WO2017077757A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2017077757A1
WO2017077757A1 PCT/JP2016/073609 JP2016073609W WO2017077757A1 WO 2017077757 A1 WO2017077757 A1 WO 2017077757A1 JP 2016073609 W JP2016073609 W JP 2016073609W WO 2017077757 A1 WO2017077757 A1 WO 2017077757A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source units
excitation
irradiation surface
Prior art date
Application number
PCT/JP2016/073609
Other languages
English (en)
French (fr)
Inventor
基 永森
畑澤 健二
高橋 幸司
佳伸 川口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017548660A priority Critical patent/JP6622815B2/ja
Priority to US15/766,910 priority patent/US20180292059A1/en
Publication of WO2017077757A1 publication Critical patent/WO2017077757A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/17Discharge light sources
    • F21S41/173Fluorescent light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • F21V9/35Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material at focal points, e.g. of refractors, lenses, reflectors or arrays of light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the present invention relates to a light emitting device, a lighting device, and a vehicle headlamp that emits fluorescence by irradiating excitation light onto a light irradiation surface in a phosphor portion.
  • a light emitting diode (LED) light source or a semiconductor laser (LD) light source as an excitation light source, the excitation light emitted from these excitation light sources is applied to the light irradiation surface of the phosphor part including the phosphor.
  • a light-emitting device that emits fluorescence when irradiated is conventionally known (see, for example, Patent Document 1).
  • the light emitting device using the semiconductor laser light source can reduce the size (spot size) of the vertical section (spot) perpendicular to the optical axis direction of the excitation light, compared with the light emitting device using the light emitting diode light source.
  • Luminance fluorescence can be obtained.
  • the resonance length of the semiconductor laser is short and the emission part of the light emitted from the semiconductor laser element is extremely flat.
  • Projection light on the light irradiation surface of the excitation light projected onto the light irradiation surface when irradiating the light irradiation surface in the phosphor portion is usually a long shape (specifically, an elliptical shape) It becomes.
  • a light-emitting device using a semiconductor laser light source may be provided for a device that is required to obtain higher-intensity fluorescence, such as a lighting device such as a projector or a vehicle headlamp.
  • the excitation light on the light irradiation surface is irradiated by irradiating the light irradiation surface with a plurality of excitation light so that the excitation light overlaps the light irradiation surface in the phosphor portion. It is possible to further increase the luminance of fluorescence in the overlapped portion (see, for example, FIG. 7 of Patent Document 2 and FIG. 9 of Patent Document 3).
  • JP 2011-134619 A Japanese Patent No. 4124445 Japanese Patent Laying-Open No. 2015-65144
  • FIG. 17 shows an excitation light L1 in a conventional configuration in which a plurality of excitation lights L1, L2, and L3 are irradiated on the light irradiation surface 120a so that the excitation light L1, L2, and L3 overlap the light irradiation surface 120a in the phosphor portion 120.
  • L2, L3 is a schematic plan view of a state in which excitation light L1, L2, L3 overlaps on the light irradiation surface 120a when irradiated on the light irradiation surface 120a.
  • W indicates the light irradiation direction of a set of laser light sources.
  • the excitation light L1, L2, L3 is irradiated on the light irradiation surface 120a of the phosphor portion 120 and the excitation light L1, L2, L3 is long on the light irradiation surface 120a.
  • the longitudinal directions of the shapes of the projection lights M1, M2, and M3 intersect (especially, evenly intersect as in the illustrated example)
  • the portions where the excitation lights L1, L2, and L3 overlap on the light irradiation surface 120a becomes smaller, and the fluorescence light intensity decreases accordingly.
  • the luminance of the fluorescence on the light irradiation surface 120a of the phosphor portion 120 can be sufficiently obtained. The fact is not.
  • the present invention provides a light emitting device, an illuminating device, and a vehicle headlamp capable of improving the luminance of fluorescence on the light irradiation surface when irradiating the light irradiation surface of the phosphor portion with a plurality of excitation lights superimposed.
  • the purpose is to provide.
  • the present invention provides the following light emitting device, lighting device, and vehicle headlamp in order to solve the above-mentioned problems.
  • a light emitting device includes a plurality of light source units each having a laser light source that emits excitation light, and a phosphor unit that emits fluorescence upon receiving the excitation light, and includes among the plurality of light source units
  • the at least two light source units project the excitation light onto the light irradiation surface so that the excitation light overlaps the light irradiation surface when the excitation light is irradiated onto the light irradiation surface of the phosphor portion, respectively.
  • the longitudinal direction of the long shape of the projection light on the light irradiation surface of light is configured to be parallel or substantially parallel to each other.
  • an illumination device includes the light emitting device according to the present invention.
  • a vehicle headlamp according to the present invention includes the light emitting device according to the present invention.
  • the plurality of light source units are configured such that the longitudinal directions of all the projection light shapes are parallel or substantially parallel.
  • a mode in which the longitudinal direction of the shape of the projection light is configured to be a horizontal direction or a substantially horizontal direction when the fluorescence is projected to the outside can be exemplified.
  • the longitudinal direction of the shape of the projection light of the at least two light source units is configured to be parallel or substantially parallel to the light irradiation direction along the traveling direction of the excitation light to the light irradiation surface.
  • the aspect currently performed can be illustrated.
  • the longitudinal direction of the shape of the projection light of the at least two light source units is configured to be orthogonal or substantially orthogonal to the light irradiation direction along the traveling direction of the excitation light to the light irradiation surface. Can be illustrated.
  • the longitudinal direction of the shape of the said projection light of the said at least 2 light source part may become diagonal with respect to the light irradiation direction along the advancing direction to the said light irradiation surface of the said excitation light.
  • the at least two light source units can be exemplified as a pair of light source units each having the laser light source.
  • the pair of light source units includes a light irradiation direction along a traveling direction of the excitation light of one light source unit to the light irradiation surface, and a light irradiation surface of the excitation light of the other light source unit.
  • positioned so that the light irradiation direction along this advancing direction may become parallel or substantially parallel can be illustrated.
  • the pair of light source units are disposed so as to be located on one side and the other side opposite to the one side with the phosphor portion in between.
  • the present invention it is possible to exemplify a mode in which the pair of light source units are disposed so as to face each other with the phosphor unit therebetween.
  • the optical axes of the excitation light of the pair of light source units are located on the same virtual plane or substantially the same virtual plane, and the same virtual plane or substantially the same virtual plane is the light irradiation surface of the phosphor unit.
  • the aspect which is orthogonal or substantially orthogonal to can be illustrated.
  • the pair of light source units are configured to be line symmetric or substantially line symmetric.
  • the plurality of pairs of light source units may be configured such that at least two pairs of the light source units are configured to be line symmetric or substantially line symmetric.
  • the plurality of pairs of light source units can be exemplified by a mode in which at least two pairs of the light source units are arranged so as to face each other with the phosphor portion in between.
  • the plurality of pairs of light source units are a pair of light source units of the plurality of pairs of light source units, and the other pair of light source units are opposed to the pair of light source units.
  • the aspect which is comprised so that the 1st opposing direction to perform and the 2nd opposing direction where a pair of said other one pair of light source parts oppose may be orthogonal or substantially orthogonal.
  • the plurality of pairs of light source units are a pair of light source units of the plurality of pairs of light source units, and the other pair of light source units are opposed to the pair of light source units.
  • a mode in which the first facing direction and the second facing direction in which the other pair of light source units face each other is parallel or substantially parallel can be exemplified.
  • the optical axis of the excitation light of the pair of light source units and the optical axis of the other pair of light source units are located on the same virtual plane or substantially the same virtual plane, and the same virtual A plane or substantially the same virtual plane can exemplify an aspect in which the plane is orthogonal or substantially orthogonal to the light irradiation surface in the phosphor portion.
  • the pair of light source units includes a light irradiation direction along a traveling direction of the excitation light of one light source unit to the light irradiation surface, and a light irradiation surface of the excitation light of the other light source unit.
  • intersect can be illustrated.
  • the shapes of the vertical cross sections orthogonal to the optical axis direction of the excitation light emitted from the laser light source are all equal or substantially equal, and the at least two light source units are A mode in which the incident angles of the excitation light respectively irradiated on the light irradiation surfaces in the phosphor portion are equal to or substantially equal to each other can be exemplified.
  • the at least two light source units are arranged so that an incident angle of the excitation light irradiated on the light irradiation surface increases as going from the inner side to the outer side with the phosphor portion in between.
  • each of the at least two light source units includes a reflection mirror that reflects the excitation light emitted from the laser light source, and the phosphor unit is reflected from the reflection mirror in the at least two light source units.
  • An example of receiving the excitation light and emitting the fluorescence is exemplified.
  • the at least two light source units are configured such that the excitation lights emitted from the laser light source toward the reflection mirror are parallel or substantially parallel to each other.
  • the at least two light source sections are configured such that any of the excitation light emitted from the laser light source toward the reflection mirror is orthogonal or substantially orthogonal to the light irradiation surface of the phosphor section.
  • the aspect currently performed can be illustrated.
  • the phosphor unit includes a light projecting lens that projects the fluorescence from a surface on the side that emits the fluorescence among the light irradiation surface and the surface opposite to the light irradiation surface.
  • a light projecting lens that projects the fluorescence from a surface on the side that emits the fluorescence among the light irradiation surface and the surface opposite to the light irradiation surface.
  • the incident angle of the excitation light to the light irradiation surface in the phosphor portion is larger than the capturing angle of the light projecting lens.
  • the present invention it is possible to improve the luminance of fluorescence on the light irradiation surface when irradiating the light irradiation surface in the phosphor portion with a plurality of excitation lights superimposed.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of the light emitting device according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram illustrating the light source unit, the phosphor unit, and the light projecting lens extracted from the light emitting device illustrated in FIG. 1, and (a) and (b) are a side view and a plan view, respectively. is there.
  • FIG. 3 is an explanatory diagram for explaining the state of the projection light on the light irradiation surface when the excitation light is irradiated at an incident angle with respect to the light irradiation surface in the phosphor portion.
  • FIG. 3 is an explanatory diagram for explaining the state of the projection light on the light irradiation surface when the excitation light is irradiated at an incident angle with respect to the light irradiation surface in the phosphor portion.
  • FIG. 4 is a schematic cross-sectional view showing excitation light with an incident angle and projection light on a light irradiation surface irradiated with excitation light, and (b) to (d) show the excitation light in the longitudinal direction of the shape of the projection light, respectively.
  • FIG. 4 is a schematic plan view showing projected light on the light irradiation surface of the excitation light projected on the light irradiation surface in the light emitting device according to the first embodiment, wherein (a) to (c) are respectively The state of the projection light in the case where the longitudinal direction of the shape of the projection light is parallel or substantially parallel to the light irradiation direction, is orthogonal or substantially orthogonal, and is oblique.
  • FIG. FIG. 5 is a schematic configuration diagram illustrating an example of a light-emitting device according to the second embodiment, and (a) and (b) each further include a pair of light source units in the light-emitting device according to the first embodiment. It is the side view and top view which show another example.
  • FIG. 5 is a schematic configuration diagram illustrating an example of a light-emitting device according to the second embodiment, and (a) and (b) each further include a pair of light source units in the light-emitting device according to the first embodiment. It is the side
  • FIG. 6 is a schematic plan view showing projected light on the light irradiation surface of excitation light projected on the light irradiation surface in the light emitting device according to the second embodiment shown in FIG. ) Is a diagram showing each example.
  • FIG. 7 is a schematic plan view showing projected light on the light irradiation surface of excitation light projected on the light irradiation surface in the light emitting device according to the second embodiment shown in FIG. ) Is a diagram showing each example.
  • FIG. 8 is a schematic cross-sectional view of the example shown in FIG. 6A when the main body chassis is fixed to the gantry.
  • FIG. 9 is a schematic cross-sectional view when the main body chassis is fixed to the gantry in the example shown in FIG. FIG.
  • FIG. 10 is a schematic configuration diagram illustrating another example of the light-emitting device according to the second embodiment.
  • FIGS. 10A and 10B illustrate a pair of light source units in the light-emitting device according to the first embodiment, respectively. It is the side view and top view which show the other example further provided.
  • FIG. 11 is a schematic plan view showing projected light on the light irradiation surface of the excitation light projected on the light irradiation surface in the light emitting device according to the second embodiment shown in FIG. ) Is a diagram showing each example.
  • FIG. 12 is a schematic plan view showing projection light on the light irradiation surface of the excitation light projected on the light irradiation surface in the light emitting device according to the second embodiment shown in FIG.
  • FIG. 13 is a schematic configuration diagram illustrating a light emitting device according to the third embodiment, and is a cross-sectional view illustrating an example in which excitation light from a light source unit is directly irradiated onto a light irradiation surface in a phosphor unit.
  • FIG. 14 is a schematic configuration diagram illustrating a light emitting device according to the fourth embodiment, and is a cross-sectional view illustrating a transmission type configuration example.
  • FIG. 15: is a schematic block diagram which shows the light-emitting device which concerns on 5th Embodiment, Comprising: It is a side view which shows the example in which the light irradiation direction of a pair of light source part cross
  • FIG. 16 is a schematic block diagram which shows the light-emitting device which concerns on 6th Embodiment, Comprising: It is a side view which shows the example provided with the reflector.
  • FIG. 17 shows a conventional configuration in which a plurality of excitation lights are irradiated on the light irradiation surface so that the excitation light overlaps the light irradiation surface in the phosphor portion. It is the schematic plan view which looked at the state which overlaps with a plane from the plane.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a light emitting device 100 according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram showing the light source units 110 to 110, the phosphor unit 120, and the light projecting lens 170 extracted from the light emitting device 100 shown in FIG. 1, and FIGS. These are a side view and a plan view, respectively.
  • the projection lens 170 is not shown, while the holding member 161 is shown. The same applies to FIGS. 5B and 10B described later.
  • the light emitting device 100 includes a plurality (two in this example) of light source units 110 each having a laser light source 111 (see FIGS. 1 and 2A) that emits excitation light L. 110 and a phosphor portion 120 that receives a plurality of (two in this example) excitation lights L to L and emits fluorescence F [see FIGS. 1 and 2A].
  • a laser light source 111 see FIGS. 1 and 2A
  • a phosphor portion 120 that receives a plurality of (two in this example) excitation lights L to L and emits fluorescence F [see FIGS. 1 and 2A].
  • the color of the fluorescence F (more precisely, the projection light M in which the excitation light L and the fluorescence F are mixed) can be arbitrarily selected according to the application.
  • white light obtained by irradiating a fluorescent material emitting yellow light with a blue laser as excitation light L is suitable for an automotive headlamp.
  • white light obtained by irradiating a phosphor emitting blue and red as excitation light L in red and green is preferable.
  • a plurality (two in this example) of laser light sources 111 to 111 are laser light sources each including a semiconductor laser element 111a (LD: Laser Diode) [see FIGS. 1 and 2A].
  • the phosphor part 120 includes a phosphor.
  • the plurality (two in this example) of the semiconductor laser elements 111a to 111a and the phosphor portion 120 can be conventionally known ones, and detailed description thereof is omitted here.
  • the light emitting device 100 emits the fluorescence F generated by irradiating the light irradiation surface 120a of the phosphor portion 120 with the excitation light L to L emitted from the laser light sources 111 to 111, respectively (FIGS. 1 and 2A). Reference] is used as illumination light.
  • the projection light M to M projected from the light irradiation surface 120a of the excitation light L to L projected onto the irradiation surface 120a has a long shape (specifically, an elliptical shape).
  • the ratio of the size in the longitudinal direction and the size in the short direction of the spot shape of the excitation light L to L is not limited to this, but can be about 10: 3, for example.
  • the light emitting device 100 includes a main body chassis 130 (see FIG. 1), a plurality (two in this example) of light source units 140 to 140 (see FIG. 1), and a press plate 150 (see FIG. 1). Is further provided.
  • the main body chassis 130 constitutes the main body of the light emitting device 100.
  • the main body chassis 130 is provided with accommodating portions 131 (see FIG. 1) for accommodating the light source units 140 to 140, respectively.
  • the light source units 140 to 140 include laser light sources 111 to 111 constituting the light source units 110 to 110, respectively, and a plurality (two in this example) of housing units 131 in the main body chassis 130 while holding the laser light sources 111 to 111. .. 131 are respectively fixed to the main body chassis 130 by fixing members SC to SC (see FIG. 1) such as screws.
  • the main body chassis 130 is provided with excitation light passage holes 132 to 132 through which the excitation lights L to L emitted from the light source units 140 to 140 pass.
  • the main body chassis 130 is provided with a projection light passage hole 133 through which the projection lights M to M emitted from the light irradiation surface 120a of the phosphor portion 120 pass.
  • the excitation light passage holes 132 to 132 are along the optical axis direction or substantially the optical axis direction of the excitation lights L to L emitted from the light source units 140 to 140.
  • the projection light passage hole 133 is along a direction orthogonal or substantially orthogonal to the light irradiation surface 120a.
  • the main body chassis 130 is provided with excitation light passage holes 132 to 132 and projection light passage holes 133 communicating with each other.
  • the light source sections 110 to 110 further include a reflection mirror 112 that reflects the excitation lights L to L emitted from the laser light sources 111 to 111, respectively.
  • the light emitting device 100 further includes a plurality (two in this example) of mirror units 160 to 160 (see FIG. 1).
  • the mirror units 160 to 160 have a plurality of (in this example) a plurality of (two in this example) reflecting mirrors 112 to 112 respectively holding the light source units 110 to 110 and a plurality of (in this example) reflecting mirrors 112 to 112 held in the main body chassis 130. 2) holding members 161 to 161 [see FIG. 1 and FIG. 2 (b)].
  • the reflection mirrors 112 to 112 are provided on the inner wall of the projection light passage hole 133 in the main body chassis 130 via the holding members 161 to 161, respectively.
  • the light source units 140 to 140 are further provided with collimating lenses 141 to 141 (see FIG. 1), respectively.
  • a plurality (two in this example) of collimating lenses 141 to 141 are provided in the vicinity of the light exit ports 111b to 111b [see FIGS. 1 and 2B] of the laser light sources 111 to 111, respectively.
  • the collimating lenses 141 to 141 adjust the size (spot size) or the like of a vertical section (spot) perpendicular to the axial direction of the excitation lights L to L when the excitation lights L to L are appropriately irradiated to the reflection mirrors 112 to 112 ( For example, an optical member for reducing the size.
  • the collimating lenses 141 to 141 can be constituted by optical members such as convex lenses, for example.
  • the light source units 140 to 140 move the collimating lenses 141 to 141 in the direction of the optical axis, so that, for example, screw structures 142 to 142 (not shown in FIG. 1; see FIGS. 13 and 14 to be described later) are moved to the optical axis. It is possible to adjust the spot sizes of the excitation lights L to L by moving in the optical axis direction while rotating around the axis along the axis.
  • the light emitting device 100 includes a light emitting surface 120a and a surface 120b opposite to the light emitting surface 120a [see FIG. 1 and FIG.
  • a projection lens 170 (see FIGS. 1 and 2A) for projecting the fluorescence F from the light irradiation surface 120a) is further provided.
  • laser light sources 111 to 111 are provided on the side opposite to the light irradiation surface 120 a of the phosphor part 120, and reflection mirrors 112 to 112 are provided at positions between the phosphor part 120 and the light projecting lens 170. ing.
  • the excitation lights L to L emitted from the laser light sources 111 to 111 are reflected by the reflection mirrors 112 to 112 and irradiated onto the light irradiation surface 120a of the phosphor portion 120, whereby the fluorescence F is emitted. appear. Then, the fluorescence F emitted from the surface on the side from which the fluorescence F is emitted (in this example, the light irradiation surface 120a) is projected to the outside through the projection lens 170.
  • the excitation light L to L overlaps the light irradiation surface 120a. (Preferably so that at least one excitation light overlaps all the other excitation lights on the light irradiation surface 120a) and on the light irradiation surface 120a of the excitation light L to L projected on the light irradiation surface 120a.
  • the projection light M to M (see FIG. 4 to be described later) is configured so that the longitudinal directions of the long shapes are parallel or substantially parallel to each other (specifically disposed, more specifically adjusted) Arranged).
  • the plurality of light source units 110 to 110 are configured such that the longitudinal directions of the shapes of all the projection lights M to M are parallel or substantially parallel.
  • the plurality of light source units 110 to 110 are configured such that the longitudinal direction of the shape of the projection light M to M is horizontal or substantially horizontal when the fluorescence F is projected to the outside.
  • the plurality of light source units 110 to 110 are arranged so that the excitation lights L to L overlap with each other on the light irradiation surface 120a and the longitudinal directions of the long shapes of the projection lights M to M are parallel or substantially parallel to each other.
  • the laser light sources 111 to 111 (in this example, the light source units 140 to 140) are arranged in a direction along a plane orthogonal to the optical axis direction of the excitation light L and in the optical axis direction of the excitation light L.
  • the aspect adjusted by moving to the rotation direction of the surrounding axis line can be illustrated.
  • Such adjustment can be performed, for example, while an operator observes the monitor of the enlarged display device while moving the light source units 140 to 140 using an adjustment jig.
  • the excitation light L to L overlaps with the light irradiation surface 120a.
  • the longitudinal directions of the long shapes of the projection lights M to M on the light irradiation surface 120a of the excitation light L to L projected on the light irradiation surface 120a are configured to be parallel or substantially parallel to each other.
  • the luminance of the fluorescence F on the light irradiation surface 120a of the phosphor portion 120 can be improved.
  • the plurality of light source units 110 to 110 are configured so that the longitudinal directions of the shapes of all the projection lights M to M are parallel or substantially parallel, thereby effectively improving the light intensity of the fluorescence F. be able to. Accordingly, when the plurality of excitation lights L to L are overlapped and irradiated onto the light irradiation surface 120a of the phosphor portion 120, the luminance of the fluorescence F on the light irradiation surface 120a of the phosphor portion 120 can be further improved. .
  • the plurality of light source units 110 to 110 are configured such that the longitudinal direction of the shapes of the projection lights M to M is horizontal or substantially horizontal when the fluorescence F is projected to the outside. It can be suitably used for applications where a wide directional characteristic is desired in the horizontal direction, such as automotive headlamps.
  • FIG. 3 is an explanatory diagram for explaining the state of the projection light M on the light irradiation surface 120a when the excitation light L is irradiated on the light irradiation surface 120a of the phosphor portion 120 with an incident angle ⁇ .
  • FIG. 3A is a schematic cross-sectional view showing the excitation light L having an incident angle ⁇ and the projection light M on the light irradiation surface 120a irradiated with the excitation light L.
  • FIG. 6 is a schematic plan view of a vertical cross section orthogonal to the optical axis direction of the excitation light L and the shape of the projection light M viewed from a plane when they are inclined and when they are inclined.
  • the light source units 110 to 110 are a pair of light source units 110 and 110, and one of the pair of excitation light L and L and the pair of projection light M and M is one excitation light L and one projection light M. Is represented by the other excitation light L and the other projection light M, and the other excitation light L and the other projection light M are not shown.
  • the longitudinal direction of the projection light M the longest straight line Kmax among the straight lines drawn from one end to the other end in the long shape of the projection light M [see FIG. 3 (b) to FIG. 3 (d)]. ] Direction.
  • the short direction of the projection light M the direction of the shortest straight line among the straight lines drawn from one end to the other end in the long shape of the projection light M can be exemplified.
  • the size is increased by (dL / cos ⁇ ) ⁇ dL with respect to the size dL (spot size) in the light irradiation direction W.
  • the light irradiation direction W can also be said to be a direction along the incident direction and the reflection direction of the excitation light L to the light irradiation surface 120a.
  • FIG. 4 is a schematic plan view showing projection light M to M projected on the light irradiation surface 120a of the excitation light L to L projected on the light irradiation surface 120a in the light emitting device 100 according to the first embodiment.
  • 4A to 4C are orthogonal or substantially orthogonal when the longitudinal directions of the shapes of the projection lights M to M are parallel or substantially parallel to the light irradiation direction W, respectively.
  • the state of the projection light M to M in the case of the case and the case of being inclined is shown.
  • the longitudinal direction of the shapes of the projection light M (M1) and M (M2) of the pair of light source units 110 and 110 is the excitation light L (L1), A configuration (specifically disposed, more specifically adjusted) to be parallel or substantially parallel to the light irradiation direction W along the traveling direction of L (L2) to the light irradiation surface 120a. [See FIG. 4 (a)].
  • the longitudinal direction of the shapes of the projection lights M (M1) and M (M2) of the light source units 110 and 110 is configured to be parallel or substantially parallel to the light irradiation direction W.
  • the incident angles ⁇ ( ⁇ 1) and ⁇ ( ⁇ 2) of the excitation light L (L1) and L (L2) to the light irradiation surface 120a in the phosphor portion 120 increase, the projection light M (M1) and M (M2) Since the size of the shape in the longitudinal direction becomes large, it can be suitably used for applications in which a wide directivity characteristic in a predetermined linear direction is desired (for example, a vehicle headlamp in which a wide directivity characteristic is desirable in the horizontal direction).
  • the longitudinal directions of the shapes of the projection light M (M1) and M (M2) of the pair of light source units 110 and 110 are the excitation light L (L1) and L (L2) configured to be orthogonal or substantially orthogonal to the light irradiation direction W along the traveling direction to the light irradiation surface 120a (specifically disposed, more specifically disposed in an adjusted state) [See FIG. 4 (b)].
  • the longitudinal directions of the shapes of the projection lights M (M1) and M (M2) of the light source units 110 and 110 are configured so as to be orthogonal or substantially orthogonal to the light irradiation direction W.
  • the incident angles ⁇ ( ⁇ 1) and ⁇ ( ⁇ 2) of the light L (L1) and M (L2) to the light irradiation surface 120a in the phosphor portion 120 increase, the projection light M (M1) and M (M2) Since the size of the shape in the short direction increases and the shapes of the projection lights M (M1) and M (M2) approach the perfect circle side, a wide directivity characteristic is desired in almost all directions (for example, wide in almost all directions). It can be suitably used for a projector having a desirable directivity.
  • a pair of light source parts 110 and 110 are arrange
  • wide directivity characteristics may be desired in the horizontal or vertical direction. Therefore, when the light source units 110 and 110 are arranged so that the light irradiation direction W is inclined with respect to the horizontal direction or the vertical direction, it is desired to cope with wide directivity characteristics in the horizontal direction or the vertical direction.
  • the longitudinal direction (or short direction) of the shape of the projection light M (M1) and M (M2) of the pair of light source units 110 and 110 is excited.
  • the longitudinal direction (or short direction) of the shape of the projection light M (M1) and M (M2) of the light source units 110 and 110 is configured to be oblique to the light irradiation direction W.
  • a wide directivity characteristic in the horizontal direction or the vertical direction is desirable (for example, wide in the horizontal direction). Therefore, it is possible to cope with a wide directivity characteristic in the horizontal direction or the vertical direction.
  • the angles ⁇ ( ⁇ 1), ⁇ ( ⁇ 2) [with respect to the light irradiation direction W in the longitudinal direction (or short direction) of the shapes of the projection lights M (M1) and M (M2) [ FIG. 4 (c)] is 45 degrees or approximately 45 degrees.
  • the angles ⁇ ( ⁇ 1) and ⁇ ( ⁇ 2) with respect to the light irradiation direction W in the longitudinal direction (or short direction) of the shapes of the projection lights M (M1) and M (M2) are 45 degrees or approximately 45 degrees. Therefore, in this example, the pair of light source units 110 and 110 can be provided at an intermediate position between the horizontal direction and the vertical direction, and downsizing of the light emitting device 100 can be realized accordingly.
  • the light source units 110 to 110 are a pair of light source units 110 and 110 each having the laser light source 111 as described above.
  • the light source units 110 to 110 are a pair of light source units 110 and 110 each having a laser light source 111, so that the fluorescence of the light emitting surface 120a in the phosphor unit 120 can be minimized. Brightness can be improved.
  • the pair of light source units 110 and 110 includes a light irradiation direction W along the traveling direction of the excitation light L (L1) of one light source unit 110 to the light irradiation surface 120a, and It arrange
  • the pair of light source units 110 and 110 are arranged such that the light irradiation direction W of one light source unit 110 and the light irradiation direction W of the other light source unit 110 are parallel or substantially parallel.
  • the light irradiation direction W of the one light source unit 110 and the other light source unit 110 can be aligned in one direction or substantially one direction.
  • the pair of light source units 110 and 110 are disposed so as to be positioned on one side and the other side opposite to the one side with the phosphor unit 120 therebetween. .
  • the pair of light source units 110 and 110 are disposed so as to be located on one side and the other side opposite to the one side with the phosphor unit 120 therebetween, so that the excitation light L , L are superimposed on the light irradiation surface 120a of the phosphor portion 120, and the configuration of the pair of light source portions 110, 110 for making the longitudinal direction of the long shape of the projection light M parallel or substantially parallel to each other is simple and It can be easily realized.
  • the pair of light source units 110 and 110 are arranged to face each other with the phosphor unit 120 therebetween.
  • the facing direction X is a direction in which the pair of light source units 110 and 110 face each other with the phosphor portion 120 therebetween, and the facing direction X is one of the light sources 110 and 110 in the pair.
  • the direction of an imaginary straight line ⁇ (see FIG. 2B) connecting the center of the light emission port 111b of the laser light source 111 in the unit 110 and the center of the light emission port 111b of the laser light source 111 in the other light source unit 110 can be exemplified.
  • the facing direction X is the light irradiation direction W or substantially the light irradiation direction W.
  • the pair of light source units 110 and 110 are disposed so as to oppose each other with the phosphor unit 120 therebetween, so that the shapes of the projection lights M (M1) and M (M2) are opposed to each other.
  • the size in the direction orthogonal to the direction X can be easily adjusted, and the arrangement positions of the pair of light source units 110 and 110 can be aligned on the same virtual plane or substantially the same virtual plane.
  • the optical axes of the excitation lights L (L1) and L (L2) of the pair of light source units 110 and 110 that is, the light of the excitation light L (L1) of the light source unit 110 on one side).
  • the optical axis of the excitation light L (L2) of the light source unit 110 on the other side are located on the same virtual plane or substantially the same virtual plane. It is orthogonal or substantially orthogonal to the light irradiation surface 120a.
  • the optical axes of the excitation light L (L1) and L (L2) of the pair of light source units 110 and 110 are located on the same virtual plane or substantially the same virtual plane, and the same virtual plane or substantially the same virtual plane. Is orthogonal or substantially orthogonal to the light irradiation surface 120a of the phosphor portion 120, thereby minimizing the size of the projection light M (M1) and M (M2) in the direction orthogonal to the light irradiation direction W. Therefore, the illuminance on the light irradiation surface 120a by the irradiation of the excitation light L (L1) and L (L2) can be increased accordingly.
  • the pair of light source units 110 and 110 are line-symmetric or substantially line-symmetric [in this example, the projection light M (M1) and M (M2) of the light irradiation surface 120a in the phosphor unit 120 ) With respect to a virtual normal passing through the center of ().
  • the pair of light source units 110 and 110 are configured to be line symmetric or substantially line symmetric, so that common parts can be realized and the pair of light source units 110 and 110 can be simplified.
  • the light emitting device 100 can be further reduced in size.
  • the pair of light source units 110 and 110 is line-symmetrical or substantially line-symmetric with respect to a virtual normal passing through the center of the projection light M (M1) and M (M2) of the light irradiation surface 120a of the phosphor unit 120. This is particularly effective when configured to be.
  • the center of the projection light M can be exemplified by the center of the longest straight line drawn from one end to the other end in the long shape of the projection light M.
  • the average position may be taken, or a straight line drawn from one end to the other end in a portion where the projection lights M to M overlap.
  • the center of the longest straight line may be used.
  • the projection light M (M2) on the light irradiation surface 120a of the excitation light L (L2) projected from the other light source unit 110 onto the light irradiation surface 120a are difficult to match or substantially match.
  • the shapes of the vertical cross sections perpendicular to the optical axis direction of the excitation lights L to L emitted from the laser light sources 111 to 111 in the light source units 110 to 110 are all equal or
  • the light source units 110 to 110 have substantially the same shape, and are configured so that the incident angles ⁇ to ⁇ of the excitation lights L to L irradiated onto the light irradiation surface 120a of the phosphor unit 120 are equal or substantially equal to each other (specifically, For example, more specifically, in an adjusted state).
  • the shapes of the vertical cross sections perpendicular to the optical axis direction of the excitation lights L to L emitted from the laser light sources 111 to 111 in the light source units 110 to 110 are all equal or substantially equal.
  • ⁇ 110 are configured such that the incident angles ⁇ ⁇ of the excitation lights L ⁇ L irradiated on the light irradiation surface 120a of the phosphor portion 120 are equal or substantially equal to each other, so that the light sources 110 ⁇ 110
  • the projection light M to M projected on the light irradiation surface 120a of the excitation light L to L projected onto the light irradiation surface 120a can be made to coincide with each other or substantially coincide with each other. It is possible to eliminate or substantially eliminate the portion that protrudes from the portion where the projection light M to M overlaps at 120a, so that the light intensity of the fluorescence F can be further improved without waste. it can.
  • the light source units 110 to 110 include reflection mirrors 112 to 112 that reflect the excitation lights L to L emitted from the laser light sources 111 to 111, respectively.
  • the phosphor part 120 emits fluorescence F in response to the excitation lights L to L reflected from the reflection mirrors 112 to 112 in the light source parts 110 to 110.
  • the light source units 110 to 110 include the reflection mirrors 112 to 112, respectively, and the phosphor unit 120 receives the excitation lights L to L reflected from the reflection mirrors 112 to 112 in the light source units 110 to 110.
  • the laser light sources 111 to 111 can be disposed on the side opposite to the light irradiation surface 120a of the phosphor portion 120. Accordingly, it is possible to improve the degree of design freedom regarding the arrangement positions of the laser light sources 111 to 111.
  • the light source units 110 to 110 are configured such that the excitation lights L to L emitted from the laser light sources 111 to 111 toward the reflection mirrors 112 to 112 are parallel or substantially parallel to each other. (Specifically disposed, more specifically disposed in an adjusted state).
  • the light source units 110 to 110 are configured such that the excitation lights L to L emitted from the laser light sources 111 to 111 toward the reflection mirrors 112 to 112 are parallel or substantially parallel to each other.
  • the excitation light L to L can be emitted from the laser light sources 111 to 111 in the same direction or in substantially the same direction, whereby the light emitting device 100 can be further reduced in size.
  • the light source units 110 to 110 are such that the excitation light L to L emitted from the laser light sources 111 to 111 toward the reflection mirrors 112 to 112 is the light irradiation surface of the phosphor unit 120. It is configured to be orthogonal or substantially orthogonal to 120a (specifically disposed, more specifically disposed in an adjusted state).
  • the excitation light L to L emitted from the laser light sources 111 to 111 toward the reflection mirrors 112 to 112 are all orthogonal to the light irradiation surface 120a in the phosphor unit 120.
  • the excitation light L to L can be emitted from the laser light sources 111 to 111 in a direction orthogonal or substantially orthogonal to the light irradiation surface 120a. Further downsizing can be realized.
  • the reflection type light emission principle is used in which the excitation light L to L is irradiated on the light irradiation surface 120a of the phosphor part 120 and the fluorescence F is emitted from the light irradiation surface 120a.
  • the reflection type light emitting device 100 can be suitably used.
  • the projecting lens 170 projects light within a predetermined angle range by refracting the transmitted fluorescence F.
  • the light projecting lens 170 is disposed on the light emitting surface 120 a of the phosphor portion 120 on the side from which the fluorescence F is emitted.
  • the light projecting lens 170 is provided so as to face the surface on the side from which the fluorescence F is emitted (in this example, the light irradiation surface 120a).
  • the light projecting lens 170 by providing the light projecting lens 170, it is possible to project the fluorescence F from the phosphor portion 120 in a predetermined direction in a predetermined angle range.
  • the fluorescent light F from the phosphor part 120 can be projected in a desired angle range in a desired direction.
  • the incident angles ⁇ to ⁇ of the excitation light L to L on the light irradiation surface 120a in the phosphor portion 120 are larger than the taking angles ⁇ to ⁇ of the light projecting lens 170, so The fluorescence F can be taken into the projection lens 170 without waste, and the fluorescence F from the phosphor portion 120 can be efficiently projected from the projection lens 170 accordingly.
  • the capture angles ⁇ to ⁇ pass through virtual normals passing through the centers of the projection lights M to M on the light irradiation surface 120a in the phosphor portion 120, both ends of the light projecting lens 170, and the centers of the projection lights M to M. This is the angle formed with the virtual straight line.
  • An example of the center of the projection light M is the center of the longest straight line drawn from one end to the other end in the long shape of the projection light M.
  • the light emitting device 100 includes a plurality of pairs (two pairs in this example) of a pair of light source units 110 and 110 (see FIGS. 5 and 6 to be described later).
  • the luminance of the fluorescence F on the light irradiation surface 120a in the phosphor unit 120 can be further increased.
  • At least two pairs of light source units of the plurality of pairs of light source units (110, 110) to (110, 110) are [in this example, any pair of light source units (110, 110)].
  • 110) to (110, 110)] and the configuration (specifically disposed, more specific) so that the excitation light (L, L) to (L, L) overlaps the light irradiation surface 120a in the phosphor portion 120.
  • the configuration specifically disposed, more specific
  • the plurality of pairs of light source units (110, 110) to (110, 110) are arranged such that the excitation lights (L, L) to (L, L) overlap on the light irradiation surface 120a of the phosphor unit 120.
  • the plurality of pairs of light source units (110, 110) to (110, 110) include at least two pairs of light source units [in this example, any pair of light source units (110 , 110) to (110, 110)] line symmetric or substantially line symmetric (in this example, line symmetric or substantially symmetric with respect to a virtual normal passing through the center of the projection light M to M of the light irradiation surface 120a of the phosphor portion 120). It is configured (specifically disposed) so as to be line symmetric.
  • the plurality of pairs of light source units (110, 110) to (110, 110) are configured such that at least two pairs of light source units are line-symmetrical or substantially line-symmetrical. Even if a plurality of pairs of the light source units 110, 110 are provided, it is possible to realize the common use of parts and to make the plurality of pairs of light source units (110, 110) to (110, 110) have a simple arrangement configuration. Thus, further downsizing of the light emitting device 100 can be realized.
  • the plurality of pairs of light source units (110, 110) to (110, 110) are line-symmetrical or substantially symmetric with respect to a virtual normal passing through the center of the projection light M to M of the light irradiation surface 120a in the phosphor unit 120. This is particularly effective when configured to be line symmetric.
  • center of the projection light M is the same as that described in the first embodiment-10, and the description thereof is omitted here.
  • the plurality of pairs of light source units (110, 110) to (110, 110) include at least two pairs of light source units [in this example, any pair of light source units (110 , 110) to (110, 110)] are arranged so as to face each other with the phosphor portion 120 therebetween.
  • the plurality of pairs of light source units (110, 110) to (110, 110) are arranged such that at least two pairs of light source units face each other with the phosphor unit 120 therebetween.
  • each pair of light source units 110 and 110 it is possible to easily adjust the size of the projection light M and M in the direction orthogonal to the facing direction X, and the arrangement of each pair of light source units 110 and 110.
  • the positions can be aligned on the same virtual plane or substantially the same virtual plane.
  • FIG. 5 is a schematic configuration diagram illustrating an example of the light emitting device 100 according to the second embodiment.
  • FIGS. 5A and 5B are a pair of diagrams of the light emitting device 100 according to the first embodiment. It is the side view and top view which show an example further provided with the light source part 110,110.
  • a plurality of pairs (two pairs in this example) of the light source units (110, 110) to (110, 110) are a plurality of pairs of the light source units (110, 110) to ( 110, 110) and a pair of light source units (110, 110) and a pair of light source units (110, 110) are opposed to a pair of light source units (110, 110).
  • the first facing direction X (X1) to be performed and the second facing direction X (X2) facing the other pair of light source units (110, 110) are configured to be orthogonal or substantially orthogonal (specifically Are arranged).
  • the pair of light source units (110, 110) is the same as the configuration of the light emitting device 100 according to the first embodiment, and a description thereof is omitted here.
  • the other pair of light source units (110, 110) emit excitation light L (L3), L (L4) when the light irradiation surface 120a of the phosphor unit 120 is irradiated with the excitation light L (L3), L (L4), respectively.
  • L (L4) is projected onto the light irradiation surface 120a so that L (L4) overlaps with the light irradiation surface 120a (preferably at least one excitation light overlaps all other excitation light on the light irradiation surface 120a).
  • Other configurations are the same as the configuration of the light emitting device 100 according to the first embodiment, and a description thereof is omitted here.
  • the first facing direction X (X1) is the first light irradiation direction W (W1) along the traveling direction of the excitation light L (L1) and L (L2) to the light irradiation surface 120a or substantially the first direction.
  • the second irradiation direction X (X2) is the second irradiation direction along the traveling direction of the excitation lights L (L3) and L (L4) to the irradiation surface 120a. W (W2) or substantially the second light irradiation direction W (W2).
  • the light source unit (110, 110) includes a first opposing direction X (X1) in which a pair of light source units (110, 110) face each other and another pair of light source units (110, 110). Even if a plurality of pairs of light source units 110 and 110 are provided, the plurality of pairs of light source units (110) are configured so that the second opposing direction X (X2) facing each other is orthogonal or substantially orthogonal.
  • , 110) to (110, 110) are arranged radially (for example, adjacent light sources) around the light irradiation surface 120a of the phosphor portion 120, specifically, a predetermined point (for example, a center point) on the light irradiation surface 120a.
  • the distance between the optical axes of the sections 110 and 110 is equal. To become so) it can be provided, which makes it possible to realize a compact light emitting device 100.
  • L (L4)] is a schematic plan view showing projection light [M (M1), M (M2)], [M (M3), M (M4)] on the light irradiation surface 120a.
  • FIG. 6A to FIG. 6E and FIG. 7A to FIG. 7D show examples thereof.
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is parallel or substantially parallel to the first light irradiation direction W (W1) [first facing direction X (X1)], and another pair of light source units (110, 110, 110) is the second light irradiation direction W (W2) [second facing direction] in the longitudinal direction of the shapes of the projection light M (M3) and M (M4) by the excitation light [L (L3), L (L4)].
  • the direction X (X2)] is orthogonal or substantially orthogonal.
  • FIG. 8 is a schematic cross-sectional view when the main body chassis 130 is fixed to the mount 190 in the example shown in FIG.
  • the illustration of the configuration other than the excitation light L1 to L4 is omitted.
  • the fluorescent F has a horizontal or substantially horizontal longitudinal direction, and thus can be suitably used for applications in which a wide directivity characteristic is desired in the horizontal direction H, such as an automotive headlamp.
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is orthogonal or substantially orthogonal to the first light irradiation direction W (W1) [first opposing direction X (X1)], and another pair of light source portions (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) is the second light irradiation direction W (W2) [second opposing direction] X (X2)] is parallel or substantially parallel.
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is inclined with respect to the first light irradiation direction W (W1) [first opposing direction X (X1)], and from the other pair of light source units (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) by the excitation light [L (L3), L (L4)] is the second light irradiation direction W (W2) [second opposing direction X ( X2)].
  • FIG. 9 is a schematic cross-sectional view when the main body chassis 130 is fixed to the mount 190 in the example shown in FIG.
  • the illustration of the configuration other than the excitation light L1 to L4 is omitted.
  • the fluorescent F has a horizontal or substantially horizontal longitudinal direction, and thus can be suitably used for applications in which a wide directivity characteristic is desired in the horizontal direction H, such as an automotive headlamp. Further, compared to the example shown in FIGS.
  • excitation light L2, L4, excitation light L1, L3 in the example shown in FIG. 9 are horizontal or substantially horizontal. Therefore, it is possible to omit the arc portion (the lower portion in the example shown in FIG. 9) of the cylindrical main body chassis 130 on the mount 190 side. That is, the height h1 (see FIG. 8) of the main body chassis 130 can be made lower (see the height h2 of the main body chassis 130 shown in FIG. 9), and it can be used for automobiles from the viewpoint of making the device compact and reducing the air resistance during travel. It can be suitably used with a headlamp or the like.
  • the projection light M (M1), M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is parallel or substantially parallel to the first light irradiation direction W (W1) [first facing direction X (X1)], and another pair of light source units (110, 110, 110) is the second light irradiation direction W (W2) [second facing direction] in the longitudinal direction of the shapes of the projection light M (M3) and M (M4) by the excitation light [L (L3), L (L4)].
  • W1 first facing direction X (X1)
  • W2 second facing direction
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is orthogonal or substantially orthogonal to the first light irradiation direction W (W1) [first opposing direction X (X1)], and another pair of light source portions (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) is the second light irradiation direction W (W2) [second opposing direction] X (X2)] is orthogonal or substantially orthogonal.
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is inclined with respect to the first light irradiation direction W (W1) [first opposing direction X (X1)], and from the other pair of light source units (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) by the excitation light [L (L3), L (L4)] is the second light irradiation direction W (W2) [second opposing direction X ( X2)] is orthogonal or substantially orthogonal.
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is inclined with respect to the first light irradiation direction W (W1) [first opposing direction X (X1)], and from the other pair of light source units (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) by the excitation light [L (L3), L (L4)] is the second light irradiation direction W (W2) [second opposing direction X ( X2)] is parallel or substantially parallel.
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is parallel or substantially parallel to the first light irradiation direction W (W1) [first facing direction X (X1)], and another pair of light source units (110, 110, 110) is the second light irradiation direction W (W2) [second facing direction] in the longitudinal direction of the shapes of the projection light M (M3) and M (M4) by the excitation light [L (L3), L (L4)]. It is oblique to the direction X (X2)].
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is orthogonal or substantially orthogonal to the first light irradiation direction W (W1) [first opposing direction X (X1)], and another pair of light source portions (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) is the second light irradiation direction W (W2) [second opposing direction] X (X2)].
  • the longitudinal size of the shapes of the projection lights M (M1), M (M2), M (M3), and M (M4) increases. It can be suitably used for applications in which a wide directivity characteristic in a predetermined linear direction is desired (for example, a vehicle headlamp in which a wide directivity characteristic is desirable in the horizontal direction).
  • the light emitting device 100 includes two pairs of the light source units 110 and 110 is shown.
  • the two pairs of light source units (110 and 110) and (110 and 110) are provided.
  • FIG. 10 is a schematic configuration diagram illustrating another example of the light emitting device 100 according to the second embodiment, and FIGS. 10A and 10B respectively illustrate the light emitting device 100 according to the first embodiment.
  • FIG. 6 is a side view and a plan view showing another example further including a pair of light source units 110, 110.
  • a plurality of pairs (two pairs in this example) of the light source units (110, 110) to (110, 110) include a plurality of pairs of light source units (110, 110).
  • a pair of light source units (110, 110) of (110, 110) and another pair of light source units (110, 110) are a pair of light source units (110, 110).
  • the first facing direction X (X1) facing each other and the second facing direction X (X2) facing the other pair of light source units (110, 110) are parallel or substantially parallel. (Specifically disposed).
  • the pair of light source units (110, 110) is the same as the configuration of the light emitting device 100 according to the first embodiment, and a description thereof is omitted here.
  • the other pair of light source units (110, 110) is the same as the configuration of the light emitting device 100 according to the second embodiment-4 shown in FIG. 5, and the description thereof is omitted here.
  • the first facing direction X (X1) is the first light irradiation direction W (W1) along the traveling direction of the excitation light L (L1) and L (L2) to the light irradiation surface 120a or substantially the first direction.
  • the second irradiation direction X (X2) is the second irradiation direction along the traveling direction of the excitation lights L (L3) and L (L4) to the irradiation surface 120a. W (W2) or substantially the second light irradiation direction W (W2).
  • the light source unit (110, 110) includes a first opposing direction X (X1) in which a pair of light source units (110, 110) face each other and another pair of light source units (110, 110). Even if a plurality of pairs of light source units 110 and 110 are provided, a plurality of pairs of light source units (a plurality of pairs of light source units ((X2)) are arranged in parallel or substantially parallel to each other. 110, 110) to (110, 110) can be provided along one direction [first and second opposing directions X (X1), X (X2)], and thereby in a direction orthogonal to one direction. Can be made compact.
  • the optical axis of the excitation light L [L (L3), L (L4)] is located on the same virtual plane or substantially the same virtual plane, and the same virtual plane or substantially the same virtual plane is irradiated with light in the phosphor portion 120. It is orthogonal or substantially orthogonal to the surface 120a.
  • a plurality of pairs of light source units (110, 110) to (110, 110) are provided on a straight line along one direction [first and second opposing directions X (X1), X (X2)].
  • the light source units 110 to 110 emit light as they go from the inside to the outside with a predetermined point (for example, the center point) of the phosphor unit 120, specifically, the light irradiation surface 120a in between.
  • the incident angles ⁇ to ⁇ ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4) of the excitation light irradiated onto the irradiation surface 120a [see FIG. 10A] are arranged to be large. By doing so, the light source units 110 to 110 can be efficiently arranged.
  • the incident angles ⁇ can be the same or substantially the same.
  • 11 and 12 show another example of the light emitting device 100 according to the second embodiment shown in FIG. 10, and the excitation light [L (L1), L (L2)], [L (L3), L (L4)] is a schematic plan view showing projected light [M (M1), M (M2)], [M (M3), M (M4)] on the light irradiation surface 120a.
  • FIG. 11A to FIG. 11E and FIG. 12A to FIG. 12D show examples thereof.
  • the length of the projection light [M (M3), M (M4)] in the longitudinal direction is larger than the length of the projection light [M (M1), M (M2)] in the longitudinal direction.
  • the incident angles ⁇ 3 and ⁇ 4 are larger than the incident angles ⁇ 1 and ⁇ 2, and dL / cos ⁇ of the projection light [M (M3), M (M4)] is dL / of the projection light [M (M1), M (M2)]. This is because it becomes larger than cos ⁇ .
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is parallel or substantially parallel to the first light irradiation direction W (W1) [first facing direction X (X1)], and another pair of light source units (110, 110, 110) is the second light irradiation direction W (W2) [second facing direction] in the longitudinal direction of the shapes of the projection light M (M3) and M (M4) by the excitation light [L (L3), L (L4)].
  • W (W1) first facing direction X (X1)
  • W2 second facing direction
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is orthogonal or substantially orthogonal to the first light irradiation direction W (W1) [first opposing direction X (X1)], and another pair of light source portions (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) is the second light irradiation direction W (W2) [second opposing direction] X (X2)] is orthogonal or substantially orthogonal.
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is inclined with respect to the first light irradiation direction W (W1) [first opposing direction X (X1)], and from the other pair of light source units (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) by the excitation light [L (L3), L (L4)] is the second light irradiation direction W (W2) [second opposing direction X ( X2)].
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is parallel or substantially parallel to the first light irradiation direction W (W1) [first facing direction X (X1)], and another pair of light source units (110, 110, 110) is the second light irradiation direction W (W2) [second facing direction] in the longitudinal direction of the shapes of the projection light M (M3) and M (M4) by the excitation light [L (L3), L (L4)].
  • the direction X (X2)] is orthogonal or substantially orthogonal.
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is orthogonal or substantially orthogonal to the first light irradiation direction W (W1) [first opposing direction X (X1)], and another pair of light source portions (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) is the second light irradiation direction W (W2) [second opposing direction] X (X2)] is parallel or substantially parallel.
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is inclined with respect to the first light irradiation direction W (W1) [first opposing direction X (X1)], and from the other pair of light source units (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) by the excitation light [L (L3), L (L4)] is the second light irradiation direction W (W2) [second opposing direction X ( X2)] is parallel or substantially parallel.
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is inclined with respect to the first light irradiation direction W (W1) [first opposing direction X (X1)], and from the other pair of light source units (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) by the excitation light [L (L3), L (L4)] is the second light irradiation direction W (W2) [second opposing direction X ( X2)] is orthogonal or substantially orthogonal.
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is parallel or substantially parallel to the first light irradiation direction W (W1) [first facing direction X (X1)], and another pair of light source units (110, 110, 110) is the second light irradiation direction W (W2) [second facing direction] in the longitudinal direction of the shapes of the projection light M (M3) and M (M4) by the excitation light [L (L3), L (L4)]. It is oblique to the direction X (X2)].
  • the projection light M (M1) and M (M2) of the excitation light [L (L1), L (L2)] from the pair of light source units (110, 110) is set.
  • the longitudinal direction of the shape is orthogonal or substantially orthogonal to the first light irradiation direction W (W1) [first opposing direction X (X1)], and another pair of light source portions (110, 110).
  • the longitudinal direction of the shape of the projection light M (M3), M (M4) is the second light irradiation direction W (W2) [second opposing direction] X (X2)].
  • the longitudinal size of the shapes of the projection lights M (M1), M (M2), M (M3), and M (M4) is increased. It can be suitably used for applications in which a wide directivity characteristic in a predetermined linear direction is desired (for example, a vehicle headlamp in which a wide directivity characteristic is desirable in the horizontal direction).
  • the plurality of pairs of light source units are added to a pair of light source units (110, 110) and another pair of light source units (110, 110). Although not shown in the figure, it further includes another pair of light source sections (110, 110) and another pair of light source sections (110, 110), and yet another pair of light sources.
  • the part (110, 110) and another pair of light source parts (110, 110) are further separated from a third facing direction in which another pair of light source parts (110, 110) faces each other.
  • the pair of light source portions (110, 110) of the pair is parallel or substantially parallel to the fourth facing direction, and the third and fourth facing directions are the first and second facing directions. It may be configured to be orthogonal or substantially orthogonal to the directions X (X1) and X (X2).
  • the example in which the light emitting device 100 includes two pairs of the light source units 110 and 110 is shown, but three or more pairs may be provided.
  • the incident angle of the excitation light irradiated on the light irradiation surface 120a increases.
  • a similar configuration may be used in another configuration in which a plurality of light source units 110 are provided.
  • the effect of overlapping the spots is reduced compared to the case where the incident angles are equal, but a constant overlap of the spots can be expected by aligning the longitudinal direction of the spots, and the installation location of the light source unit 110 is limited. Is particularly effective.
  • FIG. 13 is a schematic configuration diagram showing the light emitting device 100 according to the third embodiment, which directly irradiates the light irradiation surface 120a of the phosphor portion 120 with the excitation lights L to L from the light source portions 110 to 110. It is sectional drawing which shows an example.
  • the light emitting device 100 according to the third embodiment shown in FIG. 13 removes the mirror units 160 to 160 in the light emitting device 100 according to the first embodiment, and converts the excitation light L to L from the light source portions 110 to 110 to the phosphor portion.
  • the configuration is the same as that of the light emitting device 100 according to the first embodiment except that the light irradiation surface 120a in 120 is directly irradiated.
  • excitation light L to L from the light source units 110 to 110 is directly irradiated onto the light irradiation surface 120a of the phosphor unit 120.
  • laser light sources 111 to 111 are provided between the phosphor portion 120 and the light projecting lens 170.
  • the excitation light L to L emitted from the laser light sources 111 to 111 is irradiated to the light irradiation surface 120a of the phosphor part 120, and thereby the fluorescence F is generated. Then, the fluorescence F emitted from the surface on the side from which the fluorescence F is emitted (in this example, the light irradiation surface 120a) is projected to the outside through the projection lens 170.
  • the light emitting device 100 has a simple configuration by directly irradiating the light irradiation surface 120a of the phosphor portion 120 with the excitation light L to L from the light source portions 110 to 110. Accordingly, the light emitting device 100 can be downsized accordingly.
  • the mirror units 160 to 160 are removed from the light emitting device 100 according to the first embodiment, and the excitation light L to L from the light source units 110 to 110 is irradiated with light on the phosphor unit 120.
  • the surface 120a is directly irradiated, the mirror units 160 to 160 are removed from the light source units 110 to 110 in the light emitting device 100 according to the second embodiment and the fifth and sixth embodiments described later.
  • the excitation light L to L may be directly irradiated onto the light irradiation surface 120a of the phosphor portion 120.
  • FIG. 14 is a schematic configuration diagram illustrating the light emitting device 100 according to the fourth embodiment, and is a cross-sectional view illustrating a transmission type configuration example.
  • the light emitting device 100 according to the fourth embodiment has a transmissive configuration instead of the reflective configuration of the light emitting device 100 according to the third embodiment.
  • a transmission type that emits fluorescence F from the surface 120b opposite to the light irradiation surface 120a by irradiating the light irradiation surface 120a of the phosphor portion 120 with the excitation light L to L.
  • the light emission principle is used.
  • a transmissive configuration is used instead of the reflective configuration of the light emitting device 100 according to the third embodiment, but the first embodiment, the second embodiment, and a later-described configuration.
  • a transmissive configuration may be used instead of the reflective configuration of the light emitting device 100 according to the fifth and sixth embodiments.
  • FIG. 15 is a schematic configuration diagram illustrating the light emitting device 100 according to the fifth embodiment, and is a side view illustrating an example in which the light irradiation directions W and W of the pair of light source units 110 and 110 intersect.
  • the light-emitting device 100 shown in FIG. 15 has a configuration of the second embodiment-4 (an example of the light-emitting device 100 according to the second embodiment) shown in FIG. Either one of the light source units 110 and the other pair of light source units (110, 110) is removed.
  • the pair of light source units 110 and 110 includes a light irradiation direction W (W1) along the traveling direction of the excitation light L (L3) of one light source unit 110 to the light irradiation surface 120a.
  • the light irradiation direction W (W2) along the traveling direction of the excitation light L (L2) of the other light source unit 110 to the light irradiation surface 120a intersects (in this example, orthogonal or substantially orthogonal). ing.
  • the pair of light source units 110 and 110 includes the light irradiation direction W along the traveling direction of the excitation light L of one light source unit 110 to the light irradiation surface 120 a and the excitation light L of the other light source unit 110. Is arranged so that the light irradiation direction W along the traveling direction to the light irradiation surface 120a intersects the light irradiation surface 120a. Since the portions 110 and 110 are not provided, the space on the opposite side can be used effectively.
  • the light source units 110 to 110 may be three or more.
  • the three or more light source units 110 to 110 are arranged radially (for example, adjacent to the light irradiation surface 120a of the phosphor unit 120, specifically, a predetermined predetermined point (for example, the center point) of the light irradiation surface 120a. So that the distances between the optical axes of the matching light source portions 110 and 110 are equal).
  • FIG. 16 is a schematic configuration diagram illustrating the light emitting device 100 according to the sixth embodiment, and is a side view illustrating an example including a reflector 180.
  • a light emitting device 100 shown in FIG. 16 is provided with a reflector 180 in place of or in addition to the light projecting lens 170 (in this example, in the configuration of the first embodiment shown in FIG. 2).
  • the light emitting device 100 shown in FIG. 16 includes a reflector 180 that projects the fluorescence F from the light irradiation surface 120a in the phosphor portion 120.
  • the fluorescence F from the phosphor portion 120 is determined in advance while having a simple configuration.
  • the light can be projected in a predetermined direction, whereby the fluorescent light F from the phosphor portion 120 can be projected in a desired direction.
  • the light-emitting device 100 shown in FIG. 16 can be suitably used, for example, for an automobile headlamp (vehicle headlamp).
  • the reflector 180 projects the fluorescence F emitted from the light irradiation surface 120a in the phosphor portion 120.
  • the reflector 180 may be a member in which a metal thin film is formed on the inner surface of a resin member, or may be a metal member.
  • the reflector 180 reflects at least a part of a partial curved surface obtained by cutting a reflection curved surface formed by rotating the parabola with a plane parallel to the rotation axis with the parabolic symmetry axis as a rotation axis. It is included in the curved surface.
  • the reflector 180 has a semicircular opening 180a in the direction in which the fluorescent light F emitted from the light irradiation surface 120a in the phosphor 120 is projected.
  • the light irradiation surface 120 a in the phosphor portion 120 is disposed at a substantially focal position of the reflector 180.
  • the fluorescence F generated on the light irradiation surface 120a in the phosphor portion 120 travels from the opening portion 180a of the reflector 180 in a state where a light bundle close to parallel is formed by the reflector 180. Light is projected in the direction. Thereby, the fluorescence F generated on the light irradiation surface 120a can be efficiently projected within a narrow solid angle.
  • the reflector 180 may include a full parabolic mirror having a circular opening 180a or a part thereof. Besides the parabolic mirror, an elliptical surface, a free-form surface shape, or a multi-faceted one (multi-reflector) can be used. Furthermore, a part that is not a curved surface may be included in a part of the reflector 180. Alternatively, the reflector 180 may be one that magnifies and projects the fluorescence F from the light irradiation surface 120a in the phosphor portion 120.
  • the light emitting device 100 may further include an optical member such as a light projecting lens that controls an angle range of light projected to the opening 180a of the reflector 180.
  • an optical member such as a light projecting lens that controls an angle range of light projected to the opening 180a of the reflector 180.
  • the reflector 180 is provided in the light emitting device 100 according to the first embodiment.
  • a reflector 180 may be provided instead of the light projecting lens 170 in the light emitting device 100 according to the second to fifth embodiments.
  • a reflector 180 may be provided instead of the light projecting lens 170 in the light emitting device 100 according to the second to fifth embodiments.
  • the light emitting device 100 may be applied to a vehicle headlamp other than an automobile.
  • the light-emitting device 100 is not limited thereto, but includes, for example, a headlamp, a searchlight, a projector,
  • the present invention can be applied to lighting devices such as indoor lighting fixtures such as downlights and stand lamps.
  • the present invention relates to a light-emitting device that emits fluorescence by irradiating excitation light onto a light irradiation surface in a phosphor portion, and in particular, irradiates a light irradiation surface in a phosphor portion with a plurality of excitation lights superimposed.
  • the present invention can be applied to an application for improving the luminance of fluorescence on the light irradiation surface.
  • Light-emitting device 110 Light source part 111 Laser light source 111a Semiconductor laser element 111b Light exit 112 Reflection mirror 120 Phosphor part 120a Light irradiation surface 120b Surface opposite to the light irradiation surface 130 Main body chassis 131 Housing part 132 Excitation light passage hole 133 Projection light passage hole 140 Light source unit 141 Collimator lens 142 Screw structure 150 Press plate 160 Mirror unit 161 Holding member 170 Projection lens 180 Reflector 180a Opening portion F Fluorescence Kmax Longest straight line L Excitation light M Projection light SC Fixed member W Light Irradiation direction X Opposite direction ⁇ Virtual straight line ⁇ Capture angle ⁇ Incident angle ⁇ Angle

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

発光装置は、励起光を出射するレーザ光源をそれぞれ有する複数の光源部と、励起光を受けて蛍光を発光する蛍光体部とを備え、複数の光源部のうち少なくとも2つの光源部は、励起光を蛍光体部における光照射面にそれぞれ照射したときに該励起光が該光照射面で重なるように、且つ、該光照射面に投影される該励起光の該光照射面での投影光の長尺な形状の長手方向が互いに平行又は略平行になるように構成されている。

Description

発光装置
 本発明は、励起光を蛍光体部における光照射面に照射することで蛍光を発光する発光装置、照明装置及び車両用前照灯に関する。
 励起光源として発光ダイオード(LED:Light Emitting Diode)光源や半導体レーザ(LD:Laser Diode)光源を用い、これらの励起光源から出射された励起光を、蛍光体を含む蛍光体部における光照射面に照射することによって蛍光を発光する発光装置が従来から知られている(例えば特許文献1参照)。
 このうち、半導体レーザ光源を用いた発光装置は、発光ダイオード光源を用いた発光装置に比べ、励起光の光軸方向に直交する垂直断面(スポット)のサイズ(スポットサイズ)を小さくできるため、高輝度の蛍光を得ることできる。ここで、半導体レーザ光源を用いた発光装置において、半導体レーザの共振長が短いこと及び半導体レーザ素子から出る光の出射部分が極端に扁平なことから、励起光のスポットの形状、ひいては、励起光を蛍光体部における光照射面に照射したときの該光照射面に投影される該励起光の該光照射面での投影光は、通常は、長尺な形状(具体的には楕円形状)となる。
 一方、半導体レーザ光源を用いた発光装置は、投光器等の照明装置や車両用前照灯といった、より一層の高輝度の蛍光を得ることが要求されるものに備えられることがあり、かかる場合、より一層の高輝度を得るために、複数の励起光を該励起光が蛍光体部における光照射面で重なるように該光照射面に照射することで、該光照射面での該励起光が重なった部分の蛍光の輝度をさらに大きくすることができる(例えば特許文献2の図7及び特許文献3の図9参照)。
特開2011-134619号公報 特許第4124445号公報 特開2015-65144号公報
 しかしながら、特許文献2,3に記載の従来の構成のように、単に、複数の励起光を該励起光が蛍光体部における光照射面で重なるように該光照射面に照射するだけでは、次のような不都合がある。
 図17は、複数の励起光L1,L2,L3を励起光L1,L2,L3が蛍光体部120における光照射面120aで重なるように光照射面120aに照射する従来の構成において、励起光L1,L2,L3を光照射面120aに照射したときの励起光L1,L2,L3が光照射面120aで重なる状態を平面から視た概略平面図である。なお、図17は、蛍光体部120を間にして等方配設された一組のレーザ光源(図示せず)からそれぞれ励起光L1,L2,L3を出射する例を示しており、図17において、符号Wは、一組のレーザ光源の光照射方向を示している。
 従来の構成では、図17に示すように、励起光L1,L2,L3を蛍光体部120における光照射面120aに照射したときの励起光L1,L2,L3の光照射面120aでの長尺な投影光M1,M2,M3の形状の長手方向が交差(特に図示例のように均等に交差)する場合には、光照射面120aでの励起光L1,L2,L3が重なった部分(図17の斜線部参照)の面積が小さくなり、それだけ蛍光の光強度が低下してしまう。従って、複数の励起光L1,L2,L3を重ねて蛍光体部120における光照射面120aに照射したとしても、蛍光体部120における光照射面120aでの蛍光の輝度を十分に得ることができていないのが実情である。
 そこで、本発明は、複数の励起光を重ねて蛍光体部における光照射面に照射するにあたり、光照射面での蛍光の輝度を向上させることができる発光装置、照明装置及び車両用前照灯を提供することを目的とする。
 本発明は、前記課題を解決するために、次の発光装置、照明装置及び車両用前照灯を提供する。
 すなわち、本発明に係る発光装置は、励起光を出射するレーザ光源をそれぞれ有する複数の光源部と、前記励起光を受けて蛍光を発光する蛍光体部とを備え、前記複数の光源部のうち少なくとも2つの光源部は、前記励起光を前記蛍光体部における光照射面にそれぞれ照射したときに該励起光が該光照射面で重なるように、且つ、該光照射面に投影される該励起光の該光照射面での投影光の長尺な形状の長手方向が互いに平行又は略平行になるように構成されていることを特徴とする。また、本発明に係る照明装置は、前記本発明に係る発光装置を備えたことを特徴とする。また、本発明に係る車両用前照灯は、前記本発明に係る発光装置を備えたことを特徴とする。
 本発明において、前記複数の光源部は、全ての前記投影光の形状の長手方向が平行又は略平行になるように構成されている態様を例示できる。
 本発明において、前記投影光の形状の長手方向が、前記蛍光が外部に投光された場合に水平方向又は略水平方向となるように構成されている態様を例示できる。
 本発明において、前記少なくとも2つの光源部の前記投影光の形状の長手方向が前記励起光の前記光照射面への進行方向に沿った光照射方向に対して平行又は略平行になるように構成されている態様を例示できる。
 本発明において、前記少なくとも2つの光源部の前記投影光の形状の長手方向が前記励起光の前記光照射面への進行方向に沿った光照射方向に対して直交又は略直交するように構成されている態様を例示できる。
 本発明において、前記少なくとも2つの光源部の前記投影光の形状の長手方向が前記励起光の前記光照射面への進行方向に沿った光照射方向に対して斜めになるように構成されている態様を例示できる。
 本発明において、前記投影光の形状の長手方向の前記光照射方向に対する角度が45度又は略45度である態様を例示できる。
 本発明において、前記少なくとも2つの光源部は、前記レーザ光源をそれぞれ有する一対の光源部とされている態様を例示できる。
 本発明において、前記一対の光源部は、一方の光源部の前記励起光の前記光照射面への進行方向に沿った光照射方向と、他方の光源部の前記励起光の前記光照射面への進行方向に沿った光照射方向とが平行又は略平行となるように配設されている態様を例示できる。
 本発明において、前記一対の光源部は、前記蛍光体部を間にして一方側及び前記一方側とは反対側の他方側に位置するように配設されている態様を例示できる。
 本発明において、前記一対の光源部は、前記蛍光体部を間にして互いに対向するように配設されている態様を例示できる。
 本発明において、前記一対の光源部の前記励起光の光軸が同一仮想平面又は略同一仮想平面上に位置し、該同一仮想平面又は略同一仮想平面は、前記蛍光体部における前記光照射面に対して直交又は略直交している態様を例示できる。
 本発明において、前記一対の光源部は、線対称又は略線対称になるように構成されている態様を例示できる。
 本発明において、前記一対の光源部を複数対備えている態様を例示できる。
 本発明において、前記複数対の光源部の少なくとも2組の前記一対の光源部は、前記励起光が前記蛍光体部における前記光照射面で重なるように構成されている態様を例示できる。
 本発明において、前記複数対の光源部は、少なくとも2組の前記一対の光源部が線対称又は略線対称になるように構成されている態様を例示できる。
 本発明において、前記複数対の光源部は、少なくとも2組の前記一対の光源部が前記蛍光体部を間にして互いに対向するように配設されている態様を例示できる。
 本発明において、前記複数対の光源部は、該複数対の光源部のうちの1組の一対の光源部及び他の1組の一対の光源部は、前記1組の一対の光源部が対向する第1の対向方向と前記他の1組の一対の光源部が対向する第2の対向方向とが直交又は略直交するように構成されている態様を例示できる。
 本発明において、前記複数対の光源部は、該複数対の光源部のうちの1組の一対の光源部及び他の1組の一対の光源部は、前記1組の一対の光源部が対向する第1の対向方向と前記他の1組の一対の光源部が対向する第2の対向方向とが平行又は略平行になるように構成されている態様を例示できる。
 本発明において、前記1組の一対の光源部の励起光の光軸と前記他の1組の一対の光源部の光軸とが同一仮想平面又は略同一仮想平面上に位置し、該同一仮想平面又は略同一仮想平面は、前記蛍光体部における前記光照射面に対して直交又は略直交している態様を例示できる。
 本発明において、前記一対の光源部は、一方の光源部の前記励起光の前記光照射面への進行方向に沿った光照射方向と、他方の光源部の前記励起光の前記光照射面への進行方向に沿った光照射方向とが交差するように配設されている態様を例示できる。
 本発明において、前記少なくとも2つの光源部における前記レーザ光源から出射される前記励起光の光軸方向に直交する垂直断面の形状が何れも等しい又は略等しい形状とされ、前記少なくとも2つの光源部は、前記蛍光体部における前記光照射面にそれぞれ照射される前記励起光の入射角度が互いに等しい又は略等しくなるように構成されている態様を例示できる。
 本発明において、前記少なくとも2つの光源部は、前記蛍光体部を間にして内側から外側に行くに従って、前記光照射面に照射される前記励起光の入射角度が大きくなるように配設されている態様を例示できる。
 本発明において、前記少なくとも2つの光源部は、前記レーザ光源から出射される前記励起光を反射させる反射ミラーをそれぞれ備え、前記蛍光体部は、前記少なくとも2つの光源部における前記反射ミラーから反射される前記励起光を受けて前記蛍光を発光する態様を例示できる。
 本発明において、前記少なくとも2つの光源部は、前記レーザ光源が前記反射ミラーに向けて出射する前記励起光が互いに平行又は略平行になるように構成されている態様を例示できる。
 本発明において、前記少なくとも2つの光源部は、前記レーザ光源が前記反射ミラーに向けて出射する前記励起光が何れも前記蛍光体部における前記光照射面に対して直交又は略直交するように構成されている態様を例示できる。
 本発明において、前記少なくとも2つの光源部からの前記励起光を前記蛍光体部における前記光照射面に直接的に照射する構成とされている態様を例示できる。
 本発明において、前記励起光を前記蛍光体部における前記光照射面に照射して該光照射面から前記蛍光を出射する反射型の発光原理を用いる態様を例示できる。
 本発明において、前記励起光を前記蛍光体部における前記光照射面に照射して該光照射面とは反対側の面から前記蛍光を出射する透過型の発光原理を用いる態様を例示できる。
 本発明において、前記蛍光体部における前記光照射面及び該光照射面とは反対側の面のうち、前記蛍光を出射する側の面からの前記蛍光を投光する投光レンズを備えている態様を例示できる。
 本発明において、前記励起光の前記蛍光体部における前記光照射面への入射角度は、前記投光レンズの取り込み角度よりも大きい態様を例示できる。
 本発明において、前記蛍光体部における前記光照射面からの前記蛍光を投光するリフレクターを備えている態様を例示できる。
 本発明によると、複数の励起光を重ねて蛍光体部における光照射面に照射するにあたり、光照射面での蛍光の輝度を向上させることが可能となる。
図1は、第1実施形態に係る発光装置の概略構成を示す断面図である。 図2は、図1に示す発光装置の光源部、蛍光体部及び投光レンズを抜き出して示す概略構成図であって、(a)及び(b)は、それぞれ、その側面図及び平面図である。 図3は、励起光を蛍光体部における光照射面に対して入射角度をつけて照射した場合において光照射面での投影光の状態を説明するための説明図であって、(a)は、入射角度をつけた励起光及び励起光を照射した光照射面での投影光を示す概略断面図であり、(b)から(d)は、それぞれ、投影光の形状の長手方向が励起光の光照射面への進行方向に沿った光照射方向に対して平行又は略平行になっている場合、直交又は略直交している場合、及び、斜めになっている場合での励起光の光軸方向に直交する垂直断面及び投影光の形状を平面から視た概略平面図である。 図4は、第1実施形態に係る発光装置において、光照射面に投影される励起光の光照射面での投影光を示す概略平面図であって、(a)から(c)は、それぞれ、投影光の形状の長手方向が光照射方向に対して平行又は略平行になっている場合、直交又は略直交している場合、及び、斜めになっている場合での投影光の状態を示す図である。 図5は、第2実施形態に係る発光装置の一例を示す概略構成図であって、(a)及び(b)は、それぞれ、第1実施形態に係る発光装置において一対の光源部をさらに備えた一例を示す側面図及び平面図である。 図6は、図5に示す第2実施形態に係る発光装置において、光照射面に投影される励起光の光照射面での投影光を示す概略平面図であって、(a)から(e)は、その各例を示す図である。 図7は、図5に示す第2実施形態に係る発光装置において、光照射面に投影される励起光の光照射面での投影光を示す概略平面図であって、(a)から(d)は、その各例を示す図である。 図8は、図6(a)に示す例おいて、本体シャーシを架台に固定したときの概略断面図を示す。 図9は、図6(c)に示す例おいて、本体シャーシを架台に固定したときの概略断面図である。 図10は、第2実施形態に係る発光装置の他の例を示す概略構成図であって、(a)及び(b)は、それぞれ、第1実施形態に係る発光装置において一対の光源部をさらに備えた他の例を示す側面図及び平面図である。 図11は、図10に示す第2実施形態に係る発光装置において、光照射面に投影される励起光の光照射面での投影光を示す概略平面図であって、(a)から(e)は、その各例を示す図である。 図12は、図10に示す第2実施形態に係る発光装置において、光照射面に投影される励起光の光照射面での投影光を示す概略平面図であって、(a)から(d)は、その各例を示す図である。 図13は、第3実施形態に係る発光装置を示す概略構成図であって、光源部からの励起光を蛍光体部における光照射面に直接的に照射する例を示す断面図である。 図14は、第4実施形態に係る発光装置を示す概略構成図であって、透過型の構成例を示す断面図である。 図15は、第5実施形態に係る発光装置を示す概略構成図であって、一対の光源部の光照射方向が交差する例を示す側面図である。 図16は、第6実施形態に係る発光装置を示す概略構成図であって、リフレクターを備えた例を示す側面図である。 図17は、複数の励起光を励起光が蛍光体部における光照射面で重なるように光照射面に照射する従来の構成において、励起光を光照射面に照射したときの励起光が光照射面で重なる状態を平面から視た概略平面図である。
 以下、本発明に係る実施の形態について図面を参照しながら説明する。
 [第1実施形態]
 図1は、第1実施形態に係る発光装置100の概略構成を示す断面図である。図2は、図1に示す発光装置100の光源部110~110、蛍光体部120及び投光レンズ170を抜き出して示す概略構成図であって、図2(a)及び図2(b)は、それぞれ、その側面図及び平面図である。なお、図2(b)では、投光レンズ170は図示を省略する一方、保持部材161を図示している。このことは、後述する図5(b)及び図10(b)についても同様である。
 図1及び図2に示すように、発光装置100は、励起光Lを出射するレーザ光源111[図1及び図2(a)参照]をそれぞれ有する複数(この例では2つ)の光源部110~110と、複数(この例では2つ)の励起光L~Lを受けて蛍光F[図1及び図2(a)参照]を発光する蛍光体部120とを備えている。
 蛍光F(より正確には励起光Lと蛍光Fとが混色した投影光M)の色は用途に応じて任意に選択できる。例えば、自動車用前照灯には青色レーザを励起光Lとして黄色に発光する蛍光体に照射することで得られる白色光が好適である。また、青色レーザを励起光Lとして赤色と緑色とに発光する蛍光体に照射することで得られる白色光が好適である。
 詳しくは、複数(この例では2つ)のレーザ光源111~111は、半導体レーザ素子111a(LD:Laser Diode)[図1及び図2(a)参照]をそれぞれ含むレーザ光源とされている。蛍光体部120は、蛍光体を含んでいる。なお、複数(この例では2つ)の半導体レーザ素子111a~111a及び蛍光体部120は、従来公知のものを用いることができ、ここでは詳しい説明を省略する。
 そして、発光装置100は、レーザ光源111~111からそれぞれ出射された励起光L~Lを蛍光体部120における光照射面120aに照射することによって発生する蛍光F[図1及び図2(a)参照]を照明光として利用する。ここで、発光装置100において、励起光L~Lの軸線方向に直交する垂直断面(スポット)の形状、ひいては、励起光L~Lを蛍光体部120における光照射面120aに照射したときの光照射面120aに投影される励起光L~Lの光照射面120aでの投影光M~Mは、長尺な形状(具体的には楕円形状)となっている。励起光L~Lのスポットの形状の長手方向のサイズと短手方向のサイズとの比としては、それには限定されないが、例えば、10:3程度を挙げることができる。
 具体的には、発光装置100は、本体シャーシ130(図1参照)と、複数(この例では2つ)の光源ユニット140~140(図1参照)と、押えプレート150(図1参照)とをさらに備えている。
 本体シャーシ130は、発光装置100の本体部を構成している。本体シャーシ130には、光源ユニット140~140をそれぞれ収容する収容部131(図1参照)が設けられている。
 光源ユニット140~140は、光源部110~110をそれぞれ構成するレーザ光源111~111を備え、レーザ光源111~111を保持した状態で本体シャーシ130における複数(この例では2つ)の収容部131~131にそれぞれ収容されて押えプレート150にて本体シャーシ130にビス等の固定部材SC~SC(図1参照)により固定されるようになっている。
 また、本体シャーシ130には、光源ユニット140~140から出射された励起光L~Lを通過させる励起光用通過孔132~132がそれぞれ設けられている。また、本体シャーシ130には、蛍光体部120における光照射面120aから出射された投影光M~Mを通過させる投影光用通過孔133が設けられている。励起光用通過孔132~132は、光源ユニット140~140から出射された励起光L~Lの光軸方向又は略光軸方向に沿っている。投影光用通過孔133は、光照射面120aに直交又は略直交する方向に沿っている。この例では、本体シャーシ130には、励起光用通過孔132~132と投影光用通過孔133とが連通するように設けられている。
 光源部110~110は、それぞれ、レーザ光源111~111から出射される励起光L~Lを反射させる反射ミラー112をさらに備えている。
 発光装置100は、複数(この例では2つ)のミラーユニット160~160(図1参照)をさらに備えている。ミラーユニット160~160は、光源部110~110をそれぞれ構成する反射ミラー112~112と、複数(この例では2つ)の反射ミラー112~112を本体シャーシ130にそれぞれ保持する複数(この例では2つ)の保持部材161~161[図1及び図2(b)参照]とを備えている。詳しくは、反射ミラー112~112は、それぞれ、保持部材161~161を介して本体シャーシ130における投影光用通過孔133の内壁に設けられている。
 また、光源ユニット140~140は、それぞれ、コリメートレンズ141~141(図1参照)をさらに備えている。複数(この例では2つ)のコリメートレンズ141~141は、それぞれ、レーザ光源111~111の光射出口111b~111b[図1及び図2(b)参照]の近傍に設けられている。コリメートレンズ141~141は、励起光L~Lが反射ミラー112~112に適切に照射されて励起光L~Lの軸線方向に直交する垂直断面(スポット)のサイズ(スポットサイズ)等を調節(例えば小さく)するための光学部材である。コリメートレンズ141~141は、例えば、凸レンズ等の光学部材で構成することができる。光源ユニット140~140は、コリメートレンズ141~141を光軸方向に移動させることにより、例えば、ねじ構造142~142(図1では図示せず、後述する図13及び図14参照)により光軸に沿った軸線回りに回転させつつ光軸方向に移動させることにより励起光L~Lのスポットサイズを調整することが可能である。
 発光装置100は、蛍光体部120における光照射面120a及び光照射面120aとは反対側の面120b[図1及び図2(a)参照]のうち、蛍光Fを出射する側の面(この例では光照射面120a)からの蛍光Fを投光する投光レンズ170[図1及び図2(a)参照]をさらに備えている。
 この例では、蛍光体部120の光照射面120aとは反対側にレーザ光源111~111が設けられ、蛍光体部120と投光レンズ170との間の位置に反射ミラー112~112が設けられている。
 以上説明した発光装置100では、レーザ光源111~111から出射された励起光L~Lが反射ミラー112~112に反射されて蛍光体部120における光照射面120aに照射され、これにより蛍光Fが発生する。そうすると、蛍光Fを出射する側の面(この例では光照射面120a)で出射した蛍光Fが投光レンズ170を介して外部に投光される。
 そして、第1実施形態では、複数の光源部110~110は、励起光L~Lを蛍光体部120における光照射面120aにそれぞれ照射したときに励起光L~Lが光照射面120aで重なるように(好ましくは少なくとも一つの励起光が他の励起光に対して光照射面120aで全て重なるように)、且つ、光照射面120aに投影される励起光L~Lの光照射面120aでの投影光M~M(後述する図4参照)の長尺な形状の長手方向が互いに平行又は略平行になるように構成(具体的には配設、より具体的には調整された状態で配設)されている。
 この例では、複数の光源部110~110は、全ての投影光M~Mの形状の長手方向が平行又は略平行になるように構成されている。
 また、複数の光源部110~110は、投影光M~Mの形状の長手方向が、蛍光Fが外部に投光された場合に水平方向又は略水平方向となるように構成されている。
 ここで、励起光L~Lが光照射面120aで重なるように、且つ、投影光M~Mの長尺な形状の長手方向が互いに平行又は略平行になるように、複数の光源部110~110を調整する態様としては、例えば、レーザ光源111~111(この例では光源ユニット140~140)を励起光Lの光軸方向に直交する面に沿った方向及び励起光Lの光軸方向に沿った軸線回りの回転方向に移動させることによって調整する態様を例示できる。なお、かかる調整は、例えば、作業者が調整用治具を用いて光源ユニット140~140を移動させつつ拡大表示装置のモニターを観察しながら行うことができる。
 本実施の形態によれば、複数の光源部110~110は、励起光L~Lを蛍光体部120における光照射面120aにそれぞれ照射したときに励起光L~Lが光照射面120aで重なるように、且つ、光照射面120aに投影される励起光L~Lの光照射面120aでの投影光M~Mの長尺な形状の長手方向が互いに平行又は略平行になるように構成されていることで、蛍光体部120~120における光照射面120aでの励起光L~Lが重なった部分の面積を大きくすることができ、それだけ蛍光Fの光強度を向上させることができる。従って、複数の励起光L~Lを重ねて蛍光体部120における光照射面120aに照射するにあたり、蛍光体部120における光照射面120aでの蛍光Fの輝度を向上させることが可能となる。
 また、複数の光源部110~110は、全ての投影光M~Mの形状の長手方向が平行又は略平行になるように構成されていることで、蛍光Fの光強度を効果的に向上させることができる。従って、複数の励起光L~Lを重ねて蛍光体部120における光照射面120aに照射するにあたり、蛍光体部120における光照射面120aでの蛍光Fの輝度をさらに向上させることが可能となる。
 また、複数の光源部110~110は、投影光M~Mの形状の長手方向が、蛍光Fが外部に投光された場合に水平方向又は略水平方向となるように構成されていることで、自動車用前照灯などの水平方向に広い指向特性が望ましい用途に好適に用いることができる。
 なお、図1及び図2において、説明していない符号については、後ほど説明する。
 (第1実施形態-1~4について)
 図3は、励起光Lを蛍光体部120における光照射面120aに対して入射角度θをつけて照射した場合において光照射面120aでの投影光Mの状態を説明するための説明図である。図3(a)は、入射角度θをつけた励起光L及び励起光Lを照射した光照射面120aでの投影光Mを示す概略断面図であり、図3(b)から図3(d)は、それぞれ、投影光Mの形状の長手方向が励起光Lの光照射面120aへの進行方向に沿った光照射方向Wに対して平行又は略平行になっている場合、直交又は略直交している場合、及び、斜めになっている場合での励起光Lの光軸方向に直交する垂直断面及び投影光Mの形状を平面から視た概略平面図である。なお、図3において、光源部110~110を一対の光源部110,110とし、一対の励起光L,L及び一対の投影光M,Mのうち、一方の励起光L及び一方の投影光Mを他方の励起光L及び他方の投影光Mに代表させて示しており、他方の励起光L及び他方の投影光Mは図示を省略している。
 ここで、投影光Mの長手方向としては、投影光Mの長尺な形状において一端から他端に引いた直線の中で最長となる直線Kmax[図3(b)から図3(d)参照]の方向を例示できる。また、投影光Mの短手方向としては、投影光Mの長尺な形状において一端から他端に引いた直線の中で最短となる直線の方向を例示できる。
 図3に示すように、励起光L,Lを蛍光体部120における光照射面120aに対して入射角度θ,θ[図1、図2(a)及び図3(a)参照]をつけると、投影光M,Mの形状の光照射方向WにおけるサイズdM(=dL/cosθ)[図3(a)参照]が、励起光Lの光軸方向に直交する垂直断面(スポット)の形状の光照射方向WにおけるサイズdL(スポットサイズ)に対して、(dL/cosθ)-dLだけ大きくなる。
 すなわち、投影光M,Mの形状の長手方向の光照射方向Wに対する向き(角度)が異なることによって、投影光M,Mの形状の長手方向のサイズや短手方向のサイズが異なってくる。従って、発光装置100の使用用途に応じて、投影光M,Mの形状の長手方向の光照射方向Wに対する向きを決定することが望まれる。ここで、光照射方向Wは、励起光Lの光照射面120aへの入射方向及び反射方向に沿った方向とも言える。
 これについて、光源部110~110を一対の光源部110,110として図4を参照しながら以下に説明する。
 図4は、第1実施形態に係る発光装置100において、光照射面120aに投影される励起光L~Lの光照射面120aでの投影光M~Mを示す概略平面図である。図4(a)から図4(c)は、それぞれ、投影光M~Mの形状の長手方向が光照射方向Wに対して平行又は略平行になっている場合、直交又は略直交している場合、及び、斜めになっている場合での投影光M~Mの状態を示している。
 <第1実施形態-1>
 この点、第1実施形態に係る発光装置100において、この例では、一対の光源部110,110の投影光M(M1),M(M2)の形状の長手方向が励起光L(L1),L(L2)の光照射面120aへの進行方向に沿った光照射方向Wに対して平行又は略平行になるように構成(具体的には配設、より具体的には調整された状態で配設)されている[図4(a)参照]。
 かかる構成によると、光源部110,110の投影光M(M1),M(M2)の形状の長手方向が光照射方向Wに対して平行又は略平行になるように構成されていることで、励起光L(L1),L(L2)の蛍光体部120における光照射面120aへの入射角度θ(θ1),θ(θ2)が大きくなるに従って、投影光M(M1),M(M2)の形状の長手方向のサイズが大きくなることから、所定の直線方向に広い指向特性が望ましい用途(例えば水平方向に広い指向特性が望ましい車両用前照灯)に好適に用いることができる。
 <第1実施形態-2>
 また、第1実施形態に係る発光装置100において、この例では、一対の光源部110,110の投影光M(M1),M(M2)の形状の長手方向が励起光L(L1),L(L2)の光照射面120aへの進行方向に沿った光照射方向Wに対して直交又は略直交するように構成(具体的には配設、より具体的には調整された状態で配設)されている[図4(b)参照]。
 かかる構成によると、光源部110,110の投影光M(M1),M(M2)の形状の長手方向が光照射方向Wに対して直交又は略直交するように構成されていることで、励起光L(L1),M(L2)の蛍光体部120における光照射面120aへの入射角度θ(θ1),θ(θ2)が大きくなるに従って、投影光M(M1),M(M2)の形状の短手方向のサイズが大きくなり、投影光M(M1),M(M2)の形状が真円側に近づくことから、略全方向に広い指向特性が望ましい用途(例えば略全方向に広い指向特性が望ましい投光器)に好適に用いることができる。
 <第1実施形態-3>
 ところで、発光装置100を水平方向又は鉛直方向に設ける場合、この例では、一対の光源部110,110を光照射方向Wが水平方向に対して斜めになるように(対角線方向に)配設する場合において、水平方向又は鉛直方向に広い指向特性が望まれる場合がある。従って、光源部110,110を光照射方向Wが水平方向又は鉛直方向に対して斜めになるように配設する場合において水平方向又は鉛直方向に広い指向特性に対応することが望まれる。
 この点、第1実施形態に係る発光装置100において、この例では、一対の光源部110,110の投影光M(M1),M(M2)の形状の長手方向(又は短手方向)が励起光L(L1),L(L2)の光照射面120aへの進行方向に沿った光照射方向Wに対して斜めになるように構成(具体的には配設、より具体的には調整された状態で配設)されている[図4(c)参照]。
 かかる構成によると、光源部110,110の投影光M(M1),M(M2)の形状の長手方向(又は短手方向)が光照射方向Wに対して斜めになるように構成されていることで、光源部110,110を光照射方向Wが水平方向又は鉛直方向に対して斜めになるように配設する場合において水平方向又は垂直方向に広い指向特性が望ましい用途(例えば水平方向に広い指向特性が望ましい車両用前照灯)に好適に用いることができ、従って、水平方向又は鉛直方向に広い指向特性に対応することが可能となる。
 <第1実施形態-4>
 第1実施形態に係る発光装置100において、投影光M(M1),M(M2)の形状の長手方向(又は短手方向)の光照射方向Wに対する角度φ(φ1),φ(φ2)[図4(c)参照]が45度又は略45度である。
 かかる構成によると、投影光M(M1),M(M2)の形状の長手方向(又は短手方向)の光照射方向Wに対する角度φ(φ1),φ(φ2)が45度又は略45度であることで、この例では、一対の光源部110,110を水平方向と鉛直方向との中間位置に設けることができ、それだけ発光装置100の小型化を実現させることができる。
 <第1実施形態-5>
 第1実施形態に係る発光装置100において、光源部110~110は、既述のとおり、レーザ光源111をそれぞれ有する一対の光源部110,110とされている。
 かかる構成によると、光源部110~110は、レーザ光源111をそれぞれ有する一対の光源部110,110とされていることで、最小限の構成で蛍光体部120における光照射面120aでの蛍光の輝度を向上させることができる。
 <第1実施形態-6>
 第1実施形態に係る発光装置100において、一対の光源部110,110は、一方の光源部110の励起光L(L1)の光照射面120aへの進行方向に沿った光照射方向Wと、他方の光源部110の励起光L(L2)の光照射面120aへの進行方向に沿った光照射方向Wとが平行又は略平行となるように配設されている。
 かかる構成によると、一対の光源部110,110は、一方の光源部110の光照射方向Wと、他方の光源部110の光照射方向Wとが平行又は略平行となるように配設されていることで、一方の光源部110及び他方の光源部110の光照射方向Wを一方向又は略一方向に揃えることができる。
 <第1実施形態-7>
 第1実施形態に係る発光装置100において、一対の光源部110,110は、蛍光体部120を間にして一方側及び一方側とは反対側の他方側に位置するように配設されている。
 かかる構成によると、一対の光源部110,110は、蛍光体部120を間にして一方側及び一方側とは反対側の他方側に位置するように配設されていることで、励起光L,Lを蛍光体部120における光照射面120aに重ね合わせると共に、投影光Mの長尺な形状の長手方向を互いに平行又は略平行にするための一対の光源部110,110の構成を簡単且つ容易に実現させることができる。
 <第1実施形態-8>
 第1実施形態に係る発光装置100において、一対の光源部110,110は、蛍光体部120を間にして互いに対向するように配設されている。
 ここで、対向方向Xは、一対の光源部110,110が蛍光体部120を間にして互いに対向する方向であり、対向方向Xとしては、一対の光源部110,110のうち、一方の光源部110におけるレーザ光源111の光射出口111bの中心と、他方の光源部110におけるレーザ光源111の光射出口111bの中心とを結ぶ仮想直線α[図2(b)参照]の方向を例示できる。この例では、対向方向Xは、光照射方向W又は略光照射方向Wとなる。
 かかる構成によると、一対の光源部110,110は、蛍光体部120を間にして互いに対向するように配設されていることで、投影光M(M1),M(M2)の形状の対向方向Xに直交する方向のサイズを合わせ易くすることができると共に、一対の光源部110,110の配設位置を同一仮想平面又は略同一仮想平面上に揃えることができる。
 <第1実施形態-9>
 第1実施形態に係る発光装置100において、一対の光源部110,110の励起光L(L1),L(L2)の光軸[すなわち一方側の光源部110の励起光L(L1)の光軸と他方側の光源部110の励起光L(L2)の光軸と]が同一仮想平面又は略同一仮想平面上に位置し、該同一仮想平面又は略同一仮想平面は、蛍光体部120における光照射面120aに対して直交又は略直交している。
 かかる構成によると、一対の光源部110,110の励起光L(L1),L(L2)の光軸が同一仮想平面又は略同一仮想平面上に位置し、該同一仮想平面又は略同一仮想平面は、蛍光体部120における光照射面120aに対して直交又は略直交していることで、投影光M(M1),M(M2)の光照射方向Wに直交する方向におけるサイズを最小にすることができ、それだけ励起光L(L1),L(L2)の照射による光照射面120aでの照度を大きくすることができる。
 <第1実施形態-10>
 第1実施形態に係る発光装置100において、一対の光源部110,110は、線対称又は略線対称[この例では蛍光体部120における光照射面120aの投影光M(M1),M(M2)の中心を通る仮想法線に対して線対称又は略線対称]になるように構成(具体的には配設)されている。
 かかる構成によると、一対の光源部110,110は、線対称又は略線対称になるように構成されていることで、部品の共通化を実現できると共に、一対の光源部110,110を単純な配設構成にすることができ、これにより、発光装置100のさらなる小型化を実現させることができる。このことは、一対の光源部110,110が蛍光体部120における光照射面120aの投影光M(M1),M(M2)の中心を通る仮想法線に対して線対称又は略線対称になるように構成されている場合に、特に有効となる。
 ここで、投影光Mの中心としては、投影光Mの長尺な形状において一端から他端に引いた直線の中で最長となる直線の中心を例示できる。なお、各投影光M~Mの中心が異なる場合には、それらの平均をとった位置であってもよいし、各投影光M~Mが重なった部分において一端から他端に引いた直線の中で最長となる直線の中心であってもよい。
 <第1実施形態-11>
 ところで、光源部110~110におけるレーザ光源111~111から出射される励起光L~Lの光軸方向に直交する垂直断面の形状が互いに異なっている場合、及び/又は、蛍光体部120における光照射面120aにそれぞれ照射される励起光L~Lの入射角度θ~θが互いに異なっている場合には、蛍光体部120における光照射面120aでの投影光M~Mが重なった部分からはみ出した部分ができ易く、例えば、一対の光源部110,110のうち、一方の光源部110から光照射面120aに投影される励起光L(L1)の光照射面120aでの投影光M(M1)と、他方の光源部110から光照射面120aに投影される励起光L(L2)の光照射面120aでの投影光M(M2)とを一致又は略一致させることが困難となる。従って、光源部110~110から光照射面120aに投影される励起光L~Lの光照射面120aでの投影光M~Mを互いに一致又は略一致させ易くすることが望まれる。
 この点、第1実施形態に係る発光装置100において、光源部110~110におけるレーザ光源111~111から出射される励起光L~Lの光軸方向に直交する垂直断面の形状が何れも等しい又は略等しい形状とされ、光源部110~110は、蛍光体部120における光照射面120aにそれぞれ照射される励起光L~Lの入射角度θ~θが互いに等しい又は略等しくなるように構成(具体的には配設、より具体的には調整された状態で配設)されている。
 かかる構成によると、光源部110~110におけるレーザ光源111~111から出射される励起光L~Lの光軸方向に直交する垂直断面の形状が何れも等しい又は略等しい形状とされ、光源部110~110は、蛍光体部120における光照射面120aにそれぞれ照射される励起光L~Lの入射角度θ~θが互いに等しい又は略等しくなるように構成されていることで、光源部110~110から光照射面120aに投影される励起光L~Lの光照射面120aでの投影光M~Mを互いに一致又は略一致させ易くすることができ、これにより、蛍光体部120における光照射面120aでの投影光M~Mが重なった部分からはみ出した部分をなくす又は略なくすことができ、従って、無駄なく蛍光Fの光強度をさらに向上させることができる。
 <第1実施形態-12>
 第1実施形態に係る発光装置100において、光源部110~110は、レーザ光源111~111から出射される励起光L~Lを反射させる反射ミラー112~112をそれぞれ備えている。蛍光体部120は、光源部110~110における反射ミラー112~112から反射される励起光L~Lを受けて蛍光Fを発光する。
 かかる構成によると、光源部110~110は、反射ミラー112~112をそれぞれ備え、蛍光体部120は、光源部110~110における反射ミラー112~112から反射される励起光L~Lを受けて蛍光Fを発光することで、レーザ光源111~111を蛍光体部120の光照射面120aとは反対側に配設することができる。従って、レーザ光源111~111の配設位置に関する設計の自由度を向上させることができる。
 <第1実施形態-13>
 第1実施形態に係る発光装置100において、光源部110~110は、レーザ光源111~111が反射ミラー112~112に向けて出射する励起光L~Lが互いに平行又は略平行になるように構成(具体的には配設、より具体的には調整された状態で配設)されている。
 かかる構成によると、光源部110~110は、レーザ光源111~111が反射ミラー112~112に向けて出射する励起光L~Lが互いに平行又は略平行になるように構成されていることで、レーザ光源111~111から励起光L~Lを同一方向又は略同一方向に出射することができ、これにより、発光装置100のさらなる小型化を実現させることができる。
 <第1実施形態-14>
 第1実施形態に係る発光装置100において、光源部110~110は、レーザ光源111~111が反射ミラー112~112に向けて出射する励起光L~Lが何れも蛍光体部120における光照射面120aに対して直交又は略直交するように構成(具体的には配設、より具体的には調整された状態で配設)されている。
 かかる構成によると、光源部110~110は、レーザ光源111~111が反射ミラー112~112に向けて出射する励起光L~Lが何れも蛍光体部120における光照射面120aに対して直交又は略直交するように構成されていることで、レーザ光源111~111から励起光L~Lを光照射面120aに対して直交又は略直交する方向に出射することができ、これにより、発光装置100のより一層の小型化を実現させることができる。
 <第1実施形態-15>
 第1実施形態に係る発光装置100において、励起光L~Lを蛍光体部120における光照射面120aに照射して光照射面120aから蛍光Fを出射する反射型の発光原理を用いる。
 かかる構成によると、反射型の発光原理を用いることで、所謂反射型の発光装置100の用途に好適に用いることができる。
 <第1実施形態-16>
 第1実施形態に係る発光装置100において、既述のとおり、蛍光体部120における光照射面120a及び光照射面120aとは反対側の面120bのうち、蛍光Fを出射する側の面(この例では光照射面120a)からの蛍光Fを投光する投光レンズ170をさらに備えている。
 投光レンズ170は、透過する蛍光Fを屈折させることで、所定の角度範囲で投光するものである。投光レンズ170は、蛍光体部120における光照射面120aが蛍光Fを出射する側に配設されている。詳しくは、投光レンズ170は、蛍光Fを出射する側の面(この例では光照射面120a)に対向するように設けられている。
 かかる構成によると、投光レンズ170を備えていることで、蛍光体部120からの蛍光Fを予め定めた所定の方向に予め定めた所定の角度範囲で投光することができ、これにより、蛍光体部120からの蛍光Fを所望の方向に所望の角度範囲で投射することができる。
 <第1実施形態-17>
 第1実施形態に係る発光装置100において、励起光L~L[この例ではL(L1),L(L2)]の蛍光体部120における光照射面120aへの入射角度θ~θ[この例ではθ(θ1),θ(θ2)]は、投光レンズ170の取り込み角度δ~δ[この例ではδ(δ1),δ(δ2)](図1参照)よりも大きい。
 かかる構成によると、励起光L~Lの蛍光体部120における光照射面120aへの入射角度θ~θは、投光レンズ170の取り込み角度δ~δよりも大きいことで、蛍光体部120からの蛍光Fを無駄なく投光レンズ170に取り込むことができ、それだけ、蛍光体部120からの蛍光Fを効率的に投光レンズ170から投射することができる。
 ここで、取り込み角度δ~δは、蛍光体部120における光照射面120aの投影光M~Mの中心を通る仮想法線と、投光レンズ170の両端及び投影光M~Mの中心を通る仮想直線とのなす角度である。投影光Mの中心としては、投影光Mの長尺な形状において一端から他端に引いた直線の中で最長となる直線の中心を例示できる。
 [第2実施形態]
 第2実施形態に係る発光装置100において、一対の光源部110,110を複数対(この例では2対)備えている(後述する図5及び図6参照)。
 かかる構成によると、一対の光源部110,110を複数対(この例では2対)備えていることで、蛍光体部120における光照射面120aでの蛍光Fの輝度をさらに大きくすることができる。
 <第2実施形態-1>
 第2実施形態に係る発光装置100において、複数対の光源部(110,110)~(110,110)の少なくとも2組の一対の光源部は[この例では何れの一対の光源部(110,110)~(110,110)も]、励起光(L,L)~(L,L)が蛍光体部120における光照射面120aで重なるように構成(具体的には配設、より具体的には調整された状態で配設)されている。
 かかる構成によると、複数対の光源部(110,110)~(110,110)は、励起光(L,L)~(L,L)が蛍光体部120における光照射面120aで重なるように構成されていることで、蛍光体部120における光照射面120aでの励起光(L,L)~(L,L)が重なった部分の蛍光Fの光強度をさらに大きくすることができる。
 <第2実施形態-2>
 第2実施形態に係る発光装置100において、複数対の光源部(110,110)~(110,110)は、少なくとも2組の一対の光源部が[この例では何れの一対の光源部(110,110)~(110,110)も]線対称又は略線対称(この例では蛍光体部120における光照射面120aの投影光M~Mの中心を通る仮想法線に対して線対称又は略線対称)になるように構成(具体的には配設)されている。
 かかる構成によると、複数対の光源部(110,110)~(110,110)は、少なくとも2組の一対の光源部が線対称又は略線対称になるように構成されていることで、一対の光源部110,110を複数対備えていたとしても、部品の共通化を実現できると共に、複数対の光源部(110,110)~(110,110)を単純な配設構成にすることができ、これにより、発光装置100のさらなる小型化を実現させることができる。このことは、複数対の光源部(110,110)~(110,110)が蛍光体部120における光照射面120aの投影光M~Mの中心を通る仮想法線に対して線対称又は略線対称になるように構成されている場合に、特に有効となる。
 なお、投影光Mの中心は、第1実施形態-10で説明した内容と同様であり、ここでは説明を省略する。
 <第2実施形態-3>
 第2実施形態に係る発光装置100において、複数対の光源部(110,110)~(110,110)は、少なくとも2組の一対の光源部が[この例では何れの一対の光源部(110,110)~(110,110)も]蛍光体部120を間にして互いに対向するように配設されている。
 かかる構成によると、複数対の光源部(110,110)~(110,110)は、少なくとも2組の一対の光源部が蛍光体部120を間にして互いに対向するように配設されていることで、各一対の光源部110,110において、投影光M,Mの形状の対向方向Xに直交する方向のサイズを合わせ易くすることができると共に、各一対の光源部110,110の配設位置を同一仮想平面又は略同一仮想平面上に揃えることができる。
 <第2実施形態-4>
 図5は、第2実施形態に係る発光装置100の一例を示す概略構成図であって、図5(a)及び図5(b)は、それぞれ、第1実施形態に係る発光装置100において一対の光源部110,110をさらに備えた一例を示す側面図及び平面図である。
 図5に示す発光装置100において、第1実施形態に係る発光装置100と実質的に同じ構成の部材には同一符号を付し、その説明を省略する。
 第2実施形態に係る発光装置100の一例において、複数対(この例では2対)の光源部(110,110)~(110,110)は、複数対の光源部(110,110)~(110,110)のうちの1組の一対の光源部(110,110)及び他の1組の一対の光源部(110,110)は、1組の一対の光源部(110,110)が対向する第1の対向方向X(X1)と他の1組の一対の光源部(110,110)が対向する第2の対向方向X(X2)とが直交又は略直交するように構成(具体的には配設)されている。
 1組の一対の光源部(110,110)は、第1実施形態に係る発光装置100の構成と同様であり、ここでは説明を省略する。
 他の1組の一対の光源部(110,110)は、励起光L(L3),L(L4)を蛍光体部120における光照射面120aにそれぞれ照射したときに励起光L(L3),L(L4)が光照射面120aで重なるように(好ましくは少なくとも一つの励起光が他の励起光に対して光照射面120aで全て重なるように)、且つ、光照射面120aに投影される励起光L(L3),L(L4)の光照射面120aでの投影光M(M3),M(M4)の長尺な形状の長手方向が互いに平行又は略平行になるように構成(具体的には配設、より具体的には調整された状態で配設)されている。その他の構成についても、第1実施形態に係る発光装置100の構成と同様であり、ここでは説明を省略する。
 そして、第1の対向方向X(X1)は、励起光L(L1),L(L2)の光照射面120aへの進行方向に沿った第1の光照射方向W(W1)又は略第1の光照射方向W(W1)となり、第2の対向方向X(X2)は、励起光L(L3),L(L4)の光照射面120aへの進行方向に沿った第2の光照射方向W(W2)又は略第2の光照射方向W(W2)となる。
 かかる構成によると、複数対(この例では2対)の光源部(110,110)~(110,110)のうちの1組の一対の光源部(110,110)及び他の1組の一対の光源部(110,110)は、1組の一対の光源部(110,110)が対向する第1の対向方向X(X1)と他の1組の一対の光源部(110,110)が対向する第2の対向方向X(X2)とが直交又は略直交するように構成されていることで、一対の光源部110,110を複数対備えていたとしても、複数対の光源部(110,110)~(110,110)を蛍光体部120における光照射面120a、具体的には光照射面120aの予め定めた所定の一点(例えば中心点)を中心として放射状に(例えば隣り合う光源部110,110の光軸間の距離が均等になるように)設けることができ、これにより、発光装置100のコンパクト化を実現させることができる。
 <第2実施形態-4の投影光の例について>
 図6及び図7は、図5に示す第2実施形態に係る発光装置100の一例において、光照射面120aに投影される励起光[L(L1),L(L2)],[L(L3),L(L4)]の光照射面120aでの投影光[M(M1),M(M2)],[M(M3),M(M4)]を示す概略平面図である。図6(a)から図6(e)及び図7(a)から図7(d)は、その各例を示している。
 図6(a)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して平行又は略平行になっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して直交又は略直交している。
 図8は、図6(a)に示す例おいて、本体シャーシ130を架台190に固定したときの概略断面図を示す。図8において励起光L1~L4の断面形状と蛍光Fの断面形状との関係を説明するため、励起光L1~L4、蛍光F、本体シャーシ130、架台190以外の構成の図示を省略している。かかる構成により、蛍光Fは長手方向が水平又は略水平になるため、自動車用前照灯などの水平方向Hに広い指向特性が望ましい用途に好適に用いることができる。
 図6(b)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して直交又は略直交しており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して平行又は略平行になっている。
 図6(c)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して斜めになっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して斜めになっている。
 図9は、図6(c)に示す例おいて、本体シャーシ130を架台190に固定したときの概略断面図を示す。図9において励起光L1~L4の断面形状と蛍光Fの断面形状との関係を説明するため、励起光L1~L4、蛍光F、本体シャーシ130、架台190以外の構成の図示を省略している。かかる構成により、蛍光Fは長手方向が水平又は略水平になるため、自動車用前照灯などの水平方向Hに広い指向特性が望ましい用途に好適に用いることができる。さらに、図8及び図6(a)に示す例と比較して、隣り合う2つの励起光(図9に示す例では励起光L2,L4、励起光L1,L3)が水平方向又は略水平方向に配置されるため円筒型の本体シャーシ130の架台190側の円弧部(図9に示す例では下部)を省略することができる。つまり、本体シャーシ130の高さh1(図8参照)をより低くでき(図9に示す本体シャーシ130の高さh2参照)、装置のコンパクト化、走行中の空気抵抗の低減の観点から自動車用前照灯などにより好適に用いることができる。
 図6(d)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して平行又は略平行になっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して平行又は略平行になっている。
 図6(e)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して直交又は略直交しており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して直交又は略直交している。
 図7(a)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して斜めになっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して直交又は略直交している。
 図7(b)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して斜めになっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して平行又は略平行になっている。
 図7(c)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して平行又は略平行になっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して斜めになっている。
 図7(d)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して直交又は略直交しており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して斜めになっている。
 図6(a)から図6(c)に示す構成によると、投影光M(M1),M(M2),M(M3),M(M4)の形状の長手方向のサイズが大きくなることから、所定の直線方向に広い指向特性が望ましい用途(例えば水平方向に広い指向特性が望ましい車両用前照灯)に好適に用いることができる。
 また、図6(d)及び図6(e)並びに図7(a)から図7(d)に示す構成によると、投影光M(M1),M(M2),M(M3),M(M4)の形状が真円側に近づくことから、略全方向に広い指向特性が望ましい用途(例えば略全方向に広い指向特性が望ましい投光器)に好適に用いることができる。
 なお、第2実施形態-4の構成例では、発光装置100において一対の光源部110,110を2対備えた例を示したが、2対の光源部(110,110),(110,110)を1単位として複数単位備えていてもよい。
 <第2実施形態-5>
 図10は、第2実施形態に係る発光装置100の他の例を示す概略構成図であって、図10(a)及び図10(b)は、それぞれ、第1実施形態に係る発光装置100において一対の光源部110,110をさらに備えた他の例を示す側面図及び平面図である。
 図10に示す発光装置100において、第1実施形態に係る発光装置100と実質的に同じ構成の部材には同一符号を付し、その説明を省略する。
 第2実施形態に係る発光装置100の他の例において、複数対(この例では2対)の光源部(110,110)~(110,110)は、複数対の光源部(110,110)~(110,110)のうちの1組の一対の光源部(110,110)及び他の1組の一対の光源部(110,110)は、1組の一対の光源部(110,110)が対向する第1の対向方向X(X1)と他の1組の一対の光源部(110,110)が対向する第2の対向方向X(X2)とが平行又は略平行になるように構成(具体的には配設)されている。
 1組の一対の光源部(110,110)は、第1実施形態に係る発光装置100の構成と同様であり、ここでは説明を省略する。他の1組の一対の光源部(110,110)は、図5に示す第2実施形態-4に係る発光装置100の構成と同様であり、ここでは説明を省略する。
 そして、第1の対向方向X(X1)は、励起光L(L1),L(L2)の光照射面120aへの進行方向に沿った第1の光照射方向W(W1)又は略第1の光照射方向W(W1)となり、第2の対向方向X(X2)は、励起光L(L3),L(L4)の光照射面120aへの進行方向に沿った第2の光照射方向W(W2)又は略第2の光照射方向W(W2)となる。
 かかる構成によると、複数対(この例では2対)の光源部(110,110)~(110,110)のうちの1組の一対の光源部(110,110)及び他の1組の一対の光源部(110,110)は、1組の一対の光源部(110,110)が対向する第1の対向方向X(X1)と他の1組の一対の光源部(110,110)が対向する第2の対向方向X(X2)とが平行又は略平行になるように構成されていることで、一対の光源部110,110を複数対備えていたとしても、複数対の光源部(110,110)~(110,110)を一方向[第1及び第2の対向方向X(X1),X(X2)]に沿って設けることができ、これにより、一方向に直交する方向でのコンパクト化を実現させることができる。
 この例では、1組の一対の光源部(110,110)の励起光L[L(L1),L(L2)]の光軸と他の1組の一対の光源部(110,110)の励起光L[L(L3),L(L4)]の光軸とが同一仮想平面又は略同一仮想平面上に位置し、該同一仮想平面又は略同一仮想平面は、蛍光体部120における光照射面120aに対して直交又は略直交している。こうすることで、複数対の光源部(110,110)~(110,110)を一方向[第1及び第2の対向方向X(X1),X(X2)]に沿った一直線上に設けることができ、これにより、一方向に直交する方向でのさらなるコンパクト化を実現させることができる。
 また、この例では、光源部110~110は、蛍光体部120、具体的には光照射面120aの予め定めた所定の一点(例えば中心点)を間にして内側から外側に行くに従って、光照射面120aに照射される励起光の入射角度θ~θ(θ1,θ2,θ3,θ4)[図10(a)参照]が大きくなるように配設されている。こうすることで、光源部110~110を効率的に配設することができる。なお、光源部110と蛍光体部120との間の距離が等しい又は略等しいときには、入射角度θを同一又は略同一とすることができる。
 <第2実施形態-5の投影光の例について>
 図11及び図12は、図10に示す第2実施形態に係る発光装置100の他の例において、光照射面120aに投影される励起光[L(L1),L(L2)],[L(L3),L(L4)]の光照射面120aでの投影光[M(M1),M(M2)],[M(M3),M(M4)]を示す概略平面図である。図11(a)から図11(e)及び図12(a)から図12(d)は、その各例を示している。
 ここで、投影光[M(M3),M(M4)]の長手方向の長さは、投影光[M(M1),M(M2)]の長手方向の長さより大きくなる。これは入射角度θ3,θ4が入射角度θ1,θ2より大きく、投影光[M(M3),M(M4)]のdL/cosθが投影光[M(M1),M(M2)]のdL/cosθより大きくなるためである。
 図11(a)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して平行又は略平行になっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して平行又は略平行になっている。
 図11(b)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して直交又は略直交しており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して直交又は略直交している。
 図11(c)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して斜めになっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して斜めになっている。
 図11(d)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して平行又は略平行になっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して直交又は略直交している。
 図11(e)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して直交又は略直交しており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して平行又は略平行になっている。
 図12(a)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して斜めになっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して平行又は略平行になっている。
 図12(b)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して斜めになっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して直交又は略直交している。
 図12(c)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して平行又は略平行になっており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して斜めになっている。
 図12(d)に示す例では、1組の一対の光源部(110,110)からの励起光[L(L1),L(L2)]による投影光M(M1),M(M2)の形状の長手方向が第1の光照射方向W(W1)[第1の対向方向X(X1)]に対して直交又は略直交しており、他の1組の一対の光源部(110,110)からの励起光[L(L3),L(L4)]による投影光M(M3),M(M4)の形状の長手方向が第2の光照射方向W(W2)[第2の対向方向X(X2)]に対して斜めになっている。
 図11(a)から図11(c)に示す構成によると、投影光M(M1),M(M2),M(M3),M(M4)の形状の長手方向のサイズが大きくなることから、所定の直線方向に広い指向特性が望ましい用途(例えば水平方向に広い指向特性が望ましい車両用前照灯)に好適に用いることができる。
 また、図11(d)及び図11(e)並びに図12(a)から図12(d)に示す構成によると、投影光M(M1),M(M2),M(M3),M(M4)の形状が真円側に近づくことから、略全方向に広い指向特性が望ましい用途(例えば略全方向に広い指向特性が望ましい投光器)に好適に用いることができる。
 なお、第2実施形態-5の構成例において、複数対の光源部は、1組の一対の光源部(110,110)及び他の1組の一対の光源部(110,110)に加えて、図示を省略したが、さらに他の1組の一対の光源部(110,110)及びさらに別の1組の一対の光源部(110,110)を含み、さらに他の1組の一対の光源部(110,110)及びさらに別の1組の一対の光源部(110,110)は、さらに他の1組の一対の光源部(110,110)が対向する第3の対向方向とさらに別の1組の一対の光源部(110,110)が対向する第4の対向方向とが平行又は略平行になるように、且つ、第3及び第4の対向方向が第1及び第2の対向方向X(X1),X(X2)に直交又は略直交するように構成されていてもよい。
 また、第2実施形態-5の構成例では、発光装置100において一対の光源部110,110を2対備えた例を示したが、3対以上備えていてもよい。
 また、第2実施形態-5の構成例において、光源部110~110を、蛍光体部120を間にして内側から外側に行くに従って、光照射面120aに照射される励起光の入射角度が大きくなるように配設したが、光源部110を複数設けた他の構成において、同様の構成にしてもよい。
 また、本実施形態では、蛍光体部120に対し一方向(この例では左右方向)の励起光の入射角度が等しい構成、つまり、(励起光L1の入射角度θ1=励起光L2の入射角度θ2)、(励起光L3の入射角度θ3=励起光L4の入射角度θ4)としたが、励起光Lが対称でなくてもよい。例えば、励起光L2と励起光L4とを省略して励起光L1と励起光L3との組み合わせとすることも可能である。この場合、入射角度が等しい場合と比べてスポットの重なる効果は少なくなるが、スポットの長手方向を揃えることで一定のスポットの重なりは期待でき、光源部110の設置場所に制約がある場合などにおいては特に有効である。
 [第3実施形態]
 図13は、第3実施形態に係る発光装置100を示す概略構成図であって、光源部110~110からの励起光L~Lを蛍光体部120における光照射面120aに直接的に照射する例を示す断面図である。
 図13に示す第3実施形態に係る発光装置100は、第1実施形態に係る発光装置100においてミラーユニット160~160を除去して光源部110~110からの励起光L~Lを蛍光体部120における光照射面120aに直接的に照射するようにした以外は、第1実施形態に係る発光装置100と同様の構成とされている。
 図13に示す発光装置100において、第1実施形態に係る発光装置100と実質的に同じ構成の部材には同一符号を付し、その説明を省略する。
 図13に示す発光装置100において、光源部110~110からの励起光L~Lを蛍光体部120における光照射面120aに直接的に照射する構成とされている。
 この例では、蛍光体部120と投光レンズ170との間の位置にレーザ光源111~111が設けられている。
 図13に示す発光装置100では、レーザ光源111~111から出射された励起光L~Lが蛍光体部120における光照射面120aに照射され、これにより蛍光Fが発生する。そうすると、蛍光Fを出射する側の面(この例では光照射面120a)で出射した蛍光Fが投光レンズ170を介して外部に投光される。
 かかる構成によると、光源部110~110からの励起光L~Lを蛍光体部120における光照射面120aに直接的に照射する構成とされていることで、発光装置100を簡単な構成にすることができ、それだけ発光装置100を小型化することができる。
 なお、第3実施形態の構成例では、第1実施形態に係る発光装置100においてミラーユニット160~160を除去して光源部110~110からの励起光L~Lを蛍光体部120における光照射面120aに直接的に照射するようにしたが、第2実施形態並びに後述する第5実施形態及び第6実施形態に係る発光装置100においてミラーユニット160~160を除去して光源部110~110からの励起光L~Lを蛍光体部120における光照射面120aに直接的に照射するようにしてもよい。
 [第4実施形態]
 図14は、第4実施形態に係る発光装置100を示す概略構成図であって、透過型の構成例を示す断面図である。
 第4実施形態に係る発光装置100は、第3実施形態に係る発光装置100の反射型の構成に代えて透過型の構成にしている。
 図14に示す発光装置100において、第1実施形態に係る発光装置100と実質的に同じ構成の部材には同一符号を付し、その説明を省略する。
 第4実施形態に係る発光装置100において、励起光L~Lを蛍光体部120における光照射面120aに照射して光照射面120aとは反対側の面120bから蛍光Fを出射する透過型の発光原理を用いる。
 かかる構成によると、透過型の発光原理を用いることで、所謂透過型の発光装置100の用途に好適に用いることができる。
 なお、第4実施形態の構成例では、第3実施形態に係る発光装置100の反射型の構成に代えて透過型の構成にしているが、第1実施形態及び第2実施形態並びに後述する第5実施形態及び第6実施形態に係る発光装置100の反射型の構成に代えて透過型の構成にしてもよい。
 [第5実施形態]
 図15は、第5実施形態に係る発光装置100を示す概略構成図であって、一対の光源部110,110の光照射方向W,Wが交差する例を示す側面図である。
 図15に示す発光装置100は、図5に示す第2実施形態-4(第2実施形態に係る発光装置100の一例)の構成において、1組の一対の光源部(110,110)の何れか一方の光源部110及び他の1組の一対の光源部(110,110)の何れか一方の光源部110を除去したものである。
 図15に示す発光装置100において、第2実施形態-4に係る発光装置100と実質的に同じ構成の部材には同一符号を付し、その説明を省略する。
 図15に示す発光装置100において、一対の光源部110,110は、一方の光源部110の励起光L(L3)の光照射面120aへの進行方向に沿った光照射方向W(W1)と、他方の光源部110の励起光L(L2)の光照射面120aへの進行方向に沿った光照射方向W(W2)とが交差(この例では直交又は略直交)するように配設されている。
 かかる構成によると、一対の光源部110,110は、一方の光源部110の励起光Lの光照射面120aへの進行方向に沿った光照射方向Wと、他方の光源部110の励起光Lの光照射面120aへの進行方向に沿った光照射方向Wとが交差するように配設されていることで、蛍光体部120を間にして光源部110,110とは反対側には光源部110,110が設けられていないことから、該反対側のスペースを有効に利用することができる。
 なお、光源部110~110は、3以上であってもよい。この場合、3以上の光源部110~110を蛍光体部120における光照射面120a、具体的には光照射面120aの予め定めた所定の一点(例えば中心点)を中心として放射状に(例えば隣り合う光源部110,110の光軸間の距離が均等になるように)設けることができる。
 [第6実施形態]
 図16は、第6実施形態に係る発光装置100を示す概略構成図であって、リフレクター180を備えた例を示す側面図である。
 図16に示す発光装置100は、図2に示す第1実施形態の構成において、投光レンズ170に代えて或いは加えて(この例では代えて)リフレクター180を設けたものである。
 図16に示す発光装置100において、第1実施形態に係る発光装置100と実質的に同じ構成の部材には同一符号を付し、その説明を省略する。
 図16に示す発光装置100は、蛍光体部120における光照射面120aからの蛍光Fを投光するリフレクター180を備えている。
 かかる構成によると、蛍光体部120における光照射面120aからの蛍光Fを投光するリフレクター180を備えていることで、簡単な構成でありながら、蛍光体部120からの蛍光Fを予め定めた所定の方向に投射することができ、これにより、蛍光体部120からの蛍光Fを所望の方向に投射することができる。
 図16に示す発光装置100は、例えば、自動車のヘッドランプ(車両用前照灯)に好適に用いることができる。
 リフレクター180は、蛍光体部120における光照射面120aから出射された蛍光Fを投光するものである。リフレクター180は、例えば、樹脂製の部材の内側表面に金属薄膜が形成された部材であってもよいし、金属製の部材であってもよい。
 リフレクター180は、放物線の対称軸を回転軸として、該放物線を回転させることによって形成される反射曲面を、該回転軸に平行な平面で切断することによって得られる部分曲面の少なくとも一部をその反射曲面に含んでいる。リフレクター180は、蛍光体部120における光照射面120aから出射された蛍光Fを投光する方向に、半円形の開口部180aを有している。蛍光体部120における光照射面120aは、リフレクター180のほぼ焦点の位置に配設されている。
 かかる構成を備えた発光装置100では、蛍光体部120における光照射面120aで発生した蛍光Fは、リフレクター180によって平行に近い光線束が形成された状態でリフレクター180の開口部180aから車両の進行方向に向けて投光される。これにより、光照射面120aで発生した蛍光Fを狭い立体角内に効率的に投光することができる。
 なお、リフレクター180は、円形の開口部180aを有するフルパラボラミラー、又は、その一部を含むものであってもよい。また、パラボラミラー以外にも、楕円面や自由曲面形状、或いは、マルチファセット化されたもの(マルチリフレクター)を用いることができる。さらに、リフレクター180の一部に曲面ではない部分を含めてもよい。或いは、リフレクター180は、蛍光体部120における光照射面120aからの蛍光Fを拡大投影するようなものであってもよい。
 また、図示を省略したが、発光装置100は、リフレクター180の開口部180aに投光する角度範囲を制御する投光レンズ等の光学部材がさらに設けられていてもよい。
 また、第6実施形態の構成例では、リフレクター180を第1実施形態に係る発光装置100に設けたが、第2実施形態から第5実施形態に係る発光装置100において投光レンズ170に代えて或いは加えてリフレクター180を設けてもよい。
 (その他の実施の形態)
 以上説明した本実施の形態に係る発光装置100は、自動車以外の車両用前照灯に適用してもよい。さらに、発光装置100は、それには限定されないが、例えば、投光器、車両以外の移動物体(具体的には人間、船舶、航空機、潜水艇、ロケットといった移動体)のヘッドランプ、サーチライト、プロジェクタ、或いは、ダウンライト、スタンドランプといった室内照明器具などの照明装置に適用することができる。
 本発明は、以上説明した実施の形態に限定されるものではなく、他のいろいろな形で実施することができる。そのため、かかる実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 この出願は、2015年11月6日に日本で出願された特願2015-218509号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
 本発明は、励起光を蛍光体部における光照射面に照射することで蛍光を発光する発光装置に係るものであり、特に、複数の励起光を重ねて蛍光体部における光照射面に照射するにあたり、光照射面での蛍光の輝度を向上させるための用途に適用できる。
100  発光装置
110  光源部
111  レーザ光源
111a 半導体レーザ素子
111b 光射出口
112  反射ミラー
120  蛍光体部
120a 光照射面
120b 光照射面とは反対側の面
130  本体シャーシ
131  収容部
132  励起光用通過孔
133  投影光用通過孔
140  光源ユニット
141  コリメートレンズ
142  ねじ構造
150  押えプレート
160  ミラーユニット
161  保持部材
170  投光レンズ
180  リフレクター
180a 開口部
F    蛍光
Kmax 最長の直線
L    励起光
M    投影光
SC   固定部材
W    光照射方向
X    対向方向
α    仮想直線
δ    取り込み角度
θ    入射角度
φ    角度

Claims (5)

  1.  励起光を出射するレーザ光源をそれぞれ有する複数の光源部と、
     前記励起光を受けて蛍光を発光する蛍光体部と
     を備え、
     前記複数の光源部のうち少なくとも2つの光源部は、前記励起光を前記蛍光体部における光照射面にそれぞれ照射したときに該励起光が該光照射面で重なるように、且つ、該光照射面に投影される該励起光の該光照射面での投影光の長尺な形状の長手方向が互いに平行又は略平行になるように構成されていることを特徴とする発光装置。
  2.  請求項1に記載の発光装置であって、
     前記複数の光源部は、全ての前記投影光の形状の長手方向が平行又は略平行になるように構成されていることを特徴とする発光装置。
  3.  請求項2に記載の発光装置であって、
     前記投影光の形状の長手方向が、前記蛍光が外部に投光された場合に水平方向又は略水平方向となるように構成されていることを特徴とする発光装置。
  4.  請求項1に記載の発光装置であって、
     前記少なくとも2つの光源部の前記投影光の形状の長手方向が前記励起光の前記光照射面への進行方向に沿った光照射方向に対して平行又は略平行になるように構成されていることを特徴とする発光装置。
  5.  請求項1に記載の発光装置であって、
     前記少なくとも2つの光源部の前記投影光の形状の長手方向が前記励起光の前記光照射面への進行方向に沿った光照射方向に対して直交又は略直交するように構成されていることを特徴とする発光装置。
PCT/JP2016/073609 2015-11-06 2016-08-10 発光装置 WO2017077757A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017548660A JP6622815B2 (ja) 2015-11-06 2016-08-10 発光装置
US15/766,910 US20180292059A1 (en) 2015-11-06 2016-08-10 Light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-218509 2015-11-06
JP2015218509 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017077757A1 true WO2017077757A1 (ja) 2017-05-11

Family

ID=58661896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073609 WO2017077757A1 (ja) 2015-11-06 2016-08-10 発光装置

Country Status (3)

Country Link
US (1) US20180292059A1 (ja)
JP (1) JP6622815B2 (ja)
WO (1) WO2017077757A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3734673A4 (en) * 2017-12-28 2021-11-24 YLX Incorporated LIGHT SOURCE SYSTEM AND LIGHTING DEVICE
WO2023223995A1 (ja) * 2022-05-16 2023-11-23 株式会社トプコン 投影装置及び投影方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175007B1 (en) * 2020-12-07 2021-11-16 Honeywell International Inc. Compact laser light assembly
DE102021114225A1 (de) * 2021-06-01 2022-12-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Beleuchtungseinrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185939A (ja) * 2011-03-03 2012-09-27 Sharp Corp 発光装置、照明装置、及び車両用前照灯
WO2015019724A1 (ja) * 2013-08-09 2015-02-12 株式会社Jvcケンウッド プロジェクタ
EP2930801A1 (en) * 2013-04-01 2015-10-14 LG Electronics Inc. Laser light source device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624118B2 (ja) * 2009-04-09 2014-11-12 コーニンクレッカ フィリップス エヌ ヴェ レーザーの用途のためのランプ
JP2011133782A (ja) * 2009-12-25 2011-07-07 Casio Computer Co Ltd 光源ユニット及びプロジェクタ
JP2011165548A (ja) * 2010-02-12 2011-08-25 Seiko Epson Corp 光源装置およびプロジェクター
JP5840179B2 (ja) * 2010-10-29 2016-01-06 シャープ株式会社 発光装置
JP2012109201A (ja) * 2010-10-29 2012-06-07 Sharp Corp 発光装置、車両用前照灯、照明装置およびレーザ素子
JP2012169050A (ja) * 2011-02-10 2012-09-06 Stanley Electric Co Ltd 車両用灯具
JP2013012358A (ja) * 2011-06-28 2013-01-17 Sharp Corp 照明装置および車両用前照灯
JP6125776B2 (ja) * 2012-09-03 2017-05-10 シャープ株式会社 投光装置
JP2014137973A (ja) * 2013-01-18 2014-07-28 Stanley Electric Co Ltd 光源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185939A (ja) * 2011-03-03 2012-09-27 Sharp Corp 発光装置、照明装置、及び車両用前照灯
EP2930801A1 (en) * 2013-04-01 2015-10-14 LG Electronics Inc. Laser light source device
WO2015019724A1 (ja) * 2013-08-09 2015-02-12 株式会社Jvcケンウッド プロジェクタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3734673A4 (en) * 2017-12-28 2021-11-24 YLX Incorporated LIGHT SOURCE SYSTEM AND LIGHTING DEVICE
WO2023223995A1 (ja) * 2022-05-16 2023-11-23 株式会社トプコン 投影装置及び投影方法

Also Published As

Publication number Publication date
JP6622815B2 (ja) 2019-12-18
JPWO2017077757A1 (ja) 2018-07-05
US20180292059A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
US10168605B2 (en) Wavelength conversion device, illumination device, and projector
JP6622815B2 (ja) 発光装置
US8960980B2 (en) Light source module having a curved optical unit
JP6144410B2 (ja) 発光装置及び投影システム
JP6654560B2 (ja) 光源モジュールおよび車両用灯具
US10180222B2 (en) Optical unit
JP6621631B2 (ja) 光源モジュール
EP2620695A2 (en) Vehicular headlamp
JP6295960B2 (ja) 光源ユニット、光源装置、及び画像表示装置
JP2010080306A (ja) 車両前照灯用灯具ユニット
US10851960B2 (en) Vehicular lighting fixture
CN107515510B (zh) 一种光源装置以及投影显示装置
TWI299311B (en) Illuminating device
CN111522191B (zh) 光源装置以及投影型影像显示装置
KR101758165B1 (ko) 레이저 다이오드를 포함하는 광출력장치
JP2006113539A (ja) 光源装置、およびプロジェクタ
WO2015174312A1 (ja) 光源モジュールおよび車両用灯具
WO2019100639A1 (zh) 车灯照明系统、车灯总成及汽车
JP2021120932A (ja) 照明装置及び車両用灯具
KR101754167B1 (ko) 발광모듈
KR101716129B1 (ko) 발광모듈
WO2016132673A1 (en) Wavelength conversion device, illumination device, and projector
EP3978799A1 (en) Vehicle light
JP7338409B2 (ja) 光源装置、画像投射装置及び光源光学系
JP6755410B2 (ja) 投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548660

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15766910

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861826

Country of ref document: EP

Kind code of ref document: A1