WO2017077719A1 - Ship - Google Patents

Ship Download PDF

Info

Publication number
WO2017077719A1
WO2017077719A1 PCT/JP2016/004816 JP2016004816W WO2017077719A1 WO 2017077719 A1 WO2017077719 A1 WO 2017077719A1 JP 2016004816 W JP2016004816 W JP 2016004816W WO 2017077719 A1 WO2017077719 A1 WO 2017077719A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
boil
engine
pressure
tank
Prior art date
Application number
PCT/JP2016/004816
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 成島
崇嗣 安部
康平 橋本
安藤 明洋
宏之 武田
尚子 印藤
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015247925A external-priority patent/JP6630144B2/en
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201680063321.3A priority Critical patent/CN108138701A/en
Priority to KR1020187014895A priority patent/KR20180075608A/en
Publication of WO2017077719A1 publication Critical patent/WO2017077719A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels

Definitions

  • the present invention relates to a ship including a main gas engine for propulsion and a sub gas engine for power generation.
  • a fuel gas supply system shown in Patent Document 1 is known that is used in ships including a propulsion main gas engine and a power generation sub-gas engine.
  • liquefied gas is loaded in a cargo tank.
  • the boil-off gas naturally generated in the tank is supplied to the main engine through a first fuel gas supply line including a high-pressure gas compressor.
  • the low pressure gas is supplied to the diesel power generation engine through the low pressure fuel gas supply line branched from the high pressure gas compressor.
  • the liquefied gas is pressurized by the high-pressure liquid pump through the second fuel gas supply line connected to the pump in the tank, and is heated and vaporized by the gas heater.
  • the vaporized gas (vaporized gas) is supplied from the second fuel gas supply line to the main engine through the first fuel gas supply line, and from the second fuel gas supply line to the first fuel gas supply line, the communication line, and the low pressure. It is supplied to the diesel generator engine through the fuel gas supply line.
  • boil-off gas is supplied to the main engine, and surplus boil-off gas is supplied to the diesel power generation engine or boiler.
  • boil-off gas is supplied to the main engine and the diesel generator engine, and vaporized gas is supplied to the main engine and the diesel generator as fuel that is insufficient for this.
  • boil-off gas and / or vaporized gas is supplied to the diesel generator according to the relationship between the fuel consumption and the amount of tank generated.
  • it does not describe control for supplying boil-off gas and / or vaporized gas to the diesel generator at a pressure according to the demand.
  • the fuel gas supply system still has room for improvement from the viewpoint of supplying the boil-off gas and / or the vaporized gas to the diesel generator at a pressure according to the demand.
  • an object of the present invention is to provide a ship capable of supplying boil-off gas and / or vaporized gas to a sub-gas engine for power generation at a pressure according to the demand.
  • a ship includes a main gas engine for propulsion, a tank that stores liquefied natural gas, and a boil-off gas that is generated in the tank that leads to a compressor.
  • the liquefied natural gas led to the liquid feeding line is vaporized by the forced vaporizer, and this vaporized gas is led to the second supply line and supplied to the sub gas engine.
  • the control device controls the first adjustment valve of the liquid supply line and the second adjustment valve of the bridge line, thereby adjusting the flow rate of the boil-off gas and / or the vaporized gas supplied to the auxiliary gas engine, and boil-off.
  • Gas and / or vaporized gas can be supplied to the secondary gas engine at a pressure according to its requirements.
  • the ship according to the second aspect of the present invention further includes a pressure gauge for detecting the pressure of the boil-off gas in the tank or the boil-off gas flowing in the air supply line, and the control device is configured to supply liquefied natural gas in the tank.
  • the available amount of boil-off gas is larger than the amount of fuel gas consumed by the main gas engine, the available amount of boil-off gas is calculated from the amount and the pressure of the boil-off gas detected by the pressure gauge. 2 You may open a regulating valve.
  • surplus boil-off gas with respect to the fuel gas consumption of the main gas engine can be flowed to the bridge line via the second adjustment valve and supplied to the auxiliary gas engine.
  • opening the second adjustment valve includes opening the closed second adjustment valve and maintaining the opened second adjustment valve in advance.
  • the control device may calculate a difference between an available amount of the boil-off gas and a sum of a fuel gas consumption amount of the main gas engine and a fuel gas consumption amount of the sub gas engine.
  • the first regulating valve may be controlled accordingly, and the second regulating valve may be controlled according to the fuel gas demand pressure of the auxiliary gas engine.
  • the control device controls the second regulating valve according to a difference between an available amount of the boil-off gas and a fuel gas consumption amount of the main gas engine, The first regulating valve may be controlled in accordance with a fuel gas demand pressure of the auxiliary gas engine.
  • the amount of boil-off gas generated varies depending on the pressure of the boil-off gas in the tank, but substantially depends on the amount of liquefied natural gas in the tank. For this reason, when the amount of boil-off gas supplied to the compressor is determined by comparing the fuel gas consumption of the main gas engine with the amount of boil-off gas generated, the pressure of the boil-off gas in the tank is within an arbitrary required range. It is difficult to adjust. On the other hand, the available amount of boil-off gas is calculated from the amount of liquefied natural gas in the tank and the pressure of the boil-off gas detected by the pressure gauge.
  • the boil-off gas may be actively used when the pressure of the boil-off gas in the tank is high, and the amount of boil-off gas used may be reduced when the pressure of the boil-off gas in the tank is low. it can. Therefore, the pressure of the boil-off gas in the tank can be easily adjusted within the required range.
  • the ship according to the fifth aspect of the present invention branches from the first supply line or the second supply line and is connected to the tank.
  • the return line is provided with an expansion device, and the opening is provided in the return line.
  • a third adjusting valve that can be changed, and the control device may control the third adjusting valve.
  • the ship according to the sixth aspect of the present invention further includes a pressure gauge for detecting the pressure of the boil-off gas in the tank or the boil-off gas flowing in the air supply line, and the control device is configured to supply liquefied natural gas in the tank.
  • the available amount of boil-off gas is calculated from the amount and the pressure of the boil-off gas detected by the pressure gauge, and the available amount of boil-off gas is the fuel gas consumption amount of the main gas engine and the fuel gas consumption of the auxiliary gas engine. When it is larger than the sum of the amounts, the second adjustment valve and the third adjustment valve may be opened.
  • surplus boil-off gas with respect to the fuel gas consumption of the main gas engine can be flowed to the bridge line via the second adjustment valve and supplied to the auxiliary gas engine.
  • surplus boil-off gas with respect to the sum of the fuel gas consumption of each gas engine can be sent to a return line via a 3rd regulating valve, and can be returned to a tank.
  • opening the second adjustment valve and the third adjustment valve means opening the closed second adjustment valve and the third adjustment valve, and opening the second adjustment valve and the third adjustment valve that are opened in advance. Including maintaining.
  • the control device responds to a difference between an available amount of the boil-off gas and a sum of a fuel gas consumption amount of the main gas engine and a fuel gas consumption amount of the sub gas engine.
  • the third adjustment valve may be controlled, and the second adjustment valve may be controlled in accordance with the fuel gas required pressure of the auxiliary gas engine.
  • the boil-off gas in the tank The pressure can be easily adjusted within the required range. Further, if the second regulating valve is controlled according to the fuel gas required pressure of the auxiliary gas engine, the boil-off gas and / or the vaporized gas can be supplied to the auxiliary gas engine at a pressure corresponding to the requirement.
  • boil-off gas and / or vaporized gas can be supplied to the sub-gas engine for power generation at a pressure according to the demand.
  • 1 is a schematic configuration diagram of a ship according to a first embodiment of the present invention. It is a graph which shows the relationship between the deviation of the pressure of the boil-off gas in a tank, and setting pressure, and the available amount of boil-off gas. It is a schematic block diagram of the ship which concerns on 2nd Embodiment of this invention. It is a schematic block diagram of the ship which concerns on 3rd Embodiment of this invention. It is a schematic block diagram of the ship which concerns on 4th Embodiment of this invention. It is a schematic block diagram of the ship which concerns on 5th Embodiment of this invention.
  • FIG. 1 shows a ship 1A according to the first embodiment of the present invention.
  • the ship 1A includes a tank 11 for storing liquefied natural gas (hereinafter referred to as LNG), a main gas engine 13 for propulsion, and a sub gas engine 16 for power generation (that is, for onboard power).
  • LNG liquefied natural gas
  • main gas engine 13 for propulsion
  • sub gas engine 16 for power generation (that is, for onboard power).
  • the ship 1A is an LNG carrier, and the ship 1A is equipped with a plurality of cargo tanks. That is, the tank 11 shown in FIG. 1 is each of a plurality of cargo tanks.
  • one main gas engine 13 and one sub gas engine 16 are provided, but a plurality of main gas engines 13 may be provided, or a plurality of sub gas engines 16 may be provided. Good.
  • the ship 1A is a mechanical propulsion type, and the main gas engine 13 directly rotates and drives a screw propeller (not shown).
  • the ship 1A may be an electric propulsion type, and the main gas engine 13 may rotationally drive the screw propeller via a generator and a motor.
  • the main gas engine 13 is a diesel cycle type two-stroke engine having a high fuel gas injection pressure of about 20 to 35 MPa, for example.
  • the main gas engine 13 may be an Otto cycle type two-stroke engine having a medium pressure of, for example, a fuel gas injection pressure of about 1 to 2 MPa.
  • the main gas engine 13 may be an Otto cycle type four-stroke engine having a low fuel gas injection pressure of, for example, about 0.5 to 1 MPa.
  • the main gas engine 13 may be a gas-only combustion engine that burns only fuel gas, or may be a dual fuel engine that burns one or both of fuel gas and fuel oil (binary fuel engine). In this case, the fuel gas may be burned by the Otto cycle, and the fuel oil may be burned by the diesel cycle).
  • the auxiliary gas engine 16 is an Otto cycle type four-stroke engine having a low fuel gas injection pressure of about 0.5 to 1 MPa, for example, and is connected to a generator (not shown).
  • the auxiliary gas engine 16 may be a gas combustion engine that burns only fuel gas, or may be a dual fuel engine that burns one or both of fuel gas and fuel oil.
  • the fuel gas of the main gas engine 13 is mainly boil-off gas (hereinafter referred to as BOG) generated in the tank 11 by natural heat input, and the fuel gas of the auxiliary gas engine 16 is mainly forced by LNG.
  • BOG boil-off gas
  • VG vaporized gas
  • the tank 11 is connected to the compressor 12 by an air supply line 21, and the compressor 12 is connected to the main gas engine 13 by a first supply line 22. Further, a pump 14 is disposed in the tank 11, and the pump 14 is connected to the forced vaporizer 15 by a liquid feed line 31. The forced vaporizer 15 is connected to the auxiliary gas engine 16 by the second supply line 32.
  • the air supply line 21 guides BOG generated in the tank 11 to the compressor 12.
  • the compressor 12 compresses the BOG to a high pressure.
  • the first supply line 22 guides high-pressure BOG discharged from the compressor 12 to the main gas engine 13.
  • the compressor 12 is a five-stage high-pressure compressor.
  • a connection line 12b connects between the inlet of the compressor 12 and the first stage compression unit 12a, between each stage compression unit 12a, and between the outlet of the compressor 12 and the fifth stage compression unit 12a.
  • a bypass line 12c that bypasses each compressor 12a is connected to the connection line 12b, and a bypass valve 12d is provided in the bypass line 12c.
  • the bypass valve 12 d is an adjustment valve whose opening degree can be changed, and the opening degree is controlled by the control device 6.
  • the compressor 12 may be a low-pressure compressor, for example, when the fuel gas injection pressure of the main gas engine 13 is low.
  • the bridge line 51 is connected from the compressor 12 to the second supply line 32.
  • the bridge line 51 is connected to a stage where the pressure of the BOG in the bridge line 51 becomes higher than the required fuel gas pressure of the auxiliary gas engine 16.
  • the larger the pressure difference the more expensive the pressure adjusting device such as a pressure reducing valve for adjusting the pressure of the BOG supplied to the sub gas engine 16 to the required fuel gas pressure of the sub gas engine 16.
  • the bridge line 51 is connected to the compressor 12 between the second-stage compression unit 12a and the third-stage compression unit 12a.
  • the bridge line 51 guides this surplus BOG from the compressor 12 to the second supply line 32 when the BOG is surplus with respect to the fuel gas consumption of the main gas engine 13.
  • the auxiliary gas engine 16 is supplied with VG and BOG (in some cases, only BOG) as fuel gas.
  • the liquid feed line 31 guides LNG discharged from the pump 14 to the forced vaporizer 15.
  • the pump 14 discharges LNG so that the pressure of VG guided from the forced vaporizer 15 to the auxiliary gas engine 16 becomes equal to or higher than the required fuel gas pressure of the auxiliary gas engine 16.
  • the forced vaporizer 15 forcibly vaporizes LNG using, for example, steam generated in a boiler as a heat source, and generates VG.
  • the second supply line 32 guides VG generated by the forced vaporizer 15 to the auxiliary gas engine 16.
  • the second supply line 32 is preferably provided with equipment (for example, a cooler and a gas-liquid separator) for removing heavy components such as ethane having a mass larger than that of methane from the VG. .
  • equipment for example, a cooler and a gas-liquid separator
  • a check valve 33 is provided on the second supply line 32 upstream of the connection point of the bridge line 51.
  • the check valve 33 may not be provided in the second supply line 32.
  • a check valve that prevents BOG or VG from flowing back to the compressor 12 may be provided in the bridge line 51.
  • the liquid supply line 31 is provided with a first adjustment valve 31a, and the bridge line 51 is provided with a second adjustment valve 51a.
  • the opening degree of these regulating valves 31 a and 51 a can be changed, and the opening degree is controlled by the control device 6. In FIG. 1, only some signal lines are drawn for the sake of simplicity.
  • the first adjustment valve 31a plays a role of opening and closing the liquid supply line 31
  • the second adjustment valve 51a plays a role of opening and closing the bridge line 51.
  • an opening / closing valve may be provided in the liquid feeding line 31 separately from the first adjustment valve 31a, or an opening / closing valve may be provided in the bridge line 51 separately from the second adjustment valve 51a.
  • a first pressure gauge 61 for detecting the pressure Pb1 of the BOG flowing through the air supply line 21 is provided in the air supply line 21.
  • the first pressure gauge 61 may be provided in the tank 11 and detect the pressure of the BOG in the tank 11.
  • the first supply line 22 is provided with a second pressure gauge 62 that detects the pressure Pb2 of the BOG flowing through the first supply line 22.
  • a flow meter 63 that detects the flow rate Fl of LNG flowing through the liquid supply line 31 is provided in the liquid supply line 31.
  • the flow meter 63 is provided in the liquid supply line 31 on the upstream side of the first adjustment valve 31a, but may be provided in the liquid supply line 31 on the downstream side of the first adjustment valve 31a. Good.
  • the flow meter 63 may be provided downstream of the forced vaporizer 15 in the second supply line 32 and upstream of the connection point of the bridge line 51. In this case, the flow meter 63 detects the flow rate of VG flowing from the forced vaporizer 15 to the second supply line 32.
  • the second supply line 32 is provided with a third pressure gauge 64 for detecting the pressure Pv of VG and / or BOG flowing through the second supply line 32. The third pressure gauge 64 is located downstream of the connection point of the bridge line 51 in the second supply line 32.
  • the control device 6 supplies the fuel gas (BOG and / or VG) to each gas engine 13 and 16 at the required fuel gas pressure of each gas engine 13 and 16 and keeps the pressure in the tank 11 within the required range.
  • the control valves 31a and 51a are controlled based on the detected values of the flow meter 63 and the pressure gauges 61, 62 and 64.
  • the required fuel gas pressure of each gas engine 13, 16 is a pressure determined in advance or arbitrarily according to the request of each gas engine 13, 16. Further, the required range of the internal pressure of the tank 11 is a pressure determined in advance or arbitrarily according to the performance of the tank 11 or the like.
  • the control device 6 controls the pressure of the BOG supplied to the main gas engine 13 based on the detection value of the second pressure gauge 62.
  • the detection value signal is transmitted from the second pressure gauge 62 to the control device 6.
  • the control device 6 acquires the pressure Pb2 of BOG that is pumped from the compressor 12 and supplied to the main gas engine 13 via the first supply line 22.
  • the control device 6 controls the bypass valve 12d of the compressor 12 so that the BOG pressure Pb2 becomes the required fuel gas pressure of the main gas engine 13.
  • BOG is supplied to the main gas engine 13 at the required fuel gas pressure of the main gas engine 13.
  • control device 6 controls the pressures of VG and BOG supplied to the auxiliary gas engine 16 based on the detected values of the first pressure gauge 61, the third pressure gauge 64, and the flow meter 63. Therefore, first, the control device 6 calculates the fuel gas consumption amount Q1 of the main gas engine 13 and the fuel gas consumption amount Q2 of the auxiliary gas engine 16.
  • the control device 6 includes a first gas engine controller (not shown) for controlling the fuel gas injection timing of the main gas engine 13 and the second gas engine for controlling the fuel gas injection timing of the auxiliary gas engine 16.
  • Various signals are transmitted from a controller (not shown).
  • the control device 6 calculates the fuel gas consumption Q1 of the main gas engine 13 from the signal transmitted from the first gas engine controller, and the auxiliary gas engine 16 from the signal transmitted from the second gas engine controller.
  • the fuel gas consumption Q2 is calculated.
  • the control device 6 may acquire the fuel gas consumption Q1 directly from the first gas engine controller. Further, the control device 6 may acquire the fuel gas consumption Q2 directly from the second gas engine controller.
  • the set pressure Ps is a pressure at which the BOG usable amount Qa becomes equal to the BOG generation amount Qn.
  • the BOG generation amount Qn varies depending on the pressure of the BOG in the tank 11, but substantially depends on the amount of LNG in the tank 11.
  • the control device 6 calculates the available amount Qa of BOG from the amount of LNG in the tank 11 and the pressure deviation ⁇ P.
  • the control device 6 compares the available amount Qa of the BOG with the fuel gas consumption amounts Q1 and Q2 of the gas engines 13 and 16, respectively.
  • the available amount Qa of BOG is larger than the fuel gas consumption amount Q1 of the main gas engine 13 (when BOG is more than the fuel gas consumption amount Q1 of the main gas engine 13)
  • the control device 6 uses the available amount Qa.
  • Q2- ⁇ Q1) is calculated.
  • the control apparatus 6 calculates
  • the opening degree of the regulating valve 31a is controlled. Thereby, VG of ⁇ Q2 flows from the forced vaporizer 15 to the second supply line 32, and surplus BOG of ⁇ Q1 flows from the bridge line 51 to the second supply line 32.
  • control device 6 controls the opening degree of the second adjustment valve 51 a so that the pressure Pv detected by the third pressure gauge 64 becomes the required fuel gas pressure of the auxiliary gas engine 16. As a result, VG and BOG are supplied to the auxiliary gas engine 16 at the required fuel gas pressure of the auxiliary gas engine 16.
  • LNG is forcibly vaporized by the forced vaporizer 15 and the VG is supplied to the secondary gas engine 16, so that the secondary gas engine is not used without using a high-pressure pump.
  • 16 can be supplied with a sufficient amount of fuel gas.
  • the surplus BOG can be supplied from the compressor 12 to the sub gas engine 16 through the bridge line 51 and the second supply line 32. Accordingly, the amount of VG vaporized by the forced vaporizer 15 can be reduced, and the amount of heat used for forced vaporization by the forced vaporizer 15 can be suppressed.
  • the BOG generation amount Qn varies depending on the pressure of the BOG in the tank 11, but substantially depends on the amount of LNG in the tank 11. Therefore, when the first adjustment valve 31a is controlled by comparing the fuel gas consumption amount Q1 of the main gas engine 13 with the BOG generation amount Qn, the pressure of the BOG in the tank 11 is adjusted within an arbitrary required range. Difficult to do. In contrast, in the present embodiment, the available amount Qa of BOG is calculated from the amount of LNG in the tank 11 and the BOG pressure Pb 1 detected by the pressure gauge 61.
  • the first regulating valve 31a is controlled in accordance with the difference ⁇ Q2 between the available amount Qa of BOG and the sum of the fuel gas consumption Q1 of the main gas engine 13 and the fuel gas consumption Q2 of the auxiliary gas engine 16. .
  • first adjustment valve 31a is controlled according to the difference ⁇ Q2
  • second adjustment valve 51a is controlled according to the fuel gas required pressure of the auxiliary gas engine 16.
  • VG and BOG are supplied to the auxiliary gas engine 16 at the required fuel gas pressure of the auxiliary gas engine 16.
  • the bypass valve 12 d of the compressor 12 is controlled according to the fuel gas required pressure of the main gas engine 13.
  • BOG is supplied to the main gas engine 13 at the required fuel gas pressure of the main gas engine 13.
  • the flow meter 63 is provided in the liquid feeding line 31.
  • the flow meter 65 is provided on the bridge line 51.
  • the control device 6 controls the first adjustment valve 31a according to the difference ⁇ Q2, and controls the second adjustment valve 51a according to the fuel gas required pressure of the auxiliary gas engine 16.
  • the control apparatus 6 controls the 2nd adjustment valve 51a according to difference (DELTA) Q1, and controls the 1st adjustment valve 31a according to the fuel gas request
  • DELTA difference
  • the flow meter 65 detects the BOG flow rate Fb 1 flowing from the compressor 12 to the bridge line 51. This detected value is transmitted to the control device 6.
  • the control device 6 controls the pressure of the BOG supplied to the main gas engine 13 based on the fuel gas consumption Q1 of the main gas engine 13 and the detected value of the second pressure gauge 62.
  • the control device 6 also supplies VG and BOG supplied to the auxiliary gas engine 16 based on the detected values of the fuel gas consumption Q2 of the auxiliary gas engine 16, the first pressure gauge 61, the third pressure gauge 64, and the flow meter 65. To control the pressure.
  • the available amount Qa of BOG is larger than the fuel gas consumption amount Q1 of the main gas engine 13 and is equal to or less than the sum of the fuel gas consumption amounts Q1 and Q2 of the gas engines 13 and 16.
  • the control apparatus 6 controls the opening degree of the 2nd adjustment valve 51a so that the flow volume Fb1 detected by the flowmeter 65 may become difference (DELTA) Q1. Thereby, surplus BOG of the flow rate Fb1 flows from the compressor 12 to the bridge line 51.
  • control device 6 controls the opening degree of the first adjustment valve 31 a so that the pressure Pv detected by the third pressure gauge 64 becomes the required fuel gas pressure of the auxiliary gas engine 16. As a result, VG and BOG are supplied to the auxiliary gas engine 16 at the required fuel gas pressure.
  • the control device 6 controls the opening degree of the first adjustment valve 31a so that the pressure Pv detected by the third pressure gauge 64 becomes the required fuel gas pressure of the auxiliary gas engine 16. .
  • the control device 6 calculates the difference (Q1 + Q2-Qa) between the sum of the fuel gas consumption amount Q1 of the main gas engine 13 and the fuel gas consumption amount Q2 of the auxiliary gas engine 16 and the available amount Qa of BOG.
  • the first adjustment valve 31a is controlled as the set flow rate of LNG.
  • the control apparatus 6 correct
  • a ship 1C according to the third embodiment further includes a return line 23 in addition to the configuration of the ship 1A according to the first embodiment.
  • the flow meter 63 is provided in the liquid supply line 31, whereas in the third embodiment, the flow meter 66 is provided in the return line 23.
  • the flow meter 66 detects the flow rate Fb2 of the BOG flowing through the return line 23. This detected value is transmitted to the control device 6.
  • the return line 23 branches from the first supply line 22 and is connected to the tank 11.
  • the tip of the return line 23 may be located above the liquid level of LNG in the tank 11 or may be located below the liquid level.
  • the return line 23 is provided with an expansion device 72 such as an expansion valve.
  • the return line 23 is provided with a third adjustment valve 23a whose opening degree can be changed, and an opening / closing valve 23b for opening and closing the return line 23.
  • the third adjusting valve 23 a and the on-off valve 23 b are controlled by the control device 6.
  • the return line 23 may not be provided with the opening / closing valve 23b.
  • the available amount Qa of BOG is larger than the fuel gas consumption Q1 of the main gas engine 13 and is equal to or less than the sum of the fuel gas consumptions Q1 and Q2 of the gas engines 13 and 16.
  • the VG and BOG pressure control for the auxiliary gas engine 16 in (Q1 ⁇ Qa ⁇ Q1 + Q2) has been described.
  • the usable amount Qa of BOG is larger than the sum of the fuel gas consumptions Q1 and Q2 of the gas engines 13 and 16 (Qa> Q1 + Q2), The pressure control will be described.
  • the control apparatus 6 stops the operation of the forced vaporizer 15, and fully closes the 1st regulating valve 31a.
  • the opening of the first adjustment valve 31a is set to the minimum opening at which the operation of the forced vaporizer 15 can be continued without stopping the operation of the forced vaporizer 15. Also good.
  • the control device 6 controls the opening degree of the third adjustment valve 23a so that the flow rate Fb2 detected by the flow meter 66 becomes the difference ⁇ Q3. Further, the control device 6 controls the opening degree of the second adjustment valve 51 a so that the pressure Pv detected by the third pressure gauge 64 becomes the required fuel gas pressure of the auxiliary gas engine 16.
  • the remaining BOG of ⁇ Q3 with respect to the sum of the fuel gas consumptions Q1 and Q2 of the gas engines 13 and 16 flows to the return line 23.
  • the BOG of the fuel gas consumption Q2 of the auxiliary gas engine 16 flows to the bridge line 51, and BOG is supplied to the auxiliary gas engine 16 at the required fuel gas pressure.
  • a ship 1D according to the fourth embodiment further includes a heat exchanger 81 in addition to the configuration of the ship 1C according to the third embodiment.
  • the heat exchanger 81 is provided in the liquid supply line 31, the return line 23, and the air supply line 21.
  • the heat exchanger 81 cools the BOG flowing in the return line 23 upstream of the expansion device 72 (BOG returned to the tank 11) by the LNG flowing in the liquid supply line 31 and the BOG flowing in the air supply line 21. After this cooling, the BOG returned to the tank 11 is partially liquefied by being expanded by the expansion device 72.
  • the LNG flowing in the liquid feeding line 31 may be partially vaporized by taking heat from the BOG.
  • the BOG flowing in the return line 23 is cooled by LNG and BOG used as fuel for the ship 1D, and thus a device and a medium for this cooling are separately prepared. There is no need to do. Also in this embodiment, the same effect as that of the first embodiment can be obtained.
  • a ship 1E according to the fifth embodiment includes a return line 34 and a flow meter 67 instead of the return line 23 and the flow meter 66 according to the third embodiment.
  • the return line 34 branches off from the second supply line 32 downstream of the connection point of the bridge line 51 and is connected to the tank 11. However, the return line 34 may branch from the second supply line 32 upstream of the connection point of the bridge line 51. Moreover, the front end of the return line 34 may be located above the liquid level of LNG in the tank 11 or may be located below the liquid level.
  • the return line 34 is provided with a third adjustment valve 34a whose opening degree can be changed.
  • the third adjustment valve 34 a is controlled by the control device 6. Further, the flow meter 67 detects the BOG flow rate Fb3 flowing through the return line 34. This detected value is transmitted to the control device 6.
  • the remaining BOG of ⁇ Q1 with respect to the fuel gas consumption Q1 of the main gas engine 13 flows to the bridge line 51, and among this, the BOG of ⁇ Q3 flows to the return line 34. Therefore, the BOG of the fuel gas consumption Q2 of the auxiliary gas engine 16 flows to the second supply line 32 downstream of the branch point of the return line 34, and the BOG is supplied to the auxiliary gas engine 16 at the required fuel gas pressure.
  • the ship 1E according to the fifth embodiment may include the return line 23 according to the third embodiment.
  • the ship 1E according to the fifth embodiment may further include a heat exchanger. This heat exchanger is provided in the liquid feed line 31 and the return line 34. The heat exchanger cools BOG flowing through the return line 34 (BOG returned to the tank 11) with LNG flowing through the liquid supply line 31.
  • the pump 14 may have a function of pumping up LNG up to the forced vaporizer 15, and a compressor may be provided in the second supply line 32.
  • a compressor may be provided in the second supply line 32.
  • the fuel gas injection pressure of the auxiliary gas engine 16 is secured by the pump 14, it is not necessary to provide a compressor in the second supply line 32, and the cost can be reduced.
  • main gas engine 13 and the auxiliary gas engine 16 are not necessarily a reciprocating engine, and may be a gas turbine engine.
  • a bridge line that guides VG from the second supply line 32 to the air supply line 21 may be further provided. This bridge line guides VG from the second supply line 32 to the air supply line 21 when the BOG is insufficient with respect to the fuel gas consumption Q1 of the main gas engine 13. As a result, BOG and VG are supplied to the main gas engine 13 as fuel gas.
  • flow meters 63, 65, 66, and 67 were used for the flow control of LNG, BOG, and VG.
  • this flow rate control is performed based on the relationship between the opening degree of each of the regulating valves 31a, 51a, 23a, and 34a and the flow rates of LNG, BOG, and VG.
  • this cost can be reduced by not using a flow meter.
  • 1A to 1C Ship 6: Control device 11: Tank 12: Compressor 13: Main gas engine 14: Pump 15: Forced vaporizer 16: Sub gas engine 21: Air supply line 22: First supply line 31: Liquid supply line 31a: First adjustment valve 32: Second supply line 23: Return line 34: Return line 23a: Third adjustment valve 51: Bridge line 51a: Second adjustment valve 61: First pressure gauge (pressure gauge) 72: expansion device 34a: third adjusting valve

Abstract

The ship is equipped with: a main gas engine for propulsion; a tank for storing liquefied natural gas; a gas delivery line for guiding boil-off gas generated inside the tank to a compressor; a first supply line for guiding the boil-off gas discharged from the compressor to the main gas engine; an auxiliary gas engine for generating electric power; a liquid delivery line for guiding the liquefied natural gas discharged from a pump disposed inside the tank to a forcible vaporizer; a second supply line for guiding the vaporized gas generated by the forcible vaporizer to the auxiliary gas engine; a bridge line for guiding the boil-off gas from the compressor to the second supply line; a first regulation valve which is disposed on the liquid delivery line, the opening degree of which can be changed; a second regulation valve which is disposed on the bridge line, the opening degree of which can be changed; and a control device for controlling the first regulation valve and the second regulation valve.

Description

船舶Ship
 本発明は、推進用の主ガスエンジンおよび発電用の副ガスエンジンを含む船舶に関する。 The present invention relates to a ship including a main gas engine for propulsion and a sub gas engine for power generation.
 従来から、推進用の主ガスエンジンおよび発電用の副ガスエンジンを含む船舶に用いられる、例えば、特許文献1に示す燃料ガス供給システムが知られている。この燃料ガス供給システムでは、液化ガスがカーゴタンクに積載されている。タンク内で自然発生したボイルオフガスが、高圧ガスコンプレッサを含む第1燃料ガス供給ラインを通って主機関に供給される。また、高圧ガスコンプレッサから分岐した低圧燃料ガス供給ラインを通って低圧ガスがディーゼル発電機関に供給される。さらに、液化ガスが、タンク内のポンプに接続された第2燃料ガス供給ラインを通って高圧液ポンプにより加圧され、ガスヒータにより加熱・気化される。この気化したガス(気化ガス)は、第2燃料ガス供給ラインから第1燃料ガス供給ラインを通って主機関に供給され、第2燃料ガス供給ラインから第1燃料ガス供給ライン、連絡ラインおよび低圧燃料ガス供給ラインを通ってディーゼル発電機関に供給される。 2. Description of the Related Art Conventionally, for example, a fuel gas supply system shown in Patent Document 1 is known that is used in ships including a propulsion main gas engine and a power generation sub-gas engine. In this fuel gas supply system, liquefied gas is loaded in a cargo tank. The boil-off gas naturally generated in the tank is supplied to the main engine through a first fuel gas supply line including a high-pressure gas compressor. Further, the low pressure gas is supplied to the diesel power generation engine through the low pressure fuel gas supply line branched from the high pressure gas compressor. Furthermore, the liquefied gas is pressurized by the high-pressure liquid pump through the second fuel gas supply line connected to the pump in the tank, and is heated and vaporized by the gas heater. The vaporized gas (vaporized gas) is supplied from the second fuel gas supply line to the main engine through the first fuel gas supply line, and from the second fuel gas supply line to the first fuel gas supply line, the communication line, and the low pressure. It is supplied to the diesel generator engine through the fuel gas supply line.
 このシステムでは、船速と燃料消費量との関係を示す曲線と、タンク内の液化ガスが自然蒸発してボイルオフガスとなる単位時間当たりの量(タンクの発生量)を示す直線との交点を運転点として求めている。この運転点、および運転点よりも低速での運航では、ボイルオフガスを主機関に供給し、ここで余ったボイルオフガスをディーゼル発電機関またはボイラに供給している。一方、運転点よりも高速での運航では、ボイルオフガスを主機関およびディーゼル発電機関に供給し、これに足りない分の燃料として気化ガスを主機関およびディーゼル発電機に供給している。 In this system, the intersection of the curve showing the relationship between ship speed and fuel consumption and a straight line showing the amount per unit time (tank generation amount) that the liquefied gas in the tank spontaneously evaporates and becomes boil-off gas. It is calculated as an operating point. In operation at this operating point and at a lower speed than the operating point, boil-off gas is supplied to the main engine, and surplus boil-off gas is supplied to the diesel power generation engine or boiler. On the other hand, in operation at a higher speed than the operating point, boil-off gas is supplied to the main engine and the diesel generator engine, and vaporized gas is supplied to the main engine and the diesel generator as fuel that is insufficient for this.
特開2015-145243号公報Japanese Patent Laying-Open No. 2015-145243
 上記燃料ガス供給システムでは、燃料消費量とタンクの発生量との関係に応じて、ボイルオフガスおよび/または気化ガスをディーゼル発電機に供給している。しかしながら、ディーゼル発電機にその要求に応じた圧力でボイルオフガスおよび/または気化ガスを供給する制御については記載されていない。このため、上記燃料ガス供給システムには、ボイルオフガスおよび/または気化ガスをディーゼル発電機にその要求に応じた圧力で供給するという観点から未だ改善の余地がある。 In the above fuel gas supply system, boil-off gas and / or vaporized gas is supplied to the diesel generator according to the relationship between the fuel consumption and the amount of tank generated. However, it does not describe control for supplying boil-off gas and / or vaporized gas to the diesel generator at a pressure according to the demand. For this reason, the fuel gas supply system still has room for improvement from the viewpoint of supplying the boil-off gas and / or the vaporized gas to the diesel generator at a pressure according to the demand.
 そこで、本発明は、ボイルオフガスおよび/または気化ガスを発電用の副ガスエンジンにその要求に応じた圧力で供給することができる船舶を提供することを目的とする。 Therefore, an object of the present invention is to provide a ship capable of supplying boil-off gas and / or vaporized gas to a sub-gas engine for power generation at a pressure according to the demand.
 前記課題を解決するために、本発明の第1態様に係る船舶は、推進用の主ガスエンジンと、液化天然ガスを貯留するタンクと、前記タンク内で発生するボイルオフガスを圧縮機へ導く送気ラインと、前記圧縮機から吐出されるボイルオフガスを前記主ガスエンジンへ導く第1供給ラインと、発電用の副ガスエンジンと、前記タンク内に配置されたポンプから吐出される液化天然ガスを強制気化器へ導く送液ラインと、前記強制気化器にて生成される気化ガスを前記副ガスエンジンへ導く第2供給ラインと、前記圧縮機から前記第2供給ラインへ前記ボイルオフガスを導くブリッジラインと、前記送液ラインに設けられた、開度変更が可能な第1調整弁と、前記ブリッジラインに設けられた、開度変更が可能な第2調整弁と、前記第1調整弁および前記第2調整弁を制御する制御装置と、を備える。 In order to solve the above problems, a ship according to the first aspect of the present invention includes a main gas engine for propulsion, a tank that stores liquefied natural gas, and a boil-off gas that is generated in the tank that leads to a compressor. A gas line, a first supply line for guiding boil-off gas discharged from the compressor to the main gas engine, a sub-gas engine for power generation, and liquefied natural gas discharged from a pump disposed in the tank. A liquid feed line leading to the forced vaporizer, a second supply line leading the vaporized gas generated in the forced vaporizer to the sub-gas engine, and a bridge leading the boil-off gas from the compressor to the second supply line Line, a first adjustment valve provided in the liquid supply line capable of changing an opening degree, a second adjustment valve provided in the bridge line capable of changing an opening degree, and the first adjustment valve And a control unit for controlling the preliminary second regulating valve, the.
 第1態様に係る船舶の構成によれば、送液ラインに導かれた液化天然ガスが強制気化器で気化されて、この気化ガスが第2供給ラインに導かれて副ガスエンジンに供給される。また、主ガスエンジンの燃料ガス消費量に対してボイルオフガスが余る場合には、この余剰のボイルオフガスが、圧縮機からブリッジラインおよび第2供給ラインに導かれて副ガスエンジンに供給される。ここで、制御装置が送液ラインの第1調整弁およびブリッジラインの第2調整弁を制御することにより、副ガスエンジンへ供給されるボイルオフガスおよび/または気化ガスの流量などを調整し、ボイルオフガスおよび/または気化ガスを副ガスエンジンにその要求に応じた圧力で供給することができる。 According to the configuration of the ship according to the first aspect, the liquefied natural gas led to the liquid feeding line is vaporized by the forced vaporizer, and this vaporized gas is led to the second supply line and supplied to the sub gas engine. . Further, when the boil-off gas is surplus with respect to the fuel gas consumption of the main gas engine, the surplus boil-off gas is led from the compressor to the bridge line and the second supply line and supplied to the sub gas engine. Here, the control device controls the first adjustment valve of the liquid supply line and the second adjustment valve of the bridge line, thereby adjusting the flow rate of the boil-off gas and / or the vaporized gas supplied to the auxiliary gas engine, and boil-off. Gas and / or vaporized gas can be supplied to the secondary gas engine at a pressure according to its requirements.
 本発明の第2態様に係る船舶は、前記タンク内のボイルオフガスまたは前記送気ラインに流れるボイルオフガスの圧力を検出する圧力計をさらに備え、前記制御装置は、前記タンク内の液化天然ガスの量および前記圧力計で検出されるボイルオフガスの圧力からボイルオフガスの利用可能量を算出し、前記ボイルオフガスの利用可能量が前記主ガスエンジンの燃料ガス消費量よりも多い場合には、前記第2調整弁を開いてもよい。 The ship according to the second aspect of the present invention further includes a pressure gauge for detecting the pressure of the boil-off gas in the tank or the boil-off gas flowing in the air supply line, and the control device is configured to supply liquefied natural gas in the tank. When the available amount of boil-off gas is larger than the amount of fuel gas consumed by the main gas engine, the available amount of boil-off gas is calculated from the amount and the pressure of the boil-off gas detected by the pressure gauge. 2 You may open a regulating valve.
 第2態様に係る船舶の構成によれば、主ガスエンジンの燃料ガス消費量に対する余剰のボイルオフガスを、第2調整弁を介してブリッジラインに流し、副ガスエンジンに供給することができる。なお、第2調整弁を開くとは、閉じている第2調整弁を開くこと、および予め開いている第2調整弁の開いた状態を維持することを含む。 According to the configuration of the ship according to the second aspect, surplus boil-off gas with respect to the fuel gas consumption of the main gas engine can be flowed to the bridge line via the second adjustment valve and supplied to the auxiliary gas engine. Note that opening the second adjustment valve includes opening the closed second adjustment valve and maintaining the opened second adjustment valve in advance.
 本発明の第3態様に係る船舶では、前記制御装置は、前記ボイルオフガスの利用可能量と、前記主ガスエンジンの燃料ガス消費量および前記副ガスエンジンの燃料ガス消費量の和との差に応じて前記第1調整弁を制御し、前記副ガスエンジンの燃料ガス要求圧に応じて前記第2調整弁を制御してもよい。また、本発明の第4態様に係る船舶では、前記制御装置は、前記ボイルオフガスの利用可能量と前記主ガスエンジンの燃料ガス消費量との差に応じて前記第2調整弁を制御し、前記副ガスエンジンの燃料ガス要求圧に応じて前記第1調整弁を制御してもよい。 In the ship according to the third aspect of the present invention, the control device may calculate a difference between an available amount of the boil-off gas and a sum of a fuel gas consumption amount of the main gas engine and a fuel gas consumption amount of the sub gas engine. The first regulating valve may be controlled accordingly, and the second regulating valve may be controlled according to the fuel gas demand pressure of the auxiliary gas engine. Further, in the ship according to the fourth aspect of the present invention, the control device controls the second regulating valve according to a difference between an available amount of the boil-off gas and a fuel gas consumption amount of the main gas engine, The first regulating valve may be controlled in accordance with a fuel gas demand pressure of the auxiliary gas engine.
 第3および第4態様に係る船舶の構成によれば、ボイルオフガスの発生量はタンク内のボイルオフガスの圧力により変化するものの、タンク内の液化天然ガスの量にほぼ依存する。このため、主ガスエンジンの燃料ガス消費量をボイルオフガスの発生量と比較して圧縮機へのボイルオフガスの供給量を決定した場合には、タンク内のボイルオフガスの圧力を任意の要求範囲内に調整することが困難である。これに対し、タンク内の液化天然ガスの量および圧力計で検出されるボイルオフガスの圧力からボイルオフガスの利用可能量を算出する。そして、この利用可能量と主ガスエンジンの燃料ガス消費量および副ガスエンジンの燃料ガス消費量の和との差、または利用可能量と主ガスエンジンの燃料ガス消費量との差に応じて各調整弁を制御すれば、タンク内のボイルオフガスの圧力が高い場合にはボイルオフガスを積極的に使用し、タンク内のボイルオフガスの圧力が低い場合にはボイルオフガスの使用量を少なくすることができる。従って、タンク内のボイルオフガスの圧力を前記の要求範囲内に容易に調整することができる。 According to the configuration of the ship according to the third and fourth aspects, the amount of boil-off gas generated varies depending on the pressure of the boil-off gas in the tank, but substantially depends on the amount of liquefied natural gas in the tank. For this reason, when the amount of boil-off gas supplied to the compressor is determined by comparing the fuel gas consumption of the main gas engine with the amount of boil-off gas generated, the pressure of the boil-off gas in the tank is within an arbitrary required range. It is difficult to adjust. On the other hand, the available amount of boil-off gas is calculated from the amount of liquefied natural gas in the tank and the pressure of the boil-off gas detected by the pressure gauge. Depending on the difference between the available amount and the sum of the fuel gas consumption of the main gas engine and the fuel gas consumption of the auxiliary gas engine, or the difference between the available amount and the fuel gas consumption of the main gas engine, If the control valve is controlled, the boil-off gas may be actively used when the pressure of the boil-off gas in the tank is high, and the amount of boil-off gas used may be reduced when the pressure of the boil-off gas in the tank is low. it can. Therefore, the pressure of the boil-off gas in the tank can be easily adjusted within the required range.
 本発明の第5態様に係る船舶は前記第1供給ラインまたは前記第2供給ラインから分岐して前記タンクへつながる、膨張装置が設けられた返送ラインと、前記返送ラインに設けられた、開度変更が可能な第3調整弁と、をさらに備え、前記制御装置は前記第3調整弁を制御してもよい。第5態様に係る船舶の構成によれば、主ガスエンジンおよび副ガスエンジンの各燃料ガス消費量の和に対する余剰のボイルオフガスを、返送ラインを通じてタンクへ返送することができる。 The ship according to the fifth aspect of the present invention branches from the first supply line or the second supply line and is connected to the tank. The return line is provided with an expansion device, and the opening is provided in the return line. A third adjusting valve that can be changed, and the control device may control the third adjusting valve. According to the structure of the ship which concerns on a 5th aspect, surplus boil-off gas with respect to the sum of each fuel gas consumption of a main gas engine and a subgas engine can be returned to a tank through a return line.
 本発明の第6態様に係る船舶は、前記タンク内のボイルオフガスまたは前記送気ラインに流れるボイルオフガスの圧力を検出する圧力計をさらに備え、前記制御装置は、前記タンク内の液化天然ガスの量および前記圧力計で検出されるボイルオフガスの圧力からボイルオフガスの利用可能量を算出し、前記ボイルオフガスの利用可能量が前記主ガスエンジンの燃料ガス消費量および前記副ガスエンジンの燃料ガス消費量の和よりも多い場合には、前記第2調整弁および前記第3調整弁を開いてもよい。 The ship according to the sixth aspect of the present invention further includes a pressure gauge for detecting the pressure of the boil-off gas in the tank or the boil-off gas flowing in the air supply line, and the control device is configured to supply liquefied natural gas in the tank. The available amount of boil-off gas is calculated from the amount and the pressure of the boil-off gas detected by the pressure gauge, and the available amount of boil-off gas is the fuel gas consumption amount of the main gas engine and the fuel gas consumption of the auxiliary gas engine. When it is larger than the sum of the amounts, the second adjustment valve and the third adjustment valve may be opened.
 第6態様に係る船舶の構成によれば、主ガスエンジンの燃料ガス消費量に対する余剰のボイルオフガスを、第2調整弁を介してブリッジラインに流し、副ガスエンジンに供給することができる。また、各ガスエンジンの燃料ガス消費量の和に対する余剰のボイルオフガスを、第3調整弁を介して返送ラインに流し、タンクに返送することができる。なお、第2調整弁および第3調整弁を開くとは、閉じている第2調整弁および第3調整弁を開くこと、および予め開いている第2調整弁および第3調整弁の開いた状態を維持することを含む。 According to the configuration of the ship according to the sixth aspect, surplus boil-off gas with respect to the fuel gas consumption of the main gas engine can be flowed to the bridge line via the second adjustment valve and supplied to the auxiliary gas engine. Moreover, surplus boil-off gas with respect to the sum of the fuel gas consumption of each gas engine can be sent to a return line via a 3rd regulating valve, and can be returned to a tank. Note that opening the second adjustment valve and the third adjustment valve means opening the closed second adjustment valve and the third adjustment valve, and opening the second adjustment valve and the third adjustment valve that are opened in advance. Including maintaining.
 本発明の第7態様に係る船舶では、前記制御装置は、前記ボイルオフガスの利用可能量と前記主ガスエンジンの燃料ガス消費量および前記副ガスエンジンの燃料ガス消費量の和との差に応じて前記第3調整弁を制御し、前記副ガスエンジンの燃料ガス要求圧に応じて前記第2調整弁を制御してもよい。 In the ship according to the seventh aspect of the present invention, the control device responds to a difference between an available amount of the boil-off gas and a sum of a fuel gas consumption amount of the main gas engine and a fuel gas consumption amount of the sub gas engine. The third adjustment valve may be controlled, and the second adjustment valve may be controlled in accordance with the fuel gas required pressure of the auxiliary gas engine.
 第7態様に係る船舶の構成によれば、ボイルオフガスの利用可能量と各ガスエンジンの燃料ガス消費量の和との差に応じて第3調整弁を制御すれば、タンク内のボイルオフガスの圧力を前記の要求範囲内に容易に調整することができる。また、副ガスエンジンの燃料ガス要求圧に応じて第2調整弁を制御すれば、ボイルオフガスおよび/または気化ガスを副ガスエンジンにその要求に応じた圧力で供給することができる。 According to the configuration of the ship according to the seventh aspect, if the third regulating valve is controlled according to the difference between the available amount of boil-off gas and the sum of the fuel gas consumption of each gas engine, the boil-off gas in the tank The pressure can be easily adjusted within the required range. Further, if the second regulating valve is controlled according to the fuel gas required pressure of the auxiliary gas engine, the boil-off gas and / or the vaporized gas can be supplied to the auxiliary gas engine at a pressure corresponding to the requirement.
 本発明によれば、ボイルオフガスおよび/または気化ガスを発電用の副ガスエンジンにその要求に応じた圧力で供給することができる。 According to the present invention, boil-off gas and / or vaporized gas can be supplied to the sub-gas engine for power generation at a pressure according to the demand.
本発明の第1実施形態に係る船舶の概略構成図である。1 is a schematic configuration diagram of a ship according to a first embodiment of the present invention. タンク内のボイルオフガスの圧力と設定圧力との偏差と、ボイルオフガスの利用可能量との関係を示すグラフである。It is a graph which shows the relationship between the deviation of the pressure of the boil-off gas in a tank, and setting pressure, and the available amount of boil-off gas. 本発明の第2実施形態に係る船舶の概略構成図である。It is a schematic block diagram of the ship which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る船舶の概略構成図である。It is a schematic block diagram of the ship which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る船舶の概略構成図である。It is a schematic block diagram of the ship which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る船舶の概略構成図である。It is a schematic block diagram of the ship which concerns on 5th Embodiment of this invention.
 (第1実施形態)
 図1に、本発明の第1実施形態に係る船舶1Aを示す。この船舶1Aは、液化天然ガス(以下、LNGという)を貯留するタンク11と、推進用の主ガスエンジン13と、発電用(すなわち、船内電源用)の副ガスエンジン16を含む。
(First embodiment)
FIG. 1 shows a ship 1A according to the first embodiment of the present invention. The ship 1A includes a tank 11 for storing liquefied natural gas (hereinafter referred to as LNG), a main gas engine 13 for propulsion, and a sub gas engine 16 for power generation (that is, for onboard power).
 図例では、タンク11が1つだけ設けられているが、タンク11は複数設けられていてもよい。本実施形態では、船舶1AがLNG運搬船であり、船舶1Aには複数のカーゴタンクが装備されている。つまり、図1に示すタンク11は、複数のカーゴタンクのそれぞれである。また、図例では、主ガスエンジン13および副ガスエンジン16が1つずつ設けられているが、主ガスエンジン13が複数設けられていてもよいし、副ガスエンジン16が複数設けられていてもよい。 In the illustrated example, only one tank 11 is provided, but a plurality of tanks 11 may be provided. In the present embodiment, the ship 1A is an LNG carrier, and the ship 1A is equipped with a plurality of cargo tanks. That is, the tank 11 shown in FIG. 1 is each of a plurality of cargo tanks. In the illustrated example, one main gas engine 13 and one sub gas engine 16 are provided, but a plurality of main gas engines 13 may be provided, or a plurality of sub gas engines 16 may be provided. Good.
 本実施形態では、船舶1Aが機械推進式であり、主ガスエンジン13がスクリュープロペラ(図示せず)を直接的に回転駆動する。ただし、船舶1Aが電気推進式であり、主ガスエンジン13がスクリュープロペラを発電機およびモータを介して回転駆動してもよい。 In this embodiment, the ship 1A is a mechanical propulsion type, and the main gas engine 13 directly rotates and drives a screw propeller (not shown). However, the ship 1A may be an electric propulsion type, and the main gas engine 13 may rotationally drive the screw propeller via a generator and a motor.
 主ガスエンジン13は、燃料ガス噴射圧が例えば20~35MPa程度と高圧なディーゼルサイクル方式の2ストロークエンジンである。ただし、主ガスエンジン13は、燃料ガス噴射圧が例えば1~2MPa程度と中圧なオットーサイクル方式の2ストロークエンジンであってもよい。あるいは、電気推進の場合は、主ガスエンジン13が、燃料ガス噴射圧が例えば0.5~1MPa程度と低圧なオットーサイクル方式の4ストロークエンジンであってもよい。また、主ガスエンジン13は、燃料ガスのみを燃焼させるガス専焼エンジンであってもよいし、燃料ガスと燃料油の一方または双方を燃焼させる二元燃料エンジンであってもよい(二元燃料エンジンの場合、燃料ガスを燃焼させるときがオットーサイクル、燃料油を燃焼させるときがディーゼルサイクルであってもよい)。 The main gas engine 13 is a diesel cycle type two-stroke engine having a high fuel gas injection pressure of about 20 to 35 MPa, for example. However, the main gas engine 13 may be an Otto cycle type two-stroke engine having a medium pressure of, for example, a fuel gas injection pressure of about 1 to 2 MPa. Alternatively, in the case of electric propulsion, the main gas engine 13 may be an Otto cycle type four-stroke engine having a low fuel gas injection pressure of, for example, about 0.5 to 1 MPa. The main gas engine 13 may be a gas-only combustion engine that burns only fuel gas, or may be a dual fuel engine that burns one or both of fuel gas and fuel oil (binary fuel engine). In this case, the fuel gas may be burned by the Otto cycle, and the fuel oil may be burned by the diesel cycle).
 副ガスエンジン16は、燃料ガス噴射圧が例えば0.5~1MPa程度と低圧なオットーサイクル方式の4ストロークエンジンであり、発電機(図示せず)と連結されている。副ガスエンジン16は、燃料ガスのみを燃焼させるガス専焼エンジンであってもよいし、燃料ガスと燃料油の一方または双方を燃焼させる二元燃料エンジンであってもよい。 The auxiliary gas engine 16 is an Otto cycle type four-stroke engine having a low fuel gas injection pressure of about 0.5 to 1 MPa, for example, and is connected to a generator (not shown). The auxiliary gas engine 16 may be a gas combustion engine that burns only fuel gas, or may be a dual fuel engine that burns one or both of fuel gas and fuel oil.
 主ガスエンジン13の燃料ガスは、主に、自然入熱によりタンク11内で発生するボイルオフガス(以下、BOGという)であり、副ガスエンジン16の燃料ガスは、主に、LNGが強制的に気化された気化ガス(以下、VGという)である。 The fuel gas of the main gas engine 13 is mainly boil-off gas (hereinafter referred to as BOG) generated in the tank 11 by natural heat input, and the fuel gas of the auxiliary gas engine 16 is mainly forced by LNG. The vaporized gas (hereinafter referred to as VG).
 具体的に、タンク11は、送気ライン21により圧縮機12と接続されており、圧縮機12は、第1供給ライン22により主ガスエンジン13と接続されている。また、タンク11内には、ポンプ14が配置されており、ポンプ14は、送液ライン31により強制気化器15と接続されている。強制気化器15は、第2供給ライン32により副ガスエンジン16と接続されている。 Specifically, the tank 11 is connected to the compressor 12 by an air supply line 21, and the compressor 12 is connected to the main gas engine 13 by a first supply line 22. Further, a pump 14 is disposed in the tank 11, and the pump 14 is connected to the forced vaporizer 15 by a liquid feed line 31. The forced vaporizer 15 is connected to the auxiliary gas engine 16 by the second supply line 32.
 送気ライン21は、タンク11内で発生するBOGを圧縮機12へ導く。圧縮機12は、BOGを高圧に圧縮する。第1供給ライン22は、圧縮機12から吐出される高圧のBOGを主ガスエンジン13へ導く。 The air supply line 21 guides BOG generated in the tank 11 to the compressor 12. The compressor 12 compresses the BOG to a high pressure. The first supply line 22 guides high-pressure BOG discharged from the compressor 12 to the main gas engine 13.
 圧縮機12は、本実施形態では、5段式の高圧圧縮機である。圧縮機12の入口と1段目の圧縮部12aとの間、各段の圧縮部12aの間、および圧縮機12の出口と5段目の圧縮部12aとの間は互いに接続ライン12bにより接続されている。接続ライン12bには、各圧縮部12aをバイパスするバイパスライン12cが接続されており、バイパスライン12cにはバイパス弁12dが設けられている。バイパス弁12dは、開度変更が可能な調整弁であって、開度は制御装置6により制御される。なお、圧縮機12は、例えば主ガスエンジン13の燃料ガス噴射圧が低圧の場合は、低圧圧縮機であってもよい。 In this embodiment, the compressor 12 is a five-stage high-pressure compressor. A connection line 12b connects between the inlet of the compressor 12 and the first stage compression unit 12a, between each stage compression unit 12a, and between the outlet of the compressor 12 and the fifth stage compression unit 12a. Has been. A bypass line 12c that bypasses each compressor 12a is connected to the connection line 12b, and a bypass valve 12d is provided in the bypass line 12c. The bypass valve 12 d is an adjustment valve whose opening degree can be changed, and the opening degree is controlled by the control device 6. The compressor 12 may be a low-pressure compressor, for example, when the fuel gas injection pressure of the main gas engine 13 is low.
 ブリッジライン51は、圧縮機12から第2供給ライン32につながっている。圧縮機12において、ブリッジライン51におけるBOGの圧力が副ガスエンジン16の燃料ガス要求圧より高くなるステージに、ブリッジライン51が接続されている。ただし、これらの圧力差が大きいほど、副ガスエンジン16に供給されるBOGの圧力を副ガスエンジン16の燃料ガス要求圧に調整するための減圧弁などの圧力調整機器が高価になる。このため、圧力およびコストを考慮し、この実施形態では、ブリッジライン51は2段目の圧縮部12aと3段目の圧縮部12aとの間で圧縮機12と接続している。ブリッジライン51は、BOGが主ガスエンジン13の燃料ガス消費量に対して余るときに、この余剰のBOGを圧縮機12から第2供給ライン32へ導く。その場合、副ガスエンジン16へは、燃料ガスとしてVGおよびBOG(場合によっては、BOGのみ)が供給される。 The bridge line 51 is connected from the compressor 12 to the second supply line 32. In the compressor 12, the bridge line 51 is connected to a stage where the pressure of the BOG in the bridge line 51 becomes higher than the required fuel gas pressure of the auxiliary gas engine 16. However, the larger the pressure difference, the more expensive the pressure adjusting device such as a pressure reducing valve for adjusting the pressure of the BOG supplied to the sub gas engine 16 to the required fuel gas pressure of the sub gas engine 16. For this reason, in consideration of pressure and cost, in this embodiment, the bridge line 51 is connected to the compressor 12 between the second-stage compression unit 12a and the third-stage compression unit 12a. The bridge line 51 guides this surplus BOG from the compressor 12 to the second supply line 32 when the BOG is surplus with respect to the fuel gas consumption of the main gas engine 13. In that case, the auxiliary gas engine 16 is supplied with VG and BOG (in some cases, only BOG) as fuel gas.
 送液ライン31は、ポンプ14から吐出されるLNGを強制気化器15へ導く。強制気化器15から副ガスエンジン16へ導かれるVGの圧力が副ガスエンジン16の燃料ガス要求圧以上になるように、ポンプ14はLNGを吐出する。強制気化器15は、例えばボイラにて生成される蒸気を熱源としてLNGを強制的に気化し、VGを生成する。第2供給ライン32は、強制気化器15にて生成するVGを副ガスエンジン16へ導く。なお、第2供給ライン32には、例えば、メタンより質量が大きいエタンなどの重質分をVGから除去するための機器(例えば、冷却器および気液分離器)が設けられていることが望ましい。これにより、メタン価が高いVGを副ガスエンジン16へ供給することができる。 The liquid feed line 31 guides LNG discharged from the pump 14 to the forced vaporizer 15. The pump 14 discharges LNG so that the pressure of VG guided from the forced vaporizer 15 to the auxiliary gas engine 16 becomes equal to or higher than the required fuel gas pressure of the auxiliary gas engine 16. The forced vaporizer 15 forcibly vaporizes LNG using, for example, steam generated in a boiler as a heat source, and generates VG. The second supply line 32 guides VG generated by the forced vaporizer 15 to the auxiliary gas engine 16. The second supply line 32 is preferably provided with equipment (for example, a cooler and a gas-liquid separator) for removing heavy components such as ethane having a mass larger than that of methane from the VG. . As a result, VG having a high methane number can be supplied to the auxiliary gas engine 16.
 また、第2供給ライン32には、ブリッジライン51の接続点よりも上流側に逆止弁33が設けられている。これにより、強制気化器15から第2供給ライン32に流入するVGの圧力がブリッジライン51から第2供給ライン32に流入するBOGの圧力より低い場合、ブリッジライン51から流れるBOGが強制気化器15へ逆流することが防止される。なお、逆止弁33が第2供給ライン32に設けられてなくてもよい。また、圧縮機12へBOGまたはVGが逆流することを防ぐ逆止弁がブリッジライン51に設けられていてもよい。 Further, a check valve 33 is provided on the second supply line 32 upstream of the connection point of the bridge line 51. Thereby, when the pressure of VG flowing into the second supply line 32 from the forced vaporizer 15 is lower than the pressure of BOG flowing into the second supply line 32 from the bridge line 51, the BOG flowing from the bridge line 51 is forced to the forced vaporizer 15. Backflow is prevented. Note that the check valve 33 may not be provided in the second supply line 32. In addition, a check valve that prevents BOG or VG from flowing back to the compressor 12 may be provided in the bridge line 51.
 送液ライン31に第1調整弁31aが設けられ、ブリッジライン51に第2調整弁51aが設けられている。これらの調整弁31a、51aは、開度変更が可能であって、この開度は制御装置6により制御される。なお、図1では、図面の簡略化のために一部の信号線のみを描いている。 The liquid supply line 31 is provided with a first adjustment valve 31a, and the bridge line 51 is provided with a second adjustment valve 51a. The opening degree of these regulating valves 31 a and 51 a can be changed, and the opening degree is controlled by the control device 6. In FIG. 1, only some signal lines are drawn for the sake of simplicity.
 本実施形態では、第1調整弁31aが送液ライン31を開放したり遮断したりする役割を果たし、第2調整弁51aがブリッジライン51を開放したり遮断したりする役割を果たす。ただし、第1調整弁31aとは別に送液ライン31に開閉弁が設けられていてもよいし、第2調整弁51aとは別にブリッジライン51に開閉弁が設けられていてもよい。 In the present embodiment, the first adjustment valve 31a plays a role of opening and closing the liquid supply line 31, and the second adjustment valve 51a plays a role of opening and closing the bridge line 51. However, an opening / closing valve may be provided in the liquid feeding line 31 separately from the first adjustment valve 31a, or an opening / closing valve may be provided in the bridge line 51 separately from the second adjustment valve 51a.
 さらに、送気ライン21に、当該送気ライン21に流れるBOGの圧力Pb1を検出する第1圧力計61が設けられている。ただし、第1圧力計61は、タンク11に設けられ、タンク11内のBOGの圧力を検出してもよい。また、第1供給ライン22に、当該第1供給ライン22に流れるBOGの圧力Pb2を検出する第2圧力計62が設けられている。送液ライン31に、当該送液ライン31に流れるLNGの流量Flを検出する流量計63が設けられている。流量計63は、図1では、第1調整弁31aよりも上流側で送液ライン31に設けられているが、第1調整弁31aよりも下流側で送液ライン31に設けられていてもよい。また、流量計63は、第2供給ライン32における強制気化器15よりも下流側でブリッジライン51の接続点よりも上流側に設けられていてもよい。この場合、流量計63は、強制気化器15から第2供給ライン32に流れるVGの流量を検出する。また、第2供給ライン32に、当該第2供給ライン32に流れるVGおよび/またはBOGの圧力Pvを検出する第3圧力計64が設けられている。この第3圧力計64は、第2供給ライン32におけるブリッジライン51の接続点よりも下流側に位置している。 Furthermore, a first pressure gauge 61 for detecting the pressure Pb1 of the BOG flowing through the air supply line 21 is provided in the air supply line 21. However, the first pressure gauge 61 may be provided in the tank 11 and detect the pressure of the BOG in the tank 11. Further, the first supply line 22 is provided with a second pressure gauge 62 that detects the pressure Pb2 of the BOG flowing through the first supply line 22. A flow meter 63 that detects the flow rate Fl of LNG flowing through the liquid supply line 31 is provided in the liquid supply line 31. In FIG. 1, the flow meter 63 is provided in the liquid supply line 31 on the upstream side of the first adjustment valve 31a, but may be provided in the liquid supply line 31 on the downstream side of the first adjustment valve 31a. Good. Further, the flow meter 63 may be provided downstream of the forced vaporizer 15 in the second supply line 32 and upstream of the connection point of the bridge line 51. In this case, the flow meter 63 detects the flow rate of VG flowing from the forced vaporizer 15 to the second supply line 32. Further, the second supply line 32 is provided with a third pressure gauge 64 for detecting the pressure Pv of VG and / or BOG flowing through the second supply line 32. The third pressure gauge 64 is located downstream of the connection point of the bridge line 51 in the second supply line 32.
 制御装置6は、各ガスエンジン13、16の燃料ガス要求圧で各ガスエンジン13、16に燃料ガス(BOGおよび/またはVG)を供給すると共に、タンク11内の圧力を要求範囲内に保つため、流量計63および各圧力計61、62、64の検出値に基づき各調整弁31a、51aを制御する。なお、各ガスエンジン13、16の燃料ガス要求圧は、各ガスエンジン13、16の要求に応じて予めまたは任意に定められた圧力である。また、タンク11内圧力の要求範囲は、タンク11の性能などに応じて予めまたは任意に定められた圧力である。 The control device 6 supplies the fuel gas (BOG and / or VG) to each gas engine 13 and 16 at the required fuel gas pressure of each gas engine 13 and 16 and keeps the pressure in the tank 11 within the required range. The control valves 31a and 51a are controlled based on the detected values of the flow meter 63 and the pressure gauges 61, 62 and 64. The required fuel gas pressure of each gas engine 13, 16 is a pressure determined in advance or arbitrarily according to the request of each gas engine 13, 16. Further, the required range of the internal pressure of the tank 11 is a pressure determined in advance or arbitrarily according to the performance of the tank 11 or the like.
 具体的には、制御装置6は、第2圧力計62の検出値に基づき主ガスエンジン13に供給されるBOGの圧力を制御する。つまり、制御装置6へは、第2圧力計62から検出値の信号が送信される。制御装置6は、この検出値に基づき、圧縮機12から圧送されて第1供給ライン22を介して主ガスエンジン13に供給されるBOGの圧力Pb2を取得する。そして、制御装置6は、BOGの圧力Pb2が主ガスエンジン13の燃料ガス要求圧になるように、圧縮機12のバイパス弁12dを制御する。これにより、主ガスエンジン13の燃料ガス要求圧でBOGが主ガスエンジン13に供給される。 Specifically, the control device 6 controls the pressure of the BOG supplied to the main gas engine 13 based on the detection value of the second pressure gauge 62. In other words, the detection value signal is transmitted from the second pressure gauge 62 to the control device 6. Based on this detected value, the control device 6 acquires the pressure Pb2 of BOG that is pumped from the compressor 12 and supplied to the main gas engine 13 via the first supply line 22. The control device 6 controls the bypass valve 12d of the compressor 12 so that the BOG pressure Pb2 becomes the required fuel gas pressure of the main gas engine 13. As a result, BOG is supplied to the main gas engine 13 at the required fuel gas pressure of the main gas engine 13.
 また、制御装置6は、第1圧力計61、第3圧力計64および流量計63の各検出値に基づき副ガスエンジン16に供給されるVGおよびBOGの圧力を制御する。このため、まず、制御装置6は、主ガスエンジン13の燃料ガス消費量Q1および副ガスエンジン16の燃料ガス消費量Q2を算出する。 Further, the control device 6 controls the pressures of VG and BOG supplied to the auxiliary gas engine 16 based on the detected values of the first pressure gauge 61, the third pressure gauge 64, and the flow meter 63. Therefore, first, the control device 6 calculates the fuel gas consumption amount Q1 of the main gas engine 13 and the fuel gas consumption amount Q2 of the auxiliary gas engine 16.
 つまり、制御装置6へは、主ガスエンジン13の燃料ガス噴射タイミングなどを制御する第1ガスエンジン制御器(図示せず)および副ガスエンジン16の燃料ガス噴射タイミングなどを制御する第2ガスエンジン制御器(図示せず)から各種の信号が送信される。そして、制御装置6は、第1ガスエンジン制御器から送信される信号から主ガスエンジン13の燃料ガス消費量Q1を算出すると共に、第2ガスエンジン制御器から送信される信号から副ガスエンジン16の燃料ガス消費量Q2を算出する。ただし、制御装置6は、第1ガスエンジン制御器から燃料ガス消費量Q1を直接的に取得してもよい。また、制御装置6は、第2ガスエンジン制御器から燃料ガス消費量Q2を直接的に取得してもよい。 That is, the control device 6 includes a first gas engine controller (not shown) for controlling the fuel gas injection timing of the main gas engine 13 and the second gas engine for controlling the fuel gas injection timing of the auxiliary gas engine 16. Various signals are transmitted from a controller (not shown). Then, the control device 6 calculates the fuel gas consumption Q1 of the main gas engine 13 from the signal transmitted from the first gas engine controller, and the auxiliary gas engine 16 from the signal transmitted from the second gas engine controller. The fuel gas consumption Q2 is calculated. However, the control device 6 may acquire the fuel gas consumption Q1 directly from the first gas engine controller. Further, the control device 6 may acquire the fuel gas consumption Q2 directly from the second gas engine controller.
 次に、制御装置6は、タンク11内のLNGの量および第1圧力計61で検出されるBOGの圧力Pb1からBOGの利用可能量Qaを算出する。つまり、制御装置6へは、第1圧力計61から検出値の信号が送信される。そして、制御装置6は、この検出値に基づいたBOGの圧力Pb1に、送気ライン21の上流端から第1圧力計61の位置までの圧力損失を加算して、タンク11内のBOGの圧力Ptを算出する。このタンク11内のBOGの圧力Ptと設定圧力Psとの偏差ΔP(=Pt-Ps)が大きくなるにつれて、図2に示すように、BOGの利用可能量Qaは多くなる。ここで、設定圧力Psとは、BOGの利用可能量QaがBOGの発生量Qnと等しくなるときの圧力である。BOGの発生量Qnは、タンク11内のBOGの圧力により変化するものの、タンク11内のLNGの量にほぼ依存する。 Next, the control device 6 calculates the available amount Qa of BOG from the amount of LNG in the tank 11 and the BOG pressure Pb 1 detected by the first pressure gauge 61. That is, a detection value signal is transmitted from the first pressure gauge 61 to the control device 6. Then, the control device 6 adds the pressure loss from the upstream end of the air supply line 21 to the position of the first pressure gauge 61 to the pressure Pb1 of the BOG based on the detected value, and the pressure of the BOG in the tank 11 Pt is calculated. As the deviation ΔP (= Pt−Ps) between the BOG pressure Pt in the tank 11 and the set pressure Ps increases, the BOG usable amount Qa increases as shown in FIG. Here, the set pressure Ps is a pressure at which the BOG usable amount Qa becomes equal to the BOG generation amount Qn. The BOG generation amount Qn varies depending on the pressure of the BOG in the tank 11, but substantially depends on the amount of LNG in the tank 11.
 カーゴタンクのようにタンク11の容量が非常に大きい場合、BOGおよび/またはLNGが燃料ガスとして使用されても、タンク11内のLNGの液面の高さはそれほど変化しない。このため、本実施形態では、タンク11内のLNGの量を変数ではなく一定値として扱う。ただし、タンク11の容量が小さい場合には、タンク11にタンク11内のLNGの量を検出するレベル計が設けられ、タンク11内のLNGの量が変数として扱われてもよい。そして、制御装置6は、タンク11内のLNGの量および圧力の偏差ΔPから、BOGの利用可能量Qaを算出する。 When the capacity of the tank 11 is very large like a cargo tank, even if BOG and / or LNG is used as the fuel gas, the height of the liquid level of the LNG in the tank 11 does not change so much. For this reason, in this embodiment, the amount of LNG in the tank 11 is treated as a constant value, not as a variable. However, when the capacity of the tank 11 is small, a level meter that detects the amount of LNG in the tank 11 may be provided in the tank 11 and the amount of LNG in the tank 11 may be treated as a variable. Then, the control device 6 calculates the available amount Qa of BOG from the amount of LNG in the tank 11 and the pressure deviation ΔP.
 次に、制御装置6は、BOGの利用可能量Qaを各ガスエンジン13、16の燃料ガス消費量Q1、Q2と比較する。BOGの利用可能量Qaが主ガスエンジン13の燃料ガス消費量Q1よりも多い場合(BOGが主ガスエンジン13の燃料ガス消費量Q1に対して余る場合)、制御装置6は、利用可能量Qaと燃料ガス消費量Q1との差ΔQ1(=Qa-Q1)を算出し、余剰のBOGの量を求める。さらに、この差ΔQ1が副ガスエンジン16の燃料ガス消費量Q2以下である場合(ΔQ1≦Q2)、制御装置6は、副ガスエンジン16の燃料ガス消費量Q2と差ΔQ1との差ΔQ2(=Q2-ΔQ1)を算出する。そして、制御装置6は、流量計63により検出された流量Flから、強制気化器15から第2供給ライン32に流れるVGの流量を求め、このVGの流量が差ΔQ2になるように、第1調整弁31aの開度を制御する。これにより、ΔQ2のVGが強制気化器15から第2供給ライン32に流れると共に、ΔQ1の余剰のBOGがブリッジライン51から第2供給ライン32へ流れる。 Next, the control device 6 compares the available amount Qa of the BOG with the fuel gas consumption amounts Q1 and Q2 of the gas engines 13 and 16, respectively. When the available amount Qa of BOG is larger than the fuel gas consumption amount Q1 of the main gas engine 13 (when BOG is more than the fuel gas consumption amount Q1 of the main gas engine 13), the control device 6 uses the available amount Qa. The difference ΔQ1 (= Qa−Q1) between the fuel gas consumption amount Q1 and the surplus BOG amount is obtained. Further, when the difference ΔQ1 is equal to or smaller than the fuel gas consumption Q2 of the auxiliary gas engine 16 (ΔQ1 ≦ Q2), the control device 6 determines the difference ΔQ2 (= between the fuel gas consumption Q2 of the auxiliary gas engine 16 and the difference ΔQ1). Q2-ΔQ1) is calculated. And the control apparatus 6 calculates | requires the flow volume of VG which flows into the 2nd supply line 32 from the forced vaporizer 15 from the flow volume Fl detected by the flowmeter 63, and is 1st so that this VG flow volume may become difference (DELTA) Q2. The opening degree of the regulating valve 31a is controlled. Thereby, VG of ΔQ2 flows from the forced vaporizer 15 to the second supply line 32, and surplus BOG of ΔQ1 flows from the bridge line 51 to the second supply line 32.
 また、制御装置6は、第3圧力計64により検出された圧力Pvが副ガスエンジン16の燃料ガス要求圧になるように、第2調整弁51aの開度を制御する。これにより、副ガスエンジン16の燃料ガス要求圧でVGおよびBOGが副ガスエンジン16に供給される。 Further, the control device 6 controls the opening degree of the second adjustment valve 51 a so that the pressure Pv detected by the third pressure gauge 64 becomes the required fuel gas pressure of the auxiliary gas engine 16. As a result, VG and BOG are supplied to the auxiliary gas engine 16 at the required fuel gas pressure of the auxiliary gas engine 16.
 以上説明したように、本実施形態の船舶1Aでは、LNGが強制気化器15で強制的に気化され、そのVGが副ガスエンジン16へ供給されるので、高圧ポンプを用いることなく、副ガスエンジン16に十分な量の燃料ガスを供給することができる。 As described above, in the marine vessel 1A of the present embodiment, LNG is forcibly vaporized by the forced vaporizer 15 and the VG is supplied to the secondary gas engine 16, so that the secondary gas engine is not used without using a high-pressure pump. 16 can be supplied with a sufficient amount of fuel gas.
 BOGが主ガスエンジン13の燃料ガス消費量Q1に対して余る場合には、余剰のBOGを、圧縮機12からブリッジライン51および第2供給ライン32を通じて副ガスエンジン16に供給することができる。これに伴い、強制気化器15で気化するVGの量を減らし、強制気化器15での強制気化に使用する熱量を抑制できる。 When the BOG is surplus with respect to the fuel gas consumption Q 1 of the main gas engine 13, the surplus BOG can be supplied from the compressor 12 to the sub gas engine 16 through the bridge line 51 and the second supply line 32. Accordingly, the amount of VG vaporized by the forced vaporizer 15 can be reduced, and the amount of heat used for forced vaporization by the forced vaporizer 15 can be suppressed.
 また、上述したように、BOGの発生量Qnは、タンク11内のBOGの圧力により変化するものの、タンク11内のLNGの量にほぼ依存する。このため、主ガスエンジン13の燃料ガス消費量Q1をBOGの発生量Qnと比較して第1調整弁31aを制御した場合には、タンク11内のBOGの圧力を任意の要求範囲内に調整することが困難である。これに対し、本実施形態では、タンク11内のLNGの量および圧力計61で検出されるBOGの圧力Pb1からBOGの利用可能量Qaを算出する。そして、BOGの利用可能量Qaと、主ガスエンジン13の燃料ガス消費量Q1および副ガスエンジン16の燃料ガス消費量Q2の和との差ΔQ2に応じて第1調整弁31aを制御している。これにより、タンク11から送気ライン21および圧縮機12を介してブリッジライン51へ流れるBOGの流量が制御されるため、タンク11内のBOGの圧力を要求範囲内に間接的に調整することができる。 As described above, the BOG generation amount Qn varies depending on the pressure of the BOG in the tank 11, but substantially depends on the amount of LNG in the tank 11. Therefore, when the first adjustment valve 31a is controlled by comparing the fuel gas consumption amount Q1 of the main gas engine 13 with the BOG generation amount Qn, the pressure of the BOG in the tank 11 is adjusted within an arbitrary required range. Difficult to do. In contrast, in the present embodiment, the available amount Qa of BOG is calculated from the amount of LNG in the tank 11 and the BOG pressure Pb 1 detected by the pressure gauge 61. Then, the first regulating valve 31a is controlled in accordance with the difference ΔQ2 between the available amount Qa of BOG and the sum of the fuel gas consumption Q1 of the main gas engine 13 and the fuel gas consumption Q2 of the auxiliary gas engine 16. . Thereby, since the flow rate of BOG flowing from the tank 11 to the bridge line 51 via the air supply line 21 and the compressor 12 is controlled, the pressure of the BOG in the tank 11 can be indirectly adjusted within the required range. it can.
 さらに、差ΔQ2に応じて第1調整弁31aが制御され、副ガスエンジン16の燃料ガス要求圧に応じて第2調整弁51aが制御される。これにより、副ガスエンジン16の燃料ガス要求圧でVGおよびBOGが副ガスエンジン16に供給される。また、主ガスエンジン13の燃料ガス要求圧に応じて圧縮機12のバイパス弁12dが制御される。これにより、主ガスエンジン13の燃料ガス要求圧でBOGが主ガスエンジン13に供給される。 Further, the first adjustment valve 31a is controlled according to the difference ΔQ2, and the second adjustment valve 51a is controlled according to the fuel gas required pressure of the auxiliary gas engine 16. As a result, VG and BOG are supplied to the auxiliary gas engine 16 at the required fuel gas pressure of the auxiliary gas engine 16. Further, the bypass valve 12 d of the compressor 12 is controlled according to the fuel gas required pressure of the main gas engine 13. As a result, BOG is supplied to the main gas engine 13 at the required fuel gas pressure of the main gas engine 13.
 (第2実施形態)
 次に、図3を参照して、本発明の第2実施形態に係る船舶1Bを説明する。なお、本実施形態ならびに後述する各実施形態において、第1実施形態と同一構成要素には同一符号を付し、重複した説明は省略する。
(Second Embodiment)
Next, with reference to FIG. 3, the ship 1B which concerns on 2nd Embodiment of this invention is demonstrated. In addition, in this embodiment and each embodiment mentioned later, the same code | symbol is attached | subjected to the same component as 1st Embodiment, and the overlapping description is abbreviate | omitted.
 第1実施形態では、流量計63が送液ライン31に設けられていた。これに対し、第2実施形態では、流量計65がブリッジライン51に設けられる。また、第1実施形態では、制御装置6は、差ΔQ2に応じて第1調整弁31aを制御し、副ガスエンジン16の燃料ガス要求圧に応じて第2調整弁51aを制御した。これに対し、第2実施形態では、制御装置6は、差ΔQ1に応じて第2調整弁51aを制御し、副ガスエンジン16の燃料ガス要求圧に応じて第1調整弁31aを制御する。 In the first embodiment, the flow meter 63 is provided in the liquid feeding line 31. On the other hand, in the second embodiment, the flow meter 65 is provided on the bridge line 51. In the first embodiment, the control device 6 controls the first adjustment valve 31a according to the difference ΔQ2, and controls the second adjustment valve 51a according to the fuel gas required pressure of the auxiliary gas engine 16. On the other hand, in 2nd Embodiment, the control apparatus 6 controls the 2nd adjustment valve 51a according to difference (DELTA) Q1, and controls the 1st adjustment valve 31a according to the fuel gas request | requirement pressure of the subgas engine 16. FIG.
 具体的には、流量計65は、圧縮機12からブリッジライン51に流れるBOGの流量Fb1を検出する。この検出値は、制御装置6に送信される。 Specifically, the flow meter 65 detects the BOG flow rate Fb 1 flowing from the compressor 12 to the bridge line 51. This detected value is transmitted to the control device 6.
 制御装置6は、主ガスエンジン13の燃料ガス消費量Q1および第2圧力計62の検出値に基づき主ガスエンジン13に供給されるBOGの圧力を制御する。また、制御装置6は、副ガスエンジン16の燃料ガス消費量Q2、第1圧力計61、第3圧力計64および流量計65の各検出値に基づき副ガスエンジン16に供給されるVGおよびBOGの圧力を制御する。 The control device 6 controls the pressure of the BOG supplied to the main gas engine 13 based on the fuel gas consumption Q1 of the main gas engine 13 and the detected value of the second pressure gauge 62. The control device 6 also supplies VG and BOG supplied to the auxiliary gas engine 16 based on the detected values of the fuel gas consumption Q2 of the auxiliary gas engine 16, the first pressure gauge 61, the third pressure gauge 64, and the flow meter 65. To control the pressure.
 このVGおよびBOGの圧力制御において、BOGの利用可能量Qaが、主ガスエンジン13の燃料ガス消費量Q1よりも多く、各ガスエンジン13、16の燃料ガス消費量Q1、Q2の和以下である場合(Q1<Qa≦Q1+Q2)、BOGの利用可能量Qaと主ガスエンジン13の燃料ガス消費量Q1との差ΔQ1(=Qa-Q1)を算出する。そして、制御装置6は、流量計65により検出された流量Fb1が差ΔQ1になるように、第2調整弁51aの開度を制御する。これにより、流量Fb1の余剰のBOGが圧縮機12からブリッジライン51に流れる。また、制御装置6は、第3圧力計64により検出された圧力Pvが副ガスエンジン16の燃料ガス要求圧になるように、第1調整弁31aの開度を制御する。これにより、副ガスエンジン16にその燃料ガス要求圧でVGおよびBOGが供給される。 In this pressure control of VG and BOG, the available amount Qa of BOG is larger than the fuel gas consumption amount Q1 of the main gas engine 13 and is equal to or less than the sum of the fuel gas consumption amounts Q1 and Q2 of the gas engines 13 and 16. In the case (Q1 <Qa ≦ Q1 + Q2), the difference ΔQ1 (= Qa−Q1) between the BOG usable amount Qa and the fuel gas consumption Q1 of the main gas engine 13 is calculated. And the control apparatus 6 controls the opening degree of the 2nd adjustment valve 51a so that the flow volume Fb1 detected by the flowmeter 65 may become difference (DELTA) Q1. Thereby, surplus BOG of the flow rate Fb1 flows from the compressor 12 to the bridge line 51. Further, the control device 6 controls the opening degree of the first adjustment valve 31 a so that the pressure Pv detected by the third pressure gauge 64 becomes the required fuel gas pressure of the auxiliary gas engine 16. As a result, VG and BOG are supplied to the auxiliary gas engine 16 at the required fuel gas pressure.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。 Also in this embodiment, the same effect as in the first embodiment can be obtained.
 なお、第2実施形態では、制御装置6は、第3圧力計64により検出された圧力Pvが副ガスエンジン16の燃料ガス要求圧になるように、第1調整弁31aの開度を制御した。これに代えて、制御装置6は、主ガスエンジン13の燃料ガス消費量Q1および副ガスエンジン16の燃料ガス消費量Q2の和と、BOGの利用可能量Qaとの差(Q1+Q2-Qa)をLNGの設定流量として第1調整弁31aを制御する。そして、制御装置6は、第3圧力計64により検出された圧力Pvに基づきLNGの設定流量を補正し、この補正された設定流量に応じて第1調整弁31aの開度を制御してもよい。 In the second embodiment, the control device 6 controls the opening degree of the first adjustment valve 31a so that the pressure Pv detected by the third pressure gauge 64 becomes the required fuel gas pressure of the auxiliary gas engine 16. . Instead, the control device 6 calculates the difference (Q1 + Q2-Qa) between the sum of the fuel gas consumption amount Q1 of the main gas engine 13 and the fuel gas consumption amount Q2 of the auxiliary gas engine 16 and the available amount Qa of BOG. The first adjustment valve 31a is controlled as the set flow rate of LNG. And the control apparatus 6 correct | amends the setting flow volume of LNG based on the pressure Pv detected by the 3rd pressure gauge 64, and controls the opening degree of the 1st adjustment valve 31a according to this corrected setting flow volume. Good.
 (第3実施形態)
 次に、図4を参照して、本発明の第3実施形態に係る船舶1Cを説明する。第3実施形態に係る船舶1Cは、第1実施形態に係る船舶1Aの構成に加えて、返送ライン23をさらに備える。このとき、第1実施形態では、流量計63が送液ライン31に設けられていたのに対し、第3実施形態では、流量計66が返送ライン23に設けられる。流量計66は、返送ライン23に流れるBOGの流量Fb2を検出する。この検出値は、制御装置6に送信される。
(Third embodiment)
Next, a ship 1C according to a third embodiment of the present invention will be described with reference to FIG. A ship 1C according to the third embodiment further includes a return line 23 in addition to the configuration of the ship 1A according to the first embodiment. At this time, in the first embodiment, the flow meter 63 is provided in the liquid supply line 31, whereas in the third embodiment, the flow meter 66 is provided in the return line 23. The flow meter 66 detects the flow rate Fb2 of the BOG flowing through the return line 23. This detected value is transmitted to the control device 6.
 返送ライン23は、第1供給ライン22から分岐し、タンク11につながっている。返送ライン23の先端は、タンク11内のLNGの液面よりも上方に位置していてもよいし、液面よりも下方に位置していてもよい。また、返送ライン23には、膨張弁などの膨張装置72が設けられる。返送ライン23には、開度変更が可能な第3調整弁23a、ならびに返送ライン23を開放および遮断する開閉弁23bが設けられている。この第3調整弁23aおよび開閉弁23bは、制御装置6により制御される。なお、返送ライン23に開閉弁23bが設けられていなくてもよい。 The return line 23 branches from the first supply line 22 and is connected to the tank 11. The tip of the return line 23 may be located above the liquid level of LNG in the tank 11 or may be located below the liquid level. The return line 23 is provided with an expansion device 72 such as an expansion valve. The return line 23 is provided with a third adjustment valve 23a whose opening degree can be changed, and an opening / closing valve 23b for opening and closing the return line 23. The third adjusting valve 23 a and the on-off valve 23 b are controlled by the control device 6. The return line 23 may not be provided with the opening / closing valve 23b.
 また、第1実施形態では、BOGの利用可能量Qaが、主ガスエンジン13の燃料ガス消費量Q1よりも多く、各ガスエンジン13、16の燃料ガス消費量Q1、Q2の和以下である場合(Q1<Qa≦Q1+Q2)における、副ガスエンジン16に対するVGおよびBOGの圧力制御について説明した。これに対し、第3実施形態では、BOGの利用可能量Qaが、各ガスエンジン13、16の燃料ガス消費量Q1、Q2の和より多い場合(Qa>Q1+Q2)における、副ガスエンジン16に対するBOGの圧力制御について説明する。 In the first embodiment, the available amount Qa of BOG is larger than the fuel gas consumption Q1 of the main gas engine 13 and is equal to or less than the sum of the fuel gas consumptions Q1 and Q2 of the gas engines 13 and 16. The VG and BOG pressure control for the auxiliary gas engine 16 in (Q1 <Qa ≦ Q1 + Q2) has been described. On the other hand, in the third embodiment, when the usable amount Qa of BOG is larger than the sum of the fuel gas consumptions Q1 and Q2 of the gas engines 13 and 16 (Qa> Q1 + Q2), The pressure control will be described.
 具体的には、Qa>Q1+Q2である場合、利用可能量QaのBOGで各ガスエンジン13、16の燃料ガス消費量Q1、Q2を賄うことができる。このため、LNGを強制気化器15で気化したVGを副ガスエンジン16に供給する必要がないので、制御装置6は、強制気化器15の運転を停止し、第1調整弁31aを全閉する。ただし、第1調整弁31aを全閉する代わりに、強制気化器15の運転を停止せずに、第1調整弁31aの開度を強制気化器15の運転が継続可能な最低開度にしてもよい。 Specifically, when Qa> Q1 + Q2, the fuel gas consumptions Q1 and Q2 of the gas engines 13 and 16 can be covered by the available amount Qa of BOG. For this reason, since it is not necessary to supply the VG which vaporized LNG with the forced vaporizer 15 to the subgas engine 16, the control apparatus 6 stops the operation of the forced vaporizer 15, and fully closes the 1st regulating valve 31a. . However, instead of fully closing the first adjustment valve 31a, the opening of the first adjustment valve 31a is set to the minimum opening at which the operation of the forced vaporizer 15 can be continued without stopping the operation of the forced vaporizer 15. Also good.
 そして、制御装置6は、BOGの利用可能量Qaと、主ガスエンジン13の燃料ガス消費量Q1および副ガスエンジン16の燃料ガス消費量Q2の和との差ΔQ3(=Qa-(Q1+Q2))を算出する。制御装置6は、流量計66により検出された流量Fb2が差ΔQ3になるように、第3調整弁23aの開度を制御する。また、制御装置6は、第3圧力計64により検出された圧力Pvが副ガスエンジン16の燃料ガス要求圧になるように、第2調整弁51aの開度を制御する。これにより、各ガスエンジン13、16の燃料ガス消費量Q1、Q2の和に対して余ったΔQ3のBOGが返送ライン23に流れる。これと共に、副ガスエンジン16の燃料ガス消費量Q2のBOGがブリッジライン51に流れ、副ガスエンジン16にその燃料ガス要求圧でBOGが供給される。 Then, the control device 6 determines the difference ΔQ3 (= Qa− (Q1 + Q2)) between the BOG usable amount Qa and the sum of the fuel gas consumption amount Q1 of the main gas engine 13 and the fuel gas consumption amount Q2 of the auxiliary gas engine 16. Is calculated. The control device 6 controls the opening degree of the third adjustment valve 23a so that the flow rate Fb2 detected by the flow meter 66 becomes the difference ΔQ3. Further, the control device 6 controls the opening degree of the second adjustment valve 51 a so that the pressure Pv detected by the third pressure gauge 64 becomes the required fuel gas pressure of the auxiliary gas engine 16. As a result, the remaining BOG of ΔQ3 with respect to the sum of the fuel gas consumptions Q1 and Q2 of the gas engines 13 and 16 flows to the return line 23. At the same time, the BOG of the fuel gas consumption Q2 of the auxiliary gas engine 16 flows to the bridge line 51, and BOG is supplied to the auxiliary gas engine 16 at the required fuel gas pressure.
 以上説明したように、本実施形態の船舶1Cでは、余剰のBOGが返送ライン23を通ってタンク11に返送される。これにより、余剰のBOGが無駄に消費されることがない。また、本実施形態でも、第1実施形態と同様の効果を得ることができる。 As described above, in the ship 1 </ b> C of the present embodiment, surplus BOG is returned to the tank 11 through the return line 23. Thereby, surplus BOG is not consumed wastefully. Also in this embodiment, the same effect as that of the first embodiment can be obtained.
 (第4実施形態)
 次に、図5を参照して、本発明の第4実施形態に係る船舶1Dを説明する。第4実施形態に係る船舶1Dは、第3実施形態に係る船舶1Cの構成に加えて、熱交換器81をさらに備える。熱交換器81は、送液ライン31、返送ライン23および送気ライン21に設けられる。熱交換器81は、膨張装置72の上流側で返送ライン23に流れるBOG(タンク11へ返送されるBOG)を、送液ライン31に流れるLNGおよび送気ライン21に流れるBOGによって冷却する。この冷却の後に膨張装置72によって膨張されることによって、タンク11へ返送されるBOGは部分的に再液化される。一方、送液ライン31に流れるLNGは、BOGから熱を奪うことによって、部分的に気化してもよい。
(Fourth embodiment)
Next, with reference to FIG. 5, the ship 1D which concerns on 4th Embodiment of this invention is demonstrated. A ship 1D according to the fourth embodiment further includes a heat exchanger 81 in addition to the configuration of the ship 1C according to the third embodiment. The heat exchanger 81 is provided in the liquid supply line 31, the return line 23, and the air supply line 21. The heat exchanger 81 cools the BOG flowing in the return line 23 upstream of the expansion device 72 (BOG returned to the tank 11) by the LNG flowing in the liquid supply line 31 and the BOG flowing in the air supply line 21. After this cooling, the BOG returned to the tank 11 is partially liquefied by being expanded by the expansion device 72. On the other hand, the LNG flowing in the liquid feeding line 31 may be partially vaporized by taking heat from the BOG.
 以上説明したように、本実施形態の船舶1Dでは、返送ライン23に流れるBOGが船舶1Dの燃料として使用されるLNGおよびBOGによって冷却されるため、この冷却のための機器や媒体などを別途用意する必要がない。また、本実施形態でも、第1実施形態と同様の効果を得ることができる。 As described above, in the ship 1D of the present embodiment, the BOG flowing in the return line 23 is cooled by LNG and BOG used as fuel for the ship 1D, and thus a device and a medium for this cooling are separately prepared. There is no need to do. Also in this embodiment, the same effect as that of the first embodiment can be obtained.
 (第5実施形態)
 次に、図6を参照して、本発明の第5実施形態に係る船舶1Eを説明する。第5実施形態に係る船舶1Eは、第3実施形態に係る返送ライン23および流量計66に代えて、返送ライン34および流量計67を備えている。
(Fifth embodiment)
Next, with reference to FIG. 6, the ship 1E which concerns on 5th Embodiment of this invention is demonstrated. A ship 1E according to the fifth embodiment includes a return line 34 and a flow meter 67 instead of the return line 23 and the flow meter 66 according to the third embodiment.
 返送ライン34は、ブリッジライン51の接続点よりも下流側で第2供給ライン32から分岐し、タンク11につながっている。ただし、返送ライン34は、ブリッジライン51の接続点よりも上流側で第2供給ライン32から分岐してもよい。また、返送ライン34の先端は、タンク11内のLNGの液面よりも上方に位置していてもよいし、液面よりも下方に位置していてもよい。返送ライン34には、開度変更が可能な第3調整弁34aが設けられている。この第3調整弁34aは、制御装置6により制御される。また、流量計67は、返送ライン34に流れるBOGの流量Fb3を検出する。この検出値は、制御装置6に送信される。 The return line 34 branches off from the second supply line 32 downstream of the connection point of the bridge line 51 and is connected to the tank 11. However, the return line 34 may branch from the second supply line 32 upstream of the connection point of the bridge line 51. Moreover, the front end of the return line 34 may be located above the liquid level of LNG in the tank 11 or may be located below the liquid level. The return line 34 is provided with a third adjustment valve 34a whose opening degree can be changed. The third adjustment valve 34 a is controlled by the control device 6. Further, the flow meter 67 detects the BOG flow rate Fb3 flowing through the return line 34. This detected value is transmitted to the control device 6.
 制御装置6は、副ガスエンジン16に対するBOGの圧力制御において、BOGの利用可能量Qaと、主ガスエンジン13の燃料ガス消費量Q1および副ガスエンジン16の燃料ガス消費量Q2の和との差ΔQ3(=Qa-(Q1+Q2))を算出する。そして、制御装置6は、流量計67により検出された流量Fb3が差ΔQ3になるように、第3調整弁34aの開度を制御する。また、制御装置6は、第3圧力計64により検出された圧力Pvが副ガスエンジン16の燃料ガス要求圧になるように、第2調整弁51aの開度を制御する。これにより、主ガスエンジン13の燃料ガス消費量Q1に対して余ったΔQ1のBOGがブリッジライン51に流れ、この内、ΔQ3のBOGが返送ライン34に流れる。このため、返送ライン34の分岐点よりも下流側の第2供給ライン32に副ガスエンジン16の燃料ガス消費量Q2のBOGが流れ、副ガスエンジン16にその燃料ガス要求圧でBOGが供給される。 In the control of the BOG pressure with respect to the auxiliary gas engine 16, the control device 6 determines the difference between the available amount Qa of BOG and the sum of the fuel gas consumption Q1 of the main gas engine 13 and the fuel gas consumption Q2 of the auxiliary gas engine 16. ΔQ3 (= Qa− (Q1 + Q2)) is calculated. And the control apparatus 6 controls the opening degree of the 3rd adjustment valve 34a so that the flow volume Fb3 detected by the flowmeter 67 may become the difference (DELTA) Q3. Further, the control device 6 controls the opening degree of the second adjustment valve 51 a so that the pressure Pv detected by the third pressure gauge 64 becomes the required fuel gas pressure of the auxiliary gas engine 16. As a result, the remaining BOG of ΔQ1 with respect to the fuel gas consumption Q1 of the main gas engine 13 flows to the bridge line 51, and among this, the BOG of ΔQ3 flows to the return line 34. Therefore, the BOG of the fuel gas consumption Q2 of the auxiliary gas engine 16 flows to the second supply line 32 downstream of the branch point of the return line 34, and the BOG is supplied to the auxiliary gas engine 16 at the required fuel gas pressure. The
 以上説明したように、本実施形態の船舶1Eでは、余剰のBOGが返送ライン34を通ってタンク11に返送されることによって、余剰のBOGが無駄に消費されることがない。また、本実施形態でも、第1実施形態と同様の効果を得ることができる。 As described above, in the ship 1E of the present embodiment, surplus BOG is returned to the tank 11 through the return line 34, so that surplus BOG is not wasted. Also in this embodiment, the same effect as that of the first embodiment can be obtained.
 なお、第5実施形態に係る船舶1Eは、返送ライン34に加えて、第3実施形態に係る返送ライン23を備えていてもよい。また、第5実施形態に係る船舶1Eは、熱交換器をさらに備えてもよい。この熱交換器は、送液ライン31および返送ライン34に設けられる。熱交換器は、返送ライン34に流れるBOG(タンク11へ返送されるBOG)を、送液ライン31に流れるLNGによって冷却する。 In addition, in addition to the return line 34, the ship 1E according to the fifth embodiment may include the return line 23 according to the third embodiment. The ship 1E according to the fifth embodiment may further include a heat exchanger. This heat exchanger is provided in the liquid feed line 31 and the return line 34. The heat exchanger cools BOG flowing through the return line 34 (BOG returned to the tank 11) with LNG flowing through the liquid supply line 31.
 (その他の実施形態)
 本発明は上述した第1~第5実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
(Other embodiments)
The present invention is not limited to the first to fifth embodiments described above, and various modifications can be made without departing from the scope of the present invention.
 例えば、ポンプ14が強制気化器15までLNGを汲み上げるだけの機能を有し、第2供給ライン32に圧縮機が設けられていてもよい。ただし、ポンプ14によって副ガスエンジン16の燃料ガス噴射圧が確保されれば、第2供給ライン32に圧縮機を設ける必要がなく、コストを低減することができる。 For example, the pump 14 may have a function of pumping up LNG up to the forced vaporizer 15, and a compressor may be provided in the second supply line 32. However, if the fuel gas injection pressure of the auxiliary gas engine 16 is secured by the pump 14, it is not necessary to provide a compressor in the second supply line 32, and the cost can be reduced.
 また、主ガスエンジン13および副ガスエンジン16の一方または双方は、必ずしもレシプロエンジンである必要はなく、ガスタービンエンジンであってもよい。 Further, one or both of the main gas engine 13 and the auxiliary gas engine 16 are not necessarily a reciprocating engine, and may be a gas turbine engine.
 また、第2供給ライン32から送気ライン21へVGを導くブリッジラインをさらに備えてもよい。このブリッジラインは、BOGが主ガスエンジン13の燃料ガス消費量Q1に対して不足するときに、第2供給ライン32から送気ライン21へVGを導く。その結果、主ガスエンジン13へは、燃料ガスとしてBOGおよびVGが供給される。 Further, a bridge line that guides VG from the second supply line 32 to the air supply line 21 may be further provided. This bridge line guides VG from the second supply line 32 to the air supply line 21 when the BOG is insufficient with respect to the fuel gas consumption Q1 of the main gas engine 13. As a result, BOG and VG are supplied to the main gas engine 13 as fuel gas.
 また、LNG、BOG、VGの流量制御に流量計63、65、66、67を用いた。これに対し、LNG、BOG、VGの流量制御に流量計を用いなくてもよい。この場合、各調整弁31a、51a、23a、34aの開度とLNG、BOG、VGの流量との関係に基づいてこの流量制御を行う。このように、流量計を用いないことにより、このコストを削減することができる。 Also, flow meters 63, 65, 66, and 67 were used for the flow control of LNG, BOG, and VG. On the other hand, it is not necessary to use a flow meter for flow control of LNG, BOG, and VG. In this case, this flow rate control is performed based on the relationship between the opening degree of each of the regulating valves 31a, 51a, 23a, and 34a and the flow rates of LNG, BOG, and VG. Thus, this cost can be reduced by not using a flow meter.
1A~1C :船舶
6     :制御装置
11    :タンク
12    :圧縮機
13    :主ガスエンジン
14    :ポンプ
15    :強制気化器
16    :副ガスエンジン
21    :送気ライン
22    :第1供給ライン
31    :送液ライン
31a   :第1調整弁
32    :第2供給ライン
23    :返送ライン
34    :返送ライン
23a   :第3調整弁
51    :ブリッジライン
51a   :第2調整弁
61    :第1圧力計(圧力計)
72    :膨張装置
34a   :第3調整弁
1A to 1C: Ship 6: Control device 11: Tank 12: Compressor 13: Main gas engine 14: Pump 15: Forced vaporizer 16: Sub gas engine 21: Air supply line 22: First supply line 31: Liquid supply line 31a: First adjustment valve 32: Second supply line 23: Return line 34: Return line 23a: Third adjustment valve 51: Bridge line 51a: Second adjustment valve 61: First pressure gauge (pressure gauge)
72: expansion device 34a: third adjusting valve

Claims (7)

  1.  推進用の主ガスエンジンと、
     液化天然ガスを貯留するタンクと、
     前記タンク内で発生するボイルオフガスを圧縮機へ導く送気ラインと、
     前記圧縮機から吐出されるボイルオフガスを前記主ガスエンジンへ導く第1供給ラインと、
     発電用の副ガスエンジンと、
     前記タンク内に配置されたポンプから吐出される液化天然ガスを強制気化器へ導く送液ラインと、
     前記強制気化器にて生成される気化ガスを前記副ガスエンジンへ導く第2供給ラインと、
     前記圧縮機から前記第2供給ラインへ前記ボイルオフガスを導くブリッジラインと、
     前記送液ラインに設けられた、開度変更が可能な第1調整弁と、
     前記ブリッジラインに設けられた、開度変更が可能な第2調整弁と、
     前記第1調整弁および前記第2調整弁を制御する制御装置と、を備える、船舶。
    A main gas engine for propulsion,
    A tank for storing liquefied natural gas;
    An air supply line for guiding boil-off gas generated in the tank to the compressor;
    A first supply line for guiding boil-off gas discharged from the compressor to the main gas engine;
    A sub-gas engine for power generation,
    A liquid feed line for guiding liquefied natural gas discharged from a pump disposed in the tank to a forced vaporizer;
    A second supply line that leads the vaporized gas generated in the forced vaporizer to the sub-gas engine;
    A bridge line leading the boil-off gas from the compressor to the second supply line;
    A first adjustment valve provided in the liquid supply line and capable of changing an opening;
    A second adjusting valve provided in the bridge line, the opening degree of which can be changed;
    And a control device that controls the first adjustment valve and the second adjustment valve.
  2.  前記タンク内のボイルオフガスまたは前記送気ラインに流れるボイルオフガスの圧力を検出する圧力計をさらに備え、
     前記制御装置は、
     前記タンク内の液化天然ガスの量および前記圧力計で検出されるボイルオフガスの圧力からボイルオフガスの利用可能量を算出し、
     前記ボイルオフガスの利用可能量が前記主ガスエンジンの燃料ガス消費量よりも多い場合には、前記第2調整弁を開く、請求項1に記載の船舶。
    A pressure gauge for detecting the pressure of the boil-off gas in the tank or the boil-off gas flowing in the air supply line;
    The control device includes:
    Calculate the available amount of boil-off gas from the amount of liquefied natural gas in the tank and the pressure of the boil-off gas detected by the pressure gauge,
    The ship according to claim 1, wherein when the available amount of the boil-off gas is larger than the fuel gas consumption of the main gas engine, the second regulating valve is opened.
  3.  前記制御装置は、前記ボイルオフガスの利用可能量と、前記主ガスエンジンの燃料ガス消費量および前記副ガスエンジンの燃料ガス消費量の和との差に応じて前記第1調整弁を制御し、前記副ガスエンジンの燃料ガス要求圧に応じて前記第2調整弁を制御する、請求項2に記載の船舶。 The control device controls the first regulating valve according to a difference between an available amount of the boil-off gas and a sum of a fuel gas consumption amount of the main gas engine and a fuel gas consumption amount of the sub gas engine, The marine vessel according to claim 2, wherein the second regulating valve is controlled in accordance with a fuel gas demand pressure of the auxiliary gas engine.
  4.  前記制御装置は、前記ボイルオフガスの利用可能量と前記主ガスエンジンの燃料ガス消費量との差に応じて前記第2調整弁を制御し、前記副ガスエンジンの燃料ガス要求圧に応じて前記第1調整弁を制御する、請求項2に記載の船舶。 The control device controls the second regulating valve according to a difference between an available amount of the boil-off gas and a fuel gas consumption amount of the main gas engine, and the control device according to a fuel gas demand pressure of the sub gas engine The ship according to claim 2 which controls the 1st regulation valve.
  5.  前記第1供給ラインまたは前記第2供給ラインから分岐して前記タンクへつながる、膨張装置が設けられた返送ラインと、
     前記返送ラインに設けられた、開度変更が可能な第3調整弁と、をさらに備え、
     前記制御装置は前記第3調整弁を制御する、請求項1に記載の船舶。
    A return line provided with an expansion device, branched from the first supply line or the second supply line and connected to the tank;
    A third adjustment valve provided in the return line and capable of changing an opening;
    The marine vessel according to claim 1, wherein the control device controls the third adjustment valve.
  6.  前記タンク内のボイルオフガスまたは前記送気ラインに流れるボイルオフガスの圧力を検出する圧力計をさらに備え、
     前記制御装置は、
     前記タンク内の液化天然ガスの量および前記圧力計で検出されるボイルオフガスの圧力からボイルオフガスの利用可能量を算出し、
     前記ボイルオフガスの利用可能量が前記主ガスエンジンの燃料ガス消費量および前記副ガスエンジンの燃料ガス消費量の和よりも多い場合には、前記第2調整弁および前記第3調整弁を開く、請求項5に記載の船舶。
    A pressure gauge for detecting the pressure of the boil-off gas in the tank or the boil-off gas flowing in the air supply line;
    The control device includes:
    Calculate the available amount of boil-off gas from the amount of liquefied natural gas in the tank and the pressure of the boil-off gas detected by the pressure gauge,
    When the available amount of the boil-off gas is greater than the sum of the fuel gas consumption of the main gas engine and the fuel gas consumption of the auxiliary gas engine, the second adjustment valve and the third adjustment valve are opened; The ship according to claim 5.
  7.  前記制御装置は、前記ボイルオフガスの利用可能量と前記主ガスエンジンの燃料ガス消費量および前記副ガスエンジンの燃料ガス消費量の和との差に応じて前記第3調整弁を制御し、前記副ガスエンジンの燃料ガス要求圧に応じて前記第2調整弁を制御する、請求項6に記載の船舶。 The control device controls the third regulating valve according to a difference between an available amount of the boil-off gas and a sum of a fuel gas consumption amount of the main gas engine and a fuel gas consumption amount of the auxiliary gas engine, The ship according to claim 6 which controls said 2nd regulating valve according to fuel gas demand pressure of a subgas engine.
PCT/JP2016/004816 2015-11-06 2016-11-04 Ship WO2017077719A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680063321.3A CN108138701A (en) 2015-11-06 2016-11-04 Ship
KR1020187014895A KR20180075608A (en) 2015-11-06 2016-11-04 Ship

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-218109 2015-11-06
JP2015218109 2015-11-06
JP2015-247925 2015-12-18
JP2015247925A JP6630144B2 (en) 2015-11-06 2015-12-18 Ship

Publications (1)

Publication Number Publication Date
WO2017077719A1 true WO2017077719A1 (en) 2017-05-11

Family

ID=58662450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004816 WO2017077719A1 (en) 2015-11-06 2016-11-04 Ship

Country Status (1)

Country Link
WO (1) WO2017077719A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080276627A1 (en) * 2007-05-08 2008-11-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel gas supply system and method of a ship
JP2012076561A (en) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd Fuel supply system for ship
US20140290279A1 (en) * 2012-10-24 2014-10-02 Daewoo Shipbuilding & Marine Engineering Co., Ltd Liquefied gas treatment system for vessel
JP2015074418A (en) * 2013-10-11 2015-04-20 三井造船株式会社 Fuel gas supply system for liquefied gas carrying vessel
JP2015145243A (en) * 2015-04-30 2015-08-13 三井造船株式会社 Fuel gas supply system for liquefied gas carrying vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080276627A1 (en) * 2007-05-08 2008-11-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel gas supply system and method of a ship
JP2012076561A (en) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd Fuel supply system for ship
US20140290279A1 (en) * 2012-10-24 2014-10-02 Daewoo Shipbuilding & Marine Engineering Co., Ltd Liquefied gas treatment system for vessel
JP2015074418A (en) * 2013-10-11 2015-04-20 三井造船株式会社 Fuel gas supply system for liquefied gas carrying vessel
JP2015145243A (en) * 2015-04-30 2015-08-13 三井造船株式会社 Fuel gas supply system for liquefied gas carrying vessel

Similar Documents

Publication Publication Date Title
JP6630144B2 (en) Ship
WO2017104633A1 (en) Ship
KR101464118B1 (en) Ship, fuel gas supply apparatus, and fuel gas supply method
KR101758993B1 (en) Treatment system of liquefied natural gas
EP2659120B1 (en) A fuel feeding system and method of operating a fuel feeding system
US10654552B2 (en) Fuel supply system and method for ship engine
JP2017110797A (en) Marine vessel
WO2017078155A1 (en) Ship
JP2016037935A (en) Gas supply system and vessel mounted with the same
KR20180048572A (en) Ship fuel gas supply system
KR20180090369A (en) Ship
WO2017077719A1 (en) Ship
CN210179314U (en) Marine LNG gas supply system
KR101761981B1 (en) A Treatment System Of Liquefied Gas
JP6757217B2 (en) Ship
JP2018048608A (en) Vessel
CN115095452B (en) Gas supply system of gas engine test bed and control method
JP2018103955A (en) Ship
JP2018103960A (en) Ship
KR20150140094A (en) Fuel supply system for a ship and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187014895

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16861790

Country of ref document: EP

Kind code of ref document: A1