WO2017078124A1 - Fiber composite hose - Google Patents

Fiber composite hose Download PDF

Info

Publication number
WO2017078124A1
WO2017078124A1 PCT/JP2016/082758 JP2016082758W WO2017078124A1 WO 2017078124 A1 WO2017078124 A1 WO 2017078124A1 JP 2016082758 W JP2016082758 W JP 2016082758W WO 2017078124 A1 WO2017078124 A1 WO 2017078124A1
Authority
WO
WIPO (PCT)
Prior art keywords
hose
resin layer
fiber composite
thermoplastic resin
soft
Prior art date
Application number
PCT/JP2016/082758
Other languages
French (fr)
Japanese (ja)
Inventor
直也 木村
智至 長谷川
博朗 藤田
Original Assignee
クラレプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレプラスチックス株式会社 filed Critical クラレプラスチックス株式会社
Priority to JP2017549115A priority Critical patent/JP6724284B2/en
Publication of WO2017078124A1 publication Critical patent/WO2017078124A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/10Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements not embedded in the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/11Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall
    • F16L11/112Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall having reinforcements embedded in the wall

Definitions

  • the present invention relates to a lightweight fiber composite hose having a specific uneven shape on the inner surface. Since the fiber composite hose of the present invention has a small fluid pressure loss, the fluid composite hose has a feature that there is little decrease in fluid flow rate. That is, when the fiber composite hose of the present invention is used by being connected to a pump, for example, it is not necessary to waste energy and costs such as increasing the source pressure of the pump or increasing the capacity of the pump itself. There are advantages.
  • Fiber composite hoses have many features such as excellent pressure resistance, wear resistance, and durability, so they are widely used in civil engineering, construction, agriculture, etc.
  • a hose for supplying and discharging fluids such as these techniques for further improving wear resistance and durability have been studied.
  • transportation by suction of fluids using a high-pressure pump is common, which reduces energy consumption during use and reduces the size and specifications of equipment such as pumps.
  • the hose is lighter and has better operability.
  • Patent Document 1 discloses a wear-resistant composite hose using a specific rubber material on its inner surface as a hose used for applications requiring pressure resistance and wear resistance, such as for civil engineering.
  • a material having a specific gravity greater than 1 such as polyvinyl chloride is used for the soft resin layer constituting the hose. Therefore, there is a problem that the weight of the hose increases and the operability of the hose is inferior.
  • Patent Document 2 discloses a flexible pressure-resistant / wear-resistant hose that uses a wear-resistant thermoplastic elastomer on the inner surface of the hose, and the inner surface is substantially flat.
  • Patent Document 3 discloses that a thermoplastic polymer composition having wear resistance comparable to that of a polyurethane-based thermoplastic elastomer or a polyester-based thermoplastic elastomer is obtained, and molding processing is performed from this thermoplastic polymer composition by extrusion molding or the like.
  • the technology to do is disclosed.
  • these hoses can achieve weight reduction by using a thermoplastic elastomer as a tube material, but when the hose is connected to a high pressure pump, the pressure loss of the fluid reaches a desired level. There is room for improvement.
  • Patent Document 4 is mainly related to a duct hose for air conditioning. Like Patent Document 2, the presence of an uneven state in the pipe is an undesirable element from the viewpoint of pressure loss.
  • the object of the present invention is to effectively reduce the pressure loss of the fluid without losing the excellent characteristics inherent to the fiber composite hose, in particular, pressure resistance performance, wear resistance, durability, and light weight. It is to provide a fiber composite hose excellent in workability.
  • the present inventors in order, from the inner peripheral surface of the hose, the soft resin layer (A) / the reinforcing fiber layer (B) / the outer surface resin layer (C) / the reinforced hard core material ( It was found that a fiber composite hose consisting of D) and satisfying a specific structure can reduce the pressure loss of the fluid, thereby completing the present invention. Furthermore, the required weight reduction of the fiber composite hose was achieved by making specific gravity of the thermoplastic resin which forms a soft resin layer (A) and an outer surface resin layer (C) into 1.0 or less.
  • the present invention comprises, in order from the inner peripheral surface of the hose, a soft resin layer (A) / reinforcing fiber layer (B) / outer surface resin layer (C) / reinforced hard core material (D). It is a fiber composite hose that satisfies all the conditions of 3).
  • the soft resin layer (A) is preferably an addition polymer (P) having an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block, an olefinic thermoplastic resin and / or an acrylic. It is said fiber composite hose characterized by containing a type
  • group polymer (Q) and a softening agent (R) in the following weight ranges. 20 ⁇ (P) ⁇ 80 0 ⁇ (Q) ⁇ 50 0 ⁇ (R) ⁇ 50 And (P) + (Q) + (R) 100
  • this invention contains said fiber composite hose which is a laminated structure which consists of an above-mentioned soft resin layer (A) and another thermoplastic resin layer (A ') in order from the internal peripheral surface of a hose as a preferable form. .
  • the reinforcing hard core material (D) is made of polypropylene resin or polyethylene resin, and when the length between the reinforcing hard core materials (D) is Y (mm), the repeating unit X ( mm), the above fiber composite hose satisfying 0.90 ⁇ X / Y ⁇ 1.10.
  • the fiber composite hose of the present invention has a specific uneven shape on the inner surface, the pressure loss of the fluid can be reduced and the decrease in the flow rate of the fluid can be reduced. It is possible to eliminate the need to waste energy and costs, such as increasing the source pressure of the pump or increasing the capacity of the pump itself.
  • the conventional inner surface layer is a mixture containing a hydrogenated polystyrene-based thermoplastic elastomer and a polyolefin-based resin, a wear-resistant thermoplastic elastomer such as a polyurethane-based thermoplastic elastomer, a polyamide-based elastomer, or an acrylonitrile butadiene rubber copolymer. It is possible to achieve both wear resistance, durability and light weight as compared with a hose made of a rubber material.
  • FIG. 1 shows an overall view and a partial schematic sectional view of a fiber composite hose representing an embodiment of the present invention.
  • the fiber composite hose of the present invention has a soft resin layer (A), a reinforcing fiber layer (B), an outer surface resin layer (C), and a reinforced hard core material in order from the inner peripheral surface. It is a laminated molded body made of (D).
  • the soft resin layer (A) to the reinforced hard core material (D) and the uneven shape inside the hose will be described in detail.
  • the fiber composite hose of the present invention satisfies the following conditions (1) and (2) when deployed in the length direction.
  • (1) When deployed in the length direction of the hose, when X (mm) is the repeating unit of the convex portion on the inner side, 5 mm ⁇ X ⁇ 25 mm.
  • (2) When the depth of the depression between the convex portions inside the hose is Z (mm) and the inner diameter of the hose is ID (mm), 0.003 ⁇ Z / ID ⁇ 0.05.
  • the repeating unit X (mm) of the inner convex portion apex is configured at equal intervals of 5 mm ⁇ X ⁇ 25 mm.
  • the repeating unit X (mm) of the convex portion apex on the inner side can take an appropriate value in the above-described range depending on the size of the hose inner diameter ID (mm).
  • the repeat unit X (mm) is preferably in the range of 5 to 8 mm, and when 50 h, the repeat unit X (mm) is preferably in the range of 9 to 12 mm, and 75 mm.
  • the repeating unit X (mm) is preferably in the range of 11 to 14 mm, the repeating unit X (mm) is preferably 14 to 18 mm if it is 100 mm, and the repeating unit X (mm) is 22 to 25 mm if it is 200 mm. Is preferred. Further, when the repeating unit X (mm) at the apex of the inner convex portion is less than 5 mm or exceeds 25 mm, the pressure loss of the fluid increases.
  • the repeating unit X (mm) of the convex part on the inside is the cross-sectional shape of the hose deployed in the length direction, observed with a microscope with a magnification of 8 times or more or a magnifying loupe, and the distance between the convex vertices It can be obtained by a measuring method.
  • the depth Z (mm) of the recess between the convex portions on the inner side of the hose is in the range of 0.003 ⁇ Z / ID ⁇ 0.05 when the inner diameter of the hose is ID (mm).
  • the pressure loss of the fluid becomes small.
  • the relationship between the depth Z (mm) of the dent and the hose inner diameter ID (mm) is less than 0.003, the inner surface is almost flat even when touched and observed inside the tube with a fingertip. Is not suitable because the pressure loss of the fluid increases and the resistance when flowing the fluid increases.
  • the relationship between the depth Z (mm) of the dent and the hose inner diameter ID (mm) is greater than 0.05, the pressure loss of the fluid increases, and the resistance when flowing the fluid increases.
  • the relationship Z / ID between the recess depth Z (mm) and the hose inner diameter ID (mm) is preferably in the range of 0.003 to 0.03, and more preferably in the range of 0.005 to 0.03. Is more preferred.
  • the depth Z (mm) of the recess between the convex portions on the inner side of the hose was obtained by observing the cross-sectional shape of the hose developed in the length direction with a microscope having a magnification of 10 times and connecting the apexes of three or more convex portions. It can be determined by measuring the distance between the line and the line connecting the deepest points of two or more recesses.
  • the inner diameter ID (mm) of the hose is a value obtained by inserting a taper gauge having a minimum graduation of 0.1 mm into the hose (the distance between the convex portions facing each other on the inner surface of the hose), and the depth Z ( mm) and adding a value twice as large.
  • thermoplastic resin forming the soft resin layer (A) and the outer resin layer (C) constituting the fiber composite hose of the present invention has a specific gravity of 1.0 or less.
  • the specific gravity of the thermoplastic resin can be determined in accordance with Method A (water displacement method) of JIS K7112 (“Plastics—Method for Measuring Density and Specific Gravity of Non-foamed Plastic”).
  • the relationship between the repeating unit X (mm) at the apex of the inner convex portion and the length Y (mm) between the reinforcing hard core material (D) is preferably in the range of 0.90 ⁇ X / Y ⁇ 1.10. .
  • the value of X / Y is more preferably in the range of 0.93 to 1.07, and more preferably in the range of 0.95 to 1.05 from the viewpoints of flexibility, radial strength, pressure resistance, etc. of the hose. Most preferably. If the value of X / Y is less than 0.90 or exceeds 1.10, the pressure loss of the fluid increases, and the resistance when flowing the fluid increases.
  • the length Y (mm) between the reinforced hard core materials (D) was measured with calipers having a minimum scale of 0.05 mm, and the value of the length of 10 reinforced hard core materials continuous on the outer surface of the hose. It can be obtained by dividing by the number of 10.
  • the soft resin layer (A) of the present invention has a Shore A hardness of 40 to 90 in accordance with JIS K6253 (“Method of testing hardness of vulcanized rubber and thermoplastic rubber”) from the viewpoint of operability of the hose. Some are preferred, and the range of 55 to 70 is more preferred. If the Shore A hardness is less than 40, there is a problem such as kink (breaking or crushing) of the hose. On the other hand, if the Shore A hardness is more than 90, there is a problem such as deterioration of the hose operability.
  • JIS K6253 Method of testing hardness of vulcanized rubber and thermoplastic rubber
  • the soft resin layer (A) of the present invention has an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block from the viewpoint of having a specific gravity of 1.0 or less and reducing the pressure loss of the fluid.
  • aromatic vinyl compound forming the aromatic vinyl polymer block in the addition polymer (P) having the aromatic vinyl polymer block and the (hydrogenated) conjugated diene polymer block used in the present invention for example, styrene , ⁇ -methylstyrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, 2,4,6-trimethylstyrene, 4-propylstyrene, t-butyl Styrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, vinylanthracene, indene, acetonaphthylene, monofluorostyrene, difluor
  • aromatic vinyl compound can be mentioned, and the aromatic vinyl polymer block can be formed of one or more of these.
  • the aromatic vinyl polymer block is preferably mainly composed of ⁇ -methylstyrene and / or a structural unit derived from styrene, and is derived from ⁇ -methylstyrene from the viewpoint of reducing the pressure loss of the fluid. It is more preferable that the main unit is a structural unit.
  • the conjugated diene compound that forms the (hydrogenated) conjugated diene polymer block in the addition polymer (P) having an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block includes 1,3-butadiene, -Methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, etc.
  • (hydrogenated) conjugated diene polymer The block may be formed from one or more of the conjugated diene compounds described above.
  • the conjugated diene polymer block contains structural units derived from two or more conjugated diene compounds, their bonding form may be random, tapered or partially blocky. Furthermore, they may be mixed.
  • the (hydrogenated) conjugated diene polymer block has a structure unit derived from the conjugated diene compound which may be hydrogenated or non-hydrogenated. % Or more, more preferably 60 mol% or more, and particularly preferably 80 mol% or more are hydrogenated.
  • the (hydrogenated) conjugated diene in the addition polymer (P) having an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block from the viewpoint of easy formation of the irregular shape on the inner surface of the fiber composite hose of the present invention.
  • the polymer block is at least one selected from an isoprene polymer block that may be hydrogenated, a butadiene polymer block that may be hydrogenated, and a copolymer block of isoprene and butadiene that may be hydrogenated.
  • a seed polymer block is preferred.
  • the bonding form of the aromatic vinyl polymer block and the (hydrogenated) conjugated diene polymer block in the addition polymer (P) having the aromatic vinyl polymer block and the (hydrogenated) conjugated diene polymer block is not particularly limited. , Linear, branched, radial, or a combination form in which they are combined, and among them, a linear combination form is preferable.
  • the aromatic vinyl polymer block is represented by S, ( (Hydrogenated)
  • the conjugated diene polymer block is represented by J, the formula: (SJ) m -S, (SJ) n , J- (SJ) P [wherein m, n and p Each represents an integer of 1 or more] and the like.
  • the addition polymer (P) having an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block has two or more aromatic vinyl polymer blocks and one or more (hydrogenated) conjugated diene.
  • a block copolymer in which a polymer block) is bonded in a straight chain particularly a triblock copolymer represented by the formula: SJS, ensures the uneven shape on the inner surface of the fiber composite hose of the present invention. It is preferable from the viewpoint that the pressure loss of the fluid can be effectively reduced.
  • the acrylic polymer (Q) used as necessary in the soft resin layer (A) of the present invention is a homopolymer of methyl methacrylate or a single copolymer having other copolymerizability mainly composed of methyl methacrylate. It is a copolymer obtained by copolymerizing a monomer.
  • Examples of other copolymerizable monomers include acrylic acid or a metal salt thereof; methyl acrylate, ethyl acrylate, n-butyl acrylate, s-butyl acrylate, t-butyl acrylate, acrylic acid 2
  • Acrylic esters such as ethylhexyl; methacrylic acid or metal salts thereof; ethyl methacrylate, n-butyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, 2-hydroxyethyl methacrylate, glycidyl methacrylate, methacrylic acid Methacrylic acid esters such as cyclohexyl; Vinyl acetate; Aromatic vinyl compounds such as styrene, ⁇ -methylstyrene and p-methylstyrene; Maleic anhydride; Maleimides such as N-methylmaleimide, N-phenylmaleimide and N-cyclohe
  • the ratio of the other copolymerizable monomer is a ratio that does not greatly change the properties of the acrylic polymer. It is preferable that it is 30% by weight or less.
  • the acrylic polymer (Q) can be produced by a general polymerization technique such as solution polymerization, emulsion polymerization or suspension polymerization, and the production method is not particularly limited. Moreover, in this invention, a well-known thing can also be used without a restriction
  • “ACRYPET” (trade name) manufactured by Mitsubishi Rayon Co., Ltd.
  • “DELPET” (trade name) manufactured by Asahi Kasei Co., Ltd.
  • thermoplastic resin (Q) used as necessary in the soft resin layer (A) of the present invention a so-called polypropylene resin, that is, a homopolymer made of propylene, a copolymer of propylene and ethylene, etc. is preferably used.
  • polypropylene resin that is, a homopolymer made of propylene, a copolymer of propylene and ethylene, etc.
  • polyethylene resins such as low density polyethylene, high density polyethylene, and linear low density polyethylene can also be used.
  • Examples of the softening agent (R) used as necessary in the soft resin layer (A) of the present invention include hydrocarbon oils such as paraffinic, naphthenic, and aromatic; vegetable oils such as peanut oil and rosin; Low molecular weight polyethylene glycol; liquid paraffin; low molecular weight polyethylene, ethylene- ⁇ -olefin copolymer oligomer, liquid polybutene, liquid polyisoprene or hydrogenated product thereof, hydrocarbon synthesis such as liquid polybutadiene or hydrogenated product thereof.
  • Known softening agents such as oil can be used. These may be used alone or in combination of two or more.
  • hydrocarbon-based synthetic oils such as paraffin-based hydrocarbon oils and ethylene- ⁇ -olefin copolymer oligomers are preferably used as the softening agent (R).
  • the thickness of the soft resin layer (A) forming the fiber composite hose of the present invention is the thickness of the entire soft portion of the hose [thickness of the soft resin layer (A) and the outer surface resin layer from the viewpoint that the hose is lightweight and durable. 10 to 70% of the sum of (C) thickness].
  • the thickness of the soft resin layer (A) is less than 10% or more than 70% with respect to the thickness of the entire soft portion of the hose, there is a problem such as impaired durability, which is not preferable. More preferably, it is 33 to 60%.
  • the soft resin layer (A) which forms the fiber composite hose of this invention is a laminated structure which consists of an above-described soft resin layer (A) and another thermoplastic resin layer (A ') in order from the inner peripheral surface of a hose. It may be a body.
  • the thickness of the soft resin layer (A) is less than the above range, the durability of the hose tends to decrease.
  • thermoplastic resin constituting the other thermoplastic resin layer (A ′) has a polarity similar to that of the soft resin layer (A) from the viewpoint of excellent adhesiveness or heat-fusibility with the soft resin layer (A).
  • olefinic thermoplastic elastomers and / or styrenic thermoplastic elastomers are preferable, and heat-fusibility with a reinforced hard core material (D), which is described later, and elongation at break are preferred.
  • Styrenic thermoplastic elastomers are more preferred from the standpoint of degree.
  • olefinic thermoplastic elastomers include general olefinic thermoplastic elastomers in which ethylene-propylene rubber (EPDM, EPM, etc.) is finely dispersed in an olefinic resin matrix, and styrene thermoplastic elastomers. Examples thereof include, but are not particularly limited to, a styrene-butadiene block copolymer, a styrene-isoprene block copolymer, or a hydrogenated product thereof.
  • EPDM ethylene-propylene rubber
  • EPM ethylene-propylene rubber
  • the other thermoplastic resin layer (A ′) has a Shore A hardness of 40 to 75 in accordance with JIS K6253 (“Method for testing hardness of vulcanized rubber and thermoplastic rubber”) from the viewpoint of operability of the hose. It is preferable that If the Shore A hardness is less than 40, there is a problem such as kinking (breaking or crushing) of the hose, and if it is greater than 75, the operability of the hose is deteriorated. More preferably, the Shore A hardness is in the range of 55 to 70.
  • Reinforcing fibers constituting the reinforcing fiber layer (B) of the present invention are formed by reinforcing a monofilament or multifilament braided into a net and a monofilament or multifilament spirally wound along the reinforcing hard core (D). It consists of two types of reinforcing fibers. Examples of these reinforcing fibers include polyarylate fibers and polyaramide fibers monofilaments or multifilaments made of thermoplastic liquid crystal polymers such as wholly aromatic polyesters, polyester filament monofilaments or multifilaments, polyvinyl alcohol fibers monofilaments or multifilaments, and the like. Among them, polyarylate fibers and polyaramid fibers are preferable in terms of high strength and low elongation. From the viewpoint of pressure resistance of the fiber composite hose, the fiber strength is preferably 10 cN / dtex or more.
  • a reinforced hard core material includes reinforcing fibers braided in a net shape using multifilaments having a fiber fineness in the range of 1,000 to 30,000 dtex, and monofilaments having a fiber fineness of 1,000 to 30,000 dtex.
  • the reinforcing fiber layer is composed of two types of reinforcing fibers that are spirally wound along the surface.
  • Reinforcing fibers braided in a net shape preferably have a knitting angle (angle formed by a horizontal line drawn in the length direction of the hose and the reinforcing fiber) of 25 to 80 degrees, and from the viewpoint of pressure resistance, it is 30 to 60 degrees. More preferably.
  • the number of braids may be appropriately set depending on the pressure resistance required for the hose and the size of the inner diameter.
  • the inner diameter ID (mm) is 50 mm.
  • the number of braids of the fiber composite hose is preferably about 64.
  • Reinforcing fibers spirally braided along the reinforcing hard core material (D) are arranged at regular intervals within a range of 5 to 40 mm so that one thread is along the reinforcing hard core material (D) of the hose.
  • the interval between the reinforcing fibers may be appropriately set depending on the length between the reinforcing hard core materials (D).
  • the interval between the fiber composite hoses having an inner diameter ID (mm) of 50 mm is preferably about 10 mm. .
  • the thickness of the outer surface resin layer (C) of the present invention is the thickness of the entire hose soft part [thickness of the soft resin layer (A) and the thickness of the outer surface resin layer (C) from the viewpoint that the hose is light and durable. 30 to 90%, and more preferably 40 to 67%.
  • the thickness of the outer surface resin layer (C) is less than 30% or more than 90% with respect to the entire thickness of the hose soft part, there is a problem that durability of the hose is impaired, which is not preferable.
  • thermoplastic resin constituting the outer surface resin layer (C) of the present invention is excellent in adhesion or thermal fusion with the above-described soft resin layer (A) or other thermoplastic resin layer (A ′),
  • a thermoplastic elastomer having a polarity similar to that of the soft resin layer (A) or other thermoplastic resin (A ′) is preferable, and among them, an olefin-based thermoplastic elastomer and / or a styrene-based thermoplastic elastomer is preferable.
  • Styrenic thermoplastic elastomers are more preferable from the viewpoints of heat-fusability with the reinforcing hard core material (D), which will be described later, and elongation at break.
  • olefinic thermoplastic elastomers include general olefinic thermoplastic elastomers in which ethylene-propylene rubber (EPDM, EPM, etc.) is finely dispersed in an olefinic resin matrix, and styrene thermoplastic elastomers. Examples thereof include, but are not particularly limited to, a styrene-butadiene block copolymer, a styrene-isoprene block copolymer, or a hydrogenated product thereof.
  • EPDM ethylene-propylene rubber
  • EPM ethylene-propylene rubber
  • the outer surface resin layer (C) has a Shore A hardness in the range of 40 to 75 in accordance with JIS K6253 (“Hardness test method of vulcanized rubber and thermoplastic rubber”) from the viewpoint of operability of the hose. preferable. If the Shore A hardness is less than 40, there is a problem such as kinking (breaking or crushing) of the hose, and if it is greater than 75, the operability of the hose is deteriorated. More preferably, the Shore A hardness is in the range of 55 to 70.
  • the resin constituting the reinforced hard core material (D) in the present invention is a hard olefin resin.
  • Reinforced hard core material (D) is formed by spiral winding so that it is embedded in the outer resin layer (C) (FIGS. 4 to 6) or exposed outside the outer resin layer (C) (FIGS. 1-3). However, it is preferable that it is exposed to the outside of the reinforcing hard core material (D) from the viewpoint of the operability of the hose, the bendability and the like.
  • the hard olefin resin is not particularly limited, and examples thereof include polyethylene resins such as high density polyethylene (HDPE), medium density polyethylene, and low density polyethylene (LDPE), and polypropylene resins such as homopolypropylene, random polypropylene, and block polypropylene.
  • block polypropylene is preferable from the viewpoints of heat-fusability with the outer surface resin layer (C), break strength, extrusion processability, versatility, and the like.
  • the hardness of the hard olefin resin is preferably in the range of 70 to 130 on the R scale according to JIS K7202 (“Rockwell hardness measurement test”) from the viewpoint of hose strength.
  • Step (1) The thermoplastic resin constituting the soft resin layer (A) is extruded into a thin tape shape, wound on a pipe making machine in a spiral shape, and the adjacent side edges are fused together to form a soft material. A tubular molded product of the resin layer (A) is formed.
  • Step (2) Further, in the case of constituting another thermoplastic resin layer (A ′) in addition to the soft resin layer (A), the thermoplastic resin constituting the other thermoplastic resin layer (A ′) is a step ( Other thermoplastic resin layers (A ′) are laminated on the outside of the soft resin layer (A) by extruding into a tape shape in the same manner as in 1) and winding so as to cover the soft resin layer (A). The formed tubular molded product is molded.
  • the soft resin layer (A) and the other thermoplastic resin layers (A ′) are arranged inside and outside the pipe making machine so that the surface temperature immediately before the reinforcing fiber layer (B) is braided is 80 ° C. to 150 ° C. Cooling process by air cooling etc. is performed.
  • Step (3) On the same pipe making machine as in step (1) and step (2), the reinforcing fiber is replaced with the soft resin layer (A) or other thermoplastic resin layer (A ′) [soft resin layer (A).
  • the other thermoplastic resin layer (A ′) is formed in addition to the above]
  • the reinforcing fibers are spirally wound at regular intervals equal to the repeating unit length of the tubular molded product.
  • a layer (B) is formed.
  • Step (4) Immediately after braiding the reinforcing fiber layer (B), the thermoplastic resin and the reinforcing hard core material (D) constituting the outer resin layer (C) are exposed or covered from the outer resin layer (C).
  • a hose-like molded body is formed by coextrusion into a tape shape and winding so as to cover the reinforcing fiber layer (B).
  • the soft resin layer (A) extruded from the extruder and cooled on the pipe making machine, other thermoplastic resin layers (A ′) [other thermoplastic resins in addition to the soft resin layer (A) When the resin layer (A ′) is configured], by controlling the cooling rate of the outer surface resin layer (C) and the reinforced hard core material (D), the uneven shape of the inner surface of the fiber composite hose can be formed.
  • the value of Z / ID representing the relationship between the depth Z (mm) of the depression between the convex portions inside the hose and the hose inner diameter ID (mm) can be controlled within a preferable range.
  • the temperature after cooling of the hose-shaped molded product after the outer surface resin layer (C) and the reinforced hard core material (D) are wound is in the range of 70 to 100 ° C. on the pipe making machine. It is preferable.
  • the fiber composite hose of the present invention is not only small in pressure loss of fluid, but also excellent in pressure resistance, wear resistance, durability and light weight.
  • civil engineering work, building work, agriculture, fishery, or nuclear power It can be used for transporting not only water but also powder or mixed water of powder at a power plant or the like.
  • ⁇ Pressure loss Measurement of friction loss coefficient ( ⁇ ) for straight pipe>
  • a 3m long hose is installed in a straight tube, and an air blower ("SJF-250-2" manufactured by Suiden Co., Ltd.) is attached to one end of the hose, and 0.5m inside from both ends of the hose. Make a hole of ⁇ 8mm and attach a differential pressure gauge. Next, the air volume generated from the air blower is changed stepwise, and the pressure difference ⁇ P (Pa) and the corresponding flow velocity V (m / sec) at that time are measured.
  • ⁇ Lightweight Specific gravity measurement> (1) The specific gravity of the thermoplastic resin constituting the soft resin layer (A) and the outer resin layer (C) is JIS K7112 (“Plastics—Method for Measuring Density and Specific Density of Non-foamed Plastic”) Method A (substitution on water) Law) and measure. (2) The specific gravity was evaluated according to the following criteria. ⁇ : Specific gravity is 1.0 or less. X: Specific gravity exceeds 1.0.
  • Hose burst pressure measurement test> Clamping using an S-colored bamboo shoot fitting (S1 cap manufactured by Sanko Seisakusho Co., Ltd.) suitable for the inner diameter of the hose and an aluminum cylindrical outer cylinder at both ends of an approximately 1 m hose. Is sealed with a stopper fitting, and the terminal on the opposite side is connected to a pressure pump (manufactured by Aritsu Kogyo Co., Ltd.). (2) Pressurize the hose at 23 ° C. (3) The pressure immediately before the pressure (MPa) inside the hose significantly decreases due to the occurrence of a hole or crack in the hose in the hose, and the burst pressure (MPa). The pressure resistance performance was evaluated according to the following criteria. ⁇ : Burst pressure is 4.5 MPa or more ⁇ : Burst pressure is less than 4.5 MPa
  • ⁇ Abrasion resistance Sandblaster built-in continuous wear test>
  • a hose with an inner diameter ID of 50 mm is attached to a wear test device (“Pneuma Blaster SDO-F1-F” manufactured by Fuji Seisakusho Co., Ltd.) so that the bending radius of the hose is 400 mm. (Fuji Random A36) manufactured by Fuji Seisakusho Co., Ltd. is circulated at a pressure of 0.45 MPa.
  • the hose weight loss ⁇ m (g / 10 minutes) every 10 minutes is continuously measured 6 times.
  • An average weight loss ⁇ m (g / 10 minutes) of the hose for 10 minutes was calculated and used as an index of wear resistance.
  • B-1 Multifilament of polyarylate fiber [“Vectran HT” manufactured by Kuraray Co., Ltd.
  • a tubular molded product having a thickness of 0.5 mm was formed by spirally winding the adjacent side edges together at a temperature of 170 ° C.
  • a braiding device Kemolar, Ltd. horizontal yarn spiral winder
  • thermoplastic resin A-2 and the resin D-1 are exposed from the upper surface of the thermoplastic resin A-2 in a circular shape having a diameter of 3 mm.
  • a hose-shaped molded article having a total thickness of the soft part of 1.0 mm was obtained.
  • the inside of the pipe making machine is set so that the temperature of the thermoplastic resin immediately before braiding the fiber reinforcing layer on the tubular molded product made of the thermoplastic resin A-1 is 120 ° C. To 12 ° C. cold air. Moreover, after applying the chiller water of 7 ° C from the outside of the pipe making machine to 80 ° C, the hose-like molded product on the pipe making machine is removed from the pipe making machine and further cooled, so that the top of the inner convex portion is repeated.
  • the unit X (mm) was 7 mm, and the relationship Z / ID between the depression depth Z (mm) between the convex portions inside the hose and the hose inner diameter ID (mm) was 0.026.
  • the performance evaluation is shown in Table 1.
  • thermoplastic resin A-1 is extruded into a 40 mm wide tape using the single screw extruder used in ⁇ Example 1> and wound on a pipe making machine having an outer diameter of 200 mm.
  • a soft resin layer (A) having a thickness of 2.0 mm was formed.
  • Another thermoplastic resin layer (A ′) having a thickness of 2.5 mm was formed so as to cover the resin layer (A).
  • the reinforcing fiber layer (B) was formed by braiding 96 reinforcing fibers B-2 and winding one reinforcing fiber B-2 in a spiral shape.
  • the reinforcing hard core material (D) was made of resin D-2 in a circular shape with a cross-sectional shape of 9 mm in diameter.
  • a hose-shaped molded article having an inner diameter ID of 200 mm, a length Y between the reinforced hard core materials (D) of 25 mm, and a total thickness of the soft part of 9.0 mm was obtained.
  • the cooling condition in the step of obtaining the hose-shaped molded product is the same as in ⁇ Example 1>, and the thermoplastic resin layer just before braiding the fiber reinforcing layer on the tubular molded product made of the thermoplastic resin A-1 was 129 ° C., and the temperature of the hose-shaped molded product on the pipe making machine was 88 ° C.
  • the repeating unit X (mm) of the convex part on the inner side of the hose-shaped molded product is 25 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID was 0.020.
  • the performance evaluation is shown in Table 2.
  • thermoplastic resin A-1 for forming the soft resin layer (A) and the thermoplastic resin A-2 for forming the other thermoplastic resin layer (A ′) are:
  • the film was extruded into a 30 mm width tape, and the thickness of the flexible resin layer (A) and the other thermoplastic resin layer (A ′) of the tubular molded product was 1.0 mm.
  • the subsequent reinforcing fiber layer (B), outer surface resin layer (C), and reinforcing hard core material (D) are molded and reinforced by the same steps as (2) and (3) in ⁇ Example 1>.
  • the fiber layer (B) is formed by winding 64 reinforcing fibers B-2 and one reinforcing fiber B-2 in a spiral manner, and the reinforcing hard core material (D) is made of resin D-1.
  • the cross-sectional shape was a circle having a diameter of 5 mm.
  • a hose-shaped molded product having an inner diameter ID of 50 mm, a length Y between the reinforced hard core materials (D) of 10 mm, and a total thickness of the soft part of 3.5 mm was obtained.
  • the cooling conditions in the step of obtaining the hose-shaped molded product are the same as those in ⁇ Example 1>, and a fiber-reinforced layer is formed on a tubular molded product made of a laminate of the thermoplastic resin A-1 and the other thermoplastic resin A-2.
  • the temperature of the above-mentioned laminate immediately before braiding was 120 ° C.
  • the temperature of the hose-shaped molded product on the pipe making machine was 80 ° C.
  • the repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID was 0.008.
  • Table 3 shows the performance evaluation.
  • thermoplastic resin layer (A ′) and the outer resin layer (C) were made of thermoplastic resin A-3, respectively.
  • the repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID was 0.003.
  • Table 3 shows the performance evaluation.
  • the soft resin layer (A) was made of thermoplastic resin A-2 and had a thickness of 2.0 mm.
  • the other thermoplastic resin layer (A ') was not laminated
  • the reinforcing fiber layer (B) was formed by braiding 64 reinforcing fibers B-3 and winding one reinforcing fiber B-3 in a spiral shape.
  • the cooling conditions in the process of obtaining the hose-shaped molded product are as follows: the temperature of the cooling water from the outside of the pipe making machine is 21 ° C., and the hose-like molded product on the pipe making machine is set to 100 ° C. And then cooled further.
  • the repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID was 0.050.
  • Table 3 shows the performance evaluation.
  • the soft resin layer (A) was made of thermoplastic resin A-2 and had a thickness of 2.0 mm.
  • the other thermoplastic resin layer (A ′) was not laminated.
  • the resin D-1 was coextruded into a tape shape so as to be embedded in the thermoplastic resin A-2 with a circular shape having a cross section of 3 mm in diameter, and was wound so as to cover the reinforcing fiber layer (B).
  • a hose-shaped molded article having an inner diameter ID of 50 mm, a length Y between the reinforced hard core materials (D) of 10 mm, and a total thickness of the soft part of 7.0 mm was obtained.
  • the cooling conditions for the hose-shaped molded product were the same as those in ⁇ Example 3>.
  • the repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID was 0.020.
  • Table 3 shows the performance evaluation.
  • ⁇ Comparative Example 1> It is molded through the same thermoplastic resin, reinforcing fiber, resin and steps as in ⁇ Example 1>. At this time, the length Y between the reinforcing hard cores (D) was set to 4 mm by loosening the twist angle of the spring-like rotating rod of the pipe making machine. The cooling conditions for the hose-shaped molded product were the same as those in ⁇ Example 1>. Finally, a hose-shaped molded product having an inner diameter ID of 25 mm, a length Y between the reinforced hard core materials (D) of 4 mm, and a total thickness of the soft part of 1.0 mm was obtained.
  • the repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 4 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID was 0.027.
  • the performance evaluation is shown in Table 1.
  • ⁇ Comparative Example 2> It is molded through the same thermoplastic resin, reinforcing fiber, resin and process as in Example 2. At this time, the length Y between the reinforcing hard cores (D) was set to 30 mm by increasing the twist angle of the spring-like rotating rod of the pipe making machine. The cooling conditions for the hose-shaped molded product were the same as those in ⁇ Example 2>. Finally, a hose-shaped molded product having an inner diameter ID of 200 mm, a length Y between the reinforced hard core materials (D) of 30 mm, and a total thickness of the soft part of 8.7 mm was obtained.
  • the repeating unit X (mm) of the convex portion apex inside the hose-shaped molded product is 30 mm, and the relationship Z / ID between the concave depth Z (mm) between the convex portions inside the hose and the hose inner diameter ID (mm) is 0. 014.
  • the performance evaluation is shown in Table 2.
  • Example 3 It is molded through the same thermoplastic resin, reinforcing fiber, resin and process as in Example 3. At this time, the cooling condition of the hose-shaped molded article is that the temperature of the chiller water from the outside of the pipe making machine is 6 ° C., the temperature of the hose shaped molded article on the pipe making machine is 60 ° C., and then removed from the pipe making machine. And further cooled.
  • the repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID was 0.002.
  • Table 3 shows the performance evaluation.
  • Example 4 It is molded through the same thermoplastic resin, reinforcing fiber, resin and process as in Example 5. At this time, the temperature of the cooling water from the outside of the pipe making machine was set to 21 ° C. factory water, and the hose-shaped molded product on the pipe making machine was set to 110 ° C. and then removed from the pipe making machine and further cooled.
  • the repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID was 0.070. Table 3 shows the performance evaluation.
  • the reinforced hard core material (D) is a resin D-3 having an elliptical shape with a cross section of 3 mm in length and 4 mm in width, and coextruded in a tape shape so as to be embedded in the thermoplastic resin A-5, and a reinforcing fiber layer ( B) was wound to cover.
  • a hose-shaped molded product having an inner diameter ID of 50 mm, a length Y between the reinforced hard core materials (D) of 10 mm, and a total thickness of the hose soft part of 7.0 mm was obtained.
  • the cooling conditions for the hose-shaped molded product were the same as those in ⁇ Example 3>.
  • the repeating unit X (mm) of the convex portion inside the obtained hose-shaped molded product is 11 mm, and the relationship between the concave depth Z (mm) between the convex portions inside the hose and the hose inner diameter ID (mm) Z / ID was 0.007. Table 3 shows the performance evaluation.
  • the reinforcing hard core material (D) was made of resin D-1
  • the outer surface resin layer (C) was made of thermoplastic resin A-2.
  • the structure of the hose-shaped molded product was the same size as in ⁇ Example 3>.
  • the thermoplastic resin A-4 and the thermoplastic resin A-2 easily peel off, but the inner diameter ID is 50 mm, the length Y between the reinforced hard core materials (D) is 11 mm, and the hose softness A hose-shaped molded product having a total wall thickness of 3.5 mm was obtained.
  • the cooling conditions for the hose-shaped molded product were the same as those in ⁇ Example 3>.
  • the repeating unit X (mm) of the convex portion inside the obtained hose-shaped molded product is 11 mm, and the relationship between the concave depth Z (mm) between the convex portions inside the hose and the hose inner diameter ID (mm) Z / ID was 0.007.
  • Table 3 shows the performance evaluation.
  • ⁇ Comparative Example 7> It is molded through the same steps as in ⁇ Comparative Example 5>.
  • a thermoplastic resin A-2 was used for the soft resin layer (A).
  • the structure of the hose-shaped molded product was the same as that of Comparative Example 5.
  • the thermoplastic resin A-2 and the thermoplastic resin A-5 are easily peeled, but the inner diameter ID is 50 mm, the length Y between the reinforced hard core materials (D) is 11 mm, and the hose is soft.
  • a hose-shaped molded product having a total wall thickness of 7.0 mm was obtained.
  • the cooling conditions for the hose-shaped molded product were the same as those in ⁇ Example 3>.
  • the repeating unit X (mm) of the convex portion inside the obtained hose-shaped molded product is 11 mm, and the relationship between the concave depth Z (mm) between the convex portions inside the hose and the hose inner diameter ID (mm) Z / ID was 0.007.
  • Table 3 shows the performance evaluation.
  • the repeating unit of the convex vertices on the inner side of Comparative Examples 1 to 4 is the case where X (mm) is X ⁇ 5 mm or 25 mm ⁇ X or the hose inner side
  • X (mm) is X ⁇ 5 mm or 25 mm ⁇ X or the hose inner side
  • ID (mm) is the depth of the recess between the protrusions of Z
  • the friction loss coefficient ⁇ is 0.060 ⁇ , which is not possible because the pressure loss increases.
  • Comparative Examples 5 to 7 in Table 3 when the specific gravity of the thermoplastic resin forming the soft resin layer (A) and / or the outer resin layer (C) exceeds 1.0, the unit weight of the hose increases. The operability is inferior and cannot be used.
  • the fiber composite hose of the present invention is a lightweight hose that has a small fluid pressure loss and is excellent in pressure resistance, wear resistance, and durability, for example, civil engineering work, building work, agriculture, fishery, nuclear power plant, etc. In addition to water, it can be beneficially used for transporting powder or powder mixed water.
  • the schematic diagram which expanded the cross section of FIG. The schematic diagram which expanded the cross section which the fiber composite hose of FIG. 1 consists of a soft resin layer (A) and another thermoplastic resin layer (A ').
  • the schematic diagram which expanded the cross section which the fiber composite hose of FIG. 4 consists of a soft resin layer (A) and another thermoplastic resin (A ').

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

[Problem] To decrease fluid pressure loss and decrease reduction of fluid flow by the hose inner surface having specific shapes of protrusions and recesses. Also, for weight reduction, to make the specific gravity of the thermoplastic resin configuring the hose to be 1.0 or less. To make the hose to have pressure resistance performance, abrasion resistance and durability. [Solution] A fiber composite hose that is obtained, in order from the hose inner circumferential surface, from a soft resin layer (A)/reinforcing fiber layer (B)/outer surface resin layer (C)/reinforcing hard core (D), and that satisfies all of conditions (1)-(3) below. (1) When expanded in the longitudinal direction of the hose, 5 mm ≤ X ≤ 25 mm when the repeating unit of the apices of the inner protrusions is X (mm). (2) When the depth of the depressions between the hose inner protrusions is Z (mm) and the hose internal diameter is ID (mm), 0.003 ≤ Z/ID ≤ 0.05. (3) The specific gravity of the thermoplastic resins forming the soft resin layer (A) and the outer surface resin layer (C) is 1.0 or less.

Description

繊維複合ホースFiber composite hose
 本発明は、内面に特定の凹凸形状を有する軽量な繊維複合ホースに関する。
 本発明の繊維複合ホースは流体の圧力損失が小さいので、流体の流量低下が少ない特徴を有する。即ち、本発明の繊維複合ホースを、例えば、ポンプに接続して使用する場合には、ポンプの発生元圧を上げたり、ポンプ自体の能力を上げる等のエネルギーやコストを無駄に掛ける必要がない利点がある。
The present invention relates to a lightweight fiber composite hose having a specific uneven shape on the inner surface.
Since the fiber composite hose of the present invention has a small fluid pressure loss, the fluid composite hose has a feature that there is little decrease in fluid flow rate. That is, when the fiber composite hose of the present invention is used by being connected to a pump, for example, it is not necessary to waste energy and costs such as increasing the source pressure of the pump or increasing the capacity of the pump itself. There are advantages.
 繊維複合ホースは、耐圧性能、耐摩耗性、耐久性に優れるなどの多くの特徴を有するため、土木工事、建築工事、農業などで広く使用され、水のみならず粉体もしくは粉体を含む水等の流体を給排水するホースとして耐摩耗性や耐久性をより向上させる技術は従来から検討されている。
 特に、土木工事、建築工事や農業といった分野では、高圧ポンプを用いた流体物の吸圧送による輸送が一般的であり、使用時のエネルギー削減やポンプ等の設備機器の小型化・低スペック化が強く求められている。同時に、工事日数や人件費低減のため、ホースが軽量でより操作性に優れることが求められる。
 土木工事用などの耐圧性や耐摩耗性が要求される用途に用いられるホースとして、例えば、特許文献1は、特定のゴム材を内面に用いた耐摩耗性複合ホースを開示しているが、当該ホースを高圧ポンプに接続して使用した場合に流体の圧力損失の観点で満足できるものでもなく、また、当該ホースを構成する軟質樹脂層にポリ塩化ビニル等の比重が1より大きい材料を用いるためにホースの重量が増し、ホースの操作性が劣るという問題点がある。
 また、特許文献2は、耐摩耗性の熱可塑性エラストマーをホース内面に用い、その内面がほぼフラットである可撓性耐圧・耐摩耗ホースを開示している。さらに、特許文献3は、ポリウレタン系熱可塑性エラストマーやポリエステル系熱可塑性エラストマーに匹敵する耐摩耗性を有する熱可塑性重合体組成物が得られ、この熱可塑性重合体組成物から押出成形などにより成形加工する技術を開示している。
 しかしながら、これらのホースは管肉材料に熱可塑性エラストマーを用いることで軽量化を達成することはできるが、当該ホースを高圧ポンプに接続して使用した時に流体の圧力損失が所望の水準に達しておらず改善の余地がある。
 さらに、特許文献4は、主に空調用のダクトホースに関するものであるが、特許文献2と同様に、管内に凹凸状態が存在することは圧力損失の観点からは好ましくない要素であるとし、管内に凹凸状態が殆ど存在していない可撓性管材の技術を開示している。
 しかしながら、この管内がほぼフラットで、管内に凹凸状態が殆ど存在していない空調用のダクトホースの技術を繊維複合ホースに適応させても、そのホースを高圧ポンプに接続して使用した場合に流体の圧力損失の観点で満足できるものでもなく、改善の余地がある。
Fiber composite hoses have many features such as excellent pressure resistance, wear resistance, and durability, so they are widely used in civil engineering, construction, agriculture, etc. As a hose for supplying and discharging fluids such as these, techniques for further improving wear resistance and durability have been studied.
In particular, in the fields of civil engineering, construction work, and agriculture, transportation by suction of fluids using a high-pressure pump is common, which reduces energy consumption during use and reduces the size and specifications of equipment such as pumps. There is a strong demand. At the same time, in order to reduce the construction days and labor costs, it is required that the hose is lighter and has better operability.
For example, Patent Document 1 discloses a wear-resistant composite hose using a specific rubber material on its inner surface as a hose used for applications requiring pressure resistance and wear resistance, such as for civil engineering. When the hose is connected to a high-pressure pump, it is not satisfactory in terms of fluid pressure loss, and a material having a specific gravity greater than 1 such as polyvinyl chloride is used for the soft resin layer constituting the hose. Therefore, there is a problem that the weight of the hose increases and the operability of the hose is inferior.
Patent Document 2 discloses a flexible pressure-resistant / wear-resistant hose that uses a wear-resistant thermoplastic elastomer on the inner surface of the hose, and the inner surface is substantially flat. Furthermore, Patent Document 3 discloses that a thermoplastic polymer composition having wear resistance comparable to that of a polyurethane-based thermoplastic elastomer or a polyester-based thermoplastic elastomer is obtained, and molding processing is performed from this thermoplastic polymer composition by extrusion molding or the like. The technology to do is disclosed.
However, these hoses can achieve weight reduction by using a thermoplastic elastomer as a tube material, but when the hose is connected to a high pressure pump, the pressure loss of the fluid reaches a desired level. There is room for improvement.
Furthermore, Patent Document 4 is mainly related to a duct hose for air conditioning. Like Patent Document 2, the presence of an uneven state in the pipe is an undesirable element from the viewpoint of pressure loss. Discloses a technique of a flexible tube material in which there is almost no unevenness.
However, even if the duct hose technology for air conditioning where the inside of the pipe is almost flat and there is almost no unevenness in the pipe is applied to the fiber composite hose, the fluid is not used when the hose is connected to a high-pressure pump. This is not satisfactory in terms of pressure loss, and there is room for improvement.
特許第3104962号公報Japanese Patent No. 3104962 特開2010-144808号公報JP 2010-144808 A 特許第5736529号公報Japanese Patent No. 5736529 特開2014-129838号公報JP 2014-129838 A
 本発明の目的は、繊維複合ホースが本来有している優れた特性、特に、耐圧性能、耐摩耗性、耐久性を失わずに、効果的に流体の圧力損失を小さくし、かつ、軽量で作業性に優れた繊維複合ホースを提供することである。 The object of the present invention is to effectively reduce the pressure loss of the fluid without losing the excellent characteristics inherent to the fiber composite hose, in particular, pressure resistance performance, wear resistance, durability, and light weight. It is to provide a fiber composite hose excellent in workability.
 本発明者等は上記の目的を達成すべく鋭意検討した結果、ホース内周面より順に、軟質樹脂層(A)/補強繊維層(B)/外面樹脂層(C)/補強硬質芯材(D)からなり、特定の構造を満たす繊維複合ホースが流体の圧力損失を小さくできることを見出し、本発明を完成させた。
 さらに、軟質樹脂層(A)および外面樹脂層(C)を形成する熱可塑性樹脂の比重を1.0以下とすることで、要求される繊維複合ホースの軽量化を達成した。
As a result of intensive studies to achieve the above object, the present inventors, in order, from the inner peripheral surface of the hose, the soft resin layer (A) / the reinforcing fiber layer (B) / the outer surface resin layer (C) / the reinforced hard core material ( It was found that a fiber composite hose consisting of D) and satisfying a specific structure can reduce the pressure loss of the fluid, thereby completing the present invention.
Furthermore, the required weight reduction of the fiber composite hose was achieved by making specific gravity of the thermoplastic resin which forms a soft resin layer (A) and an outer surface resin layer (C) into 1.0 or less.
 すなわち、本発明は、ホース内周面より順に、軟質樹脂層(A)/補強繊維層(B)/外面樹脂層(C)/補強硬質芯材(D)からなり、以下(1)~(3)の条件を全て満たす繊維複合ホースである。
(1)ホースの長さ方向に展開した際、内側の凸部頂点の繰り返し単位をX(mm)とした時、5mm≦X≦25mmであること、
(2)ホース内側の凸部間の窪みの深度をZ(mm)とし、ホース内径をID(mm)とした時、0.003≦Z/ID≦0.05であること、
(3)軟質樹脂層(A)および外面樹脂層(C)を形成するそれぞれの熱可塑性樹脂の比重が1.0以下であること。
That is, the present invention comprises, in order from the inner peripheral surface of the hose, a soft resin layer (A) / reinforcing fiber layer (B) / outer surface resin layer (C) / reinforced hard core material (D). It is a fiber composite hose that satisfies all the conditions of 3).
(1) When deployed in the length direction of the hose, when X (mm) is the repeating unit of the convex portion on the inner side, 5 mm ≦ X ≦ 25 mm,
(2) When the depth of the recess between the convex portions inside the hose is Z (mm) and the inner diameter of the hose is ID (mm), 0.003 ≦ Z / ID ≦ 0.05,
(3) The specific gravity of each thermoplastic resin forming the soft resin layer (A) and the outer resin layer (C) is 1.0 or less.
 そして、本発明は、軟質樹脂層(A)が、好ましくは芳香族ビニル重合体ブロックおよび(水添)共役ジエン重合体ブロックを有する付加重合体(P)、オレフィン系熱可塑性樹脂および/またはアクリル系重合体(Q)、軟化剤(R)を、以下の重量の範囲で含有することを特徴とする上記の繊維複合ホースである。
20≦(P)≦80
0≦(Q)≦50
0≦(R)≦50
かつ、(P)+(Q)+(R)=100
In the present invention, the soft resin layer (A) is preferably an addition polymer (P) having an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block, an olefinic thermoplastic resin and / or an acrylic. It is said fiber composite hose characterized by containing a type | system | group polymer (Q) and a softening agent (R) in the following weight ranges.
20 ≦ (P) ≦ 80
0 ≦ (Q) ≦ 50
0 ≦ (R) ≦ 50
And (P) + (Q) + (R) = 100
 さらに、本発明は、ホースの内周面より順に、上記した軟質樹脂層(A)とその他の熱可塑性樹脂層(A’)からなる積層構造体である上記の繊維複合ホースを好ましい形態として含む。 Furthermore, this invention contains said fiber composite hose which is a laminated structure which consists of an above-mentioned soft resin layer (A) and another thermoplastic resin layer (A ') in order from the internal peripheral surface of a hose as a preferable form. .
 さらに好ましくは補強硬質芯材(D)がポリプロピレン樹脂またはポリエチレン樹脂からなり、補強硬質芯材(D)間の長さをY(mm)とした時、上記内側の凸部頂点の繰り返し単位X(mm)との関係が0.90≦X/Y≦1.10を満足する上記の繊維複合ホースである。 More preferably, the reinforcing hard core material (D) is made of polypropylene resin or polyethylene resin, and when the length between the reinforcing hard core materials (D) is Y (mm), the repeating unit X ( mm), the above fiber composite hose satisfying 0.90 ≦ X / Y ≦ 1.10.
 本発明の繊維複合ホースは、内面に特定の凹凸形状を有するため、流体の圧力損失が小さくなり、流体の流量低下が少なくすることができるので、例えば、ポンプに接続して使用する場合には、ポンプの発生元圧を上げたり、ポンプ自体の能力を上げる等のエネルギーやコストを無駄に掛ける必要をなくすことが可能となる。同時に、従来の内面層が、水添ポリスチレン系熱可塑性エラストマーおよびポリオレフィン系樹脂を含む混合物、ポリウレタン系熱可塑性エラストマー、ポリアミド系エラストマーなどの耐摩耗性の熱可塑性エラストマー、またはアクリロニトリルブタジエンゴム共重合体などのゴム材からなるホースに比べて耐摩耗性や耐久性と軽量との両立が可能となる。 Since the fiber composite hose of the present invention has a specific uneven shape on the inner surface, the pressure loss of the fluid can be reduced and the decrease in the flow rate of the fluid can be reduced. It is possible to eliminate the need to waste energy and costs, such as increasing the source pressure of the pump or increasing the capacity of the pump itself. At the same time, the conventional inner surface layer is a mixture containing a hydrogenated polystyrene-based thermoplastic elastomer and a polyolefin-based resin, a wear-resistant thermoplastic elastomer such as a polyurethane-based thermoplastic elastomer, a polyamide-based elastomer, or an acrylonitrile butadiene rubber copolymer. It is possible to achieve both wear resistance, durability and light weight as compared with a hose made of a rubber material.
 図1に本発明の一実施態様例を表す繊維複合ホースの全体図と一部断面模式図を示す。図1(拡大断面図2)に示すように本発明の繊維複合ホースは、内周面より順に軟質樹脂層(A)、補強繊維層(B)、外面樹脂層(C)、補強硬質芯材(D)からなる積層成形体である。以下に軟質樹脂層(A)~補強硬質芯材(D)およびホース内側の凹凸形状について詳細に説明する。 FIG. 1 shows an overall view and a partial schematic sectional view of a fiber composite hose representing an embodiment of the present invention. As shown in FIG. 1 (enlarged sectional view 2), the fiber composite hose of the present invention has a soft resin layer (A), a reinforcing fiber layer (B), an outer surface resin layer (C), and a reinforced hard core material in order from the inner peripheral surface. It is a laminated molded body made of (D). Hereinafter, the soft resin layer (A) to the reinforced hard core material (D) and the uneven shape inside the hose will be described in detail.
[ホース内側の凹凸形状]
 本発明の繊維複合ホースは、長さ方向に展開した際、以下の(1)および(2)の条件を満たすものである。
(1)ホースの長さ方向に展開した際、内側の凸部頂点の繰り返し単位をX(mm)とした時、5mm≦X≦25mmである。
(2)ホース内側の凸部間の窪みの深度をZ(mm)とし、ホース内径をID(mm)とした時、0.003≦Z/ID≦0.05である。
[Uneven shape inside hose]
The fiber composite hose of the present invention satisfies the following conditions (1) and (2) when deployed in the length direction.
(1) When deployed in the length direction of the hose, when X (mm) is the repeating unit of the convex portion on the inner side, 5 mm ≦ X ≦ 25 mm.
(2) When the depth of the depression between the convex portions inside the hose is Z (mm) and the inner diameter of the hose is ID (mm), 0.003 ≦ Z / ID ≦ 0.05.
 内側の凸部頂点の繰り返し単位X(mm)は、5mm≦X≦25mmの等間隔で構成されていることが重要である。そして、内側の凸部頂点の繰り返し単位X(mm)は、ホース内径ID(mm)の大きさによって上記した範囲で適切な値をとることができる。例えば、ホース内径ID(mm)が25mmの時には繰り返し単位X(mm)は5~8mmの範囲が好適であり、50mmの時には繰り返し単位X(mm)は9~12mmの範囲が好適であり、75mmならば繰り返し単位X(mm)は11~14mmの範囲が好適であり、100mmならば繰り返し単位X(mm)は14~18mmが好適であり、200mmならば繰り返し単位X(mm)は22~25mmが好適である。
 また、内側の凸部頂点の繰り返し単位X(mm)が5mm未満であるか、または、25mmを超える場合は、流体の圧力損失が大きくなる。
It is important that the repeating unit X (mm) of the inner convex portion apex is configured at equal intervals of 5 mm ≦ X ≦ 25 mm. And the repeating unit X (mm) of the convex portion apex on the inner side can take an appropriate value in the above-described range depending on the size of the hose inner diameter ID (mm). For example, when the hose inner diameter ID (mm) is 25 mm, the repeat unit X (mm) is preferably in the range of 5 to 8 mm, and when 50 h, the repeat unit X (mm) is preferably in the range of 9 to 12 mm, and 75 mm. Then, the repeating unit X (mm) is preferably in the range of 11 to 14 mm, the repeating unit X (mm) is preferably 14 to 18 mm if it is 100 mm, and the repeating unit X (mm) is 22 to 25 mm if it is 200 mm. Is preferred.
Further, when the repeating unit X (mm) at the apex of the inner convex portion is less than 5 mm or exceeds 25 mm, the pressure loss of the fluid increases.
 内側の凸部頂点の繰り返し単位X(mm)は、長さ方向に展開したホースの断面形状を拡大倍率が8倍以上のマイクロスコープまたは目盛付きルーペで観察し、その凸部頂点間の距離を測定する方法で求めることができる。 The repeating unit X (mm) of the convex part on the inside is the cross-sectional shape of the hose deployed in the length direction, observed with a microscope with a magnification of 8 times or more or a magnifying loupe, and the distance between the convex vertices It can be obtained by a measuring method.
 次に、ホース内側の凸部間の窪みの深度Z(mm)は、ホース内径をID(mm)とした時、0.003≦Z/ID≦0.05の範囲にある。
 ホース内側の凸部間の窪みの深度Z(mm)がこの範囲にある繊維複合ホースは、流体の圧力損失が小さくなる。
 しかし、窪みの深度Z(mm)とホース内径ID(mm)との関係Z/IDが0.003未満となる場合は、管内を指先で触れて観察しても内面がほぼフラットで、凹凸状態が殆ど存在していないことが分かると共に、流体の圧力損失が大きくなり、流体を流す際の抵抗が増えるため適切でない。また、窪みの深度Z(mm)とホース内径ID(mm)との関係Z/IDが0.05を超える場合には、流体の圧力損失が大きくなり、流体を流す際の抵抗が増えるため適切でない。
 窪みの深度Z(mm)とホース内径ID(mm)との関係Z/IDは、0.003から0.03の範囲であることが好適であり、さらに、0.005から0.03にあることがより好適である。
Next, the depth Z (mm) of the recess between the convex portions on the inner side of the hose is in the range of 0.003 ≦ Z / ID ≦ 0.05 when the inner diameter of the hose is ID (mm).
In the fiber composite hose in which the depth Z (mm) of the depression between the convex portions inside the hose is in this range, the pressure loss of the fluid becomes small.
However, if the relationship between the depth Z (mm) of the dent and the hose inner diameter ID (mm) is less than 0.003, the inner surface is almost flat even when touched and observed inside the tube with a fingertip. Is not suitable because the pressure loss of the fluid increases and the resistance when flowing the fluid increases. In addition, when the relationship between the depth Z (mm) of the dent and the hose inner diameter ID (mm) is greater than 0.05, the pressure loss of the fluid increases, and the resistance when flowing the fluid increases. Not.
The relationship Z / ID between the recess depth Z (mm) and the hose inner diameter ID (mm) is preferably in the range of 0.003 to 0.03, and more preferably in the range of 0.005 to 0.03. Is more preferred.
 ホース内側の凸部間の窪みの深度Z(mm)は、長さ方向に展開したホースの断面形状を拡大倍率が10倍のマイクロスコープで観察し、3つ以上の凸部の頂点を結んだ線と2つ以上の凹部の最も深い点を結んだ線との間の距離を測定する方法で求めることができる。
 また、ホース内径ID(mm)は、最小目盛り0.1mmのテーパーゲージをホース内部に挿入して測定した値(ホース内面で向かい合う凸部間の距離)に、上記で求めた窪みの深度Z(mm)の2倍の値を加えることで求めることができる。
The depth Z (mm) of the recess between the convex portions on the inner side of the hose was obtained by observing the cross-sectional shape of the hose developed in the length direction with a microscope having a magnification of 10 times and connecting the apexes of three or more convex portions. It can be determined by measuring the distance between the line and the line connecting the deepest points of two or more recesses.
In addition, the inner diameter ID (mm) of the hose is a value obtained by inserting a taper gauge having a minimum graduation of 0.1 mm into the hose (the distance between the convex portions facing each other on the inner surface of the hose), and the depth Z ( mm) and adding a value twice as large.
[熱可塑性樹脂の比重]
 本発明の繊維複合ホースを構成する軟質樹脂層(A)および外面樹脂層(C)を形成する熱可塑性樹脂は比重が1.0以下である。
[Specific gravity of thermoplastic resin]
The thermoplastic resin forming the soft resin layer (A) and the outer resin layer (C) constituting the fiber composite hose of the present invention has a specific gravity of 1.0 or less.
 熱可塑性樹脂の比重は、JIS K7112(「プラスチック-非発泡プラスチックの密度及び比重の測定方法」)のA法(水上置換法)に準拠して求めることができる。 The specific gravity of the thermoplastic resin can be determined in accordance with Method A (water displacement method) of JIS K7112 (“Plastics—Method for Measuring Density and Specific Gravity of Non-foamed Plastic”).
 内側の凸部頂点の繰り返し単位X(mm)と補強硬質芯材(D)間の長さY(mm)の関係は、0.90≦X/Y≦1.10の範囲にあることが好ましい。このX/Yの値は、ホースの可撓性、径方向の強度、耐圧性能などの観点から0.93~1.07の範囲であることがより好ましく、0.95~1.05の範囲であることが最も好ましい。そして、このX/Yの値が0.90未満である場合、または1.10を超える場合には、流体の圧力損失が大きくなり、流体を流す際の抵抗が増えるため適切でない。
 補強硬質芯材(D)間の長さY(mm)は、ホース外面で連続する補強硬質芯材10個分の長さを最小目盛り0.05mmのノギスで測定し、その値を芯材の個数10で除することで求めることができる。
The relationship between the repeating unit X (mm) at the apex of the inner convex portion and the length Y (mm) between the reinforcing hard core material (D) is preferably in the range of 0.90 ≦ X / Y ≦ 1.10. . The value of X / Y is more preferably in the range of 0.93 to 1.07, and more preferably in the range of 0.95 to 1.05 from the viewpoints of flexibility, radial strength, pressure resistance, etc. of the hose. Most preferably. If the value of X / Y is less than 0.90 or exceeds 1.10, the pressure loss of the fluid increases, and the resistance when flowing the fluid increases.
The length Y (mm) between the reinforced hard core materials (D) was measured with calipers having a minimum scale of 0.05 mm, and the value of the length of 10 reinforced hard core materials continuous on the outer surface of the hose. It can be obtained by dividing by the number of 10.
[軟質樹脂層(A)]
 本発明の軟質樹脂層(A)は、ホースの操作性の点から、JIS K6253(「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」)に準拠したショアA硬度で40~90の範囲であることが好ましく、55~70の範囲がより好ましい。ショアA硬度が40未満であると、ホースのキンク(折れ・潰れ)などの問題があり、一方、90より大きいとホース操作性の低下などの問題がある。
[Soft resin layer (A)]
The soft resin layer (A) of the present invention has a Shore A hardness of 40 to 90 in accordance with JIS K6253 (“Method of testing hardness of vulcanized rubber and thermoplastic rubber”) from the viewpoint of operability of the hose. Some are preferred, and the range of 55 to 70 is more preferred. If the Shore A hardness is less than 40, there is a problem such as kink (breaking or crushing) of the hose. On the other hand, if the Shore A hardness is more than 90, there is a problem such as deterioration of the hose operability.
 本発明の軟質樹脂層(A)は、比重が1.0以下であること、および流体の圧力損失を小さくする観点から、芳香族ビニル重合体ブロックおよび(水添)共役ジエン重合体ブロックを有する付加重合体(P)、オレフィン系熱可塑性樹脂および/またはアクリル系重合体(Q)、軟化剤(R)、を20≦(P)≦80、0≦(Q)≦50、0≦(R)≦50かつ(P)+(Q)+(R)=100である重量の範囲で含有する熱可塑性樹脂であることが好ましい。さらに好ましくは、45≦(P)≦75、25≦(Q)≦35、0≦(R)≦20かつ(P)+(Q)+(R)=100である。 The soft resin layer (A) of the present invention has an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block from the viewpoint of having a specific gravity of 1.0 or less and reducing the pressure loss of the fluid. Addition polymer (P), olefinic thermoplastic resin and / or acrylic polymer (Q), softener (R), 20 ≦ (P) ≦ 80, 0 ≦ (Q) ≦ 50, 0 ≦ (R ) ≦ 50 and (P) + (Q) + (R) = 100 is preferable. More preferably, 45 ≦ (P) ≦ 75, 25 ≦ (Q) ≦ 35, 0 ≦ (R) ≦ 20 and (P) + (Q) + (R) = 100.
 本発明で使用される芳香族ビニル重合体ブロックおよび(水添)共役ジエン重合体ブロックを有する付加重合体(P)における芳香族ビニル重合体ブロックを形成する芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、β-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、2,4,6-トリメチルスチレン、4-プロピルスチレン、t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、ビニルアントラセン、インデン、アセトナフチレン、モノフロオロスチレン、ジフルオロスチレン、モノクロロスチレン、メトキシスチレンなどの芳香族ビニル化合物を挙げることができ、芳香族ビニル重合体ブロックはこれらの1種又は2種以上から形成されていることができる。その中でも、芳香族ビニル重合体ブロックはα-メチルスチレンおよび/またはスチレンに由来する構造単位より主としてなっていることが好適であり、流体の圧力損失を小さくする観点でα-メチルスチレンに由来する構造単位より主としてなっていることがより好適である。 As the aromatic vinyl compound forming the aromatic vinyl polymer block in the addition polymer (P) having the aromatic vinyl polymer block and the (hydrogenated) conjugated diene polymer block used in the present invention, for example, styrene , Α-methylstyrene, β-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, 2,4,6-trimethylstyrene, 4-propylstyrene, t-butyl Styrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, vinylanthracene, indene, acetonaphthylene, monofluorostyrene, difluorostyrene, monochloro Such as styrene, methoxystyrene, etc. An aromatic vinyl compound can be mentioned, and the aromatic vinyl polymer block can be formed of one or more of these. Among them, the aromatic vinyl polymer block is preferably mainly composed of α-methylstyrene and / or a structural unit derived from styrene, and is derived from α-methylstyrene from the viewpoint of reducing the pressure loss of the fluid. It is more preferable that the main unit is a structural unit.
 芳香族ビニル重合体ブロックおよび(水添)共役ジエン重合体ブロックを有する付加重合体(P)における(水添)共役ジエン重合体ブロックを形成する共役ジエン化合物としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンなどを挙げることができ、(水添)共役ジエン重合体ブロックは、前記した共役ジエン化合物の1種又は2種以上から形成されていることができる。(水添)共役ジエン重合体ブロックが2種以上の共役ジエン化合物に由来する構造単位を含有している場合は、それらの結合形態はランダム、テーパー、一部ブロック状のいずれであっても良いし、さらにそれらが混在していても良い。
 (水添)共役ジエン重合体ブロックは、その共役ジエン化合物由来の構造単位は水素添加されていても又は水素添加されていなくても良いが、耐久性などが良好になる点から、その50モル%以上、更には60モル%以上、特に80モル%以上が水素添加されていることが好ましい。
The conjugated diene compound that forms the (hydrogenated) conjugated diene polymer block in the addition polymer (P) having an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block includes 1,3-butadiene, -Methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, etc. (hydrogenated) conjugated diene polymer The block may be formed from one or more of the conjugated diene compounds described above. (Hydrogenated) When the conjugated diene polymer block contains structural units derived from two or more conjugated diene compounds, their bonding form may be random, tapered or partially blocky. Furthermore, they may be mixed.
The (hydrogenated) conjugated diene polymer block has a structure unit derived from the conjugated diene compound which may be hydrogenated or non-hydrogenated. % Or more, more preferably 60 mol% or more, and particularly preferably 80 mol% or more are hydrogenated.
 本発明の繊維複合ホース内面における凹凸形状の形成し易さの観点から、芳香族ビニル重合体ブロックおよび(水添)共役ジエン重合体ブロックを有する付加重合体(P)における(水添)共役ジエン重合体ブロックは、水素添加されていてもよいイソプレン重合体ブロック、水素添加されていてもよいブタジエン重合体ブロック、および水素添加されていてもよいイソプレンとブタジエンの共重合体ブロックから選ばれる少なくとも1種の重合体ブロックであることが好ましい。
 芳香族ビニル重合体ブロックおよび(水添)共役ジエン重合体ブロックを有する付加重合体(P)における芳香族ビニル重合体ブロックと(水添)共役ジエン重合体ブロックとの結合形態は特に制限されず、直鎖状、分岐状、放射状、又はそれらが組み合わさった結合形態のいずれであってもよく、そのうちでも直鎖状の結合形態であることが好ましい。
 芳香族ビニル重合体ブロックおよび(水添)共役ジエン重合体ブロックを有する付加重合体(P)が直鎖上のブロック共重合体からなる場合には、その芳香族ビニル重合体ブロックをS、(水添)共役ジエン重合体ブロックをJで表した時に、式;(S-J)-S、(S-J)、J-(S-J)[式中、m、nおよびpはそれぞれ1以上の整数を示す]などで表されるブロック共重合体からなることができる。その中でも、芳香族ビニル重合体ブロックおよび(水添)共役ジエン重合体ブロックを有する付加重合体(P)は、2個以上の芳香族ビニル重合体ブロックと1個以上の(水添)共役ジエン重合体ブロック)が直鎖上に結合したブロック共重合体、特に式;S-J-Sで表されるトリブロック共重合体からなることが、本発明の繊維複合ホース内面における凹凸形状を確実に発現することができ、効果的に流体の圧力損失を小さくすることができる点から好ましい。
The (hydrogenated) conjugated diene in the addition polymer (P) having an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block from the viewpoint of easy formation of the irregular shape on the inner surface of the fiber composite hose of the present invention. The polymer block is at least one selected from an isoprene polymer block that may be hydrogenated, a butadiene polymer block that may be hydrogenated, and a copolymer block of isoprene and butadiene that may be hydrogenated. A seed polymer block is preferred.
The bonding form of the aromatic vinyl polymer block and the (hydrogenated) conjugated diene polymer block in the addition polymer (P) having the aromatic vinyl polymer block and the (hydrogenated) conjugated diene polymer block is not particularly limited. , Linear, branched, radial, or a combination form in which they are combined, and among them, a linear combination form is preferable.
When the addition polymer (P) having an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block is composed of a linear block copolymer, the aromatic vinyl polymer block is represented by S, ( (Hydrogenated) When the conjugated diene polymer block is represented by J, the formula: (SJ) m -S, (SJ) n , J- (SJ) P [wherein m, n and p Each represents an integer of 1 or more] and the like. Among them, the addition polymer (P) having an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block has two or more aromatic vinyl polymer blocks and one or more (hydrogenated) conjugated diene. A block copolymer in which a polymer block) is bonded in a straight chain, particularly a triblock copolymer represented by the formula: SJS, ensures the uneven shape on the inner surface of the fiber composite hose of the present invention. It is preferable from the viewpoint that the pressure loss of the fluid can be effectively reduced.
 本発明の軟質樹脂層(A)で必要に応じて使用されるアクリル系重合体(Q)は、メタクリル酸メチルの単独重合体、またはメタクリル酸メチルを主成分として他の共重合性を有する単量体を共重合させた共重合体である。他の共重合性を有する単量体としては、例えばアクリル酸またはその金属塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸s-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシルなどのアクリル酸エステル;メタクリル酸またはその金属塩;メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸s-ブチル、メタクリル酸t-ブチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸グリシジル、メタクリル酸シクロヘキシルなどのメタクリル酸エステル;酢酸ビニル;スチレン、α-メチルスチレン、p-メチルスチレンなどの芳香族ビニル化合物;無水マレイン酸;N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミドなどのマレイミド系化合物などが挙げられる。
 これらをメタクリル酸メチルと共重合させる場合は、1種を単独で使用してもよいし、2種以上の化合物を併用して共重合させてもよい。メタクリル酸と他の共重合性を有する単量体を共重合させた共重合体においては、他の共重合性を有する単量体の比率はアクリル系重合体の持つ性質を大きく変化させない比率であることが好ましく、30重量%以下であることが好ましい。
The acrylic polymer (Q) used as necessary in the soft resin layer (A) of the present invention is a homopolymer of methyl methacrylate or a single copolymer having other copolymerizability mainly composed of methyl methacrylate. It is a copolymer obtained by copolymerizing a monomer. Examples of other copolymerizable monomers include acrylic acid or a metal salt thereof; methyl acrylate, ethyl acrylate, n-butyl acrylate, s-butyl acrylate, t-butyl acrylate, acrylic acid 2 Acrylic esters such as ethylhexyl; methacrylic acid or metal salts thereof; ethyl methacrylate, n-butyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, 2-hydroxyethyl methacrylate, glycidyl methacrylate, methacrylic acid Methacrylic acid esters such as cyclohexyl; Vinyl acetate; Aromatic vinyl compounds such as styrene, α-methylstyrene and p-methylstyrene; Maleic anhydride; Maleimides such as N-methylmaleimide, N-phenylmaleimide and N-cyclohexylmaleimide Compounds etc. It is below.
When these are copolymerized with methyl methacrylate, one type may be used alone, or two or more types of compounds may be used in combination. In a copolymer obtained by copolymerizing methacrylic acid and another copolymerizable monomer, the ratio of the other copolymerizable monomer is a ratio that does not greatly change the properties of the acrylic polymer. It is preferable that it is 30% by weight or less.
 アクリル系重合体(Q)は、溶液重合、乳化重合、懸濁重合などの一般の重合手法によって製造が可能であり、その製造方法には特に制限はない。また、本発明では、アクリル系重合体(Q)として公知のものを特に制限なく用いることもできる。例えば、三菱レイヨン(株)製の「アクリペット(ACRYPET)」(商品名)、旭化成(株)製の「デルペット(DELPET)」(商品名)、住友化学工業(株)製の「スミペックス(SUMIPEX)」(商品名)、(株)クラレ製の「パラペット(PARAPET)」(商品名)などを挙げることができる。 The acrylic polymer (Q) can be produced by a general polymerization technique such as solution polymerization, emulsion polymerization or suspension polymerization, and the production method is not particularly limited. Moreover, in this invention, a well-known thing can also be used without a restriction | limiting especially as an acrylic polymer (Q). For example, “ACRYPET” (trade name) manufactured by Mitsubishi Rayon Co., Ltd., “DELPET” (trade name) manufactured by Asahi Kasei Co., Ltd., “Sumipex” manufactured by Sumitomo Chemical Co., Ltd. (SUMIPEX) "(trade name)," PARAPET "(trade name) manufactured by Kuraray Co., Ltd., and the like.
 一方、本発明の軟質樹脂層(A)で必要に応じて使用されるオレフィン系熱可塑性樹脂(Q)としては、いわゆるポリプロピレン樹脂すなわちプロピレンからなるホモポリマー、プロピレンとエチレンなどとのコポリマーを好適に使用できるが、低密度ポリエチレン、高密度ポリエチレン、直線状低密度ポリエチレンなどのポリエチレン樹脂を使用することもできる。 On the other hand, as the olefinic thermoplastic resin (Q) used as necessary in the soft resin layer (A) of the present invention, a so-called polypropylene resin, that is, a homopolymer made of propylene, a copolymer of propylene and ethylene, etc. is preferably used. Although it can be used, polyethylene resins such as low density polyethylene, high density polyethylene, and linear low density polyethylene can also be used.
 本発明の軟質樹脂層(A)で必要に応じて使用される軟化剤(R)としては、例えばパラフィン系、ナフテン系、芳香族系などの炭化水素系油;落花生油、ロジンなどの植物油;リン酸エステル;低分子量ポリエチレングリコール;流動パラフィン;低分子量ポリエチレン、エチレン-α-オレフィン共重合オリゴマー、液状ポリブテン、液状ポリイソプレンまたはその水素添加物、液状ポリブタジエンまたはその水素添加物などの炭化水素系合成油などの公知の軟化剤を用いることができる。これらは1種類を単独で、または2種類以上を併用してもよい。これらの中でも、本発明においては、軟化剤(R)としてパラフィン系の炭化水素系油やエチレン-α-オレフィン共重合オリゴマーなどの炭化水素系合成油が好適に使用される。 Examples of the softening agent (R) used as necessary in the soft resin layer (A) of the present invention include hydrocarbon oils such as paraffinic, naphthenic, and aromatic; vegetable oils such as peanut oil and rosin; Low molecular weight polyethylene glycol; liquid paraffin; low molecular weight polyethylene, ethylene-α-olefin copolymer oligomer, liquid polybutene, liquid polyisoprene or hydrogenated product thereof, hydrocarbon synthesis such as liquid polybutadiene or hydrogenated product thereof Known softening agents such as oil can be used. These may be used alone or in combination of two or more. Among these, in the present invention, hydrocarbon-based synthetic oils such as paraffin-based hydrocarbon oils and ethylene-α-olefin copolymer oligomers are preferably used as the softening agent (R).
 本発明の繊維複合ホースを形成する軟質樹脂層(A)の厚みは、ホースが軽量で耐久性を有する観点から、ホース軟質部全体の肉厚[軟質樹脂層(A)の厚みと外面樹脂層(C)の厚みとの和]の10~70%であることが好ましい。軟質樹脂層(A)の厚みがホース軟質部全体の肉厚に対して10%未満であるまたは、70%より大きい場合は、耐久性が損なわれるなどの問題があるため好ましくない。より好ましくは33~60%である。 The thickness of the soft resin layer (A) forming the fiber composite hose of the present invention is the thickness of the entire soft portion of the hose [thickness of the soft resin layer (A) and the outer surface resin layer from the viewpoint that the hose is lightweight and durable. 10 to 70% of the sum of (C) thickness]. When the thickness of the soft resin layer (A) is less than 10% or more than 70% with respect to the thickness of the entire soft portion of the hose, there is a problem such as impaired durability, which is not preferable. More preferably, it is 33 to 60%.
 そして、本発明の繊維複合ホースを形成する軟質樹脂層(A)は、ホースの内周面より順に、上記した軟質樹脂層(A)とその他の熱可塑性樹脂層(A’)からなる積層構造体であってもよい。
 軟質樹脂層(A)がその他の熱可塑性樹脂層(A’)を一部に含んで構成される場合には、それぞれの厚みは(A):(A’)=3~10:7~0の範囲にあることが好ましい。軟質樹脂層(A)の厚みが、上記の範囲を下回る場合には、ホースの耐久性が低下する傾向がある。
And the soft resin layer (A) which forms the fiber composite hose of this invention is a laminated structure which consists of an above-described soft resin layer (A) and another thermoplastic resin layer (A ') in order from the inner peripheral surface of a hose. It may be a body.
When the soft resin layer (A) includes a part of the other thermoplastic resin layer (A ′), each thickness is (A) :( A ′) = 3 to 10: 7 to 0 It is preferable that it exists in the range. When the thickness of the soft resin layer (A) is less than the above range, the durability of the hose tends to decrease.
 その他の熱可塑性樹脂層(A’)を構成する熱可塑性樹脂は、前記した軟質樹脂層(A)との接着性または熱融着性に優れる点から、軟質樹脂層(A)と類似した極性を有する熱可塑性エラストマーであることが好ましく、その中でもオレフィン系熱可塑性エラストマーおよび/またはスチレン系熱可塑性エラストマーであることが好ましく、後述する補強硬質芯材(D)との熱融着性、破断伸度などの点からスチレン系熱可塑性エラストマーがより好適である。
 オレフィン系熱可塑性エラストマーとしては、オレフィン系樹脂のマトリックス中にエチレンープロピレンゴム(EPDMやEPMなど)を微分散させた一般的なオレフィン系熱可塑性エラストマーを挙げることができ、またスチレン系熱可塑性エラストマーとしては、スチレンーブタジエンブロック共重合体、スチレンーイソプレンブロック共重合体またはそれらの水素添加物などが挙げられるが、これらに特に限定されるものではない。
The thermoplastic resin constituting the other thermoplastic resin layer (A ′) has a polarity similar to that of the soft resin layer (A) from the viewpoint of excellent adhesiveness or heat-fusibility with the soft resin layer (A). Of these, olefinic thermoplastic elastomers and / or styrenic thermoplastic elastomers are preferable, and heat-fusibility with a reinforced hard core material (D), which is described later, and elongation at break are preferred. Styrenic thermoplastic elastomers are more preferred from the standpoint of degree.
Examples of olefinic thermoplastic elastomers include general olefinic thermoplastic elastomers in which ethylene-propylene rubber (EPDM, EPM, etc.) is finely dispersed in an olefinic resin matrix, and styrene thermoplastic elastomers. Examples thereof include, but are not particularly limited to, a styrene-butadiene block copolymer, a styrene-isoprene block copolymer, or a hydrogenated product thereof.
 その他の熱可塑性樹脂層(A’)は、ホースの操作性の点から、JIS K6253(「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」)に準拠したショアA硬度が40~75の範囲であることが好ましい。ショアA硬度が40未満であると、ホースのキンク(折れ・潰れ)などの問題があり、一方、75より大きいとホースの操作性が低下する。より好ましくはショアA硬度が55~70の範囲である。 The other thermoplastic resin layer (A ′) has a Shore A hardness of 40 to 75 in accordance with JIS K6253 (“Method for testing hardness of vulcanized rubber and thermoplastic rubber”) from the viewpoint of operability of the hose. It is preferable that If the Shore A hardness is less than 40, there is a problem such as kinking (breaking or crushing) of the hose, and if it is greater than 75, the operability of the hose is deteriorated. More preferably, the Shore A hardness is in the range of 55 to 70.
[補強繊維層(B)]
 本発明の補強繊維層(B)を構成する補強繊維は、モノフィラメントまたはマルチフィラメントを網状に編組した補強繊維と、モノフィラメントまたはマルチフィラメントを補強硬質芯材(D)に沿って螺旋状に捲回した補強繊維の2種類からなる。これら補強繊維としては、例えば全芳香族ポリエステルなどの熱可塑性液晶ポリマーからなるポリアリレート繊維やポリアラミド繊維のモノフィラメントまたはマルチフィラメント、あるいはポリエステル繊維のモノフィラメントまたはマルチフィラメント、ポリビニルアルコール繊維のモノフィラメントまたはマルチフィラメントなどが挙げられるが、ポリアリレート繊維やポリアラミド繊維が高強度、低伸度の点で好適である。繊維複合ホースの耐圧性能の観点から、繊維強度は10cN/dtex以上であることが好ましい。
[Reinforcing fiber layer (B)]
Reinforcing fibers constituting the reinforcing fiber layer (B) of the present invention are formed by reinforcing a monofilament or multifilament braided into a net and a monofilament or multifilament spirally wound along the reinforcing hard core (D). It consists of two types of reinforcing fibers. Examples of these reinforcing fibers include polyarylate fibers and polyaramide fibers monofilaments or multifilaments made of thermoplastic liquid crystal polymers such as wholly aromatic polyesters, polyester filament monofilaments or multifilaments, polyvinyl alcohol fibers monofilaments or multifilaments, and the like. Among them, polyarylate fibers and polyaramid fibers are preferable in terms of high strength and low elongation. From the viewpoint of pressure resistance of the fiber composite hose, the fiber strength is preferably 10 cN / dtex or more.
 本発明において、繊維繊度が1,000~30,000dtexの範囲にあるマルチフィラメントを用いて網状に編組した補強繊維と、繊維繊度が1,000~30,000dtexのモノフィラメントを補強硬質芯材(D)に沿って螺旋状に捲回された補強繊維の2種類からなる補強繊維層であることが好適である。網状に編組された補強繊維は編み角度(ホースの長さ方向に引いた水平線と補強繊維とがなす角度)が25~80度であることが望ましく、耐圧性能の点からは30~60度であることがより好ましい。 In the present invention, a reinforced hard core material (D) includes reinforcing fibers braided in a net shape using multifilaments having a fiber fineness in the range of 1,000 to 30,000 dtex, and monofilaments having a fiber fineness of 1,000 to 30,000 dtex. It is preferable that the reinforcing fiber layer is composed of two types of reinforcing fibers that are spirally wound along the surface. Reinforcing fibers braided in a net shape preferably have a knitting angle (angle formed by a horizontal line drawn in the length direction of the hose and the reinforcing fiber) of 25 to 80 degrees, and from the viewpoint of pressure resistance, it is 30 to 60 degrees. More preferably.
 網状に編組された補強繊維は、8~96本編むことが望ましいが、ホースに要求される耐圧性能や内径の大きさによって編み数を適宜設定すればよく、例えば、内径ID(mm)が50mmの繊維複合ホースの編み数は64本程度が好適である。
 補強硬質芯材(D)に沿って螺旋状に編み組んだ補強繊維は、1本の糸をホースの補強硬質芯材(D)に沿うように、5~40mmの範囲の中で一定間隔に捲回されるが、補強硬質芯材(D)間の長さによって補強繊維の間隔を適宜設定すればよく、例えば内径ID(mm)が50mmの繊維複合ホースの間隔は10mm程度が好適である。
It is desirable to knit 8 to 96 reinforcing fibers braided in a net shape, but the number of braids may be appropriately set depending on the pressure resistance required for the hose and the size of the inner diameter. For example, the inner diameter ID (mm) is 50 mm. The number of braids of the fiber composite hose is preferably about 64.
Reinforcing fibers spirally braided along the reinforcing hard core material (D) are arranged at regular intervals within a range of 5 to 40 mm so that one thread is along the reinforcing hard core material (D) of the hose. Although it is wound, the interval between the reinforcing fibers may be appropriately set depending on the length between the reinforcing hard core materials (D). For example, the interval between the fiber composite hoses having an inner diameter ID (mm) of 50 mm is preferably about 10 mm. .
[外面樹脂層(C)]
 本発明の外面樹脂層(C)の厚みは、ホースが軽量で耐久性を有する観点から、ホース軟質部全体の肉厚[軟質樹脂層(A)の厚みと外面樹脂層(C)の厚みとの和]の30~90%であることが好ましく、40~67%であることがより好ましい。外面樹脂層(C)の厚みがホース軟質部全体の肉厚に対して30%未満であるまたは、90%より大きい場合は、ホースの耐久性が損われる問題があるため好ましくない。
[Outer surface resin layer (C)]
The thickness of the outer surface resin layer (C) of the present invention is the thickness of the entire hose soft part [thickness of the soft resin layer (A) and the thickness of the outer surface resin layer (C) from the viewpoint that the hose is light and durable. 30 to 90%, and more preferably 40 to 67%. When the thickness of the outer surface resin layer (C) is less than 30% or more than 90% with respect to the entire thickness of the hose soft part, there is a problem that durability of the hose is impaired, which is not preferable.
 本発明の外面樹脂層(C)を構成する熱可塑性樹脂は、前記した軟質樹脂層(A)またはその他の熱可塑性樹脂層(A’)との接着性または熱融着性に優れる点から、軟質樹脂層(A)又はその他の熱可塑性樹脂(A’)と類似した極性を有する熱可塑性エラストマーであることが好ましく、その中でもオレフィン系熱可塑性エラストマーおよび/またはスチレン系熱可塑性エラストマーであることが好ましく、後述する補強硬質芯材(D)との熱融着性、破断伸度などの点からスチレン系熱可塑性エラストマーがより好適である。
 オレフィン系熱可塑性エラストマーとしては、オレフィン系樹脂のマトリックス中にエチレンープロピレンゴム(EPDMやEPMなど)を微分散させた一般的なオレフィン系熱可塑性エラストマーを挙げることができ、またスチレン系熱可塑性エラストマーとしては、スチレンーブタジエンブロック共重合体、スチレンーイソプレンブロック共重合体またはそれらの水素添加物などが挙げられるが、これらに特に限定されるものではない。
The thermoplastic resin constituting the outer surface resin layer (C) of the present invention is excellent in adhesion or thermal fusion with the above-described soft resin layer (A) or other thermoplastic resin layer (A ′), A thermoplastic elastomer having a polarity similar to that of the soft resin layer (A) or other thermoplastic resin (A ′) is preferable, and among them, an olefin-based thermoplastic elastomer and / or a styrene-based thermoplastic elastomer is preferable. Styrenic thermoplastic elastomers are more preferable from the viewpoints of heat-fusability with the reinforcing hard core material (D), which will be described later, and elongation at break.
Examples of olefinic thermoplastic elastomers include general olefinic thermoplastic elastomers in which ethylene-propylene rubber (EPDM, EPM, etc.) is finely dispersed in an olefinic resin matrix, and styrene thermoplastic elastomers. Examples thereof include, but are not particularly limited to, a styrene-butadiene block copolymer, a styrene-isoprene block copolymer, or a hydrogenated product thereof.
 外面樹脂層(C)は、ホースの操作性の点から、JIS K6253(「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」)に準拠したショアA硬度が40~75の範囲であることが好ましい。ショアA硬度が40未満であると、ホースのキンク(折れ・潰れ)などの問題があり、一方、75より大きいとホースの操作性が低下する。より好ましくはショアA硬度が55~70の範囲である。 The outer surface resin layer (C) has a Shore A hardness in the range of 40 to 75 in accordance with JIS K6253 (“Hardness test method of vulcanized rubber and thermoplastic rubber”) from the viewpoint of operability of the hose. preferable. If the Shore A hardness is less than 40, there is a problem such as kinking (breaking or crushing) of the hose, and if it is greater than 75, the operability of the hose is deteriorated. More preferably, the Shore A hardness is in the range of 55 to 70.
[補強硬質芯材(D)]
 本発明における補強硬質芯材(D)を構成する樹脂は、硬質のオレフィン系樹脂である。補強硬質芯材(D)は、外面樹脂層(C)に内蔵(図4~6)または外面樹脂層(C)の外側に露出させる(図1~3)ように螺旋状に捲回して成形するが、ホースの操作性、曲がり性などの点から、補強硬質芯材(D)の外側に露出していることが好ましい。硬質のオレフィン系樹脂としては特に限定されないが、高密度ポリエチレン(HDPE)、中密度ポリエチレン、低密度ポリエチレン(LDPE)などのポリエチレン樹脂やホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレンなどのポリプロピレン樹脂などを挙げられるが、前記した外面樹脂層(C)との熱融着性、破断強度、押出加工性、汎用性などの点から、ブロックポリプロピレンが好適である。また、硬質のオレフィン系樹脂の硬度は、ホース強度の点から、JIS K7202(「ロックウェル硬度測定試験」)に準拠したRスケールが70~130の範囲であることが好ましい。
[Reinforced hard core material (D)]
The resin constituting the reinforced hard core material (D) in the present invention is a hard olefin resin. Reinforced hard core material (D) is formed by spiral winding so that it is embedded in the outer resin layer (C) (FIGS. 4 to 6) or exposed outside the outer resin layer (C) (FIGS. 1-3). However, it is preferable that it is exposed to the outside of the reinforcing hard core material (D) from the viewpoint of the operability of the hose, the bendability and the like. The hard olefin resin is not particularly limited, and examples thereof include polyethylene resins such as high density polyethylene (HDPE), medium density polyethylene, and low density polyethylene (LDPE), and polypropylene resins such as homopolypropylene, random polypropylene, and block polypropylene. However, block polypropylene is preferable from the viewpoints of heat-fusability with the outer surface resin layer (C), break strength, extrusion processability, versatility, and the like. The hardness of the hard olefin resin is preferably in the range of 70 to 130 on the R scale according to JIS K7202 (“Rockwell hardness measurement test”) from the viewpoint of hose strength.
[繊維複合ホースの製造方法]
 本発明の繊維複合ホースの製造方法としては、例えば円筒状の管と当該管表面に沿って当該管長方向に対して傾斜して位置するスプリング状の回転棒からなる製管機上で行う下記成形方法が挙げられるが、特に限定されるものではない。
 工程(1):軟質樹脂層(A)を構成する熱可塑性樹脂を薄いテープ状に押出成形し、製管機上に螺旋状に捲回し、その隣接する側縁同士を融着することで軟質樹脂層(A)の管状成形物を形成する。
 工程(2):さらに軟質樹脂層(A)に加えてその他の熱可塑性樹脂層(A’)を構成する場合は、その他の熱可塑性樹脂層(A’)を構成する熱可塑性樹脂を工程(1)と同様にテープ状に押出成形し、前記軟質樹脂層(A)を被覆するように捲回することで軟質樹脂層(A)の外側にその他の熱可塑性樹脂層(A’)が積層された管状成形物を成形する。軟質樹脂層(A)およびその他の熱可塑性樹脂層(A’)は、補強繊維層(B)が編組される直前での表面温度が80℃~150℃となるよう、製管機内部および外部からのエアー冷却等による冷却処理を行う。
 工程(3):工程(1)、工程(2)と同じ製管機上において、補強繊維を前記軟質樹脂層(A)またはその他の熱可塑性樹脂層(A’)[軟質樹脂層(A)に加えてその他の熱可塑性樹脂層(A’)を構成する場合]上に網状に編組し、さらに管状成形物の繰り返し単位長と等しい一定の間隔で補強繊維を螺旋状に捲回し、補強繊維層(B)を形成する。
 工程(4):補強繊維層(B)を編み組んだ直後に外面樹脂層(C)を構成する熱可塑性樹脂および補強硬質芯材(D)を外面樹脂層(C)から露出又は被覆するようにテープ状に共押出し、補強繊維層(B)を被覆するように捲回することでホース状成形体を形成する。
 これらの工程で、押出機から押し出されて製管機上で冷却される軟質樹脂層(A)、その他の熱可塑性樹脂層(A’)[軟質樹脂層(A)に加えてその他の熱可塑性樹脂層(A’)を構成する場合]、外面樹脂層(C)および補強硬質芯材(D)の冷却速度を制御することによって、繊維複合ホースの内面の凹凸形状を形成することができる。例えば、上記の工程(4)における外面樹脂層(C)および補強硬質芯材(D)を製管機に捲回する際、ホース状成形品の冷却水の温度、流量、冷却時間等の因子で前記したホース内側の凸部間の窪みの深度Z(mm)とホース内径ID(mm)の関係を表すZ/IDの値を好ましい範囲に制御することができる。具体的には、外面樹脂層(C)および補強硬質芯材(D)が捲回された後のホース状成形品の冷却後の温度が、製管機上で70~100℃の範囲にあることが好ましい。
[Production method of fiber composite hose]
As a method for producing the fiber composite hose of the present invention, for example, the following molding performed on a pipe-making machine comprising a cylindrical tube and a spring-like rotating rod positioned to be inclined with respect to the tube length direction along the tube surface. Although a method is mentioned, it is not specifically limited.
Step (1): The thermoplastic resin constituting the soft resin layer (A) is extruded into a thin tape shape, wound on a pipe making machine in a spiral shape, and the adjacent side edges are fused together to form a soft material. A tubular molded product of the resin layer (A) is formed.
Step (2): Further, in the case of constituting another thermoplastic resin layer (A ′) in addition to the soft resin layer (A), the thermoplastic resin constituting the other thermoplastic resin layer (A ′) is a step ( Other thermoplastic resin layers (A ′) are laminated on the outside of the soft resin layer (A) by extruding into a tape shape in the same manner as in 1) and winding so as to cover the soft resin layer (A). The formed tubular molded product is molded. The soft resin layer (A) and the other thermoplastic resin layers (A ′) are arranged inside and outside the pipe making machine so that the surface temperature immediately before the reinforcing fiber layer (B) is braided is 80 ° C. to 150 ° C. Cooling process by air cooling etc. is performed.
Step (3): On the same pipe making machine as in step (1) and step (2), the reinforcing fiber is replaced with the soft resin layer (A) or other thermoplastic resin layer (A ′) [soft resin layer (A). When the other thermoplastic resin layer (A ′) is formed in addition to the above], the reinforcing fibers are spirally wound at regular intervals equal to the repeating unit length of the tubular molded product. A layer (B) is formed.
Step (4): Immediately after braiding the reinforcing fiber layer (B), the thermoplastic resin and the reinforcing hard core material (D) constituting the outer resin layer (C) are exposed or covered from the outer resin layer (C). A hose-like molded body is formed by coextrusion into a tape shape and winding so as to cover the reinforcing fiber layer (B).
In these steps, the soft resin layer (A) extruded from the extruder and cooled on the pipe making machine, other thermoplastic resin layers (A ′) [other thermoplastic resins in addition to the soft resin layer (A) When the resin layer (A ′) is configured], by controlling the cooling rate of the outer surface resin layer (C) and the reinforced hard core material (D), the uneven shape of the inner surface of the fiber composite hose can be formed. For example, when winding the outer surface resin layer (C) and the reinforced hard core material (D) in the above step (4) to a pipe making machine, factors such as the temperature, flow rate, and cooling time of the cooling water of the hose-shaped molded product The value of Z / ID representing the relationship between the depth Z (mm) of the depression between the convex portions inside the hose and the hose inner diameter ID (mm) can be controlled within a preferable range. Specifically, the temperature after cooling of the hose-shaped molded product after the outer surface resin layer (C) and the reinforced hard core material (D) are wound is in the range of 70 to 100 ° C. on the pipe making machine. It is preferable.
 本発明の繊維複合ホースは、流体の圧力損失が小さいのみならず、耐圧性能、耐摩耗性、耐久性にも優れ、軽量であるので、例えば、土木工事、建築工事、農業、漁業、あるいは原子力発電所などで、水のみならず粉体または粉体の混合した水の輸送用として使用することができる。 The fiber composite hose of the present invention is not only small in pressure loss of fluid, but also excellent in pressure resistance, wear resistance, durability and light weight. For example, civil engineering work, building work, agriculture, fishery, or nuclear power It can be used for transporting not only water but also powder or mixed water of powder at a power plant or the like.
 以下に、本発明について実施例などを挙げてより具体的に説明するが、本発明はそれらの記載によって何ら限定されるものではない。
 なお、以下の実施例および比較例において、各種物性の測定および評価は次のようにして行った。
Hereinafter, the present invention will be described more specifically with reference to examples and the like, but the present invention is not limited to the description.
In the following examples and comparative examples, various physical properties were measured and evaluated as follows.
<圧力損失;直管時摩擦損失係数(λ)の測定>
長さ3mのホースを直管状に設置し、その片方の端末に送排風機((株)スイデン製「SJF-250-2」)を取り付けると共に、ホースの両端部から0.5m内側の箇所にφ8mmの穴をあけて差圧計を取り付ける。次に、送排風機から発生する風量を段階的に変化させ、その際の圧力差△P(Pa)と相当流速V(m/秒)を測定する。
上記(1)の方法で測定した相当流速V(m/秒)とホースの断面積A(m)の値を用いて通気量Q(m/時間)の値を式(1)に従って算出する。
     式(1)  通気量Q=3,600×V×A
 上記(2)で算出された通気量Q(m/時間)の値と圧力差△P(Pa)の値から通気率a(m/時間/Pa1/2)の値を式(2)に従って算出する。
     式(2)  通気率a=△P1/2/Q
 上記(3)で算出された通気率a(m/時間/Pa1/2)の値を用いて圧力損失係数ζを式(3)に従って算出する。
     式(3)  圧力損失係数ζ=2/[ρ(a/3,600)] 
 なお、ρは空気密度(kg/m)を表す。
上記(4)で算出された圧力損失係数ζを用いて直管時の摩擦損失係数λを式(4)に従って算出する。
     式(4)  摩擦損失係数λ=(ID×ζ)/L 
 なお、IDはホース内径(m)で、Lはホース長(m)を表す。
(6)直管時の摩擦損失係数λは、以下の基準によって評価した。
 ◎:0.020<λ≦0.045(流体と内管面との摩擦が小さく、流体の圧力損失は殆どない)
 ○:0.045<λ≦0.060(流体と内管面との摩擦は多少あるが、ホースを使用する際に流体の圧力損失は問題ない)
 △:0.060<λ≦0.080(流体と内管面との摩擦があり、ホースを使用する際に流体の圧力損失による流量低下が認められる)
 ×:0.080<λ(流体と内管面との摩擦が大きいので、ホースを使用する際に流体の圧力損失も大きくなり、ホースの使用に適さない)
<Pressure loss: Measurement of friction loss coefficient (λ) for straight pipe>
A 3m long hose is installed in a straight tube, and an air blower ("SJF-250-2" manufactured by Suiden Co., Ltd.) is attached to one end of the hose, and 0.5m inside from both ends of the hose. Make a hole of φ8mm and attach a differential pressure gauge. Next, the air volume generated from the air blower is changed stepwise, and the pressure difference ΔP (Pa) and the corresponding flow velocity V (m / sec) at that time are measured.
Using the equivalent flow velocity V (m / sec) measured by the method (1) and the cross-sectional area A (m 2 ) of the hose, the value of the air flow rate Q (m 3 / hour) is calculated according to the formula (1). To do.
Formula (1) Ventilation amount Q = 3,600 × V × A
From the value of the air flow rate Q (m 3 / hour) calculated in the above (2) and the pressure difference ΔP (Pa), the value of the air permeability a (m 3 / hour / Pa 1/2 ) ).
Formula (2) Air permeability a = ΔP 1/2 / Q
The pressure loss coefficient ζ is calculated according to the equation (3) using the value of the air permeability a (m 3 / hour / Pa 1/2 ) calculated in the above (3).
Formula (3) Pressure loss coefficient ζ = 2 / [ρ (a / 3,600) 2 ]
Note that ρ represents the air density (kg / m 3 ).
Using the pressure loss coefficient ζ calculated in the above (4), the friction loss coefficient λ in the straight pipe is calculated according to the equation (4).
Formula (4) Friction loss coefficient λ = (ID × ζ) / L
ID represents the hose inner diameter (m), and L represents the hose length (m).
(6) The friction loss coefficient λ in the straight pipe was evaluated according to the following criteria.
A: 0.020 <λ ≦ 0.045 (the friction between the fluid and the inner pipe surface is small, and there is almost no fluid pressure loss)
○: 0.045 <λ ≦ 0.060 (Although there is some friction between the fluid and the inner tube surface, there is no problem with fluid pressure loss when using a hose)
Δ: 0.060 <λ ≦ 0.080 (there is friction between the fluid and the inner tube surface, and a decrease in flow rate due to fluid pressure loss is observed when using a hose)
×: 0.080 <λ (Since the friction between the fluid and the inner pipe surface is large, the pressure loss of the fluid increases when using the hose, which is not suitable for using the hose)
<軽量性:比重測定>
(1)軟質樹脂層(A)および外面樹脂層(C)を構成する熱可塑性樹脂の比重は、JIS K7112(「プラスチック-非発泡プラスチックの密度及び比重の測定方法」)のA法(水上置換法)に準拠し、測定する。
(2)比重は、以下の基準によって評価した。
 ○:比重が1.0以下である。
 ×:比重が1.0を超える。
<Lightweight: Specific gravity measurement>
(1) The specific gravity of the thermoplastic resin constituting the soft resin layer (A) and the outer resin layer (C) is JIS K7112 (“Plastics—Method for Measuring Density and Specific Density of Non-foamed Plastic”) Method A (substitution on water) Law) and measure.
(2) The specific gravity was evaluated according to the following criteria.
○: Specific gravity is 1.0 or less.
X: Specific gravity exceeds 1.0.
<耐圧性能;ホース破裂圧測定試験>
(1)約1mのホースの両端にホース内径に適したSカラー付タケノコ金具((株)三興製作所製「S1口金」)およびアルミ製の円筒状外筒を用いて加締め、一方の端末は栓金具により封止し、反対側の端末は加圧ポンプ(有光工業(株)製)に接続する。
(2)ホースを23℃で加圧する。
(3)ホースに穴や管肉部の亀裂等が発生し、ホース内部の圧力(MPa)が著しく低下する直前の圧力を破裂圧力(MPa)とする。
 耐圧性能は以下の判定基準にて評価した。
○:破裂圧力が4.5MPa以上である
×:破裂圧力が4.5MPa未満である
<Pressure resistance: Hose burst pressure measurement test>
(1) Clamping using an S-colored bamboo shoot fitting (S1 cap manufactured by Sanko Seisakusho Co., Ltd.) suitable for the inner diameter of the hose and an aluminum cylindrical outer cylinder at both ends of an approximately 1 m hose. Is sealed with a stopper fitting, and the terminal on the opposite side is connected to a pressure pump (manufactured by Aritsu Kogyo Co., Ltd.).
(2) Pressurize the hose at 23 ° C.
(3) The pressure immediately before the pressure (MPa) inside the hose significantly decreases due to the occurrence of a hole or crack in the hose in the hose, and the burst pressure (MPa).
The pressure resistance performance was evaluated according to the following criteria.
○: Burst pressure is 4.5 MPa or more ×: Burst pressure is less than 4.5 MPa
<ホース単位重量;単位重量測定>
(1)ホースの長さL(m)をメートル目盛りにより最小1mmの精度で測定する。
(2)このホースの重量m(g)を電子天秤により最小1gの精度で測定する。
(3)ホースの単位重量W(g/m)は、W=m/L(g/m)で算出し、内径ID=50mmのホース成形体で軽量性を比較する(実施例3~6、比較例5~7)。
<Unit weight of hose; unit weight measurement>
(1) The length L (m) of the hose is measured with a precision of a minimum of 1 mm using a meter scale.
(2) The weight m (g) of this hose is measured with an electronic balance with a minimum accuracy of 1 g.
(3) The unit weight W (g / m) of the hose is calculated by W = m / L (g / m), and the lightness is compared with a hose molded body having an inner diameter ID = 50 mm (Examples 3 to 6, Comparative Examples 5-7).
<耐摩耗性;サンドブラスター組込式連続摩耗試験>
(1)内径IDが50mmのホースを摩耗試験装置((株)不二製作所製「ニューマブラスターSDO-F1-F」)にホースの曲げ半径が400mmとなるように取り付け、ホース内部に研削材((株)不二製作所製「フジランダムA36」)を0.45MPaの圧力で循環させる。
(2)10分毎のホースの重量減量△m(g/10分)を連続して6回測定する。
(3)10分間のホースの平均重量減量△m(g/10分)を算出し、耐摩耗性の指標とした。
<Abrasion resistance: Sandblaster built-in continuous wear test>
(1) A hose with an inner diameter ID of 50 mm is attached to a wear test device (“Pneuma Blaster SDO-F1-F” manufactured by Fuji Seisakusho Co., Ltd.) so that the bending radius of the hose is 400 mm. (Fuji Random A36) manufactured by Fuji Seisakusho Co., Ltd. is circulated at a pressure of 0.45 MPa.
(2) The hose weight loss Δm (g / 10 minutes) every 10 minutes is continuously measured 6 times.
(3) An average weight loss Δm (g / 10 minutes) of the hose for 10 minutes was calculated and used as an index of wear resistance.
 実施例および比較例で使用した熱可塑性樹脂等の材料に関する略号および内容を以下に示す。
≪軟質樹脂層(A)、外面樹脂層(C)を構成した熱可塑性樹脂≫
A-1:
 以下のSEBSを50重量%、ACを32重量%およびPWを18重量%の割合で含有する熱可塑性樹脂[ショアA硬度=60A、比重=0.98]
・SEBS:
 ポリ(α-メチルスチレン)ブロック-ポリブタジエンブロック-ポリ(α-メチルスチレン)ブロック型のトリブロック共重合体の水素添加物[数平均分子量=78,700、スチレン含有量=33重量%、ポリブタジエンブロックにおける水素添加率=98モル%、ポリブタジエンブロックにおける1,4-結合量=60モル%(特許3839773号公報の重合例1に記載された方法に準じてα-メチルスチレンおよびブタジエンを原料として製造)]
・AC:
 アクリル系重合体[(株)クラレ製「パラペットLW-1000P」]
・PW:
 パラフィン系オイル[出光興産(株)製「ダイアナプロセスPW-380」]
A-2:
 以下のHVSISを70重量%およびPPを30重量%の割合で含有する熱可塑性樹脂[ショアA硬度=75A、比重=0.89]
・HVSIS:
 ポリスチレンブロック-ポリイソプレンブロック-ポリスチレンブロック型のトリブロック共重合体の水素添加物[数平均分子量=63,000、スチレン含有量=30重量%、ポリイソプレンブロックにおける水素添加率=90モル%、ポリイソプレンブロックにおける1,4-結合量=45モル%、1,2-結合および3,4-結合量の合計量=55モル%]
 PP-1:
 ランダムポリプロピレン[日本ポリプロ(株)製「ノバテックPP FL02C」]
A-3:
・オレフィン系熱可塑性エラストマー[リケンテクノス(株)製「LQR7167R」(比重=0.87、ショアA硬度=67)]
A-4:
・軟質塩化ビニル樹脂[昭和化成工業(株)製「T-871」(比重=1.2、ショアA硬度=72)]
A-5:
・軟質塩化ビニル樹脂[昭和化成工業(株)製「TC2190-4」(比重=1.2、ショアA硬度=66)]
≪補強繊維層(B)に用いた補強繊維≫
・B-1:ポリアリレート繊維のマルチフィラメント[(株)クラレ製「ベクトランHT」(繊維繊度=1,670dtex)]
・B-2:ポリアリレート繊維のマルチフィラメント[(株)クラレ製「ベクトランHT」(繊維繊度=5,000dtex)]
・B-3:ポリエステル繊維のマルチフィラメント[東レ(株)製「ポリエステル1,670T/1」(繊維繊度=1,670dtex)]
≪補強硬質芯材(D)に用いた樹脂≫
・D-1:ブロックポリプロピレン[日本ポリプロ(株)製「ノバテックPP EA9HD」(Rスケール硬度=100)]
・D-2:高密度ポリエチレン[日本ポリエチレン(株)製「ノバテックHD HY-540」(Rスケール硬度=70)]
・D-3:硬質塩化ビニル樹脂[プラス・テク(株)製「GB439 Y-1」(Rスケール硬度=90)]
 
Abbreviations and contents relating to materials such as thermoplastic resins used in Examples and Comparative Examples are shown below.
≪Thermoplastic resin constituting the soft resin layer (A) and the outer resin layer (C) ≫
A-1:
Thermoplastic resin containing 50% by weight of SEBS, 32% by weight of AC and 18% by weight of PW [Shore A hardness = 60A, specific gravity = 0.98]
・ SEBS:
Poly (α-methylstyrene) block-polybutadiene block-poly (α-methylstyrene) block type hydrogenated triblock copolymer [number average molecular weight = 78,700, styrene content = 33 wt%, polybutadiene block Hydrogenation rate in water = 98 mol%, 1,4-bond amount in polybutadiene block = 60 mol% (produced using α-methylstyrene and butadiene as raw materials according to the method described in Polymerization Example 1 of Japanese Patent No. 3839773) ]
・ AC:
Acrylic polymer [“Parapet LW-1000P” manufactured by Kuraray Co., Ltd.]
・ PW:
Paraffin oil [“Diana Process PW-380” manufactured by Idemitsu Kosan Co., Ltd.]
A-2:
Thermoplastic resin containing 70% by weight of the following HVSIS and 30% by weight of PP [Shore A hardness = 75A, specific gravity = 0.89]
・ HVSIS:
Hydrogenated product of polystyrene block-polyisoprene block-polystyrene block type triblock copolymer [number average molecular weight = 63,000, styrene content = 30% by weight, hydrogenation rate in polyisoprene block = 90 mol%, poly 1,4-bond amount in isoprene block = 45 mol%, total amount of 1,2-bond and 3,4-bond amount = 55 mol%]
PP-1:
Random polypropylene [“Novatec PP FL02C” manufactured by Nippon Polypro Co., Ltd.]
A-3:
Olefin-based thermoplastic elastomer [RQR7167R manufactured by Riken Technos Co., Ltd. (specific gravity = 0.87, Shore A hardness = 67)]
A-4:
-Soft vinyl chloride resin [“T-871” manufactured by Showa Kasei Kogyo Co., Ltd. (specific gravity = 1.2, Shore A hardness = 72)]
A-5:
・ Soft vinyl chloride resin [“TC2190-4” manufactured by Showa Kasei Kogyo Co., Ltd. (specific gravity = 1.2, Shore A hardness = 66)]
≪Reinforcing fiber used for reinforcing fiber layer (B) ≫
B-1: Multifilament of polyarylate fiber [“Vectran HT” manufactured by Kuraray Co., Ltd. (fiber fineness = 1,670 dtex)]
B-2: Multifilament of polyarylate fiber [“Vectran HT” manufactured by Kuraray Co., Ltd. (fiber fineness = 5,000 dtex)]
B-3: Multifilament of polyester fiber [“Polyester 1,670T / 1” manufactured by Toray Industries, Inc. (fiber fineness = 1,670 dtex)]
≪Resin used for reinforced hard core material (D) ≫
D-1: Block polypropylene [“Novatec PP EA9HD” (R scale hardness = 100) manufactured by Nippon Polypro Co., Ltd.]
D-2: High density polyethylene [Nippon Polyethylene Co., Ltd. “Novatech HD HY-540” (R scale hardness = 70)]
D-3: Hard vinyl chloride resin [“PLUS 439 Y-1” (R scale hardness = 90) manufactured by Plus Tech Co., Ltd.]
<実施例1>
熱可塑性樹脂A-1を単軸押出機(40mmφ、シリンダー温度=160~170℃、ダイス温度=210℃)を用いて15mm幅のテープ状に押出成形し、外径が25mmの製管機上に螺旋状に捲回し、その隣接する側縁同士を170℃の温度で熱融着することで、厚み0.5mmである管状成形物を形成した。
(2)続けて、上記(1)と同じ製管機上において、補強繊維B-1の24本を管状成形物上に網状に編組装置(共立(株)製横型ヤーンスパイラルワインダー)を用いて編組し、さらにその上面より7mmの間隔で補強繊維B-1の1本を螺旋状に捲回し、補強繊維層を形成した。
(3)そして、補強繊維層を編み組んだ直後に、上面より熱可塑性樹脂A-2および樹脂D-1を、断面形状が直径3mmの円状で熱可塑性樹脂A-2から露出するようにクロスダイで接合された2つの単軸押出機(熱可塑性樹脂A-2用;65mmφ、シリンダー温度=180~190℃、ダイス温度=230℃、樹脂D-1用;65mmφ、シリンダー温度=200~220℃、ダイス温度=230℃)を用いてテープ状に共押出し、補強繊維層を被覆するように捲回することで、内径IDが25mm、補強硬質芯材(D)間の長さYが7mm、軟質部の総肉厚が1.0mmの寸法を有するホース状成形品を得た。
(4)このホース状成形品を得る工程において、熱可塑性樹脂A-1からなる管状成形物に繊維補強層を編み組する直前の熱可塑性樹脂の温度が120℃になるように製管機内部から12℃の冷風を当てた。また、製管機外部から7℃のチラー水を当てて製管機上のホース状成形品を80℃にした後に、製管機から外して更に冷却することで、内側の凸部頂点の繰り返し単位X(mm)が7mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDが0.026であった。
性能評価を表1に示す。
<Example 1>
The thermoplastic resin A-1 is extruded into a 15 mm wide tape using a single screw extruder (40 mmφ, cylinder temperature = 160 to 170 ° C., die temperature = 210 ° C.), and on a pipe making machine having an outer diameter of 25 mm. A tubular molded product having a thickness of 0.5 mm was formed by spirally winding the adjacent side edges together at a temperature of 170 ° C.
(2) Subsequently, on the same pipe making machine as in (1) above, using a braiding device (Kyoritsu Co., Ltd. horizontal yarn spiral winder) braided 24 reinforcing fibers B-1 on a tubular molded product. Braided, and one reinforcing fiber B-1 was wound spirally at an interval of 7 mm from the upper surface to form a reinforcing fiber layer.
(3) Immediately after braiding the reinforcing fiber layer, the thermoplastic resin A-2 and the resin D-1 are exposed from the upper surface of the thermoplastic resin A-2 in a circular shape having a diameter of 3 mm. Two single screw extruders joined by a cross die (for thermoplastic resin A-2; 65 mmφ, cylinder temperature = 180 to 190 ° C., die temperature = 230 ° C., for resin D-1; 65 mmφ, cylinder temperature = 200 to 220) The inner diameter ID is 25 mm and the length Y between the reinforced hard core materials (D) is 7 mm by coextruding into a tape shape using a ℃, die temperature = 230 ° C. and wound so as to cover the reinforcing fiber layer. A hose-shaped molded article having a total thickness of the soft part of 1.0 mm was obtained.
(4) In the step of obtaining the hose-shaped molded product, the inside of the pipe making machine is set so that the temperature of the thermoplastic resin immediately before braiding the fiber reinforcing layer on the tubular molded product made of the thermoplastic resin A-1 is 120 ° C. To 12 ° C. cold air. Moreover, after applying the chiller water of 7 ° C from the outside of the pipe making machine to 80 ° C, the hose-like molded product on the pipe making machine is removed from the pipe making machine and further cooled, so that the top of the inner convex portion is repeated. The unit X (mm) was 7 mm, and the relationship Z / ID between the depression depth Z (mm) between the convex portions inside the hose and the hose inner diameter ID (mm) was 0.026.
The performance evaluation is shown in Table 1.
<実施例2>
(1)熱可塑性樹脂A-1を<実施例1>に用いた単軸押出機を用いて、40mm幅のテープ状に押出成形し、外径が200mmの製管機上に捲回することで、厚み2.0mmの軟質樹脂層(A)を形成した。
(2)続けて、熱可塑性樹脂A-2を、単軸押出機(50mmφ、シリンダー温度=180~190℃、ダイス温度=230℃)を用いて、40mm幅のテープ状に押出成形し、軟質樹脂層(A)を被覆するように、厚み2.5mmであるその他の熱可塑性樹脂層(A’)を形成した。
(3)そして、補強繊維層(B)、外面樹脂層(C)および、補強硬質芯材(D)は、<実施例1>の(2)、(3)と同様の工程を経て成形する。なお、補強繊維層(B)は、補強繊維B-2を96本編組し、補強繊維B-2を1本螺旋状に捲回することで形成した。また、補強硬質芯材(D)は、樹脂D-2を断面形状が直径9mmの円状とした。最終的に、内径IDが200mm、補強硬質芯材(D)間の長さYが25mm、軟質部の総肉厚が9.0mmであるホース状成形品を得た。
(4)このホース状成形品を得る工程における冷却条件は、<実施例1>と同様とし、熱可塑性樹脂A-1からなる管状成形物に繊維補強層を編み組する直前の熱可塑性樹脂層の温度を129℃、製管機上のホース状成形品の温度を88℃とした。得られたホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は25mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.020であった。性能評価を表2に示す。
<Example 2>
(1) The thermoplastic resin A-1 is extruded into a 40 mm wide tape using the single screw extruder used in <Example 1> and wound on a pipe making machine having an outer diameter of 200 mm. Thus, a soft resin layer (A) having a thickness of 2.0 mm was formed.
(2) Subsequently, the thermoplastic resin A-2 was extruded into a 40 mm width tape using a single screw extruder (50 mmφ, cylinder temperature = 180 to 190 ° C., die temperature = 230 ° C.), and soft. Another thermoplastic resin layer (A ′) having a thickness of 2.5 mm was formed so as to cover the resin layer (A).
(3) Then, the reinforcing fiber layer (B), the outer resin layer (C), and the reinforcing hard core material (D) are molded through the same steps as (2) and (3) in <Example 1>. . The reinforcing fiber layer (B) was formed by braiding 96 reinforcing fibers B-2 and winding one reinforcing fiber B-2 in a spiral shape. The reinforcing hard core material (D) was made of resin D-2 in a circular shape with a cross-sectional shape of 9 mm in diameter. Finally, a hose-shaped molded article having an inner diameter ID of 200 mm, a length Y between the reinforced hard core materials (D) of 25 mm, and a total thickness of the soft part of 9.0 mm was obtained.
(4) The cooling condition in the step of obtaining the hose-shaped molded product is the same as in <Example 1>, and the thermoplastic resin layer just before braiding the fiber reinforcing layer on the tubular molded product made of the thermoplastic resin A-1 Was 129 ° C., and the temperature of the hose-shaped molded product on the pipe making machine was 88 ° C. The repeating unit X (mm) of the convex part on the inner side of the hose-shaped molded product is 25 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID Was 0.020. The performance evaluation is shown in Table 2.
<実施例3>
 <実施例2>と同様の工程を経てホース状成形品を得た。なお、外径が50mmの製管機を用い、軟質樹脂層(A)を形成する熱可塑性樹脂A-1および、その他の熱可塑性樹脂層(A’)を形成する熱可塑性樹脂A-2は30mm幅のテープ状に押出成形し、管状成形物の軟質樹脂層(A)及びその他の熱可塑性樹脂層(A’)の厚みをそれぞれ1.0mmとした。また、続く補強繊維層(B)、外面樹脂層(C)および、補強硬質芯材(D)は、<実施例1>中の(2)、(3)と同様の工程により成形し、補強繊維層(B)は、補強繊維B-2の64本および、補強繊維B-2の1本を螺旋状に捲回することで形成し、補強硬質芯材(D)は樹脂D-1を用い、断面形状が直径5mmの円状とした。最終的に、内径IDが50mm、補強硬質芯材(D)間の長さYが10mm、軟質部の総肉厚が3.5mmであるホース状成形品を得た。
 このホース状成形品を得る工程における冷却条件は、<実施例1>と同様とし、熱可塑性樹脂A-1とその他の熱可塑性樹脂A-2との積層体からなる管状成形物に繊維補強層を編み組する直前の上記した積層体の温度を120℃、製管機上のホース状成形品の温度を80℃とした。
 得られたホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は10mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.008であった。性能評価を表3に示す。
<Example 3>
A hose-shaped molded product was obtained through the same steps as in Example 2. Note that, using a pipe making machine having an outer diameter of 50 mm, the thermoplastic resin A-1 for forming the soft resin layer (A) and the thermoplastic resin A-2 for forming the other thermoplastic resin layer (A ′) are: The film was extruded into a 30 mm width tape, and the thickness of the flexible resin layer (A) and the other thermoplastic resin layer (A ′) of the tubular molded product was 1.0 mm. Further, the subsequent reinforcing fiber layer (B), outer surface resin layer (C), and reinforcing hard core material (D) are molded and reinforced by the same steps as (2) and (3) in <Example 1>. The fiber layer (B) is formed by winding 64 reinforcing fibers B-2 and one reinforcing fiber B-2 in a spiral manner, and the reinforcing hard core material (D) is made of resin D-1. The cross-sectional shape was a circle having a diameter of 5 mm. Finally, a hose-shaped molded product having an inner diameter ID of 50 mm, a length Y between the reinforced hard core materials (D) of 10 mm, and a total thickness of the soft part of 3.5 mm was obtained.
The cooling conditions in the step of obtaining the hose-shaped molded product are the same as those in <Example 1>, and a fiber-reinforced layer is formed on a tubular molded product made of a laminate of the thermoplastic resin A-1 and the other thermoplastic resin A-2. The temperature of the above-mentioned laminate immediately before braiding was 120 ° C., and the temperature of the hose-shaped molded product on the pipe making machine was 80 ° C.
The repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID Was 0.008. Table 3 shows the performance evaluation.
<実施例4>
 <実施例3>と同様の工程を経て成形する。なお、その他の熱可塑性樹脂層(A’)および、外面樹脂層(C)は、それぞれ熱可塑性樹脂A-3を用いた。この時、製管機上のホース状成形品の温度を70℃とした後に、製管機から外して更に冷却した。
 得られたホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は10mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.003であった。性能評価を表3に示す。
<Example 4>
Molding is performed through the same steps as in <Example 3>. The other thermoplastic resin layer (A ′) and the outer resin layer (C) were made of thermoplastic resin A-3, respectively. At this time, after setting the temperature of the hose-shaped molded product on the pipe making machine to 70 ° C., it was removed from the pipe making machine and further cooled.
The repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID Was 0.003. Table 3 shows the performance evaluation.
<実施例5>
 <実施例3>と同様の工程を経て成形する。なお、軟質樹脂層(A)は、熱可塑性樹脂A-2を用い、厚みを2.0mmとした。なお、その他の熱可塑性樹脂層(A’)は積層しなかった。さらに、補強繊維層(B)は、補強繊維B-3を64本編組し、補強繊維B-3を1本螺旋状に捲回することで形成した。
 このホース状成形品を得る工程における冷却条件は、製管機外部からの冷却水の温度を21℃の工場用水とし、製管機上のホース状成形品を100℃にした後に、製管機から外して更に冷却した。得られたホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は10mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.050であった。性能評価を表3に示す。
<Example 5>
Molding is performed through the same steps as in <Example 3>. The soft resin layer (A) was made of thermoplastic resin A-2 and had a thickness of 2.0 mm. In addition, the other thermoplastic resin layer (A ') was not laminated | stacked. Further, the reinforcing fiber layer (B) was formed by braiding 64 reinforcing fibers B-3 and winding one reinforcing fiber B-3 in a spiral shape.
The cooling conditions in the process of obtaining the hose-shaped molded product are as follows: the temperature of the cooling water from the outside of the pipe making machine is 21 ° C., and the hose-like molded product on the pipe making machine is set to 100 ° C. And then cooled further. The repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID Was 0.050. Table 3 shows the performance evaluation.
<実施例6>
 <実施例3>と同様の工程を経て成形する。なお、軟質樹脂層(A)は、熱可塑性樹脂A-2を用い、厚みを2.0mmとした。また、その他の熱可塑性樹脂層(A’)は積層しなかった。さらに、樹脂D-1を、断面形状が直径3mmの円状で熱可塑性樹脂A-2に埋め込まれるようにテープ状に共押出し、補強繊維層(B)を被覆するように捲回した。最終的に、内径IDが50mm、補強硬質芯材(D)間の長さYが10mm、軟質部の総肉厚が7.0mmであるホース状成形品を得た。ホース状成形品の冷却条件は<実施例3>と同様の条件にて実施した。
 得られたホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は10mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.020であった。性能評価を表3に示す。
<Example 6>
Molding is performed through the same steps as in <Example 3>. The soft resin layer (A) was made of thermoplastic resin A-2 and had a thickness of 2.0 mm. The other thermoplastic resin layer (A ′) was not laminated. Further, the resin D-1 was coextruded into a tape shape so as to be embedded in the thermoplastic resin A-2 with a circular shape having a cross section of 3 mm in diameter, and was wound so as to cover the reinforcing fiber layer (B). Finally, a hose-shaped molded article having an inner diameter ID of 50 mm, a length Y between the reinforced hard core materials (D) of 10 mm, and a total thickness of the soft part of 7.0 mm was obtained. The cooling conditions for the hose-shaped molded product were the same as those in <Example 3>.
The repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID Was 0.020. Table 3 shows the performance evaluation.
<比較例1>
 <実施例1>と同様の熱可塑性樹脂、補強繊維、樹脂および工程を経て成形する。この時、製管機のスプリング状の回転棒のひねり角度を緩めることで、補強硬質芯材(D)間の長さYを4mmとした。ホース状成形品の冷却条件は<実施例1>と同様の条件にて実施した。
 最終的に、内径IDが25mm、補強硬質芯材(D)間の長さYが4mm、軟質部の総肉厚が1.0mmのホース状成形品を得た。得られたホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は4mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.027であった。性能評価を表1に示す。
<Comparative Example 1>
It is molded through the same thermoplastic resin, reinforcing fiber, resin and steps as in <Example 1>. At this time, the length Y between the reinforcing hard cores (D) was set to 4 mm by loosening the twist angle of the spring-like rotating rod of the pipe making machine. The cooling conditions for the hose-shaped molded product were the same as those in <Example 1>.
Finally, a hose-shaped molded product having an inner diameter ID of 25 mm, a length Y between the reinforced hard core materials (D) of 4 mm, and a total thickness of the soft part of 1.0 mm was obtained. The repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 4 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID Was 0.027. The performance evaluation is shown in Table 1.
<比較例2>
 <実施例2>と同様の熱可塑性樹脂、補強繊維、樹脂および工程を経て成形する。この時、製管機のスプリング状の回転棒のひねり角度を強くすることで、補強硬質芯材(D)間の長さYを30mmとした。ホース状成形品の冷却条件は<実施例2>と同様の条件にて実施した。
 最終的に内径IDが200mm、補強硬質芯材(D)間の長さYが30mm、軟質部の総肉厚が8.7mmであるホース状成形品を得た。ホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は30mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.014であった。性能評価を表2に示す。
<Comparative Example 2>
It is molded through the same thermoplastic resin, reinforcing fiber, resin and process as in Example 2. At this time, the length Y between the reinforcing hard cores (D) was set to 30 mm by increasing the twist angle of the spring-like rotating rod of the pipe making machine. The cooling conditions for the hose-shaped molded product were the same as those in <Example 2>.
Finally, a hose-shaped molded product having an inner diameter ID of 200 mm, a length Y between the reinforced hard core materials (D) of 30 mm, and a total thickness of the soft part of 8.7 mm was obtained. The repeating unit X (mm) of the convex portion apex inside the hose-shaped molded product is 30 mm, and the relationship Z / ID between the concave depth Z (mm) between the convex portions inside the hose and the hose inner diameter ID (mm) is 0. 014. The performance evaluation is shown in Table 2.
<比較例3>
 <実施例3>と同様の熱可塑性樹脂、補強繊維、樹脂および工程を経て成形する。この時、ホース状成形品の冷却条件は、製管機外部からのチラー水の温度を6℃とし、製管機上のホース状成形品の温度を60℃とした後に、製管機から外して更に冷却した。得られたホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は10mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.002であった。性能評価を表3に示す。
<Comparative Example 3>
It is molded through the same thermoplastic resin, reinforcing fiber, resin and process as in Example 3. At this time, the cooling condition of the hose-shaped molded article is that the temperature of the chiller water from the outside of the pipe making machine is 6 ° C., the temperature of the hose shaped molded article on the pipe making machine is 60 ° C., and then removed from the pipe making machine. And further cooled. The repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID Was 0.002. Table 3 shows the performance evaluation.
<比較例4>
 <実施例5>と同様の熱可塑性樹脂、補強繊維、樹脂および工程を経て成形する。この時、製管機外部からの冷却水の温度を21℃の工場用水とし、製管機上のホース状成形品を110℃にした後に、製管機から外して更に冷却した。得られたホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は10mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.070であった。性能評価を表3に示す。
<Comparative Example 4>
It is molded through the same thermoplastic resin, reinforcing fiber, resin and process as in Example 5. At this time, the temperature of the cooling water from the outside of the pipe making machine was set to 21 ° C. factory water, and the hose-shaped molded product on the pipe making machine was set to 110 ° C. and then removed from the pipe making machine and further cooled. The repeating unit X (mm) of the convex part on the inner side of the obtained hose-shaped molded product is 10 mm, and the relationship between the depth Z (mm) of the concave part between the convex parts on the inner side of the hose and the inner diameter ID (mm) of the hose Z / ID Was 0.070. Table 3 shows the performance evaluation.
<比較例5>
 <実施例3>と同様の工程を経て成形する。なお、軟質樹脂層(A)は、熱可塑性樹脂A-4を30mm幅のテープ状に押出成形し(単軸押出機40mmφ、シリンダー温度=160~170℃、ダイス温度=200℃)、厚みを2.0mmとした。また、補強硬質芯材(D)は、樹脂D-3を断面形状が縦3mm×横4mmの楕円状で、熱可塑性樹脂A-5に埋め込まれるようにテープ状に共押出し、補強繊維層(B)を被覆するように捲回した。最終的に、内径IDが50mm、補強硬質芯材(D)間の長さYが10mm、ホース軟質部の総肉厚が7.0mmであるホース状成形品を得た。ホース状成形品の冷却条件は<実施例3>と同様の条件にて実施した。
 得られたホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は11mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.007であった。性能評価を表3に示す。
<Comparative Example 5>
Molding is performed through the same steps as in <Example 3>. The soft resin layer (A) was obtained by extruding the thermoplastic resin A-4 into a tape having a width of 30 mm (single screw extruder 40 mmφ, cylinder temperature = 160 to 170 ° C., die temperature = 200 ° C.) and having a thickness. 2.0 mm. The reinforced hard core material (D) is a resin D-3 having an elliptical shape with a cross section of 3 mm in length and 4 mm in width, and coextruded in a tape shape so as to be embedded in the thermoplastic resin A-5, and a reinforcing fiber layer ( B) was wound to cover. Finally, a hose-shaped molded product having an inner diameter ID of 50 mm, a length Y between the reinforced hard core materials (D) of 10 mm, and a total thickness of the hose soft part of 7.0 mm was obtained. The cooling conditions for the hose-shaped molded product were the same as those in <Example 3>.
The repeating unit X (mm) of the convex portion inside the obtained hose-shaped molded product is 11 mm, and the relationship between the concave depth Z (mm) between the convex portions inside the hose and the hose inner diameter ID (mm) Z / ID Was 0.007. Table 3 shows the performance evaluation.
<比較例6>
 <比較例5>と同様の工程を経て成形する。なお、補強硬質芯材(D)は、樹脂D-1を用い、外面樹脂層(C)は、熱可塑性樹脂A-2を用いた。ホース状成形品の構造は<実施例3>と同様の寸法とした。最終的に、熱可塑性樹脂A-4と熱可塑性樹脂A-2が容易に剥離する問題点を有するが、内径IDが50mm、補強硬質芯材(D)間の長さYが11mm、ホース軟質部の総肉厚が3.5mmであるホース状成形品を得た。ホース状成形品の冷却条件は<実施例3>と同様の条件にて実施した。
 得られたホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は11mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.007であった。性能評価を表3に示す。
<Comparative Example 6>
Molding is performed through the same steps as in <Comparative Example 5>. The reinforcing hard core material (D) was made of resin D-1, and the outer surface resin layer (C) was made of thermoplastic resin A-2. The structure of the hose-shaped molded product was the same size as in <Example 3>. Finally, there is a problem that the thermoplastic resin A-4 and the thermoplastic resin A-2 easily peel off, but the inner diameter ID is 50 mm, the length Y between the reinforced hard core materials (D) is 11 mm, and the hose softness A hose-shaped molded product having a total wall thickness of 3.5 mm was obtained. The cooling conditions for the hose-shaped molded product were the same as those in <Example 3>.
The repeating unit X (mm) of the convex portion inside the obtained hose-shaped molded product is 11 mm, and the relationship between the concave depth Z (mm) between the convex portions inside the hose and the hose inner diameter ID (mm) Z / ID Was 0.007. Table 3 shows the performance evaluation.
<比較例7>
 <比較例5>と同様の工程を経て成形する。なお、軟質樹脂層(A)は、熱可塑性樹脂A-2を用いた。ホース状成形品の構造は、比較例5と同様の寸法とした。最終的に、熱可塑性樹脂A-2と熱可塑性樹脂A-5が容易に剥離する問題点を有するが、内径IDが50mm、補強硬質芯材(D)間の長さYが11mm、ホース軟質部の総肉厚が7.0mmであるホース状成形品を得た。ホース状成形品の冷却条件は<実施例3>と同様の条件にて実施した。
 得られたホース状成形品の内側の凸部頂点の繰り返し単位X(mm)は11mmで、ホース内側の凸部間の窪み深度Z(mm)とホース内径ID(mm)との関係Z/IDは0.007であった。性能評価を表3に示す。
<Comparative Example 7>
It is molded through the same steps as in <Comparative Example 5>. For the soft resin layer (A), a thermoplastic resin A-2 was used. The structure of the hose-shaped molded product was the same as that of Comparative Example 5. Finally, there is a problem that the thermoplastic resin A-2 and the thermoplastic resin A-5 are easily peeled, but the inner diameter ID is 50 mm, the length Y between the reinforced hard core materials (D) is 11 mm, and the hose is soft. A hose-shaped molded product having a total wall thickness of 7.0 mm was obtained. The cooling conditions for the hose-shaped molded product were the same as those in <Example 3>.
The repeating unit X (mm) of the convex portion inside the obtained hose-shaped molded product is 11 mm, and the relationship between the concave depth Z (mm) between the convex portions inside the hose and the hose inner diameter ID (mm) Z / ID Was 0.007. Table 3 shows the performance evaluation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1、表2および表3の結果から明らかなように、比較例1~4の内側の凸部頂点の繰り返し単位をX(mm)が、X<5mmまたは25mm<Xの場合または、ホース内側の凸部間の窪みの深度をZ(mm)が、ホース内径ID(mm)とした場合、Z/ID<0.003または0.05<Z/IDである繊維複合ホースは、直管時摩擦損失係数λが0.060<λであり、圧力損失が大きくなるため不可となる。また、表3の比較例5~7に関して、軟質樹脂層(A)および/または外面樹脂層(C)を形成する熱可塑性樹脂の比重が1.0を超える場合は、ホース単位重量が大きくなり、操作性が劣り不可となる。 As is apparent from the results of Table 1, Table 2, and Table 3, the repeating unit of the convex vertices on the inner side of Comparative Examples 1 to 4 is the case where X (mm) is X <5 mm or 25 mm <X or the hose inner side When the depth of the recess between the protrusions of Z is the hose inner diameter ID (mm), the fiber composite hose with Z / ID <0.003 or 0.05 <Z / ID The friction loss coefficient λ is 0.060 <λ, which is not possible because the pressure loss increases. Further, regarding Comparative Examples 5 to 7 in Table 3, when the specific gravity of the thermoplastic resin forming the soft resin layer (A) and / or the outer resin layer (C) exceeds 1.0, the unit weight of the hose increases. The operability is inferior and cannot be used.
 本発明の繊維複合ホースは、流体の圧力損失が小さく、かつ耐圧性能、耐摩耗性、耐久性に優れる軽量なホースであるので、例えば、土木工事、建築工事、農業、漁業あるいは原子力発電所などで水のみならず粉体または粉体の混合した水の輸送用として有益に使用できる。 Since the fiber composite hose of the present invention is a lightweight hose that has a small fluid pressure loss and is excellent in pressure resistance, wear resistance, and durability, for example, civil engineering work, building work, agriculture, fishery, nuclear power plant, etc. In addition to water, it can be beneficially used for transporting powder or powder mixed water.
本発明の繊維複合ホースの一例を表す、補強硬質芯材(D)が外面樹脂層(C)から露出している構造の全体図と一部断面の模式図。The whole figure of the structure where the reinforcement hard core material (D) which exposes an example of the fiber composite hose of this invention is exposed from the outer surface resin layer (C), and the schematic diagram of a partial cross section. 図1の断面を拡大した模式図。The schematic diagram which expanded the cross section of FIG. 図1の繊維複合ホースが、軟質樹脂層(A)およびその他の熱可塑性樹脂層(A’)からなる断面を拡大した模式図。The schematic diagram which expanded the cross section which the fiber composite hose of FIG. 1 consists of a soft resin layer (A) and another thermoplastic resin layer (A '). 本発明の繊維複合ホースの一例を表す、補強硬質芯材(D)が外面樹脂層(C)に埋め込まれている構造の全体図と一部断面の模式図。The whole figure and partial schematic diagram of the structure where the reinforcement hard core material (D) showing an example of the fiber composite hose of this invention is embedded in the outer surface resin layer (C). 図4の断面を拡大した模式図。The schematic diagram which expanded the cross section of FIG. 図4の繊維複合ホースが、軟質樹脂層(A)およびその他の熱可塑性樹脂(A’)からなる断面を拡大した模式図。The schematic diagram which expanded the cross section which the fiber composite hose of FIG. 4 consists of a soft resin layer (A) and another thermoplastic resin (A ').
A 軟質樹脂層
A’その他の熱可塑性樹脂層
B 補強繊維層
C 外面樹脂層
D 補強硬質芯材
X ホース内側の凸部頂点の繰り返し単位(mm)
Y 補強硬質芯材(D)間の長さ(mm)
Z ホース内側の凸部間の窪みの深度(mm)
ID ホース内径(mm)
A Soft resin layer A ′ Other thermoplastic resin layer B Reinforcing fiber layer C Outer surface resin layer D Reinforced hard core material X Repeating unit of convex apex inside hose (mm)
Y Length between reinforced hard core (D) (mm)
Z Depth of recess between convex parts inside hose (mm)
ID hose inner diameter (mm)

Claims (5)

  1.  ホース内周面より順に、軟質樹脂層(A)/補強繊維層(B)/外面樹脂層(C)/補強硬質芯材(D)からなり、以下(1)~(3)の条件を全て満たす繊維複合ホース。
    (1)ホースの長さ方向に展開した際、内側の凸部頂点の繰り返し単位をX(mm)とした時、5mm≦X≦25mmであること、
    (2)ホース内側の凸部間の窪みの深度をZ(mm)とし、ホース内径をID(mm)とした時、0.003≦Z/ID≦0.05であること、
    (3)軟質樹脂層(A)および外面樹脂層(C)を形成するそれぞれの熱可塑性樹脂の比重が1.0以下であること。
    In order from the inner peripheral surface of the hose, it consists of a soft resin layer (A) / reinforcing fiber layer (B) / outer surface resin layer (C) / reinforced hard core material (D), and all the following conditions (1) to (3) are satisfied. Filling fiber composite hose.
    (1) When deployed in the length direction of the hose, when X (mm) is the repeating unit of the convex portion on the inner side, 5 mm ≦ X ≦ 25 mm,
    (2) When the depth of the recess between the convex portions inside the hose is Z (mm) and the inner diameter of the hose is ID (mm), 0.003 ≦ Z / ID ≦ 0.05,
    (3) The specific gravity of each thermoplastic resin forming the soft resin layer (A) and the outer resin layer (C) is 1.0 or less.
  2.  軟質樹脂層(A)が、芳香族ビニル重合体ブロックおよび(水添)共役ジエン重合体ブロックを有する付加重合体(P)、オレフィン系熱可塑性樹脂および/またはアクリル系重合体(Q)、軟化剤(R)を以下の重量の範囲で含有することを特徴とする請求項1に記載の繊維複合ホース。
    20≦(P)≦80
    0≦(Q)≦50
    0≦(R)≦50
    かつ
    (P)+(Q)+(R)=100
    The soft resin layer (A) is an addition polymer (P) having an aromatic vinyl polymer block and a (hydrogenated) conjugated diene polymer block, an olefin thermoplastic resin and / or an acrylic polymer (Q), softening The fiber composite hose according to claim 1, wherein the agent (R) is contained in the following weight range.
    20 ≦ (P) ≦ 80
    0 ≦ (Q) ≦ 50
    0 ≦ (R) ≦ 50
    And (P) + (Q) + (R) = 100
  3.  ホースの内周面より順に、軟質樹脂層(A)とその他の熱可塑性樹脂層(A’)からなる積層構造体である請求項1または2記載の繊維複合ホース。 The fiber composite hose according to claim 1 or 2, which is a laminated structure comprising a soft resin layer (A) and another thermoplastic resin layer (A ') in order from the inner peripheral surface of the hose.
  4.  補強硬質芯材(D)がポリプロピレン樹脂および/またはポリエチレン樹脂からなる請求項1~3のいずれか記載の繊維複合ホース。 The fiber composite hose according to any one of claims 1 to 3, wherein the reinforcing hard core material (D) is made of polypropylene resin and / or polyethylene resin.
  5.  補強硬質芯材(D)間の長さをY(mm)とした時、上記した内側の凸部頂点の繰り返し単位X(mm)との関係が0.90≦X/Y≦1.10を満足する請求項1~4のいずれか記載の繊維複合ホース。 When the length between the reinforced hard core materials (D) is Y (mm), the relationship with the repeating unit X (mm) of the inner convex portion vertex is 0.90 ≦ X / Y ≦ 1.10. The fiber composite hose according to any one of claims 1 to 4, which is satisfactory.
PCT/JP2016/082758 2015-11-05 2016-11-04 Fiber composite hose WO2017078124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017549115A JP6724284B2 (en) 2015-11-05 2016-11-04 Fiber composite hose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-217171 2015-11-05
JP2015217171 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017078124A1 true WO2017078124A1 (en) 2017-05-11

Family

ID=58662134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082758 WO2017078124A1 (en) 2015-11-05 2016-11-04 Fiber composite hose

Country Status (2)

Country Link
JP (1) JP6724284B2 (en)
WO (1) WO2017078124A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019005955A (en) * 2017-06-22 2019-01-17 クラレプラスチックス株式会社 Structure and decorative sheet
JP2020525714A (en) * 2017-06-27 2020-08-27 フィット エッセピア Ultra lightweight reinforced flexible hose
CN112325037A (en) * 2020-09-30 2021-02-05 上海众友橡塑制品有限公司 Wear-resisting type rubber tube
JP2021173401A (en) * 2020-04-30 2021-11-01 東拓工業株式会社 Connection hose for spiral corrugated hose and spiral corrugated hose joint
JP7537068B2 (en) 2020-07-28 2024-08-21 クラレプラスチックス株式会社 Flexible Hose

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3058493A (en) * 1959-02-11 1962-10-16 Porter Co Inc H K Flexible reinforced corrugated hose
JPS4728241Y1 (en) * 1971-12-22 1972-08-26
JPS556799B2 (en) * 1976-05-14 1980-02-19
JPS5616418Y2 (en) * 1975-12-26 1981-04-16
JPS56149182U (en) * 1980-04-09 1981-11-09
JP2007016809A (en) * 2005-07-05 2007-01-25 Kyowa Kogyo Kk Flexible oil-proof hose
WO2009072516A1 (en) * 2007-12-04 2009-06-11 Kanaflex Corporation Inc. Flexible pressure hose

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3058493A (en) * 1959-02-11 1962-10-16 Porter Co Inc H K Flexible reinforced corrugated hose
JPS4728241Y1 (en) * 1971-12-22 1972-08-26
JPS5616418Y2 (en) * 1975-12-26 1981-04-16
JPS556799B2 (en) * 1976-05-14 1980-02-19
JPS56149182U (en) * 1980-04-09 1981-11-09
JP2007016809A (en) * 2005-07-05 2007-01-25 Kyowa Kogyo Kk Flexible oil-proof hose
WO2009072516A1 (en) * 2007-12-04 2009-06-11 Kanaflex Corporation Inc. Flexible pressure hose

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019005955A (en) * 2017-06-22 2019-01-17 クラレプラスチックス株式会社 Structure and decorative sheet
JP2020525714A (en) * 2017-06-27 2020-08-27 フィット エッセピア Ultra lightweight reinforced flexible hose
JP7217237B2 (en) 2017-06-27 2023-02-02 フィット エッセピア Super lightweight reinforced flexible hose
JP2021173401A (en) * 2020-04-30 2021-11-01 東拓工業株式会社 Connection hose for spiral corrugated hose and spiral corrugated hose joint
JP7537068B2 (en) 2020-07-28 2024-08-21 クラレプラスチックス株式会社 Flexible Hose
CN112325037A (en) * 2020-09-30 2021-02-05 上海众友橡塑制品有限公司 Wear-resisting type rubber tube

Also Published As

Publication number Publication date
JPWO2017078124A1 (en) 2018-08-23
JP6724284B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
WO2017078124A1 (en) Fiber composite hose
CN102449369B (en) Low-permeation flexible fuel hose
JP5533745B2 (en) Refrigerant transport hose
JP4972916B2 (en) EVOH composite resin and refrigerant transport hose
US20050217747A1 (en) Thermoplastic pipe and liners
CN101855075A (en) Hose for transporting refrigerant
CN102917871B (en) Refrigerant-transporting hose
WO2009013567A3 (en) Reinforced composite polyethylene pipe and a method of manufacturing same
JP2009143003A (en) Laminate resin tubular body for hose inner tube, and refrigerant transporting hose
KR100922829B1 (en) Method and apparatus for manufacturing synthetic resin multi-layer pipe with wire
CN103807518A (en) Novel high-strength HDPE (high-density polyethylene) corrugated pipe and production method thereof
IL207555A (en) Composite pipe having a cross-liked polyethylene tube
JP6436567B2 (en) Construction method of fiber sheet laminate
CN103062520B (en) Novel high pressure-resistant HDPE water pipes
JP2016203517A (en) Concrete laminate
JP6790329B2 (en) Flexible hose for gas
US20240077151A1 (en) Durable, flexible, lightweight water hose with multiple bonded layers
JP4262882B2 (en) Resin hose
JP2009197856A (en) Refrigerant transport hose
JP5706070B2 (en) Refrigerant transport hose
JP2010184404A (en) Hose for conveying coolant and manufacturing method thereof
CN101418892B (en) High-pressure power-assisted steering rubber pipe and making method
CN205960561U (en) Underground communication is plastic tubing for pipeline
JP2004144180A (en) Hose having kink resistance
CN218954242U (en) Anti-cracking wear-resistant PE pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862184

Country of ref document: EP

Kind code of ref document: A1