WO2017078438A1 - New and renewable energy-using apparatus - Google Patents

New and renewable energy-using apparatus Download PDF

Info

Publication number
WO2017078438A1
WO2017078438A1 PCT/KR2016/012610 KR2016012610W WO2017078438A1 WO 2017078438 A1 WO2017078438 A1 WO 2017078438A1 KR 2016012610 W KR2016012610 W KR 2016012610W WO 2017078438 A1 WO2017078438 A1 WO 2017078438A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
wind
renewable energy
wings
energy utilization
Prior art date
Application number
PCT/KR2016/012610
Other languages
French (fr)
Korean (ko)
Inventor
정하영
Original Assignee
정하영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정하영 filed Critical 정하영
Publication of WO2017078438A1 publication Critical patent/WO2017078438A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present disclosure relates to a renewable energy utilization apparatus, and more particularly, to a renewable energy utilization apparatus using wind and / or sunlight (solar heat).
  • Renewable energy is a future energy source for a sustainable energy supply system that converts existing fossil fuels or converts renewable energy including sunlight, water, geothermal energy, wind, and bioorganisms.
  • Non Patent Literature 1 CHOI Choi, Ho-Nam Jang, Prediction of Small Wind Turbine Power Generation in Roofs of Urban High-rise Buildings, Journal of The Korean Society for New and Renewable Energy, Vol. Wind speed (unit m / s) in, Daejeon, Gunsan, Busan, Mokpo, Gangneung are shown in Table 1 below.
  • the wind speeds of the seven cities at 10 m above ground are 2 to 3 m / s
  • the wind speeds at 30 m above ground are 3 to 4 m / s
  • the wind speed at 50 m above ground is 4 It can be seen that it is ⁇ 5 m / s.
  • the annual average wind speed in the city center of Korea shows only a low value of 2 ⁇ 5 m / s, the expected effect is insufficient.
  • Solar light and solar heat also have low annual average energy density, which is not expected. Solar heat is also the most in demand in winter, but there is a lot of improvement due to the lack of solar radiation.
  • Renewable energy utilization device is a vertically erected tower, a plurality of wings located on the outer circumferential surface of the tower and rotated about the central axis of the tower by wind, and the rotation of the plurality of wings
  • a wind power module including a wind power generator for interlocking and converting rotational kinetic energy of the plurality of blades into electrical energy;
  • a solar energy module positioned at a lower portion of the tower and converting sunlight into electrical energy or thermal energy.
  • the plurality of wings may have a width smaller than the diameter of the tower with respect to the radial direction of the tower.
  • the tower may have a shape in which the cross section is circular or polygonal.
  • Such a tower may have a cylindrical shape such as a cylinder or a polygonal cylinder.
  • the plurality of wings may be formed to extend in the longitudinal direction of the tower.
  • the tower is fixed to the bottom surface or the solar module, the plurality of wings may be spaced apart from the outer circumferential surface of the tower can rotate along the outer circumferential surface of the tower.
  • the tower is fixed to a center column erected perpendicular to the bottom surface or the solar module, the plurality of wings may be rotatably coupled to the center column.
  • the plurality of wings may be coupled to a flange rotatably installed on the center pillar, and the wind turbine may be linked to the flange.
  • the wing angles of the plurality of wings may be changeable.
  • a variable coupling member may be further provided to couple the plurality of wings to the flange such that a wing angle is changeable.
  • the plurality of wings may be coupled to the plurality of circular rings.
  • a circular bottom guide rail is provided on the bottom surface or an upper surface of the solar energy module, and a lower circular ring positioned at the bottom of the plurality of circular rings may rotate on the bottom guide rail.
  • At least one of the plurality of circular rings may be linked to the wind turbine.
  • Rotating supports may be provided on an outer circumferential surface of the tower to rotatably support at least one of the plurality of circular rings.
  • the tower is rotatably coupled to the bottom surface or the solar module, the plurality of wings may be attached to the outer peripheral surface of the tower.
  • the tower has a cylindrical shape having a polygonal cross section, a plurality of wings may be attached to the edge of the outer circumferential surface of the tower.
  • variable coupling member may be further provided to couple the plurality of wings to an outer circumferential surface of the tower such that a wing angle is changeable.
  • the variable coupling member may include an elastic member interposed between the plurality of wings and the outer circumferential surface of the tower.
  • At least a portion of the plurality of wings may be inclined such that at least a portion of the surface facing the wind faces downward.
  • a circular bottom guide rail may be provided on the bottom surface or the top surface of the solar energy module, and the tower may rotate on the bottom guide rail. Wheels moving along the bottom guide rail may be installed at the outer circumferential bottom of the tower.
  • the tower is coupled to a flange rotatably installed on the bottom or the center column perpendicular to the solar energy module, the wind turbine can be linked to the flange.
  • the tower may be rotatably supported by the rotating supports at a plurality of points around the inner circumferential surface of the tower.
  • the tower is not spaced apart from the bottom surface or the top surface of the solar energy module and may be supported only by the flange.
  • the tower may be supported by the floor guide rail provided on the bottom surface or the top surface of the solar energy module together with the flange.
  • the tower may be formed of a transparent material or an opaque material.
  • the solar energy module may be a solar module located on the bottom surface of the tower and converts sunlight into electrical energy.
  • the solar module may have an area larger than the cross sectional area of the tower.
  • the solar module may be formed in the shape of a circular plate or a polygonal plate.
  • a solar cell is installed outside the area located directly below the tower.
  • the solar cell may be installed in an area located directly below the tower of the solar module.
  • the solar module is located on the bottom surface of the tower and the heat collecting portion for heating the fluid using sunlight, the storage tank for storing the fluid heated in the heat collecting portion, and the fluid stored in the storage tank to the heat collecting portion It may also be a solar module including a pump to re-enter.
  • the collecting portion may have an area larger than the cross sectional area of the tower.
  • the heat collecting portion may be formed in a circular plate shape or a polygonal plate shape.
  • the heat collecting unit may be installed at an outer portion of an area located directly below the tower of the solar module.
  • a heat collecting part may be installed in an area located directly below the tower of the solar module.
  • the renewable energy utilization apparatus may further include a wind collecting plate positioned at an upper portion of the tower to wind upwardly the wind flowing toward the tower.
  • the wind collecting plate may be a transparent flat plate.
  • the wind collecting plate may have an area larger than the cross sectional area of the tower.
  • the wind collecting plate may be formed in the shape of a circular flat plate or a polygonal flat plate.
  • the wind collecting plate may include an optical refracting plate that refracts obliquely incident sunlight.
  • the optical refraction plate may be integrally formed on the collection plate, or may be attached in the form of an optical film.
  • the optical refraction plate may include a plurality of prisms formed on at least one of an upper surface and a bottom surface. The plurality of prisms may have an inverted pyramid shape.
  • Renewable energy utilization device has a cylindrical or polygonal shape, cylindrical tower fixed to the bottom surface; A plurality of wings positioned to be spaced apart from the outer circumferential surface of the cylindrical tower and rotating along the outer circumferential surface of the tower; And a wind power generator which is linked to rotation of the plurality of blades and converts rotational kinetic energy of the plurality of blades into electrical energy.
  • the plurality of wings may be formed to extend in the longitudinal direction of the tower.
  • the plurality of wings may have a width smaller than the diameter of the tower with respect to the radial direction of the tower.
  • the tower is fixed to a center column perpendicular to the bottom surface, the plurality of wings may be rotatably coupled to the center column.
  • the plurality of wings may be coupled to a flange rotatably installed on a center column perpendicular to the bottom surface, and the wind turbine may be linked to the flange.
  • the plurality of wings may be coupled to the plurality of circular rings.
  • a circular bottom guide rail is provided on the bottom surface, and a lower circular ring positioned at the bottom of the plurality of circular rings may rotate on the bottom guide rail.
  • At least one of the plurality of circular rings may be linked to the wind turbine.
  • Rotating supports may be provided on an outer circumferential surface of the tower to rotatably support at least one of the plurality of circular rings.
  • Renewable energy utilization device is a tower having a cylindrical or polygonal shape rotatably perpendicular to the bottom surface; A plurality of wings attached to an outer circumferential surface of the tower; It may include; a wind power generator for interlocking with the rotation of the tower to convert the rotational kinetic energy of the tower into electrical energy.
  • the plurality of wings may be formed to extend in the longitudinal direction of the tower.
  • the plurality of wings may have a width smaller than the diameter of the tower with respect to the radial direction of the tower.
  • the bottom surface is provided with a circular bottom guide rail, the tower can rotate on the bottom guide rail.
  • wheels moving along the bottom guide rail may be installed at the lower outer periphery of the tower.
  • At least a portion of the plurality of wings may be inclined such that at least a portion of the surface facing the wind faces downward.
  • the tower is coupled to the flange rotatably installed in the center pillar perpendicular to the bottom surface, the wind power generator may be linked to the flange.
  • the tower may be rotatably supported by the rotating supports at a plurality of points around the inner circumferential surface of the tower.
  • Renewable energy using device can improve the utilization efficiency of renewable energy in the urban environment or mountain peak.
  • the renewable energy utilization apparatus may accelerate the wind speed so that the guaranteed output of the wind turbine can be effectively ensured even in a region where the wind speed is low.
  • Renewable energy using device can be used in combination with wind and solar (solar) in one device.
  • Renewable energy utilization apparatus doubles the amount of insolation, improves the amount of sunshine and can also use scattered light.
  • Renewable energy using device can increase the effective cross-sectional area of the light flux of sunlight even when the altitude angle of the sun is low, such as winter.
  • FIG. 1 is a schematic perspective view of an apparatus for using renewable energy according to an embodiment of the present invention.
  • FIG. 2 is a side view of the renewable energy utilization apparatus of FIG. 1.
  • FIG. 3 is a plan view of the renewable energy utilization apparatus of FIG. 1.
  • FIG. 6 shows the wind flow when the renewable energy utilization apparatus without the collecting plate is installed on the roof of a building.
  • FIG. 7 shows a flow chart of wind when a renewable energy utilization apparatus including a wind collecting plate is installed on a roof of a building.
  • FIG. 8 is a schematic side view of an apparatus for using renewable energy according to another embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a bottom structure of the refractive collector used in the renewable energy utilization device of FIG. 8.
  • FIG. 10 illustrates a state in which sunlight is incident on the renewable energy utilization apparatus of FIG. 9.
  • 11 and 12 illustrate an incident path of sunlight according to the altitude of the sun in the refraction light collecting plate of FIG. 12.
  • FIG. 13 is a schematic side view of a renewable energy using device according to another embodiment of the present invention.
  • FIG. 14 is a schematic perspective view of a renewable energy utilization apparatus according to another embodiment of the present invention.
  • FIG. 15 is a view for explaining an operation of the renewable energy utilization apparatus of FIG. 14.
  • FIG. 16 is a perspective view showing a polygonal tower used in the renewable energy utilization apparatus according to another embodiment of the present invention.
  • FIG. 17 is a schematic perspective view of a renewable energy utilization apparatus according to another embodiment of the present invention.
  • FIG. 18 is a view schematically illustrating a lower plate of the renewable energy utilization apparatus of FIG. 17.
  • FIG. 19 is a view showing the cylindrical tower of the renewable energy utilization apparatus of FIG. 17 in an inverted state.
  • FIG. 20 is a perspective view illustrating a wind power module used in a renewable energy using device according to another embodiment of the present invention.
  • 21 is a schematic perspective view of an apparatus for using renewable energy according to still another embodiment of the present invention.
  • FIG. 22 is a cross-sectional view of the cylindrical tower in the renewable energy utilization apparatus of FIG. 21.
  • FIG. 23 is a schematic perspective view of a renewable energy utilization apparatus according to another embodiment of the present invention.
  • FIG. 24 is a cross-sectional view of the cylindrical tower in the renewable energy utilization apparatus of FIG.
  • FIG. 25 is a perspective view illustrating a wind power module used in a renewable energy using device according to another embodiment of the present invention.
  • FIG. 26 is a cross-sectional view of the middle portion of the wind turbine module of FIG. 25.
  • 27 is a view for explaining the operation of the wind turbine module of the present embodiment.
  • 31 to 34 are photographs showing an experiment on a building roof.
  • FIG. 1 is a schematic perspective view of a renewable energy utilization apparatus 100 according to an embodiment of the present invention
  • Figure 2 is a side view of the renewable energy utilization apparatus 100 of Figure 1
  • Figure 3 is a new It is a top view of the renewable energy utilization apparatus 100.
  • FIG. 1 is a schematic perspective view of a renewable energy utilization apparatus 100 according to an embodiment of the present invention
  • Figure 2 is a side view of the renewable energy utilization apparatus 100 of Figure 1
  • Figure 3 is a new It is a top view of the renewable energy utilization apparatus 100.
  • the renewable energy utilization apparatus 100 of the present embodiment includes a wind power module 110, a solar module 150, and a support 190.
  • the renewable energy utilization apparatus 100 of the present embodiment may be installed on, for example, a rooftop of a building such as a single house, an apartment, a building, a mountain ridge, or a plain.
  • a rooftop of a building such as a single house, an apartment, a building, a mountain ridge, or a plain.
  • the installation place is not limited to this.
  • the wind power module 110 includes a cylindrical tower 111 and a plurality of wings 112.
  • Cylindrical tower 111 is a cylindrical structure that is erected perpendicular to the bottom surface (10). Cylindrical tower 111 may have, for example, a diameter of several tens of mm to several tens of meters (D1 in FIG. 3). The diameter D1 of this cylindrical tower 111 does not limit this embodiment.
  • the cylindrical tower 111 performs a function of accelerating the wind entering the wind power module 110 as described below.
  • the cylindrical tower 111 may be formed of a plastic material such as polycarbonate or acrylic.
  • the cylindrical tower 111 may be formed of a transparent plastic material.
  • the material of the cylindrical tower 111 is not limited thereto, and may be formed of an opaque plastic material or a metal or nonmetal material.
  • the cylindrical tower 111 is installed to be fixed to the central column 119 by the plurality of first fixed beams 113.
  • the central column 119 is located at the central axis of the cylindrical tower 111.
  • the central column 119 is installed to be perpendicular to the bottom surface 10.
  • One end of each of the plurality of first fixed beams 113 is fixedly coupled to the central pillar 119, and the other end of each of the plurality of first fixed beams 113 extends in the radially outward direction from the central pillar 119.
  • the cylindrical tower 111 is fixed to the other end of each of the plurality of first fixed beams 113.
  • the plurality of blades 112 are disposed on the outer circumferential surface of the cylindrical tower 111 and rotatably installed on the central pillar 119. That is, the plurality of wings 112 are rotatably installed about the central axis of the cylindrical tower 111.
  • two flanges 115 are rotatably coupled to the top and bottom of the central column 119.
  • the two flanges 115 may be provided with bearings or the like to reduce friction with the central column 119.
  • each of the plurality of second fixed beams 114 is fixedly coupled to each of the two flanges 115, and the other end of each of the plurality of second fixed beams 114 extends in a radially outward direction to form a cylindrical tower 111. Part of the outer circumference is exposed outside.
  • the plurality of wings 112 are coupled to portions exposed to the outside of the outer circumferential surface of the cylindrical tower 111 of the plurality of fixed beams 114.
  • the plurality of blades 112 are disposed to be spaced apart from the outer circumferential surface of the cylindrical tower 111 so as not to touch the outer circumferential surface of the cylindrical tower 111 when rotating about the center column 119.
  • the plurality of wings 112 may have a shape extending in the longitudinal direction (ie, the vertical direction) of the cylindrical tower 111. Moreover, the width
  • the plurality of wings 112 may have, for example, a semi-cylindrical shape that is long in the vertical direction.
  • the semi-cylindrical shape of the plurality of wings 112 is exemplary, but is not limited thereto.
  • the plurality of wings 112 may have a curved shape in which the cross section is formed in an aerodynamic design.
  • the plurality of wings 112 may be installed to be inclined in the vertical direction.
  • the plurality of wings 112 may be provided with six, for example, as shown in FIGS. 1 to 3, but this is merely an example, and the number of the wings 112 is not limited thereto.
  • the plurality of wings 112 may be fixedly coupled to the other ends of the plurality of fixed beams 114.
  • the angles of the plurality of vanes 112 may be variably coupled to the other ends of the plurality of fixed beams 114 so as to correspond to the wind speed.
  • the variable manner of the plurality of wings 112 may be made manually or automatically. A fixed or variable manner of coupling of the plurality of wings 112 is known in the art.
  • the wind turbine 140 may be located inside the cylindrical tower 111.
  • the wind turbine 140 may be located at the top, the middle, or the bottom of the cylindrical tower 111.
  • the wind turbine 140 is coupled to interlock with rotation of at least one of the two flanges 115 (eg, the lower flange 115, as shown in FIG. 2).
  • Interlocking of the wind turbine 140 and the flange 115 may be made in a known manner, for example, gears, belts.
  • a gearbox may be provided between the flanges 115 and 115 and the wind power generator 140, so that the rotation speed of the blade 112 may be constant by using an increase gear or a reduction gear of the gearbox.
  • a brake system may be additionally provided to stop the rotation of the blade 112 when the wind speed is too strong.
  • the plurality of wings 112 rotates along the outer circumferential surface of the cylindrical tower 111 by the wind, converts the wind energy contained in the wind into rotational energy, accordingly the flange 115 ) Will also rotate.
  • the wind turbine 140 produces electrical energy by converting rotational kinetic energy of the flange 115 into electrical energy.
  • the cylindrical tower 111 rotates only the plurality of blades 112 in the fixed state of the renewable energy using device 100 of the present embodiment, the portion of the mechanical device rotating in the renewable energy using device 100 is lightened.
  • the solar module 150 may be located below the wind power module 110.
  • the solar module 150 may include a support plate 151 and a solar panel 152 provided on the support plate 151.
  • the solar module 150 may be manufactured in a circular flat plate shape.
  • the width of the solar module 150 may be wider than the cross-sectional area of the wind power module 110.
  • the solar panel since the cylindrical tower 111 is formed of a transparent plastic material, since the sunlight may reach a portion covered by the wind power module 110, the solar panel may be formed on the entire region of the solar module 150. 152 may be laid. Of course, for the purpose of reducing the manufacturing cost, the solar panel 152 may not be disposed in a region directly below the wind module 110 in the solar module 150.
  • the cylindrical tower 111 may be formed of an opaque material.
  • Circular flat plate shape of the solar module 150 is an example, the present invention is not limited thereto.
  • the photovoltaic module 150 may be manufactured in a polygonal flat plate shape such as square, rectangle, hexagon, or the like.
  • the renewable energy utilization apparatus 100 of the present embodiment may further include a wind collecting plate 160.
  • the wind collecting plate 160 may be located above the wind power module 110.
  • the collecting plate 160 performs a function of collecting wind to allow more wind to enter the wind power module 110, as described below.
  • the wind collecting plate 160 since the wind collecting plate 160 performs a function of guiding the wind to the wind power module 110, it may also prevent turbulence generated on the rooftop.
  • the collecting plate 160 may be formed of a transparent plastic material such as transparent polycarbonate or transparent acrylic, and may be manufactured in a circular flat plate shape. An upper surface of the collecting plate 160 may be coated with a reflection ring. The width of the wind collecting plate 160 may be wider than the cross-sectional area of the wind power module 110.
  • the wind collecting plate 160 may be manufactured in the shape of a circular flat plate having the same width as the solar module 150. Circular plate shape of the wind collecting plate 160 is an example, the present invention is not limited thereto.
  • the wind collecting plate 160 may be made of a polygonal flat plate such as square, rectangle, hexagon, or the like, or a plate formed in a whole or part of a curved surface, or a three-dimensional sculpture.
  • the wind collecting plate 160 may have a roof shape or may be replaced by some structure of the building. Furthermore, the wind collecting plate 160 is further provided with a guide structure (eg, wings, ribs, etc.) for guiding the direction of the wind in order to guide the wind better to the wind power module 110. It could be.
  • a guide structure eg, wings, ribs, etc.
  • the desired output of the wind power module 110 may be achieved by accelerating the wind speed of the cylindrical tower 111 without the collecting plate 160. Therefore, the wind collecting plate 160 may be omitted.
  • the support unit 190 supports the wind power module 110, the solar module 150, and the wind collecting plate 160.
  • the support unit 190 may include a plurality of support bars 191 that are vertically erected, and a plurality of support beams 192 that are horizontally installed.
  • One end of the plurality of support rods 191 is fixed to the bottom surface 10 by the first fixing part 191a.
  • a second fixing part 191b is provided at a position spaced a predetermined distance from one end of the plurality of support rods 191 and is coupled to the outer circumference of the solar module 150. Accordingly, when the renewable energy utilization apparatus 100 is installed outside the building, the solar module 150 is fixed to the bottom surface 10 by the support 190 so as to prevent the flooding by rainwater. It can be installed spaced apart.
  • the other ends of the plurality of support bars 191 are coupled to one ends of the plurality of support beams 192, respectively.
  • the other ends of the plurality of support beams 192 are placed in the horizontal direction and fixedly coupled to the center side 119.
  • the collecting plate 160 is fixed to a known fastening means such as a bolt, an adhesive, and the like, while being placed on the upper portion of the plurality of support beams 192.
  • Renewable energy using device 100 of the present embodiment has been described as an example in which the support 190 is fixed to the wind module 110, the solar module 150, and the wind collecting plate 160 at the same time, for example It is not limited. Of course, at least a portion of the wind power module 110, the solar module 150, and the wind collecting plate 160 may be installed by separate supporting means. For example, when the renewable energy using device 100 is installed on the roof of the building, the wind collecting plate 160 may be supported by a separate structure of the building.
  • Renewable energy using device 100 of the present embodiment may further include a storage battery (not shown) for storing the electrical energy produced by the wind power module 110 and the solar module 150.
  • the storage battery may be located inside the cylindrical tower 111, under the solar module 150, or in a separate place. The storage battery makes it possible to use the electrical energy produced in the solar module 150 during the day time.
  • FIG. 4 is a graph showing an output curve of a commercially available wind power generator according to an example.
  • the commercial wind power generator according to the example does not substantially generate wind speed under 3 m / s, and at a wind speed of 3 m / s or more, the output gradually increases, and the wind speed is output at about 15 m / s or more. It can be seen that this is saturated. That is, it can be seen that the wind speed of the commercial wind turbine according to an example is output about 80% or more of the maximum output at 12 m / s or more. In addition, even if the wind speed is about 8 m / sec can be seen that the commercial wind turbine according to an example produces only about 40% of the maximum output electricity.
  • the annual average wind speed is about 2 ⁇ 5 m / s in the urban environment of our country, the wind speed is very insufficient to secure the rated output of commercially available wind power generators in the urban environment of Korea. have.
  • Equation 1 P represents wind density (unit W / m 2 ), ⁇ represents the density of the air, v represents the wind speed. According to Equation 1, since the amount of electricity generated by the wind turbine is proportional to the third power of the wind speed v, it can be understood that by accelerating the wind speed v, the electric energy that can be generated per unit area can be increased. .
  • the renewable energy using device 100 of the present embodiment secures the air flow rate using the wind collecting plate 160 and accelerates the wind speed using the cylindrical tower 111, thereby securing the rated output of the commercial wind power generator, To increase energy generation efficiency.
  • FIG. 5 is a diagram for explaining wind speed acceleration by the cylindrical tower 111.
  • FIG. 5 is a diagram for explaining wind speed acceleration by the cylindrical tower 111.
  • the wind 20 proceeds toward the cylindrical tower 111, since the wind 20 flows on the outer circumferential surface of the cylindrical tower 111, the vicinity of the outer circumferential surface of the cylindrical tower 111 (A). In the wind 20 can be understood to pass through a narrow passage. On the other hand, the wind 20 can be approximated to the uncompressed fluid. Since the flow rate per unit time is the same in region A or region B, the wind 20 in region A will have to pass faster than the wind 20 in region B.
  • the wind 20 is accelerated compared to the area (B) away from the cylindrical tower (111).
  • the acceleration of the wind 20 can be explained by the Venturi effect or Bernoulli principle, the wind speed is changed depending on the Reynolds number, but the wind speed is accelerated 1.5 to 2.5 times.
  • the indoor simple wind tunnel experiment conducted with the models of 1/2, 1/3, 1/5, and 1/6 was also confirmed in the rooftop experiment.
  • the cylindrical tower 111 since the cylindrical tower 111 has a cylindrical shape, it is not affected by the wind direction. For example, the wind direction often changes from time to time, but the renewable energy utilization apparatus 100 of the present embodiment does not need additional components corresponding to the change in the wind direction.
  • FIG. 6 illustrates a wind flow when the renewable energy utilization apparatus 101 without the wind collecting plate is installed on the roof of the building
  • FIG. 7 illustrates the renewable energy utilization apparatus 100 including the collecting plate 160 on the roof of the building. Shows wind flow when installed. For convenience of description, side winds and vortices are omitted in FIGS. 6 and 7.
  • the laminar wind 21 blowing in the horizontal direction in the city center creates an upward wind 22 rising vertically on the outer wall of the building.
  • Such an upward wind 22 may have, for example, a wind speed of about twice the speed or more with respect to the wind speed of the laminar wind 21.
  • the vertical rising wind 22 merges in a predetermined area above the roof while drawing a parabola on the roof of the building 11 while maintaining a wind speed of approximately twice the speed or more.
  • the renewable energy utilization device 101 is disposed near the path of the wind 23 where the vertical rising winds 22 join, that is, near the rooftop edge of the building 11.
  • the wind speed When the wind speed is accelerated by approximately 2.5 times, the wind speed reaches around 12 m / s or more, thereby securing a rated output of a commercially available wind power generator.
  • 50 m above the ground level corresponds to the height of the roof of a 15-story apartment or building, which is about 80 m or more above sea level, for example, on the roof of a 15-story apartment in the city. It can be understood that by installing the A can obtain the rated output of the commercially available wind power generator.
  • the wind collecting plate 160 may be provided in the renewable energy utilization apparatus 100 of the present embodiment.
  • the collecting plate 160 focuses the wind 24 toward the wind module 110 toward the upper side of the cylindrical tower 111 joining the vertical rising wind 22.
  • the wind 24 focused by the wind collecting plate 160 may be interpreted as passing through a narrow passage, and thus, the wind 24 may be interpreted as being accelerated by the wind collecting plate 160 in a principle similar to that described with reference to FIG. 5. Can be.
  • the wind 23 directed upwardly of the cylindrical tower 111 is applied to the wind power generation of the wind power module 110. It passes without making a contribution.
  • the renewable energy utilization apparatus 100 of the present embodiment may further accelerate the wind 24 by the wind collecting plate 160, so that even if the wind is installed on the roof of the low-rise building 11, Although somewhat low, the acceleration effect of the wind speed by the cylindrical tower 111 and the acceleration effect of the wind speed by the wind collecting plate 160 may be added to secure a rated output of a commercially available wind power generator. Of course, even if there is no wind collecting plate 160, if the wind speed can be secured enough, the collecting plate 160 may be omitted.
  • the renewable energy using device 100 of the present embodiment is to increase the space efficiency by installing the solar module 150 on the bottom surface of the wind module 110.
  • FIG. 8 is a schematic side view of the renewable energy utilization apparatus 200 according to another embodiment of the present invention
  • FIG. 9 illustrates a bottom structure of the top plate employed in the renewable energy utilization apparatus 200 of FIG. 8. Drawing.
  • the renewable energy utilization apparatus 200 of the present embodiment includes a wind power module 110, a solar module 150, a refractory wind collecting plate 260, and a support 190.
  • the remaining components except for the refractive collecting plate 260 are substantially the same as the components of the renewable energy utilization apparatus 100 described with reference to FIGS. 1 to 3, and thus, the differences will be mainly described.
  • the refraction collecting plate 260 is located on the upper portion of the wind power module 110, and collects the wind of the rising air, and performs a light collecting function to increase the luminous flux incident on the solar module 150 by refracting the sunlight. .
  • the refractive collecting plate 260 is formed of a transparent plastic material such as transparent polycarbonate or transparent acrylic, and may be manufactured in a circular flat plate or polygonal shape. An upper surface of the refractive collecting plate 260 may be coated with a reflection ring. The width of the refractory wind collecting plate 260 may be wider than the cross-sectional area of the wind power module 110.
  • the refractive collecting plate 260 may be manufactured in the shape of a circular flat plate or a polygonal flat plate having the same width as that of the solar module 150.
  • the deflection collecting plate 260 includes a transparent plate 261 and a plurality of inverted pyramid-shaped prisms 262 formed on the bottom surface of the transparent plate 261.
  • the plurality of prisms 262 may be densely provided so that there are no gaps over the entire bottom surface of the transparent plate 261.
  • the present invention is not limited thereto, and the prism 262 may not be formed in a portion of the bottom surface of the transparent flat plate 261.
  • the prism 262 has an inverted pyramid shape as an example, but the present invention is not limited thereto.
  • the prism 262 when the surface of the transparent plate 261 is called XY plane, the prism 262 has a prism shape extending in the X direction or the Y direction, or a shape in which a plurality of prisms extending in the circumferential direction are concentric. May have Alternatively, an optical pattern for focusing sunlight, such as a condenser lens or a diffraction pattern, may be formed on the bottom or upper surface of the refractive collecting plate 260.
  • the shape and arrangement of the prism 262 of the refraction collecting plate 260 or other optical refraction elements may be geometrically shaped to improve aesthetics.
  • the prism 262 is formed on the bottom surface of the transparent flat plate 261 as an example, but is not limited thereto.
  • the prism 262 may be formed on the top surface of the transparent plate 261 or may be formed on both the top and bottom surfaces of the transparent plate 261.
  • FIG. 10 illustrates a state in which sunlight is incident on the renewable energy utilization apparatus of FIG. 9, and FIGS. 11 and 12 illustrate incidence paths of sunlight depending on the height of the sun.
  • the winter solar elevation angle may be very low, such as 30 degrees.
  • the solar light 50 having such a low elevation angle is incident at an angle to the solar module 150 installed parallel to the floor of the building in the absence of the refractory collecting plate 260. That is, when there is no refractive collector plate 260, the effective cross-sectional area of the light beam of the solar light 50 incident on the solar module 150 is given by the following equation (2).
  • S 0 represents the cross-sectional area of the solar module 150
  • represents the angle of incidence of the solar light 50
  • S eff represents the effective cross-sectional area of the light beam of the solar light 50 which substantially contributes to photovoltaic power generation.
  • the incident angle ⁇ of the sunlight 50 has a relationship of adding 90 degrees to the solar elevation angle.
  • the refractive collecting plate 260 may increase the effective cross-sectional area of the light beam of the solar light 50 by refracting the incident light 50 to be more perpendicular to the solar module 150.
  • the incident angle ⁇ of the sunlight 50 becomes large, that is, when the sunlight 50 is obliquely incident on the deflection collector 260, the plurality of prisms 262 totally reflects inside the deflection collector 260. Will prevent this from happening.
  • the refraction collecting plate 260 adjusts the angle of the prism so that the emission angle is emitted almost vertically wherever the position of the sun is located, so that the solar module 150 more when the heating energy consumption in winter is high. Large amounts of solar radiation can be obtained to maximize energy efficiency.
  • FIG. 13 is a schematic side view of a renewable energy utilization apparatus 300 according to another embodiment of the present invention.
  • the renewable energy utilization apparatus 300 of the present embodiment includes a wind power module 110, a solar module 350, a refractive wind collecting plate 260, and a support 190. Instead of the refraction collecting plate 260, a collecting plate (160 of FIG. 1) may be provided or omitted.
  • Renewable energy using device 300 of the present embodiment may be understood to include a solar module 350 in place of the solar module 150 in the renewable energy using device (100, 200) of the above-described embodiments. .
  • the other components except for the solar module 350 are substantially the same as those of the renewable energy utilization apparatuses 100 and 200 of the above-described embodiments, and thus, the differences will be mainly described.
  • the solar module 350 may include a collector 351, a pipe 352, a storage tank 353, a heater 354, and a pump 355.
  • the collector 351 may include a light collecting part in which a flow path through which the fluid circulates is formed, and a reflecting plate reflecting sunlight in order to concentrate solar heat in the flow path of the light collecting part.
  • the collector 351 heats the fluid inside the collector 351 using solar heat.
  • the collector 351 may be, for example, a compound parabolic concentrator (CPC) collector, but is not limited thereto.
  • the fluid may, for example, be water or thermal oil.
  • the heated fluid may be stored in the storage tank 353 through the pipe 352.
  • the hot fluid stored in the storage tank 353 may be used for heating while passing through the heater 354 through the pipe 352.
  • the heater 354 is an example, and a well-known hot water using apparatus using hot water may be used in place of the heater 354.
  • the fluid stored in the storage tank 353 and the fluid via the heater 354 may be re-introduced into the collector 351 by the pump 355 and circulated.
  • the solar module 350 may further include an auxiliary boiler in preparation for the fluid not being heated to a sufficient temperature.
  • the solar module 350 may include a heat exchanger that heat-exchanges the fluid heated in the collector 351 with a second fluid having another property, and a second heater using the second fluid.
  • FIG. 14 is a schematic perspective view of a renewable energy utilization apparatus 400 according to another embodiment of the present invention.
  • the renewable energy utilization apparatus 400 of the present embodiment includes a wind power module 410, a solar module 150, a wind collecting plate 160, and a support 190. Instead of the collecting plate 160, a refractive collecting plate 260 of FIG. 8 may be provided or omitted.
  • the renewable energy utilization apparatus 400 of the present embodiment replaces the wind turbine module 410 of the rotating structure in place of the wind turbine module 110 of the fixed structure in the renewable energy utilization apparatus 100, 200, 300 of the above embodiments. It can be understood to use.
  • the other components except for the wind power module 410 are substantially the same as those of the renewable energy utilization apparatuses 100, 200, and 300 of the above-described embodiments, and thus, the differences will be mainly described.
  • the wind power module 410 includes a cylindrical tower 411 rotatably coupled to the central pillar 119, and a plurality of wings 412 directly coupled to the outer circumferential surface of the cylindrical tower 411.
  • the configuration in which the cylindrical tower 411 is rotatably coupled to the central column 119 may employ a known method.
  • two flanges 415 are rotatably coupled to the top and bottom of the central column 119, and the cylindrical tower 411 is coupled to the flange 415 by a plurality of fixed beams 413.
  • the cylindrical tower 411 may be formed of a light material, for example, a polycarbonate or a plastic material such as acrylic, in consideration of the strength of the wind power.
  • the cylindrical tower 411 may be formed of a transparent plastic material.
  • the case in which the cylindrical tower 411 is formed of a metal or nonmetal material is not excluded.
  • the cylindrical tower 411 may be supported only by the flange 415 without contacting the upper surface of the solar module 150 spaced apart.
  • the plurality of wings 412 may have a semi-cylindrical shape that is long in the vertical direction, for example.
  • the plurality of wings 412 may have a curved shape in which the cross section is formed in a hydrodynamic design.
  • the plurality of wings 412 may be extended to be coupled to the outer circumferential surface of the cylindrical tower 411 in the vertical direction, or may be coupled to be extended to be inclined in the vertical direction.
  • Each of the plurality of vanes 412 may be divided into a plurality of rows in the longitudinal direction on the outer circumferential surface of the cylindrical tower 411 and arranged in a row.
  • the plurality of wings 412 may be fixedly coupled to the outer circumferential surface of the cylindrical tower 411, or may be variably coupled so that the angle of the wings is adjustable.
  • the variable manner of the plurality of vanes 412 may be manual or automatic.
  • six wings 412 may be provided as illustrated in FIG. 14, but this is merely an example, and the number of wings 412 is not limited thereto.
  • 15 is a view for explaining the operation of the renewable energy utilization apparatus 400 of the present embodiment. 15 illustrates only the cylindrical tower 411 and the plurality of vanes 412 in the wind power module 410 of the renewable energy utilization apparatus 400 of the present embodiment.
  • the outer circumferential surface of the cylindrical tower 411 and the wind 20 move in the same direction, so the wind 20 has a relatively high speed.
  • the outer circumferential surface of the cylindrical tower 511 and the wind 20 Since the opposite to each other the wind 20 will have a relatively slow speed. This effect can be further improved power generation efficiency because the speed of the air in the C region a little faster than when the cylindrical tower 111 of the above-described embodiment is fixed.
  • Renewable energy utilization apparatuses 100, 200, 300, and 400 of the embodiments described with reference to FIGS. 1 to 15 will be described by taking cylindrical towers 111 and 411 having a cylindrical shape having a circular cross section as an example. However, it is not limited thereto.
  • FIG. 16 illustrates a wind turbine module 510 used in a renewable energy utilization apparatus 500 according to another embodiment of the present invention.
  • the wind module 510 of the present embodiment includes a polygonal tower 511 and a plurality of wings 512 coupled thereto.
  • the polygonal tower 511 may have a cylindrical shape having a polygonal cross section.
  • polygonal tower 511 may have a hexagonal cross section, as shown in FIG. 16.
  • the cross-sectional shape of the polygonal tower 511 is not limited to this, and may be a hexagon, a octagon, an octagon, or the like.
  • the plurality of wings 512 may be installed at corners at the outer circumferential surface of the polygonal tower 511. As another example, the plurality of wings 512 may be installed on a plane on the outer circumferential surface of the polygonal tower 511.
  • the polygonal tower 511 may be rotatably coupled to the central column (119 of FIG. 14).
  • one end of a plurality of fixed beams 513 is fixedly coupled to each of the flanges 515 in the inner hollow of the polygonal tower 511, and the other end of each of the plurality of fixed beams 513 is formed in the polygonal tower 511.
  • the flange 515 may be rotatably coupled to the central column (199 of FIG. 14).
  • the outer circumferential surface of the polygonal tower 511 has a polygonal column shape as in the present embodiment, as described above, the wind (20 in FIG. 15) flows along the outer circumferential surface of the polygonal tower 511, and is approximately referred to FIG. 15. It will be understood by those skilled in the art that the same effects as described above can be obtained.
  • the present embodiment has been described taking a case where the plurality of wings 512 are installed on the outer circumferential surface of the polygonal tower 511, the polygonal tower 511 is fixed to the center column (119 in Fig. 1), Only the wing 512 may be rotatably coupled with respect to the center column 119.
  • FIG. 17 is a schematic perspective view of a renewable energy utilization apparatus 600 according to another embodiment of the present invention
  • FIG. 18 schematically illustrates a bottom plate 650 of the renewable energy utilization apparatus 600 of the present embodiment. It is a figure and FIG. 19 is the figure which showed the cylindrical tower 611 of the renewable energy utilization apparatus of this embodiment in the state reversed.
  • the renewable energy utilization apparatus 600 of the present embodiment includes a wind power module 610, a lower support plate 650, a wind collecting plate 160, and a support 190. Instead of the collecting plate 160, a refractive collecting plate 260 of FIG. 8 may be provided or omitted.
  • Renewable energy using device 500 of the present embodiment may be understood that the guide structure is further adopted in the lower portion of the wind module 410 in the renewable energy using device 400 of the embodiment with reference to FIGS. 14 to 15. That is, the remaining components except for the wind power module 610 and the lower support plate 650 are substantially the same as the components of the renewable energy utilization apparatus 400 of the above-described embodiment, and thus the differences will be mainly described.
  • the wind power module 610 includes a cylindrical tower 611 rotatably coupled to the central column 119.
  • a plurality of wings 412 are directly coupled to the outer circumferential surface of the cylindrical tower 611.
  • the configuration in which the cylindrical tower 611 is rotatably coupled to the central column 119 may employ a known method.
  • two flanges 415 are rotatably coupled to the top and bottom of the central column 119, and the cylindrical tower 411 is coupled to the flange 415 by a plurality of fixed beams 413.
  • Rotating supports 617 may be provided at the lower periphery of the cylindrical tower 611.
  • the lower support plate 650 includes a lower plate 651 positioned below the wind power module 610 and a bottom guide rail 655 provided on the lower plate 651.
  • the lower plate 651 may be a solar module 150 (FIG. 1), a solar module 350 (FIG. 13), or may be a simple flat plate. Alternatively, the lower plate 651 may be a bottom surface on which the renewable energy utilization device 600 is installed.
  • the bottom guide rail 655 is a member that guides the rotation of the cylindrical tower 611 while supporting the load of the cylindrical tower 611. That is, the rotary support 617 provided at the lower periphery of the cylindrical tower 611 is rolled along the bottom guide rail 655 provided in the lower plate 651.
  • the bottom guide rail 655 may have a circular groove shape provided at a portion of the lower plate 651 facing the lower end of the cylindrical tower 611, or may have a protruding shape.
  • the cylindrical tower 611 is rotatably installed around the central column 119. As the rotational speed of the cylindrical tower 611 increases, the cylindrical tower 611 tends to be shaken and vibration may occur. The shaking or vibration of the cylindrical tower 611 causes noise, and also worsens the durability of the device. Further, the shaking or vibration of the cylindrical tower 611 causes friction between the cylindrical tower 611 and the lower plate 651 to lower the power generation efficiency. In addition, the larger the size of the cylindrical tower 611, the greater the load on the cylindrical tower 611, the vibration or vibration of the cylindrical tower 611, the friction with the lower plate 651 will lower the power generation efficiency and the noise is intensified. Can be.
  • the cylindrical tower 611 is rotated by providing a bottom guide rail 655 on the rotary support 617 and the lower support plate 650 at the lower periphery of the cylindrical tower 611. It can play a role of suppressing the shaking or vibration generated when.
  • the rotary support 617 is a wheel, friction with the lower plate 651 generated when the cylindrical tower 611 rotates can be reduced.
  • the wheel-shaped rotating support 617 is merely an example, and there may be various modifications.
  • the rotary support 617 may be a bearing device.
  • the rotary support 617 and the bottom guide rail 655 may be a magnetic levitation device for guiding the cylindrical tower 611 while floating in the lower plate 651 in a magnetic levitation manner.
  • FIG. 20 is a perspective view illustrating a wind power module 710 used in the renewable energy utilization apparatus 700 according to another embodiment of the present invention.
  • the wind turbine module 710 of this embodiment includes a cylindrical tower 711 and a plurality of wings 712 coupled thereto.
  • Cylindrical tower 711 may be cylindrical towers 411 and 611 of the embodiments described above.
  • the configuration in which the cylindrical tower 711 is rotatably coupled to the central column 119 may employ a known method.
  • two flanges 415 are rotatably coupled to the top and bottom of the central column (119 of FIG. 1), and the cylindrical tower 711 is flanged 415 by a plurality of fixed beams 413.
  • a guide structure may be provided at the bottom of the outer circumference of the cylindrical tower 711.
  • At least a portion of the plurality of wings 712 may be installed in an inclined direction 713 on the outer circumferential surface of the cylindrical tower 711.
  • the inclined direction 713 of the plurality of wings 712 is a direction in which at least a portion of the surface on which the wings 712 face the wind faces downward. Due to the inclined arrangement of the wings 712, the partial wind force of at least a portion of the wind received by the wings 712 is directed upward. This upward wind force component of the wind serves to reduce the load of the cylindrical tower (711).
  • the plurality of vanes 712 may be installed in the cylindrical tower 711 so that the inclination angle may be changed manually or automatically in response to the wind speed.
  • the plurality of wings 712 may be installed in the cylindrical tower 711 so that the inclination angle is fixed.
  • Increasing the angle of inclination of the plurality of blades 712 increases the force of upward wind force to reduce the shaking, vibration or friction of the circular tower 711, but weakens the force to rotate the circular tower 711 Can be.
  • the inclination angle of the plurality of blades 712 is reduced, the force of wind force upward is reduced, and the effect of reducing the shaking, vibration, and friction of the circular tower 711 is slightly reduced. Rotating force can be large. Therefore, the inclination angle of the plurality of blades 712 may be set in consideration of both the wind speed and the power generation efficiency.
  • FIG. 21 is a schematic perspective view of a renewable energy utilization apparatus 800 according to another embodiment of the present invention
  • FIG. 22 is a view of an intermediate portion of the cylindrical tower 811 in the renewable energy utilization apparatus 800 of FIG. 21.
  • the middle portion is based on the longitudinal direction (ie, the vertical direction) of the cylindrical tower 811.
  • the renewable energy utilization apparatus 800 of the present embodiment includes a wind power module 810, a lower support plate 850, a wind collecting plate 160, and a support 190. Instead of the collecting plate 160, a refractive collecting plate 260 of FIG. 8 may be provided or omitted.
  • Renewable energy using device 800 of the present embodiment is different from the renewable energy using device 600, 700 of the embodiment with reference to Figures 17 to 20, there is a difference in the rotatable support structure of the wind power module 810, The other components except for these are substantially the same as those of the renewable energy utilization apparatuses 600 and 700 of the above-described embodiment, and thus the description will be mainly focused on differences.
  • the wind power module 810 includes a cylindrical tower 811 and a plurality of wings 812 directly coupled to the outer circumferential surface of the cylindrical tower 811.
  • the upper circumference of the inner circumferential surface of the cylindrical tower 811 is formed in a circular shape.
  • the cylindrical tower 811 may be rotatably supported by the first rotating supports 831 at a plurality of points around the top of the inner circumferential surface.
  • the first rotating supports 831 can be, for example, wheels or bearing devices.
  • the first rotating supports 831 are supported by the fixed beams 834 extending from the lower support plate 850 or the center pillar 119.
  • the upper circumference of the inner circumferential surface of the cylindrical tower 811, which is in contact with the first rotating supports 831, may be smoothly processed.
  • a rail may be positioned around the upper end of the inner circumferential surface of the cylindrical tower 811 to engage the first rotational supports 831.
  • a polygonal tower may be employed, in which case the upper periphery of the inner circumferential surface of the polygonal tower that abuts against the first rotating supports 831 may be smoothly processed into a circle or may be formed with the first rotating supports 831.
  • An interlocking rail is provided.
  • teeth 813 are formed around the inner circumferential surface of the middle portion of the cylindrical tower 811 with respect to the longitudinal direction (ie, the vertical direction) of the cylindrical tower 811. That is, the cylindrical tower 811 has a kind of gear structure in which teeth 813 are formed around the inner circumferential surface of the middle portion.
  • a wind generator 840 is engaged with the teeth 813.
  • the wind power generator 840 is supported by the fixed beams 835 extending from the lower support plate 850 or the central column 119.
  • the wind turbine 840 may include a gearbox including gears 841 and 842 that mesh with the teeth 813.
  • the plurality of wings 812 rotates the cylindrical tower 811 by the wind, and when the cylindrical tower 811 is rotated, the teeth provided on the inner peripheral surface of the cylindrical tower 811 Cogwheel 841 engaged with 813 rotates, and thus, wind power generator 940 converts rotational kinetic energy of cylindrical tower 811 into electrical energy to produce electrical energy.
  • the second rotary support 832 may be further installed inside the cylindrical tower 811.
  • the second rotating supports 832 may rotatably support the cylindrical tower 811 at a plurality of points around the inner circumferential surface of the middle portion of the cylindrical tower 811.
  • the inner circumference of the cylindrical tower 811 supported by the second rotating supports 832 may be a portion where the teeth 813 are provided.
  • the second rotatable supports 832 may be cog wheels meshing with the cog 813.
  • the second rotatable supports 832 may be provided at a portion where the teeth 813 are not provided around the inner circumference of the cylindrical tower 811 (that is, at a position different from the height of the teeth 813).
  • the second rotatable supports 832 may be wheels or bearing devices, for example, and the central inner circumference that abuts the second rotatable supports 832 on the inner circumferential surface of the cylindrical tower 811 may be smoothly processed, or the rail may be Can be prepared.
  • Third rotating supports 833 may be provided at a lower circumference of the cylindrical tower 811.
  • the lower support plate 850 includes a lower plate 851 positioned below the wind power module 810 and a bottom guide rail 855 provided on the lower plate 851.
  • the bottom plate 851 may be a solar module 150 (FIG. 1), a solar module 350 (FIG. 13), or may be a simple flat plate.
  • the lower plate 851 may be a bottom surface on which the renewable energy utilization apparatus 800 is installed.
  • the bottom guide rail 855 is a member that guides the rotation of the cylindrical tower 811 while supporting the load of the cylindrical tower 811. That is, the third rotary support 833 provided at the lower circumference of the cylindrical tower 811 is rolled along the bottom guide rail 855 provided at the lower plate 851.
  • the bottom guide rail 855 may have a circular groove shape provided at a portion of the lower plate 851 opposite to the lower end of the cylindrical tower 811, or may have a protruding shape.
  • the first rotary support 831 is described as a case in which the upper circumference of the inner peripheral surface of the cylindrical tower 811 abuts as an example, but is not limited thereto.
  • Rotating supports may be installed around the upper end (end) of the cylindrical tower 811, and a circular rail may be provided around the upper end (end) of the cylindrical tower 811.
  • the circular rail is fixed to the central column 119 or the lower support plate 850 by a plurality of fixed beams 834.
  • the rotary supports positioned on the top of the cylindrical tower 811 may guide the rotation of the cylindrical tower 811 while rolling along the circular rail.
  • This embodiment has been described as an example in which the support is rotatably supported in three regions of the top, middle, and bottom of the cylindrical tower 811 in the longitudinal direction (ie, vertical direction), but is not limited thereto. .
  • the top and bottom of the cylindrical tower 811 may be rotatably supported, in which case the wind turbine 840 will be coupled to the top or bottom of the cylindrical tower 811 to be interlocked.
  • the cylindrical tower 811 may be rotatably supported in four or more regions with respect to the longitudinal direction (ie, the vertical direction).
  • FIG. 23 is a schematic perspective view of a renewable energy utilization apparatus 900 according to another embodiment of the present invention
  • FIG. 24 is a view of an intermediate portion of the cylindrical tower 911 in the renewable energy utilization apparatus 900 of FIG. Cross section view.
  • the middle part is based on the longitudinal direction (ie, the vertical direction) of the cylindrical tower 911.
  • the renewable energy utilization apparatus 900 of the present embodiment includes a wind power module 910, a lower support plate 950, a wind collecting plate 160, and a support 190. Instead of the collecting plate 160, a refractive collecting plate 260 of FIG. 8 may be provided or omitted.
  • the renewable energy utilization apparatus 900 of the present embodiment has a difference in the rotatable support structure of the wind power module 110 when compared with the renewable energy utilization apparatuses 100, 200, and 300 of the embodiment with reference to FIGS. 1 to 13.
  • the rest of the components are substantially the same as those of the renewable energy utilization apparatuses 100, 200, and 300 of the above-described embodiment, and thus, the differences will be mainly described.
  • the wind power module 910 includes a cylindrical tower 911, a plurality of wings 912, and first to third circular rings 931, 932, and 933 coupled to the plurality of wings 912.
  • the cylindrical tower 911 is installed to be fixed to the lower support plate 950.
  • the first to third circular rings 931, 932 and 933 are fitted to the cylindrical tower 911.
  • the first to third circular rings 931, 932 and 933 are larger than the outer diameter of the cylindrical tower 911 so that the first to third circular rings 931, 932 and 933 do not contact the outer circumferential surface of the cylindrical tower 911.
  • the plurality of wings 912 has a shape extending in the longitudinal direction (ie, vertical direction) of the cylindrical tower 911. At least a portion of the plurality of vanes 912 is positioned slightly inclined with respect to the vertical direction to reduce the load of the rotating body (ie, the plurality of vanes 912 and the first to third circular rings 931, 932, 933). You can. At this time, the inclined direction of the plurality of blades 912 is a direction in which at least a portion of the surface where the blades 912 face the wind faces downward.
  • the first to third circular rings 931, 932, and 933 are coupled to the top, middle, and bottom of the wings 912, respectively. Accordingly, the plurality of wings 912 are rotated along the outer circumference of the cylindrical tower 911 integrally with the first to third circular rings 931, 932, 933.
  • the first circular ring 931 may be rotatably supported by first rotating supports 934 installed at a plurality of points around the upper end of the outer circumferential surface of the cylindrical tower 911.
  • the inner circumference of the first circular ring 931 may be smoothly processed.
  • the first rotating supports 934 can be, for example, wheels or bearing devices.
  • a polygonal tower may be employed in place of the cylindrical tower 911.
  • the first rotating supports 934 are provided at positions facing the first circular rings 931 on the outer circumferential surface of the polygonal tower.
  • the second circular ring 932 may be rotatably supported by second rotating supports 935 installed at a plurality of points around the outer circumferential surface of the cylindrical tower 911.
  • Teeth 937 are provided around the inner surface of the first circular ring 931. That is, the first circular ring 931 may be a kind of cog wheel made of teeth 937 on the inner side thereof.
  • the second rotating supports 935 can be cog wheels, for example.
  • An opening 911a is provided at one point of the circumference of the outer circumferential surface of the cylindrical tower 911 facing the second circular ring 932.
  • a wind generator 940 is disposed adjacent to the opening 911 a and engaged with the teeth 937 of the second circular ring 932.
  • the wind turbine 940 is supported by the fixed beams 939 extending from the lower support plate 950 or the central column 119.
  • the wind turbine 940 may include a gearbox including gears 941 and 942 that mesh with the teeth 937 of the second circular ring 932.
  • the plurality of wings 912 rotate the second circular ring 932 by wind, and when the second circular ring 932 rotates, the second circular ring 932 Cogwheel 941 is engaged with the teeth 937 of the rotation), and thus, the wind power generator 940 converts the rotational kinetic energy of the plurality of wings 912 into electrical energy to produce electrical energy.
  • Third rotating supports 936 may be provided at a lower circumference of the third circular ring 933.
  • the lower support plate 950 includes a lower plate 951 positioned below the wind power module 910 and a bottom guide rail 955 provided on the lower plate 951.
  • the lower plate 951 may be a solar module 150 (FIG. 1), a solar module 350 (FIG. 13), or may be a simple flat plate. Alternatively, the lower plate 951 may be a bottom surface on which the renewable energy utilization device 900 is installed.
  • the bottom guide rail 955 is a member that guides the rotation of the third circular ring 933 while supporting the load of the first to third circular rings 931, 932, and 933 and the plurality of wings 912 coupled thereto. .
  • the third rotary support 936 provided at the lower circumference of the third circular ring 933 is rolled along the bottom guide rail 955 provided on the lower plate 951.
  • the bottom guide rail 955 may have a circular groove shape provided at a portion of the lower plate 951 opposite to the lower end of the cylindrical tower 911, or may have a protruding shape. Additional rotating supports may also be provided on the outer circumferential surface of the cylindrical tower 911 opposite to the inner surface of the third circular ring 933.
  • the renewable energy utilization apparatus 100, 200, 300, 400, 500, 600, 700, 800, 900 includes a solar module 150 or a solar module 350, but is not limited thereto. It doesn't happen.
  • the renewable energy using apparatus of the present invention may be provided with only the wind power module (110, 410, 510, 610, 710, 810, 910).
  • the renewable energy utilization apparatus includes only the wind power modules 110, 410, 510, 610, 710, 810, and 910, the towers 111, 411, 511, 611, 711, 811, 911 or the wind collecting plate 160 are provided. May be formed of an opaque material.
  • the towers 111, 411, 511, 611, 711, 811, 911 or the wind collecting plate 160 may be formed of a material such as metal or concrete.
  • Renewable energy using apparatus of the present invention may include all of the wind power module (110, 410, 510, 610, 710, 810, 910), solar module 150, solar module 350 of course.
  • FIG. 25 is a perspective view illustrating the wind power module 1010 used in the renewable energy utilization apparatus according to another embodiment of the present invention
  • FIG. 26 is a cross-sectional view of an intermediate portion of the wind power module 101 of FIG. 25.
  • the wind turbine module 1010 includes a cylindrical tower 1011 and a plurality of wings 1012 coupled thereto.
  • Cylindrical tower 1011 may be cylindrical towers 411, 611, 711, 811 of the embodiments described above.
  • the configuration in which the cylindrical tower 1011 is rotatably coupled to the central column 119 may employ a known method.
  • two flanges 415 are rotatably coupled to the top and bottom of the central column (119 of FIG. 1), and the cylindrical tower 1011 is flanged 415 by a plurality of fixed beams 413.
  • a guide structure is provided, or as shown in the embodiment with reference to FIG. Of course, it can be prepared.
  • the plurality of wings 1012 may be coupled to the outer circumferential surface of the cylindrical tower 1011 by a variable coupling member 1013 such as a hinge, so that the wing angle may be changed.
  • the wing angle means an angle at which the wing 1012 is inclined with respect to the mounting surface of the cylindrical tower 1011, as shown in FIG. 27.
  • the variable coupling member 1013 may include an elastic member 1014 so that the plurality of wings are inclined closer to the direction of the wind as the wind strength increases so that the renewable energy utilization apparatus is not damaged by the strong wind.
  • Such an elastic member 1014 may be, for example, a torsion spring.
  • the wing angle according to the strength of the wind can be adjusted by appropriately designing the elastic modulus of the elastic member 1014.
  • FIG. 27 is a view for explaining the operation of the wind turbine module 1010 according to the present embodiment.
  • the lengths of the arrows representing the winds 20-1, 20-2, and 20-3 represent the strength of the wind.
  • the wings 1012 are inclined obliquely toward the wind direction. That is, the wing 1012 has a wing angle ⁇ 1, ⁇ 2, ⁇ 3 with respect to the mounting surface of the cylindrical tower 1011, the higher the intensity of the wind (20-1, 20-2, 20-3) , Can become smaller gradually.
  • the wing angle ⁇ 1 is kept as large as possible with respect to the direction of the wind 20-1, thereby maximizing the efficiency of wind power generation. It is done. If the wind speed of the wind 20-2 exceeds approximately 20 m / s, the wing angle ⁇ 2 gradually decreases with respect to the direction of the wind 20-1, so that the wind speed of the wind 20-3 is approximately 50 m / s. When the m / s is exceeded, the wing angle ⁇ 3 is reduced to the maximum, thereby minimizing the influence of the wind on which the wing 1012 abuts, so that the renewable energy utilization device may not be damaged by very strong wind.
  • the wing angle is automatically changed by the elastic member 1014, but the present invention is not limited thereto. It is also possible to manually adjust the angle of the blade 1012, and also to allow the angle of the blade 1012 can be adjusted using a separate power source (for example, a motor).
  • a separate power source for example, a motor
  • At least a portion of the plurality of wings 1012 may be installed in an inclined direction on the outer circumferential surface of the cylindrical tower 1011 as described with reference to FIG. 20.
  • a structure in which the cylindrical tower 1011 is rotated is described as an example, but is not limited thereto.
  • the cylindrical tower 111 is fixed and the plurality of vanes 112 are rotated to the center column 119 by the fixed beam 114 and the flange 115.
  • the variable coupling member 1013 and the elastic portion 1014 of the present embodiment may be applied to the coupling structure of the plurality of wings 112 and the fixed ratio 114.
  • the variable coupling member 1013 and the elastic part 1014 of the present embodiment may be applied.
  • FIG. 29 is a photograph in which a cylindrical tower 111 having a diameter of 600 mm is installed in an indoor simple wind tunnel device set as shown in FIG. 28 and the wind speed is measured right next to the cylindrical tower 111. As can be seen in the picture, the wind speed was accelerated to 6.4 m / s right next to the cylindrical tower 111 of 600 mm in diameter.
  • FIG. 30 is a photograph of a mobile experimental structure installed on a roof of a building
  • FIG. 31 is a photograph of measuring wind speed at a roof railing of a building
  • FIG. 32 is a photograph of measuring wind speed from an upper portion of the mobile experimental structure of FIG.
  • the wind speed of the laminar wind in the roof railing of the building was measured at 4 m / s.
  • the wind speed at the top of the mobile experimental structure was measured to 6 m / s, it can be seen that the laminar flow is accelerated while joining the vertical rising wind of the building.
  • the mobile experimental structure is 2.2 m high and a total of 3.3 m to the test table.
  • FIG. 33 is a photograph of measuring wind speeds right next to the cylindrical tower 111 after installing the cylindrical tower 111 having a diameter of 1000 mm on the mobile experimental structure of FIG. 30.
  • the wind speed at the side of the cylindrical tower 111 having a diameter of 1000 mm was measured at 8 m / s, and it was confirmed that the wind speed was accelerated by the cylindrical tower 111.
  • FIG. 34 is a photograph of measuring the wind speed after installing the wind collecting plate 160 on the upper portion of the cylindrical tower 111 with the cylindrical tower 111 of diameter 1000mm on the upper part of the mobile experimental structure of FIG.
  • the wind speed at the side of the cylindrical tower 111 having a diameter of 1000 mm was measured at 12.7 m / s, and it was confirmed that the wind speed was further accelerated by the collecting plate 160.
  • the commercial wind power generator requires that the wind speed is, for example, a predetermined value (eg, 12 m / s) or more in order to secure a guaranteed output, and it was confirmed that this wind speed is measured in the present experimental example.

Abstract

Disclosed is a new and renewable energy-using apparatus. The disclosed new and renewable energy-using apparatus comprises: a vertically erected tower; a plurality of wings disposed on the outer circumferential surface of the tower and rotated about a central shaft of the tower by means of wind; a wind power module including a wind power generator linked to the rotation of the plurality of wings and converting the energy from the rotational motion of the plurality of wings to electrical energy; and a solar energy module disposed beneath the tower, and converting sunlight to electrical energy or thermal energy, wherein the plurality of wings have a width, with respect to the diameter direction of the tower, that is less than the diameter of the tower.

Description

신재생 에너지 이용 장치Renewable Energy Equipment
본 개시는 신재생 에너지 이용 장치에 관한 것으로 더욱 상세하게는 풍력 및/또는 태양광(태양열)을 이용하는 신재생 에너지 이용 장치에 대한 것이다.The present disclosure relates to a renewable energy utilization apparatus, and more particularly, to a renewable energy utilization apparatus using wind and / or sunlight (solar heat).
신재생 에너지는 기존의 화석연료를 변환시켜 이용하거나 햇빛, 물, 지열, 바람, 생물유기체 등을 포함하는 재생 가능한 에너지를 변환시켜 이용하는 에너지로 지속 가능한 에너지 공급체계를 위한 미래에너지원이다. 환경문제, 가령 온실가스문제는 기존의 화석 에너지에서 재생 가능한 에너지로 패러다임을 전환할 것을 요구하고 있으며, 온실가스배출전망치(Business As Usual, BAU)의 감축목표를 달성하기 위하여 전 세계적으로 신재생 에너지 보급이 급격한 증가 추세에 있다. Renewable energy is a future energy source for a sustainable energy supply system that converts existing fossil fuels or converts renewable energy including sunlight, water, geothermal energy, wind, and bioorganisms. Environmental issues, such as GHG issues, require a paradigm shift from conventional fossil energy to renewable energy, and renewable energy globally to meet the reduction targets of Business As Usual (BAU). Prevalence is on the rise.
그런데, 태양광, 풍력 등을 이용하기 위해서는 많은 설치 면적이 필요하다. 또한, 수집되는 에너지의 밀도가 낮아 기대 효과가 미흡하며 경제성이 낮다.By the way, in order to use solar light, wind power, etc., a large installation area is needed. In addition, due to the low density of energy collected, the expected effect is insufficient and economic efficiency is low.
가령, 비특허문헌 1(최형식, 장호남, 도심 고층건물 지붕에서의 소형 풍력발전기 발전량 예측, 한국신재생에너지학회지 제5권 제4호, 2009.12, 21-27)에 따르면, 우리나라 주요 도시인 서울, 인천, 대전, 군산, 부산, 목포, 강릉에서의 풍속(단위 m/s)은 하기의 표 1과 같다. For example, according to Non Patent Literature 1 (CHOI Choi, Ho-Nam Jang, Prediction of Small Wind Turbine Power Generation in Roofs of Urban High-rise Buildings, Journal of The Korean Society for New and Renewable Energy, Vol. Wind speed (unit m / s) in, Daejeon, Gunsan, Busan, Mokpo, Gangneung are shown in Table 1 below.
10 m10 m 30 m30 m 50 m50 m
서울Seoul 2.52.5 3.73.7 4.24.2
인천Incheon 2.62.6 4.04.0 4.54.5
대전Daejeon 2.02.0 3.23.2 3.63.6
군산Gunsan 2.62.6 3.83.8 4.24.2
부산Busan 3.03.0 4.44.4 4.84.8
목포Mokpo 3.73.7 4.94.9 5.45.4
강릉Gangneung 3.13.1 4.34.3 5.85.8
표 1을 참조하면, 일곱 도시의 지상 10 m 높이에서의 풍속은 2 ~ 3 m/s이며, 지상 30 m 높이에서의 풍속은 3 ~ 4 m/s이며, 지상 50 m 높이에서의 풍속은 4 ~ 5 m/s임을 볼 수 있다. 상기와 같이, 우리나라 도심에서의 연평균 풍속은 겨우 2 ~ 5 m/s의 낮은 수치를 보여주어, 기대 효과가 미흡하다. Referring to Table 1, the wind speeds of the seven cities at 10 m above ground are 2 to 3 m / s, the wind speeds at 30 m above ground are 3 to 4 m / s and the wind speed at 50 m above ground is 4 It can be seen that it is ~ 5 m / s. As described above, the annual average wind speed in the city center of Korea shows only a low value of 2 ~ 5 m / s, the expected effect is insufficient.
태양광이나, 태양열 역시 연평균 에너지 밀도가 낮아 기대 효과가 미흡하다. 태양열 역시 겨울에 가장 많은 수요가 있으나 일사량의 부족으로 개선할 점이 많다.Solar light and solar heat also have low annual average energy density, which is not expected. Solar heat is also the most in demand in winter, but there is a lot of improvement due to the lack of solar radiation.
우리나라와 같이 풍속이 다소 낮은 지역에서도 풍력을 경제적으로 에너지를 수득할 수 있는 신재생 에너지 이용 장치를 제공하고자 한다.Even in a region where the wind speed is somewhat low, as in Korea, it is to provide a renewable energy utilization device that can economically obtain wind energy.
풍력 및 태양광(태양열)을 하나의 장치에서 복합적으로 이용하여 설치면적을 최소화할 수 있는 신재생 에너지 이용 장치를 제공하고자 한다.By using wind and solar (solar heat) in a single device to provide a renewable energy utilization device that can minimize the installation area.
풍력 및 태양광(태양열)을 하나의 장치에서 풍속을 가속하면서 일사량과 일조량을 증가시킬 수 있는 신재생 에너지 이용 장치를 제공하고자 한다.It is to provide a renewable energy utilization device that can increase the amount of solar radiation and sunlight while accelerating the wind speed in the wind and solar (solar) in one device.
본 발명의 한 측면에 따르는 신재생 에너지 이용 장치는 수직하게 세워진 타워와, 상기 타워의 외주면에 위치하며 바람에 의해 상기 타워의 중심축을 중심으로 회전하는 복수의 날개와, 상기 복수의 날개의 회전에 연동되어 상기 복수의 날개의 회전 운동 에너지를 전기 에너지로 변환시키는 풍력발전기를 포함하는 풍력모듈; 및 상기 타워의 하부에 위치하며, 태양광을 전기 에너지 또는 열 예너지로 변환시키는 태양에너지모듈;을 포함할 수 있다. 상기 복수의 날개는 상기 타워의 지름방향을 기준으로 폭이 상기 타워의 직경보다 작을 수 있다.Renewable energy utilization device according to an aspect of the present invention is a vertically erected tower, a plurality of wings located on the outer circumferential surface of the tower and rotated about the central axis of the tower by wind, and the rotation of the plurality of wings A wind power module including a wind power generator for interlocking and converting rotational kinetic energy of the plurality of blades into electrical energy; And a solar energy module positioned at a lower portion of the tower and converting sunlight into electrical energy or thermal energy. The plurality of wings may have a width smaller than the diameter of the tower with respect to the radial direction of the tower.
상기 타워는 횡단면이 원형 혹은 다각형인 형상을 가질 수 있다. 이러한 타워는 원통 혹은 다각통과 같은 통형상을 가질 수 있다.The tower may have a shape in which the cross section is circular or polygonal. Such a tower may have a cylindrical shape such as a cylinder or a polygonal cylinder.
상기 복수의 날개는 상기 타워의 길이방향으로 길게 연장되어 형성될 수 있다. The plurality of wings may be formed to extend in the longitudinal direction of the tower.
상기 타워는 바닥면 또는 상기 태양에너지모듈에 고정되며, 상기 복수의 날개는 상기 타워의 외주면에서 이격되게 위치하여 상기 타워의 외주면을 따라 회전할 수 있다.The tower is fixed to the bottom surface or the solar module, the plurality of wings may be spaced apart from the outer circumferential surface of the tower can rotate along the outer circumferential surface of the tower.
상기 타워는 상기 바닥면 또는 상기 태양에너지모듈에 수직하게 세워진 중심 기둥에 고정되며, 상기 복수의 날개는 상기 중심 기둥에 회전 가능하게 결합될 수 있다. 가령, 상기 복수의 날개는 상기 중심 기둥에 회전가능하게 설치된 플렌지와 결합되며, 상기 풍력발전기는 상기 플렌지에 연동될 수 있다.The tower is fixed to a center column erected perpendicular to the bottom surface or the solar module, the plurality of wings may be rotatably coupled to the center column. For example, the plurality of wings may be coupled to a flange rotatably installed on the center pillar, and the wind turbine may be linked to the flange.
상기 복수의 날개의 날개 각도는 변경 가능할 수 있다. 예를 들어, 상기 복수의 날개를 상기 플렌지에 날개 각도가 변경 가능하도록 결합시키는 가변 결합 부재가 더 마련될 수 있다.The wing angles of the plurality of wings may be changeable. For example, a variable coupling member may be further provided to couple the plurality of wings to the flange such that a wing angle is changeable.
상기 타워의 외주에 회전가능하게 위치한 복수의 원형링을 포함하며, 상기 복수의 날개는 상기 복수의 원형링에 결합될 수도 있다. 이 경우, 상기 바닥면 또는 상기 태양에너지모듈의 상면에는 원형의 바닥 가이드 레일이 마련되며, 상기 복수의 원형링 중 가장 하단에 위치하는 하단 원형링은 상기 바닥 가이드 레일상에서 회전할 수 있다. 상기 복수의 원형링 중 적어도 어느 하나의 원형링은 상기 풍력발전기와 연동될 수 있다. 상기 타워의 외주면에는 상기 복수의 원형링 중 적어도 어느 하나의 원형링를 회전 가능하게 지지하는 회전 지지체들이 마련될 수 있다.It includes a plurality of circular rings rotatably located on the outer periphery of the tower, the plurality of wings may be coupled to the plurality of circular rings. In this case, a circular bottom guide rail is provided on the bottom surface or an upper surface of the solar energy module, and a lower circular ring positioned at the bottom of the plurality of circular rings may rotate on the bottom guide rail. At least one of the plurality of circular rings may be linked to the wind turbine. Rotating supports may be provided on an outer circumferential surface of the tower to rotatably support at least one of the plurality of circular rings.
상기 타워는 바닥면 또는 상기 태양에너지모듈에 대해 회전가능하게 결합되며, 상기 복수의 날개는 상기 타워의 외주면에 부착될 수 있다. 상기 타워가 단면이 다각형인 통형상을 갖는 경우, 상기 타워의 외주면의 모서리쪽에 복수의 날개가 부착될 수 있다. The tower is rotatably coupled to the bottom surface or the solar module, the plurality of wings may be attached to the outer peripheral surface of the tower. When the tower has a cylindrical shape having a polygonal cross section, a plurality of wings may be attached to the edge of the outer circumferential surface of the tower.
상기 복수의 날개를 상기 타워의 외주면에 날개 각도가 변경 가능하도록 결합시키는 가변 결합 부재가 더 마련될 수 있다. 상기 가변 결합 부재는 상기 복수의 날개와 상기 타워의 외주면에 사이에 개재되어 탄성 부재를 포함할 수 있다. A variable coupling member may be further provided to couple the plurality of wings to an outer circumferential surface of the tower such that a wing angle is changeable. The variable coupling member may include an elastic member interposed between the plurality of wings and the outer circumferential surface of the tower.
상기 복수의 날개의 적어도 일부는 바람을 맞이하는 면의 적어도 일부가 하방을 향하도록 경사져 있을 수 있다.At least a portion of the plurality of wings may be inclined such that at least a portion of the surface facing the wind faces downward.
상기 바닥면 또는 상기 태양에너지모듈의 상면에는 원형의 바닥 가이드 레일이 마련되며, 상기 타워는 상기 바닥 가이드 레일상에서 회전할 수 있다. 상기 타워의 외주 하단에는 상기 바닥 가이드 레일을 따라 움직이는 바퀴가 설치될 수 있다.A circular bottom guide rail may be provided on the bottom surface or the top surface of the solar energy module, and the tower may rotate on the bottom guide rail. Wheels moving along the bottom guide rail may be installed at the outer circumferential bottom of the tower.
상기 타워는 상기 바닥면 또는 상기 태양에너지모듈에 수직하게 세워진 중심 기둥에 회전가능하게 설치된 플렌지와 결합되며, 상기 풍력발전기는 상기 플렌지에 연동될 수 있다. 또는 상기 타워는 상기 타워의 내주면 둘레의 복수의 지점에서 회전 지지체들에 의해 회전가능하게 지지될 수 있다. 상기 타워는 상기 바닥면 또는 상기 태양에너지모듈의 상면에 이격되어 접촉되지 않고, 상기 플렌지에 의해서만 지지될 수 있다. 물론, 상기 타워는 상기 플렌지와 함께 상기 바닥면 또는 상기 태양에너지모듈의 상면에 마련되는 바닥 가이드 레일에 의해 지지될 수도 있다.The tower is coupled to a flange rotatably installed on the bottom or the center column perpendicular to the solar energy module, the wind turbine can be linked to the flange. Alternatively, the tower may be rotatably supported by the rotating supports at a plurality of points around the inner circumferential surface of the tower. The tower is not spaced apart from the bottom surface or the top surface of the solar energy module and may be supported only by the flange. Of course, the tower may be supported by the floor guide rail provided on the bottom surface or the top surface of the solar energy module together with the flange.
상기 타워는 투명 재질 또는 불투명 재질로 형성될 수 있다.The tower may be formed of a transparent material or an opaque material.
상기 태양에너지 모듈은 상기 타워의 바닥면에 위치하며 태양광을 전기 에너지로 변환시키는 태양광모듈일 수 있다. 상기 태양광모듈은 상기 타워의 횡단면적보다 큰 면적을 가질 수 있다. 상기 태양광모듈은 원형 평판 또는 다각형 평판의 형상으로 형성될 수 있다. 상기 태양광모듈의 상면에서 상기 타워의 직하에 위치한 영역의 외곽에는 태양전지가 설치된다. 상기 타워가 투명 재질로 형성된 경우, 상기 태양광모듈의 상기 타워의 직하에 위치한 영역에도 태양전지가 설치될 수 있다.The solar energy module may be a solar module located on the bottom surface of the tower and converts sunlight into electrical energy. The solar module may have an area larger than the cross sectional area of the tower. The solar module may be formed in the shape of a circular plate or a polygonal plate. On the upper surface of the photovoltaic module, a solar cell is installed outside the area located directly below the tower. When the tower is formed of a transparent material, the solar cell may be installed in an area located directly below the tower of the solar module.
상기 태양에너지모듈은 상기 타워의 바닥면에 위치하며 태양광을 이용하여 유체를 가열하는 집열부와, 상기 집열부에서 가열된 유체를 저장하는 저장탱크와, 상기 저장탱크에 저장된 유체를 집열부로 재투입시키는 펌프를 포함하는 태양열모듈일 수도 있다. 상기 집열부는 상기 타워의 횡단면적보다 큰 면적을 가질 수 있다. 상기 집열부는 원형 평판 또는 다각형 평판 형상으로 형성될 수 있다. 상기 집열부는 상기 태양열모듈의 상기 타워의 직하에 위치한 영역의 외곽에 설치될 수 있다. 상기 타워가 투명 재질로 형성된 경우, 상기 태양열모듈의 상기 타워의 직하에 위치한 영역에도 집열부가 설치될 수 있다.The solar module is located on the bottom surface of the tower and the heat collecting portion for heating the fluid using sunlight, the storage tank for storing the fluid heated in the heat collecting portion, and the fluid stored in the storage tank to the heat collecting portion It may also be a solar module including a pump to re-enter. The collecting portion may have an area larger than the cross sectional area of the tower. The heat collecting portion may be formed in a circular plate shape or a polygonal plate shape. The heat collecting unit may be installed at an outer portion of an area located directly below the tower of the solar module. When the tower is formed of a transparent material, a heat collecting part may be installed in an area located directly below the tower of the solar module.
신재생 에너지 이용 장치는 상기 타워의 상부에 위치하여 상방으로 흐르는 바람을 상기 타워 쪽으로 집풍시키는 집풍판을 더 포함할 수 있다. 상기 집풍판은 투명한 평판일 수 있다. 상기 집풍판은 상기 타워의 횡단면적보다 큰 면적을 가질 수 있다. 상기 집풍판은 원형 평판 또는 다각형 평판의 형상으로 형성될 수 있다. 상기 집풍판은 비스듬히 입사되는 태양광을 하방으로 굴절시키는 광학 굴절판을 포함할 수 있다. 상기 광학 굴절판은 상기 집풍판에 일체로 형성되거나, 광학 필름 형태로 부착될 수 있다. 상기 광학 굴절판은 상면 및 밑면 중 적어도 어느 한 면에 형성되는 다수의 프리즘을 포함할 수 있다. 상기 다수의 프리즘은 역피라미드 형상을 가질 수 있다.The renewable energy utilization apparatus may further include a wind collecting plate positioned at an upper portion of the tower to wind upwardly the wind flowing toward the tower. The wind collecting plate may be a transparent flat plate. The wind collecting plate may have an area larger than the cross sectional area of the tower. The wind collecting plate may be formed in the shape of a circular flat plate or a polygonal flat plate. The wind collecting plate may include an optical refracting plate that refracts obliquely incident sunlight. The optical refraction plate may be integrally formed on the collection plate, or may be attached in the form of an optical film. The optical refraction plate may include a plurality of prisms formed on at least one of an upper surface and a bottom surface. The plurality of prisms may have an inverted pyramid shape.
본 발명의 다른 측면에 따르는 신재생 에너지 이용 장치는 원통 또는 다각통 형상을 가지며, 바닥면에 고정되게 세워진 원통 타워; 상기 원통 타워의 외주면에서 이격되게 위치하며, 상기 타워의 외주면을 따라 회전하는 복수의 날개; 및 상기 복수의 날개의 회전에 연동되어 상기 복수의 날개의 회전 운동 에너지를 전기 에너지로 변환시키는 풍력발전기;를 포함할 수 있다. 상기 복수의 날개는 상기 타워의 길이방향으로 길게 연장되어 형성될 수 있다. 상기 복수의 날개는, 상기 타워의 지름방향을 기준으로 폭이 상기 타워의 직경보다 작을 수 있다.Renewable energy utilization device according to another aspect of the present invention has a cylindrical or polygonal shape, cylindrical tower fixed to the bottom surface; A plurality of wings positioned to be spaced apart from the outer circumferential surface of the cylindrical tower and rotating along the outer circumferential surface of the tower; And a wind power generator which is linked to rotation of the plurality of blades and converts rotational kinetic energy of the plurality of blades into electrical energy. The plurality of wings may be formed to extend in the longitudinal direction of the tower. The plurality of wings may have a width smaller than the diameter of the tower with respect to the radial direction of the tower.
상기 타워는 상기 바닥면에 수직한 중심 기둥에 고정되며, 상기 복수의 날개는 상기 중심 기둥에 회전 가능하게 결합될 수 있다. 가령, 상기 복수의 날개는 상기 바닥면에 수직한 중심 기둥에 회전가능하게 설치된 플렌지와 결합되며, 상기 풍력발전기는 상기 플렌지에 연동될 수 있다.The tower is fixed to a center column perpendicular to the bottom surface, the plurality of wings may be rotatably coupled to the center column. For example, the plurality of wings may be coupled to a flange rotatably installed on a center column perpendicular to the bottom surface, and the wind turbine may be linked to the flange.
상기 타워의 외주에 회전가능하게 위치한 복수의 원형링을 포함하며, 상기 복수의 날개는 상기 복수의 원형링에 결합될 수 있다. 이 경우, 상기 바닥면에는 원형의 바닥 가이드 레일이 마련되며, 상기 복수의 원형링 중 가장 하단에 위치하는 하단 원형링은 상기 바닥 가이드 레일상에서 회전할 수 있다. 상기 복수의 원형링 중 적어도 어느 하나의 원형링은 상기 풍력발전기와 연동될 수 있다.It includes a plurality of circular rings rotatably located on the outer periphery of the tower, the plurality of wings may be coupled to the plurality of circular rings. In this case, a circular bottom guide rail is provided on the bottom surface, and a lower circular ring positioned at the bottom of the plurality of circular rings may rotate on the bottom guide rail. At least one of the plurality of circular rings may be linked to the wind turbine.
상기 타워의 외주면에는 상기 복수의 원형링 중 적어도 어느 하나의 원형링를 회전 가능하게 지지하는 회전 지지체들이 마련될 수 있다. Rotating supports may be provided on an outer circumferential surface of the tower to rotatably support at least one of the plurality of circular rings.
본 발명의 또 다른 측면에 따르는 신재생 에너지 이용 장치는 원통 또는 다각통 형상을 가지며 바닥면에 회전가능하게 수직하게 세워진 타워; 상기 타워의 외주면에 부착된 복수의 날개; 상기 타워의 회전에 연동되어 상기 타워의 회전 운동 에너지를 전기 에너지로 변환시키는 풍력발전기;를 포함할 수 있다. 상기 복수의 날개는 상기 타워의 길이방향으로 길게 연장되어 형성될 수 있다. 상기 복수의 날개는, 상기 타워의 지름방향을 기준으로 폭이 상기 타워의 직경보다 작을 수 있다.Renewable energy utilization device according to another aspect of the present invention is a tower having a cylindrical or polygonal shape rotatably perpendicular to the bottom surface; A plurality of wings attached to an outer circumferential surface of the tower; It may include; a wind power generator for interlocking with the rotation of the tower to convert the rotational kinetic energy of the tower into electrical energy. The plurality of wings may be formed to extend in the longitudinal direction of the tower. The plurality of wings may have a width smaller than the diameter of the tower with respect to the radial direction of the tower.
상기 바닥면에는 원형의 바닥 가이드 레일이 마련되며, 상기 타워는 상기 바닥 가이드 레일상에서 회전할 수 있다. 이 경우, 상기 타워의 외주 하단에는 상기 바닥 가이드 레일을 따라 움직이는 바퀴가 설치될 수 있다. The bottom surface is provided with a circular bottom guide rail, the tower can rotate on the bottom guide rail. In this case, wheels moving along the bottom guide rail may be installed at the lower outer periphery of the tower.
상기 복수의 날개의 적어도 일부는 바람을 맞이하는 면의 적어도 일부가 하방을 향하도록 경사져 있을 수 있다. At least a portion of the plurality of wings may be inclined such that at least a portion of the surface facing the wind faces downward.
상기 타워는 상기 바닥면에 수직한 중심 기둥에 회전가능하게 설치된 플렌지와 결합되며, 상기 풍력발전기는 상기 플렌지에 연동될 수 있다. 또는 상기 타워는 상기 타워의 내주면 둘레의 복수의 지점에서 회전 지지체들에 의해 회전가능하게 지지될 수 있다.The tower is coupled to the flange rotatably installed in the center pillar perpendicular to the bottom surface, the wind power generator may be linked to the flange. Alternatively, the tower may be rotatably supported by the rotating supports at a plurality of points around the inner circumferential surface of the tower.
본 발명의 실시예들에 의한 신재생 에너지 이용 장치는 도심 환경이나 산능선에서 신재생 에너지의 이용 효율을 향상시킬 수 있다. Renewable energy using device according to embodiments of the present invention can improve the utilization efficiency of renewable energy in the urban environment or mountain peak.
본 발명의 실시예들에 의한 신재생 에너지 이용 장치는 풍속이 낮은 지역에서도 효과적으로 풍력발전기의 보증출력을 확보할 수도 있도록 풍속을 가속시킬 수 있다.The renewable energy utilization apparatus according to the embodiments of the present invention may accelerate the wind speed so that the guaranteed output of the wind turbine can be effectively ensured even in a region where the wind speed is low.
본 발명의 실시예들에 의한 신재생 에너지 이용 장치는 풍력 및 태양광(태양열)을 하나의 장치에서 복합적으로 이용할 수 있다.Renewable energy using device according to embodiments of the present invention can be used in combination with wind and solar (solar) in one device.
본 발명의 실시예들에 의한 신재생 에너지 이용 장치는 일사량을 배가시키고 일조량 역시 향상하며 산란광도 이용가능하다.Renewable energy utilization apparatus according to embodiments of the present invention doubles the amount of insolation, improves the amount of sunshine and can also use scattered light.
본 발명의 실시예들에 의한 신재생 에너지 이용 장치는 겨울과 같이 태양의 고도각이 낮더라도 태양광의 광속 유효단면적을 크게 할 수 있다.Renewable energy using device according to embodiments of the present invention can increase the effective cross-sectional area of the light flux of sunlight even when the altitude angle of the sun is low, such as winter.
도 1은 본 발명의 일 실시예에 따른 신재생 에너지 이용 장치의 개략적인 사시도이다.1 is a schematic perspective view of an apparatus for using renewable energy according to an embodiment of the present invention.
도 2는 도 1의 신재생 에너지 이용 장치의 측면도이다.FIG. 2 is a side view of the renewable energy utilization apparatus of FIG. 1.
도 3은 도 1의 신재생 에너지 이용 장치의 평면도이다.3 is a plan view of the renewable energy utilization apparatus of FIG. 1.
도 4는 풍력발전기의 보증 출력 곡선을 나타내는 그래프이다.4 is a graph showing the guaranteed output curve of the wind turbine.
도 5는 원통 타워에 의한 풍속 가속을 설명하는 도면이다.It is a figure explaining the wind speed acceleration by a cylindrical tower.
도 6은 집풍판이 없는 신재생 에너지 이용 장치가 건물 옥상에 설치된 경우의 바람 흐름을 도시한다.FIG. 6 shows the wind flow when the renewable energy utilization apparatus without the collecting plate is installed on the roof of a building.
도 7은 집풍판을 포함한 신재생 에너지 이용 장치가 건물 옥상에 설치된 경우의 바람의 흐름도를 도시한다.FIG. 7 shows a flow chart of wind when a renewable energy utilization apparatus including a wind collecting plate is installed on a roof of a building.
도 8은 본 발명의 다른 실시예에 따른 신재생 에너지 이용 장치의 개략적인 측면도이다.8 is a schematic side view of an apparatus for using renewable energy according to another embodiment of the present invention.
도 9는 도 8의 신재생 에너지 이용 장치에 채용된 굴절집광판의 밑면 구조를 도시하는 도면이다.FIG. 9 is a diagram illustrating a bottom structure of the refractive collector used in the renewable energy utilization device of FIG. 8.
도 10은 도 9의 신재생 에너지 이용 장치에 태양빛이 입사되는 모습을 도시한다.FIG. 10 illustrates a state in which sunlight is incident on the renewable energy utilization apparatus of FIG. 9.
도 11 및 도 12는 도 12의 굴절집광판에서의 태양의 고도에 따른 태양빛의 입사 경로를 도시한다.11 and 12 illustrate an incident path of sunlight according to the altitude of the sun in the refraction light collecting plate of FIG. 12.
도 13은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치의 개략적인 측면도이다.13 is a schematic side view of a renewable energy using device according to another embodiment of the present invention.
도 14는 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치의 개략적인 사시도이다.14 is a schematic perspective view of a renewable energy utilization apparatus according to another embodiment of the present invention.
도 15는 도 14의 신재생 에너지 이용 장치의 동작을 설명하는 도면이다.FIG. 15 is a view for explaining an operation of the renewable energy utilization apparatus of FIG. 14.
도 16은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치에 사용되는 다각 타워를 도시한 사시도이다.16 is a perspective view showing a polygonal tower used in the renewable energy utilization apparatus according to another embodiment of the present invention.
도 17은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치의 개략적인 사시도이다.17 is a schematic perspective view of a renewable energy utilization apparatus according to another embodiment of the present invention.
도 18은 도 17의 신재생 에너지 이용 장치의 하부판을 개략적으로 도시하는 도면이다.FIG. 18 is a view schematically illustrating a lower plate of the renewable energy utilization apparatus of FIG. 17.
도 19는 도 17의 신재생 에너지 이용 장치의 원통 타워를 뒤집은 상태로 도시한 도면이다.19 is a view showing the cylindrical tower of the renewable energy utilization apparatus of FIG. 17 in an inverted state.
도 20은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치에 사용되는 풍력 모듈을 도시한 사시도이다.20 is a perspective view illustrating a wind power module used in a renewable energy using device according to another embodiment of the present invention.
도 21은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치의 개략적인 사시도이다.21 is a schematic perspective view of an apparatus for using renewable energy according to still another embodiment of the present invention.
도 22는 도 21의 신재생 에너지 이용 장치에서 원통 타워의 횡단면도이다.22 is a cross-sectional view of the cylindrical tower in the renewable energy utilization apparatus of FIG. 21.
도 23은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치의 개략적인 사시도이다.23 is a schematic perspective view of a renewable energy utilization apparatus according to another embodiment of the present invention.
도 24는 도 23의 신재생 에너지 이용 장치에서 원통 타워의 횡단면도이다.24 is a cross-sectional view of the cylindrical tower in the renewable energy utilization apparatus of FIG.
도 25는 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치에 사용되는 풍력모듈을 도시한 사시도이다.25 is a perspective view illustrating a wind power module used in a renewable energy using device according to another embodiment of the present invention.
도 26은 도 25의 풍력모듈의 중간 부분의 횡단면도이다. FIG. 26 is a cross-sectional view of the middle portion of the wind turbine module of FIG. 25.
도 27은 본 실시예의 풍력모듈의 동작에 설명하는 도면이다.27 is a view for explaining the operation of the wind turbine module of the present embodiment.
도 28 및 도 30은 실내 간이 동풍 실험을 보여 주는 사진들이다.28 and 30 are photographs showing a simple indoor wind experiment.
도 31 내지 34는 건물옥상의 실험을 보여주는 사진들이다.31 to 34 are photographs showing an experiment on a building roof.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭하며, 도면에서 각 구성요소의 크기나 두께는 설명의 명료성을 위하여 과장되어 있을 수 있다.Advantages and features of the present invention, and methods of achieving them will be apparent with reference to the embodiments described below in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be embodied in various different forms, and only the embodiments are provided to make the disclosure of the present invention complete, and those of ordinary skill in the art to which the present invention belongs. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Like reference numerals refer to like elements throughout the specification, and the size or thickness of each component in the drawings may be exaggerated for clarity.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다. Terms used herein will be briefly described and the present invention will be described in detail.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다. The terms used in the present invention have been selected as widely used general terms as possible in consideration of the functions in the present invention, but this may vary according to the intention or precedent of the person skilled in the art, the emergence of new technologies and the like. In addition, in certain cases, there is also a term arbitrarily selected by the applicant, in which case the meaning will be described in detail in the description of the invention. Therefore, the terms used in the present invention should be defined based on the meanings of the terms and the contents throughout the present invention, rather than the names of the simple terms.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.When any part of the specification is to "include" any component, this means that it may further include other components, except to exclude other components unless otherwise stated.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention.
도 1은 본 발명의 일 실시예에 따른 신재생 에너지 이용 장치(100)의 개략적인 사시도이며, 도 2는 도 1의 신재생 에너지 이용 장치(100)의 측면도이며, 도 3은 도 1의 신재생 에너지 이용 장치(100)의 평면도이다.1 is a schematic perspective view of a renewable energy utilization apparatus 100 according to an embodiment of the present invention, Figure 2 is a side view of the renewable energy utilization apparatus 100 of Figure 1, Figure 3 is a new It is a top view of the renewable energy utilization apparatus 100. FIG.
도 1 내지 도 3을 참조하면, 본 실시예의 신재생 에너지 이용 장치(100)는 풍력모듈(110), 태양광모듈(150), 및 지지부(190)를 포함한다. 1 to 3, the renewable energy utilization apparatus 100 of the present embodiment includes a wind power module 110, a solar module 150, and a support 190.
본 실시예의 신재생 에너지 이용 장치(100)는 예를 들어 단독주택, 아파트, 빌딩 등의 건물의 옥상이나, 산능선, 평지 등에 설치될 수 있다. 물론, 설치장소는 이에 한정되는 것은 아니다. The renewable energy utilization apparatus 100 of the present embodiment may be installed on, for example, a rooftop of a building such as a single house, an apartment, a building, a mountain ridge, or a plain. Of course, the installation place is not limited to this.
풍력모듈(110)은 원통 타워(111)와, 복수의 날개(112)를 포함한다. The wind power module 110 includes a cylindrical tower 111 and a plurality of wings 112.
원통 타워(111)는 바닥면(10)에 대해 수직하게 세워지는 원통 형상의 구조물이다. 원통 타워(111)는, 예를 들어, 수십 mm 내지 수십 m의 직경(도 3의 D1)을 가질 수 있다. 이러한 원통 타워(111)의 직경(D1)은 본 실시예를 제한하는 것은 아니다. Cylindrical tower 111 is a cylindrical structure that is erected perpendicular to the bottom surface (10). Cylindrical tower 111 may have, for example, a diameter of several tens of mm to several tens of meters (D1 in FIG. 3). The diameter D1 of this cylindrical tower 111 does not limit this embodiment.
원통 타워(111)는 후술하는 바와 같이 풍력모듈(110)로 들어오는 바람을 가속시키는 기능을 수행한다. 원통 타워(111)는 폴리카보네이트나, 아크릴과 같은 플라스틱 재질로 형성될 수 있다. 나아가, 원통 타워(111)는 투명한 플라스틱 재질로 형성될 수 있다. 물론, 원통 타워(111)의 재질은 이에 한정되지 아니하며, 불투명한 플라스틱 재질이나 금속 또는 비금속 재질로 형성될 수 있음은 물론이다.The cylindrical tower 111 performs a function of accelerating the wind entering the wind power module 110 as described below. The cylindrical tower 111 may be formed of a plastic material such as polycarbonate or acrylic. Furthermore, the cylindrical tower 111 may be formed of a transparent plastic material. Of course, the material of the cylindrical tower 111 is not limited thereto, and may be formed of an opaque plastic material or a metal or nonmetal material.
원통 타워(111)는 복수의 제1 고정빔(113)에 의해 중심기둥(119)에 고정되게 설치된다. 중심기둥(119)은 원통 타워(111)의 중심축에 위치한다. 중심기둥(119)은 바닥면(10)에 수직하게 고정되게 설치된다. 복수의 제1 고정빔(113) 각각의 일단이 중심기둥(119)에 고정 결합되고, 복수의 제1 고정빔(113) 각각의 타단이 중심기둥(119)에서 지름 바깥 방향으로 연장된다. 원통 타워(111)는 복수의 제1 고정빔(113) 각각의 타단에 고정된다. The cylindrical tower 111 is installed to be fixed to the central column 119 by the plurality of first fixed beams 113. The central column 119 is located at the central axis of the cylindrical tower 111. The central column 119 is installed to be perpendicular to the bottom surface 10. One end of each of the plurality of first fixed beams 113 is fixedly coupled to the central pillar 119, and the other end of each of the plurality of first fixed beams 113 extends in the radially outward direction from the central pillar 119. The cylindrical tower 111 is fixed to the other end of each of the plurality of first fixed beams 113.
복수의 날개(blade)(112)는 원통 타워(111)의 외주면에 배치되며 중심기둥(119)에 회전가능하게 설치된다. 즉, 복수의 날개(112)는 원통 타워(111)의 중심축을 중심으로 회전가능하게 설치된다. 일 예로, 도 2에 도시되듯이, 2개의 플랜지(115)가 중심기둥(119)의 상단 및 하단에 회전가능하게 결합된다. 2개의 플랜지(115)에는 중심기둥(119)과의 마찰을 감소시키기 위하여 베어링등이 마련되어 있을 수 있다. 복수의 제2 고정빔(114) 각각의 일단은 2개의 플랜지(115) 각각에 고정 결합되고, 복수의 제2 고정빔(114) 각각의 타단은 지름 바깥 방향으로 연장되어 원통 타워(111)의 외주면 바깥으로 일부 노출된다. 복수의 날개(112)는 복수의 고정빔(114)의 원통 타워(111)의 외주면 바깥으로 노출된 부위에 결합된다. 복수의 날개(112)는, 중심기둥(119)을 중심으로 회전할 때에 원통 타워(111)의 외주면에 닿지 않도록 원통 타워(111)의 외주면에 이격되게 배치된다. The plurality of blades 112 are disposed on the outer circumferential surface of the cylindrical tower 111 and rotatably installed on the central pillar 119. That is, the plurality of wings 112 are rotatably installed about the central axis of the cylindrical tower 111. For example, as shown in FIG. 2, two flanges 115 are rotatably coupled to the top and bottom of the central column 119. The two flanges 115 may be provided with bearings or the like to reduce friction with the central column 119. One end of each of the plurality of second fixed beams 114 is fixedly coupled to each of the two flanges 115, and the other end of each of the plurality of second fixed beams 114 extends in a radially outward direction to form a cylindrical tower 111. Part of the outer circumference is exposed outside. The plurality of wings 112 are coupled to portions exposed to the outside of the outer circumferential surface of the cylindrical tower 111 of the plurality of fixed beams 114. The plurality of blades 112 are disposed to be spaced apart from the outer circumferential surface of the cylindrical tower 111 so as not to touch the outer circumferential surface of the cylindrical tower 111 when rotating about the center column 119.
복수의 날개(112)는 원통 타워(111)의 길이방향(즉, 수직방향)을 따라 길게 연장된 형상을 지닐 수 있다. 또한, 복수의 날개(112)는, 원통 타워(111)의 지름방향을 기준으로, 그 폭(도 3의 D2)이 원통 타워(111)의 직경(D1)보다 작다. 즉, 원통 타워(111)는, 후술하는 바와 같은 원통 타워(111)에 의한 가속효과를 얻을 수 있도록, 복수의 날개(112)의 폭( D2)보다 큰 직경(D1)을 갖는다. The plurality of wings 112 may have a shape extending in the longitudinal direction (ie, the vertical direction) of the cylindrical tower 111. Moreover, the width | variety (D2 of FIG. 3) of the some wings 112 is smaller than the diameter D1 of the cylindrical tower 111 with respect to the radial direction of the cylindrical tower 111. As shown in FIG. That is, the cylindrical tower 111 has a diameter D1 larger than the width D2 of the some blade 112 so that the acceleration effect by the cylindrical tower 111 mentioned later may be acquired.
복수의 날개(112)는 일예로 수직방향으로 길다란 반원통형 형상을 지닐 수 있다. 복수의 날개(112)의 반원통형 형상은 예시적인 것이며, 이에 한정되는 것은 아니다. 복수의 날개(112)의 형상의 다른 예로, 복수의 날개(112)는 횡단면이 공기 역학적 설계로 형성되는 곡선 형상을 지닐 수도 있다. 복수의 날개(112)의 배치의 다른 예로, 복수의 날개(112)는 수직방향에 경사지게 설치될 수도 있다. 복수의 날개(112)는 예를 들어 도 1 내지 도 3에 도시되듯이 6개가 마련될 수 있으나, 이는 예시적인 것이며, 날개(112)의 개수는 이에 한정되는 것은 아니다.The plurality of wings 112 may have, for example, a semi-cylindrical shape that is long in the vertical direction. The semi-cylindrical shape of the plurality of wings 112 is exemplary, but is not limited thereto. As another example of the shape of the plurality of wings 112, the plurality of wings 112 may have a curved shape in which the cross section is formed in an aerodynamic design. As another example of the arrangement of the plurality of wings 112, the plurality of wings 112 may be installed to be inclined in the vertical direction. The plurality of wings 112 may be provided with six, for example, as shown in FIGS. 1 to 3, but this is merely an example, and the number of the wings 112 is not limited thereto.
복수의 날개(112)는 복수의 고정빔(114)의 타단에 고정적으로 결합될 수 있다. 다른 예로, 풍속등에 대응할 수 있도록 복수의 날개(112)의 각도가 조정가능하도록 복수의 고정빔(114)의 타단에 가변적으로 결합될 수도 있다. 복수의 날개(112)의 가변 방식은 수동적 혹은 자동적으로 이루어질 수 있다. 이러한 복수의 날개(112)의 고정적인 또는 가변적인 결합방식은 당해 분야에 공지되어 있다.The plurality of wings 112 may be fixedly coupled to the other ends of the plurality of fixed beams 114. As another example, the angles of the plurality of vanes 112 may be variably coupled to the other ends of the plurality of fixed beams 114 so as to correspond to the wind speed. The variable manner of the plurality of wings 112 may be made manually or automatically. A fixed or variable manner of coupling of the plurality of wings 112 is known in the art.
원통 타워(111) 내부에는 풍력발전기(140)가 위치할 수 있다. 풍력발전기(140)는 원통 타워(111) 내부의 상단, 중단, 혹은 하단에 위치할 수 있다. 풍력발전기(140)는 2개의 플랜지(115) 중 적어도 어느 한쪽(예를 들어, 도 2에 도시되듯이, 하단쪽 플랜지(115))의 회전에 연동되도록 결합된다. 풍력발전기(140)와 플랜지(115)의 연동은 예를 들어 기어, 벨트 등의 공지의 방식으로 이루어질 수 있다. 예를 들어, 플랜지(115, 115)와 풍력발전기(140) 사이에 기어박스를 마련하여, 기어박스의 증속 기어 혹은 감속 기어를 이용하여 날개(112)의 회전속도를 일정하게 할 수도 있다. 또한, 풍속이 너무 강할 경우 날개(112)의 회전을 정지시키는 브레이크 시스템이 추가적으로 마련될 수도 있다. 신재생 에너지 이용 장치(100)의 동작시, 복수의 날개(112)는 바람에 의해 원통 타워(111)의 외주면을 따라 회전하면서 바람에 담긴 풍력 에너지를 회전에너지로 전환하며, 이에 따라 플랜지(115)도 회전하게 된다. 풍력발전기(140)는 플랜지(115)의 회전운동 에너지를 전기 에너지로 전환하여 전기 에너지를 생산한다. The wind turbine 140 may be located inside the cylindrical tower 111. The wind turbine 140 may be located at the top, the middle, or the bottom of the cylindrical tower 111. The wind turbine 140 is coupled to interlock with rotation of at least one of the two flanges 115 (eg, the lower flange 115, as shown in FIG. 2). Interlocking of the wind turbine 140 and the flange 115 may be made in a known manner, for example, gears, belts. For example, a gearbox may be provided between the flanges 115 and 115 and the wind power generator 140, so that the rotation speed of the blade 112 may be constant by using an increase gear or a reduction gear of the gearbox. In addition, a brake system may be additionally provided to stop the rotation of the blade 112 when the wind speed is too strong. During operation of the renewable energy utilization apparatus 100, the plurality of wings 112 rotates along the outer circumferential surface of the cylindrical tower 111 by the wind, converts the wind energy contained in the wind into rotational energy, accordingly the flange 115 ) Will also rotate. The wind turbine 140 produces electrical energy by converting rotational kinetic energy of the flange 115 into electrical energy.
본 실시예의 신재생 에너지 이용 장치(100)는 원통 타워(111)는 고정된 상태에서 복수의 날개(112)만이 회전하므로, 신재생 에너지 이용 장치(100)에서 회전하는 기계적 장치 부분을 가볍게 한다. Since the cylindrical tower 111 rotates only the plurality of blades 112 in the fixed state of the renewable energy using device 100 of the present embodiment, the portion of the mechanical device rotating in the renewable energy using device 100 is lightened.
태양광모듈(150)은 풍력모듈(110)의 하부에 위치할 수 있다. 태양광모듈(150)은 지지판(151)과, 상기 지지판(151)에 마련되는 태양전지판(152)을 포함할 수 있다. 태양광모듈(150)은 원형 평판 형상으로 제작될 수 있다. 태양광모듈(150)의 넓이는 풍력모듈(110)의 횡단면 넓이 보다 넓을 수 있다. 전술한 바와 같이 원통 타워(111)가 투명한 플라스틱 재질로 형성됨에 따라, 풍력모듈(110)에 의해 가리워지는 부분도 태양빛이 도달할 수 있으므로, 태양광모듈(150)의 전체 영역에 태양전지판(152)이 깔릴 수 있다. 물론, 제작비용을 절감하는 등의 목적으로, 태양광모듈(150)에서 풍력모듈(110)의 직하방 영역에는 태양전지판(152)이 배치되지 않을 수 있다. 이와 같이 풍력모듈(110)의 직하방 영역에는 태양전지판(152)이 배치되지 않는 경우에는, 원통 타워(111)은 불투명 재질로 형성될 수 있음은 물론이다. 태양광모듈(150)의 원형 평판 형상은 예시적인 것이며, 본 발명이 이에 한정되는 것은 아니다. 다른 예로, 태양광모듈(150)은 정사각형, 직사각형, 육각형 등의 다각형 평판 형상으로 제작될 수도 있다. The solar module 150 may be located below the wind power module 110. The solar module 150 may include a support plate 151 and a solar panel 152 provided on the support plate 151. The solar module 150 may be manufactured in a circular flat plate shape. The width of the solar module 150 may be wider than the cross-sectional area of the wind power module 110. As described above, since the cylindrical tower 111 is formed of a transparent plastic material, since the sunlight may reach a portion covered by the wind power module 110, the solar panel may be formed on the entire region of the solar module 150. 152 may be laid. Of course, for the purpose of reducing the manufacturing cost, the solar panel 152 may not be disposed in a region directly below the wind module 110 in the solar module 150. As such, when the solar panel 152 is not disposed in a region directly below the wind power module 110, the cylindrical tower 111 may be formed of an opaque material. Circular flat plate shape of the solar module 150 is an example, the present invention is not limited thereto. As another example, the photovoltaic module 150 may be manufactured in a polygonal flat plate shape such as square, rectangle, hexagon, or the like.
본 실시예의 신재생 에너지 이용 장치(100)는 집풍판(160)을 더 포함할 수 있다. 집풍판(160)은 풍력모듈(110)의 상부에 위치할 수 있다. 집풍판(160)은, 후술하는 바와 같이, 풍력모듈(110)로 좀 더 많은 바람이 들어올 수 있도록 바람을 모으는 기능을 수행한다. 또한 집풍판(160)은 바람을 풍력모듈(110)로 가이드하는 기능을 수행하므로, 옥상에서 발생하는 난류를 방지할 수도 있다.The renewable energy utilization apparatus 100 of the present embodiment may further include a wind collecting plate 160. The wind collecting plate 160 may be located above the wind power module 110. The collecting plate 160 performs a function of collecting wind to allow more wind to enter the wind power module 110, as described below. In addition, since the wind collecting plate 160 performs a function of guiding the wind to the wind power module 110, it may also prevent turbulence generated on the rooftop.
집풍판(160)은 투명 폴리카보네이트나 투명 아크릴과 같은 투명한 플라스틱 재질로 형성되며, 원형 평판 형상으로 제작될 수 있다. 집풍판(160)의 상면은 반사반지코팅이 되어 있을 수 있다. 집풍판(160)의 넓이는 풍력모듈(110)의 횡단면 넓이 보다 넓을 수 있다. 일 예로, 집풍판(160)은 태양광모듈(150)과 같은 넓이의 원형 평판 형상을 제작될 수 있다. 집풍판(160)의 원형 평판 형상은 예시적인 것이며, 본 발명이 이에 한정되는 것은 아니다. 다른 예로, 집풍판(160)은 정사각형, 직사각형, 육각형 등의 다각형 형상의 평판이나, 전체 혹은 일부가 곡면으로 형성된 판이나, 입체적인 조형물로 제작될 수도 있다. 또는, 신재생 에너지 이용 장치(100)가 설치되는 장소에 적합한 형상으로 형성될 수도 있다. 예를 들어, 신재생 에너지 이용 장치(100)가 아파트나 빌딩과 같은 건축물의 옥상에 설치되는 경우, 집풍판(160)은 지붕 형상을 갖거나 건축물의 일부 구조물로 대체될 수도 있을 것이다. 나아가, 집풍판(160)에는, 바람을 풍력모듈(110)로 좀 더 잘 가이드하기 위하여, 바람의 진행방향을 가이드하는 가이드 구조물(예를 들어, 날개, 리브(rib), 등)이 추가적으로 마련될 수도 있을 것이다.The collecting plate 160 may be formed of a transparent plastic material such as transparent polycarbonate or transparent acrylic, and may be manufactured in a circular flat plate shape. An upper surface of the collecting plate 160 may be coated with a reflection ring. The width of the wind collecting plate 160 may be wider than the cross-sectional area of the wind power module 110. For example, the wind collecting plate 160 may be manufactured in the shape of a circular flat plate having the same width as the solar module 150. Circular plate shape of the wind collecting plate 160 is an example, the present invention is not limited thereto. As another example, the wind collecting plate 160 may be made of a polygonal flat plate such as square, rectangle, hexagon, or the like, or a plate formed in a whole or part of a curved surface, or a three-dimensional sculpture. Or, it may be formed in a shape suitable for the place where the renewable energy utilization apparatus 100 is installed. For example, when the renewable energy using device 100 is installed on the roof of a building such as an apartment or a building, the wind collecting plate 160 may have a roof shape or may be replaced by some structure of the building. Furthermore, the wind collecting plate 160 is further provided with a guide structure (eg, wings, ribs, etc.) for guiding the direction of the wind in order to guide the wind better to the wind power module 110. It could be.
본 실시예의 신재생 에너지 이용 장치(100)가 설치되는 장소에 따라서는 집풍판(160)없이 원통타워(111)의 풍속 가속에 의해 풍력모듈(110)의 소망하는 출력이 달성될 수 있을 것이며, 따라서 집풍판(160)은 생략될 수도 있다.Depending on the location where the renewable energy utilization apparatus 100 of the present embodiment is installed, the desired output of the wind power module 110 may be achieved by accelerating the wind speed of the cylindrical tower 111 without the collecting plate 160. Therefore, the wind collecting plate 160 may be omitted.
지지부(190)는 풍력모듈(110)과, 태양광모듈(150)과, 집풍판(160)을 지지한다. 지지부(190)는 수직하게 세워지는 복수의 지지봉(191)과, 수평하게 설치되는 복수의 지지빔(192)을 포함할 수 있다. 복수의 지지봉(191)의 일단은 바닥면(10) 에 제1 고정부(191a)에 의해 고정된다. 복수의 지지봉(191)의 일단에서 소정 간격 이격된 위치에는 제2 고정부(191b)가 마련되어 태양광모듈(150)의 외측 둘레에 결합된다. 이에 따라, 신재생 에너지 이용 장치(100)가 건물 외부에 설치될 때, 빗물등에 의해 침수되는 것을 방지할 수 있도록, 태양광모듈(150)은 지지부(190)에 의해 바닥면(10)에 소정 높이로 이격되어 설치될 수 있다. 복수의 지지봉(191)의 타단은 복수의 지지빔(192)의 일단과 각각 결합한다. 복수의 지지빔(192)의 타단은 수평방향으로 놓여져 중심측(119)과 결합 고정된다. 집풍판(160)은 복수의 지지빔(192)의 상부에 놓여진 상태로 볼트, 접착제, 등의 공지의 체결수단으로 고정된다. The support unit 190 supports the wind power module 110, the solar module 150, and the wind collecting plate 160. The support unit 190 may include a plurality of support bars 191 that are vertically erected, and a plurality of support beams 192 that are horizontally installed. One end of the plurality of support rods 191 is fixed to the bottom surface 10 by the first fixing part 191a. A second fixing part 191b is provided at a position spaced a predetermined distance from one end of the plurality of support rods 191 and is coupled to the outer circumference of the solar module 150. Accordingly, when the renewable energy utilization apparatus 100 is installed outside the building, the solar module 150 is fixed to the bottom surface 10 by the support 190 so as to prevent the flooding by rainwater. It can be installed spaced apart. The other ends of the plurality of support bars 191 are coupled to one ends of the plurality of support beams 192, respectively. The other ends of the plurality of support beams 192 are placed in the horizontal direction and fixedly coupled to the center side 119. The collecting plate 160 is fixed to a known fastening means such as a bolt, an adhesive, and the like, while being placed on the upper portion of the plurality of support beams 192.
본 실시예의 신재생 에너지 이용 장치(100)는 지지부(190)가 풍력모듈(110)과, 태양광모듈(150)과, 집풍판(160)를 동시에 고정시킨 경우를 예로 들어 설명하고 있으나, 이에 한정되는 것은 아니다. 풍력모듈(110)과, 태양광모듈(150)과, 집풍판(160)의 적어도 일부가 별도의 지지수단에 의해 설치될 수 있음은 물론이다. 가령, 신재생 에너지 이용 장치(100)가 건물 옥상에 설치되는 경우, 집풍판(160)은 건물의 별도 구조물에 의해 지지될 수도 있을 것이다.Renewable energy using device 100 of the present embodiment has been described as an example in which the support 190 is fixed to the wind module 110, the solar module 150, and the wind collecting plate 160 at the same time, for example It is not limited. Of course, at least a portion of the wind power module 110, the solar module 150, and the wind collecting plate 160 may be installed by separate supporting means. For example, when the renewable energy using device 100 is installed on the roof of the building, the wind collecting plate 160 may be supported by a separate structure of the building.
본 실시예의 신재생 에너지 이용 장치(100)는 풍력모듈(110) 및 태양광모듈(150)에서 생산되는 전기 에너지를 저장하는 축전지(미도시)를 더 포함할 수 있다. 축전지는 원통 타워(111)의 내부, 태양광모듈(150)의 하부, 혹은 별도의 장소에 위치할 수 있다. 축전지는 낮 동안에 태양광모듈에서(150)에서 생산되는 전기 에너지를 밤시간에도 사용할 수 있도록 한다.Renewable energy using device 100 of the present embodiment may further include a storage battery (not shown) for storing the electrical energy produced by the wind power module 110 and the solar module 150. The storage battery may be located inside the cylindrical tower 111, under the solar module 150, or in a separate place. The storage battery makes it possible to use the electrical energy produced in the solar module 150 during the day time.
다음으로, 본 실시예의 신재생 에너지 이용 장치(100)의 동작에 대해 설명하기로 한다.Next, the operation of the renewable energy utilization apparatus 100 of the present embodiment will be described.
도 4는 일 예에 따른 상용화된 풍력발전기의 출력 곡선을 나타내는 그래프이다. 도 4를 참조하면, 일 예에 따른 상용 풍력발전기는 풍속이 3 m/s이하에서 실질적으로 발전하지 아니하며, 3 m/s 이상의 풍속에서 출력이 점차 커지다가 풍속이 대략 15 m/s 이상에서 출력이 포화됨을 볼 수 있다. 즉, 일 예에 따른 상용 풍력발전기는 풍속은 12 m/s 이상에서 최대 출력의 대략 80% 이상 출력됨을 알 수 있다. 또한 풍속이 8 m/sec 정도가 되더라도 일 예에 따른 상용 풍력발전기는 최대 출력의 대략 40%의 전기만을 생산함을 볼 수 있다.4 is a graph showing an output curve of a commercially available wind power generator according to an example. Referring to FIG. 4, the commercial wind power generator according to the example does not substantially generate wind speed under 3 m / s, and at a wind speed of 3 m / s or more, the output gradually increases, and the wind speed is output at about 15 m / s or more. It can be seen that this is saturated. That is, it can be seen that the wind speed of the commercial wind turbine according to an example is output about 80% or more of the maximum output at 12 m / s or more. In addition, even if the wind speed is about 8 m / sec can be seen that the commercial wind turbine according to an example produces only about 40% of the maximum output electricity.
앞서 표 1을 참조하여 설명하였듯이, 우리나라의 도심 환경에서 연평균 풍속은 2~5 m/s 정도에 해당되어, 우리나라의 도심 환경에서 상용화된 풍력발전기의 정격 출력을 확보하기에는 풍속이 매우 미흡함을 볼 수 있다.As described above with reference to Table 1, the annual average wind speed is about 2 ~ 5 m / s in the urban environment of our country, the wind speed is very insufficient to secure the rated output of commercially available wind power generators in the urban environment of Korea. have.
또한, 풍력밀도(wind power density)는 하기의 수학식 1로 주어짐이 잘 알려져 있다.In addition, it is well known that the wind power density is given by Equation 1 below.
Figure PCTKR2016012610-appb-M000001
Figure PCTKR2016012610-appb-M000001
상기 수학식 1에서 P는 풍력밀도(단위 W/m2)를 나타내며, ρ는 공기의 밀도, v는 풍속을 나타낸다. 상기 수학식 1에 의하면 풍력발전기의 전기발생량은 풍속(v)의 3승에 비례하므로, 풍속(v)을 가속화함으로써, 단위면적당 발생될 수 있는 전기에너지를 증대시킬 수 있음이 이해될 수 있을 것이다.In Equation 1, P represents wind density (unit W / m 2 ), ρ represents the density of the air, v represents the wind speed. According to Equation 1, since the amount of electricity generated by the wind turbine is proportional to the third power of the wind speed v, it can be understood that by accelerating the wind speed v, the electric energy that can be generated per unit area can be increased. .
이에 본 실시예의 신재생 에너지 이용 장치(100)는 집풍판(160)을 이용하여 풍량을 확보하고 또한 원통 타워(111)를 이용하여 풍속을 가속시킴으로써, 상용 풍력발전기의 정격출력을 확보하고, 나아가 에너지 발생효율을 증대시키고자 한다.The renewable energy using device 100 of the present embodiment secures the air flow rate using the wind collecting plate 160 and accelerates the wind speed using the cylindrical tower 111, thereby securing the rated output of the commercial wind power generator, To increase energy generation efficiency.
먼저 도 5를 참조하여 원통 타워(111)에 의한 풍속 가속을 설명하고자 한다. 도 5는 원통 타워(111)에 의한 풍속 가속을 설명하는 도면이다. 도 5에는 설명의 편의를 위해 원통 타워(111)와 바람(20)만을 도시한다. 도 5를 참조하면, 바람(20)이 원통 타워(111)에 향해 진행하게 되면, 바람(20)은 원통 타워(111)의 외주면을 타고 흐르게 되므로, 원통 타워(111)의 외주면 근방(A)에서 바람(20)은 좁은 통로를 지나는 것으로 이해될 수 있다. 한편, 바람(20)은 비압축 유체에 근사될 수 있다. 단위시간당 흐르는 유량은 A 영역이나 B 영역에서 같으므로, A 영역에서의 바람(20)은 B 영역에서의 바람(20)보다 더 빠르게 지나가야 할 것이다. 즉, 원통 타워(111)의 외주면 근방(A)에서 바람(20)은 원통 타워(111)에서 떨어져 있는 영역(B)에 비교하여 가속하게 됨을 이해할 수 있을 것이다. 이러한 바람(20)의 가속 현상은 벤츄리 효과나 베르누이 원리로 설명될 수 있으며, 풍속은 레이놀즈수에 따라 변화가 있으나 1.5~2.5배의 풍속 가속화가 이루어진다. 후술하는 도 28 내지 도 34를 참조하여 설명하듯이, 1/2, 1/3, 1/5, 및 1/6 의 모형으로 실시한 실내 간이 풍동 실험에서도 확인되었고 옥상 실험에서도 재확인되었다.First, the wind speed acceleration by the cylindrical tower 111 will be described with reference to FIG. 5. 5 is a diagram for explaining wind speed acceleration by the cylindrical tower 111. In FIG. 5, only the cylindrical tower 111 and the wind 20 are illustrated for convenience of description. Referring to FIG. 5, when the wind 20 proceeds toward the cylindrical tower 111, since the wind 20 flows on the outer circumferential surface of the cylindrical tower 111, the vicinity of the outer circumferential surface of the cylindrical tower 111 (A). In the wind 20 can be understood to pass through a narrow passage. On the other hand, the wind 20 can be approximated to the uncompressed fluid. Since the flow rate per unit time is the same in region A or region B, the wind 20 in region A will have to pass faster than the wind 20 in region B. That is, in the vicinity of the outer circumferential surface (A) of the cylindrical tower 111 will be understood that the wind 20 is accelerated compared to the area (B) away from the cylindrical tower (111). The acceleration of the wind 20 can be explained by the Venturi effect or Bernoulli principle, the wind speed is changed depending on the Reynolds number, but the wind speed is accelerated 1.5 to 2.5 times. As described with reference to FIGS. 28 to 34 to be described later, the indoor simple wind tunnel experiment conducted with the models of 1/2, 1/3, 1/5, and 1/6 was also confirmed in the rooftop experiment.
또한, 원통 타워(111)는 원통 형상을 지니므로 풍향에 영향을 받지 않는다. 가령, 풍향은 시시각각 변화하는 경우가 많은데, 본 실시예의 신재생 에너지 이용 장치(100)는 풍향의 변화에 대응하는 추가적인 구성 부품을 필요로 하지 않는다.In addition, since the cylindrical tower 111 has a cylindrical shape, it is not affected by the wind direction. For example, the wind direction often changes from time to time, but the renewable energy utilization apparatus 100 of the present embodiment does not need additional components corresponding to the change in the wind direction.
다음으로, 도 6 및 도 7을 참조하여 집풍판(160)에 의한 풍속 가속을 설명하고자 한다.Next, the wind speed acceleration by the wind collecting plate 160 will be described with reference to FIGS. 6 and 7.
도 6은 집풍판이 없는 신재생 에너지 이용 장치(101)가 건물 옥상에 설치된 경우의 바람 흐름을 도시하며, 도 7은 집풍판(160)을 포함한 신재생 에너지 이용 장치(100)가 건물 옥상에 설치된 경우의 바람 흐름을 도시한다. 설명의 편의상 도 6 및 도 7에는 측면풍과 와류에 대해서는 생략한다.FIG. 6 illustrates a wind flow when the renewable energy utilization apparatus 101 without the wind collecting plate is installed on the roof of the building, and FIG. 7 illustrates the renewable energy utilization apparatus 100 including the collecting plate 160 on the roof of the building. Shows wind flow when installed. For convenience of description, side winds and vortices are omitted in FIGS. 6 and 7.
도 6을 참조하면, 도심 내에서 수평 방향으로 부는 층류풍(21)은 건물의 외벽을 타고 수직하게 상승하는 상승풍(22)을 만들어 낸다. 이러한 상승풍(22)은 일예로 층류풍(21)의 풍속에 대해 대략 2배속 이상의 풍속을 가질 수 있다. 수직 상승풍(22)은 대략적인 2배속 이상의 풍속을 유지하면서 건물(11)의 옥상에서 포물선을 그리면서 옥상 상방 소정 영역에서 합류한다. 신재생 에너지 이용 장치(101)는 이러한 수직 상승풍(22)이 합류하는 바람(23)의 경로, 즉 건물(11)의 옥상 가장자리 근방에 배치한다.Referring to FIG. 6, the laminar wind 21 blowing in the horizontal direction in the city center creates an upward wind 22 rising vertically on the outer wall of the building. Such an upward wind 22 may have, for example, a wind speed of about twice the speed or more with respect to the wind speed of the laminar wind 21. The vertical rising wind 22 merges in a predetermined area above the roof while drawing a parabola on the roof of the building 11 while maintaining a wind speed of approximately twice the speed or more. The renewable energy utilization device 101 is disposed near the path of the wind 23 where the vertical rising winds 22 join, that is, near the rooftop edge of the building 11.
앞서 도 4에서 설명한 바와 같이, 상용화된 풍력발전기는 소정 풍속을 확보하지 못하면 발전 효율이 매우 떨어진다. 본 실시예의 신재생 에너지 이용 장치(100)는 풍속이 상대적으로 빠른 건물(11)의 옥상에 설치하고, 원통 타워(111)를 이용하여 풍속을 가속시킴으로써, 상용화된 풍력발전기의 정격출력에서 요구되는 풍속을 확보할 수 있다. 가령, 표 1에서 보여주듯이, 지상 50 m에서의 연평균 풍속은 4~5 m/s를 보여주는바, 이와 같은 풍속 자체만으로는 상용화된 풍력발전기의 정격출력을 확보할 수 없지만, 원통 타워(111)를 이용하여 풍속을 대략 2.5배로 가속시키게 되면, 풍속은 12 m/s 근방 내지 그 이상에 달하게 되어, 상용화된 풍력발전기의 정격출력을 확보할 수 있게 된다. 지상 50 m는 대략 15층 아파트나 빌딩의 옥상 높이에 해당되며 해발고도를 포함하면 평균적으로약 80 m 이상이다, 예를 들어 도심 15층 아파트의 옥상에 본 실시예의 신재생 에너지 이용 장치(100)를 설치함으로써 상용화된 풍력발전기의 정격출력을 확보할 수 있게 됨을 이해할 수 있을 것이다.As described above with reference to FIG. 4, when the commercially available wind power generator does not secure a predetermined wind speed, power generation efficiency is very low. Renewable energy using device 100 of the present embodiment is installed on the roof of the building 11, the wind speed is relatively fast, by using the cylindrical tower 111 to accelerate the wind speed, which is required at the rated output of the commercially available wind power generator Wind speed can be secured. For example, as shown in Table 1, the annual average wind speed at 50 m above the ground shows 4 to 5 m / s. Such wind speed alone cannot secure the rated output of a commercially available wind power generator. When the wind speed is accelerated by approximately 2.5 times, the wind speed reaches around 12 m / s or more, thereby securing a rated output of a commercially available wind power generator. 50 m above the ground level corresponds to the height of the roof of a 15-story apartment or building, which is about 80 m or more above sea level, for example, on the roof of a 15-story apartment in the city. It can be understood that by installing the A can obtain the rated output of the commercially available wind power generator.
나아가, 도 7에 도시된 바와 같이 본 실시예의 신재생 에너지 이용 장치(100)에는 집풍판(160)이 마련될 수 있다. 집풍판(160)은 수직 상승풍(22)와 합류하는 원통 타워(111)의 상방쪽을 향하는 바람(24)을 풍력모듈(110)쪽으로 집속시킨다. 집풍판(160)에 의해 집속된 바람(24)은 좁은 통로를 지나는 것으로 해석될 수 있으며, 따라서 도 5를 참조한 설명과 유사한 원리로 바람(24)은 집풍판(160)에 의해 가속되는 것으로 해석될 수 있다. 이와 대비하여, 도 6을 참조하면, 집풍판을 가지지 않는 신재생 에너지 이용 장치(101)에 있어서, 원통 타워(111)의 상방쪽을 향하는 바람(23)은 풍력모듈(110)의 풍력발전에 기여하지 못한채 지나가게 된다. In addition, as illustrated in FIG. 7, the wind collecting plate 160 may be provided in the renewable energy utilization apparatus 100 of the present embodiment. The collecting plate 160 focuses the wind 24 toward the wind module 110 toward the upper side of the cylindrical tower 111 joining the vertical rising wind 22. The wind 24 focused by the wind collecting plate 160 may be interpreted as passing through a narrow passage, and thus, the wind 24 may be interpreted as being accelerated by the wind collecting plate 160 in a principle similar to that described with reference to FIG. 5. Can be. On the contrary, referring to FIG. 6, in the renewable energy utilization apparatus 101 having no wind collecting plate, the wind 23 directed upwardly of the cylindrical tower 111 is applied to the wind power generation of the wind power module 110. It passes without making a contribution.
상기와 같이, 본 실시예의 신재생 에너지 이용 장치(100)는 집풍판(160)에 의해 바람(24)을 추가적으로 가속시킬 수 있으므로, 비록 높이가 낮은 건물(11)의 옥상에 설치되거나, 풍속이 다소 낮더라도 원통 타워(111)에 의한 풍속의 가속효과와 함께 집풍판(160)에 의한 풍속의 가속효과가 더해져서 상용화된 풍력발전기의 정격출력을 확보할 수있다. 물론, 집풍판(160)이 없더라도 충분히 풍속이 확보될 수 있다면, 집풍판(160)은 생략될 수 있을 것이다.As described above, the renewable energy utilization apparatus 100 of the present embodiment may further accelerate the wind 24 by the wind collecting plate 160, so that even if the wind is installed on the roof of the low-rise building 11, Although somewhat low, the acceleration effect of the wind speed by the cylindrical tower 111 and the acceleration effect of the wind speed by the wind collecting plate 160 may be added to secure a rated output of a commercially available wind power generator. Of course, even if there is no wind collecting plate 160, if the wind speed can be secured enough, the collecting plate 160 may be omitted.
한편, 본 실시예의 신재생 에너지 이용 장치(100)는 풍력모듈(110)의 바닥면에 태양광모듈(150)을 설치함으로써, 공간효율을 높이고 있다. On the other hand, the renewable energy using device 100 of the present embodiment is to increase the space efficiency by installing the solar module 150 on the bottom surface of the wind module 110.
도 8은 본 발명의 다른 실시예에 따른 신재생 에너지 이용 장치(200)의 개략적인 측면도이며, 도 9는 도 8의 신재생 에너지 이용 장치(200)에 채용된 상부판의 밑면 구조를 도시하는 도면이다.FIG. 8 is a schematic side view of the renewable energy utilization apparatus 200 according to another embodiment of the present invention, and FIG. 9 illustrates a bottom structure of the top plate employed in the renewable energy utilization apparatus 200 of FIG. 8. Drawing.
도 8 및 도 9를 참조하면, 본 실시예의 신재생 에너지 이용 장치(200)는 풍력모듈(110), 태양광모듈(150), 굴절집풍판(260), 및 지지부(190)를 포함한다. 굴절집풍판(260)을 제외한 나머지 구성요소들은 도 1 내지 도 3을 참조하여 설명한 신재생 에너지 이용 장치(100)의 구성요소들과 실질적으로 동일하므로, 차이점을 중심으로 설명한다.8 and 9, the renewable energy utilization apparatus 200 of the present embodiment includes a wind power module 110, a solar module 150, a refractory wind collecting plate 260, and a support 190. The remaining components except for the refractive collecting plate 260 are substantially the same as the components of the renewable energy utilization apparatus 100 described with reference to FIGS. 1 to 3, and thus, the differences will be mainly described.
굴절집풍판(260)은 풍력모듈(110)의 상부에 위치하며, 상승기류의 바람을 모을 뿐만 아니라, 태양광을 굴절시켜 태양광모듈(150)에 입사되는 광속을 증가시키는 집광 기능을 수행한다. The refraction collecting plate 260 is located on the upper portion of the wind power module 110, and collects the wind of the rising air, and performs a light collecting function to increase the luminous flux incident on the solar module 150 by refracting the sunlight. .
굴절집풍판(260)은 투명 폴리카보네이트나 투명 아크릴과 같은 투명한 플라스틱 재질로 형성되며, 원형 평판 또는 다각형 형상으로 제작될 수 있다. 굴절집풍판(260)의 상면은 반사반지코팅이 되어 있을 수 있다. 굴절집풍판(260)의 넓이는 풍력모듈(110)의 횡단면 넓이 보다 넓을 수 있다. 일 예로, 굴절집풍판(260)은 태양광모듈(150)과 같은 넓이의 원형 평판 또는 다각형 평판 형상을 제작될 수 있다.The refractive collecting plate 260 is formed of a transparent plastic material such as transparent polycarbonate or transparent acrylic, and may be manufactured in a circular flat plate or polygonal shape. An upper surface of the refractive collecting plate 260 may be coated with a reflection ring. The width of the refractory wind collecting plate 260 may be wider than the cross-sectional area of the wind power module 110. For example, the refractive collecting plate 260 may be manufactured in the shape of a circular flat plate or a polygonal flat plate having the same width as that of the solar module 150.
도 9에 도시되듯이, 굴절집풍판(260)은 투명 평판(261)과 투명 평판(261)의 밑면에 형성되는 역피라미드 형상의 다수의 프리즘(262)을 포함한다. 다수의 프리즘(262)은 투명 평판(261)의 밑면 전체에 걸쳐 빈틈이 없도록 조밀하게 마련될 수 있다. 물론, 본 발명은 이에 한정되지 아니하며, 투명 평판(261)의 밑면의 일부 영역에는 프리즘(262)이 형성되지 않을 수도 있다. As shown in FIG. 9, the deflection collecting plate 260 includes a transparent plate 261 and a plurality of inverted pyramid-shaped prisms 262 formed on the bottom surface of the transparent plate 261. The plurality of prisms 262 may be densely provided so that there are no gaps over the entire bottom surface of the transparent plate 261. Of course, the present invention is not limited thereto, and the prism 262 may not be formed in a portion of the bottom surface of the transparent flat plate 261.
본 실시예는 프리즘(262)이 역피라미드 형상인 경우를 예로 들어 설명하지만, 이에 한정되는 것은 아니다. 가령, 프리즘(262)은 투명 평판(261)의 면을 XY평면이라고 할 때, X방향이나 Y방향으로 길게 연장된 프리즘 형상이거나, 또는 원주방향으로 길게 연장된 다수의 프리즘이 동심원을 이루는 형상을 가질 수도 있다. 또는 굴절집풍판(260)의 밑면 혹은 상면에는 프레넬 렌즈(Fresnel lens)와 같은 집광렌즈나 회절패턴과 같이 태양광을 집속하는 광학 패턴이 형성될 수도 있다. 이러한 굴절집풍판(260)의 프리즘(262)의 형상 및 배열이나 그밖의 광학 굴절요소는 기하학적으로 문양을 갖도록 하여 심미감을 향상시킬 수도 있을 것이다.In the present embodiment, the prism 262 has an inverted pyramid shape as an example, but the present invention is not limited thereto. For example, when the surface of the transparent plate 261 is called XY plane, the prism 262 has a prism shape extending in the X direction or the Y direction, or a shape in which a plurality of prisms extending in the circumferential direction are concentric. May have Alternatively, an optical pattern for focusing sunlight, such as a condenser lens or a diffraction pattern, may be formed on the bottom or upper surface of the refractive collecting plate 260. The shape and arrangement of the prism 262 of the refraction collecting plate 260 or other optical refraction elements may be geometrically shaped to improve aesthetics.
본 실시예는 프리즘(262)이 투명 평판(261)의 밑면에 형성된 경우를 예로 들어 설명하지만, 이에 한정되는 것은 아니다. 가령, 프리즘(262)은 투명 평판(261)의 상면에 형성되거나, 투명 평판(261)의 상면 및 밑면 모두에 형성될 수 있음 물론이다.In the present embodiment, a case in which the prism 262 is formed on the bottom surface of the transparent flat plate 261 is described as an example, but is not limited thereto. For example, the prism 262 may be formed on the top surface of the transparent plate 261 or may be formed on both the top and bottom surfaces of the transparent plate 261.
다음으로, 본 실시예의 신재생 에너지 이용 장치(200)의 동작에 대해 설명하기로 한다. 굴절집풍판(260)에 의한 추가적인 태양광 집속 기능을 제외한 나머지 동작들은 도 1 내지 도 7을 참조하여 설명한 신재생 에너지 이용 장치(100)의 동작과 실질적으로 동일하므로, 차이점을 중심으로 설명한다.Next, the operation of the renewable energy utilization apparatus 200 of the present embodiment will be described. The remaining operations except for the additional solar focusing function by the refraction collecting plate 260 are substantially the same as the operation of the renewable energy using device 100 described with reference to FIGS. 1 to 7, and thus, the differences will be mainly described.
도 10은 도 9의 신재생 에너지 이용 장치에 태양빛이 입사되는 모습을 도시하며, 도 11 및 도 12는 태양의 고도에 따른 태양빛의 입사 경로를 도시한다.FIG. 10 illustrates a state in which sunlight is incident on the renewable energy utilization apparatus of FIG. 9, and FIGS. 11 and 12 illustrate incidence paths of sunlight depending on the height of the sun.
도 10을 참조하면, 겨울철 태양 고도각은 30도와 같이 매우 낮을 수 있다. 이와 같은 낮은 고도각을 갖는 태양광(50)은, 굴절집풍판(260)이 없는 경우에 건물 바닥면에 평행하게 설치된 태양광모듈(150)에 비스듬히 입사된다. 즉, 굴절집풍판(260)이 없는 경우, 태양광모듈(150)에 입사되는 태양광(50)의 광속 유효단면적은 하기의 수학식 2로 주어진다.Referring to FIG. 10, the winter solar elevation angle may be very low, such as 30 degrees. The solar light 50 having such a low elevation angle is incident at an angle to the solar module 150 installed parallel to the floor of the building in the absence of the refractory collecting plate 260. That is, when there is no refractive collector plate 260, the effective cross-sectional area of the light beam of the solar light 50 incident on the solar module 150 is given by the following equation (2).
Figure PCTKR2016012610-appb-M000002
Figure PCTKR2016012610-appb-M000002
여기서, S0는 태양광모듈(150)의 단면적이며, θ는 태양광(50)의 입사각을 나타내며, Seff 는 태양광 발전에 실질적으로 기여하는 태양광(50)의 광속 유효단면적을 나타낸다. 태양광(50)의 입사각 θ은 태양 고도각을 합하여 90도가 되는 관계에 있다.Here, S 0 represents the cross-sectional area of the solar module 150, θ represents the angle of incidence of the solar light 50, and S eff represents the effective cross-sectional area of the light beam of the solar light 50 which substantially contributes to photovoltaic power generation. The incident angle θ of the sunlight 50 has a relationship of adding 90 degrees to the solar elevation angle.
도 11 및 도 12를 참조하면, 굴절집풍판(260)의 입사면(261a)(즉, 투명 평판(261)의 상면)에 입사각 θ1, θ2으로 입사되면, 투명 평판(261)의 밑면에 형성된 프리즘(262)를 통해 하부로 출사된다. 이때, 입사각 θ1, θ2의 각도에 따라 출사되는 광의 경로가 조금씩 다르기는 하지만, 도 11 및 도 12에 도시되듯이 대체적으로 굴절집풍판(260)의 밑면에 직교하는 방향에 근접하게 굴절된다. 11 and 12, when the incident surface 261a (that is, the upper surface of the transparent plate 261) is incident on the incidence angles θ1 and θ2, the bottom surface of the transparent plate 261 is formed. It is emitted downward through the prism 262. At this time, although the path of the light emitted by the angle of the incident angles θ1 and θ2 is slightly different, as shown in FIGS. 11 and 12, the light is generally refracted closer to the direction orthogonal to the bottom surface of the refraction collecting plate 260.
상기 수학식 2 와 같이 태양 고도각은 낮을수록, 즉 태양광(50)의 입사각 θ이 클수록 광속 유효단면적 Seff는 낮게 된다. 이에, 굴절집풍판(260)은 입사되는 태양광(50)을 태양광모듈(150)에 좀 더 수직하게 입사되도록 굴절시킴으로써 태양광(50)의 광속 유효단면적을 크게 할 수 있다. As shown in Equation 2, the lower the solar altitude angle, that is, the larger the incident angle θ of the sunlight 50, the lower the light beam effective cross-sectional area S eff . Accordingly, the refractive collecting plate 260 may increase the effective cross-sectional area of the light beam of the solar light 50 by refracting the incident light 50 to be more perpendicular to the solar module 150.
나아가, 태양광(50)의 입사각 θ이 크게 되면, 즉 태양광(50)이 굴절집풍판(260)에 비스듬히 입사되게 될 때, 다수의 프리즘(262)는 굴절집풍판(260) 내부에서 전반사가 일어나는 것을 방지하게 된다.Furthermore, when the incident angle θ of the sunlight 50 becomes large, that is, when the sunlight 50 is obliquely incident on the deflection collector 260, the plurality of prisms 262 totally reflects inside the deflection collector 260. Will prevent this from happening.
상기와 같이, 굴절집풍판(260)은 태양의 위치가 어디에 위치하든 출사각이 거의 수직으로 출사되도록 프리즘의 각도를 조절하므로 겨울철 난방 에너지 소비가 많을 시에 태양광모듈(150)로 하여금 좀 더 많은 일사량을 수득하여 에너지 효율을 극대화하도록 할 수 있다.As described above, the refraction collecting plate 260 adjusts the angle of the prism so that the emission angle is emitted almost vertically wherever the position of the sun is located, so that the solar module 150 more when the heating energy consumption in winter is high. Large amounts of solar radiation can be obtained to maximize energy efficiency.
도 13은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치(300)의 개략적인 측면도이다.13 is a schematic side view of a renewable energy utilization apparatus 300 according to another embodiment of the present invention.
도 13을 참조하면, 본 실시예의 신재생 에너지 이용 장치(300)는 풍력모듈(110), 태양열모듈(350), 굴절집풍판(260), 및 지지부(190)를 포함한다. 굴절집풍판(260) 대신에 집풍판(도 1의 160)이 마련되거나 생략될 수도 있다. 본 실시예의 신재생 에너지 이용 장치(300)는 전술한 실시예들의 신재생 에너지 이용 장치(100, 200)에서 태양광모듈(150)을 대신하여 태양열모듈(350)을 구비한 것으로 이해될 수 있다. 태양열모듈(350)을 제외한 나머지 구성요소들은 전술한 실시예들의 신재생 에너지 이용 장치(100, 200)의 구성요소들과 실질적으로 동일하므로, 차이점을 중심으로 설명한다.Referring to FIG. 13, the renewable energy utilization apparatus 300 of the present embodiment includes a wind power module 110, a solar module 350, a refractive wind collecting plate 260, and a support 190. Instead of the refraction collecting plate 260, a collecting plate (160 of FIG. 1) may be provided or omitted. Renewable energy using device 300 of the present embodiment may be understood to include a solar module 350 in place of the solar module 150 in the renewable energy using device (100, 200) of the above-described embodiments. . The other components except for the solar module 350 are substantially the same as those of the renewable energy utilization apparatuses 100 and 200 of the above-described embodiments, and thus, the differences will be mainly described.
태양열모듈(350)은 집열기(351), 배관(352), 저장탱크(353), 난방기(354), 펌프(355)를 포함할 수 있다. The solar module 350 may include a collector 351, a pipe 352, a storage tank 353, a heater 354, and a pump 355.
집열기(351)는 유체가 순환하는 유로가 형성된 집광부와 집광부의 유로에 태양열을 집중시키기 위해 태양광을 반사시키는 반사판을 포함할 수 있다. 집열기(351)는 태양열을 이용하여 집열기(351) 내부에 있는 유체를 가열한다. 이러한 집열기(351)는 예를 들어 CPC(compound parabolic concentrator) 집열기일 수 있으나, 이에 한정되는 것은 아니다. 유체는 예를 들어 물이나, 열매체유일 수 있다. 가열된 유체는 배관(352)을 통해 저장탱크(353)에 저장될 수 있다. 또한, 저장탱크(353)에 저장된 고온의 유체는 배관(352)을 통해 난방기(354)를 경유하면서 난방에 사용될 수 있다. 난방기(354)는 일 예이고, 온수를 이용하는 공지의 온수이용장치가 난방기(354)를 대신하여 사용될 수 있음은 물론이다. 저장탱크(353)에 저장된 유체 및 난방기(354)를 경유한 유체는 펌프(355)에 의해 다시 집열기(351)로 재투입되어 순환될 수 있다. 태양열모듈(350)은 유체가 충분한 온도로 가열되지 않을 것을 대비하여 보조 보일러를 더 포함할 수도 있다. The collector 351 may include a light collecting part in which a flow path through which the fluid circulates is formed, and a reflecting plate reflecting sunlight in order to concentrate solar heat in the flow path of the light collecting part. The collector 351 heats the fluid inside the collector 351 using solar heat. The collector 351 may be, for example, a compound parabolic concentrator (CPC) collector, but is not limited thereto. The fluid may, for example, be water or thermal oil. The heated fluid may be stored in the storage tank 353 through the pipe 352. In addition, the hot fluid stored in the storage tank 353 may be used for heating while passing through the heater 354 through the pipe 352. The heater 354 is an example, and a well-known hot water using apparatus using hot water may be used in place of the heater 354. The fluid stored in the storage tank 353 and the fluid via the heater 354 may be re-introduced into the collector 351 by the pump 355 and circulated. The solar module 350 may further include an auxiliary boiler in preparation for the fluid not being heated to a sufficient temperature.
본 실시예는 집열기(351)에서 가열된 유체를 직접적으로 이용하는 하나의 폐회로를 갖는 구성을 예로 들어 설명하고 있으나, 이에 한정되는 것은 아니다. 예를 들어, 태양열 모듈(350)은 집열기(351)에서 가열된 유체를 다른 특성의 제2 유체와 열교환하는 열교환기 및, 제2 유체를 이용한 제2의 난방기를 포함할 수도 있을 것이다.In the present embodiment, a configuration having one closed circuit that directly uses the fluid heated in the collector 351 is described as an example, but is not limited thereto. For example, the solar module 350 may include a heat exchanger that heat-exchanges the fluid heated in the collector 351 with a second fluid having another property, and a second heater using the second fluid.
도 14는 본 발명의 다른 실시예에 따른 신재생 에너지 이용 장치(400)의 개략적인 사시도이다.14 is a schematic perspective view of a renewable energy utilization apparatus 400 according to another embodiment of the present invention.
도 14를 참조하면, 본 실시예의 신재생 에너지 이용 장치(400)는 풍력모듈(410), 태양광모듈(150), 집풍판(160), 및 지지부(190)를 포함한다. 집풍판(160) 대신에 굴절집풍판(도 8의 260)이 마련되거나 생략될 수도 있다. 본 실시예의 신재생 에너지 이용 장치(400)는 전술한 실시예들의 신재생 에너지 이용 장치(100, 200, 300)에서 고정 구조의 풍력모듈(110)을 대신하여 회전 구조의 풍력모듈(410)을 사용하는 것으로 이해될 수 있다. 풍력모듈(410)을 제외한 나머지 구성요소들은 전술한 실시예들의 신재생 에너지 이용 장치(100, 200, 300)의 구성요소들과 실질적으로 동일하므로, 차이점을 중심으로 설명한다.Referring to FIG. 14, the renewable energy utilization apparatus 400 of the present embodiment includes a wind power module 410, a solar module 150, a wind collecting plate 160, and a support 190. Instead of the collecting plate 160, a refractive collecting plate 260 of FIG. 8 may be provided or omitted. The renewable energy utilization apparatus 400 of the present embodiment replaces the wind turbine module 410 of the rotating structure in place of the wind turbine module 110 of the fixed structure in the renewable energy utilization apparatus 100, 200, 300 of the above embodiments. It can be understood to use. The other components except for the wind power module 410 are substantially the same as those of the renewable energy utilization apparatuses 100, 200, and 300 of the above-described embodiments, and thus, the differences will be mainly described.
풍력모듈(410)은 중심기둥(119)에 회전가능하게 결합된 원통 타워(411)와, 상기 원통 타워(411)의 외주면에 직접 결합된 복수의 날개(412)를 포함한다. The wind power module 410 includes a cylindrical tower 411 rotatably coupled to the central pillar 119, and a plurality of wings 412 directly coupled to the outer circumferential surface of the cylindrical tower 411.
원통 타워(411)가 중심기둥(119)에 회전가능하게 결합되는 구성은 공지의 방식을 채용할 수 있다. 예를 들어, 2개의 플랜지(415)가 중심기둥(119)의 상단 및 하단에 회전가능하게 결합되고, 원통 타워(411)는 복수의 고정빔(413)들에 의해 플랜지(415)에 결합될 수 있을 것이다. 이 경우, 원통 타워(411)은 풍력의 세기를 고려하여, 가급적 가벼운 재질, 예를 들어 폴리카보네이트나, 아크릴과 같은 플라스틱 소재로 형성될 수 있을 것이다. 나아가 원통 타워(411)는 투명한 플라스틱 재질로 형성될 수 있다. 다른 예로, 원통 타워(411)가 금속 또는 비금속 재질로 형성되는 경우를 배제하는 것은 아니다. 원통 타워(411)는 태양광모듈(150)의 상면에 이격되어 접촉되지 않고, 플렌지(415)에 의해서만 지지될 수 있다.The configuration in which the cylindrical tower 411 is rotatably coupled to the central column 119 may employ a known method. For example, two flanges 415 are rotatably coupled to the top and bottom of the central column 119, and the cylindrical tower 411 is coupled to the flange 415 by a plurality of fixed beams 413. Could be. In this case, the cylindrical tower 411 may be formed of a light material, for example, a polycarbonate or a plastic material such as acrylic, in consideration of the strength of the wind power. Furthermore, the cylindrical tower 411 may be formed of a transparent plastic material. As another example, the case in which the cylindrical tower 411 is formed of a metal or nonmetal material is not excluded. The cylindrical tower 411 may be supported only by the flange 415 without contacting the upper surface of the solar module 150 spaced apart.
한편, 복수의 날개(412)는 일예로 수직방향으로 길다란 반원통형 형상을 지닐 수 있다. 복수의 날개(412)의 형상의 다른 예로, 복수의 날개(412)는 횡단면이 유체역학적 설계로 형성되는 곡선 형상을 지닐 수도 있다. 복수의 날개(412)는 원통 타워(411)의 외주면에 수직방향으로 길게 연장되어 결합되거나, 혹은 수직방향에 경사지게 길게 연장되어 결합될 수 있다. 복수의 날개(412) 각각은 원통 타워(411)의 외주면에 길이 방향으로 복수개로 분할되어 일 열로 배열되어 있을 수도 있다. On the other hand, the plurality of wings 412 may have a semi-cylindrical shape that is long in the vertical direction, for example. As another example of the shape of the plurality of wings 412, the plurality of wings 412 may have a curved shape in which the cross section is formed in a hydrodynamic design. The plurality of wings 412 may be extended to be coupled to the outer circumferential surface of the cylindrical tower 411 in the vertical direction, or may be coupled to be extended to be inclined in the vertical direction. Each of the plurality of vanes 412 may be divided into a plurality of rows in the longitudinal direction on the outer circumferential surface of the cylindrical tower 411 and arranged in a row.
복수의 날개(412)는 원통 타워(411)의 외주면에 고정적으로 결합되거나, 혹은 날개의 각도가 조정가능하도록 가변적으로 결합될 수도 있다. 복수의 날개(412)의 가변 방식은 수동적 혹은 자동적으로 이루어질 수 있다. 복수의 날개(412)는 예를 들어 도 14에 도시되듯이 6개가 마련될 수 있으나, 이는 예시적인 것이며, 날개(412)의 개수는 이에 한정되는 것은 아니다.The plurality of wings 412 may be fixedly coupled to the outer circumferential surface of the cylindrical tower 411, or may be variably coupled so that the angle of the wings is adjustable. The variable manner of the plurality of vanes 412 may be manual or automatic. For example, six wings 412 may be provided as illustrated in FIG. 14, but this is merely an example, and the number of wings 412 is not limited thereto.
다음으로, 본 실시예의 신재생 에너지 이용 장치(400)의 동작에 대해 설명하기로 한다.Next, the operation of the renewable energy utilization apparatus 400 of the present embodiment will be described.
도 15는 본 실시예의 신재생 에너지 이용 장치(400)의 동작을 설명하는 도면이다. 도 15는 본 실시예의 신재생 에너지 이용 장치(400)의 풍력모듈(410)에서 원통 타워(411)와 복수의 날개(412)만을 도시하였다. 15 is a view for explaining the operation of the renewable energy utilization apparatus 400 of the present embodiment. 15 illustrates only the cylindrical tower 411 and the plurality of vanes 412 in the wind power module 410 of the renewable energy utilization apparatus 400 of the present embodiment.
도 15를 참조하면, 바람(20)이 원통 타워(411)쪽으로 불게 되면, 바람(20)은 원통 타워(411)의 외주면을 타고 흐르게 된다. 복수의 날개(412)는 원통 타워(411)에 부착되어 있으므로, 복수의 날개(412)가 바람(20)에 의해 회전력을 받게 되면, 원통 타워(411)가 복수의 날개(412)와 함께 회전하게 된다. 한편, 도 15에서 C 영역은 바람(20)의 진행 방향과 원통 타워(411)의 외주면이 이동하는 방향이 같은 영역이고, D 영역은 바람(20)의 진행 방향과 원통 타워(411)의 외주면이 이동하는 방향이 반대가 되는 영역이다. C 영역에서는 원통 타워(411)의 외주면과 바람(20)이 같은 방향으로 이동하기 때문에 바람(20)이 상대적으로 빠른 속도를 가지며, D 영역에서는 원통 타워(511)의 외주면과 바람(20)이 서로 반대가 되므로 바람(20)이 상대적으로 느린 속도를 가지게 된다. 이러한 효과는 전술한 실시예의 원통 타워(111)가 고정된 경우와 비교하여 C 영역에서의 공기의 속도를 좀 더 빠르게 하므로 발전효율을 좀 더 향상시킬 수 있다.Referring to FIG. 15, when the wind 20 is blown toward the cylindrical tower 411, the wind 20 flows on the outer circumferential surface of the cylindrical tower 411. Since the plurality of wings 412 are attached to the cylindrical tower 411, when the plurality of wings 412 are subjected to rotational force by the wind 20, the cylindrical tower 411 rotates together with the plurality of wings 412. Done. Meanwhile, in FIG. 15, area C is an area in which the traveling direction of the wind 20 and an outer circumferential surface of the cylindrical tower 411 move in the same direction, and area D is an area in which the traveling direction of the wind 20 and the outer circumferential surface of the cylindrical tower 411 move. This is an area in which the moving direction is reversed. In the region C, the outer circumferential surface of the cylindrical tower 411 and the wind 20 move in the same direction, so the wind 20 has a relatively high speed. In the region D, the outer circumferential surface of the cylindrical tower 511 and the wind 20 Since the opposite to each other the wind 20 will have a relatively slow speed. This effect can be further improved power generation efficiency because the speed of the air in the C region a little faster than when the cylindrical tower 111 of the above-described embodiment is fixed.
도 1 내지 도 15를 참조하여 설명한 실시예들의 신재생 에너지 이용 장치(100, 200, 300, 400)은 횡단면이 원형인 통 형상을 갖는 원통 타워(111, 411)를 채용한 경우를 예로 들어 설명하고 있으나, 이에 한정되는 것은 아니다. Renewable energy utilization apparatuses 100, 200, 300, and 400 of the embodiments described with reference to FIGS. 1 to 15 will be described by taking cylindrical towers 111 and 411 having a cylindrical shape having a circular cross section as an example. However, it is not limited thereto.
도 16은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치(500)에 사용되는 풍력모듈(510)을 도시한다. 16 illustrates a wind turbine module 510 used in a renewable energy utilization apparatus 500 according to another embodiment of the present invention.
도 16을 참조하면, 본 실시예의 풍력모듈(510)은 다각 타워(polygonal tower)(511)와 이에 결합되는 복수의 날개(512)를 포함한다. Referring to FIG. 16, the wind module 510 of the present embodiment includes a polygonal tower 511 and a plurality of wings 512 coupled thereto.
다각 타워(511)는 횡단면이 다각형인 통 형상을 가질 수 있다. 예를 들어, 다각 타워(511)는, 도 16에 도시되듯이, 10각형 횡단면을 가질 수 있다. 물론, 다각 타워(511)의 횡단면 형상은 이에 한정되지 아니하며, 6각형, 7각형, 8각형 등일 수 있다. The polygonal tower 511 may have a cylindrical shape having a polygonal cross section. For example, polygonal tower 511 may have a hexagonal cross section, as shown in FIG. 16. Of course, the cross-sectional shape of the polygonal tower 511 is not limited to this, and may be a hexagon, a octagon, an octagon, or the like.
복수의 날개(512)는 다각 타워(511)의 외주면에서 모서리에 설치될 수 있다. 다른 예로, 복수의 날개(512)는 다각 타워(511)의 외주면에서 평면 상에 설치될 수도 있다.The plurality of wings 512 may be installed at corners at the outer circumferential surface of the polygonal tower 511. As another example, the plurality of wings 512 may be installed on a plane on the outer circumferential surface of the polygonal tower 511.
다각 타워(511)는 중심 기둥(도 14의 119)에 회전가능하게 결합될 수 있다. 예를 들어, 다각 타워(511)의 내부 중공에는 복수의 고정빔(513) 일단이 플랜지(515) 각각에 고정 결합되고, 복수의 고정빔(513) 각각의 타단은 다각 타워(511)의 내측면에 결합되고, 플랜지(515)는 중심 기둥(도 14의 199)에 회전가능하게 결합될 수 있다.The polygonal tower 511 may be rotatably coupled to the central column (119 of FIG. 14). For example, one end of a plurality of fixed beams 513 is fixedly coupled to each of the flanges 515 in the inner hollow of the polygonal tower 511, and the other end of each of the plurality of fixed beams 513 is formed in the polygonal tower 511. Coupled to the side, the flange 515 may be rotatably coupled to the central column (199 of FIG. 14).
본 실시예와 같이 다각 타워(511)의 외주면이 다각 기둥 형상을 갖더라도, 전술한 바와 같이 바람(도 15의 20)이 다각 타워(511)의 외주면을 타고 흐르면서, 근사적으로 도 15를 참조하여 설명한 것과 같은 효과를 줄 수 있음은 당업자라면 이해할 수 있을 것이다. Although the outer circumferential surface of the polygonal tower 511 has a polygonal column shape as in the present embodiment, as described above, the wind (20 in FIG. 15) flows along the outer circumferential surface of the polygonal tower 511, and is approximately referred to FIG. 15. It will be understood by those skilled in the art that the same effects as described above can be obtained.
또한, 본 실시예는 복수의 날개(512)가 다각 타워(511)의 외주면에 설치된 경우를 예로 들어 설명하고 있으나, 다각 타워(511)는 중심 기둥(도 1의 119)에 고정되고, 복수의 날개(512)만이 중심 기둥(119)에 대해 회전가능하게 결합될 수도 있을 것이다.In addition, the present embodiment has been described taking a case where the plurality of wings 512 are installed on the outer circumferential surface of the polygonal tower 511, the polygonal tower 511 is fixed to the center column (119 in Fig. 1), Only the wing 512 may be rotatably coupled with respect to the center column 119.
도 17은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치(600)의 개략적인 사시도이며, 도 18은 본 실시예의 신재생 에너지 이용 장치(600)의 하부판(650)을 개략적으로 도시하는 도면이며, 도 19는 본 실시예의 신재생 에너지 이용 장치의 원통 타워(611)를 뒤집은 상태로 도시한 도면이다. FIG. 17 is a schematic perspective view of a renewable energy utilization apparatus 600 according to another embodiment of the present invention, and FIG. 18 schematically illustrates a bottom plate 650 of the renewable energy utilization apparatus 600 of the present embodiment. It is a figure and FIG. 19 is the figure which showed the cylindrical tower 611 of the renewable energy utilization apparatus of this embodiment in the state reversed.
도 17 내지 도 19를 참조하면, 본 실시예의 신재생 에너지 이용 장치(600)는 풍력모듈(610), 하부지지판(650), 집풍판(160), 및 지지부(190)를 포함한다. 집풍판(160) 대신에 굴절집풍판(도 8의 260)이 마련되거나 생략될 수도 있다. 본 실시예의 신재생 에너지 이용 장치(500)는 도 14 내지 도 15를 참조한 실시예의 신재생 에너지 이용 장치(400)에서 풍력모듈(410)의 하부에 가이드 구조를 더 채용한 것으로 이해될 수 있다. 즉, 풍력모듈(610) 및 하부지지판(650)을 제외한 나머지 구성요소들은 전술한 실시예의 신재생 에너지 이용 장치(400)의 구성요소들과 실질적으로 동일하므로, 차이점을 중심으로 설명한다.17 to 19, the renewable energy utilization apparatus 600 of the present embodiment includes a wind power module 610, a lower support plate 650, a wind collecting plate 160, and a support 190. Instead of the collecting plate 160, a refractive collecting plate 260 of FIG. 8 may be provided or omitted. Renewable energy using device 500 of the present embodiment may be understood that the guide structure is further adopted in the lower portion of the wind module 410 in the renewable energy using device 400 of the embodiment with reference to FIGS. 14 to 15. That is, the remaining components except for the wind power module 610 and the lower support plate 650 are substantially the same as the components of the renewable energy utilization apparatus 400 of the above-described embodiment, and thus the differences will be mainly described.
풍력모듈(610)은 중심기둥(119)에 회전가능하게 결합된 원통 타워(611)를 포함한다. 원통 타워(611)의 외주면에는 복수의 날개(412)들이 직접 결합된다. 원통 타워(611)가 중심기둥(119)에 회전가능하게 결합되는 구성은 공지의 방식을 채용할 수 있다. 예를 들어, 2개의 플랜지(415)가 중심기둥(119)의 상단 및 하단에 회전가능하게 결합되고, 원통 타워(411)는 복수의 고정빔(413)들에 의해 플랜지(415)에 결합될 수 있을 것이다. 원통 타워(611)의 둘레 하단에는 회전 지지체들(617)이 마련될 수 있다.The wind power module 610 includes a cylindrical tower 611 rotatably coupled to the central column 119. A plurality of wings 412 are directly coupled to the outer circumferential surface of the cylindrical tower 611. The configuration in which the cylindrical tower 611 is rotatably coupled to the central column 119 may employ a known method. For example, two flanges 415 are rotatably coupled to the top and bottom of the central column 119, and the cylindrical tower 411 is coupled to the flange 415 by a plurality of fixed beams 413. Could be. Rotating supports 617 may be provided at the lower periphery of the cylindrical tower 611.
하부지지판(650)은 풍력모듈(610)의 하부에 위치하는 하부판(651)과, 하부판(651)에 마련되는 바닥 가이드 레일(655)을 포함한다. 하부판(651)은 태양광모듈(도 1의 150)이나 태양열모듈(도 13의 350)이거나, 혹은 단순한 평판일 수 있다. 또는, 하부판(651)은 신재생 에너지 이용 장치(600)가 설치되는 바닥면일 수도 있다.The lower support plate 650 includes a lower plate 651 positioned below the wind power module 610 and a bottom guide rail 655 provided on the lower plate 651. The lower plate 651 may be a solar module 150 (FIG. 1), a solar module 350 (FIG. 13), or may be a simple flat plate. Alternatively, the lower plate 651 may be a bottom surface on which the renewable energy utilization device 600 is installed.
바닥 가이드 레일(655)은 원통 타워(611)의 하중을 지지하면서 원통 타워(611)의 회전을 가이드하는 부재이다. 즉, 원통 타워(611)의 둘레 하단에 마련된 회전 지지체(617)는 하부판(651)에 마련된 바닥 가이드 레일(655)을 따라 구르게 된다. 이러한 바닥 가이드 레일(655)은 하부판(651)의 원통 타워(611)의 하단과 대향되는 부위에 마련된 원형 홈 형상을 갖거나, 돌출된 형상을 가질 수 있다. The bottom guide rail 655 is a member that guides the rotation of the cylindrical tower 611 while supporting the load of the cylindrical tower 611. That is, the rotary support 617 provided at the lower periphery of the cylindrical tower 611 is rolled along the bottom guide rail 655 provided in the lower plate 651. The bottom guide rail 655 may have a circular groove shape provided at a portion of the lower plate 651 facing the lower end of the cylindrical tower 611, or may have a protruding shape.
원통 타워(611)는 중심기둥(119)를 중심으로 회전가능하게 설치되는데, 원통 타워(611)의 회전 속도가 클수록, 원통 타워(611)는 흔들리는 경향이 심화되고 또한 진동등이 발생할 수가 있다. 이러한 원통 타워(611)의 흔들림이나 진동은 소음의 원인되며, 또한 장치 내구성을 악화시키게 된다. 나아가, 원통 타워(611)의 흔들림이나 진동은, 원통 타워(611)와 하부판(651) 사이에 마찰을 발생시키켜 발전효율을 떨어뜨리게 된다. 또한, 원통 타워(611)의 크기가 클수록 원통 타워(611)의 하중이 커지게 되므로, 원통 타워(611)의 흔들림이나 진동, 하부판(651)과의 마찰은 발전효율을 떨어뜨리고 소음등이 심화될 수가 있다. 본 실시예의 신재생 에너지 이용 장치(600)는 원통 타워(611)의 둘레 하단에 회전 지지체(617)와 하부지지판(650)에 바닥 가이드 레일(655)을 마련함으로써, 원통 타워(611)가 회전할 때 발생되는 흔들림이나 진동을 억제하는 역할을 수행할 수 있다. 또한, 회전 지지체(617)가 바퀴인 경우, 원통 타워(611)의 회전시 발생되는 하부판(651)과의 마찰을 저감시킬 수 있다.The cylindrical tower 611 is rotatably installed around the central column 119. As the rotational speed of the cylindrical tower 611 increases, the cylindrical tower 611 tends to be shaken and vibration may occur. The shaking or vibration of the cylindrical tower 611 causes noise, and also worsens the durability of the device. Further, the shaking or vibration of the cylindrical tower 611 causes friction between the cylindrical tower 611 and the lower plate 651 to lower the power generation efficiency. In addition, the larger the size of the cylindrical tower 611, the greater the load on the cylindrical tower 611, the vibration or vibration of the cylindrical tower 611, the friction with the lower plate 651 will lower the power generation efficiency and the noise is intensified. Can be. In the renewable energy utilization device 600 of the present embodiment, the cylindrical tower 611 is rotated by providing a bottom guide rail 655 on the rotary support 617 and the lower support plate 650 at the lower periphery of the cylindrical tower 611. It can play a role of suppressing the shaking or vibration generated when. In addition, when the rotary support 617 is a wheel, friction with the lower plate 651 generated when the cylindrical tower 611 rotates can be reduced.
바퀴 형상의 회전 지지체(617)는 예시일 뿐이며, 다양한 변형례가 있을 수 있다. 다른 예로서, 회전 지지체(617)는 베어링 장치일 수도 있다. 또 다른 예로, 회전 지지체(617) 및 바닥 가이드 레일(655)은 자기부상방식으로 원통 타워(611)을 하부판(651)에서 부상시키면서 가이드하는 자기부상 장치일 수도 있다.The wheel-shaped rotating support 617 is merely an example, and there may be various modifications. As another example, the rotary support 617 may be a bearing device. As another example, the rotary support 617 and the bottom guide rail 655 may be a magnetic levitation device for guiding the cylindrical tower 611 while floating in the lower plate 651 in a magnetic levitation manner.
도 20은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치(700)에 사용되는 풍력모듈(710)을 도시한 사시도이다.20 is a perspective view illustrating a wind power module 710 used in the renewable energy utilization apparatus 700 according to another embodiment of the present invention.
도 20을 참조하면, 본 실시예의 풍력모듈(710)은 원통 타워(711)와 이에 결합되는 복수의 날개(712)를 포함한다. Referring to FIG. 20, the wind turbine module 710 of this embodiment includes a cylindrical tower 711 and a plurality of wings 712 coupled thereto.
원통 타워(711)는 전술한 실시예들의 원통 타워(411, 611)일 수 있다. 원통 타워(711)가 중심기둥(119)에 회전가능하게 결합되는 구성은 공지의 방식을 채용할 수 있다. 예를 들어, 2개의 플랜지(415)가 중심기둥(도 1의 119)의 상단 및 하단에 회전가능하게 결합되고, 원통 타워(711)는 복수의 고정빔(413)들에 의해 플랜지(415)에 결합될 수 있을 것이다. 원통 타워(711)의 외주 하단에는, 도 17 내지 도 19를 참조한 실시예와 마찬가지로, 가이드 구조가 마련될 수 있음은 물론이다. Cylindrical tower 711 may be cylindrical towers 411 and 611 of the embodiments described above. The configuration in which the cylindrical tower 711 is rotatably coupled to the central column 119 may employ a known method. For example, two flanges 415 are rotatably coupled to the top and bottom of the central column (119 of FIG. 1), and the cylindrical tower 711 is flanged 415 by a plurality of fixed beams 413. To be combined. At the bottom of the outer circumference of the cylindrical tower 711, as in the embodiment with reference to FIGS. 17 to 19, a guide structure may be provided.
복수의 날개(712)의 적어도 일부는 원통 타워(711)의 외주면에 경사진 방향(713)으로 설치될 수 있다. 이때 복수의 날개(712)의 경사진 방향(713)은, 날개(712)가 바람을 맞이하는 면의 적어도 일부가 하방을 향하게 하는 방향이다. 이와 같은 날개(712)의 경사진 배치에 의해 날개(712)가 받는 풍력의 적어도 일부의 분력(partial wind force)이 상방으로 향하게 된다. 이와 같은 상방을 향하는 풍력의 분력은 원통 타워(711)의 하중을 경감시키는 역할을 하게 된다. 원통 타워(611)의 크기가 클수록 원통 타워(611)의 하중이 커지게 되므로, 원통 타워(611)의 흔들림이나 하부판(651)과의 마찰은 발전효율을 떨어뜨리고 소음등이 발생될 수 있는데, 상기와 같은 같은 날개(712)의 경사진 배치를 이용하여 원통 타워(711)의 하중을 경감시킴으로써, 발전효율의 저하와 소음등의 발생을 경감시킬 수 있다.At least a portion of the plurality of wings 712 may be installed in an inclined direction 713 on the outer circumferential surface of the cylindrical tower 711. At this time, the inclined direction 713 of the plurality of wings 712 is a direction in which at least a portion of the surface on which the wings 712 face the wind faces downward. Due to the inclined arrangement of the wings 712, the partial wind force of at least a portion of the wind received by the wings 712 is directed upward. This upward wind force component of the wind serves to reduce the load of the cylindrical tower (711). The larger the size of the cylindrical tower 611, the greater the load on the cylindrical tower 611, the shaking of the cylindrical tower 611 or friction with the lower plate 651 may reduce the power generation efficiency and noise, etc., By reducing the load of the cylindrical tower 711 using the inclined arrangement of the blades 712 as described above, it is possible to reduce the decrease in power generation efficiency and the occurrence of noise.
복수의 날개(712)는 경사각도가 풍속에 대응하여 수동적으로 혹은 자동적으로 가변될 수 있도록 원통 타워(711)에 설치될 수 있다. 물론, 복수의 날개(712)는 경사각도가 고정되게 원통 타워(711)에 설치될 수 있음은 물론이다. 복수의 날개(712)의 경사각도를 크게 하면, 상방을 향하는 풍력의 분력이 커져 원형 타워(711)의 흔들림, 진동이나 마찰을 경감시킬 수 있으나, 원형 타워(711)를 회전시키기는 힘이 약화될 수 있다. 반대로 복수의 날개(712)의 경사각도를 작게 하면, 상방을 향하는 풍력의 분력이 작아져 원형 타워(711)의 흔들림, 진동이나 마찰을 경감시키는 효과가 다소 작아지게 되나, 원형 타워(711)를 회전시키기는 힘이 커질 수 있다. 따라서, 복수의 날개(712)의 경사각도는 풍속과 발전효율을 모두 고려하여 설정될 수가 있다.The plurality of vanes 712 may be installed in the cylindrical tower 711 so that the inclination angle may be changed manually or automatically in response to the wind speed. Of course, the plurality of wings 712 may be installed in the cylindrical tower 711 so that the inclination angle is fixed. Increasing the angle of inclination of the plurality of blades 712 increases the force of upward wind force to reduce the shaking, vibration or friction of the circular tower 711, but weakens the force to rotate the circular tower 711 Can be. On the contrary, when the inclination angle of the plurality of blades 712 is reduced, the force of wind force upward is reduced, and the effect of reducing the shaking, vibration, and friction of the circular tower 711 is slightly reduced. Rotating force can be large. Therefore, the inclination angle of the plurality of blades 712 may be set in consideration of both the wind speed and the power generation efficiency.
도 21은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치(800)의 개략적인 사시도이며, 도 22는 도 21의 신재생 에너지 이용 장치(800)에서 원통 타워(811)의 중간 부분의 횡단면도이다. 여기서, 중간 부분이라 함은 원통 타워(811)의 길이방향(즉, 수직방향)을 기준으로 한다.FIG. 21 is a schematic perspective view of a renewable energy utilization apparatus 800 according to another embodiment of the present invention, and FIG. 22 is a view of an intermediate portion of the cylindrical tower 811 in the renewable energy utilization apparatus 800 of FIG. 21. Cross section view. Here, the middle portion is based on the longitudinal direction (ie, the vertical direction) of the cylindrical tower 811.
도 21 및 도 22를 참조하면, 본 실시예의 신재생 에너지 이용 장치(800)는 풍력모듈(810), 하부지지판(850), 집풍판(160), 및 지지부(190)를 포함한다. 집풍판(160) 대신에 굴절집풍판(도 8의 260)이 마련되거나 생략될 수도 있다. 본 실시예의 신재생 에너지 이용 장치(800)는 도 17 내지 도 20를 참조한 실시예의 신재생 에너지 이용 장치(600, 700)와 비교할 때, 풍력모듈(810)의 회전가능한 지지 구조에서 차이가 있으며, 이를 제외한 나머지 구성요소들은 전술한 실시예의 신재생 에너지 이용 장치(600, 700)의 구성요소들과 실질적으로 동일하므로, 차이점을 중심으로 설명한다.21 and 22, the renewable energy utilization apparatus 800 of the present embodiment includes a wind power module 810, a lower support plate 850, a wind collecting plate 160, and a support 190. Instead of the collecting plate 160, a refractive collecting plate 260 of FIG. 8 may be provided or omitted. Renewable energy using device 800 of the present embodiment is different from the renewable energy using device 600, 700 of the embodiment with reference to Figures 17 to 20, there is a difference in the rotatable support structure of the wind power module 810, The other components except for these are substantially the same as those of the renewable energy utilization apparatuses 600 and 700 of the above-described embodiment, and thus the description will be mainly focused on differences.
풍력모듈(810)은 원통 타워(811)와, 상기 원통 타워(811)의 외주면에 직접 결합된 복수의 날개(812)를 포함한다.The wind power module 810 includes a cylindrical tower 811 and a plurality of wings 812 directly coupled to the outer circumferential surface of the cylindrical tower 811.
원통 타워(811)의 내주면 상단 둘레는 원형으로 형성된다. 원통 타워(811)는 내주면 상단 둘레의 복수의 지점에서 제1 회전 지지체(831)들에 의해 회전가능하게 지지될 수 있다. 제1 회전 지지체(831)들은 예를 들어 바퀴이거나 베어링 장치일 수 있다. 제1 회전 지지체(831)들은 하부지지판(850)이나 중심기둥(119)으로부터 연장된 고정빔(834)들에 의해 지지된다.The upper circumference of the inner circumferential surface of the cylindrical tower 811 is formed in a circular shape. The cylindrical tower 811 may be rotatably supported by the first rotating supports 831 at a plurality of points around the top of the inner circumferential surface. The first rotating supports 831 can be, for example, wheels or bearing devices. The first rotating supports 831 are supported by the fixed beams 834 extending from the lower support plate 850 or the center pillar 119.
원통 타워(811)의 내주면에서 제1 회전 지지체(831)들에 맞닿는 상단 둘레는 매끄럽게 가공되어 있을 수 있다. 또는 원통 타워(811)의 내주면의 상단 둘레에는 제1 회전 지지체(831)들과 맞물리는 레일이 위치할 수도 있다. 원통 타워(811)를 대신하여 다각 타워가 채용될 수도 있는데, 이 경우 다각 타워의 내주면에서 제1 회전 지지체(831)들에 맞닿는 상단 둘레는 원형으로 매끄럽게 가공되거나 제1 회전 지지체(831)들과 맞물리는 레일이 마련된다. The upper circumference of the inner circumferential surface of the cylindrical tower 811, which is in contact with the first rotating supports 831, may be smoothly processed. Alternatively, a rail may be positioned around the upper end of the inner circumferential surface of the cylindrical tower 811 to engage the first rotational supports 831. Instead of the cylindrical tower 811, a polygonal tower may be employed, in which case the upper periphery of the inner circumferential surface of the polygonal tower that abuts against the first rotating supports 831 may be smoothly processed into a circle or may be formed with the first rotating supports 831. An interlocking rail is provided.
도 22에 도시되듯이, 원통 타워(811)의 길이방향(즉, 수직방향)을 기준으로 원통 타워(811)의 중간 부분의 내주면 둘레에는 톱니(813)들이 형성되어 있다. 즉, 원통 타워(811)는 중간 부분의 내주면 둘레에 톱니(813)들이 형성된 일종의 톱니바퀴 구조를 갖는다. As shown in FIG. 22, teeth 813 are formed around the inner circumferential surface of the middle portion of the cylindrical tower 811 with respect to the longitudinal direction (ie, the vertical direction) of the cylindrical tower 811. That is, the cylindrical tower 811 has a kind of gear structure in which teeth 813 are formed around the inner circumferential surface of the middle portion.
원통 타워(811)의 내부에는 상기 톱니(813)와 맞물리는 풍력발전기(840)이 배치된다. 풍력발전기(840)는 하부지지판(850)이나 중심기둥(119)으로부터 연장된 고정빔(835)들에 의해 지지된다. 풍력발전기(840)는 상기 톱니(813)들과 맞물리는 톱니바퀴(841, 842)를 포함하는 기어박스를 포함할 수 있다. 신재생 에너지 이용 장치(800)의 동작시, 복수의 날개(812)는 바람에 의해 원통 타워(811)를 회전시키고, 원통 타워(811)가 회전하게 되면 원통 타워(811)의 내주면에 마련된 톱니(813)와 맞물리는 톱니바퀴(841)가 회전하고, 이에 따라 풍력발전기(940)는 원통 타워(811)의 회전운동 에너지를 전기 에너지로 전환하여 전기 에너지를 생산한다.Inside the cylindrical tower 811, a wind generator 840 is engaged with the teeth 813. The wind power generator 840 is supported by the fixed beams 835 extending from the lower support plate 850 or the central column 119. The wind turbine 840 may include a gearbox including gears 841 and 842 that mesh with the teeth 813. During operation of the renewable energy utilization device 800, the plurality of wings 812 rotates the cylindrical tower 811 by the wind, and when the cylindrical tower 811 is rotated, the teeth provided on the inner peripheral surface of the cylindrical tower 811 Cogwheel 841 engaged with 813 rotates, and thus, wind power generator 940 converts rotational kinetic energy of cylindrical tower 811 into electrical energy to produce electrical energy.
원통 타워(811)의 내부에는 제2 회전 지지체(832)들이 더 설치될 수 있다. 제2 회전 지지체(832)들은 원통 타워(811)의 중간 부분의 내주면 둘레의 복수의 지점에서 원통 타워(811)를 회전가능하게 지지할 수 있다. 제2 회전 지지체(832)들이 지지하는 원통 타워(811)의 내측 둘레는 상기 톱니(813)들이 마련된 부위일 수 있다. 이 경우, 제2 회전 지지체(832)들은 상기 톱니(813)와 맞물리는 톱니바퀴일 수 있다. 물론, 제2 회전 지지체(832)들은 원통 타워(811)의 내측 둘레에서 톱니(813)들이 마련되지 않은 부위(즉, 톱니(813)들의 높이와 다른 높이에 위치한 부위)에 마련될 수도 있다. 이 경우, 제2 회전 지지체(832)들은 예를 들어 바퀴이거나 베어링 장치일 수 있으며, 원통 타워(811)의 내주면에서 제2 회전 지지체(832)들에 맞닿는 중부 내측 둘레는 매끄럽게 가공되거나, 레일이 마련될 수 있다.The second rotary support 832 may be further installed inside the cylindrical tower 811. The second rotating supports 832 may rotatably support the cylindrical tower 811 at a plurality of points around the inner circumferential surface of the middle portion of the cylindrical tower 811. The inner circumference of the cylindrical tower 811 supported by the second rotating supports 832 may be a portion where the teeth 813 are provided. In this case, the second rotatable supports 832 may be cog wheels meshing with the cog 813. Of course, the second rotatable supports 832 may be provided at a portion where the teeth 813 are not provided around the inner circumference of the cylindrical tower 811 (that is, at a position different from the height of the teeth 813). In this case, the second rotatable supports 832 may be wheels or bearing devices, for example, and the central inner circumference that abuts the second rotatable supports 832 on the inner circumferential surface of the cylindrical tower 811 may be smoothly processed, or the rail may be Can be prepared.
원통 타워(811)의 둘레 하단에는 제3 회전 지지체들(833)들이 마련될 수 있다. 하부지지판(850)은 풍력모듈(810)의 하부에 위치하는 하부판(851)과, 하부판(851)에 마련되는 바닥 가이드 레일(855)을 포함한다. 하부판(851)은 태양광모듈(도 1의 150)이나 태양열모듈(도 13의 350)이거나, 혹은 단순한 평판일 수 있다. 또는, 하부판(851)은 신재생 에너지 이용 장치(800)가 설치되는 바닥면일 수도 있다. 바닥 가이드 레일(855)은 원통 타워(811)의 하중을 지지하면서 원통 타워(811)의 회전을 가이드하는 부재이다. 즉, 원통 타워(811)의 둘레 하단에 마련된 제3 회전 지지체(833)는 하부판(851)에 마련된 바닥 가이드 레일(855)을 따라 구르게 된다. 이러한 바닥 가이드 레일(855)은 하부판(851)의 원통 타워(811)의 하단과 대향되는 부위에 마련된 원형 홈 형상을 갖거나, 돌출된 형상을 가질 수 있다. Third rotating supports 833 may be provided at a lower circumference of the cylindrical tower 811. The lower support plate 850 includes a lower plate 851 positioned below the wind power module 810 and a bottom guide rail 855 provided on the lower plate 851. The bottom plate 851 may be a solar module 150 (FIG. 1), a solar module 350 (FIG. 13), or may be a simple flat plate. Alternatively, the lower plate 851 may be a bottom surface on which the renewable energy utilization apparatus 800 is installed. The bottom guide rail 855 is a member that guides the rotation of the cylindrical tower 811 while supporting the load of the cylindrical tower 811. That is, the third rotary support 833 provided at the lower circumference of the cylindrical tower 811 is rolled along the bottom guide rail 855 provided at the lower plate 851. The bottom guide rail 855 may have a circular groove shape provided at a portion of the lower plate 851 opposite to the lower end of the cylindrical tower 811, or may have a protruding shape.
본 실시예는 제1 회전 지지체(831)들이 원통 타워(811)의 내주면 상단 둘레에 맞닿는 경우를 예로 들어 설명하고 있으나, 이에 한정되는 것은 아니다. 회전 지지체들이 원통 타워(811)의 상단(끝단)의 둘레에 설치되고, 원통 타워(811)의 상단(끝단)의 둘레에 원형 레일이 마련될 수도 있다. 원형 레일은 복수의 고정빔(834)들에 의해 중심기둥(119)이나 혹은 하부지지판(850)에 고정되게 설치된다. 이 경우 원통 타워(811)이 회전할 때, 원통 타워(811)의 상단에 위치한 회전 지지체들은 원형 레일을 따라 구르면서 원통 타워(811)의 회전을 가이드할 수 있다. In the present embodiment, the first rotary support 831 is described as a case in which the upper circumference of the inner peripheral surface of the cylindrical tower 811 abuts as an example, but is not limited thereto. Rotating supports may be installed around the upper end (end) of the cylindrical tower 811, and a circular rail may be provided around the upper end (end) of the cylindrical tower 811. The circular rail is fixed to the central column 119 or the lower support plate 850 by a plurality of fixed beams 834. In this case, when the cylindrical tower 811 rotates, the rotary supports positioned on the top of the cylindrical tower 811 may guide the rotation of the cylindrical tower 811 while rolling along the circular rail.
본 실시예는 원통 타워(811)의 길이방향(즉, 수직방향)을 기준으로 상단, 중단, 및 하단의 3군데 영역에서 회전가능하게 지지되는 경우를 예로 들어 설명하고 있으나, 이에 한정되는 것은 아니다. 예를 들어, 원통 타워(811)의 상단 및 하단에서만 회전가능하게 지지될 수 있으며, 이 경우 원통 타워(811)의 상단이나 하단쪽에 풍력발전기(840)이 연동되게 결합될 것이다. 또는, 원통 타워(811)의 길이방향(즉, 수직방향)을 기준으로 4군데 이상의 영역에서 회전가능하게 지지될 수도 있을 것이다.This embodiment has been described as an example in which the support is rotatably supported in three regions of the top, middle, and bottom of the cylindrical tower 811 in the longitudinal direction (ie, vertical direction), but is not limited thereto. . For example, only the top and bottom of the cylindrical tower 811 may be rotatably supported, in which case the wind turbine 840 will be coupled to the top or bottom of the cylindrical tower 811 to be interlocked. Alternatively, the cylindrical tower 811 may be rotatably supported in four or more regions with respect to the longitudinal direction (ie, the vertical direction).
도 23은 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치(900)의 개략적인 사시도이며, 도 24는 도 23의 신재생 에너지 이용 장치(900)에서 원통 타워(911)의 중간 부분의 횡단면도이다. 여기서, 중간 부분이라 함은 원통 타워(911)의 길이방향(즉, 수직방향)을 기준으로 한다.FIG. 23 is a schematic perspective view of a renewable energy utilization apparatus 900 according to another embodiment of the present invention, and FIG. 24 is a view of an intermediate portion of the cylindrical tower 911 in the renewable energy utilization apparatus 900 of FIG. Cross section view. Here, the middle part is based on the longitudinal direction (ie, the vertical direction) of the cylindrical tower 911.
도 23 및 도 24를 참조하면, 본 실시예의 신재생 에너지 이용 장치(900)는 풍력모듈(910), 하부지지판(950), 집풍판(160), 및 지지부(190)를 포함한다. 집풍판(160) 대신에 굴절집풍판(도 8의 260)이 마련되거나 생략될 수도 있다. 본 실시예의 신재생 에너지 이용 장치(900)는 도 1 내지 도 13을 참조한 실시예의 신재생 에너지 이용 장치(100, 200, 300)와 비교할 때, 풍력모듈(110)의 회전가능한 지지 구조에서 차이가 있으며, 이를 제외한 나머지 구성요소들은 전술한 실시예의 신재생 에너지 이용 장치(100, 200, 300)의 구성요소들과 실질적으로 동일하므로, 차이점을 중심으로 설명한다.Referring to FIGS. 23 and 24, the renewable energy utilization apparatus 900 of the present embodiment includes a wind power module 910, a lower support plate 950, a wind collecting plate 160, and a support 190. Instead of the collecting plate 160, a refractive collecting plate 260 of FIG. 8 may be provided or omitted. The renewable energy utilization apparatus 900 of the present embodiment has a difference in the rotatable support structure of the wind power module 110 when compared with the renewable energy utilization apparatuses 100, 200, and 300 of the embodiment with reference to FIGS. 1 to 13. The rest of the components are substantially the same as those of the renewable energy utilization apparatuses 100, 200, and 300 of the above-described embodiment, and thus, the differences will be mainly described.
풍력모듈(910)은 원통 타워(911)와, 복수의 날개(912)와, 복수의 날개(912)에 결합되는 제1 내지 제3 원형링(931, 932, 933)을 포함한다.The wind power module 910 includes a cylindrical tower 911, a plurality of wings 912, and first to third circular rings 931, 932, and 933 coupled to the plurality of wings 912.
원통 타워(911)는 하부지지판(950)에 고정되게 설치된다. The cylindrical tower 911 is installed to be fixed to the lower support plate 950.
제1 내지 제3 원형링(931, 932, 933)은 원통 타워(911)에 끼워진다. 제1 내지 제3 원형링(931, 932, 933)이 원통 타워(911)의 외주면에 맞닿지 않도록 제1 내지 제3 원형링(931, 932, 933)은 원통 타워(911)의 외경보다 큰 내경을 갖는다. The first to third circular rings 931, 932 and 933 are fitted to the cylindrical tower 911. The first to third circular rings 931, 932 and 933 are larger than the outer diameter of the cylindrical tower 911 so that the first to third circular rings 931, 932 and 933 do not contact the outer circumferential surface of the cylindrical tower 911. Has an inner diameter
복수의 날개(912)는 원통 타워(911)의 길이방향(즉, 수직방향)을 따라 길게 연장된 형상을 지닌다. 복수의 날개(912)의 적어도 일부는 수직방향에 대해 약간 경사지게 위치하여, 회전체(즉, 복수의 날개(912)와 제1 내지 제3 원형링(931, 932, 933))의 하중을 경감시킬 수 있다. 이때 복수의 날개(912)의 경사진 방향은, 날개(912)가 바람을 맞이하는 면의 적어도 일부가 하방을 향하게 하는 방향이다.The plurality of wings 912 has a shape extending in the longitudinal direction (ie, vertical direction) of the cylindrical tower 911. At least a portion of the plurality of vanes 912 is positioned slightly inclined with respect to the vertical direction to reduce the load of the rotating body (ie, the plurality of vanes 912 and the first to third circular rings 931, 932, 933). You can. At this time, the inclined direction of the plurality of blades 912 is a direction in which at least a portion of the surface where the blades 912 face the wind faces downward.
제1 내지 제3 원형링(931, 932, 933)은 날개(912)들의 상단, 중단, 및 하단에 각각 결합한다. 이에 따라, 복수의 날개(912)들은 제1 내지 제3 원형링(931, 932, 933)과 함께 일체로, 원통 타워(911)의 외주를 따라 회전하게 된다.The first to third circular rings 931, 932, and 933 are coupled to the top, middle, and bottom of the wings 912, respectively. Accordingly, the plurality of wings 912 are rotated along the outer circumference of the cylindrical tower 911 integrally with the first to third circular rings 931, 932, 933.
제1 원형링(931)은 원통 타워(911)의 외주면 상단 둘레의 복수의 지점에서 설치된 제1 회전 지지체(934)들에 의해 회전가능하게 지지될 수 있다. 제1 원형링(931)의 내측면 둘레는 매끄럽게 가공되어 있을 수 있다. 제1 회전 지지체(934)들은 예를 들어 바퀴이거나 베어링 장치일 수 있다. The first circular ring 931 may be rotatably supported by first rotating supports 934 installed at a plurality of points around the upper end of the outer circumferential surface of the cylindrical tower 911. The inner circumference of the first circular ring 931 may be smoothly processed. The first rotating supports 934 can be, for example, wheels or bearing devices.
원통 타워(911)를 대신하여 다각 타워가 채용될 수도 있는데, 이 경우 다각 타워의 외주면에서 제1 원형링(931)들에 마주하는 위치에 제1 회전 지지체(934)들이 마련된다. A polygonal tower may be employed in place of the cylindrical tower 911. In this case, the first rotating supports 934 are provided at positions facing the first circular rings 931 on the outer circumferential surface of the polygonal tower.
도 24에 도시되듯이, 제2 원형링(932)은 원통 타워(911)의 외주면 중단 둘레의 복수의 지점에서 설치된 제2 회전 지지체(935)들에 의해 회전가능하게 지지될 수 있다. 제1 원형링(931)의 내측면 둘레는 톱니(937)들이 마련된다. 즉, 제1 원형링(931)은 내측면이 톱니(937)들로 이루어진 일종의 톱니바퀴일 수 있다. 제2 회전 지지체(935)들은 예를 들어 톱니바퀴일 수 있다. As shown in FIG. 24, the second circular ring 932 may be rotatably supported by second rotating supports 935 installed at a plurality of points around the outer circumferential surface of the cylindrical tower 911. Teeth 937 are provided around the inner surface of the first circular ring 931. That is, the first circular ring 931 may be a kind of cog wheel made of teeth 937 on the inner side thereof. The second rotating supports 935 can be cog wheels, for example.
제2 원형링(932)에 마주하는 원통 타워(911)의 외주면 중단 둘레 중 일 지점에는 개구(911a)가 마련된다. 원통 타워(911)의 내부에는 상기 개구(911a)에 인접하여 상기 제2 원형링(932)의 톱니(937)들과 맞물리는 풍력발전기(940)이 배치된다. 풍력발전기(940)는 하부지지판(950)이나 중심기둥(119)으로부터 연장된 고정빔(939)들에 의해 지지된다. 풍력발전기(940)는 제2 원형링(932)의 톱니(937)들과 맞물리는 톱니바퀴(941, 942)를 포함하는 기어박스를 포함할 수 있다. 신재생 에너지 이용 장치(900)의 동작시, 복수의 날개(912)는 바람에 의해 제2 원형링(932)를 회전시키고, 제2 원형링(932)가 회전하게 되면 제2 원형링(932)의 톱니(937)들과 맞물리는 톱니바퀴(941)가 회전하고, 이에 따라 풍력발전기(940)는 복수의 날개(912)의 회전운동 에너지를 전기 에너지로 전환하여 전기 에너지를 생산한다.An opening 911a is provided at one point of the circumference of the outer circumferential surface of the cylindrical tower 911 facing the second circular ring 932. Inside the cylindrical tower 911, a wind generator 940 is disposed adjacent to the opening 911 a and engaged with the teeth 937 of the second circular ring 932. The wind turbine 940 is supported by the fixed beams 939 extending from the lower support plate 950 or the central column 119. The wind turbine 940 may include a gearbox including gears 941 and 942 that mesh with the teeth 937 of the second circular ring 932. In operation of the renewable energy utilizing device 900, the plurality of wings 912 rotate the second circular ring 932 by wind, and when the second circular ring 932 rotates, the second circular ring 932 Cogwheel 941 is engaged with the teeth 937 of the rotation), and thus, the wind power generator 940 converts the rotational kinetic energy of the plurality of wings 912 into electrical energy to produce electrical energy.
제3 원형링(933)의 둘레 하단에는 제3 회전 지지체들(936)들이 마련될 수 있다. 하부지지판(950)은 풍력모듈(910)의 하부에 위치하는 하부판(951)과, 하부판(951)에 마련되는 바닥 가이드 레일(955)을 포함한다. 하부판(951)은 태양광모듈(도 1의 150)이나 태양열모듈(도 13의 350)이거나, 혹은 단순한 평판일 수 있다. 또는, 하부판(951)은 신재생 에너지 이용 장치(900)가 설치되는 바닥면일 수도 있다. 바닥 가이드 레일(955)은 제1 내지 제3 원형링(931, 932, 933) 및 이에 결합된 복수의 날개(912)들의 하중을 지지하면서 제3 원형링(933)의 회전을 가이드하는 부재이다. 즉, 제3 원형링(933)의 둘레 하단에 마련된 제3 회전 지지체(936)는 하부판(951)에 마련된 바닥 가이드 레일(955)을 따라 구르게 된다. 이러한 바닥 가이드 레일(955)은 하부판(951)의 원통 타워(911)의 하단과 대향되는 부위에 마련된 원형 홈 형상을 갖거나, 돌출된 형상을 가질 수 있다. 제3 원형링(933)의 내측면에 대향되는 원통 타워(911)의 외주면에도 추가적인 회전 지지체들이 마련될 수 있음은 물론이다. Third rotating supports 936 may be provided at a lower circumference of the third circular ring 933. The lower support plate 950 includes a lower plate 951 positioned below the wind power module 910 and a bottom guide rail 955 provided on the lower plate 951. The lower plate 951 may be a solar module 150 (FIG. 1), a solar module 350 (FIG. 13), or may be a simple flat plate. Alternatively, the lower plate 951 may be a bottom surface on which the renewable energy utilization device 900 is installed. The bottom guide rail 955 is a member that guides the rotation of the third circular ring 933 while supporting the load of the first to third circular rings 931, 932, and 933 and the plurality of wings 912 coupled thereto. . That is, the third rotary support 936 provided at the lower circumference of the third circular ring 933 is rolled along the bottom guide rail 955 provided on the lower plate 951. The bottom guide rail 955 may have a circular groove shape provided at a portion of the lower plate 951 opposite to the lower end of the cylindrical tower 911, or may have a protruding shape. Additional rotating supports may also be provided on the outer circumferential surface of the cylindrical tower 911 opposite to the inner surface of the third circular ring 933.
전술한 실시예들에서 신재생 에너지 이용 장치(100, 200, 300, 400, 500, 600, 700, 800, 900)은 태양광모듈(150)이나 태양열모듈(350)을 포함하고 있으나, 이에 한정되는 것은 아니다. 예를 들어, 본 발명의 신재생 에너지 이용 장치는 풍력모듈(110, 410, 510, 610, 710, 810, 910)만을 구비할 수도 있다. 신재생 에너지 이용 장치가 풍력모듈(110, 410, 510, 610, 710, 810, 910)만을 구비하는 경우, 타워(111, 411, 511, 611, 711, 811, 911)이나 집풍판(160)은 불투명한 재질로 형성될 수 있을 것이다. 가령, 타워(111, 411, 511, 611, 711, 811, 911)이나 집풍판(160)은 금속재나 콘크리트와 같은 재질로 형성될 수 있을 것이다. 본 발명의 신재생 에너지 이용 장치는 풍력모듈(110, 410, 510, 610, 710, 810, 910), 태양광모듈(150), 태양열모듈(350)을 모두 포함할 수도 있음은 물론이다. In the above-described embodiments, the renewable energy utilization apparatus 100, 200, 300, 400, 500, 600, 700, 800, 900 includes a solar module 150 or a solar module 350, but is not limited thereto. It doesn't happen. For example, the renewable energy using apparatus of the present invention may be provided with only the wind power module (110, 410, 510, 610, 710, 810, 910). When the renewable energy utilization apparatus includes only the wind power modules 110, 410, 510, 610, 710, 810, and 910, the towers 111, 411, 511, 611, 711, 811, 911 or the wind collecting plate 160 are provided. May be formed of an opaque material. For example, the towers 111, 411, 511, 611, 711, 811, 911 or the wind collecting plate 160 may be formed of a material such as metal or concrete. Renewable energy using apparatus of the present invention may include all of the wind power module (110, 410, 510, 610, 710, 810, 910), solar module 150, solar module 350 of course.
도 25는 본 발명의 또 다른 실시예에 따른 신재생 에너지 이용 장치에 사용되는 풍력모듈(1010)을 도시한 사시도이며, 도 26은 도 25의 풍력모듈(101)의 중간 부분의 횡단면도이다. FIG. 25 is a perspective view illustrating the wind power module 1010 used in the renewable energy utilization apparatus according to another embodiment of the present invention, and FIG. 26 is a cross-sectional view of an intermediate portion of the wind power module 101 of FIG. 25.
도 25 및 도 26을 참조하면, 본 실시예의 풍력모듈(1010)은 원통 타워(1011)와 이에 결합되는 복수의 날개(1012)를 포함한다. 25 and 26, the wind turbine module 1010 according to the present embodiment includes a cylindrical tower 1011 and a plurality of wings 1012 coupled thereto.
원통 타워(1011)는 전술한 실시예들의 원통 타워(411, 611, 711, 811)일 수 있다. 원통 타워(1011)가 중심기둥(119)에 회전가능하게 결합되는 구성은 공지의 방식을 채용할 수 있다. 예를 들어, 2개의 플랜지(415)가 중심기둥(도 1의 119)의 상단 및 하단에 회전가능하게 결합되고, 원통 타워(1011)는 복수의 고정빔(413)들에 의해 플랜지(415)에 결합될 수 있을 것이다. 원통 타워(1011)의 외주 하단에는, 도 17 내지 도 19를 참조한 실시예와 마찬가지로, 가이드 구조가 마련되거나, 도 21을 참조한 실시예처럼 원통 타워(1011)의 내주면에 회전링에 의한 지지구조가 마련될 수 있음은 물론이다. Cylindrical tower 1011 may be cylindrical towers 411, 611, 711, 811 of the embodiments described above. The configuration in which the cylindrical tower 1011 is rotatably coupled to the central column 119 may employ a known method. For example, two flanges 415 are rotatably coupled to the top and bottom of the central column (119 of FIG. 1), and the cylindrical tower 1011 is flanged 415 by a plurality of fixed beams 413. To be combined. At the lower end of the outer periphery of the cylindrical tower 1011, as in the embodiment with reference to FIGS. 17 to 19, a guide structure is provided, or as shown in the embodiment with reference to FIG. Of course, it can be prepared.
복수의 날개(1012)는 원통 타워(1011)의 외주면에 경첩과 같은 가변 결합 부재(1013)에 의해 결합되어, 날개 각도가 변경 가능하도록 할 수 있다. 여기서 날개 각도라 함은, 도 27에 도시되듯이, 날개(1012)가 원통 타워(1011)의 장착된 면을 기준으로 날개(1012)가 경사진 각도를 의미한다. 가변 결합 부재(1013)는 탄성 부재(1014)를 포함하여, 강한 바람에 의해 신재생 에너지 이용 장치가 파손되지 않도록 바람의 세기가 강할수록 상기 복수의 날개가 바람의 방향과 가깝게 기울어지도록 할 수 있다. 복수의 날개(1012)를 탄성력으로 지지하는 탄성 부재(1014)로 공지의 수단을 채용할 수 있다. 이러한 탄성 부재(1014)는 예를 들어 토션 스프링(torsion spring)일 수 있다. 바람의 세기에 따른 날개 각도는 탄성 부재(1014)의 탄성계수를 적절히 설계함으로써 조절할 수 있다.The plurality of wings 1012 may be coupled to the outer circumferential surface of the cylindrical tower 1011 by a variable coupling member 1013 such as a hinge, so that the wing angle may be changed. Here, the wing angle means an angle at which the wing 1012 is inclined with respect to the mounting surface of the cylindrical tower 1011, as shown in FIG. 27. The variable coupling member 1013 may include an elastic member 1014 so that the plurality of wings are inclined closer to the direction of the wind as the wind strength increases so that the renewable energy utilization apparatus is not damaged by the strong wind. . A well-known means can be employ | adopted as the elastic member 1014 which supports the some blade 1012 by an elastic force. Such an elastic member 1014 may be, for example, a torsion spring. The wing angle according to the strength of the wind can be adjusted by appropriately designing the elastic modulus of the elastic member 1014.
도 27은 본 실시예의 풍력모듈(1010)의 동작에 설명하는 도면이다. 도 27에서 바람(20-1, 20-2, 20-3)을 나타내는 화살표의 길이는 바람의 세기를 나타낸다. 도 27을 참조하면, 바람(20-1, 20-2, 20-3)의 세기가 클 수록, 날개(1012)는 바람 방향 쪽으로 비스듬히 경사지게 된다. 즉, 날개(1012)는 원통 타워(1011)의 장착된 면을 기준으로 한 날개 각도(α1, α2, α3)가, 바람(20-1, 20-2, 20-3)의 세기가 클 수록, 점차 작아질 수 있다. 예를 들어, 바람(20-1)의 풍속이 대략 20 m/s 미만일 때는, 날개 각도(α1)는 바람(20-1)의 방향에 대해 최대한 큰 값을 유지하여, 풍력 발전의 효율을 최대한으로 한다. 만일, 바람(20-2)의 풍속이 대략 20 m/s 를 넘어가면 날개 각도(α2)는 바람(20-1)의 방향에 대해 점차로 작아져, 바람(20-3)의 풍속이 대략 50 m/s 를 넘어가면 날개 각도(α3)가 최대로 작아져, 날개(1012)가 맞닿는 바람의 영향을 최소화하여, 매우 강한 바람에 신재생 에너지 이용 장치가 파손되지 않도록 할 수 있다.27 is a view for explaining the operation of the wind turbine module 1010 according to the present embodiment. In FIG. 27, the lengths of the arrows representing the winds 20-1, 20-2, and 20-3 represent the strength of the wind. Referring to FIG. 27, as the strength of the winds 20-1, 20-2, and 20-3 increases, the wings 1012 are inclined obliquely toward the wind direction. That is, the wing 1012 has a wing angle α1, α2, α3 with respect to the mounting surface of the cylindrical tower 1011, the higher the intensity of the wind (20-1, 20-2, 20-3) , Can become smaller gradually. For example, when the wind speed of the wind 20-1 is less than approximately 20 m / s, the wing angle α1 is kept as large as possible with respect to the direction of the wind 20-1, thereby maximizing the efficiency of wind power generation. It is done. If the wind speed of the wind 20-2 exceeds approximately 20 m / s, the wing angle α2 gradually decreases with respect to the direction of the wind 20-1, so that the wind speed of the wind 20-3 is approximately 50 m / s. When the m / s is exceeded, the wing angle α3 is reduced to the maximum, thereby minimizing the influence of the wind on which the wing 1012 abuts, so that the renewable energy utilization device may not be damaged by very strong wind.
본 실시예는 날개 각도가 탄성부재(1014)에 의해 자동적으로 변경되고 있으나, 본 발명은 이에 한정되지 않음은 물론이다. 수동적으로 날개(1012)의 각도를 조절가능하도록 할 수도 있고, 또한, 별도의 동력원(예를 들어, 모터)을 이용하여 날개(1012)의 각도가 조절될 수 있도록 할 수 있음은 물론이다.In the present embodiment, the wing angle is automatically changed by the elastic member 1014, but the present invention is not limited thereto. It is also possible to manually adjust the angle of the blade 1012, and also to allow the angle of the blade 1012 can be adjusted using a separate power source (for example, a motor).
복수의 날개(1012)의 적어도 일부는 도 20을 참조하여 설명한 것처럼 원통 타워(1011)의 외주면에 경사진 방향으로 설치될 수 있음은 물론이다. At least a portion of the plurality of wings 1012 may be installed in an inclined direction on the outer circumferential surface of the cylindrical tower 1011 as described with reference to FIG. 20.
본 실시예는, 원통 타워(1011)가 회전하는 구조를 예로 들어 설명하고 있으나, 이에 한정되지 않는다. 예를 들어, 도 1 내지 도 도 13을 참조하여 설명한 예처럼 원통 타워(111)가 고정되고 복수의 날개(112)가 고정빔(114) 및 플렌지(115)에 의해 중심 기둥(119)에 회전가능하게 결합된 경우에도 적용될 수 있음은 물론이다. 가령, 복수의 날개(112)와 고정비(114)의 결합구조에, 본 실시예의 가변 결합 부재(1013) 및 탄성부(1014)를 적용할 수 있을 것이다. 또한, 도 23 및 도 24를 참조하여 설명한 예처럼 원통 타워(111)가 고정되고 복수의 날개(912)가 제1 내지 제3 원형링(931, 932, 933)에 결합되는 경우에도, 복수의 날개(912)와 제1 내지 제3 원형링(931, 932, 933)의 결합구조에, 본 실시예의 가변 결합 부재(1013) 및 탄성부(1014)를 적용할 수 있을 것이다.In the present embodiment, a structure in which the cylindrical tower 1011 is rotated is described as an example, but is not limited thereto. For example, as in the example described with reference to FIGS. 1 to 13, the cylindrical tower 111 is fixed and the plurality of vanes 112 are rotated to the center column 119 by the fixed beam 114 and the flange 115. Of course, it can be applied even if the possible combination. For example, the variable coupling member 1013 and the elastic portion 1014 of the present embodiment may be applied to the coupling structure of the plurality of wings 112 and the fixed ratio 114. In addition, even when the cylindrical tower 111 is fixed and the plurality of wings 912 are coupled to the first to third circular rings 931, 932, 933 as in the example described with reference to FIGS. 23 and 24, In the coupling structure of the wing 912 and the first to third circular rings 931, 932, and 933, the variable coupling member 1013 and the elastic part 1014 of the present embodiment may be applied.
도 28 및 도 29는 실내 간이 풍동 실험을 보여 주는 사진들이다. 28 and 29 are photographs showing the indoor simple wind tunnel experiment.
도 28은 실내 간이 풍동 장치에서 풍속 2.38 m/s를 측정하는 사진이다.28 is a photograph for measuring the wind speed 2.38 m / s in the indoor simple wind tunnel device.
도 29는 도 28과 같이 세팅된 실내 간이 풍동 장치에 지름 600 mm의 원통 타워(111)를 설치하고, 원통 타워(111)의 바로 옆에서 풍속을 측정하는 사진이다. 사진에서 볼 수 있듯이, 지름 600 mm의 원통 타워(111)의 바로 옆에서 풍속은 6.4 m/s로 가속되었음을 확인할 수 있었다.FIG. 29 is a photograph in which a cylindrical tower 111 having a diameter of 600 mm is installed in an indoor simple wind tunnel device set as shown in FIG. 28 and the wind speed is measured right next to the cylindrical tower 111. As can be seen in the picture, the wind speed was accelerated to 6.4 m / s right next to the cylindrical tower 111 of 600 mm in diameter.
도 30 내지 34는 건물옥상에서의 실험을 보여주는 사진들이다.30 to 34 are photographs showing the experiment on the building roof.
도 30은 건물의 옥상에 설치된 이동식 실험용 구조물의 사진이며, 도 31은 건물의 옥상 난간에서 풍속을 측정하는 사진이며, 도 32는 도 30의 이동식 실험용 구조물의 상부에서 풍속을 측정하는 사진이다.FIG. 30 is a photograph of a mobile experimental structure installed on a roof of a building, FIG. 31 is a photograph of measuring wind speed at a roof railing of a building, and FIG. 32 is a photograph of measuring wind speed from an upper portion of the mobile experimental structure of FIG.
도 31을 참조하면, 건물의 옥상 난간에서의 층류풍의 풍속은 4 m/s로 측정되었다. 도 32를 참조하면, 이동식 실험용 구조물의 상부에서의 풍속은 6 m/s로 측정되었는바, 층류풍이 건물의 수직 상승풍과 합류하면서 가속되었음을 확인할 수 있다. 이동식 실험용 구조물은 높이 2.2 m이며, 실험 테이블까지는 총 3.3 m이다. Referring to FIG. 31, the wind speed of the laminar wind in the roof railing of the building was measured at 4 m / s. Referring to Figure 32, the wind speed at the top of the mobile experimental structure was measured to 6 m / s, it can be seen that the laminar flow is accelerated while joining the vertical rising wind of the building. The mobile experimental structure is 2.2 m high and a total of 3.3 m to the test table.
도 33은 도 30의 이동식 실험용 구조물의 상부에 지름 1000 mm의 원통 타워(111)을 설치한 후, 원통 타워(111)의 바로 옆에서 풍속을 측정하는 사진이다. 도 26을 참조하면, 지름 1000 mm의 원통 타워(111)의 바로 옆에서의 풍속은 8 m/s로 측정되었는바, 원통 타워(111)에 의해 풍속이 가속되었음을 확인할 수 있었다.FIG. 33 is a photograph of measuring wind speeds right next to the cylindrical tower 111 after installing the cylindrical tower 111 having a diameter of 1000 mm on the mobile experimental structure of FIG. 30. Referring to FIG. 26, the wind speed at the side of the cylindrical tower 111 having a diameter of 1000 mm was measured at 8 m / s, and it was confirmed that the wind speed was accelerated by the cylindrical tower 111.
도 34는 도 30의 이동식 실험용 구조물의 상부에 지름 1000mm의 원통 타워(111)과 함께 원통 타워(111)의 상부에 집풍판(160)을 설치한 후에 풍속을 측정하는 사진이다. 도 34를 참조하면, 지름 1000 mm의 원통 타워(111)의 바로 옆에서의 풍속은 12.7 m/s로 측정되었는바, 집풍판(160)에 의해 풍속이 추가적으로 가속되었음을 확인할 수 있었다. 앞서 설명한 바와 같이, 상용 풍력발전기는 보증출력을 확보하기 위해서는 풍속이 예를 들어 소정 값(예를 들어, 12m/s) 이상일 것을 요구하는데, 본 실험예에서 이러한 풍속이 측정됨을 확인할 수 있었다.34 is a photograph of measuring the wind speed after installing the wind collecting plate 160 on the upper portion of the cylindrical tower 111 with the cylindrical tower 111 of diameter 1000mm on the upper part of the mobile experimental structure of FIG. Referring to FIG. 34, the wind speed at the side of the cylindrical tower 111 having a diameter of 1000 mm was measured at 12.7 m / s, and it was confirmed that the wind speed was further accelerated by the collecting plate 160. As described above, the commercial wind power generator requires that the wind speed is, for example, a predetermined value (eg, 12 m / s) or more in order to secure a guaranteed output, and it was confirmed that this wind speed is measured in the present experimental example.
전술한 본 발명인 신재생 에너지 이용 장치는 이해를 돕기 위하여 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The above-described renewable energy utilization device of the present invention has been described with reference to the embodiment shown in the drawings for clarity, but this is only an example, and those skilled in the art have various modifications and equivalents therefrom. It will be appreciated that embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the appended claims.

Claims (15)

  1. 수직하게 세워진 타워와, 상기 타워의 외주면에 위치하며 바람에 의해 상기 타워의 중심축을 중심으로 회전하는 복수의 날개와, 상기 복수의 날개의 회전에 연동되어 상기 복수의 날개의 회전 운동 에너지를 전기 에너지로 변환시키는 풍력발전기를 포함하는 풍력모듈; 및A vertically erected tower, a plurality of wings positioned on an outer circumferential surface of the tower and rotating about a central axis of the tower by wind, and rotational kinetic energy of the plurality of wings in association with rotation of the plurality of blades as electrical energy A wind power module including a wind power generator for converting the power into a wind turbine; And
    상기 타워의 하부에 위치하며, 태양광을 전기 에너지 또는 열 예너지로 변환시키는 태양에너지모듈;을 포함하며,Located at the bottom of the tower, the solar energy module for converting sunlight into electrical energy or heat energy; includes;
    상기 복수의 날개는 상기 타워의 지름방향을 기준으로 폭이 상기 타워의 직경보다 작은 신재생 에너지 이용 장치.The plurality of wings is a renewable energy utilization device having a width smaller than the diameter of the tower relative to the radial direction of the tower.
  2. 제1 항에 있어서, The method of claim 1,
    상기 타워는 횡단면이 원형 혹은 다각형인 신재생 에너지 이용 장치.The tower is a renewable energy utilization device having a circular cross section or polygon.
  3. 제1 항에 있어서, The method of claim 1,
    상기 복수의 날개는 상기 타워의 길이방향으로 길게 연장되어 형성된 신재생 에너지 이용 장치.The plurality of wings is a renewable energy utilization device formed to extend in the longitudinal direction of the tower.
  4. 제1 항에 있어서, The method of claim 1,
    상기 타워는 바닥면 또는 상기 태양에너지모듈에 고정되며, The tower is fixed to the bottom or the solar module,
    상기 복수의 날개는 상기 타워의 외주면에서 이격되게 위치하여 상기 타워의 외주면을 따라 회전하는 신재생 에너지 이용 장치.The plurality of wings are positioned to be spaced apart from the outer circumferential surface of the tower and renewable energy utilization apparatus that rotates along the outer circumferential surface of the tower.
  5. 제1 항에 있어서, The method of claim 1,
    상기 타워는 바닥면 또는 상기 태양에너지모듈에 대해 회전가능하게 설치되며, The tower is rotatably installed on the bottom surface or the solar energy module,
    상기 복수의 날개는 상기 타워의 외주면에 부착된 신재생 에너지 이용 장치.The plurality of wings is a renewable energy utilization device attached to the outer peripheral surface of the tower.
  6. 제5 항에 있어서, The method of claim 5,
    상기 복수의 날개를 상기 타워의 외주면에 날개 각도가 변경 가능하도록 결합시키는 가변 결합 부재를 더 포함하는 신재생 에너지 이용 장치.Renewable energy utilization apparatus further comprises a variable coupling member for coupling the plurality of wings to the outer circumferential surface of the tower so that the wing angle is changeable.
  7. 제10 항에 있어서, The method of claim 10,
    상기 가변 결합 부재는 상기 복수의 날개와 상기 타워의 외주면에 사이에 개재되어 탄성 부재를 포함하는 신재생 에너지 이용 장치.The variable coupling member is a renewable energy utilization device including an elastic member interposed between the plurality of wings and the outer peripheral surface of the tower.
  8. 제5 항에 있어서, The method of claim 5,
    상기 바닥면 또는 상기 태양에너지모듈의 상면에는 원형의 바닥 가이드 레일이 마련되며, 상기 타워는 상기 바닥 가이드 레일상에서 회전하는 신재생 에너지 이용 장치.The bottom surface or the top surface of the solar energy module is provided with a circular bottom guide rail, the tower is a renewable energy utilization device that rotates on the bottom guide rail.
  9. 제5 항에 있어서, The method of claim 5,
    상기 복수의 날개의 적어도 일부는 바람을 맞이하는 면의 적어도 일부가 하방을 향하도록 경사진 신재생 에너지 이용 장치.At least a portion of the plurality of wings is inclined so that at least a portion of the face to face the wind is renewable energy utilization apparatus.
  10. 제5 항에 있어서, The method of claim 5,
    상기 타워는 상기 바닥면 또는 상기 태양에너지모듈에 수직하게 세워진 중심 기둥에 회전가능하게 설치된 플렌지와 결합되며, 상기 풍력발전기는 상기 플렌지에 연동되는 신재생 에너지 이용 장치.The tower is coupled to the flange rotatably installed on the bottom or the center column perpendicular to the solar energy module, the wind turbine is a renewable energy utilization device that is linked to the flange.
  11. 제10 항에 있어서, The method of claim 10,
    상기 타워는 상기 바닥면 또는 상기 태양에너지모듈의 상면에 이격되어 접촉되지 않는 신재생 에너지 이용 장치.The tower is a renewable energy utilization device that is not in contact with the bottom surface or the top surface of the solar energy module.
  12. 제1 항 내지 제11 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 11,
    상기 태양에너지 모듈은 상기 타워의 하부에 위치하며 태양광을 전기 에너지로 변환시키는 태양광모듈인 신재생 에너지 이용 장치.The solar energy module is a renewable module using a renewable energy module that is located in the lower part of the tower to convert sunlight into electrical energy.
  13. 제1 항 내지 제11 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 11,
    상기 태양에너지모듈은 상기 타워의 하부에 위치하며 태양광을 이용하여 유체를 가열하는 집열부와, 상기 집열부에서 가열된 유체를 저장하는 저장탱크와, 상기 저장탱크에 저장된 유체를 집열부로 재투입시키는 펌프를 포함하는 태양열모듈인 신재생 에너지 이용 장치.The solar module is located in the lower portion of the tower and the heat collecting portion for heating the fluid using sunlight, a storage tank for storing the fluid heated in the heat collecting portion, and the fluid stored in the storage tank to the heat collecting portion Renewable energy utilization device that is a solar module including a pump to put.
  14. 제1 항 내지 제11 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 11,
    상기 타워의 상부에 위치하여 상방으로 흐르는 바람을 상기 타워 쪽으로 집풍시키는 집풍판을 더 포함하는 신재생 에너지 이용 장치.Renewable energy utilization device further comprises a wind collecting plate for collecting the wind flowing upwards located in the upper portion of the tower toward the tower.
  15. 제14 항에 있어서, The method of claim 14,
    상기 집풍판은 비스듬히 입사되는 태양광을 하방으로 굴절시키는 광학 굴절판을 포함하는 신재생 에너지 이용 장치.The wind collecting plate is a renewable energy utilization device comprising an optical refracting plate for refracting downwardly incident sunlight.
PCT/KR2016/012610 2015-11-03 2016-11-03 New and renewable energy-using apparatus WO2017078438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0153813 2015-11-03
KR20150153813 2015-11-03

Publications (1)

Publication Number Publication Date
WO2017078438A1 true WO2017078438A1 (en) 2017-05-11

Family

ID=58662326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012610 WO2017078438A1 (en) 2015-11-03 2016-11-03 New and renewable energy-using apparatus

Country Status (1)

Country Link
WO (1) WO2017078438A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905115B1 (en) * 2018-01-18 2018-11-29 정하영 Vertical wind power generating apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080090920A (en) * 2007-04-06 2008-10-09 김영기 Wind power generating apparatus
KR20090064731A (en) * 2007-12-17 2009-06-22 이준열 Windmill for a wind power aerogenerator
KR20110021030A (en) * 2009-08-25 2011-03-04 윤정호 Generator using solar energy and wind power energy
KR20110050895A (en) * 2009-11-09 2011-05-17 이소학 Windmill
KR20120051893A (en) * 2010-11-15 2012-05-23 해성쏠라(주) Power generator of hybrid type

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080090920A (en) * 2007-04-06 2008-10-09 김영기 Wind power generating apparatus
KR20090064731A (en) * 2007-12-17 2009-06-22 이준열 Windmill for a wind power aerogenerator
KR20110021030A (en) * 2009-08-25 2011-03-04 윤정호 Generator using solar energy and wind power energy
KR20110050895A (en) * 2009-11-09 2011-05-17 이소학 Windmill
KR20120051893A (en) * 2010-11-15 2012-05-23 해성쏠라(주) Power generator of hybrid type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905115B1 (en) * 2018-01-18 2018-11-29 정하영 Vertical wind power generating apparatus

Similar Documents

Publication Publication Date Title
KR101083827B1 (en) Photovoltaic power generation apparatus
US20050081909A1 (en) Concentrating solar roofing shingle
WO2012165697A1 (en) Solar cell module support assembly
WO2009121174A9 (en) Solar collector
ITMI20101847A1 (en) FOLLOWING SYSTEM TO UNDERSTAND SOLAR ENERGY AND RELATIVE MECHANISM OF MOVEMENT OF AN AXIS
US20200119686A1 (en) Method and Apparatus for Reflecting Solar Energy to Bifacial Photovoltaic Modules
CN103208947B (en) A kind of roof solar concentrating generating system
WO2017078438A1 (en) New and renewable energy-using apparatus
KR20090099370A (en) See-through type solar cell
KR20090045474A (en) Enhanced photovoltaic module with optical sheet
Owen et al. Heat dissipation factors for building-attached PV modules
KR101907638B1 (en) Solar generating apparatus for building outer wall
KR102237493B1 (en) Vertical type photovoltaic power generation apparatus
KR102319732B1 (en) Building Integrated Photovoltaic Module with Improved Condensing Efficiency
KR101620406B1 (en) High efficient solar module with solar cells arranged perpendicularly with parallel structure
WO2010050698A2 (en) Light focusing apparatus for a solar energy generating system, and solar energy generating system using same
WO2012093896A2 (en) Power generating device having low-resistance wind inductive device, and hybrid generating system using wind power, sunlight, and exercise equipment
CN102955120A (en) Adjustable omnibearing solar cell outdoor test system
KR102047968B1 (en) Photovoltaic power generation apparatusm to be installed on building
CN202994967U (en) Adjustable omnibearing solar battery outdoor test system
CN202994966U (en) Adjustable omnibearing solar battery outdoor test system
Tripathy et al. Building Integrated Photovoltaic Market trend and its Applications
KR101080901B1 (en) Photovoltaic module for Multiple Energy-Absorb Type
WO2011074893A2 (en) Device using solar energy of a rolling, sun-tracking type
US20220228561A1 (en) Energy harvesting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862454

Country of ref document: EP

Kind code of ref document: A1