cloned at the cloning site is also overexpressed, the target protein can be obtained in large quantities using the expression vector of the present invention.
  • Another aspect of the present invention provides a transformant in which the expression vector for producing the target protein is introduced into a host cell.
  • a known technique that is, a heat shock method, an electric shock method, or the like may be used.
  • Another aspect of the invention provides a method of overexpressing a protein of interest comprising the following steps:
  • Cloning the gene of the protein of interest in the cloning site of the gene construct of the expression vector Introducing an expression vector cloned with the gene of the protein of interest into a host cell; Culturing the host cell into which the expression vector is introduced; And treating the inhibitor against the protein expressed by the amplifiable gene in the host cell in culture.
  • the protein expressed by the amplifiable gene and the inhibitor for the protein are dihydrofolate reductase (DHFR) and methotrexate (methotrexate, MTX), respectively; Glutamine synthetase (GS) and methionine sulfoximine (MSX); Adenosine deaminase (ADA) and deoxycoformycin (dCF); Aspartate transcarbamylase (CAD) and N-phosphonacetyl-L-aspartic acid (N-phosphonacetyl-L-aspartate, PALA); And ornithine decarboxylase (ornithine decarboxylase, ODC) and ⁇ -difluoromethyl-ornithine ( ⁇ -difluoromethyl-ornithine, DFMO); may be any one selected from the group consisting of.
  • DHFR dihydrofolate reductase
  • methotrexate methotrexate
  • the treatment concentration of MTX may be 10nm to 1000nm, and may be used without limitation as long as the growth of the cell is maintained, a concentration capable of increasing the production of the target protein.
  • Cultivation of such a transformant can be made according to suitable media and culture conditions known in the art. Those skilled in the art can easily use the medium and culture conditions according to the type of host cell of the transformant to be selected.
  • Mediums that can be used in the present invention may include, for example, commercially available mediums such as Ham's F10 (Sigma), minimum essential medium ([MEM], Sigma), RPMI-1640 (Sigma) and DMEM (Sigma), It is not limited to this.
  • commercially available mediums such as Ham's F10 (Sigma), minimum essential medium ([MEM], Sigma), RPMI-1640 (Sigma) and DMEM (Sigma), It is not limited to this.
  • any of these media can be used as needed, such as hormones or other growth factors (such as insulin, transferrin or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium and phosphate), buffers (such as HEPES), nu Cleosides (such as adenosine and thymidine), antibiotics (such as gentamicin®) drugs, trace elements (usually defined as inorganic compounds present in final concentrations in the micromolar range), lipids (linoleic acid or others) Such as fatty acids) and their appropriate carriers, and glucose or equivalent energy sources. Other necessary supplements may also be included at appropriate concentrations known in the art.
  • anti-foaming agents such as fatty acid polyglycol esters can be used during the culture to suppress bubble generation.
  • the desired protein produced by the method can be recovered using separation and purification methods known in the art.
  • the recovery may be by centrifugation, ion exchange chromatography, filtration, precipitation, or a combination thereof.
  • Specific embodiments of the present invention include a gene segment for RNA interference targeting the 3'-UTR of the mRNA of the endogenous amplifiable gene of the host cell, and a construct comprising a gene of the target protein and an exogenous amplifiable gene.
  • a vector shRNA / EID / pcDNA5frt
  • dhfr the expression of the endogenous amplifiable gene
  • MTX concentration was increased in steps.
  • the Flp-In system was used, and the Flp-In system includes a Flp-In CHO cell line (a cell line containing a single insertion FRT site); PcDNA5 / FRT vector (plasmid having an FRT site, which is a recognition and degradation site for Flp recombinase) expressing a target protein or the like upon introduction; And pOG44 Flp recombinase expression plasmids.
  • shRNA / EID / pcDNA5frt comprising a shRNA that inhibits the expression of endogenous amplifiable genes and a construct comprising a gene of the protein of interest and an exogenous amplifiable gene are prepared, and the pOG44 Flp recombinase expression plasmid The transformants were prepared by introducing them into the Flp-In CHO cell line together.
  • the gene of EPO which is the target protein contained in the shRNA / EID / pcDNA5frt, is inserted into the genome of the cell line depending on the Flp recombinase, and the expression of the target protein is amplified by stepwise MTX treatment of the transduced Flp-In CHO cell line. It was confirmed (see FIG. 7).
  • pSUPER vectors each containing the gene fragments of Table 1 above were each CHO-K1 cell line (ATCC).
  • CCL-61 TM was used to confirm the mRNA amount of the dhfr gene by quantitative real-time PCR (qPCR).
  • qPCR quantitative real-time PCR
  • a CHO-K1 cell line without a pSUPER vector was used, and a CHO-K1 cell line and a CHO-K1 cell line into which a manufactured pSUPER vector were introduced were 10% fetal vobine serum (FBS, Gibco). Cultured in a RPMI1640 (Gibco) medium containing.
  • DG44 cell line CHO-DG44 cells (Invitrogen)
  • IMDM Hyclone
  • IMDM Hyclone medium containing 5% dialyzed FBS (Gibco) and 1x HT supplement (Gibco). Incubated at.
  • Example 1-1 Extraction of DNA for transduction in Example 1-1 was prepared using PureYield Plasmid Midiprep system (Promega), and transduction was performed according to the manufacturer's instructions using Lipofectamine 2000 (Invitrogen). It was. After transduction, the transduced cells were cultured for 14 days in RPMI1640 (Gibco) medium containing 10% FBS. RNA of the cell line or control cell line into which the cultured shRNA expression vector was introduced was miniBEST Universal RNA Extraction Kit (Takara). The extracted RNA was synthesized into cDNA using PrimeScript 1 st strand cDNA Synthesis Kit (Takara), and then subjected to qPCR using the template as shown in Table 2.
  • Primer dhfr-F (SEQ ID NO: 18) And dhfr-R (SEQ ID NO: 19) were used to amplify the dhfr gene, and primer gapdh-F (SEQ ID NO: 22) and gapdh-R (SEQ ID NO: 23) were used to amplify the internal standard gene gapdh gene.
  • qPCR was performed using a Power SYBR Green PCR Master mix (Applied Biosystems) and was performed according to the manufacturer's instructions. The PCR reaction was performed a total of 40 times under conditions of 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C to amplify the genes and confirm the relative gene expression using comparative Ct ( ⁇ Ct) method. It was.
  • the cell line into which the shRNAs designated by SEQ ID NOS: 1 to 3 were introduced was SEQ ID NO: 1
  • the expression of endogenous dhfr in CHO cells was reduced compared to the cell lines into which shRNA was introduced.
  • the expression of intracellular dhfr gene was suppressed by 80% compared to the control group. It was confirmed that the efficiency (Fig. 2). Therefore, the most effective shRNA-2 of SEQ ID NO: 2 was selected as an endogenous dhfr gene targeting shRNA in the CHO cell line, and further experiments were performed.
  • the promoter and shRNA gene of the vector prepared in Example 1 were inserted into an expression vector capable of expressing a target protein, and a cell line was constructed for stable expression.
  • the Flp-In system (Invitrogen), a site-specific insertion method, was used to accurately identify gene amplification efficiency and the production of the target protein, excluding the influence of the vector's genomic insertion site.
  • the Flp-In system transduces a pcDNA5 / FRT vector (FIG. 3A) and a pOG44 vector expressing Flp recombinase, which express a protein of interest in the Flp-In CHO cell line, and then hygromycin B (hygromycin B).
  • B) invitrogen
  • shRNA / pcDNA5frt was prepared using an In-fusion HD cloning kit (Clontech). Specifically, the pSUPER vector containing the shRNA-2 of SEQ ID NO: 2 prepared in Example 1 was used as a template to include the shRNA-2 and H1 promoters. First, the pSUPER vector was subjected to PCR using pD5-shRNA F (SEQ ID NO: 4) and pD5-shRNA R (SEQ ID NO: 5) primers of Table 3, and pcDNA5frt was made by treating restriction enzyme BglII.
  • EPO erythropoietin
  • MCS multicloning site
  • IRES-dhfr IRES-dhfr gene of the pOptiVEC vector (Invitrogen) for expression with DHFR.
  • EID / pcDNA5frt vector was prepared by inserting in a -fusion method (FIG. 3C). Specifically, the EPO gene, IRES-dhfr gene, and pcDNA5 / FRT vector required for the preparation of EID / pcDNA5frt vector were amplified by PCR, respectively.
  • GenBank accession no When amplifying the EPO gene, GenBank accession no.
  • a shRNA that suppresses the expression of the endogenous amplifiable gene dfhr is expressed, and a shRNA / EID / pcDNA5frt expressing the target protein EPO and the exogenous amplifiable gene dfhr, respectively, was prepared.
  • the shRNA / EID / pcDNA5frt was prepared by inserting the EPO sequence and the IRES-dhfr gene in the same sequence and manner as in Example 2-2 at the NheI and XhoI restriction enzyme positions of the shRNA / pcDNA5frt vector prepared in Example 2-1.
  • Example 3 Example In the cell line constructed at 2 dhfr Expression level and MTX sensitivity check
  • pcDNA5frt and three types of vectors prepared in Examples 2-1 to 2-3 were transduced into the Flp-In CHO cell line using lipofectamine 2000 (Invitrogen), respectively.
  • each vector and a pOG44 vector expressing Flp ribase were transduced together.
  • HT supplement was not included and transferred to medium containing hygromycin B.
  • the cells were cultured for 2 weeks and selected to form a cell population.
  • Three cell groups transduced with EPO-expressing vectors were formed, and in subsequent experiments, shRNA / pcDNA5frt vectors (FIG. 3B) and shRNA / EID / pcDNA5frt (FIG.
  • Transduced cell line is shRNA (+), and cell lines transduced with pcDNA5 / FRT vector (FIG. 3A) and EID / pcDNA5frt vector (FIG. 3C) which do not include these are shRNA (-). It was.
  • FITC fluorescence-labeled MTX Fluorescent methotrexate, F-MTX; Invitrogen
  • F-MTX fluorescent methotrexate
  • F-MTX Treatment of F-MTX was performed by adding a medium containing 10 ⁇ M F-MTX to the attached cells and incubated at 37 °C for 24 hours. After 24 hours, the FITC fluorescence value was measured by using a Guava Easy Cyte instrument for fluorescence values of cells removed by F-MTX-free medium and 2 hours after trypsin treatment.
  • MTX is known as an inhibitor that inhibits the activity of DHFR, and when transducing shRNA-2 which inhibits the expression of DHFR according to the present invention, the expression of DHFR in the cell is reduced according to the action of shRNA-2, and intracellular As the expression of essential DHFR decreases, sensitivity to MTX is also expected to increase. Specifically, in order to measure the sensitivity of the cells to the MTX of the shRNA (+) (vector of Figure 3b) cell group prepared in Example 2, the growth of cells according to the increase in MTX concentration of the shRNA (-) of Example 2 (Fig. 3a Vector) cell population. MTX was treated to each cell by concentration, and after 4 days, the cell number was measured and compared with the number of cells not treated with MTX.
  • the sensitivity of the cells to MTX was confirmed that the shRNA (+) cell group is five times more sensitive than the shRNA (-) cell group (Fig. 5).
  • the shRNA (+) cell group has a high sensitivity to MTX, it was found that the DHFR deficiency state was effectively achieved.
  • RT-PCR Reverse transcriptase polymerase PCR
  • Intracellular dhfr sequences are from CHO cells and shRNA / EID / pcDNA5frt
  • the dhfr sequence inserted into the vector is almost identical to that derived from a mouse, but the nucleotide sequence of the dhfr (SEQ ID NO: 28) derived from CHO cells and the dhfr (SEQ ID NO: 29) derived from a mouse is identified through a blast of NCBI. Primers were prepared and PCR was performed for each.
  • 3'-UTR was amplified to confirm the expression of 3'-UTR of CHO cell-derived dhfr (endogenous), and when amplified, 3'-UTR-F (SEQ ID NO: 14) and 3'- of Table 4 below.
  • UTR-R SEQ ID NO: 15
  • beta-actin was determined as an internal standard gene, and it was confirmed that the amount of each sample was the same. Was used.
  • the introduced shRNA-2 has an inhibitory effect on dhfr, whose expression is regulated by dhfr 3'-UTR in the cell, but in the case of externally introduced dhfr, expression is not regulated by 3'-UTR. Therefore, it was found that the same expression level was observed regardless of the presence or absence of shRNA-2.
  • Example 2 The cell lines constructed in Example 2 were treated with MTX step by step to amplify the genes and confirm the yield per unit cell of the target protein EPO.
  • Two types of vector EID / pcDNA5frt and shRNA / EID / pcDNA5frt (Figs. 3c and 3d, respectively) were transduced, followed by stepwise MTX at 50, 250 and 500 nM concentrations in Flp-In CHO cell lines screened with hygromycin B. Treated with. Three cell groups were formed at each concentration, and each time the concentration of MTX was increased, the colony was formed, followed by 2-3 passages and the next step of MTX treatment to perform gene amplification using MTX.
  • the plates were incubated at a concentration of 1 ⁇ 10 5 cells / ml, and after 4 days, the cultures were collected and the number of cells was measured. After the centrifugation, the supernatant was stored at 20 ° C., and then the amount of EPO was measured by enzyme-linked immunosorbent assay (ELISA). Enzyme-linked immunoassays were performed using the Quantikine IVD ELISA kit (R & D Systems) and according to the manufacturer's instructions.
  • shRNA inhibits the expression of endogenous amplifiable genes;
  • a target cell may be created while creating a cell state lacking the amplifiable gene without separately producing a variant lacking the amplifiable gene. It was found that the expression of the protein can be efficiently induced.
  • CDNA synthesis was performed using RNA extracted from each cell to measure mRNA expression using the same method as in Example 1.
  • the synthesized cDNA was used as a sample for qPCR, and primer pairs dhfr-F and dhfr-R (SEQ ID NOs: 18 and 19) and 3, respectively, for dhfr, 3'-UTR, gapdh, and beta-actin.
  • '-UTR-F and 3'-UTR-R SEQ ID NOs: 20, 21
  • gapdh-F and gapdh-R SEQ ID NOs: 22, 23
  • ActB-F and ActB-R SEQ ID NOs: 24, 25
  • qPCR was performed using a Power SYBR Green PCR Master mix (Applied Biosystems) and was performed according to the manufacturer's instructions. The PCR reaction was performed a total of 40 times under conditions of 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C to amplify the genes and confirm the relative gene expression using comparative Ct ( ⁇ Ct) method. It was.
  • genomic DNA was extracted from each cell using MiniBEST Universal Genomic DNA extraction kit (Takara) and used as a sample for qPCR.
  • dhfr-F SEQ ID NO: 18
  • dhfr-R SEQ ID NO: 19
  • the mRNA expression amount and gene copy number of the entire dhfr gene, ie, dhfr and externally derived dhfr, in the cell were identified.
  • MRNA expression and gene copy number of the 3'-UTR gene of the dhfr gene were confirmed using '-UTR-F (SEQ ID NO: 20) and 3'-UTR-R (SEQ ID NO: 21).
  • gapdh and beta-actin were used as internal standard genes for mRNA expression and gene copy number, respectively.
  • qPCR was performed using a Power SYBR Green PCR Master mix (Applied Biosystems) and was performed according to the manufacturer's instructions. The PCR reaction was performed a total of 40 times under conditions of 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C to amplify the genes and confirm the relative gene expression using comparative Ct ( ⁇ Ct) method. It was.
  • the shRNA-induced cell line affects the mRNA expression level of the dhfr 3'-UTR gene in the cell and decreases the mRNA expression level, but does not affect the gene copy number of the dhfr 3'-UTR. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Chemistry (AREA)

Abstract

The present invention relates to a vector capable of improving production efficiency of a target protein and a method for the production of a target protein using the same. The vector of the present invention comprises: 1) a gene fragment for RNA interference targeting 3'-UTR of mRNA of an endogenous amplifiable gene of a host cell; and 2) a construct comprising a gene and an exogenous amplifiable gene of a target protein. The introduction of the vector into a host cell enables the production of a target protein, and thus, the vector can be useful to produce necessary proteins in a food field and a medical field.

Description

목적 단백질 생산을 위한 발현 벡터 및 이를 이용한 목적 단백질의 과발현 방법Expression vector for the production of target protein and method of overexpression of the target protein using the same
본 발명은 목적 단백질 생산을 위한 발현 벡터 및 이를 이용한 목적 단백질 의 과발현 방법에 관한 것이다. The present invention relates to an expression vector for producing a target protein and a method for overexpression of the target protein using the same.
동물 세포를 이용한 재조합 단백질의 생산은 낮은 생산성으로 인한 어려움이 있었으나, 유전자 증폭 기술의 개발로 인해 고생산성을 지닌 동물 세포주의 제작이 가능하게 되었다. 유전자 증폭 기술은 세포의 증폭 가능한 유전자, 즉 증폭 가능 유전자를 이용한다. 증폭 가능 유전자는 세포 내에서 필수적으로 발현되는 유전자로서, 증폭 가능 유전자의 발현이 저해되면 세포의 생장이 정상적으로 이루어지지 않는다. 종래에는 이러한 증폭 가능 유전자의 특성을 이용하여 목적 단백질을 증가시켰다. Production of recombinant proteins using animal cells has been difficult due to low productivity, but development of gene amplification technology has made it possible to manufacture animal cells with high productivity. Gene amplification techniques utilize amplifiable genes, ie amplifiable genes, in cells. Amplifiable genes are essential genes expressed in cells. When expression of amplifiable genes is inhibited, cell growth does not occur normally. Conventionally, the target protein has been increased by using the characteristics of such amplifiable genes.
예를 들면, 증폭 가능 유전자인 디히드로엽산 환원효소(dihydrofolate reductase, dhfr), 글루타민 합성효소(glutamine sysnthetase, gs) 등이 결여된 세포주에 이들 증폭 가능 유전자와 목적 단백질 유전자를 포함하는 발현 벡터를 도입하고, 이들 유전자에 대한 억제제인 메토트렉세이트(methotrexate, MTX), 메티오닌 설폭시민(methionine sulfoximine, MSX) 등을 처리함으로써 상기 발현 벡터의 카피 수를 증진시킬 수 있는 방법이다. 이와 같이 단위세포당 발현 벡터의 카피 수가 증가함에 따라 목적 단백질의 발현량이 증가하게 된다. For example, expression vectors containing these amplifiable genes and target protein genes are introduced into cell lines that lack amplifiable genes such as dihydrofolate reductase (dhfr) and glutamine sysnthetase (gs). In addition, it is a method that can increase the number of copies of the expression vector by treating methotrexate (MTX), methionine sulfoximine (MSX), and the like which are inhibitors of these genes. As such, as the number of copies of the expression vector per unit cell increases, the expression amount of the target protein increases.
유전자 증폭 기술은 1980년대에 CHO(Chinese hamster ovary) 세포주 일부에 방사능을 이용하여 돌연변이를 발생시켜 dhfr 유전자가 결여된 DXB11, DG44 세포주를 제작함으로써 가능해졌다. 동물 세포에서 생산된 최초의 재조합 단백질 의약품인 조직 플라스미노겐 활성인자(tissue plasminogen activator)는 이러한 DXB11 세포주에서 생산된 것으로, 유전자 증폭 기술이 가능한 세포주의 제작은 동물 세포에서 재조합 단백질의 제한된 생산량을 극복 가능하게 하였다. 이와 같이 유전자 증폭이 가능한 세포주는 DXB11, DG44 이외에 gs 유전자의 발현이 낮은 CHOK1SV, NS0 세포주가 대표적으로 알려져 있다. Gene amplification technology was made possible in the 1980s by producing radiation on mutations in some of the Chinese hamster ovary (CHO) cell lines to produce DXB11 and DG44 cell lines that lack the dhfr gene. Tissue plasminogen activator, the first recombinant protein drug produced in animal cells, is produced in this DXB11 cell line. The production of cell lines capable of gene amplification overcomes the limited production of recombinant proteins in animal cells. Made it possible. The cell lines capable of amplifying such genes are known as CHOK1SV and NS0 cell lines with low expression of the gs gene in addition to DXB11 and DG44.
재조합 단백질 의약품은 CHO 세포주 이외의 다양한 세포주에서도 생산이 진행되고 있으나 유전자 증폭이 가능한 세포주의 종류는 한정되어 있다. 최근 징크-핑거 뉴클레아제(zinc-finger nuclease) 기술을 이용하여 CHO-K1 세포주 내의 dhfr 및 gs 유전자를 결여시킴으로써 유전자 증폭이 가능한 세포주를 제작한 바가 보고되어 있다. Recombinant protein drugs are being produced in various cell lines other than the CHO cell line, but the types of cell lines capable of gene amplification are limited. Recently, a cell line capable of gene amplification has been reported by lacking the dhfr and gs genes in the CHO-K1 cell line using zinc-finger nuclease technology.
한편, RNA 간섭(RNA interference, RNAi) 기술은 전사 후 유전자 침묵(post-transcriptional gene silencing) 기작과 밀접하게 연관되어 있으며, 작은 비코딩 RNA(small non-coding RNA)는 세포 내 상동성 유전자 서열을 인지하고 분해를 유발한다. microRNA(miRNA), 작은 간섭 RNA(small interference RNA, siRNA)는 대표적인 비코딩 RNA의 종류이며 발생 경로에 따른 차이가 있다. siRNA는 합성되거나 주로 외부에서 들어온 분자로 목적 유전자를 일시적으로 억제하는 한편, 헤테로크로마틴(heterochromatin)의 형성도 유발할 수 있다고 알려져 있다. miRNA는 숙주세포 내 유전체에서 생성되며 주로 조절 대상 유전자의 3'-비번역 영역(3'-untranslated region, 3'UTR)을 타겟팅함으로써 messenger RNA(mRNA)의 안정성과 발현에 영향을 미친다고 알려져 있다. miRNA의 대상 유전자는 광범위하므로 전체적인 세포 기능을 조절하는 데는 유리하나 하나의 특정 유전자의 발현 조절에는 한계가 있다. 특정 유전자의 발현을 억제하기 위한 siRNA의 이용은 일시적이기에 플라스미드 벡터에서 지속적인 발현이 가능한 짧은 헤어핀 RNA(short hairpin RNA, shRNA)를 이용할 수 있다. RNA interference (RNAi) technology, on the other hand, is closely associated with post-transcriptional gene silencing mechanisms, while small non-coding RNAs are used for intracellular homologous gene sequences. Recognize and cause degradation. microRNA (miRNA), small interference RNA (small interference RNA, siRNA) is a typical non-coding RNA and there is a difference in the path of development. siRNAs are known to be synthetic or predominantly foreign molecules that temporarily inhibit the gene of interest, while also inducing the formation of heterochromatins. miRNAs are generated from the genome in host cells and are known to affect the stability and expression of messenger RNA (mRNA) by targeting the 3'-untranslated region (3'UTR) of the gene to be regulated. . Since genes of miRNA are extensive, they are advantageous for regulating overall cellular function, but there are limitations in regulation of expression of one specific gene. The use of siRNA to inhibit the expression of a particular gene is temporary, so short hairpin RNA (shRNA) can be used for continuous expression in plasmid vectors.
이와 같이, 증폭 가능 유전자가 결핍된 세포주에 외인성 증폭 가능 유전자와 목적 단백질의 유전자를 포함하는 벡터를 도입하여 재조합 단백질을 생산하는 기술이 연구되고 있지만, 일반 동물세포에 특정 유전자의 발현을 간섭하는 RNA 간섭 기술과 외인성 증폭 가능 유전자와 목적 단백질의 유전자를 이용한 재조합 단백질 발현 방법을 접목하여 증폭 가능 유전자가 결핍된 상태의 세포주를 제작함과 함께 재조합 단백질의 생산도 유도할 수 있는 발현 벡터의 제작은 아직까지 연구되지 않은 실정이다.As described above, although a technique for producing a recombinant protein by introducing a vector containing an exogenous amplifiable gene and a gene of a target protein into a cell line lacking an amplifiable gene has been studied, RNA which interferes with expression of a specific gene in a general animal cell Combining interference technology with exogenous amplifiable genes and recombinant protein expression methods using genes of the desired protein has produced a cell line with amplification-deficient genes, and has also produced an expression vector that can induce the production of recombinant proteins. It is not studied until now.
본 발명자들은 종래에 증폭 가능 유전자의 발현이 억제된 세포주를 확립하고, 확립된 세포주에 증폭 가능 유전자와 목적 단백질을 발현하는 재조합 벡터를 도입하여 재조합 단백질을 생산하는 공정을 간소화하면서도, 목적 단백질을 효율적으로 증가시킬 수 있는 방법에 대하여 연구하였으며, 증폭 가능 유전자의 발현이 억제된 세포주를 별도로 확립하지 않고, 일반 숙주세포에 세포의 내인성 증폭 가능 유전자의 발현을 억제하는 shRNA; 및 목적 단백질의 유전자와 이에 결합된 외인성 증폭 가능 유전자의 컨스트럭트;를 포함하는 재조합 벡터를 도입하고, 증폭 가능 유전자 단백질의 억제제를 처리하여 형질도입된 세포주를 선별함으로써, 목적 단백질을 효율적으로 생산할 수 있는 것을 확인하였다. The inventors have established a cell line in which expression of an amplifiable gene has been suppressed in the past, introducing a recombinant vector expressing an amplifiable gene and a target protein into the established cell line, while simplifying a process for producing a recombinant protein, while efficiently reducing the target protein. And a method of increasing the concentration of the amplified gene, and the shRNA inhibiting the expression of the endogenous amplifiable gene of the cell in a general host cell without separately establishing a cell line in which the expression of the amplifiable gene is suppressed; And a construct of a gene of the protein of interest and an exogenous amplifiable gene bound thereto, and by introducing an inhibitor of the amplifiable gene protein to select a transduced cell line to efficiently produce the protein of interest. It was confirmed that it could.
본 발명의 목적은 목적 단백질을 생산함에 있어서, 목적 단백질 생산을 위한 발현 벡터 및 이를 이용한 목적 단백질의 과발현 방법을 제공하는 것이다. SUMMARY OF THE INVENTION An object of the present invention is to provide an expression vector for producing a target protein and a method of overexpressing the target protein using the same in producing the target protein.
상기의 목적을 달성하기 위하여, 본 발명의 일 측면은 숙주세포의 내인성 증폭 가능 유전자의 mRNA의 3'-UTR을 표적으로 하는 RNA 간섭을 위한 유전자 절편; 및 목적 단백질의 유전자를 클로닝할 수 있는 클로닝 자리와 외인성 증폭 가능 유전자를 포함하는 유전자 컨스트럭트;를 포함하는 목적 단백질 생산을 위한 발현 벡터를 제공한다.In order to achieve the above object, one aspect of the present invention is a gene fragment for RNA interference targeting the 3'-UTR of the mRNA of the endogenous amplifiable gene of the host cell; And a gene construct comprising a cloning site capable of cloning a gene of a target protein and an exogenous amplifiable gene.
또한, 상기의 목적을 달성하기 위하여, 본 발명의 또 다른 측면은 상기 목적 단백질 생산을 위한 발현 벡터가 숙주세포에 도입된 형질전환체를 제공한다.In addition, in order to achieve the above object, another aspect of the present invention provides a transformant in which the expression vector for producing the target protein is introduced into a host cell.
또한, 상기의 목적을 달성하기 위하여, 본 발명의 또 다른 측면은 하기 단계를 포함하는 방법을 제공한다:In addition, to achieve the above object, another aspect of the present invention provides a method comprising the following steps:
아울러, 상기의 목적을 달성하기 위하여, 본 발명의 또 다른 측면은 상기 발현 벡터의 유전자 컨스트럭트 중 클로닝 자리에 목적 단백질의 유전자를 클로닝하는 단계; 상기 목적 단백질의 유전자가 클로닝된 발현 벡터를 숙주세포에 도입하는 단계; 상기 발현 벡터가 도입된 숙주세포를 배양하는 단계; 및 상기 배양 중인 숙주세포에 증폭 가능 유전자에 의하여 발현되는 단백질에 대한 억제제를 처리하는 단계;를 포함하는 목적 단백질의 과발현 방법을 제공한다.In addition, to achieve the above object, another aspect of the present invention comprises the steps of cloning the gene of the target protein in the cloning site of the gene construct of the expression vector; Introducing an expression vector cloned with the gene of the protein of interest into a host cell; Culturing the host cell into which the expression vector is introduced; It provides a method of overexpression of the target protein comprising a; and processing the inhibitor for the protein expressed by the amplifiable gene in the host cell in the culture.
본 발명에 따른 내인성 증폭 가능 유전자의 발현을 저해하는 shRNA; 및 목적 단백질의 유전자와 외인성 증폭 가능 유전자를 포함하는 벡터를 이용함으로써, 목적 단백질 생산이 가능하므로 식품 분야, 의학 분야에서 필요한 단백질을 생산하기 위하여 유용하게 사용될 수 있다. ShRNA that inhibits the expression of an endogenous amplifiable gene according to the present invention; And by using a vector containing the gene of the target protein and the exogenous amplifiable gene, the target protein can be produced, so it can be usefully used to produce the protein required in the food field, medical field.
다만, 본 발명의 효과는 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 않은 또 다른 효과들은 하기의 기재로부터 본 기술 분야의 통상의 기술자에게 명확히 이해될 수 있을 것이다.However, the effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 내인성 증폭 가능 유전자인 dhfr의 3'-UTR을 타겟팅하는 shRNA를 발현하면서, 목적 단백질의 유전자(EPO)와 외인성 dhfr을 포함하는 유전자 컨스트럭트를 가진 벡터가 이후 메토트렉세이트(methotrexate, MTX)의 처리에 의해 유전자가 증폭되는 본 발명의 원리를 도식화한 개략도이다.1 is a vector expressing a shRNA targeting the 3'-UTR of the endogenous amplifiable gene dhfr, while having a gene construct comprising the gene of the target protein (EPO) and an exogenous dhfr, then methotrexate (MTX) A schematic diagram illustrating the principle of the present invention in which a gene is amplified by the treatment of.
도 2는 shRNA/pSUPER 벡터에 의해 CHO-K1 세포주 내의 내인성 dhfr의 mRNA 발현량 변화를 비교한 그래프이다.Figure 2 is a graph comparing the mRNA expression changes of endogenous dhfr in the CHO-K1 cell line by shRNA / pSUPER vector.
도 3a는 pcDNA5/FRT 벡터(shRNA(-) 벡터), 도 3b는 shRNA/pcDNA5frt 벡터(shRNA(+) 벡터), 도 3c는 EPO-IRES-dhfr/pcDNA5frt 벡터, 도 3d는 shRNA/EPO-IRES-dhfr/pcDNA5frt 벡터의 개략도이다.Figure 3a shows a pcDNA5 / FRT vector (shRNA (-) vector), Figure 3b shows a shRNA / pcDNA5frt vector (shRNA (+) vector), Figure 3c shows an EPO-IRES-dhfr / pcDNA5frt vector, Figure 3d shows a shRNA / EPO-IRES Schematic of the -dhfr / pcDNA5frt vector.
도 4a는 도 3a의 벡터(shRNA(-) 벡터)와 도 3b의 벡터(shRNA(+) 벡터)가 각각 형질도입된 세포주 및 DG44 세포주에 F-MTX를 처리하여 형광분석한 그래프이고, 도 4b는 형광분석 결과의 FITC 형광 값을 비교한 그래프이다. FIG. 4A is a graph of F-MTX-treated fluorescence analysis of the cell line and the DG44 cell line transduced with the vector of FIG. 3A (shRNA (−) vector) and the vector of FIG. 3B (shRNA (+) vector), and FIG. 4B. Is a graph comparing the FITC fluorescence value of the fluorescence analysis results.
도 5는 도 3a의 벡터(shRNA(-) 벡터)와 도 3b의 벡터(shRNA(+) 벡터)가 형질도입된 세포주의 MTX에 대한 민감도를 비교한 그래프이다.FIG. 5 is a graph comparing sensitivity to MTX of a cell line transduced with the vector of FIG. 3A (shRNA (−) vector) and the vector of FIG. 3B (shRNA (+) vector).
도 6은 shRNA-2가 내인성 dhfr, 내인성 dhfr의 3'-UTR, 벡터 내 외인성 dhfr 유전자의 mRNA 발현량에 미치는 영향을 RT-PCR로 확인한 결과이다.FIG. 6 shows the effect of shRNA-2 on endogenous dhfr, 3'-UTR of endogenous dhfr, mRNA expression level of exogenous dhfr gene in vector by RT-PCR.
도 7은 shRNA가 MTX 처리에 따른 유전자 증폭에 미치는 영향을 비교한 그래프이다. shRNA(-)는 도 3c의 벡터, shRNA(+)는 도 3d의 벡터가 각각 형질도입된 세포군이다. 7 is a graph comparing the effect of shRNA on gene amplification according to MTX treatment. shRNA (-) is the vector of FIG. 3c, shRNA (+) is the cell group transduced with the vector of FIG. 3d, respectively.
도 8a는 dhfr mRNA 발현량을 나타내는 그래프이고, 도 8b는 dhfr 유전자 카피 수를 나타내는 그래프이며, 도 8c는 dhfr 3'-UTR의 mRNA 발현량을 나타내는 그래프이며, 도 8d는 dhfr 3'-UTR의 유전자 카피 수를 비교한 그래프이다.FIG. 8A is a graph showing dhfr mRNA expression level, FIG. 8B is a graph showing dhfr gene copy number, FIG. 8C is a graph showing mRNA expression level of dhfr 3'-UTR, and FIG. 8D is a graph showing dhfr 3'-UTR expression. It is a graph comparing gene copy number.
먼저, 본 발명에서 사용된 용어에 대하여 설명한다. First, terms used in the present invention will be described.
본 발명에서 일컫는 "내인성" 물질은 생물체의 세포 내에 천연적으로 존재하거나 그 세포로부터 천연적으로 유래한 물질을 일컫는다.As used herein, an "endogenous" substance refers to a substance naturally present in or derived from a cell of an organism.
본 발명에서 일컫는 "외인성" 물질은 세포 내에 천연적으로 존재하지 않는 물질로서, 외부에서 유래한 물질이 유전학적 또는 생화학적 방법으로 세포 내에 도입된 물질을 일컫는다.In the present invention, the "exogenous" substance refers to a substance which does not exist naturally in a cell, and is a substance in which an externally-derived substance is introduced into the cell by a genetic or biochemical method.
본 발명에서 일컫는 "핵산", "폴리뉴클레오티드" 및 "올리고뉴클레오티드"는 상호교환적으로 사용되며 선형 또는 환형 구조 및 단일가닥 또는 이중가닥 형태의 데옥시리보뉴클레오티드 또는 리보뉴클레오티드 중합체를 말한다.As used herein, "nucleic acid", "polynucleotide" and "oligonucleotide" are used interchangeably and refer to deoxyribonucleotide or ribonucleotide polymers in linear or cyclic structure and in single- or double-stranded form.
본 발명에서 일컫는 "증폭 가능 유전자"는 세포 내에서 필수적으로 필요한 단백질을 코딩하고 있는 유전자로서, 상기 증폭 가능 유전자의 발현이 저해되면 세포의 생장이 정상적으로 이루어지지 않으며, 상기와 같은 증폭 가능 유전자에 의해 발현된 단백질이 그에 대한 억제제에 노출되면, 세포가 정상적인 생장을 위해 상기 증폭 가능 유전자의 발현을 증가시키는 유전자를 의미한다.The term "amplifiable gene" as used herein refers to a gene encoding a protein necessary in a cell. When expression of the amplifiable gene is inhibited, cell growth does not occur normally. When an expressed protein is exposed to an inhibitor thereto, it refers to a gene in which cells increase the expression of the amplifiable gene for normal growth.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
1.  One. 목적 단백질의 과발현을 위한 발현 벡터Expression vector for overexpression of target protein
본 발명의 일 측면은 숙주세포의 내인성 증폭 가능 유전자의 mRNA의 3'-UTR을 표적으로 하는 RNA 간섭을 위한 유전자 절편; 및 목적 단백질의 유전자를 클로닝할 수 있는 클로닝 자리와 외인성 증폭 가능 유전자를 포함하는 유전자 컨스트럭트;를 포함하는 목적 단백질 생산을 위한 발현 벡터를 제공한다.One aspect of the present invention provides a gene fragment for RNA interference targeting the 3'-UTR of the mRNA of the endogenous amplifiable gene of the host cell; And a gene construct comprising a cloning site capable of cloning a gene of a target protein and an exogenous amplifiable gene.
먼저, 본 발명의 발현 벡터는 숙주세포의 내인성 증폭 가능 유전자의 mRNA의 3'-UTR을 표적으로 하는 RNA 간섭을 위한 유전자 절편을 구성으로 포함한다.First, the expression vector of the present invention comprises a gene segment for RNA interference targeting the 3'-UTR of the mRNA of the endogenous amplifiable gene of the host cell.
상기 증폭 가능 유전자는 디히드로엽산 환원효소(dihydrofolate reductase, DHFR), 글루타민 합성효소(glutamine synthetase, GS), 아데노신 탈아미노화효소(adenosine deaminase, ADA), 아스파르트산 카르바밀전달효소(aspartate transcarbamylase, CAD) 및 오르니틴 탈카르복실화효소(ornithine decarboxylase, ODC)로 이루어진 군으로부터 선택되는 어느 하나를 코딩하는 유전자일 수 있으나, 이에 한정되지 아니하며, 세포의 생장을 위해 필수적으로 발현되어야 하는 단백질을 코딩하는 유전자라면 제한되지 않고 적용될 수 있다. The amplifiable gene is dihydrofolate reductase (DHFR), glutamine synthetase (GS), adenosine deaminase (ADA), aspartic acid carbamyl transferase (aspartate transcarbamylase, CAD) ) And ornithine decarboxylase (ODC) may be a gene encoding any one selected from the group consisting of, but not limited to, encoding a protein that must be expressed essential for cell growth. Genes can be applied without limitation.
상기 RNA 간섭을 위한 유전자 절편은 증폭 가능 유전자의 mRNA의 3'-UTR에 상보적인 서열로서, 숙주세포에서 전사된 이후 상기 증폭 가능 유전자의 mRNA의 3'-UTR에 상보적으로 결합하여 상기 증폭 가능 유전자의 발현을 감소시키는 역할을 한다.The gene fragment for RNA interference is a sequence complementary to the 3'-UTR of the mRNA of the amplifiable gene, and after being transcribed in a host cell, binds to the 3'-UTR of the mRNA of the amplifiable gene and binds to the amplification. Serves to reduce the expression of genes.
상기 RNA 간섭을 위한 유전자 절편은 단일가닥 또는 이중가닥일 수 있다. 단일가닥인 RNA 간섭을 위한 염기서열은 이중가닥 영역을 가질 수 있고, 이중가닥 RNA 간섭을 위한 염기서열은 단일가닥 영역을 가질 수 있다. 상기 RNA 간섭을 위한 유전자 절편은 이중가닥 RNA(double stranded RNA, dsRNA), 마이크로RNA(microRNA , miRNA), 짧은 간섭 RNA(short interfering RNA, siRNA), 안티센스 RNA(antisense RNA), 프로모터-다이렉티드 RNA(promoter-directed RNA, pdRNA), 피위-상호작용 RNA(Piwi-interacting RNA, piRNA), 발현된 간섭 RNA(expressed interfering RNA, eiRNA), 짧은 헤어핀 RNA(short hairpin RNA, shRNA), 안타고미르(antagomirs), 디코이 RNA(decoy RNA), DNA, 플라스미드 및 앱타머(aptamer)로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있으나, 이에 한정되지 아니한다. The gene segment for RNA interference may be single stranded or double stranded. The base sequence for RNA interference that is single stranded may have a double stranded region, and the base sequence for double stranded RNA interference may have a single stranded region. The gene segments for RNA interference may be double stranded RNA (dsRNA), microRNA (microRNA, miRNA), short interfering RNA (siRNA), antisense RNA, promoter-directed. Promoter-directed RNA (pdRNA), Piwi-interacting RNA (piRNA), expressed interfering RNA (eiRNA), short hairpin RNA (shRNA), antagomir ( It may include any one selected from the group consisting of antagomirs, decoy RNA (decoy RNA), DNA, plasmid and aptamer, but is not limited thereto.
상기 RNA 간섭을 위한 유전자 절편은 서열번호 2 또는 서열번호 3의 염기 서열을 가지는 짧은 헤어핀 RNA(short-hairpin RNA, shRNA)일 수 있다. 본 발명은 상기 서열번호 2 또는 서열번호 3의 염기 서열을 포함하는 유전자와 실질적으로 동일한 염기 서열로 이루어진 유전자 및 상기 유전자의 단편을 포함한다. 상기 실질적으로 동일한 염기서열로 이루어진 유전자란 80% 이상, 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 갖는 것들을 의미하나, 이에 한정되는 것은 아니며, 80% 이상의 서열 상동성을 가지며, 증폭 가능 유전자의 mRNA의 3'-UTR에 상보적이며, 증폭 가능 유전자의 발현을 감소시키는 기능을 유지하는 것이면 한정되지 않는다.The gene segment for RNA interference may be short-hairpin RNA (shRNA) having a nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 3. The present invention includes a gene consisting of a base sequence substantially the same as a gene comprising the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 3 and fragments of the gene. Genes consisting of the same base sequence means those having sequence homology of at least 80%, preferably at least 90%, most preferably at least 95%, but are not limited thereto, and at least 80% sequence homology. And is complementary to the 3'-UTR of the mRNA of the amplifiable gene and is not limited so long as it maintains a function of reducing the expression of the amplifiable gene.
상기 shRNA 분자의 스템-루프 구조물은 약 45 내지 62개 뉴클레오티드 길이, 또는 바람직하게는 약 45 내지 49개 뉴클레오티드 길이일 수 있다. 스템 영역은 약 18개 내지 24개 뉴클레오티드 길이(또는 그 이상) 또는 보다 바람직하게는 약 18개 내지 20개 뉴클레오티드 길이일수 있다. 스템은 완벽히 상보적인 두 가닥(duplex)(그러나, 임의의 3' 테일에 대해서는 제외)을 포함할 수 있으나, 돌출부 또는 내부 루프가 존재할 수 있다. 이러한 돌출부 및 비대칭적 내부 루프의 수는 바람직하게는 소수(예: 1, 2 또는 3개)이고, 약 3개 뉴클레오티드 이하의 크기이다. 말단 루프부는 약 2개 이상의 뉴클레오티드를 포함할 수 있으나, 바람직하게는 약 8개 이하의 뉴클레오티드를 포함할 수 있다. 보다 구체적으로, 루프부는 바람직하게는 6개 내지 15개 뉴클레오티드 크기일 수 있다.The stem-loop structure of the shRNA molecule may be about 45 to 62 nucleotides in length, or preferably about 45 to 49 nucleotides in length. The stem region may be about 18 to 24 nucleotides in length (or more) or more preferably about 18 to 20 nucleotides in length. The stem may comprise two completely complementary duplexes (but not for any 3 'tail), but there may be protrusions or inner loops. The number of such overhangs and asymmetrical inner loops is preferably a minor number ( eg 1, 2 or 3) and is about 3 nucleotides or less in size. The terminal loop portion may comprise about 2 or more nucleotides, but may preferably comprise about 8 or less nucleotides. More specifically, the loop portion may preferably be 6-15 nucleotides in size.
본 발명의 발현 벡터에는 상기와 같은 RNA 간섭을 위한 유전자 절편 외에, 목적 단백질의 유전자를 클로닝할 수 있는 클로닝 자리와 외인성 증폭 가능 유전자를 포함하는 유전자 컨스트럭트를 구성으로 포함한다.In addition to the gene fragment for RNA interference as described above, the expression vector of the present invention includes a gene construct including a cloning site capable of cloning a gene of a target protein and an exogenous amplifiable gene.
상기 클로닝 자리는 본 발명의 발현 벡터를 통해 과발현시키고자 하는 목적 단백질이 삽입되는 자리로서, 많은 제한 부위를 함유하는 부분이며, 클로닝 또는 서브클로닝을 포함하는 과정 동안 일반적으로 사용될 수 있다. 클로닝 자리 내의 제한 효소 부위는 목적에 따라 다양하게 구성할 수 있고, 이러한 제한 요소 부위의 유연성으로 인해 다양한 응용에 대한 목적 유전자의 클로닝이 가능할 수 있다.The cloning site is a site where the target protein to be overexpressed through the expression vector of the present invention is inserted, and is a portion containing many restriction sites, and can be generally used during a process including cloning or subcloning. Restriction enzyme sites in the cloning site can be configured in various ways depending on the purpose, and the flexibility of such restriction element sites may allow cloning of the gene of interest for a variety of applications.
상기 외인성 증폭 가능 유전자는 숙주세포 유래인 것이 바람직하나, 내인성 증폭 가능 유전자의 발현이 억제된 환경에서 숙주세포의 생장을 유지할 수 있는 것이라면 어떠한 유래의 것이라도 특별히 한정되지 않고 이용될 수 있다.The exogenous amplifiable gene is preferably derived from a host cell, but any one derived from the host cell may be used without particular limitation as long as the exogenous amplifiable gene is capable of maintaining the growth of the host cell in an environment in which the expression of the endogenous amplifiable gene is suppressed.
상기 유전자 컨스트럭트에는 상기 클로닝 자리와 상기 외인성 증폭 가능 유전자 사이에 내부 리보솜 유입 자리(Internal ribosome entry site, IRES)가 추가로 포함될 수 있다. 상기 IRES는 mRNA 내부에 존재하는 특정 영역으로서, 리보솜이 5'캡(cap)에 의존하지 않고 직접 IRES 영역에 결합하여 번역을 개시하는 영역이다. 따라서 상기 클로닝 자리와 상기 외인성 증폭 가능 유전자의 사이에 IRES가 개재되면, 번역이 이루어지는 과정에서 IRES의 한쪽에 위치하는 유전자가 5'말단의 캡 구조로부터 번역이 이루어지고 IRES의 다른 한쪽에 위치하는 유전자는 IRES에 리보솜 서브유닛이 부착되어 번역이 이루어지므로, 상기 클로닝 자리에 클로닝된 목적 단백질과 상기 외인성 증폭 가능 유전자를 각각 별도로 얻을 수 있게 된다. 따라서 상기와 같은 IRES를 이용하면 과발현된 목적 단백질을 외인성 증폭 가능 유전자와 따로 분리하는 추가의 과정이 생략되는 효과가 있다.The gene construct may further include an internal ribosome entry site (IRS) between the cloning site and the exogenous amplifiable gene. The IRES is a specific region present inside the mRNA, and is a region where ribosomes bind directly to the IRES region to initiate translation without depending on the 5 'cap. Therefore, if an IRES is interposed between the cloning site and the exogenous amplifiable gene, the gene located on one side of the IRES is translated from the cap structure at the 5 'end in the process of translation and the gene located on the other side of the IRES. Since the translation is performed by attaching a ribosomal subunit to the IRES, the target protein cloned into the cloning site and the exogenous amplifiable gene can be obtained separately. Therefore, the use of the IRES as described above has the effect that the additional process of separating the overexpressed target protein from the exogenous amplifiable gene is omitted.
또한, 상기 유전자 컨스트럭트의 상기 클로닝 자리와 상기 외인성 증폭 가능 유전자 사이에는 2A 펩티드를 암호화하는 염기 서열이 포함될 수 있다. 2A 펩티드 서열은 리보좀 스키핑(ribosomal skipping) 기작 동안 정상적인 펩티드 결합 형성을 손상시키기 때문에 유전자 컨스트럭트 내에 포함된 유전자들이 별도의 단백질로 발현되게 된다. 이러한 기능을 위하여 상기 유전자 컨스트럭트의 상기 클로닝 자리와 상기 외인성 증폭 가능 유전자 사이에는 2A 펩티드를 암호화하는 염기 서열 외에도 2A-유사 펩티드를 암호화하는 염기 서열, 리보자임 분해 부위, 프로테아제 분해 부위를 암호화하는 염기 서열 등이 각각 포함될 수 있다.In addition, a base sequence encoding a 2A peptide may be included between the cloning site of the gene construct and the exogenous amplifiable gene. Since the 2A peptide sequence impairs normal peptide bond formation during the ribosomal skipping mechanism, genes contained in the gene construct are expressed as separate proteins. For this function, between the cloning site of the gene construct and the exogenous amplifiable gene, in addition to the base sequence encoding a 2A peptide, a base sequence encoding a 2A-like peptide, a ribozyme cleavage site, and a protease cleavage site are encoded. Base sequences and the like may be included, respectively.
또한, 상기 유전자 컨스트럭트에는 상기 클로닝 자리와 상기 외인성 증폭 가능 유전자 사이에 내부 리보솜 유입 자리(IRES) 외에 외인성 증폭 가능 유전자의 발현을 개시할 수 있는 프로모터가 포함될 수 있으나, 이에 한정되지 아니한다. 상기 프로모터는 시미안 바이러스 40 초기 프로모터, 마우스 유선암 바이러스 LTR 프로모터, 사이토메갈로바이러스 Pol-II 프로모터, 헤르페스 티미딘 키나제 프로모터 및 포스포글리세레이트 키나제 I(PGK) 프로모터로 이루어진 군으로부터 선택되는 어느 하나의 프로모터일 수 있다. In addition, the gene construct may include a promoter capable of initiating expression of an exogenous amplifiable gene in addition to an internal ribosomal inlet site (IRES) between the cloning site and the exogenous amplifiable gene, but is not limited thereto. The promoter is any one selected from the group consisting of Simian virus 40 early promoter, mouse mammary cancer virus LTR promoter, cytomegalovirus Pol-II promoter, herpes thymidine kinase promoter and phosphoglycerate kinase I (PGK) promoter. Can be.
또한, 상기 유전자 컨스트럭트에는 발현된 목적 단백질의 정제를 용이하게 하기 위해 분리정제용 태그를 암호화하는 유전자가 추가적으로 포함될 수 있다. 상기 분리정제용 태그로는 GST, poly-Arg, FLAG, 히스티딘-태그(His-tag) 또는 c-myc 등이 이용될 수 있다. 본 발명의 발현 벡터는 적당한 숙주세포로 형질전환되어, 숙주세포의 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 특히, 본 발명에서는 플라스미드 벡터가 이용될 수 있는데, 상기 플라스미드 벡터는 (a) 숙주세포당 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 선택 마커 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다.In addition, the gene construct may further include a gene encoding a tag for separation and purification to facilitate the purification of the expressed target protein. As the tag for separation and purification, GST, poly-Arg, FLAG, histidine-tag (His-tag) or c-myc may be used. The expression vector of the present invention can be transformed into a suitable host cell to replicate and function independently of the genome of the host cell, or in some cases can be integrated into the genome itself. In particular, in the present invention, a plasmid vector may be used, wherein the plasmid vector is transformed into (a) a replication initiation point so that replication is efficiently carried out to include several hundred plasmid vectors per host cell, and (b) a plasmid vector. It has a structure comprising a selection marker gene that allows a host cell to be selected and (c) a restriction enzyme cleavage site into which foreign DNA fragments can be inserted. Although no appropriate restriction enzyme cleavage site is present, the use of synthetic oligonucleotide adapters or linkers according to conventional methods facilitates ligation of the vector and foreign DNA.
상기 숙주세포는 동물 세포, 보다 바람직하게는 포유동물 세포일 수 있으며, 상기 포유동물 세포는 인간 세포일 수 있다.The host cell may be an animal cell, more preferably a mammalian cell, and the mammalian cell may be a human cell.
상기 포유동물 세포는 BHK21 세포주, BHK T- 세포주, NS0 세포주, Sp2/0 세포주, EL4 세포주, CHO 세포주, CHO 유도 세포주(CHO cell derivatives), U293 세포주, NIH/3T3 세포주, 3T3 LI 세포주, ES-D3 세포주, H9c2 세포주, C2C12 세포주 및 miMCD-3 세포주로부터 선택되는 어느 하나의 설치류 세포(rodent cell)일 수 있으나, 이에 한정되지 아니한다.The mammalian cells are BHK21 cell line, BHK T- cell line, NS0 cell line, Sp2 / 0 cell line, EL4 cell line, CHO cell line, CHO cell derivatives, U293 cell line, NIH / 3T3 cell line, 3T3 LI cell line, ES- It may be any one rodent cell selected from D3 cell line, H9c2 cell line, C2C12 cell line, and miMCD-3 cell line, but is not limited thereto.
상기 CHO 유도 세포주는 CHO-Kl 세포주, CHO-DUKX, CHO-DUKX Bl 및 CHO-DG44 세포주로부터 선택되는 어느 하나일 수 있으나, 이에 한정되지 아니한다. The CHO induced cell line may be any one selected from CHO-Kl cell line, CHO-DUKX, CHO-DUKX Bl, and CHO-DG44 cell lines, but is not limited thereto.
상기 인간 세포는 SH-SY5Y, IMR32 세포주, LAN5 세포주, HeLa 세포주, MCFIOA 세포주, 293T 세포주, SK-BR3 세포주, U293 세포주, HEK 293 세포주, PER.C6® 세포주, Jurkat 세포주, HT-29 세포주, LNCap.FGC 세포주, A549 세포주, MDA MB453 세포주, HepG2 세포주, THP-I 세포주, MCF7 세포주, BxPC-3 세포주, Capan-1 세포주, DU145 세포주 및 PC-3 세포주로 이루어진 군으로부터 선택되는 하나일 수 있으나, 이에 한정되지 아니한다. 다른 한편으로, 상기 인간 세포는 HuVEC 세포주, HuASMC 세포주, HKB-I1 세포주 및 hMSC 세포주로 이루어진 군으로부터 선택되는 어느 하나의 1차 세포(primary cell)일 수 있으나, 이에 한정되지 아니한다. The human cells are SH-SY5Y, IMR32 cell line, LAN5 cell line, HeLa cell line, MCFIOA cell line, 293T cell line, SK-BR3 cell line, U293 cell line, HEK 293 cell line, PER.C6® cell line, Jurkat cell line, HT-29 cell line, LNCap .FGC cell line, A549 cell line, MDA MB453 cell line, HepG2 cell line, THP-I cell line, MCF7 cell line, BxPC-3 cell line, Capan-1 cell line, DU145 cell line and PC-3 cell line, It is not limited to this. On the other hand, the human cell may be any one primary cell selected from the group consisting of HuVEC cell line, HuASMC cell line, HKB-I1 cell line and hMSC cell line, but is not limited thereto.
이때, 숙주세포의 종류에 따라 적절한 배양 방법 및 배지 조건 등은 본 분야의 공지 기술로부터 통상의 기술자가 용이하게 선택할 수 있다. At this time, appropriate culture methods, media conditions and the like according to the type of host cell can be easily selected by those skilled in the art from the known art.
상기 목적 단백질은 에리스로포이에틴(erythropoietin, EPO)일 수 있고, 고생산성을 요하는 목적 단백질이라면 본 발명의 벡터 시스템을 적용할 수 있다. The target protein may be erythropoietin (EPO), and if the target protein requires high productivity, the vector system of the present invention may be applied.
본 발명에 따른 발현 벡터를 이용하면 숙주세포의 내인성 증폭 가능 유전자의 발현이 억제되므로 숙주세포는 스스로 그 생장을 유지하기 위해 본 발명의 발현 벡터 내에 포함된 외인성 증폭 가능 유전자를 발현하게 된다. 이러한 상태에서 상기 숙주세포가 상기 외인성 증폭 가능 유전자에 대한 억제제에 노출되게 되면, 숙주세포는 또 다시 그 생장을 유지하기 위해 상기 외인성 증폭 가능 유전자를 더욱 과발현하게 되는데, 이때 상기 외인성 증폭 가능 유전자와 연결된 클로닝 자리에 클로닝된 목적 단백질도 함께 과발현되므로, 본 발명의 발현 벡터를 이용하면 목적 단백질을 대량으로 수득할 수 있다.When the expression vector according to the present invention is used, the expression of the endogenous amplifiable gene of the host cell is suppressed, so that the host cell expresses the exogenous amplifiable gene included in the expression vector of the present invention to maintain its growth. In this state, when the host cell is exposed to an inhibitor of the exogenous amplifiable gene, the host cell again overexpresses the exogenous amplifiable gene in order to maintain its growth, wherein the host cell is linked to the exogenous amplifiable gene. Since the target protein cloned at the cloning site is also overexpressed, the target protein can be obtained in large quantities using the expression vector of the present invention.
2.  2. 목적 단백질의 과발현을 위한 형질전환체 및 목적 단백질 과발현 방법Transformants and Overexpression Methods for Overexpression of Target Proteins
본 발명의 또 다른 측면은 상기 목적 단백질 생산을 위한 발현 벡터가 숙주세포에 도입된 형질전환체를 제공한다.Another aspect of the present invention provides a transformant in which the expression vector for producing the target protein is introduced into a host cell.
본 발명의 형질전환체의 제조를 위한 재조합 발현 벡터의 도입 방법은 공지의 기술, 즉 열 충격법, 전기충격법 등을 사용할 수 있다.As a method of introducing a recombinant expression vector for producing a transformant of the present invention, a known technique, that is, a heat shock method, an electric shock method, or the like may be used.
본 발명의 또 다른 측면은 하기 단계를 포함하는 목적 단백질의 과발현 방법을 제공한다:Another aspect of the invention provides a method of overexpressing a protein of interest comprising the following steps:
상기 발현 벡터의 유전자 컨스트럭트 중 클로닝 자리에 목적 단백질의 유전자를 클로닝하는 단계; 상기 목적 단백질의 유전자가 클로닝된 발현 벡터를 숙주세포에 도입하는 단계; 상기 발현 벡터가 도입된 숙주세포를 배양하는 단계; 및 상기 배양 중인 숙주세포에 증폭 가능 유전자에 의하여 발현되는 단백질에 대한 억제제를 처리하는 단계.Cloning the gene of the protein of interest in the cloning site of the gene construct of the expression vector; Introducing an expression vector cloned with the gene of the protein of interest into a host cell; Culturing the host cell into which the expression vector is introduced; And treating the inhibitor against the protein expressed by the amplifiable gene in the host cell in culture.
상기 증폭 가능 유전자에 의해 발현되는 단백질과 상기 단백질에 대한 억제제는 각각 디히드로엽산 환원효소(dihydrofolate reductase, DHFR)와 메토트렉세이트(methotrexate, MTX); 글루타민 합성효소(glutamine synthetase, GS)와 메티오닌 설폭시민(methionine sulfoximine, MSX); 아데노신 탈아미노화효소(adenosine deaminase, ADA)와 디옥시코포르마이신(deoxycoformycin, dCF); 아스파르트산 카르바밀전달효소(aspartate transcarbamylase, CAD)와 N-포스폰아세틸-L-아스파르트산(N-phosphonacetyl-L-aspartate, PALA); 및 오르니틴 탈카르복실화효소(ornithine decarboxylase, ODC)와 α-디플루오로메틸-오르니틴(α-difluoromethyl-ornithine, DFMO);으로 이루어진 조합의 군으로부터 선택되는 어느 하나일 수 있다. The protein expressed by the amplifiable gene and the inhibitor for the protein are dihydrofolate reductase (DHFR) and methotrexate (methotrexate, MTX), respectively; Glutamine synthetase (GS) and methionine sulfoximine (MSX); Adenosine deaminase (ADA) and deoxycoformycin (dCF); Aspartate transcarbamylase (CAD) and N-phosphonacetyl-L-aspartic acid (N-phosphonacetyl-L-aspartate, PALA); And ornithine decarboxylase (ornithine decarboxylase, ODC) and α-difluoromethyl-ornithine (α-difluoromethyl-ornithine, DFMO); may be any one selected from the group consisting of.
상기 MTX의 처리 농도는 10nm 내지 1000nm일 수 있고, 세포의 성장이 유지되면서, 목적 단백질의 생산을 증가시킬 수 있는 농도이면 제한없이 사용될 수 있다. The treatment concentration of MTX may be 10nm to 1000nm, and may be used without limitation as long as the growth of the cell is maintained, a concentration capable of increasing the production of the target protein.
상기와 같은 형질전환체의 배양은 본 기술 분야에 알려진 적당한 배지와 배양 조건에 따라 이루어질 수 있다. 통상의 기술자라면 선택되는 형질전환체의 숙주세포의 종류에 따라 배지 및 배양조건을 용이하게 조정하여 사용할 수 있다. Cultivation of such a transformant can be made according to suitable media and culture conditions known in the art. Those skilled in the art can easily use the medium and culture conditions according to the type of host cell of the transformant to be selected.
본 발명에서 사용될 수 있는 배지는, 예를 들면 Ham's F10 (Sigma), 최소 필수 배지([MEM], Sigma), RPMI-1640 (Sigma) 및 DMEM (Sigma)와 같은 시판 배지를 포함할 수 있으나, 이에 한정되지 않는다. 이들 배지들 중 어느 것이나 필요에 따라 호르몬 또는 기타 성장인자(인슐린, 트랜스페린 또는 상피 성장인자와 같은 것), 염(염화나트륨, 칼슘, 마그네슘 및 인산염과 같은 것), 완충액(HEPES와 같은 것), 뉴클레오시드(아데노신 및 티미딘과 같은 것), 항생제(겐타마이신(상표명) 약물과 같은 것), 미량 원소(통상 마이크로몰 범위의 최종 농도로 존재하는 무기 화합물로 정의됨), 지질(리놀레산 또는 기타 지방산과 같은 것) 및 이들의 적당한 담체, 그리고 글루코스 또는 동등한 에너지원을 보충할 수 있다. 다른 필요한 보충물 역시 당업계에 공지되어 있는 적절한 농도로 포함시킬 수 있다. 또한, 배양 중에 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다.Mediums that can be used in the present invention may include, for example, commercially available mediums such as Ham's F10 (Sigma), minimum essential medium ([MEM], Sigma), RPMI-1640 (Sigma) and DMEM (Sigma), It is not limited to this. Any of these media can be used as needed, such as hormones or other growth factors (such as insulin, transferrin or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium and phosphate), buffers (such as HEPES), nu Cleosides (such as adenosine and thymidine), antibiotics (such as gentamicin®) drugs, trace elements (usually defined as inorganic compounds present in final concentrations in the micromolar range), lipids (linoleic acid or others) Such as fatty acids) and their appropriate carriers, and glucose or equivalent energy sources. Other necessary supplements may also be included at appropriate concentrations known in the art. In addition, anti-foaming agents such as fatty acid polyglycol esters can be used during the culture to suppress bubble generation.
상기 방법에 의해 생성된 목적 단백질은 본 기술 분야에서 알려진 분리 및 정제방법을 사용하여 회수될 수 있다. 상기 회수는 원심분리, 이온교환 크로마토그래피, 여과, 침전, 또는 이들의 조합에 의하여 이루어질 수 있다.The desired protein produced by the method can be recovered using separation and purification methods known in the art. The recovery may be by centrifugation, ion exchange chromatography, filtration, precipitation, or a combination thereof.
본 발명의 구체적인 실시예에서는 숙주세포의 내인성 증폭 가능 유전자의 mRNA의 3'-UTR을 표적으로 하는 RNA 간섭을 위한 유전자 절편과, 목적 단백질의 유전자와 외인성 증폭 가능 유전자를 포함하는 컨스트럭트를 포함하는 벡터(shRNA/EID/pcDNA5frt)를 제작하였고 이를 CHO 세포에 도입하여 형질전환체를 제조하였다. 상기와 같이 제조된 형질전환체에서는 상기 RNA 간섭을 위한 유전자 절편에 의해서 내인성 증폭 가능 유전자(dhfr)의 발현이 감소하였고, MTX의 농도를 단계적으로 높여가면서 처리하였을 때 외인성 증폭 가능 유전자의 발현이 증가함에 따라 목적 단백질의 발현도 함께 증가함을 확인하였다(도 7 참조). Specific embodiments of the present invention include a gene segment for RNA interference targeting the 3'-UTR of the mRNA of the endogenous amplifiable gene of the host cell, and a construct comprising a gene of the target protein and an exogenous amplifiable gene. A vector (shRNA / EID / pcDNA5frt) was prepared and introduced into CHO cells to prepare a transformant. In the transformant prepared as described above, the expression of the endogenous amplifiable gene (dhfr) was reduced by the gene fragment for RNA interference, and the expression of the exogenous amplifiable gene was increased when the MTX concentration was increased in steps. As it was confirmed that the expression of the target protein also increased (see Figure 7).
보다 구체적으로, 본 발명의 실시예에서는 Flp-In 시스템을 이용하였고, Flp-In 시스템에는 Flp-In CHO 세포주(단독 삽입 FRT 사이트를 함유하는 세포주); 도입시 목적 단백질 등을 발현하는 pcDNA5/FRT 벡터(FRT 부위를 가지는 플라스미드로서, Flp 재조합효소를 위한 인식 및 분해 부위임); 및 pOG44 Flp 재조합효소 발현 플라스미드가 포함된다. 구체적으로, 내인성 증폭 가능 유전자의 발현을 억제하는 shRNA와, 목적 단백질의 유전자와 외인성 증폭 가능 유전자를 포함하는 컨스트럭트를 포함하는 shRNA/EID/pcDNA5frt를 제작하고, 이를 pOG44 Flp 재조합효소 발현 플라스미드와 함께 Flp-In CHO 세포주에 도입하여 형질전환체를 제조하였다. 상기 shRNA/EID/pcDNA5frt에 포함된 목적 단백질인 EPO의 유전자는 Flp 재조합효소 의존적으로 세포주의 게놈에 삽입되고, 형질도입된 Flp-In CHO 세포주에 MTX를 단계적으로 처리함으로써 목적 단백질의 발현이 증폭됨을 확인하였다(도 7 참조). More specifically, in the embodiment of the present invention, the Flp-In system was used, and the Flp-In system includes a Flp-In CHO cell line (a cell line containing a single insertion FRT site); PcDNA5 / FRT vector (plasmid having an FRT site, which is a recognition and degradation site for Flp recombinase) expressing a target protein or the like upon introduction; And pOG44 Flp recombinase expression plasmids. Specifically, shRNA / EID / pcDNA5frt comprising a shRNA that inhibits the expression of endogenous amplifiable genes and a construct comprising a gene of the protein of interest and an exogenous amplifiable gene are prepared, and the pOG44 Flp recombinase expression plasmid The transformants were prepared by introducing them into the Flp-In CHO cell line together. The gene of EPO, which is the target protein contained in the shRNA / EID / pcDNA5frt, is inserted into the genome of the cell line depending on the Flp recombinase, and the expression of the target protein is amplified by stepwise MTX treatment of the transduced Flp-In CHO cell line. It was confirmed (see FIG. 7).
이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by Examples and Experimental Examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 의해 한정되는 것은 아니다.However, the following Examples and Experimental Examples are only for illustrating the present invention, and the content of the present invention is not limited by the following Examples and Experimental Examples.
[실시예 및 실험예][Examples and Experimental Examples]
[[ 실시예Example 1] 내인성 증폭 가능 유전자의 억제를 위한  1] for the inhibition of endogenous amplifiable genes shRNA의shRNA 제작 making
[1-1] 내인성 증폭 가능 유전자의 억제를 위한 [1-1] for Inhibition of Endogenous Amplifiable Genes shRNAshRNA 발현 벡터의 제작 Construction of Expression Vectors
내부 증폭 유전자인 dhfr의 3'-UTR을 타겟팅하는 shRNA의 염기 서열을 Bioneer사에 의뢰하여 하기 표 1과 같은 3개의 염기 서열을 제공받았고, 이들 3개의 염기 서열을 pSUPER 벡터(Clontech)에 클로닝하여 내인성 증폭 가능 유전자의 억제를 위한 shRNA 발현 벡터를 제작하였다. The base sequence of shRNA targeting 3'-UTR of dhfr, an internal amplification gene, was submitted to Bioneer, and provided three base sequences as shown in Table 1 below. These three base sequences were cloned into a pSUPER vector (Clontech). An shRNA expression vector was constructed for the inhibition of endogenous amplifiable genes.
서열번호SEQ ID NO: 서열 명칭Sequence name 서열(5'→3')Sequence (5 '→ 3')
1One shRNA-1shRNA-1 CUGAUUGACUUCAACUUCU CUGAUUGACUUCAACUUCU
22 shRNA-2shRNA-2 UGUGUUGGCUUUAGAUCUA UGUGUUGGCUUUAGAUCUA
33 shRNA-3shRNA-3 GAUAGUUAGGAAGAUGUAUGAUAGUUAGGAAGAUGUAU
[1-2] 상기 [1-2] above shRNA들의shRNAs DHFRDHFR 발현 억제 효과 확인 Confirmation of expression inhibition effect
실시예 1-1에서 제작된 pSUPER 벡터 중 상기 표 1의 유전자 절편이 각각 포함된 pSUPER 벡터들을 각각 CHO-K1 세포주(ATCC CCL-61TM) 내로 도입하여 dhfr 유전자의 mRNA 양을 quantitative Real-Time PCR(qPCR) 방법으로 확인하였다. 음성 대조군으로는 pSUPER 벡터가 도입되지 않은 CHO-K1 세포주를 이용하였고, CHO-K1 세포주 및 제작된 pSUPER 벡터가 도입된 CHO-K1 세포주는 소태아혈청(fetal vobine serum, FBS, Gibco)을 10% 포함한 RPMI1640(Gibco) 배지에서 배양하였다. 양성 대조군으로는 dfhr 결핍된 세포인 DG44 세포주(CHO-DG44 세포(Invitrogen))를 이용하였으며, 상기 DG44 세포는 5% 투석된 FBS(Gibco) 및 1x HT supplement(Gibco)를 포함한 IMDM(Hyclone) 배지에서 배양하였다. Among the pSUPER vectors prepared in Example 1-1, pSUPER vectors each containing the gene fragments of Table 1 above were each CHO-K1 cell line (ATCC).   CCL-61 TM ) was used to confirm the mRNA amount of the dhfr gene by quantitative real-time PCR (qPCR). As a negative control, a CHO-K1 cell line without a pSUPER vector was used, and a CHO-K1 cell line and a CHO-K1 cell line into which a manufactured pSUPER vector were introduced were 10% fetal vobine serum (FBS, Gibco). Cultured in a RPMI1640 (Gibco) medium containing. As a positive control, dfhr-deficient DG44 cell line (CHO-DG44 cells (Invitrogen)) was used, and the DG44 cells were IMDM (Hyclone) medium containing 5% dialyzed FBS (Gibco) and 1x HT supplement (Gibco). Incubated at.
실시예 1-1에서 형질도입을 위한 DNA의 추출은 PureYield Plasmid Midiprep system(Promega)을 이용하여 준비하였고, 형질도입은 리포펙타민 2000(Lipofectamine 2000)(Invitrogen)을 이용하여 제조사의 지침에 따라 수행하였다. 형질도입 후, 형질도입된 세포를 FBS 10%를 포함한 RPMI1640(Gibco) 배지에서 (14일 동안 배양하였다. 배양된 shRNA 발현 벡터가 도입된 세포주 또는 대조군 세포주의 RNA를 MiniBEST Universal RNA Extraction Kit(Takara)을 이용하여 추출하였고, 추출한 RNA를 PrimeScript 1st strand cDNA Synthesis Kit(Takara)를 이용하여 cDNA로 합성한 후, 이를 주형으로 하여 qPCR을 수행하였다. 하기 표 2의 프라이머 dhfr-F(서열번호 18)와 dhfr-R(서열번호 19)을 이용하여 dhfr 유전자를 증폭하고, 프라이머 gapdh-F(서열번호 22)와 gapdh-R(서열번호 23)을 이용하여 내부 표준유전자인 gapdh 유전자를 증폭하였다.Extraction of DNA for transduction in Example 1-1 was prepared using PureYield Plasmid Midiprep system (Promega), and transduction was performed according to the manufacturer's instructions using Lipofectamine 2000 (Invitrogen). It was. After transduction, the transduced cells were cultured for 14 days in RPMI1640 (Gibco) medium containing 10% FBS. RNA of the cell line or control cell line into which the cultured shRNA expression vector was introduced was miniBEST Universal RNA Extraction Kit (Takara). The extracted RNA was synthesized into cDNA using PrimeScript 1 st strand cDNA Synthesis Kit (Takara), and then subjected to qPCR using the template as shown in Table 2. Primer dhfr-F (SEQ ID NO: 18) And dhfr-R (SEQ ID NO: 19) were used to amplify the dhfr gene, and primer gapdh-F (SEQ ID NO: 22) and gapdh-R (SEQ ID NO: 23) were used to amplify the internal standard gene gapdh gene.
서열번호SEQ ID NO: 서열 명칭Sequence name 프라이머primer 방향 direction 서열(5'→3')Sequence (5 '→ 3')
1818 dhfr-Fdhfr-F 정방향Forward direction CAGGCCACCTCAGACTCTTTGCAGGCCACCTCAGACTCTTTG
1919 dhfr-Rdhfr-R 역방향Reverse TGGGAAAAACGTGTCACTTTCA TGGGAAAAACGTGTCACTTTCA
2222 gapdh-Fgapdh-F 정방향Forward direction CATGGCCTTCCGTGTTCCTACATGGCCTTCCGTGTTCCTA
2323 gapdh-Rgapdh-R 역방향Reverse CAGGCGACATGTCAGATCCACAGGCGACATGTCAGATCCA
qPCR은 Power SYBR Green PCR Master mix(Applied Biosystems)를 이용하였으며 제조사의 지침에 따라 수행하였다. PCR 반응은 95℃에서 10분, 95℃에서 15초 그리고 60℃에서 1분의 조건으로 총 40회 실시하여 해당 유전자들을 증폭하였고 comparative Ct(△△Ct) 방법을 이용하여 상대적 유전자 발현량을 확인하였다.qPCR was performed using a Power SYBR Green PCR Master mix (Applied Biosystems) and was performed according to the manufacturer's instructions. The PCR reaction was performed a total of 40 times under conditions of 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C to amplify the genes and confirm the relative gene expression using comparative Ct (△△ Ct) method. It was.
그 결과, dhfr이 결핍된 대조군 DG44 세포주의 경우 dfhr이 발현되지 않았고, 서열번호 1 내지 3으로 명명한 shRNA를 도입한 CHO 세포주의 경우, 서열번호 2 또는 3의 shRNA을 도입한 세포주가 서열번호 1의 shRNA를 도입한 세포주에 비해서 CHO 세포 내부의 내인성 dhfr의 발현을 감소시키며, 특히 서열번호 2의 shRNA-2가 도입된 CHO세포주의 경우, 세포 내 dhfr 유전자의 발현을 대조군 대비 80% 억제하여 가장 효율적임을 확인하였다(도 2). 따라서, 효과가 가장 우수하였던 서열번호 2의 shRNA-2를 CHO 세포주 내부의 내인성 dhfr 유전자 타겟팅 shRNA로 선정하여 추후 실험을 진행하였다.As a result, in the case of the control DG44 cell line lacking dhfr, dfhr was not expressed, and in the case of the CHO cell line into which the shRNAs designated by SEQ ID NOS: 1 to 3 were introduced, the cell line into which the shRNAs of SEQ ID NO: 2 or 3 were introduced was SEQ ID NO: 1 The expression of endogenous dhfr in CHO cells was reduced compared to the cell lines into which shRNA was introduced. Especially, in the CHO cell line into which shRNA-2 of SEQ ID NO: 2 was introduced, the expression of intracellular dhfr gene was suppressed by 80% compared to the control group. It was confirmed that the efficiency (Fig. 2). Therefore, the most effective shRNA-2 of SEQ ID NO: 2 was selected as an endogenous dhfr gene targeting shRNA in the CHO cell line, and further experiments were performed.
상기와 같은 결과로부터, 종래에 DG44 세포주와 같이 세포에 방사능을 조사하지 않고, CHO 세포에 dhfr의 3'-UTR을 억제하는 shRNA를 도입하여도 dhfr의 결핍이 효과적으로 이루어지는 것을 알 수 있었다. From the above results, it was found that dhfr deficiency is effectively achieved even when a shRNA that inhibits 3'-UTR of dhfr is introduced into CHO cells without irradiating the cells as in the conventional DG44 cell line.
[[ 실시예Example 2] 내인성 증폭 가능 유전자의 억제를 위한  2] for the inhibition of endogenous amplifiable genes shRNA와with shRNA 목적 단백질이 포함된 발현 벡터의 제조 Preparation of Expression Vectors Containing Target Proteins
상기 실시예 1에서 제작된 벡터의 프로모터와 shRNA 유전자를 목적 단백질의 발현이 가능한 발현 벡터에 삽입하고 안정적인 발현을 위한 세포주를 구축하였다. 벡터의 유전체 삽입 위치에 따른 영향을 배제하고 유전자 증폭 효율과 목적 단백질의 생산을 정확하게 확인하기 위해, 위치 특이적 삽입 방식인 Flp-In 시스템(Invitrogen)을 이용하였다. Flp-In 시스템은 Flp-In CHO 세포주에서 목적 단백질 등을 발현하는 pcDNA5/FRT 벡터(도 3a)와 Flp 재조합효소(recombinase)를 발현하는 pOG44 벡터를 함께 형질도입한 후, 히그로마이신 B(hygromycin B)(invitrogen)로 선별하는 방법으로 적용되었다. The promoter and shRNA gene of the vector prepared in Example 1 were inserted into an expression vector capable of expressing a target protein, and a cell line was constructed for stable expression. The Flp-In system (Invitrogen), a site-specific insertion method, was used to accurately identify gene amplification efficiency and the production of the target protein, excluding the influence of the vector's genomic insertion site. The Flp-In system transduces a pcDNA5 / FRT vector (FIG. 3A) and a pOG44 vector expressing Flp recombinase, which express a protein of interest in the Flp-In CHO cell line, and then hygromycin B (hygromycin B). B) (invitrogen) was applied by the method.
[2-1] [2-1] shRNAshRNA /Of pcDNA5frt의pcDNA5frt 제작 making
shRNA/pcDNA5frt는 In-fusion HD cloning kit(Clontech)을 이용하여 제작하였다. 구체적으로, 실시예 1에서 제작된 서열번호 2의 shRNA-2를 포함하는 pSUPER 벡터를 주형으로 하여 shRNA-2와 H1 프로모터가 포함되도록 하였다. 먼저, 상기 pSUPER 벡터를 하기 표 3의 pD5-shRNA F(서열번호 4)와 pD5-shRNA R(서열번호 5) 프라이머를 이용하여 PCR을 수행하였고, pcDNA5frt는 제한효소 BglII를 처리하여 단편을 만들었다. 수득한 PCR 생성물 50ng, 제한효소 처리된 pcDNA5frt 단편 10ng, 및 DW를 포함하는 8㎕ 혼합물에 In-fusion enzyme premix 2㎕를 넣고 50℃에서 15분 간 반응시켜 pcDNA5/FRT 벡터의 BglII 제한효소 위치에 shRNA를 삽입하여 shRNA/pcDNA5frt를 제조하였다(도 3b). shRNA / pcDNA5frt was prepared using an In-fusion HD cloning kit (Clontech). Specifically, the pSUPER vector containing the shRNA-2 of SEQ ID NO: 2 prepared in Example 1 was used as a template to include the shRNA-2 and H1 promoters. First, the pSUPER vector was subjected to PCR using pD5-shRNA F (SEQ ID NO: 4) and pD5-shRNA R (SEQ ID NO: 5) primers of Table 3, and pcDNA5frt was made by treating restriction enzyme BglII. 50 μl of the obtained PCR product, 10 ng of the restriction enzyme-treated pcDNA5frt fragment, and 8 μl of the DW mixture were added with 2 μl of In-fusion enzyme premix and reacted at 50 ° C. for 15 minutes at the BglII restriction site of the pcDNA5 / FRT vector. shRNA was inserted to prepare shRNA / pcDNA5frt (FIG. 3B).
[2-2] [2-2] EIDEID /Of pcDNA5frt의pcDNA5frt 제작 making
목적 단백질 종류 중 하나인 에리스로포이에틴(erythropoietin, EPO) 유전자가 DHFR과 함께 발현이 되도록 pOptiVEC 벡터(Invitrogen)의 IRES-dhfr 유전자와 함께 pcDNA5/FRT 벡터의 멀티 클로닝 사이트(MCS)의 NheI 제한효소 위치에 In-fusion 방식으로 삽입하여 EID/pcDNA5frt 벡터를 제작하였다(도 3c). 구체적으로, EID/pcDNA5frt 벡터 제작시 필요한 EPO 유전자, IRES-dhfr 유전자, pcDNA5/FRT 벡터를 각각 PCR로 증폭하였다. EPO 유전자 증폭시에는 서열번호 26의 아미노산 서열을 가지고, 서열번호 27의 염기서열로 이루어지는 GenBank accession no. NM_000799의 mRNA를 주형으로 하고, 하기 표 3의 프라이머 EPO F(서열번호 6)와 EPO R(서열번호 7)를 사용하였다. IRES-dhfr 유전자 증폭시에는 pOptiVEC 벡터를 주형으로 하였으며 하기 표 3의 IRES F(서열번호 8)와 dhfr R(서열번호 9)를 사용하였다. pcDNA5frt는 제한효소 NheI, XhoI를 처리하여 단편을 만들었다. 수득한 PCR 생성물과 제한효소 처리된 pcDNA5frt를 상기 실시예 2-1의 방법과 동일한 조건에서 반응시켜 EID/pcDNA5frt 벡터를 제작하였다.One of the target protein types, erythropoietin (EPO) gene, is expressed in the NheI restriction enzyme position of the multicloning site (MCS) of the pcDNA5 / FRT vector together with the IRES-dhfr gene of the pOptiVEC vector (Invitrogen) for expression with DHFR. EID / pcDNA5frt vector was prepared by inserting in a -fusion method (FIG. 3C). Specifically, the EPO gene, IRES-dhfr gene, and pcDNA5 / FRT vector required for the preparation of EID / pcDNA5frt vector were amplified by PCR, respectively. When amplifying the EPO gene, GenBank accession no. Having the amino acid sequence of SEQ ID NO: 26 and consisting of the nucleotide sequence of SEQ ID NO: 27. Using mRNA of NM_000799 as a template, primers EPO F (SEQ ID NO: 6) and EPO R (SEQ ID NO: 7) shown in Table 3 were used. When amplifying the IRES-dhfr gene, pOptiVEC vector was used as a template, and IRES F (SEQ ID NO: 8) and dhfr R (SEQ ID NO: 9) shown in Table 3 were used. pcDNA5frt was processed by restriction enzymes NheI, XhoI to make a fragment. The obtained PCR product was reacted with the restriction enzyme treated pcDNA5frt under the same conditions as in Example 2-1 to prepare an EID / pcDNA5frt vector.
[2-3] [2-3] shRNAshRNA /Of EIDEID /Of pcDNA5frt의pcDNA5frt 제작 making
내인성 증폭 가능 유전자인 dfhr의 발현을 억제하는 shRNA가 발현되고 목적 단백질인 EPO, 외인성 증폭 가능 유전자 dfhr이 각각 발현되는 shRNA/EID/pcDNA5frt를 제작하였다. 실시예 2-1에서 제작한 shRNA/pcDNA5frt 벡터의 NheI, XhoI 제한효소 위치에 실시예 2-2와 동일한 서열 및 방식으로 EPO 서열과 IRES-dhfr 유전자를 삽입하여 shRNA/EID/pcDNA5frt를 제작하였다.A shRNA that suppresses the expression of the endogenous amplifiable gene dfhr is expressed, and a shRNA / EID / pcDNA5frt expressing the target protein EPO and the exogenous amplifiable gene dfhr, respectively, was prepared. The shRNA / EID / pcDNA5frt was prepared by inserting the EPO sequence and the IRES-dhfr gene in the same sequence and manner as in Example 2-2 at the NheI and XhoI restriction enzyme positions of the shRNA / pcDNA5frt vector prepared in Example 2-1.
서열번호SEQ ID NO: 서열 명칭Sequence name 프라이머primer 방향 direction 서열(5'→3')Sequence (5 '→ 3')
44 pD5-shRNA FpD5-shRNA F 정방향 Forward direction GACGG ATCGGGAGATCTGAATTCGAACGCTGACGTGACGGATCGGGAGATCTGAATTCGAACGCTGACGT
55 pD5-shRNA RpD5-shRNA R 역방향Reverse AGGGGATCGGGAGATCTAACAGCTATGACCATGATAGGGGATCGGGAGATCTAACAGCTATGACCATGAT
66 EPO FEPO F 정방향Forward direction ACCCAAGCTGGCTAGCGCCACCATGGGGGTGCACGAATGTACCCAAGCTGGCTAGCGCCACCATGGGGGTGCACGAATGT
77 EPO REPO R 역방향Reverse GGGGGAGGGAGAGGGGCGGCTCATCTGTCCCCTGTCCTGCGGGGGAGGGAGAGGGGCGGCTCATCTGTCCCCTGTCCTGC
88 IRES FIRES F 정방향Forward direction GCAGGACAGGGGACAGATGAGCCGCCCCTCTCCCTCCCCCGCAGGACAGGGGACAGATGAGCCGCCCCTCTCCCTCCCCC
99 dhfr Rdhfr R 역방향Reverse AAGTTTAAACGCTAGCTTAGTCTTTCTTCTCGTA AAGTTTAAACGCTAGCTTAGTCTTTCTTCTCGTA
[[ 실시예Example 3]  3] 실시예Example 2에서 구축된 세포주에서의  In the cell line constructed at 2 dhfrdhfr 발현량 및 MTX 민감도 확인 Expression level and MTX sensitivity check
상기 실시예 2에서 구축된 세포군에 미치는 shRNA-2의 영향을 확인하기 위해 세포 내 dhfr 단백질의 발현 확인 및 MTX에 대한 민감도를 측정하고, 벡터 내 dhfr의 발현을 확인하였다.In order to confirm the effect of shRNA-2 on the cell population constructed in Example 2, the expression of dhfr protein in cells and the sensitivity to MTX were measured, and the expression of dhfr in the vector was confirmed.
[3-1] [3-1] pcDNA5pcDNA5 /Of FRTFRT 벡터,  vector, shRNAshRNA /Of pcDNA5frtpcDNA5frt 벡터,  vector, EIDEID /Of pcDNA5frtpcDNA5frt 벡터 및 shRNA/EID/pcDNA5frt가 각각 형질도입된 세포주 구축 Construction of cell lines transduced with vector and shRNA / EID / pcDNA5frt, respectively
pcDNA5frt 및 상기 실시예 2-1 내지 2-3에서 제작한 3종류의 벡터를 각각 Flp-In CHO 세포주에 리포펙타민 2000(Invitrogen)을 이용하여 형질도입하였다. 형질 도입시에 각각의 벡터와 Flp 재조합효소(ricombinase)를 발현하는 pOG44 벡터를 함께 형질도입하였다. 24시간 후 HT supplement가 포함되지 않고 히그로마이신 B를 첨가한 배지로 옮겨 2주간 배양하고 선별하여 세포군을 형성하였다. EPO를 발현하는 벡터를 형질도입한 세포군은 각각 세 개씩 형성하였으며, 이후 실험에서 shRNA-2와 H1 프로모터를 포함한 유전자를 가진 벡터인 shRNA/pcDNA5frt 벡터(도 3b), shRNA/EID/pcDNA5frt(도 3d)를 형질도입한 세포주를 shRNA(+)라고 표기하고, 이들을 포함하지 않은 벡터인 pcDNA5/FRT 벡터(도 3a), EID/pcDNA5frt 벡터(도 3c)를 형질도입한 세포주는 shRNA(-)라고 표기하였다. pcDNA5frt and three types of vectors prepared in Examples 2-1 to 2-3 were transduced into the Flp-In CHO cell line using lipofectamine 2000 (Invitrogen), respectively. At the time of transfection, each vector and a pOG44 vector expressing Flp ribase were transduced together. After 24 hours, HT supplement was not included and transferred to medium containing hygromycin B. The cells were cultured for 2 weeks and selected to form a cell population. Three cell groups transduced with EPO-expressing vectors were formed, and in subsequent experiments, shRNA / pcDNA5frt vectors (FIG. 3B) and shRNA / EID / pcDNA5frt (FIG. 3D), which are genes containing genes containing shRNA-2 and H1 promoters, were used. ) Transduced cell line is shRNA (+), and cell lines transduced with pcDNA5 / FRT vector (FIG. 3A) and EID / pcDNA5frt vector (FIG. 3C) which do not include these are shRNA (-). It was.
[3-2] 세포 내 [3-2] Intracellular dhfrdhfr 단백질양Protein amount 확인 Confirm
Flp-In 시스템에서도 shRNA-2가 동일한 효과를 나타내는지 확인하기 위해 FITC 형광이 표지된 MTX(Fluorescent methotrexate, F-MTX; Invitrogen)를 이용하여 세포 내 DHFR의 양을 확인하였다. DHFR은 진핵 및 원핵 세포에서 필수적인 효소이며 디하이드로폴레이트를 테트라하이드로폴레이트로 NADPH-의존적 환원을 촉매한다. MTX는 디하이드로폴레이트의 경쟁적 저해제로서, 디하이드로폴레이트 대신 DHFR에 결합할 수 있다. 따라서, F-MTX를 처리할 경우, 형광을 띄는 F-MTX가 DHFR에 결합하므로, 형광 강도를 통해 DHFR의 발현 정도를 간접적으로 확인할 수 있다. In order to confirm that shRNA-2 has the same effect in the Flp-In system, FITC fluorescence-labeled MTX (Fluorescent methotrexate, F-MTX; Invitrogen) was used to confirm the amount of DHFR in cells. DHFR is an essential enzyme in eukaryotic and prokaryotic cells and catalyzes NADPH-dependent reduction of dihydrofolate to tetrahydrofolate. MTX is a competitive inhibitor of dihydrofolate and can bind to DHFR instead of dihydrofolate. Therefore, when F-MTX is treated, the fluorescent F-MTX binds to DHFR, so it is possible to indirectly confirm the expression level of DHFR through fluorescence intensity.
F-MTX의 처리는 부착된 세포에 10μM F-MTX가 포함된 배지를 넣고 24시간 동안 37℃에서 배양하여 수행하였다. 24시간 후 F-MTX가 불포함된 배지로 교환하고 2시간 후 트립신을 처리하여 떼어낸 세포의 형광값을 Guava Easy Cyte 기기를 이용하여 FITC 형광값을 측정하였다. Treatment of F-MTX was performed by adding a medium containing 10μM F-MTX to the attached cells and incubated at 37 ℃ for 24 hours. After 24 hours, the FITC fluorescence value was measured by using a Guava Easy Cyte instrument for fluorescence values of cells removed by F-MTX-free medium and 2 hours after trypsin treatment.
그 결과, dhfr 단백질의 발현량은 F-MTX를 통해 shRNA(-)(도 3a의 벡터) 대비 shRNA(+)(도 3b의 벡터) 세포군에서 80% 가량 낮음을 확인하였다(도 4a, 4b). 이는 실시예 1에서 CHO-K1 세포주에 pSUPER 벡터를 도입한 것과 유사한 결과로 확인되었다(도 2).As a result, it was confirmed that the expression level of dhfr protein was about 80% lower in the shRNA (+) (vector of FIG. 3B) cell population compared to shRNA (-) (vector of FIG. 3A) through F-MTX (FIGS. 4A and 4B). . This was confirmed by the result similar to the introduction of the pSUPER vector into the CHO-K1 cell line in Example 1 (FIG. 2).
이 결과를 통해서, shRNA-2 서열을 Flp-In 시스템에 적용하여도 pSUPER 벡터에서와 마찬가지로 세포 내 dhfr 발현량을 현저히 감소시키는 것을 알 수 있었다. These results show that the application of shRNA-2 sequence to the Flp-In system significantly reduces the amount of dhfr expression in cells as in the pSUPER vector.
[3-3] MTX에 대한 세포의 민감도 확인[3-3] Confirmation of Cell Sensitivity to MTX
MTX는 DHFR의 활성을 저해하는 억제제로 알려져 있으며, 본 발명에 따른 DHFR의 발현을 저해하는 shRNA-2를 형질도입시키는 경우, shRNA-2의 작용에 따라 세포 내 DHFR의 발현이 감소되고, 세포 내 필수적인 DHFR의 발현이 감소하게 되므로 MTX에 대한 민감도 또한 증가할 것으로 예상하였다. 구체적으로 실시예 2에서 제조된 shRNA(+)(도 3b의 벡터) 세포군의 MTX에 대한 세포의 민감도를 측정하기 위해 MTX 농도 증가에 따른 세포의 생장을 실시예 2의 shRNA(-)(도 3a의 벡터) 세포군과 비교하였다. MTX를 농도별로 각 세포에 처리하고 4일 후 세포수를 측정하여 MTX를 처리하지 않은 세포의 수와 비교하였다. MTX is known as an inhibitor that inhibits the activity of DHFR, and when transducing shRNA-2 which inhibits the expression of DHFR according to the present invention, the expression of DHFR in the cell is reduced according to the action of shRNA-2, and intracellular As the expression of essential DHFR decreases, sensitivity to MTX is also expected to increase. Specifically, in order to measure the sensitivity of the cells to the MTX of the shRNA (+) (vector of Figure 3b) cell group prepared in Example 2, the growth of cells according to the increase in MTX concentration of the shRNA (-) of Example 2 (Fig. 3a Vector) cell population. MTX was treated to each cell by concentration, and after 4 days, the cell number was measured and compared with the number of cells not treated with MTX.
그 결과, MTX에 대한 세포의 민감도는 shRNA(+) 세포군이 shRNA(-) 세포군에 비해 5배 가량 민감한 것을 확인할 수 있었다(도 5).As a result, the sensitivity of the cells to MTX was confirmed that the shRNA (+) cell group is five times more sensitive than the shRNA (-) cell group (Fig. 5).
상기와 같은 결과를 통하여, shRNA(+) 세포군의 경우 MTX에 대한 민감도가 높으므로, DHFR 결핍 상태가 효과적으로 달성된 것을 알 수 있었다. Through the above results, the shRNA (+) cell group has a high sensitivity to MTX, it was found that the DHFR deficiency state was effectively achieved.
[3-4] [3-4] 실시예Example 2에서 제조된  Manufactured in 2 shRNAshRNA /Of EIDEID /Of pcDNA5frtpcDNA5frt 벡터로 형질도입된 세포주에서 shRNA-2가 외인성 dhfr 유전자에 영향을 미치는지 여부 확인 Determine whether shRNA-2 affects exogenous dhfr gene in cell lines transduced with vectors
shRNA-2가 외인성 dhfr 유전자에 영향을 미치는지의 여부를 알기 위해 역전사 중합효소 PCR(RT-PCR)을 수행하였다. RT-PCR을 수행하기 위한 RNA 및 cDNA의 준비는 상기 실시예 1에서 설명한 것과 동일하다. RT-PCR은 Ex Taq DNA polymerase(Takara)와 하기 표 3의 프라이머를 이용하여 수행하였다. 세포 내 dhfr 서열은 CHO 세포에서 유래한 것이며, shRNA/EID/pcDNA5frt 벡터에 삽입한 dhfr 서열은 쥐에서 유래한 것으로써 거의 동일하지만, CHO 세포 유래 dhfr(서열번호 28)과 쥐 유래 dhfr(서열번호 29)에서 염기 서열이 상이한 부분을 NCBI의 블라스트를 통해 확인하고, 이에 대한 프라이머를 제작하여 각각에 대한 PCR을 수행하였다. 구체적으로 CHO 세포 유래 dhfr(내인성)을 증폭하기 위하여 하기 표 4의 프라이머 Endo-dhfr-F(서열번호 10), Endo-dhfr-R(서열번호 11)를 사용하였고, 쥐 유래 dhfr(외인성)을 증폭하기 위하여 하기 표 4의 Exo-dhfr-F(서열번호 12), Exo-dhfr-R(서열번호 13)를 사용하였다. 또한, CHO 세포 유래 dhfr(내인성)의 3'-UTR의 발현 여부를 확인하기 위하여 3'-UTR을 증폭하였으며, 증폭시 하기 표 4의 3'-UTR-F(서열번호 14) 및 3'-UTR-R(서열번호 15)를 사용하였다. 또한 beta-actin을 내부 표준 유전자로 정하여 각 시료의 양이 동일함을 확인하였으며, beta-actin을 증폭하기 위하여 하기 표 4의 프라이머 ActB-F(서열번호 16)와 ActB-R(서열번호 17)을 사용하였다. Reverse transcriptase polymerase PCR (RT-PCR) was performed to determine whether shRNA-2 affects the exogenous dhfr gene. Preparation of RNA and cDNA to perform RT-PCR is the same as described in Example 1 above. RT-PCR was performed using Ex Taq DNA polymerase (Takara) and the primers of Table 3 below. Intracellular dhfr sequences are from CHO cells and shRNA / EID / pcDNA5frt The dhfr sequence inserted into the vector is almost identical to that derived from a mouse, but the nucleotide sequence of the dhfr (SEQ ID NO: 28) derived from CHO cells and the dhfr (SEQ ID NO: 29) derived from a mouse is identified through a blast of NCBI. Primers were prepared and PCR was performed for each. Specifically, in order to amplify CHO cell-derived dhfr (endogenous), primers Endo-dhfr-F (SEQ ID NO: 10) and Endo-dhfr-R (SEQ ID NO: 11) shown in Table 4 were used, and mouse-derived dhfr (exogenous) was used. Exo-dhfr-F (SEQ ID NO: 12) and Exo-dhfr-R (SEQ ID NO: 13) of Table 4 were used to amplify. In addition, 3'-UTR was amplified to confirm the expression of 3'-UTR of CHO cell-derived dhfr (endogenous), and when amplified, 3'-UTR-F (SEQ ID NO: 14) and 3'- of Table 4 below. UTR-R (SEQ ID NO: 15) was used. In addition, beta-actin was determined as an internal standard gene, and it was confirmed that the amount of each sample was the same. Was used.
서열번호SEQ ID NO: 서열 명칭Sequence name 프라이머primer 방향 direction 서열(5'→3')Sequence (5 '→ 3')
1010 Endo-dhfr-FEndo-dhfr-f 정방향Forward direction GATTTTCCCTGGCCAATGGATTTTCCCTGGCCAATG
1111 Endo-dhfr-REndo-dhfr-r 역방향Reverse CCACTTTATCTGCTAACTCTGGTTGCCACTTTATCTGCTAACTCTGGTTG
1212 Exo-dhfr-FExo-dhfr-f 정방향Forward direction GACCTACCCTGGCCTCCGGACCTACCCTGGCCTCCG
1313 Exo-dhfr-RExo-dhfr-r 역방향Reverse CTACTTTACTTGCCAATTCCGGTTGCTACTTTACTTGCCAATTCCGGTTG
1414 3'-UTR-F3'-UTR-F 정방향Forward direction CAAGACCATGGGACTTGTCAAGACCATGGGACTTGT
1515 3'-UTR-R3'-UTR-R 역방향Reverse GCCACTTGAGGCTGCATGGCCACTTGAGGCTGCATG
1616 ActB-FActB-F 정방향Forward direction CATTCAGGCTGTGCTGTCCCATTCAGGCTGTGCTGTCC
1717 ActB-RActB-R 역방향Reverse GCCATCTCCTGCTCGAAGGCCATCTCCTGCTCGAAG
RT-PCR을 수행한 결과, 세포 내인성 dhfr 및 dhfr 3'-UTR 유전자의 mRNA 양은 shRNA-2에 의해 감소했으나, 벡터에 포함된 외인성 dhfr 유전자의 발현은 shRNA-2의 유무에 상관없이 일정한 것으로 확인하였다(도 6).  As a result of performing RT-PCR, mRNA levels of the cellular endogenous dhfr and dhfr 3'-UTR genes were reduced by shRNA-2, but the expression of the exogenous dhfr gene contained in the vector was confirmed to be constant with or without shRNA-2. (FIG. 6).
위의 결과로부터, 도입된 shRNA-2는 세포 내의 dhfr 3'-UTR에 의해 발현이 조절되는 dhfr에 억제 효과를 나타내지만, 외부에서 도입된 dhfr의 경우에는 3'-UTR에 의해 발현이 조절되지 않기 때문에 shRNA-2의 유무에 상관없이 동일한 발현량을 나타내는 것을 알 수 있었다.From the above results, the introduced shRNA-2 has an inhibitory effect on dhfr, whose expression is regulated by dhfr 3'-UTR in the cell, but in the case of externally introduced dhfr, expression is not regulated by 3'-UTR. Therefore, it was found that the same expression level was observed regardless of the presence or absence of shRNA-2.
[[ 실시예Example 4] 외부 증폭 유전자의 증폭 효율 및 EPO 발현 향상 분석 4] Amplification Efficiency and EPO Expression Enhancement Analysis of Externally Amplified Genes
상기 실시예 2에서 구축된 세포주들에 단계별로 MTX를 처리하여 유전자를 증폭하고 목적 단백질인 EPO의 단위세포당 생산량을 확인하였다. 두 종류의 벡터 EID/pcDNA5frt, shRNA/EID/pcDNA5frt(각각 도 3c, 3d)를 각각 형질도입한 후 히그로마이신 B로 선별한 Flp-In CHO 세포주에 50, 250, 500 nM 농도의 MTX를 단계별로 처리하였다. 각 농도별로 세 개의 세포군을 형성하였고 MTX의 농도를 증가시킬 때마다 콜로니가 형성될 때까지 기다린 후 2-3번의 계대배양을 하고 그 다음 단계의 MTX를 처리함으로써 MTX를 이용한 유전자 증폭을 수행했다. 이들의 EPO 생산량을 측정하기 위해 1x105 cells/ml의 농도로 플레이트에 배양했고 4일이 지난 후 배양액을 수거하고 세포의 수를 측정하였다. 배양액은 원심분리 후 상등액을 20℃에 보관하였으며 차후에 효소 결합 면역 분석(enzyme-linked immunosorbent assay, ELISA)을 통해 EPO의 양을 측정하였다. 효소 결합 면역 분석은 Quantikine IVD ELISA kit(R&D Systems)을 이용하여 수행하였으며 제조사의 지침에 따라 수행하였다.The cell lines constructed in Example 2 were treated with MTX step by step to amplify the genes and confirm the yield per unit cell of the target protein EPO. Two types of vector EID / pcDNA5frt and shRNA / EID / pcDNA5frt (Figs. 3c and 3d, respectively) were transduced, followed by stepwise MTX at 50, 250 and 500 nM concentrations in Flp-In CHO cell lines screened with hygromycin B. Treated with. Three cell groups were formed at each concentration, and each time the concentration of MTX was increased, the colony was formed, followed by 2-3 passages and the next step of MTX treatment to perform gene amplification using MTX. In order to measure their EPO production, the plates were incubated at a concentration of 1 × 10 5 cells / ml, and after 4 days, the cultures were collected and the number of cells was measured. After the centrifugation, the supernatant was stored at 20 ° C., and then the amount of EPO was measured by enzyme-linked immunosorbent assay (ELISA). Enzyme-linked immunoassays were performed using the Quantikine IVD ELISA kit (R & D Systems) and according to the manufacturer's instructions.
그 결과, shRNA가 없는 세포주(EID/pcDNA5frt 벡터 도입 세포주)에 비하여, shRNA의 발현 세포군(shRNA/EID/pcDNA5frt 벡터 도입 세포주)에서의 EPO 생산량이 유전자 증폭에 따라 높은 비율로 증진됨을 확인할 수 있었고, 최종 500 nM MTX에서 EPO의 단위세포당 생산량이 2.5배 높은 것을 확인할 수 있었다(도 7).As a result, it was confirmed that EPO production in the shRNA-expressing cell group (shRNA / EID / pcDNA5frt vector-introducing cell line) was increased at a high rate according to gene amplification, compared to the cell line without the shRNA (EID / pcDNA5frt vector-introducing cell line). In the final 500 nM MTX it was confirmed that the production per unit cell of EPO 2.5 times higher (Fig. 7).
상기 결과로부터, 내인성 증폭 가능 유전자의 발현을 저해하는 shRNA; 외인성 증폭 가능 유전자 및 목적 단백질 유전자를 포함하는 컨스트럭트를 포함하는 벡터 시스템을 사용하는 경우, 증폭 가능 유전자가 결핍된 변이체를 별도로 제작하지 않아도, 증폭 가능 유전자가 결핍된 세포 상태를 만들면서 동시에 목적 단백질의 발현을 효율적으로 유도할 수 있는 것을 알 수 있었다.From these results, shRNA inhibits the expression of endogenous amplifiable genes; When using a vector system comprising a construct containing an exogenous amplifiable gene and a target protein gene, a target cell may be created while creating a cell state lacking the amplifiable gene without separately producing a variant lacking the amplifiable gene. It was found that the expression of the protein can be efficiently induced.
[[ 실시예Example 5]  5] mRNAmRNA 양 및 유전자 카피 수 확인 Determine amount and gene copy number
상기 실시예 4에서 구축된 세포주들의 세포 내 dhfr 관련 유전자의 mRNA 양 및 유전자 카피 수를 확인하는 작업을 수행하였다.To confirm the mRNA amount and gene copy number of the dhfr related gene in the cells of the cell lines constructed in Example 4 was performed.
[5-1] [5-1] mRNA양mRNA amount 확인 Confirm
실시예 1과 동일한 방법을 이용하여 mRNA 발현량을 측정하기 위해 각 세포에서 추출한 RNA를 이용하여 cDNA 합성을 하였다. 합성된 cDNA를 qPCR을 위한 시료로 이용하였고, dhfr, 3'-UTR, gapdh, beta-actin에 대하여 각각 하기 표 5의 프라이머쌍인 dhfr-F와 dhfr-R(서열번호 18, 19), 3'-UTR-F와 3'-UTR-R(서열번호 20, 21), gapdh-F와 gapdh-R(서열번호 22, 23), ActB-F와 ActB-R(서열번호 24, 25)을 이용하여 증폭하였다. CDNA synthesis was performed using RNA extracted from each cell to measure mRNA expression using the same method as in Example 1. The synthesized cDNA was used as a sample for qPCR, and primer pairs dhfr-F and dhfr-R (SEQ ID NOs: 18 and 19) and 3, respectively, for dhfr, 3'-UTR, gapdh, and beta-actin. '-UTR-F and 3'-UTR-R (SEQ ID NOs: 20, 21), gapdh-F and gapdh-R (SEQ ID NOs: 22, 23), ActB-F and ActB-R (SEQ ID NOs: 24, 25) Amplification was carried out.
서열번호SEQ ID NO: 서열 명칭Sequence name 프라이머 방향Primer direction 서열(5'→3')Sequence (5 '→ 3')
1818 dhfr-Fdhfr-F 정방향Forward direction CAGGCCACCTCAGACTCTTTGCAGGCCACCTCAGACTCTTTG
1919 dhfr-Rdhfr-R 역방향Reverse TGGGAAAAACGTGTCACTTTCA TGGGAAAAACGTGTCACTTTCA
2020 3'-UTR-F3'-UTR-F 정방향Forward direction GGGATAGTTAGGAAGATGTATTTGTTTTGGGGATAGTTAGGAAGATGTATTTGTTTTG
2121 3'-UTR-R3'-UTR-R 역방향Reverse AACAGTTGCCCAGGATGCAAACAGTTGCCCAGGATGCA
2222 gapdh-Fgapdh-F 정방향Forward direction CATGGCCTTCCGTGTTCCTACATGGCCTTCCGTGTTCCTA
2323 gapdh-Rgapdh-R 역방향Reverse CAGGCGACATGTCAGATCCACAGGCGACATGTCAGATCCA
2424 ActB-FActB-F 정방향Forward direction CTGGACTTCGAGCAGGAGATGCTGGACTTCGAGCAGGAGATG
2525 ActB-RActB-R 역방향Reverse CATAGCTCTTCTCCAGGGAGGAACATAGCTCTTCTCCAGGGAGGAA
qPCR은 Power SYBR Green PCR Master mix(Applied Biosystems)를 이용하였으며 제조사의 지침에 따라 수행하였다. PCR 반응은 95℃에서 10분, 95℃에서 15초 그리고 60℃에서 1분의 조건으로 총 40회 실시하여 해당 유전자들을 증폭하였고 comparative Ct(△△Ct) 방법을 이용하여 상대적 유전자 발현량을 확인하였다.qPCR was performed using a Power SYBR Green PCR Master mix (Applied Biosystems) and was performed according to the manufacturer's instructions. The PCR reaction was performed a total of 40 times under conditions of 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C to amplify the genes and confirm the relative gene expression using comparative Ct (△△ Ct) method. It was.
[5-2] 유전자 카피 수 확인[5-2] Gene copy number confirmation
유전자 카피 수를 측정하기 위해 MiniBEST Universal Genomic DNA extraction kit(Takara)을 이용하여 각 세포에서 genomic DNA를 추출하고 이를 qPCR을 위한 시료로 이용하였다. 상기 표 5의 dhfr-F(서열번호 18)와 dhfr-R(서열번호 19) 프라이머를 이용하여 전체 dhfr 유전자, 즉 세포 내 dhfr 및 외부 유래 dhfr의 mRNA 발현량 및 유전자 카피 수를 확인하고, 3'-UTR-F(서열번호 20)와 3'-UTR-R(서열번호 21)을 이용하여 세포 내 dhfr 유전자의 3'-UTR 유전자의 mRNA 발현량 및 유전자 카피 수를 확인하였다. gapdh와 beta-actin은 각각 mRNA 발현량 및 유전자 카피 수 확인을 위한 내부 표준 유전자로 이용되었다. qPCR은 Power SYBR Green PCR Master mix(Applied Biosystems)를 이용하였으며 제조사의 지침에 따라 수행하였다. PCR 반응은 95℃에서 10분, 95℃에서 15초 그리고 60℃에서 1분의 조건으로 총 40회 실시하여 해당 유전자들을 증폭하였고 comparative Ct(△△Ct) 방법을 이용하여 상대적 유전자 발현량을 확인하였다.To measure the number of gene copies, genomic DNA was extracted from each cell using MiniBEST Universal Genomic DNA extraction kit (Takara) and used as a sample for qPCR. Using the dhfr-F (SEQ ID NO: 18) and dhfr-R (SEQ ID NO: 19) primers of Table 5, the mRNA expression amount and gene copy number of the entire dhfr gene, ie, dhfr and externally derived dhfr, in the cell were identified. MRNA expression and gene copy number of the 3'-UTR gene of the dhfr gene were confirmed using '-UTR-F (SEQ ID NO: 20) and 3'-UTR-R (SEQ ID NO: 21). gapdh and beta-actin were used as internal standard genes for mRNA expression and gene copy number, respectively. qPCR was performed using a Power SYBR Green PCR Master mix (Applied Biosystems) and was performed according to the manufacturer's instructions. The PCR reaction was performed a total of 40 times under conditions of 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C to amplify the genes and confirm the relative gene expression using comparative Ct (△△ Ct) method. It was.
상기 실시예 5-1 및 5-2에서 mRNA양과 유전자 카피 수를 확인한 결과, dhfr mRNA의 발현은 MTX에 의한 유전자 증폭에 따라 shRNA(+) 세포군에서 크게 증가하였으나 shRNA(-) 세포군은 큰 변화가 없었다(도 8a). dhfr 유전자 카피 수도 shRNA 유무에 따라 큰 차이가 있음을 확인하였다(도 8b). 세포 내 dhfr 3'-UTR 유전자의 mRNA 발현량은 shRNA에 의해 크게 감소함을 확인하였으나(도 8c), 세포 내 dhfr 3'-UTR 유전자의 카피 수는 shRNA의 유무에 상관없이 동일함을 확인하였다(도 8d).As a result of confirming mRNA amount and gene copy number in Examples 5-1 and 5-2, the expression of dhfr mRNA was significantly increased in shRNA (+) cell group according to gene amplification by MTX, but shRNA (-) cell group was significantly changed. None (FIG. 8A). It was confirmed that there is a large difference depending on the presence or absence of shRNA gene copy number dhfr (Fig. MRNA expression of the dhfr 3'-UTR gene in the cell was significantly reduced by shRNA (Fig. 8c), but the number of copies of the dhfr 3'-UTR gene in the cell was the same regardless of the presence or absence of shRNA. (FIG. 8D).
상기 결과로부터, shRNA, 외인성 증폭 가능 유전자 및 목적 단백질의 유전자가 도입된 세포주의 경우, MTX의 처리 농도가 증가함에 따라 dhfr의 mRNA 발현량 및 유전자 카피 수가 증가하지만, shRNA 없이 외인성 증폭 가능 유전자 및 목적 단백질의 유전자만 도입된 세포주의 경우에는 MTX에 의한 dhfr 증폭 효과가 나타나지 않는 것을 알 수 있었다. 또한, shRNA가 도입된 세포주의 경우 세포 내 dhfr 3'-UTR 유전자의 mRNA 발현량에는 영향을 주어 mRNA 발현량을 감소시키지만, dhfr 3'-UTR의 유전자 카피 수에는 영향을 주지 않는 것을 알 수 있었다. From the above results, in the cell line into which the shRNA, the exogenous amplifiable gene, and the gene of the target protein were introduced, the mRNA expression amount and the gene copy number of dhfr increased as the concentration of MTX increased, but the exogenous amplifiable gene and the target without shRNA In the case of the cell line in which only the gene of the protein was introduced, it was found that the dhfr amplification effect by MTX did not appear. In addition, the shRNA-induced cell line affects the mRNA expression level of the dhfr 3'-UTR gene in the cell and decreases the mRNA expression level, but does not affect the gene copy number of the dhfr 3'-UTR. .
상기에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 상기와 같은 특정 실시예에만 한정되지 아니하며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 특허청구범위에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.In the above described exemplary embodiments of the present invention by way of example, the scope of the present invention is not limited only to the specific embodiments as described above, those skilled in the art to the scope described in the claims of the present invention It will be possible to change accordingly.

Claims (13)

  1. 숙주세포의 내인성 증폭 가능 유전자의 mRNA의 3'-UTR을 표적으로 하는 RNA 간섭을 위한 유전자 절편; 및  Gene segments for RNA interference targeting 3′-UTR of mRNA of endogenous amplifiable genes of host cells; And
    목적 단백질의 유전자를 클로닝할 수 있는 클로닝 자리와 외인성 증폭 가능 유전자를 포함하는 유전자 컨스트럭트; A gene construct comprising a cloning site capable of cloning a gene of a protein of interest and an exogenous amplifiable gene;
    를 포함하는 목적 단백질 생산을 위한 발현 벡터.Expression vector for producing a target protein comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 증폭 가능 유전자는 디히드로엽산 환원효소(dihydrofolate reductase, DHFR), 글루타민 합성효소(glutamine synthetase, GS), 아데노신 탈아미노화효소(adenosine deaminase, ADA), 아스파르트산 카르바밀전달효소(aspartate transcarbamylase, CAD) 및 오르니틴 탈카르복실화효소(ornithine decarboxylase, ODC)로 이루어진 군으로부터 선택되는 어느 하나인 발현 벡터.The amplifiable gene is dihydrofolate reductase (DHFR), glutamine synthetase (GS), adenosine deaminase (ADA), aspartic acid carbamyl transferase (aspartate transcarbamylase, CAD) ) And ornithine decarboxylase (ODC).
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 RNA 간섭을 위한 유전자 절편은 증폭 가능 유전자의 mRNA의 3'-UTR에 상보적인 서열이고, 증폭 가능 유전자의 발현을 감소시키는 염기 서열인 발현 벡터.The gene segment for RNA interference is an expression vector complementary to the 3'-UTR of the mRNA of the amplifiable gene, and is a base sequence for reducing the expression of the amplifiable gene.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 RNA 간섭을 위한 유전자 절편은 서열번호 2 또는 서열번호 3의 염기 서열을 포함하는 짧은 헤어핀 RNA(short-hairpin RNA, shRNA)인 발현 벡터.The gene segment for RNA interference is an expression vector of short hairpin RNA (shRNA) comprising the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 3.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 유전자 컨스트럭트에는 상기 클로닝 자리와 상기 외인성 증폭 가능 유전자 사이에 내부 리보솜 유입 자리(IRES), 2A 펩티드를 암호화하는 염기 서열, 및 외인성 증폭 가능 유전자의 발현을 개시할 수 있는 프로모터로 이루어진 군으로부터 선택되는 어느 하나가 포함되어 있는 발현 벡터.The gene construct may comprise an internal ribosomal entry site (IRES) between the cloning site and the exogenous amplifiable gene, a base sequence encoding a 2A peptide, and a promoter capable of initiating expression of the exogenous amplifiable gene. Expression vector containing any one selected.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 외인성 증폭 가능 유전자의 발현을 개시할 수 있는 프로모터는 시미안 바이러스 40 초기 프로모터, 마우스 유선암 바이러스 LTR 프로모터, 사이토메갈로바이러스 Pol-II 프로모터, 헤르페스 티미딘 키나제 프로모터 및 포스포글리세레이트 키나제 I(PGK) 프로모터로 이루어진 군으로부터 선택되는 어느 하나의 프로모터인 발현 벡터.Promoters capable of initiating expression of the exogenous amplifiable gene include Simian virus 40 early promoter, mouse mammary cancer virus LTR promoter, cytomegalovirus Pol-II promoter, herpes thymidine kinase promoter and phosphoglycerate kinase I (PGK) An expression vector which is any one promoter selected from the group consisting of promoters.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 숙주세포는 포유동물 세포인 발현 벡터.The host cell is a mammalian cell expression vector.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 포유동물 세포는 COS 세포, CHO 세포, VERO 세포, MDCK 세포, WI38 세포, V79 세포, B14AF28-G3 세포, BHK 세포, HaK 세포, NS0 세포, SP2/0-Ag14 세포, HeLa 세포, HEK293 세포 및 PER.C6 세포로 이루어진 군으로부터 선택되는 하나인 발현 벡터.The mammalian cells include COS cells, CHO cells, VERO cells, MDCK cells, WI38 cells, V79 cells, B14AF28-G3 cells, BHK cells, HaK cells, NS0 cells, SP2 / 0-Ag14 cells, HeLa cells, HEK293 cells and An expression vector which is one selected from the group consisting of PER.C6 cells.
  9. 청구항 1 내지 청구항 8 중 어느 한 항의 발현 벡터를 포함하는 형질전환체.A transformant comprising the expression vector of any one of claims 1 to 8.
  10. 청구항 1의 발현 벡터의 유전자 컨스트럭트 중 클로닝 자리에 목적 단백질의 유전자를 클로닝하는 단계;Cloning the gene of the protein of interest in the cloning site of the gene construct of the expression vector of claim 1;
    상기 목적 단백질의 유전자가 클로닝된 발현 벡터를 숙주세포에 도입하는 단계; Introducing an expression vector cloned with the gene of the protein of interest into a host cell;
    상기 발현 벡터가 도입된 숙주세포를 배양하는 단계; 및Culturing the host cell into which the expression vector is introduced; And
    상기 배양 중인 숙주세포에 증폭 가능 유전자에 의하여 발현되는 단백질에 대한 억제제를 처리하는 단계;Treating the inhibitor against the protein expressed by the amplifiable gene in the host cell in culture;
    를 포함하는 목적 단백질의 과발현 방법.Overexpression method of the target protein comprising a.
  11. 청구항 10에 있어서,The method according to claim 10,
    숙주세포는 COS 세포, CHO 세포, VERO 세포, MDCK 세포, WI38 세포, V79 세포, B14AF28-G3 세포, BHK 세포, HaK 세포, NS0 세포, SP2/0-Ag14 세포, HeLa 세포, HEK293 세포 및 PER.C6 세포로 이루어진 군으로부터 선택되는 세포인 목적 단백질의 과발현 방법.Host cells include COS cells, CHO cells, VERO cells, MDCK cells, WI38 cells, V79 cells, B14AF28-G3 cells, BHK cells, HaK cells, NS0 cells, SP2 / 0-Ag14 cells, HeLa cells, HEK293 cells and PER. A method of overexpressing a protein of interest that is a cell selected from the group consisting of C6 cells.
  12. 청구항 10에 있어서,The method according to claim 10,
    상기 증폭 가능 유전자에 의해 발현되는 단백질과 상기 단백질에 대한 억제제는 각각 디히드로엽산 환원효소(dihydrofolate reductase, DHFR)와 메토트렉세이트(methotrexate, MTX); 글루타민 합성효소(glutamine synthetase, GS)와 메티오닌 설폭시민(methionine sulfoximine, MSX); 아데노신 탈아미노화효소(adenosine deaminase, ADA)와 디옥시코포르마이신(deoxycoformycin, dCF); 아스파르트산 카르바밀전달효소(aspartate transcarbamylase, CAD)와 N-포스폰아세틸-L-아스파르트산(N-phosphonacetyl-L-aspartate, PALA); 및 오르니틴 탈카르복실화효소(ornithine decarboxylase, ODC)와 α-디플루오로메틸-오르니틴(α-difluoromethyl-ornithine, DFMO);으로 이루어진 조합의 군으로부터 선택되는 어느 하나인 목적 단백질의 과발현 방법.The protein expressed by the amplifiable gene and the inhibitor for the protein are dihydrofolate reductase (DHFR) and methotrexate (methotrexate, MTX), respectively; Glutamine synthetase (GS) and methionine sulfoximine (MSX); Adenosine deaminase (ADA) and deoxycoformycin (dCF); Aspartate transcarbamylase (CAD) and N-phosphonacetyl-L-aspartic acid (N-phosphonacetyl-L-aspartate, PALA); And ornithine decarboxylase (ODC) and α-difluoromethyl-ornithine (DFMO); the overexpression method of the desired protein which is any one selected from the group consisting of. .
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 증폭 가능 유전자에 의해 발현되는 단백질과 상기 단백질에 대한 억제제는 각각 디히드로엽산 환원효소(dihydrofolate reductase, DHFR)와 메토트렉세이트(methotrexate, MTX)인 목적 단백질의 과발현 방법.The protein expressed by the amplifiable gene and inhibitors to the protein are dihydrofolate reductase (DHFR) and methotrexate (methotrexate, MTX), respectively.
PCT/KR2016/012658 2015-11-06 2016-11-04 Expression vector for production of target protein and method for overexpression of target protein using same WO2017078461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150156106A KR101809594B1 (en) 2015-11-06 2015-11-06 Expression Vector for Producing Target Protein and Producing Method of Target Protein Using the Same
KR10-2015-0156106 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017078461A1 true WO2017078461A1 (en) 2017-05-11

Family

ID=58662405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012658 WO2017078461A1 (en) 2015-11-06 2016-11-04 Expression vector for production of target protein and method for overexpression of target protein using same

Country Status (2)

Country Link
KR (1) KR101809594B1 (en)
WO (1) WO2017078461A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628489A (en) * 2019-01-07 2019-04-16 新乡医学院 A kind of method and its application improving Chinese hamster ovary celI recombinant protein expression, expression vector, expression system and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270946A1 (en) * 2021-06-23 2022-12-29 한국생명공학연구원 Recombinant vector for improving expression of protein of interest via suppression of intracellular immune response and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100197012A1 (en) * 2007-06-05 2010-08-05 National Tsing Hua University Application of RNA Interference Targeting dhfr Gene, to Cell for Producing Secretory Protein

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100197012A1 (en) * 2007-06-05 2010-08-05 National Tsing Hua University Application of RNA Interference Targeting dhfr Gene, to Cell for Producing Secretory Protein

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE Genbank [O] 10 June 1993 (1993-06-10), XP055382624, Database accession no. K01165.1 *
HONG ET AL.: "A Novel RNA Silencing Vector to Improve Antigen Expression and Stability in Chinese Hamster Ovary Cells", VACCINE, vol. 25, no. 20, 26 February 2007 (2007-02-26), pages 4103 - 4111, XP022046893 *
KANG ET AL.: "A Single-plasmid Vector for Transgene Amplification Using Short Hairpin RNA Targeting the 3'-UTR of Amplifiable DHFR", APPLIED MICORBIOLOGY AND BIOTECHNOLOGY, vol. 99, no. 23, pages 10117 - 10126, XP035870268 *
WU ET AL.: "Short Hairpin RNA Targeted to Dihydrofolate Reductase Enhances the Immunoglobulin G Expression in Gene -amplified Stable Chinese Hamster Ovary Cells", VACCINE, vol. 26, no. 38, 9 July 2008 (2008-07-09), pages 4969 - 4974, XP024340976 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628489A (en) * 2019-01-07 2019-04-16 新乡医学院 A kind of method and its application improving Chinese hamster ovary celI recombinant protein expression, expression vector, expression system and preparation method thereof
CN109628489B (en) * 2019-01-07 2022-09-23 新乡医学院 Method for improving expression level of CHO cell recombinant protein and application thereof, expression vector, expression system and preparation method thereof

Also Published As

Publication number Publication date
KR101809594B1 (en) 2017-12-15
KR20170053500A (en) 2017-05-16

Similar Documents

Publication Publication Date Title
EP2951309B1 (en) Enhanced transgene expression and processing
US10760081B2 (en) Compositions and methods for enhancing CRISPR activity by POLQ inhibition
US11248223B2 (en) Method of RNA in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof
EP3234133B1 (en) Crispr-based compositions and methods of use
CN111819185A (en) Compositions comprising cyclic polyribonucleotides and uses thereof
Galicia-Vázquez et al. eIF4AII is dispensable for miRNA-mediated gene silencing
EP2937417B1 (en) MiRNAs enhancing cell productivity
US7972816B2 (en) Efficient process for producing dumbbell DNA
CN114746099A (en) Eukaryotic semisynthetic organisms
US10006026B2 (en) Recombinant polypeptide production
WO2017078461A1 (en) Expression vector for production of target protein and method for overexpression of target protein using same
JP2023002469A (en) Novel mRNA composition used for antiviral and anticancer vaccines and method for producing the same
WO2016054616A1 (en) Methods and compositions for use of non-coding rna in cell culturing and selection
US20230313187A1 (en) Modifications of mammalian cells using artificial micro-rna to alter their properties and the compositions of their products
US20240060107A1 (en) Compositions and methods for preparing capped mrna
WO2021019057A1 (en) Transfection selection and polypeptide or rna expression
WO2023223219A1 (en) IMPROVED PROTEIN PRODUCTION USING miRNA TECHNOLOGY
US20140066595A1 (en) Modulators of Protein Production in a Human Cell Line and Cell-free Extracts Produced Therefrom
US20120190065A1 (en) Combinatorial engineering
Pandey et al. Post-transcriptional gene regulation: an overview
RU2808756C1 (en) Improved transgene expression and processing
Su Influence of the 5'-terminal cap and 3'-terminal structures on mRNA stability, translation, and turnover in mammalian cells
Strotbek MicroRNAs to boost the productivity of Chinese hamster ovary producer cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862477

Country of ref document: EP

Kind code of ref document: A1