WO2017077716A1 - Charging/discharging control device, charging/discharging control method, and program - Google Patents

Charging/discharging control device, charging/discharging control method, and program Download PDF

Info

Publication number
WO2017077716A1
WO2017077716A1 PCT/JP2016/004808 JP2016004808W WO2017077716A1 WO 2017077716 A1 WO2017077716 A1 WO 2017077716A1 JP 2016004808 W JP2016004808 W JP 2016004808W WO 2017077716 A1 WO2017077716 A1 WO 2017077716A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charge
amount
storage battery
price
Prior art date
Application number
PCT/JP2016/004808
Other languages
French (fr)
Japanese (ja)
Inventor
遥 仲宗根
馬場 朗
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017077716A1 publication Critical patent/WO2017077716A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/20Systems characterised by their energy storage means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a charge / discharge control device, a charge / discharge control method, and a program for controlling charge / discharge of a storage battery.
  • the conventional charge / discharge control apparatus performs the same control according to the predetermined electricity rate plan every day.
  • the electricity rate plans will diversify and the electricity rate plans will change from day to day.
  • the unit price of surplus power in the current generated power is larger than the unit price of power purchase
  • the conventional charge / discharge control device performs control assuming that the unit price of power sale is larger than the unit price of power purchase.
  • the power selling unit price will be lower than the power purchasing unit price.
  • an object of the present invention is to provide a charge / discharge control device, a charge / discharge control method, and a program capable of suppressing an electricity charge corresponding to diversified electricity charge plans.
  • a charge / discharge control device is a charge / discharge control device that controls charge / discharge of a storage battery for charging generated power generated by a power generator and grid power from the grid, The amount of discharge of the storage battery according to the magnitude relationship between the unit power purchase price and the power sale unit price of the grid power in the period, and the predicted value of the power demand at the consumer and the predicted value of the power generation amount of the power generator And a calculation unit that calculates a charge amount, and a control unit that controls charge / discharge and charge / discharge timings of the storage battery according to the discharge amount and the charge amount calculated by the calculation unit in the predetermined period.
  • a charge / discharge control method is a charge / discharge control device that controls the operation of a charge / discharge control device that controls charge / discharge of a storage battery for charging generated power generated by a power generator and grid power from the grid.
  • the discharge control method the magnitude relationship between the unit power purchase price and the power sale unit price of the grid power in a predetermined period, the predicted value of the power demand in the consumer, and the predicted value of the power generation amount of the power generator
  • the amount of discharge and the amount of charge of the storage battery are calculated according to the control, and control is performed according to the amount of discharge and the amount of charge calculated for the charge / discharge and charge / discharge timing of the storage battery in the predetermined period.
  • the program which concerns on 1 aspect of this invention is a program which controls operation
  • the magnitude relationship between the power purchase unit price and the power sale unit price of the system power in a predetermined period, and the predicted value of the power demand in the consumer and the power generation of the power generation device According to the predicted value of the amount, the discharge amount and the charge amount of the storage battery are calculated, and the charge amount and the charge / discharge timing of the storage battery are calculated during the predetermined period according to the discharge amount and the charge amount. Let me control.
  • the charging / discharging control device According to the charging / discharging control device, the charging / discharging control method, and the program according to the present invention, it is possible to suppress the electricity bill corresponding to diversified electricity bill plans.
  • FIG. 1 is a configuration diagram illustrating an example of a charge / discharge control system according to an embodiment.
  • FIG. 2 is a table showing an example of power generation result data and power demand result data.
  • FIG. 3 is a flowchart illustrating an example of the operation of the charge / discharge control system according to the embodiment.
  • FIG. 4A is a diagram illustrating an example of a magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price does not vary with time.
  • (B) of FIG. 4 is a figure which shows an example of an operation
  • FIG. 5A is a diagram illustrating another example of the magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price does not vary with time.
  • B) of FIG. 5 is a figure which shows another example of operation
  • A) of FIG. 6 is a figure which shows an example of the magnitude relationship between the power purchase unit price and the power sale unit price in case a power purchase unit price changes according to time.
  • (B) of FIG. 6 is a figure which shows an example of operation
  • FIG. 7 is a figure which shows another example of the magnitude relationship between the power purchase unit price and the power sale unit price in case a power purchase unit price fluctuates according to time.
  • (B) of FIG. 7 is a figure which shows another example of operation
  • FIG. 8A is a diagram illustrating another example of the magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price varies with time.
  • (B) of FIG. 8 is a figure which shows another example of operation
  • FIG. 9 is a diagram illustrating an example of an operation in the case where the discharge amount of the storage battery of the charge / discharge control device according to the embodiment cannot cover all of the insufficient power amount.
  • (A) of FIG. 10 is a figure which shows an example of the operation
  • (B) of FIG. 10 is a figure which shows an example of the operation
  • (A) of FIG. 11 is a figure which shows another example of the operation
  • (B) of FIG. 11 is a figure which shows another example of the operation
  • FIG. 1 is a configuration diagram illustrating an example of a charge / discharge control system 1 according to an embodiment.
  • the grid power from the grid 200, the generated power from the power generator 13, and the power charged in the storage battery 14 are supplied to the load 70 in the customer 100.
  • a plurality of devices installed in the customer 100 are collectively referred to as a load 70.
  • the grid power and the generated power are charged in the storage battery 14.
  • the charge / discharge control system 1 includes a charge / discharge control device 10, a power generation device 13, a storage battery 14, an acquisition unit 20, a storage unit 30, a prediction unit 40, a power conditioner (power conditioner) 50, a distribution board 60, and a load 70.
  • the charge / discharge control device 10 includes a calculation unit 11 and a control unit 12.
  • the charge / discharge control device 10 charges the storage battery 14 with system power, supplies the system power to the load 70, charges the generated battery with the storage battery 14, supplies the generated power with the load 70, and the power charged in the storage battery 14.
  • the discharge to the load 70 is controlled.
  • the power generation device 13 is a device that generates power for supplying the load 70, power for selling power to the system 200, and power for charging the storage battery 14.
  • power generation device 13 is a solar power generation device, and can generate power in a time zone in which sunlight can be received.
  • the generated power generated by the power generation device 13 is supplied to the load 70 through the power conditioner 50 described later, charged in the storage battery 14, or sold to the system 200.
  • surplus power in which the generated power generated by the power generation device 13 exceeds the power consumption (electric power demand) of the load 70 in the customer 100 is charged in the storage battery 14 or sold to the system 200.
  • the power generation device 13 is not limited to a solar power generation device, and may be any device that can generate power, such as a wind power generation device, a hydroelectric power generation device, or a fuel cell.
  • the storage battery 14 charges the generated power generated by the power generation device 13 and the system power from the system 200.
  • the storage battery 14 is charged with surplus power in which the generated power exceeds the power consumption of the load 70 among the generated power.
  • the calculation unit 11 determines the magnitude relationship between the power purchase unit price and the power sale unit price of the grid power in a predetermined period, the predicted value of power demand that is the power consumption amount of the load 70 in the customer 100, and the power generation device 13.
  • the discharge amount and the charge amount of the storage battery 14 are calculated according to the predicted value of the power generation amount.
  • the predicted value of power demand and the predicted value of power generation are values calculated by the prediction unit 40 described later.
  • the predetermined period is, for example, 24 hours from a predetermined time.
  • the control unit 12 controls the charging / discharging and charging / discharging timing of the storage battery 14 according to the discharge amount and the charge amount calculated by the calculation unit 11 in a predetermined period. That is, the calculation unit 11 calculates in advance the discharge amount and the charge amount of the storage battery 14 in a predetermined period, and the control unit 12 determines the charge / discharge amount of the storage battery 14 in the predetermined period. The storage battery 14 is controlled so that the amount and the charge amount are reached.
  • the control unit 12 may control the charge / discharge amount of the storage battery 14 by the absolute value of the discharge amount and the charge amount calculated by the calculation unit 11, or may be controlled by SOC (State Of Charge). .
  • SOC State Of Charge
  • the calculation unit 11 and the control unit 12 are, for example, a processor that executes a control program stored in a storage unit (not shown) included in the charge / discharge control device 10 and is realized by a microcomputer or a dedicated circuit. May be. Further, in FIG. 1, it is schematically indicated by the arrow from the control unit 12 to the storage battery 14 that the control unit 12 controls charging / discharging of the storage battery 14. The charging / discharging of the storage battery 14 is controlled via Moreover, in FIG. 1, although the charging / discharging control apparatus 10 is provided in the consumer 100, an external apparatus may be sufficient, for example, you may control charging / discharging of the storage battery 14 via a network.
  • the acquisition unit 20 includes a communication unit (not shown), acquires the actual power generation amount data of the power generation device 13 from the power generation device 13, and acquires the actual power consumption amount (power demand) data of the load 70 from the load 70. Then, weather forecast data and price data are acquired from, for example, an external server.
  • the weather forecast data includes past performance data and future weather prediction data.
  • the actual power generation data, the power demand actual data, and the weather forecast data will be described in detail with reference to FIG.
  • the price data is data relating to the unit power purchase price of grid power and the power sale unit price of surplus power in a predetermined period.
  • the predetermined period is, for example, 24 hours from a predetermined time
  • the acquisition unit 20 acquires data on the power purchase unit price and the power sale unit price for 24 hours from the predetermined time, for example, every 24 hours.
  • the price data will be described in detail in FIGS. 4A to 8A, which will be described later, with examples of the power purchase unit price and the power sale unit price.
  • the acquisition unit 20 stores the acquired power generation result data, power demand result data, weather forecast data, and price data in the storage unit 30.
  • the storage unit 30 is a storage device that stores the actual power generation result data, the power demand result data, the weather forecast data, and the price data acquired by the acquisition unit 20.
  • the storage unit 30 is realized by, for example, a semiconductor memory.
  • the prediction unit 40 calculates the predicted value of the power generation amount from the predicted value of power demand, the actual power generation amount data, and the weather forecast data from the actual power demand data stored in the storage unit 30.
  • the predicted value of power demand and the predicted value of power generation will be described in detail with reference to FIG.
  • the prediction unit 40 notifies the calculation unit 11 of the calculated predicted power demand value and the predicted power generation amount. Further, the prediction unit 40 notifies the calculation unit 11 of the price data stored in the storage unit 30. Note that the calculation unit 11 may directly acquire the price data stored in the storage unit 30 from the storage unit 30.
  • the power conditioner 50 is a device that converts electric power into desired power among the system 200, the power generation device 13, the storage battery 14, and the load 70. Specifically, the power conditioner 50 converts DC power supplied from the power generation device 13 and the storage battery 14 into AC power. The power conditioner 50 converts the power supplied to the storage battery 14 from AC power to DC power.
  • the distribution board 60 performs control to supply power supplied from the system 200, the power generation device 13 and the storage battery 14 to the load 70 (a plurality of devices).
  • the distribution board 60 includes a breaker, a relay, and the like.
  • the load 70 indicates a plurality of devices provided in the customer 100, and is, for example, an electrical device such as an air conditioner, a refrigerator, a television, or a lighting device provided in the customer 100.
  • an electrical device such as an air conditioner, a refrigerator, a television, or a lighting device provided in the customer 100.
  • FIG. 2 is a table showing an example of the actual power generation result data and the actual power demand data.
  • the power demand shown in FIG. 2 is a predetermined value acquired by the acquisition unit 20 for the prediction unit 40 to calculate a predicted value of power demand for a predetermined period (for example, 24 hours) after a predetermined time (for example, 0:00). This is actual data of power demand for 24 hours before the time.
  • the power demand 350 Wh at time 0:00 shown in FIG. 2 means that the actual power demand from 0:00 to 1:00 in the past was 350 Wh.
  • the prediction unit 40 calculates a predicted value of power demand from the actual power demand data acquired by the acquisition unit 20.
  • the power generation amount shown in FIG. 2 is calculated by the acquisition unit 20 for the prediction unit 40 to calculate a predicted value of the power generation amount of the power generation device 13 for a predetermined period (for example, 24 hours) after a predetermined time (for example, 0:00). It is the actual data of the generated power of the power generator 13 for 24 hours before the acquired predetermined time.
  • the power generation amount 200 Wh at time 6:00 shown in FIG. 2 means that the actual power generation amount from 6:00 to 7:00 in the past was 200 Wh.
  • the weather shown in FIG. 2 is past data of past weather for 24 hours before a predetermined time in the weather forecast data acquired by the acquisition unit 20. That is, for example, the clear weather at the time of 6 o'clock shown in FIG. 2 means that the past weather record from 6 o'clock to 7 o'clock was clear.
  • the prediction unit 40 calculates a predicted value of the power generation amount from the actual power generation data and weather forecast data acquired by the acquisition unit 20.
  • the power generation device (solar power generation device) 13 included in the customer 100 has in advance power generation amount actual data corresponding to the latitude, longitude, solar cell capacity, installation orientation, installation angle, and the like of the customer 100. It may be.
  • the prediction unit 40 calculates the predicted value of power demand and the predicted value of power generation for 24 hours as a predetermined period from 0:00 as a predetermined time, but not limited thereto, for example, power from 24 hours to 24 hours A predicted value of demand and a predicted value of power generation amount may be calculated. Further, the prediction unit 40 may calculate, for example, a predicted value of power demand and a predicted value of power generation for 12 hours from 0:00. That is, the time for calculating the predicted value of power demand and the predicted value of power generation and the period from that time are not limited. However, there is a preferred time for calculating the predicted value of power demand and the predicted value of power generation amount, which will be described later.
  • the storage unit 30 stores the actual power generation data and the actual power demand data, and based on this, the prediction unit 40 calculates the predicted power demand value and the predicted power generation value.
  • FIG. 3 is a flowchart showing an example of the operation of the charge / discharge control system 1 according to the embodiment.
  • the acquisition unit 20 acquires actual power generation data, power demand actual data, weather forecast data, and price data (step S11).
  • step S12 the prediction unit 40 calculates a predicted value of power demand and a predicted value of power generation.
  • step S11 and step S12 The description of the operation in step S11 and step S12 has been described with reference to FIG.
  • the calculation unit 11 determines the amount of discharge of the storage battery 14 according to the magnitude relationship between the power purchase unit price and the power sale unit price in a predetermined period, and the predicted value of power demand and the predicted value of power generation.
  • a charge amount is calculated (step S13).
  • control part 12 controls the charging / discharging and charging / discharging timing of the storage battery 14 according to the discharge amount and charge amount which the calculation part 11 calculated in the predetermined period (step S14).
  • step S13 and step S14 will be described in detail with reference to FIGS.
  • Step S13 and Step S14 operation of the charge / discharge control device 10.
  • FIG. 4 is a diagram illustrating an example of a magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price does not vary with time.
  • the solid line shown in (a) of FIG. 4 shows the power purchase unit price
  • the dotted line shows the power sale unit price.
  • the power purchase unit price is 20 yen / kWh
  • the power sale unit price is 35 yen / kWh.
  • the price data is data relating to the unit power purchase price of the grid power and the power sale unit price of surplus power in a predetermined period.
  • FIGS. 5A to 8A an example of price data is also shown in FIGS. 5A to 8A described later.
  • FIG. 4 is a figure which shows an example of operation
  • (b) in FIG. 4 shows the charging when the power purchase unit price does not vary with time over a predetermined period (for example, 24 hours) and the power purchase unit price is smaller than the power sale unit price.
  • 4 is a diagram illustrating an example of the operation of the discharge control device 10.
  • FIG. The solid line shown in FIG. 4B indicates the predicted value of power demand, and the dotted line indicates the predicted value of power generation.
  • An area 110 indicates the amount of power purchased from the system 200.
  • a region 120 indicates the amount of power supplied to the power demand out of the amount of power generated by the power generation device 13.
  • a region 130 is a surplus power amount when the generated power of the power generation device 13 exceeds the power consumption of the load 70, and indicates the amount of power sold to the system 200.
  • the calculation unit 11 purchases the grid power for every unit time (for example, one hour), the power amount supplied to the power demand out of the power generation amount, and The amount of surplus power sold is calculated.
  • the unit price of power sale is always larger than the unit price of power purchase over a predetermined period, it is better to sell power than to charge the storage battery 14 with surplus power when the generated power generated by the power generation device 13 exceeds the power demand. Electricity charges are reduced. Specifically, even if the surplus power is charged in the storage battery 14, the purchase amount of the power purchase price of 20 yen / kWh, which is lower than the unit price of 35 yen / kWh, only decreases the surplus power. Electricity costs are reduced by selling electricity at a unit price of 35 yen / kWh.
  • the electricity rate is the difference between the power purchase fee for grid power and the power sale fee for surplus power.
  • FIG. 5 is a diagram illustrating another example of the magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price does not vary with time.
  • the solid line shown in (a) of FIG. 5 shows the unit price of power purchase, and the dotted line shows the unit price of power sale. It is shown that the power purchase unit price is 20 yen / kWh and the power sale unit price is 10 yen / kWh.
  • FIG. 5 is a figure which shows another example of operation
  • (b) in FIG. 5 is a charge when the power purchase unit price does not vary with time over a predetermined period (for example, 24 hours) and the power purchase unit price is greater than the power sale unit price.
  • 4 is a diagram illustrating an example of the operation of the discharge control device 10.
  • FIG. 5B indicates power demand, and the dotted line indicates the amount of power generation. Since the area 110 and the area 120 are the same as those in FIG.
  • a region 140 is a surplus power amount when the generated power of the power generation device 13 exceeds the power demand, and indicates a charge amount to the storage battery 14.
  • a region 150 indicates a discharge amount of power charged in the storage battery 14.
  • the calculation unit 11 determines the amount of power supplied to the power demand out of the amount of power purchased, the amount of power generated, and the storage battery for each unit time (for example, one hour) according to the predicted value of power demand and the predicted value of power generation. The amount of surplus power charged to 14 and the amount of discharge of the storage battery 14 are calculated.
  • the calculation unit 11 determines whether or not the storage battery 14 is charged with surplus power based on the magnitude relationship between the power purchase unit price and the power sale unit price. Specifically, when the power purchase unit price is smaller than the power sale unit price over a predetermined period, the calculation unit 11 determines that the surplus power is sold without charging the storage battery 14, and over the predetermined period. When the power purchase unit price is larger than the power sale unit price, it is determined that the surplus power is charged in the storage battery 14. When it is determined that the storage battery 14 is charged with surplus power, the calculation unit 11 determines the storage battery 14 based on the surplus power according to the predicted power demand value and the predicted power generation amount as illustrated in FIG. Calculate the amount of charge.
  • control part 12 controls the charge of the surplus electric power of the storage battery 14, and the timing of charge according to the charge amount which the calculation part 11 calculated in the predetermined period. Specifically, the control unit 12 charges the amount of charge calculated by the calculation unit 11 from the surplus power at the timing when the surplus power shown in FIG. 5B is generated.
  • FIG. 6 is a diagram illustrating an example of a magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price varies according to time.
  • the solid line shown in (a) of FIG. 6 indicates the power purchase unit price, and the dotted line indicates the power sale unit price.
  • the power purchase unit price is 28 yen / kWh from 9:00 to 21:00, 15 yen / kWh from 21:00 to 9:00, and the power sale unit price is 35 yen / kWh. That is, in a predetermined period (from 0:00 to 24:00), a low price time zone (from 21:00 to 9:00) and a high price time zone (from 9:00 to 21:00) where the power purchase unit price is larger than the low price time zone. Is shown to be included.
  • FIG. 6B shows a case where the power purchase unit price fluctuates according to time in a predetermined period (for example, 24 hours), and the power purchase unit price is smaller than the power sale unit price over the predetermined period.
  • FIG. 6B shows a case where the power purchase unit price fluctuates according to time in a predetermined period (for example, 24 hours), and the power purchase unit price is smaller than the power sale unit price over the predetermined period.
  • movement of the charging / discharging control apparatus The solid line shown in (b) of FIG. 6 shows power demand, and the dotted line shows the amount of power generation.
  • the region 110, the region 120, and the region 130 are the same as those in FIG.
  • a region 160 indicates a charge amount of the system power to the storage battery 14 in the low price time zone.
  • a region 170 indicates a shortage amount of electric power that cannot be covered by the generated power when the power demand in the high price period exceeds the generated power. In other words, the area 170 indicates the discharge amount of the storage battery 14 in the high price time zone.
  • the calculation unit 11 determines the amount of power supplied to the power demand out of the amount of power purchased, the amount of power generated, and the surplus for each unit time (for example, 1 hour) according to the predicted value of power demand and the predicted value of power generation. The amount of electric power sold, the amount of grid power charged to the storage battery 14 in the low price period, and the amount of discharge of the storage battery 14 in the high price period are calculated.
  • the electricity charge is suppressed by charging the storage battery 14 in the low price period.
  • the electricity bill is suppressed.
  • FIG. 7 is a figure which shows another example of the magnitude relationship between the power purchase unit price and the power sale unit price in case a power purchase unit price changes according to time.
  • the solid line shown in (a) of FIG. 7 shows the power purchase unit price, and the dotted line shows the power sale unit price.
  • the power purchase unit price is 28 yen / kWh from 9:00 to 21:00, 15 yen / kWh from 21:00 to 9:00, and the power sale unit price is 10 yen / kWh.
  • FIG. 7 is a figure which shows another example of operation
  • (b) of FIG. 7 shows a case where the power purchase unit price fluctuates according to time in a predetermined period (for example, 24 hours), and the power purchase unit price is larger than the power sale unit price over a predetermined period.
  • movement of the charging / discharging control apparatus The solid line shown in FIG. 7B indicates the power demand, and the dotted line indicates the amount of power generation.
  • the region 110, the region 120, and the region 140 are the same as those in FIG. 5B, and the region 160 is the same as that in FIG.
  • Regions 170a and 170b indicate the amount of power shortage, which is power that cannot be covered by the generated power when the power demand in the high price period exceeds the generated power.
  • the area 170a indicates the amount of discharge of the storage battery 14 charged by the system power.
  • the area 170b shows the discharge amount of the storage battery 14 charged with the grid power and surplus power.
  • the calculation unit 11 determines the amount of power supplied to the power demand out of the amount of power purchased, the amount of power generated, and the storage battery for each unit time (for example, one hour) according to the predicted value of power demand and the predicted value of power generation. 14, the amount of surplus power charged to 14, the amount of grid power charged to the storage battery 14 in the low-price time zone, and the amount of discharge of the storage battery 14 are calculated.
  • the storage battery 14 Since the unit price of power sale is always smaller than the unit price of power purchase over a predetermined period, the storage battery 14 is charged rather than surplus power when the generated power generated by the power generation device 13 exceeds the power demand. However, the electricity bill is reduced. Specifically, even if surplus power is sold, power can be sold only at a power unit price of 10 yen / kWh, which is smaller than the unit price of 28 yen / kWh in the high price period. By charging 14 and reducing the purchase amount of grid power with a power purchase unit price of 28 yen / kWh, the electricity bill is suppressed.
  • the grid power is stored in the low price time zone. By charging to 14, the electricity bill is suppressed.
  • the power generation amount of the power generation device 13 it is not necessary to charge the storage battery 14 with the grid power in the low price period.
  • the system power is charged to the storage battery 14 in the low price period even when the shortage of electric power can be covered by the amount of charge of the storage battery 14 based on surplus power. There is no need.
  • FIG. 8 is a figure which shows another example of the magnitude relationship between the power purchase unit price and the power sale unit price in case a power purchase unit price changes according to time.
  • the solid line shown in (a) of FIG. 8 indicates the power purchase unit price, and the dotted line indicates the power sale unit price.
  • the power purchase unit price is 28 yen / kWh between 9 am and 9 pm, 15 yen / kWh between 9 pm and 9 pm, and the power sale unit price is 20 yen / kWh. That is, the power selling unit price is larger than the power buying unit price in the low price period and smaller than the power buying unit price in the high price period.
  • FIG. 8 is a figure which shows another example of operation
  • (b) in FIG. 8 shows that the power purchase unit price fluctuates according to time in a predetermined period (for example, 24 hours), and the power sale unit price is higher than the power purchase unit price in the low price period.
  • the solid line shown in (b) of FIG. 8 shows power demand, and the dotted line shows the amount of power generation.
  • Each region shown in FIG. 8B is the same as that in FIG. 6B, and the description thereof is omitted.
  • the system charge is charged to the storage battery 14 in the low price period, thereby suppressing the electricity bill. Specifically, rather than purchasing the power shortage in the high price period from the system 200 at a power purchase price of 28 yen / kWh in the high price period, purchase at a power purchase price of 15 yen / kWh in the low price period. By charging the storage battery 14, the electricity bill is suppressed. Further, since the unit price of power sale is larger than the unit price of power purchase in the low price period, the electricity price is suppressed when surplus power is sold rather than being charged to the storage battery 14.
  • the purchase amount of system power (charge amount) at a power purchase price of 15 yen / kWh in a low price period where the unit price is less than 20 yen / kWh. ) Only decreases, and the electricity bill is suppressed by selling surplus power at a unit price of 20 yen / kWh.
  • the predetermined period includes a low-price time zone and a high-price time zone in which the power purchase unit price is larger than the low-price time zone.
  • the calculation unit 11 supplies the grid power to the storage battery 14 based on whether or not a shortage amount of power that cannot be covered by the generated power is generated when the power demand at least during the high price period exceeds the generated power. Determine whether to charge.
  • the calculation unit 11 determines to charge the storage battery 14 with the grid power when a shortage of electric power in the high price period occurs.
  • the calculation unit 11 when the power purchase unit price is larger than the power sale unit price over a predetermined period, the calculation unit 11 generates an insufficient amount of power in the high price period, and the amount of charge of the storage battery 14 based on the surplus power When it is not possible to cover all of the shortage of electric power during the high price period, it is determined that the grid power is charged in the storage battery 14. And the calculation part 11 calculates the charge amount of the storage battery 14 based on the discharge amount of the storage battery 14, the charge amount of the storage battery 14 based on system power, and the surplus power according to the predicted value of power demand and the predicted value of power generation amount. calculate.
  • the calculation unit 11 calculates the charge amount of the grid power to the storage battery 14 in the low price period, and the control unit 12 determines the charging and charging timing of the storage battery 14 in the low price period. Control is performed according to the calculated charge amount. Specifically, the control unit 12 determines the charge amount calculated by the calculation unit 11 at the timing of the low price period (from 21:00 to 9:00) shown in (b) of FIG. 6 to (b) of FIG. Charge from power. Moreover, the calculation part 11 calculates the discharge amount of the storage battery 14 in which an electricity bill becomes the lowest price, and the control part 12 controls the discharge and discharge timing of the storage battery 14 according to the discharge amount which the calculation part 11 calculated. .
  • the discharge amount of the storage battery 14 at which the electricity rate is the lowest is, for example, the discharge amount of the storage battery 14 in the high price time zone.
  • the control unit 12 discharges the discharge amount calculated by the calculation unit 11 at the high price time zone (from 9 o'clock to 9 o'clock) shown in FIG. 6 (b) to FIG. 8 (b).
  • the system power or the discharge amount of the storage battery 14 charged with the remaining power without being discharged the previous day can cover all of the insufficient power amount.
  • the capacity of the storage battery 14 or the maximum charge rate of the storage battery 14 it may not be possible to cover all of the insufficient power.
  • the power purchase unit price fluctuates according to time in a predetermined period and the power purchase unit price is smaller than the power sale unit price over a predetermined period (in the case of (a) in FIG. 6)
  • the storage battery 14 is discharged.
  • the amount of power cannot cover all of the shortage of power, the amount of power that cannot be covered by the discharge amount of the storage battery 14 is purchased in the high price period.
  • FIG. 9 is a diagram illustrating an example of an operation in the case where the discharge amount of the storage battery 14 of the charge / discharge control device 10 according to the embodiment cannot cover all of the insufficient power amount.
  • FIG. 9 shows that the power purchase unit price fluctuates depending on the time in a predetermined period (for example, 24 hours), and the power sale unit price is larger than the power purchase unit price in the low price period, and the purchase in the high price period.
  • FIG. The solid line shown in FIG. 9 indicates power demand, and the dotted line indicates the amount of power generation.
  • Each region shown in FIG. 9 is the same as that in FIG. 7B and FIG.
  • the discharge amount of the storage battery 14 is In the case of an amount of electric power that cannot cover all of the shortage of electric power, the amount of electric power that cannot be covered by the discharge amount of the storage battery 14 is purchased in the high price period, and all surplus power is sold. More specifically, in the high price period, the grid power is purchased until the time when the power demand exceeds the power generation amount, and surplus power is sold while the power demand exceeds the power generation amount. Grid power is purchased after the time when power is below the power demand.
  • the amount of discharge of the storage battery 14 is an amount of power that cannot cover all of the insufficient power amount.
  • the storage battery 14 is charged. Specifically, since the unit price of power purchase is smaller than the unit price of power purchase in the high price period, as shown in FIG. 9, the storage battery from the surplus power supplies the amount of power that cannot be covered by the discharge amount of the storage battery 14. Covered with charge to 14.
  • surplus power with a power selling unit price of 20 yen / kWh is sold rather than surplus power with a power selling unit price of 20 yen / kWh is sold and the system power with a unit price of 28 yen / kWh is purchased in the high price period. Electricity charges are reduced when the battery is charged. Then, when the amount of power shortage can be covered by the amount of discharge of the storage battery 14 in which a part of the grid power and surplus power is charged, the remaining surplus power is sold.
  • the calculation unit 11 determines that the power sale unit price is larger than the power purchase unit price in the low price time period and smaller than the power purchase unit price in the high price period, and the system power is charged to the storage battery 14.
  • the amount of discharge of the storage battery 14 is sufficient to cover all of the insufficient power amount, it is determined that surplus power is sold without charging the storage battery 14, and the amount of discharge of the storage battery 14 can cover all of the insufficient amount of power.
  • the amount of power is not, it is determined that the surplus power is charged in the storage battery 14.
  • the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 before a predetermined time before the start time of the low price time zone, and the control unit 12 performs a predetermined period from the start time of the low price time zone. It is preferable to control the charging / discharging and charging / discharging timing of the storage battery 14 according to the discharge amount and the charge amount calculated by the calculation unit 11. That is, the calculation unit 11 responds to the predicted value of power demand and the predicted value of power generation shown in (b) of FIG. 6 to (b) of FIG. 8 before a predetermined time before the start time of the low price period. Then, the discharge amount and the charge amount of the storage battery 14 are calculated.
  • the acquisition unit 20 acquires the actual power generation amount data, the actual power demand data, the weather forecast data, and the price data, and the prediction unit 40 includes calculating a predicted value of power demand and a predicted value of power generation.
  • the start time of the low-priced time zone is 21:00 and the predetermined period is 24 hours.
  • the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 before a predetermined time at 21:00, and the control unit 12 calculates the discharge amount calculated by the calculation unit 11 in 24 hours from 21:00.
  • the timing of charging / discharging and charging / discharging is controlled according to charge amount.
  • the predetermined time is a time required for calculating the discharge amount and the charge amount of the storage battery 14, and is, for example, 30 minutes.
  • control part 12 can charge the storage battery 14 of the system power over a long time from the start time of the low price period. Therefore, much of the shortage of electric power generated in the high price time zone can be covered by the charge amount by the system power in the low price time zone.
  • the predetermined period includes the low price period and the high price period, but the present invention is not limited to this.
  • the high price time zone may include at least a first high price time zone and a second high price time zone in which the power purchase unit price is larger than the first high price time zone.
  • the predetermined period may include at least three price ranges of a low price time zone, a first high price time zone, and a second high price time zone.
  • the operation of the control unit 12 when the predetermined period includes three price ranges of the low price time zone, the first high price time zone, and the second high price time zone will be described with reference to FIGS. 10 and 11. explain.
  • FIG. 10 is a figure which shows an example of the operation
  • (B) of Drawing 10 is a figure showing an example of operation which starts discharge of storage battery 14 in the 2nd high price time zone of control part 12 concerning an embodiment.
  • FIG. 11 is a figure which shows another example of the operation
  • (B) of Drawing 11 is a figure showing other examples of operation which starts discharge of storage battery 14 in the 2nd high price time zone of control part 12 concerning an embodiment.
  • Each region shown in FIG. 10 and FIG. 11 is the same as that in FIG.
  • the low price time zone (8 yen) is set from 23:00 to 7 o'clock
  • the first high price time zone (22 yen) is set from 7 o'clock to 10 o'clock and from 17 o'clock to 23 o'clock.
  • the second high price time zone (28 yen) is from 10:00 to 17:00.
  • the unit price of power sale is larger than the unit price of power purchase over a predetermined period, and all surplus power is sold.
  • the amount of power sufficient to cover all of the insufficient power amount in the high price period is charged in the low price period, but in FIG. 11, only the amount of insufficient power in the high price period can be covered.
  • the high price time zone includes the first high price time zone and the second high price time zone, and becomes the second high price time zone after the first high price time zone (for example, as shown in FIGS. 10 and 11).
  • the battery 14 starts discharging in the first high-priced time zone.
  • it is better to start discharging the storage battery 14 in the second high price period are cases where it is better to start discharging the storage battery 14 in the second high price period.
  • the prediction unit 40 calculates the predicted value of the power demand and the predicted value of the power generation amount as shown in (a) of FIG. 10 and (b) of FIG. It is better to start the discharge.
  • the power generation amount always exceeds the power demand in the second high price period, It is not necessary to discharge the storage battery 14 in the second high price period. That is, as shown in FIG. 10B, when the discharge of the storage battery 14 is started at the start time (10 o'clock) of the second high price time zone, the storage battery 14 needs to be discharged in the second high price time zone. In other words, useless power purchase occurs from 7:00 to 9:00 in the first high price period. Therefore, in this case, as shown in FIG. 10A, it is better to start discharging the storage battery 14 at the start time (7:00) of the first high price period.
  • the prediction unit 40 calculates a predicted value of power demand and a predicted value of power generation amount as shown in FIG. 11A and FIG. 11B, the storage battery is stored in the second high price period. It is better to start 14 discharges.
  • the power demand exceeds the power generation amount in the second high price period. Therefore, it is necessary to discharge the storage battery 14 in the second high price time zone.
  • FIG. 11A when the discharge of the storage battery 14 is started at the start time of the first high price period, the discharge amount of the storage battery 14 in the second high price period is reduced. As a result, the amount of electricity purchased in the second high price period increases. Therefore, as shown in FIG. 11B, it is better to start discharging the storage battery 14 at the start time of the second high price period.
  • the capacity of the storage battery 14 is a capacity that can cover all the shortage of electric power in the first high price period from 7:00 to 10:00 and the second high price period from 10:00 to 17:00. It is better to start discharging the storage battery 14 at the start time of the first high price period.
  • the high price time zone includes at least the first high price time zone and the second high price time zone in which the power purchase unit price is larger than the first high price time zone.
  • the start time of discharge of the storage battery 14 is determined according to the amount of insufficient power in the high price period, the amount of insufficient power in the second high price period, and the capacity of the storage battery 14.
  • the charge / discharge control apparatus 10 is a charge / discharge control apparatus that controls the charge / discharge of the storage battery 14 for charging the generated power generated by the power generation apparatus 13 and the system power from the system 200. .
  • the charge / discharge control device 10 determines the magnitude relationship between the power purchase unit price and the power sale unit price of the grid power in a predetermined period, and the predicted value of the power demand in the customer 100 and the predicted value of the power generation amount of the power generator 13. Accordingly, the calculation unit 11 that calculates the discharge amount and the charge amount of the storage battery 14 is provided.
  • the charging / discharging control apparatus 10 is provided with the control part 12 which controls the charging / discharging and charging / discharging timing of the storage battery 14 according to the discharge amount and the charge amount which the calculation part 11 calculated in the predetermined period.
  • the charge / discharge control method includes a charge / discharge control device 10 that controls charge / discharge of the storage battery 14 for charging the generated power generated by the power generation device 13 and the system power from the system 200.
  • This is a charge / discharge control method for controlling the operation.
  • this charge / discharge control method the magnitude relationship between the power purchase unit price and the power sale unit price of the grid power in a predetermined period, and the predicted value of the power demand in the customer 100 and the predicted value of the power generation amount of the power generator 13 are shown. Accordingly, the discharge amount and the charge amount of the storage battery 14 are calculated, and the charge / discharge and charge / discharge timing of the storage battery 14 are controlled according to the calculated discharge amount and charge amount in a predetermined period.
  • the program according to the present embodiment controls the operation of the charge / discharge control device 10 that controls the charge / discharge of the storage battery 14 for charging the generated power generated by the power generation device 13 and the system power from the system 200. It is a program to do.
  • This program is stored in the computer included in the charge / discharge control device 10 in accordance with the magnitude relationship between the unit power purchase price and the power sale unit price for a predetermined period, as well as the predicted value of power demand in the customer 100 and the power generation device. According to the predicted value of the power generation amount 13, the discharge amount and the charge amount of the storage battery 14 are calculated, and the charge / discharge and charge / discharge timings of the storage battery 14 are calculated in a predetermined period according to the discharge amount and the charge amount. Let me control.
  • the magnitude relationship between the power purchase unit price and the power sale unit price, as well as the predicted value of power demand and the prediction of power generation amount can be controlled without burden on the customer 100 so as to suppress the electricity bill. Therefore, it is possible to suppress the electricity bill corresponding to the diversified electricity bill plan.
  • the calculation unit 11 determines whether or not the storage battery 14 is charged with surplus power when the generated power exceeds the power demand based on the magnitude relationship between the power purchase unit price and the power sale unit price. When determining that the storage battery 14 is charged with surplus power, the calculation unit 11 calculates the charge amount of the storage battery 14 based on the surplus power according to the predicted value of power demand and the predicted value of power generation.
  • the calculation unit 11 determines that the surplus power when the generated power exceeds the power demand is sold without charging the storage battery 14 when the power purchase unit price is smaller than the power sale unit price over a predetermined period. . When the power purchase unit price is greater than the power sale unit price over a predetermined period, the calculation unit 11 determines to charge the storage battery 14 with surplus power.
  • the predetermined period includes a low-priced time zone and a high-priced time zone where the power purchase unit price is larger than the low-priced time zone.
  • the calculation unit 11 supplies the grid power to the storage battery 14 based on whether or not a shortage amount of power that cannot be covered by the generated power is generated when the power demand at least during the high price period exceeds the generated power. Determine whether to charge.
  • the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 based on the grid power according to the predicted value of power demand and the predicted value of power generation.
  • the insufficient power amount can be covered by the system power.
  • the calculation part 11 calculates the charge amount to the storage battery 14 of the system power in a low price time zone
  • the control part 12 calculated the charge and charge timing of the storage battery 14 in the low price time zone. Control according to the amount of charge.
  • the calculation unit 11 calculates the discharge amount of the storage battery 14 at which the electricity rate is the lowest value, and the control unit 12 controls the discharge and discharge timing of the storage battery 14 according to the discharge amount calculated by the calculation unit 11.
  • the storage battery 14 can be discharged so that the electric charge becomes the lowest price, the electric charge can be suppressed.
  • the high price time zone includes at least a first high price time zone and a second high price time zone in which the power purchase unit price is larger than the first high price time zone.
  • the control unit 12 determines the discharge start time of the storage battery 14 according to the insufficient power amount in the first high price time zone, the insufficient power amount in the second high price time zone, and the capacity of the storage battery 14.
  • the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 before a predetermined time before the start time of the low price time zone, and the control unit 12 performs a predetermined period from the start time of the low price time zone.
  • the charging / discharging and charging / discharging timing of the storage battery 14 are controlled according to the discharge amount and the charge amount calculated by the calculation unit 11.
  • the predetermined period is 24 hours, but is not limited thereto.
  • the predetermined period may be 12 hours or the like, or may be a period determined by the charge / discharge control device 10 so that the electricity bill can be suppressed.
  • it may be a period according to each cycle of the power purchase unit price, from the start time of the lowest power purchase unit price (start time of the low price period) to the start time of the next lowest power purchase unit price It may be a period.
  • the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 for each predetermined period, and the control unit 12 performs charge / discharge and charge / discharge of the storage battery 14 in the predetermined period.
  • the timing is controlled according to the discharge amount and the charge amount calculated by the calculation unit 11, the present invention is not limited to this.
  • the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 during the predetermined period. You may recalculate.
  • the control unit 12 may control charging / discharging and charging / discharging timing of the storage battery 14 according to the amount of discharge and the amount of charge recalculated by the calculation unit 11.
  • the comprehensive or specific aspect of the present invention may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer-readable CD-ROM.
  • the system, method, integrated circuit, computer You may implement

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The charging/discharging control device (10), which controls charging/discharging of a secondary battery (14) to be charged with electric power generated by a power generation device (13) and grid-connected power from a power grid (200), is equipped with: a calculation unit (11) for calculating a discharging amount and a charging amount of the secondary battery (14) in accordance with the magnitude relationship between the power-purchase unit price and the power-selling unit price of the grid-connected power in a predetermined period, and an estimated value of power demanded by a customer and an estimated value of the power generated by the power generation device (13); and a control unit (12) for controlling the charging/discharging of the secondary battery (14) and the charging/discharging timing in the predetermined period in accordance with the discharging amount and the charging amount calculated by the calculation unit (11).

Description

充放電制御装置、充放電制御方法及びプログラムCharge / discharge control device, charge / discharge control method, and program
 本発明は、蓄電池の充放電を制御する充放電制御装置、充放電制御方法及びプログラムに関する。 The present invention relates to a charge / discharge control device, a charge / discharge control method, and a program for controlling charge / discharge of a storage battery.
 現状、系統からの系統電力の買電単価(電気料金)が時刻に応じて一定であったり、変動したりする電気料金プランが存在する。発電装置と蓄電池とを備えた需要家は、例えば、夜間に買電単価が安くなり昼間に買電単価が高くなる電気料金プランを選択する。このような場合に、電気料金を抑制するために蓄電池の充放電を制御する充放電制御装置が知られている。例えば、充放電制御装置は、買電単価の小さい夜間に系統電力を蓄電池に充電しておき、買電単価の大きい昼間等には、夜間等に蓄電池に充電した電力及び発電装置の発電電力で需要家が必要とする電力を賄う制御を行う。特許文献1には、このような充放電制御装置に関する技術が開示されている。 Currently, there are electricity rate plans in which the unit electricity purchase price (electricity fee) of the grid power from the grid is constant or fluctuates depending on the time of day. A consumer equipped with a power generation device and a storage battery selects, for example, an electricity rate plan in which the power purchase price is reduced at night and the power purchase price is increased in the daytime. In such a case, a charge / discharge control device that controls charge / discharge of a storage battery in order to suppress an electricity bill is known. For example, the charge / discharge control device charges the storage battery at night when the unit price is small, and uses the power charged in the storage battery at night and the power generated by the power generation unit during the day when the unit price is large. Control to cover the electricity required by customers. Patent Document 1 discloses a technique related to such a charge / discharge control device.
特開2015-53810号公報JP2015-53810A
 ところで、現状の電気料金プランは、日毎に変化するものではなく固定的であるため、従来の充放電制御装置は、予め定められた電気料金プランに応じた制御を日毎同じように行っている。しかしながら、将来的に電力が自由化されるにあたり、電気料金プランが多様化し、日毎に電気料金プランが変化することが想定される。 By the way, since the current electricity rate plan is not fixed every day but is fixed, the conventional charge / discharge control apparatus performs the same control according to the predetermined electricity rate plan every day. However, as electricity is liberalized in the future, it is assumed that the electricity rate plans will diversify and the electricity rate plans will change from day to day.
 また、現状の発電電力の余剰電力の売電単価は、買電単価よりも大きく、従来の充放電制御装置は、売電単価が買電単価よりも大きいことを想定した制御をしている。しかしながら、将来的に太陽光発電が普及するにあたり、売電単価の値下がりが想定される。これにより、電気料金プラン、時刻、季節等によっては、売電単価が買電単価よりも安くなることが想定される。 Moreover, the unit price of surplus power in the current generated power is larger than the unit price of power purchase, and the conventional charge / discharge control device performs control assuming that the unit price of power sale is larger than the unit price of power purchase. However, as solar power generation becomes more widespread in the future, the price of electricity sales is expected to drop. As a result, depending on the electricity rate plan, time, season, etc., it is assumed that the power selling unit price will be lower than the power purchasing unit price.
 このように、将来的に、電気料金プランが多様化し、買電単価及び売電単価が日毎に変化することが想定される。 Thus, in the future, it is assumed that electricity rate plans will be diversified, and the unit price of power purchase and the unit price of power sale will change from day to day.
 そこで本発明は、多様化する電気料金プランに対応して電気料金を抑制することができる充放電制御装置、充放電制御方法及びプログラムを提供することを目的とする。 Therefore, an object of the present invention is to provide a charge / discharge control device, a charge / discharge control method, and a program capable of suppressing an electricity charge corresponding to diversified electricity charge plans.
 本発明の一態様に係る充放電制御装置は、発電装置が発電した発電電力、及び、系統からの系統電力を充電するための蓄電池の充放電を制御する充放電制御装置であって、所定の期間における、前記系統電力の買電単価と売電単価との間の大小関係、並びに、需要家における電力需要の予測値及び前記発電装置の発電量の予測値に応じて、前記蓄電池の放電量及び充電量を算出する算出部と、前記所定の期間において、前記蓄電池の充放電及び充放電のタイミングを前記算出部が算出した前記放電量及び前記充電量に応じて制御する制御部と、を備える。 A charge / discharge control device according to an aspect of the present invention is a charge / discharge control device that controls charge / discharge of a storage battery for charging generated power generated by a power generator and grid power from the grid, The amount of discharge of the storage battery according to the magnitude relationship between the unit power purchase price and the power sale unit price of the grid power in the period, and the predicted value of the power demand at the consumer and the predicted value of the power generation amount of the power generator And a calculation unit that calculates a charge amount, and a control unit that controls charge / discharge and charge / discharge timings of the storage battery according to the discharge amount and the charge amount calculated by the calculation unit in the predetermined period. Prepare.
 本発明の一態様に係る充放電制御方法は、発電装置が発電した発電電力、及び、系統からの系統電力を充電するための蓄電池の充放電を制御する充放電制御装置の動作を制御する充放電制御方法であって、所定の期間における、前記系統電力の買電単価と売電単価との間の大小関係、並びに、需要家における電力需要の予測値及び前記発電装置の発電量の予測値に応じて、前記蓄電池の放電量及び充電量を算出し、前記所定の期間において、前記蓄電池の充放電及び充放電のタイミングを算出した前記放電量及び前記充電量に応じて制御する。 A charge / discharge control method according to an aspect of the present invention is a charge / discharge control device that controls the operation of a charge / discharge control device that controls charge / discharge of a storage battery for charging generated power generated by a power generator and grid power from the grid. In the discharge control method, the magnitude relationship between the unit power purchase price and the power sale unit price of the grid power in a predetermined period, the predicted value of the power demand in the consumer, and the predicted value of the power generation amount of the power generator The amount of discharge and the amount of charge of the storage battery are calculated according to the control, and control is performed according to the amount of discharge and the amount of charge calculated for the charge / discharge and charge / discharge timing of the storage battery in the predetermined period.
 本発明の一態様に係るプログラムは、発電装置が発電した発電電力、及び、系統からの系統電力を充電するための蓄電池の充放電を制御する充放電制御装置の動作を制御するプログラムであって、前記充放電制御装置が備えるコンピュータに、所定の期間における、前記系統電力の買電単価と売電単価との間の大小関係、並びに、需要家における電力需要の予測値及び前記発電装置の発電量の予測値に応じて、前記蓄電池の放電量及び充電量を算出させ、前記所定の期間において、前記蓄電池の充放電及び充放電のタイミングを算出させた前記放電量及び前記充電量に応じて制御させる。 The program which concerns on 1 aspect of this invention is a program which controls operation | movement of the charging / discharging control apparatus which controls the charging / discharging of the storage battery for charging the generated electric power which the electric power generating apparatus generated, and the system | strain electric power from a system | strain. In the computer provided in the charge / discharge control device, the magnitude relationship between the power purchase unit price and the power sale unit price of the system power in a predetermined period, and the predicted value of the power demand in the consumer and the power generation of the power generation device According to the predicted value of the amount, the discharge amount and the charge amount of the storage battery are calculated, and the charge amount and the charge / discharge timing of the storage battery are calculated during the predetermined period according to the discharge amount and the charge amount. Let me control.
 本発明に係る充放電制御装置、充放電制御方法及びプログラムによれば、多様化する電気料金プランに対応して電気料金を抑制することができる。 According to the charging / discharging control device, the charging / discharging control method, and the program according to the present invention, it is possible to suppress the electricity bill corresponding to diversified electricity bill plans.
図1は、実施の形態に係る充放電制御システムの一例を示す構成図である。FIG. 1 is a configuration diagram illustrating an example of a charge / discharge control system according to an embodiment. 図2は、発電量の実績データ及び電力需要の実績データの一例を示すテーブルである。FIG. 2 is a table showing an example of power generation result data and power demand result data. 図3は、実施の形態に係る充放電制御システムの動作の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of the operation of the charge / discharge control system according to the embodiment. 図4の(a)は、買電単価が時刻に応じて変動しない場合の買電単価と売電単価との間の大小関係の一例を示す図である。図4の(b)は、実施の形態に係る充放電制御装置の買電単価が時刻に応じて変動しない場合の動作の一例を示す図である。FIG. 4A is a diagram illustrating an example of a magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price does not vary with time. (B) of FIG. 4 is a figure which shows an example of an operation | movement in case the electric power purchase unit price of the charging / discharging control apparatus which concerns on embodiment does not fluctuate according to time. 図5の(a)は、買電単価が時刻に応じて変動しない場合の買電単価と売電単価との間の大小関係の他の一例を示す図である。図5の(b)は、実施の形態に係る充放電制御装置の買電単価が時刻に応じて変動しない場合の動作の他の一例を示す図である。FIG. 5A is a diagram illustrating another example of the magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price does not vary with time. (B) of FIG. 5 is a figure which shows another example of operation | movement when the power purchase unit price of the charging / discharging control apparatus which concerns on embodiment does not change according to time. 図6の(a)は、買電単価が時刻に応じて変動する場合の買電単価と売電単価との間の大小関係の一例を示す図である。図6の(b)は、実施の形態に係る充放電制御装置の買電単価が時刻に応じて変動する場合の動作の一例を示す図である。(A) of FIG. 6 is a figure which shows an example of the magnitude relationship between the power purchase unit price and the power sale unit price in case a power purchase unit price changes according to time. (B) of FIG. 6 is a figure which shows an example of operation | movement when the power purchase unit price of the charging / discharging control apparatus which concerns on embodiment fluctuates according to time. 図7の(a)は、買電単価が時刻に応じて変動する場合の買電単価と売電単価との間の大小関係の他の一例を示す図である。図7の(b)は、実施の形態に係る充放電制御装置の買電単価が時刻に応じて変動する場合の動作の他の一例を示す図である。(A) of FIG. 7 is a figure which shows another example of the magnitude relationship between the power purchase unit price and the power sale unit price in case a power purchase unit price fluctuates according to time. (B) of FIG. 7 is a figure which shows another example of operation | movement when the power purchase unit price of the charging / discharging control apparatus which concerns on embodiment fluctuates according to time. 図8の(a)は、買電単価が時刻に応じて変動する場合の買電単価と売電単価との間の大小関係の他の一例を示す図である。図8の(b)は、実施の形態に係る充放電制御装置の買電単価が時刻に応じて変動する場合の動作の他の一例を示す図である。FIG. 8A is a diagram illustrating another example of the magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price varies with time. (B) of FIG. 8 is a figure which shows another example of operation | movement when the power purchase unit price of the charging / discharging control apparatus which concerns on embodiment fluctuates according to time. 図9は、実施の形態に係る充放電制御装置の蓄電池の放電量で不足電力量の全てを賄いきれない場合の動作の一例を示す図である。FIG. 9 is a diagram illustrating an example of an operation in the case where the discharge amount of the storage battery of the charge / discharge control device according to the embodiment cannot cover all of the insufficient power amount. 図10の(a)は、実施の形態に係る制御部の第1高価格時間帯に蓄電池の放電を開始する動作の一例を示す図である。図10の(b)は、実施の形態に係る制御部の第2高価格時間帯に蓄電池の放電を開始する動作の一例を示す図である。(A) of FIG. 10 is a figure which shows an example of the operation | movement which starts discharge of a storage battery in the 1st high price time slot | zone of the control part which concerns on embodiment. (B) of FIG. 10 is a figure which shows an example of the operation | movement which starts discharge of a storage battery in the 2nd high price time slot | zone of the control part which concerns on embodiment. 図11の(a)は、実施の形態に係る制御部の第1高価格時間帯に蓄電池の放電を開始する動作の他の一例を示す図である。図11の(b)は、実施の形態に係る制御部の第2高価格時間帯に蓄電池の放電を開始する動作の他の一例を示す図である。(A) of FIG. 11 is a figure which shows another example of the operation | movement which starts discharge of a storage battery in the 1st high price time slot | zone of the control part which concerns on embodiment. (B) of FIG. 11 is a figure which shows another example of the operation | movement which starts discharge of a storage battery in the 2nd high price time slot | zone of the control part which concerns on embodiment.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示す。以下の実施の形態で示される数値、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明する。また、各図は、模式図であり、必ずしも厳密に図示されたものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. The numerical values, the constituent elements, the arrangement positions and connection forms of the constituent elements, the steps, the order of the steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention will be described as optional constituent elements that constitute a more preferable embodiment. Each figure is a mimetic diagram and is not necessarily illustrated strictly.
 (実施の形態)
 以下、実施の形態について、図1から図11を用いて説明する。
(Embodiment)
Hereinafter, embodiments will be described with reference to FIGS. 1 to 11.
 [充放電制御システムの構成]
 図1は、実施の形態に係る充放電制御システム1の一例を示す構成図である。
[Configuration of charge / discharge control system]
FIG. 1 is a configuration diagram illustrating an example of a charge / discharge control system 1 according to an embodiment.
 充放電制御システム1では、需要家100における負荷70へ系統200からの系統電力、発電装置13からの発電電力及び蓄電池14に充電された電力が供給される。ここで、需要家100に設置されている複数の機器をまとめて負荷70と呼んでいる。また、充放電制御システム1では、系統電力及び発電電力が蓄電池14に充電される。充放電制御システム1は、充放電制御装置10、発電装置13、蓄電池14、取得部20、記憶部30、予測部40、パワコン(パワーコンディショナ)50、分電盤60及び負荷70を備える。 In the charge / discharge control system 1, the grid power from the grid 200, the generated power from the power generator 13, and the power charged in the storage battery 14 are supplied to the load 70 in the customer 100. Here, a plurality of devices installed in the customer 100 are collectively referred to as a load 70. In the charge / discharge control system 1, the grid power and the generated power are charged in the storage battery 14. The charge / discharge control system 1 includes a charge / discharge control device 10, a power generation device 13, a storage battery 14, an acquisition unit 20, a storage unit 30, a prediction unit 40, a power conditioner (power conditioner) 50, a distribution board 60, and a load 70.
 充放電制御装置10は、算出部11及び制御部12を備える。充放電制御装置10は、系統電力の蓄電池14への充電、系統電力の負荷70への供給、発電電力の蓄電池14への充電、発電電力の負荷70への供給及び蓄電池14に充電された電力の負荷70への放電を制御する。 The charge / discharge control device 10 includes a calculation unit 11 and a control unit 12. The charge / discharge control device 10 charges the storage battery 14 with system power, supplies the system power to the load 70, charges the generated battery with the storage battery 14, supplies the generated power with the load 70, and the power charged in the storage battery 14. The discharge to the load 70 is controlled.
 発電装置13は、負荷70に供給するための電力、系統200へ売電するための電力、及び、蓄電池14に充電するための電力を発電する装置である。発電装置13は、本実施の形態では、太陽光発電装置であり、太陽光を受けることができる時間帯に発電することができる。発電装置13が発電した発電電力は、後述するパワコン50を介して負荷70へ供給、蓄電池14に充電、又は、系統200へ売電される。本実施の形態では、発電装置13が発電した発電電力が需要家100における負荷70の消費電力(電力需要)を上回った余剰電力が蓄電池14に充電、又は、系統200へ売電される。なお、発電装置13は、太陽光発電装置に限らず、風力発電装置、水力発電装置、又は燃料電池等の発電することが可能な装置であればよい。 The power generation device 13 is a device that generates power for supplying the load 70, power for selling power to the system 200, and power for charging the storage battery 14. In the present embodiment, power generation device 13 is a solar power generation device, and can generate power in a time zone in which sunlight can be received. The generated power generated by the power generation device 13 is supplied to the load 70 through the power conditioner 50 described later, charged in the storage battery 14, or sold to the system 200. In the present embodiment, surplus power in which the generated power generated by the power generation device 13 exceeds the power consumption (electric power demand) of the load 70 in the customer 100 is charged in the storage battery 14 or sold to the system 200. The power generation device 13 is not limited to a solar power generation device, and may be any device that can generate power, such as a wind power generation device, a hydroelectric power generation device, or a fuel cell.
 蓄電池14は、発電装置13が発電した発電電力、及び、系統200からの系統電力を充電する。蓄電池14は、発電電力のうち、発電電力が負荷70の消費電力を上回った余剰電力を充電する。 The storage battery 14 charges the generated power generated by the power generation device 13 and the system power from the system 200. The storage battery 14 is charged with surplus power in which the generated power exceeds the power consumption of the load 70 among the generated power.
 算出部11は、所定の期間における、系統電力の買電単価と売電単価との間の大小関係、並びに、需要家100における負荷70の消費電力量である電力需要の予測値及び発電装置13の発電量の予測値に応じて、蓄電池14の放電量及び充電量を算出する。電力需要の予測値及び発電量の予測値は、後述する予測部40が算出する値である。所定の期間は、例えば所定の時刻からの24時間である。 The calculation unit 11 determines the magnitude relationship between the power purchase unit price and the power sale unit price of the grid power in a predetermined period, the predicted value of power demand that is the power consumption amount of the load 70 in the customer 100, and the power generation device 13. The discharge amount and the charge amount of the storage battery 14 are calculated according to the predicted value of the power generation amount. The predicted value of power demand and the predicted value of power generation are values calculated by the prediction unit 40 described later. The predetermined period is, for example, 24 hours from a predetermined time.
 制御部12は、所定の期間において、蓄電池14の充放電及び充放電のタイミングを、算出部11が算出した放電量及び充電量に応じて制御する。つまり、算出部11は、所定の期間における蓄電池14の放電量及び充電量を予め算出しておき、制御部12は、所定の期間において蓄電池14の充放電量が、算出部11が算出した放電量及び充電量になるように蓄電池14を制御する。なお、制御部12は、蓄電池14の充放電量を算出部11が算出した放電量及び充電量の絶対値で制御してもよく、SOC(State Of Charge:充電割合)で制御してもよい。算出部11及び制御部12については、後述する図3から図11で詳細に説明する。なお、算出部11及び制御部12は、例えば、充放電制御装置10が備える記憶部(図示せず)等に記憶された制御プログラムを実行するプロセッサであるが、マイクロコンピュータ又は専用回路等により実現されてもよい。また、図1では、制御部12が蓄電池14の充放電を制御することを、模式的に制御部12から蓄電池14への矢印で示されているが、実際には、制御部12はパワコン50を介して蓄電池14の充放電を制御する。また、図1では、充放電制御装置10は、需要家100内に備えられているが、外部の装置であってもよく、例えば、ネットワーク経由で蓄電池14の充放電を制御してもよい。 The control unit 12 controls the charging / discharging and charging / discharging timing of the storage battery 14 according to the discharge amount and the charge amount calculated by the calculation unit 11 in a predetermined period. That is, the calculation unit 11 calculates in advance the discharge amount and the charge amount of the storage battery 14 in a predetermined period, and the control unit 12 determines the charge / discharge amount of the storage battery 14 in the predetermined period. The storage battery 14 is controlled so that the amount and the charge amount are reached. The control unit 12 may control the charge / discharge amount of the storage battery 14 by the absolute value of the discharge amount and the charge amount calculated by the calculation unit 11, or may be controlled by SOC (State Of Charge). . The calculation unit 11 and the control unit 12 will be described in detail with reference to FIGS. The calculation unit 11 and the control unit 12 are, for example, a processor that executes a control program stored in a storage unit (not shown) included in the charge / discharge control device 10 and is realized by a microcomputer or a dedicated circuit. May be. Further, in FIG. 1, it is schematically indicated by the arrow from the control unit 12 to the storage battery 14 that the control unit 12 controls charging / discharging of the storage battery 14. The charging / discharging of the storage battery 14 is controlled via Moreover, in FIG. 1, although the charging / discharging control apparatus 10 is provided in the consumer 100, an external apparatus may be sufficient, for example, you may control charging / discharging of the storage battery 14 via a network.
 取得部20は、通信部(図示せず)を備え、発電装置13の発電量の実績データを発電装置13から取得し、負荷70の消費電力量(電力需要)の実績データを負荷70から取得し、天気予報データ及び価格データを例えば外部のサーバ等から取得する。天気予報データには、過去の天気の実績データと将来の天気の予測データとが含まれる。発電量の実績データ、電力需要の実績データ及び天気予報データについては、後述する図2で詳細に説明する。価格データは、所定の期間における系統電力の買電単価と余剰電力の売電単価に関するデータである。所定の期間は、上述したように、例えば所定の時刻からの24時間であり、取得部20は、所定の時刻から24時間の買電単価及び売電単価に関するデータを例えば24時間毎に取得する。価格データについては、後述する図4の(a)から図8の(a)で、買電単価及び売電単価の例を示しながら詳細に説明する。取得部20は、取得した発電量の実績データ、電力需要の実績データ、天気予報データ及び価格データを記憶部30に記憶する。 The acquisition unit 20 includes a communication unit (not shown), acquires the actual power generation amount data of the power generation device 13 from the power generation device 13, and acquires the actual power consumption amount (power demand) data of the load 70 from the load 70. Then, weather forecast data and price data are acquired from, for example, an external server. The weather forecast data includes past performance data and future weather prediction data. The actual power generation data, the power demand actual data, and the weather forecast data will be described in detail with reference to FIG. The price data is data relating to the unit power purchase price of grid power and the power sale unit price of surplus power in a predetermined period. As described above, the predetermined period is, for example, 24 hours from a predetermined time, and the acquisition unit 20 acquires data on the power purchase unit price and the power sale unit price for 24 hours from the predetermined time, for example, every 24 hours. . The price data will be described in detail in FIGS. 4A to 8A, which will be described later, with examples of the power purchase unit price and the power sale unit price. The acquisition unit 20 stores the acquired power generation result data, power demand result data, weather forecast data, and price data in the storage unit 30.
 記憶部30は、取得部20が取得した発電量の実績データ、電力需要の実績データ、天気予報データ及び価格データを記憶する記憶装置である。記憶部30は、例えば、半導体メモリ等により実現される。 The storage unit 30 is a storage device that stores the actual power generation result data, the power demand result data, the weather forecast data, and the price data acquired by the acquisition unit 20. The storage unit 30 is realized by, for example, a semiconductor memory.
 予測部40は、記憶部30に記憶された電力需要の実績データから電力需要の予測値、発電量の実績データ及び天気予報データから、発電量の予測値を算出する。電力需要の予測値及び発電量の予測値については、後述する図2で詳細に説明する。予測部40は、算出した電力需要の予測値及び発電量の予測値を算出部11に通知する。また、予測部40は、記憶部30に記憶された価格データを算出部11に通知する。なお、算出部11は、記憶部30に記憶された価格データを記憶部30から直接取得してもよい。 The prediction unit 40 calculates the predicted value of the power generation amount from the predicted value of power demand, the actual power generation amount data, and the weather forecast data from the actual power demand data stored in the storage unit 30. The predicted value of power demand and the predicted value of power generation will be described in detail with reference to FIG. The prediction unit 40 notifies the calculation unit 11 of the calculated predicted power demand value and the predicted power generation amount. Further, the prediction unit 40 notifies the calculation unit 11 of the price data stored in the storage unit 30. Note that the calculation unit 11 may directly acquire the price data stored in the storage unit 30 from the storage unit 30.
 パワコン50は、系統200、発電装置13、蓄電池14及び負荷70の間で電力を所望の電力に変換する装置である。具体的には、パワコン50は、発電装置13及び蓄電池14から供給される直流電力を交流電力に変換する。また、パワコン50は、蓄電池14へ供給する電力を交流電力から直流電力に変換する。 The power conditioner 50 is a device that converts electric power into desired power among the system 200, the power generation device 13, the storage battery 14, and the load 70. Specifically, the power conditioner 50 converts DC power supplied from the power generation device 13 and the storage battery 14 into AC power. The power conditioner 50 converts the power supplied to the storage battery 14 from AC power to DC power.
 分電盤60は、系統200、発電装置13及び蓄電池14から供給される電力を負荷70(複数の機器)に供給する制御を行う。分電盤60は、ブレーカ、リレー等を備える。 The distribution board 60 performs control to supply power supplied from the system 200, the power generation device 13 and the storage battery 14 to the load 70 (a plurality of devices). The distribution board 60 includes a breaker, a relay, and the like.
 負荷70は、需要家100に設けられた複数の機器を示すものであり、例えば、需要家100に設けられたエアコン、冷蔵庫、テレビ、照明器具等の電気機器である。 The load 70 indicates a plurality of devices provided in the customer 100, and is, for example, an electrical device such as an air conditioner, a refrigerator, a television, or a lighting device provided in the customer 100.
 なお、図1に示される構成要素間をつなぐ実線は、電力の経路を示し、破線の矢印は信号の経路を示す。 Note that a solid line connecting the components shown in FIG. 1 indicates a power path, and a broken-line arrow indicates a signal path.
 [発電電力の実績データ及び消費電力の実績データ]
 次に、記憶部30に記憶される発電装置13の発電電力の実績データ及び負荷70の消費電力の実績データについて、図2を用いて説明する。
[Actual data of generated power and actual data of power consumption]
Next, the actual data of the generated power of the power generation device 13 and the actual data of the power consumption of the load 70 stored in the storage unit 30 will be described with reference to FIG.
 図2は、発電量の実績データ及び電力需要の実績データの一例を示すテーブルである。 FIG. 2 is a table showing an example of the actual power generation result data and the actual power demand data.
 図2に示される電力需要は、予測部40が所定の時刻(例えば0時)以後所定の期間(例えば24時間)の電力需要の予測値を算出するための、取得部20が取得した所定の時刻以前の24時間の電力需要の実績データである。図2に示される時刻0時の電力需要350Whは、過去の0時から1時の電力需要の実績が350Whであったことを意味する。そして、予測部40は、取得部20が取得した電力需要の実績データから電力需要の予測値を算出する。 The power demand shown in FIG. 2 is a predetermined value acquired by the acquisition unit 20 for the prediction unit 40 to calculate a predicted value of power demand for a predetermined period (for example, 24 hours) after a predetermined time (for example, 0:00). This is actual data of power demand for 24 hours before the time. The power demand 350 Wh at time 0:00 shown in FIG. 2 means that the actual power demand from 0:00 to 1:00 in the past was 350 Wh. Then, the prediction unit 40 calculates a predicted value of power demand from the actual power demand data acquired by the acquisition unit 20.
 図2に示される発電量は、予測部40が所定の時刻(例えば0時)以後所定の期間(例えば24時間)の発電装置13の発電量の予測値を算出するための、取得部20が取得した所定の時刻以前の24時間の発電装置13の発電電力の実績データである。図2に示される時刻6時の発電量200Whは、過去の6時から7時の発電電力量の実績が200Whであったことを意味する。また、図2に示される天気は、取得部20が取得した天気予報データのうち所定の時刻以前の24時間の過去の天気の実績データである。つまり、例えば、図2に示される時刻6時の晴は、過去の6時から7時の天気の実績が晴れであったことを意味する。そして、予測部40は、取得部20が取得した発電量の実績データ及び天気予報データから、発電量の予測値を算出する。 The power generation amount shown in FIG. 2 is calculated by the acquisition unit 20 for the prediction unit 40 to calculate a predicted value of the power generation amount of the power generation device 13 for a predetermined period (for example, 24 hours) after a predetermined time (for example, 0:00). It is the actual data of the generated power of the power generator 13 for 24 hours before the acquired predetermined time. The power generation amount 200 Wh at time 6:00 shown in FIG. 2 means that the actual power generation amount from 6:00 to 7:00 in the past was 200 Wh. Further, the weather shown in FIG. 2 is past data of past weather for 24 hours before a predetermined time in the weather forecast data acquired by the acquisition unit 20. That is, for example, the clear weather at the time of 6 o'clock shown in FIG. 2 means that the past weather record from 6 o'clock to 7 o'clock was clear. Then, the prediction unit 40 calculates a predicted value of the power generation amount from the actual power generation data and weather forecast data acquired by the acquisition unit 20.
 なお、需要家100が備える発電装置(太陽光発電装置)13は、需要家100の緯度、経度、太陽電池の容量、設置方位及び設置角度等に対応した、発電量の実績データを予め有していてもよい。 The power generation device (solar power generation device) 13 included in the customer 100 has in advance power generation amount actual data corresponding to the latitude, longitude, solar cell capacity, installation orientation, installation angle, and the like of the customer 100. It may be.
 なお、予測部40は、所定の時刻として0時から所定の期間として24時間の電力需要の予測値及び発電量の予測値を算出したが、これに限らず、例えば23時から24時間の電力需要の予測値及び発電量の予測値を算出してもよい。また、予測部40は、例えば0時から12時間の電力需要の予測値及び発電量の予測値を算出してもよい。つまり、電力需要の予測値及び発電量の予測値を算出する時刻及び当該時刻からの期間は限定されない。ただし、電力需要の予測値及び発電量の予測値を算出する時刻には、好ましい時刻があるが、これについては後述する。 Note that the prediction unit 40 calculates the predicted value of power demand and the predicted value of power generation for 24 hours as a predetermined period from 0:00 as a predetermined time, but not limited thereto, for example, power from 24 hours to 24 hours A predicted value of demand and a predicted value of power generation amount may be calculated. Further, the prediction unit 40 may calculate, for example, a predicted value of power demand and a predicted value of power generation for 12 hours from 0:00. That is, the time for calculating the predicted value of power demand and the predicted value of power generation and the period from that time are not limited. However, there is a preferred time for calculating the predicted value of power demand and the predicted value of power generation amount, which will be described later.
 このように、記憶部30には、発電量の実績データ及び電力需要の実績データが記憶され、これに基づいて、予測部40は、電力需要の予測値及び発電量の予測値を算出する。 Thus, the storage unit 30 stores the actual power generation data and the actual power demand data, and based on this, the prediction unit 40 calculates the predicted power demand value and the predicted power generation value.
 [充放電制御システムの動作]
 次に、充放電制御システム1の動作について、図3を用いて説明する。
[Operation of charge / discharge control system]
Next, operation | movement of the charging / discharging control system 1 is demonstrated using FIG.
 図3は、実施の形態に係る充放電制御システム1の動作の一例を示すフローチャートである。 FIG. 3 is a flowchart showing an example of the operation of the charge / discharge control system 1 according to the embodiment.
 まず、取得部20は、発電量の実績データ、電力需要の実績データ、天気予報データ及び価格データを取得する(ステップS11)。 First, the acquisition unit 20 acquires actual power generation data, power demand actual data, weather forecast data, and price data (step S11).
 次に、予測部40は、電力需要の予測値及び発電量の予測値を算出する(ステップS12)。ステップS11及びステップS12での動作の説明は、図2で説明したため省略する。 Next, the prediction unit 40 calculates a predicted value of power demand and a predicted value of power generation (step S12). The description of the operation in step S11 and step S12 has been described with reference to FIG.
 次に、算出部11は、所定の期間における、買電単価と売電単価との間の大小関係、並びに、電力需要の予測値及び発電量の予測値に応じて、蓄電池14の放電量及び充電量を算出する(ステップS13)。 Next, the calculation unit 11 determines the amount of discharge of the storage battery 14 according to the magnitude relationship between the power purchase unit price and the power sale unit price in a predetermined period, and the predicted value of power demand and the predicted value of power generation. A charge amount is calculated (step S13).
 そして、制御部12は、所定の期間において、蓄電池14の充放電及び充放電のタイミングを算出部11が算出した放電量及び充電量に応じて制御する(ステップS14)。ステップS13及びステップS14での動作については、後述する図4から図11で詳細に説明する。 And the control part 12 controls the charging / discharging and charging / discharging timing of the storage battery 14 according to the discharge amount and charge amount which the calculation part 11 calculated in the predetermined period (step S14). The operations in step S13 and step S14 will be described in detail with reference to FIGS.
 [充放電制御装置の動作]
 ここで、ステップS13及びステップS14の動作(充放電制御装置10の動作)について、買電単価と売電単価との間の大小関係の例を示した図4から図11を用いて説明する。
[Operation of charge / discharge control device]
Here, the operation of Step S13 and Step S14 (operation of the charge / discharge control device 10) will be described with reference to FIGS. 4 to 11 showing examples of the magnitude relationship between the power purchase unit price and the power sale unit price.
 まず、電気料金プランが時刻に応じて変動しない場合の充放電制御装置10の動作について、図4及び図5を用いて説明する。 First, the operation of the charge / discharge control apparatus 10 when the electricity rate plan does not vary with time will be described with reference to FIGS. 4 and 5.
 図4の(a)は、買電単価が時刻に応じて変動しない場合の買電単価と売電単価との間の大小関係の一例を示す図である。図4の(a)に示される実線は、買電単価を示し、点線は売電単価を示す。買電単価が20円/kWhであり、売電単価が35円/kWhであることが示されている。価格データは、図4の(a)に示されるように、所定の期間における系統電力の買電単価と余剰電力の売電単価に関するデータである。同様に、後述する図5の(a)から図8の(a)にも価格データの一例が示される。 (A) of FIG. 4 is a diagram illustrating an example of a magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price does not vary with time. The solid line shown in (a) of FIG. 4 shows the power purchase unit price, and the dotted line shows the power sale unit price. The power purchase unit price is 20 yen / kWh, and the power sale unit price is 35 yen / kWh. As shown in FIG. 4A, the price data is data relating to the unit power purchase price of the grid power and the power sale unit price of surplus power in a predetermined period. Similarly, an example of price data is also shown in FIGS. 5A to 8A described later.
 図4の(b)は、実施の形態に係る充放電制御装置10の買電単価が時刻に応じて変動しない場合の動作の一例を示す図である。図4の(b)は、具体的には、所定の期間(例えば24時間)に亘って買電単価が時刻に応じて変動せず、買電単価が売電単価よりも小さい場合の、充放電制御装置10の動作の一例を示す図である。図4の(b)に示される実線は、電力需要の予測値を示し、点線は発電量の予測値を示す。また、領域110は系統200から購入する買電量を示す。領域120は発電装置13の発電量のうち電力需要に供給される電力量を示す。領域130は発電装置13の発電電力が負荷70の消費電力を上回った場合の余剰電力量であり系統200への売電量を示す。算出部11は、電力需要の予測値及び発電量の予測値に応じて、単位時間(例えば1時間)毎に、系統電力の買電量、発電量のうち電力需要に供給される電力量、及び、余剰電力の売電量を算出する。 (B) of FIG. 4 is a figure which shows an example of operation | movement when the power purchase unit price of the charging / discharging control apparatus 10 which concerns on embodiment does not change according to time. Specifically, (b) in FIG. 4 shows the charging when the power purchase unit price does not vary with time over a predetermined period (for example, 24 hours) and the power purchase unit price is smaller than the power sale unit price. 4 is a diagram illustrating an example of the operation of the discharge control device 10. FIG. The solid line shown in FIG. 4B indicates the predicted value of power demand, and the dotted line indicates the predicted value of power generation. An area 110 indicates the amount of power purchased from the system 200. A region 120 indicates the amount of power supplied to the power demand out of the amount of power generated by the power generation device 13. A region 130 is a surplus power amount when the generated power of the power generation device 13 exceeds the power consumption of the load 70, and indicates the amount of power sold to the system 200. According to the predicted value of the power demand and the predicted value of the power generation amount, the calculation unit 11 purchases the grid power for every unit time (for example, one hour), the power amount supplied to the power demand out of the power generation amount, and The amount of surplus power sold is calculated.
 売電単価は所定の期間に亘って常に買電単価よりも大きいため、発電装置13が発電した発電電力が電力需要を上回った場合の余剰電力を蓄電池14に充電するよりも売電するほうが、電気料金が抑制される。具体的には、余剰電力を蓄電池14に充電しても、売電単価35円/kWhよりも単価が小さい買電単価20円/kWhの電力量の購入量が減少するだけなので、余剰電力を売電単価35円/kWhで売電することで電気料金が抑制される。ここで電気料金とは、系統電力の買電料金と余剰電力の売電料金の差額とする。 Since the unit price of power sale is always larger than the unit price of power purchase over a predetermined period, it is better to sell power than to charge the storage battery 14 with surplus power when the generated power generated by the power generation device 13 exceeds the power demand. Electricity charges are reduced. Specifically, even if the surplus power is charged in the storage battery 14, the purchase amount of the power purchase price of 20 yen / kWh, which is lower than the unit price of 35 yen / kWh, only decreases the surplus power. Electricity costs are reduced by selling electricity at a unit price of 35 yen / kWh. Here, the electricity rate is the difference between the power purchase fee for grid power and the power sale fee for surplus power.
 図5の(a)は、買電単価が時刻に応じて変動しない場合の買電単価と売電単価との間の大小関係の他の一例を示す図である。図5の(a)に示される実線は、買電単価を示し、点線は売電単価を示す。買電単価が20円/kWhであり、売電単価が10円/kWhであることが示されている。 (A) of FIG. 5 is a diagram illustrating another example of the magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price does not vary with time. The solid line shown in (a) of FIG. 5 shows the unit price of power purchase, and the dotted line shows the unit price of power sale. It is shown that the power purchase unit price is 20 yen / kWh and the power sale unit price is 10 yen / kWh.
 図5の(b)は、実施の形態に係る充放電制御装置10の買電単価が時刻に応じて変動しない場合の動作の他の一例を示す図である。図5の(b)は、具体的には、所定の期間(例えば24時間)に亘って買電単価が時刻に応じて変動せず、買電単価が売電単価よりも大きい場合の、充放電制御装置10の動作の一例を示す図である。図5の(b)に示される実線は、電力需要を示し、点線は発電量を示す。領域110及び領域120は、図4の(b)におけるものと同じであるため、説明は省略する。領域140は発電装置13の発電電力が電力需要を上回った場合の余剰電力量であり蓄電池14への充電量を示す。領域150は蓄電池14に充電した電力の放電量を示す。算出部11は、電力需要の予測値及び発電量の予測値に応じて、単位時間(例えば1時間)毎に、系統電力の買電量、発電量のうち電力需要に供給される電力量、蓄電池14への余剰電力の充電量、及び、蓄電池14の放電量を算出する。 (B) of FIG. 5 is a figure which shows another example of operation | movement when the power purchase unit price of the charging / discharging control apparatus 10 which concerns on embodiment does not change according to time. Specifically, (b) in FIG. 5 is a charge when the power purchase unit price does not vary with time over a predetermined period (for example, 24 hours) and the power purchase unit price is greater than the power sale unit price. 4 is a diagram illustrating an example of the operation of the discharge control device 10. FIG. The solid line shown in FIG. 5B indicates power demand, and the dotted line indicates the amount of power generation. Since the area 110 and the area 120 are the same as those in FIG. A region 140 is a surplus power amount when the generated power of the power generation device 13 exceeds the power demand, and indicates a charge amount to the storage battery 14. A region 150 indicates a discharge amount of power charged in the storage battery 14. The calculation unit 11 determines the amount of power supplied to the power demand out of the amount of power purchased, the amount of power generated, and the storage battery for each unit time (for example, one hour) according to the predicted value of power demand and the predicted value of power generation. The amount of surplus power charged to 14 and the amount of discharge of the storage battery 14 are calculated.
 売電単価は所定の期間に亘って常に買電単価よりも小さいため、発電装置13が発電した発電電力が電力需要を上回った場合の余剰電力が売電されずに蓄電池14に充電されるほうが、電気料金が抑制される。具体的には、余剰電力を売電しても、買電単価20円/kWhよりも単価が小さい売電単価10円/kWhでしか売電できないので、余剰電力を蓄電池14に充電して買電単価20円/kWhの系統電力の購入量を減少させることで、電気料金が抑制される。 Since the unit price of power sale is always smaller than the unit price of power purchase over a predetermined period, surplus power when the generated power generated by the power generation device 13 exceeds the power demand should be charged to the storage battery 14 without being sold. , Electricity charges are suppressed. Specifically, even if surplus power is sold, power can be sold only at a power selling price of 10 yen / kWh, which is smaller than the power purchase price of 20 yen / kWh. Therefore, surplus power is charged to the storage battery 14 and purchased. Electricity charges are reduced by reducing the purchase amount of grid power with a unit price of 20 yen / kWh.
 このように、算出部11は、買電単価と売電単価との間の大小関係に基づいて、余剰電力を蓄電池14に充電するか否か判断する。具体的には、算出部11は、所定の期間に亘って買電単価が売電単価よりも小さい場合、余剰電力を蓄電池14に充電せずに売電すると判断し、所定の期間に亘って買電単価が売電単価よりも大きい場合、余剰電力を蓄電池14に充電すると判断する。算出部11は、余剰電力を蓄電池14に充電すると判断した場合、図5の(b)に示されるような電力需要の予測値及び発電量の予測値に応じて、余剰電力に基づく蓄電池14の充電量を算出する。そして、制御部12は、所定の期間において、蓄電池14の余剰電力の充電及び充電のタイミングを算出部11が算出した充電量に応じて制御する。具体的には、制御部12は、図5の(b)に示される余剰電力が発生するタイミングで算出部11が算出した充電量を余剰電力から充電する。 Thus, the calculation unit 11 determines whether or not the storage battery 14 is charged with surplus power based on the magnitude relationship between the power purchase unit price and the power sale unit price. Specifically, when the power purchase unit price is smaller than the power sale unit price over a predetermined period, the calculation unit 11 determines that the surplus power is sold without charging the storage battery 14, and over the predetermined period. When the power purchase unit price is larger than the power sale unit price, it is determined that the surplus power is charged in the storage battery 14. When it is determined that the storage battery 14 is charged with surplus power, the calculation unit 11 determines the storage battery 14 based on the surplus power according to the predicted power demand value and the predicted power generation amount as illustrated in FIG. Calculate the amount of charge. And the control part 12 controls the charge of the surplus electric power of the storage battery 14, and the timing of charge according to the charge amount which the calculation part 11 calculated in the predetermined period. Specifically, the control unit 12 charges the amount of charge calculated by the calculation unit 11 from the surplus power at the timing when the surplus power shown in FIG. 5B is generated.
 次に、買電単価に関する電気料金プランが時刻に応じて変動する場合の充放電制御装置10の動作について、図6から図9を用いて説明する。 Next, the operation of the charge / discharge control apparatus 10 in the case where the electricity rate plan related to the unit price of electric power varies according to time will be described with reference to FIGS.
 図6の(a)は、買電単価が時刻に応じて変動する場合の買電単価と売電単価との間の大小関係の一例を示す図である。図6の(a)に示される実線は、買電単価を示し、点線は売電単価を示す。買電単価は9時から21時の間が28円/kWh、21時から9時の間が15円/kWhであり、売電単価は35円/kWhであることが示されている。つまり、所定の期間(0時から24時)には、低価格時間帯(21時から9時)と低価格時間帯よりも買電単価が大きい高価格時間帯(9時から21時)とが含まれていることが示されている。 (A) of FIG. 6 is a diagram illustrating an example of a magnitude relationship between the power purchase unit price and the power sale unit price when the power purchase unit price varies according to time. The solid line shown in (a) of FIG. 6 indicates the power purchase unit price, and the dotted line indicates the power sale unit price. The power purchase unit price is 28 yen / kWh from 9:00 to 21:00, 15 yen / kWh from 21:00 to 9:00, and the power sale unit price is 35 yen / kWh. That is, in a predetermined period (from 0:00 to 24:00), a low price time zone (from 21:00 to 9:00) and a high price time zone (from 9:00 to 21:00) where the power purchase unit price is larger than the low price time zone. Is shown to be included.
 図6の(b)は、実施の形態に係る充放電制御装置10の買電単価が時刻に応じて変動する場合の動作の一例を示す図である。図6の(b)は、具体的には、所定の期間(例えば24時間)において買電単価が時刻に応じて変動し、所定の期間に亘って買電単価が売電単価よりも小さい場合の、充放電制御装置10の動作の一例を示す図である。図6の(b)に示される実線は、電力需要を示し、点線は発電量を示す。領域110、領域120及び領域130は、図4の(b)におけるものと同じであるため、説明は省略する。領域160は低価格時間帯での系統電力の蓄電池14への充電量を示す。領域170は高価格時間帯における電力需要が発電電力を上回った場合の、発電電力では賄いきれない電力である不足電力量を示す。領域170は、言い換えると高価格時間帯での蓄電池14の放電量を示す。算出部11は、電力需要の予測値及び発電量の予測値に応じて、単位時間(例えば1時間)毎に、系統電力の買電量、発電量のうち電力需要に供給される電力量、余剰電力の売電量、低価格時間帯での系統電力の蓄電池14への充電量、及び、高価格時間帯での蓄電池14の放電量を算出する。 (B) of FIG. 6 is a figure which shows an example of operation | movement when the power purchase unit price of the charging / discharging control apparatus 10 which concerns on embodiment fluctuates according to time. Specifically, FIG. 6B shows a case where the power purchase unit price fluctuates according to time in a predetermined period (for example, 24 hours), and the power purchase unit price is smaller than the power sale unit price over the predetermined period. It is a figure which shows an example of operation | movement of the charging / discharging control apparatus. The solid line shown in (b) of FIG. 6 shows power demand, and the dotted line shows the amount of power generation. The region 110, the region 120, and the region 130 are the same as those in FIG. A region 160 indicates a charge amount of the system power to the storage battery 14 in the low price time zone. A region 170 indicates a shortage amount of electric power that cannot be covered by the generated power when the power demand in the high price period exceeds the generated power. In other words, the area 170 indicates the discharge amount of the storage battery 14 in the high price time zone. The calculation unit 11 determines the amount of power supplied to the power demand out of the amount of power purchased, the amount of power generated, and the surplus for each unit time (for example, 1 hour) according to the predicted value of power demand and the predicted value of power generation. The amount of electric power sold, the amount of grid power charged to the storage battery 14 in the low price period, and the amount of discharge of the storage battery 14 in the high price period are calculated.
 売電単価は所定の期間に亘って常に買電単価よりも大きいため、発電装置13が発電した発電電力が電力需要を上回った場合の余剰電力が蓄電池14に充電されるよりも売電されるほうが、電気料金が抑制される。具体的には、余剰電力を蓄電池14に充電しても、売電単価35円/kWhよりも単価が小さい買電単価28円/kWhの系統電力の購入量が減少するだけなので、余剰電力を売電単価35円/kWhで売電することで電気料金が抑制される。また、高価格時間帯における発電電力のみでは賄いきれない不足電力量が発生するため、低価格時間帯において系統電力が蓄電池14に充電されることで、電気料金が抑制される。具体的には、高価格時間帯における不足電力量を系統200から高価格時間帯に買電単価28円/kWhで購入するよりも、低価格時間帯に買電単価15円/kWhで購入して蓄電池14に充電しておくことで電気料金が抑制される。 Since the unit price of power sale is always larger than the unit price of power purchase over a predetermined period, surplus power when the generated power generated by the power generation device 13 exceeds the power demand is sold rather than charging the storage battery 14. However, the electricity bill is reduced. Specifically, even if surplus power is charged to the storage battery 14, the purchase amount of the system power with a unit price of 28 yen / kWh whose unit price is lower than the unit price of 35 yen / kWh is reduced, so surplus power is reduced. Electricity costs are reduced by selling electricity at a unit price of 35 yen / kWh. In addition, since an insufficient amount of electric power that cannot be covered only by the generated power in the high price period is generated, the electricity charge is suppressed by charging the storage battery 14 in the low price period. Specifically, rather than purchasing the power shortage in the high price period from the system 200 at a power purchase price of 28 yen / kWh in the high price period, purchase at a power purchase price of 15 yen / kWh in the low price period. By charging the storage battery 14, the electricity bill is suppressed.
 図7の(a)は、買電単価が時刻に応じて変動する場合の買電単価と売電単価との間の大小関係の他の一例を示す図である。図7の(a)に示される実線は、買電単価を示し、点線は売電単価を示す。買電単価は9時から21時の間が28円/kWh、21時から9時の間が15円/kWhであり、売電単価は10円/kWhであることが示されている。 (A) of FIG. 7 is a figure which shows another example of the magnitude relationship between the power purchase unit price and the power sale unit price in case a power purchase unit price changes according to time. The solid line shown in (a) of FIG. 7 shows the power purchase unit price, and the dotted line shows the power sale unit price. The power purchase unit price is 28 yen / kWh from 9:00 to 21:00, 15 yen / kWh from 21:00 to 9:00, and the power sale unit price is 10 yen / kWh.
 図7の(b)は、実施の形態に係る充放電制御装置10の買電単価が時刻に応じて変動する場合の動作の他の一例を示す図である。図7の(b)は、具体的には、所定の期間(例えば24時間)において買電単価が時刻に応じて変動し、所定の期間に亘って買電単価が売電単価よりも大きい場合の、充放電制御装置10の動作の一例を示す図である。図7の(b)に示される実線は、電力需要を示し、点線は発電量を示す。領域110、領域120及び領域140は、図5の(b)におけるものと同じであり、領域160は図6の(b)におけるものと同じであるため、説明は省略する。領域170a及び領域170bは高価格時間帯における電力需要が発電電力を上回った場合の、発電電力では賄いきれない電力である不足電力量を示す。領域170aは、言い換えると、系統電力によって充電された蓄電池14の放電量を示す。領域170bは、言い換えると、系統電力及び余剰電力によって充電された蓄電池14の放電量を示す。算出部11は、電力需要の予測値及び発電量の予測値に応じて、単位時間(例えば1時間)毎に、系統電力の買電量、発電量のうち電力需要に供給される電力量、蓄電池14への余剰電力の充電量、低価格時間帯での系統電力の蓄電池14への充電量、及び、蓄電池14の放電量を算出する。 (B) of FIG. 7 is a figure which shows another example of operation | movement when the power purchase unit price of the charging / discharging control apparatus 10 which concerns on embodiment fluctuates according to time. Specifically, (b) of FIG. 7 shows a case where the power purchase unit price fluctuates according to time in a predetermined period (for example, 24 hours), and the power purchase unit price is larger than the power sale unit price over a predetermined period. It is a figure which shows an example of operation | movement of the charging / discharging control apparatus. The solid line shown in FIG. 7B indicates the power demand, and the dotted line indicates the amount of power generation. The region 110, the region 120, and the region 140 are the same as those in FIG. 5B, and the region 160 is the same as that in FIG. Regions 170a and 170b indicate the amount of power shortage, which is power that cannot be covered by the generated power when the power demand in the high price period exceeds the generated power. In other words, the area 170a indicates the amount of discharge of the storage battery 14 charged by the system power. In other words, the area 170b shows the discharge amount of the storage battery 14 charged with the grid power and surplus power. The calculation unit 11 determines the amount of power supplied to the power demand out of the amount of power purchased, the amount of power generated, and the storage battery for each unit time (for example, one hour) according to the predicted value of power demand and the predicted value of power generation. 14, the amount of surplus power charged to 14, the amount of grid power charged to the storage battery 14 in the low-price time zone, and the amount of discharge of the storage battery 14 are calculated.
 売電単価は所定の期間に亘って常に買電単価よりも小さいため、発電装置13が発電した発電電力が電力需要を上回った場合の余剰電力が売電されるよりも蓄電池14に充電されるほうが、電気料金が抑制される。具体的には、余剰電力を売電しても、高価格時間帯での買電単価28円/kWhよりも単価が小さい売電単価10円/kWhでしか売電できないので、余剰電力を蓄電池14に充電して買電単価28円/kWhの系統電力の購入量を減少させることで、電気料金が抑制される。また、高価格時間帯における不足電力量が発生し、かつ、余剰電力に基づく蓄電池14の充電量で高価格時間帯における不足電力量を全て賄いきれない場合、低価格時間帯において系統電力が蓄電池14に充電されることで、電気料金が抑制される。高価格時間帯における不足電力量が発生せず、電力需要を発電装置13の発電量で全て賄いきれる場合、低価格時間帯において系統電力が蓄電池14に充電される必要がない。また、高価格時間帯における不足電力量が発生しても、余剰電力に基づく蓄電池14の充電量で不足電力量を全て賄いきれる場合も、低価格時間帯において系統電力が蓄電池14に充電される必要がない。図7の(b)では、高価格時間帯における不足電力量が発生し、かつ、余剰電力に基づく蓄電池14の充電量で高価格時間帯における不足電力量を全て賄いきれないため、低価格時間帯において系統電力が蓄電池14に充電される。これにより、高価格時間帯における不足電力量を系統200から高価格時間帯に買電単価28円/kWhで購入するよりも、低価格時間帯に買電単価15円/kWhで購入することで電気料金が抑制される。 Since the unit price of power sale is always smaller than the unit price of power purchase over a predetermined period, the storage battery 14 is charged rather than surplus power when the generated power generated by the power generation device 13 exceeds the power demand. However, the electricity bill is reduced. Specifically, even if surplus power is sold, power can be sold only at a power unit price of 10 yen / kWh, which is smaller than the unit price of 28 yen / kWh in the high price period. By charging 14 and reducing the purchase amount of grid power with a power purchase unit price of 28 yen / kWh, the electricity bill is suppressed. In addition, when a shortage of electric power occurs in the high price time zone and the amount of charge of the storage battery 14 based on surplus power cannot cover all the shortage of power in the high price time zone, the grid power is stored in the low price time zone. By charging to 14, the electricity bill is suppressed. When there is no shortage of electric power in the high price period and the power demand can be fully covered by the power generation amount of the power generation device 13, it is not necessary to charge the storage battery 14 with the grid power in the low price period. In addition, even when a shortage of electric power occurs in the high price period, the system power is charged to the storage battery 14 in the low price period even when the shortage of electric power can be covered by the amount of charge of the storage battery 14 based on surplus power. There is no need. In (b) of FIG. 7, since there is a shortage of electric power in the high price time zone and the amount of charge of the storage battery 14 based on surplus power cannot cover all the shortage of electric power in the high price time zone, The grid power is charged to the storage battery 14 in the band. As a result, it is possible to purchase an insufficient amount of electricity in the high price time zone at a power purchase price of 15 yen / kWh in the low price time period, rather than purchasing from the system 200 at a power purchase price of 28 yen / kWh in the high price time zone. Electricity charges are reduced.
 図8の(a)は、買電単価が時刻に応じて変動する場合の買電単価と売電単価との間の大小関係の他の一例を示す図である。図8の(a)に示される実線は、買電単価を示し、点線は売電単価を示す。買電単価は9時から21時の間が28円/kWh、21時から9時の間が15円/kWhであり、売電単価は20円/kWhであることが示されている。つまり、売電単価は低価格時間帯における買電単価よりも大きく高価格時間帯における買電単価よりも小さい。 (A) of FIG. 8 is a figure which shows another example of the magnitude relationship between the power purchase unit price and the power sale unit price in case a power purchase unit price changes according to time. The solid line shown in (a) of FIG. 8 indicates the power purchase unit price, and the dotted line indicates the power sale unit price. The power purchase unit price is 28 yen / kWh between 9 am and 9 pm, 15 yen / kWh between 9 pm and 9 pm, and the power sale unit price is 20 yen / kWh. That is, the power selling unit price is larger than the power buying unit price in the low price period and smaller than the power buying unit price in the high price period.
 図8の(b)は、実施の形態に係る充放電制御装置10の買電単価が時刻に応じて変動する場合の動作の他の一例を示す図である。図8の(b)は、具体的には、所定の期間(例えば24時間)において買電単価が時刻に応じて変動し、売電単価が低価格時間帯における買電単価よりも大きく高価格時間帯における買電単価よりも小さい場合の、充放電制御装置10の動作の一例を示す図である。図8の(b)に示される実線は、電力需要を示し、点線は発電量を示す。図8の(b)に示される各領域は、図6の(b)におけるものと同じであるため、説明は省略する。 (B) of FIG. 8 is a figure which shows another example of operation | movement when the power purchase unit price of the charging / discharging control apparatus 10 which concerns on embodiment fluctuates according to time. Specifically, (b) in FIG. 8 shows that the power purchase unit price fluctuates according to time in a predetermined period (for example, 24 hours), and the power sale unit price is higher than the power purchase unit price in the low price period. It is a figure which shows an example of operation | movement of the charging / discharging control apparatus 10 in case it is smaller than the power purchase unit price in a time slot | zone. The solid line shown in (b) of FIG. 8 shows power demand, and the dotted line shows the amount of power generation. Each region shown in FIG. 8B is the same as that in FIG. 6B, and the description thereof is omitted.
 高価格時間帯における発電電力のみでは賄いきれない不足電力量が発生するため、低価格時間帯において系統電力が蓄電池14に充電されることで、電気料金が抑制される。具体的には、高価格時間帯における不足電力量を系統200から高価格時間帯に買電単価28円/kWhで購入するよりも、低価格時間帯に買電単価15円/kWhで購入して蓄電池14に充電しておくことで電気料金が抑制される。また、売電単価は低価格時間帯における買電単価よりも大きいため、余剰電力が蓄電池14に充電されるよりも売電されるほうが、電気料金が抑制される。具体的には、余剰電力を蓄電池14に充電しても、売電単価20円/kWhよりも単価が小さい低価格時間帯での買電単価15円/kWhの系統電力の購入量(充電量)が減少するだけなので、余剰電力を売電単価20円/kWhで売電することで電気料金が抑制される。 Since an insufficient amount of electric power that cannot be covered only by the generated electric power in the high price period is generated, the system charge is charged to the storage battery 14 in the low price period, thereby suppressing the electricity bill. Specifically, rather than purchasing the power shortage in the high price period from the system 200 at a power purchase price of 28 yen / kWh in the high price period, purchase at a power purchase price of 15 yen / kWh in the low price period. By charging the storage battery 14, the electricity bill is suppressed. Further, since the unit price of power sale is larger than the unit price of power purchase in the low price period, the electricity price is suppressed when surplus power is sold rather than being charged to the storage battery 14. Specifically, even if surplus power is charged in the storage battery 14, the purchase amount of system power (charge amount) at a power purchase price of 15 yen / kWh in a low price period where the unit price is less than 20 yen / kWh. ) Only decreases, and the electricity bill is suppressed by selling surplus power at a unit price of 20 yen / kWh.
 このように、所定の期間には、低価格時間帯と低価格時間帯よりも買電単価が大きい高価格時間帯とが含まれる。算出部11は、少なくとも高価格時間帯における電力需要が発電電力を上回った場合の、発電電力では賄いきれない電力である不足電力量が発生するか否かに基づいて、系統電力を蓄電池14に充電するか否か判断する。算出部11は、高価格時間帯における不足電力量が発生する場合、系統電力を蓄電池14に充電すると判断する。なお、所定の期間に亘って買電単価が売電単価よりも大きい場合には、算出部11は、高価格時間帯における不足電力量が発生し、かつ、余剰電力に基づく蓄電池14の充電量で高価格時間帯における不足電力量を全て賄いきれない場合に、系統電力を蓄電池14に充電すると判断する。そして、算出部11は、電力需要の予測値及び発電量の予測値に応じて、蓄電池14の放電量、系統電力に基づく蓄電池14の充電量、及び、余剰電力に基づく蓄電池14の充電量を算出する。このとき、算出部11は、低価格時間帯での系統電力の蓄電池14への充電量を算出し、制御部12は、低価格時間帯において蓄電池14の充電及び充電タイミングを、算出部11が算出した充電量に応じて制御する。具体的には、制御部12は、図6の(b)から図8の(b)に示される低価格時間帯(21時から9時)のタイミングで算出部11が算出した充電量を系統電力から充電する。また、算出部11は、電気料金が最安値となる蓄電池14の放電量を算出し、制御部12は、蓄電池14の放電及び放電タイミングを、算出部11が算出した放電量に応じて制御する。ここで、電気料金が最安値となる蓄電池14の放電量とは、例えば、高価格時間帯での蓄電池14の放電量である。例えば、制御部12は、図6の(b)から図8の(b)に示される高価格時間帯(9時から21時)のタイミングで算出部11が算出した放電量を放電する。 Thus, the predetermined period includes a low-price time zone and a high-price time zone in which the power purchase unit price is larger than the low-price time zone. The calculation unit 11 supplies the grid power to the storage battery 14 based on whether or not a shortage amount of power that cannot be covered by the generated power is generated when the power demand at least during the high price period exceeds the generated power. Determine whether to charge. The calculation unit 11 determines to charge the storage battery 14 with the grid power when a shortage of electric power in the high price period occurs. In addition, when the power purchase unit price is larger than the power sale unit price over a predetermined period, the calculation unit 11 generates an insufficient amount of power in the high price period, and the amount of charge of the storage battery 14 based on the surplus power When it is not possible to cover all of the shortage of electric power during the high price period, it is determined that the grid power is charged in the storage battery 14. And the calculation part 11 calculates the charge amount of the storage battery 14 based on the discharge amount of the storage battery 14, the charge amount of the storage battery 14 based on system power, and the surplus power according to the predicted value of power demand and the predicted value of power generation amount. calculate. At this time, the calculation unit 11 calculates the charge amount of the grid power to the storage battery 14 in the low price period, and the control unit 12 determines the charging and charging timing of the storage battery 14 in the low price period. Control is performed according to the calculated charge amount. Specifically, the control unit 12 determines the charge amount calculated by the calculation unit 11 at the timing of the low price period (from 21:00 to 9:00) shown in (b) of FIG. 6 to (b) of FIG. Charge from power. Moreover, the calculation part 11 calculates the discharge amount of the storage battery 14 in which an electricity bill becomes the lowest price, and the control part 12 controls the discharge and discharge timing of the storage battery 14 according to the discharge amount which the calculation part 11 calculated. . Here, the discharge amount of the storage battery 14 at which the electricity rate is the lowest is, for example, the discharge amount of the storage battery 14 in the high price time zone. For example, the control unit 12 discharges the discharge amount calculated by the calculation unit 11 at the high price time zone (from 9 o'clock to 9 o'clock) shown in FIG. 6 (b) to FIG. 8 (b).
 また、図6の(b)及び図8の(b)では、系統電力又は前日に放電されずに余った電力等が充電された蓄電池14の放電量で、不足電力量の全てを賄えたが、蓄電池14の容量又は蓄電池14の最大充電レートによっては、不足電力量の全てを賄いきれないことがある。例えば、所定の期間において買電単価が時刻に応じて変動し、所定の期間に亘って買電単価が売電単価よりも小さい場合(図6の(a)の場合)に、蓄電池14の放電量が不足電力量の全てを賄いきれない電力量の場合、蓄電池14の放電量で賄えない電力量分は高価格時間帯において買電される。このとき、高価格時間帯における買電単価よりも売電単価の方が大きいため、余剰電力は売電される。また、所定の期間において買電単価が時刻に応じて変動し、売電単価が低価格時間帯における買電単価よりも大きく高価格時間帯における買電単価よりも小さい場合(図8の(a)の場合)に、蓄電池14の放電量が不足電力量の全てを賄いきれない電力量の場合の充放電制御装置10の動作について、図9を用いて説明する。 6 (b) and FIG. 8 (b), the system power or the discharge amount of the storage battery 14 charged with the remaining power without being discharged the previous day can cover all of the insufficient power amount. Depending on the capacity of the storage battery 14 or the maximum charge rate of the storage battery 14, it may not be possible to cover all of the insufficient power. For example, when the power purchase unit price fluctuates according to time in a predetermined period and the power purchase unit price is smaller than the power sale unit price over a predetermined period (in the case of (a) in FIG. 6), the storage battery 14 is discharged. When the amount of power cannot cover all of the shortage of power, the amount of power that cannot be covered by the discharge amount of the storage battery 14 is purchased in the high price period. At this time, since the power selling unit price is larger than the power purchasing unit price in the high price period, surplus power is sold. Further, when the power purchase unit price fluctuates according to the time in a predetermined period, and the power sale unit price is larger than the power purchase unit price in the low price time zone and smaller than the power purchase unit price in the high price time zone ((a in FIG. 8) )), The operation of the charge / discharge control device 10 in the case where the amount of discharge of the storage battery 14 is an amount of power that cannot cover all of the insufficient amount of power will be described with reference to FIG.
 図9は、実施の形態に係る充放電制御装置10の蓄電池14の放電量で不足電力量の全てを賄いきれない場合の動作の一例を示す図である。図9は、具体的には、所定の期間(例えば24時間)において買電単価が時刻に応じて変動し、売電単価が低価格時間帯における買電単価よりも大きく高価格時間帯における買電単価よりも小さい場合(図8の(a)の場合)に、系統電力が充電された蓄電池14の放電量で不足電力量の全てを賄いきれない場合の充放電制御装置10の動作の一例を示す図である。図9に示される実線は、電力需要を示し、点線は発電量を示す。図9に示される各領域は、図7の(b)及び図8の(b)におけるものと同じであるため、説明は省略する。 FIG. 9 is a diagram illustrating an example of an operation in the case where the discharge amount of the storage battery 14 of the charge / discharge control device 10 according to the embodiment cannot cover all of the insufficient power amount. Specifically, FIG. 9 shows that the power purchase unit price fluctuates depending on the time in a predetermined period (for example, 24 hours), and the power sale unit price is larger than the power purchase unit price in the low price period, and the purchase in the high price period. An example of the operation of the charge / discharge control device 10 in the case where it is less than the unit price of electricity (in the case of (a) in FIG. 8), the amount of discharge of the storage battery 14 charged with system power cannot cover all of the shortage of power. FIG. The solid line shown in FIG. 9 indicates power demand, and the dotted line indicates the amount of power generation. Each region shown in FIG. 9 is the same as that in FIG. 7B and FIG.
 所定の期間において買電単価が時刻に応じて変動し、所定の期間に亘って買電単価が売電単価よりも小さい場合(図6の(a)の場合)に、蓄電池14の放電量が不足電力量の全てを賄いきれない電力量の場合には、蓄電池14の放電量で賄えない電力量分は高価格時間帯において買電され、余剰電力は全て売電される。より具体的には、高価格時間帯において、電力需要が発電量を超える時刻までは系統電力が買電され、電力需要が発電量を超えている間には余剰電力が売電され、発電量が電力需要を下回る時刻以降は系統電力が買電される。 When the power purchase unit price varies with time in a predetermined period and the power purchase unit price is smaller than the power sale unit price over the predetermined period (in the case of FIG. 6A), the discharge amount of the storage battery 14 is In the case of an amount of electric power that cannot cover all of the shortage of electric power, the amount of electric power that cannot be covered by the discharge amount of the storage battery 14 is purchased in the high price period, and all surplus power is sold. More specifically, in the high price period, the grid power is purchased until the time when the power demand exceeds the power generation amount, and surplus power is sold while the power demand exceeds the power generation amount. Grid power is purchased after the time when power is below the power demand.
 しかし、売電単価が低価格時間帯における買電単価よりも大きく高価格時間帯における買電単価よりも小さい場合に、蓄電池14の放電量が不足電力量の全てを賄いきれない電力量の場合には、余剰電力は蓄電池14に充電される。具体的には、高価格時間帯における買電単価よりも売電単価の方が小さいため、図9に示されるように、蓄電池14の放電量で賄えない電力量分を余剰電力からの蓄電池14への充電量で賄う。つまり、売電単価20円/kWhの余剰電力が売電され高価格時間帯における買電単価28円/kWhの系統電力が買電されるよりも、売電単価20円/kWhの余剰電力が充電されたほうが、電気料金が抑制される。そして、系統電力及び余剰電力の一部が充電された蓄電池14の放電量で不足電力量の全てを賄いきれる場合、余剰電力の残りは売電される。 However, when the power sale unit price is larger than the power purchase unit price in the low price time period and smaller than the power purchase unit price in the high price period, the amount of discharge of the storage battery 14 is an amount of power that cannot cover all of the insufficient power amount. In surplus power, the storage battery 14 is charged. Specifically, since the unit price of power purchase is smaller than the unit price of power purchase in the high price period, as shown in FIG. 9, the storage battery from the surplus power supplies the amount of power that cannot be covered by the discharge amount of the storage battery 14. Covered with charge to 14. That is, surplus power with a power selling unit price of 20 yen / kWh is sold rather than surplus power with a power selling unit price of 20 yen / kWh is sold and the system power with a unit price of 28 yen / kWh is purchased in the high price period. Electricity charges are reduced when the battery is charged. Then, when the amount of power shortage can be covered by the amount of discharge of the storage battery 14 in which a part of the grid power and surplus power is charged, the remaining surplus power is sold.
 このように、算出部11は、売電単価が低価格時間帯における買電単価よりも大きく高価格時間帯における買電単価よりも小さく、かつ、系統電力を蓄電池14に充電すると判断した場合に、蓄電池14の放電量が不足電力量の全てを賄いきれる電力量の場合、余剰電力を蓄電池14に充電せずに売電すると判断し、蓄電池14の放電量が不足電力量の全てを賄いきれない電力量の場合、余剰電力を蓄電池14に充電すると判断する。 As described above, when the calculation unit 11 determines that the power sale unit price is larger than the power purchase unit price in the low price time period and smaller than the power purchase unit price in the high price period, and the system power is charged to the storage battery 14. When the amount of discharge of the storage battery 14 is sufficient to cover all of the insufficient power amount, it is determined that surplus power is sold without charging the storage battery 14, and the amount of discharge of the storage battery 14 can cover all of the insufficient amount of power. When the amount of power is not, it is determined that the surplus power is charged in the storage battery 14.
 また、算出部11は、低価格時間帯の開始時刻の所定の時間前に、蓄電池14の放電量及び充電量を算出し、制御部12は、低価格時間帯の開始時刻からの所定の期間において、蓄電池14の充放電及び充放電のタイミングを算出部11が算出した放電量及び充電量に応じて制御することが好ましい。つまり、算出部11は、低価格時間帯の開始時刻の所定の時間前に、図6の(b)から図8の(b)に示される電力需要の予測値及び発電量の予測値に応じて蓄電池14の放電量及び充電量を算出する。ここで、算出部11が蓄電池14の放電量及び充電量を算出することには、取得部20が発電量の実績データ、電力需要の実績データ、天気予報データ及び価格データを取得し、予測部40が電力需要の予測値及び発電量の予測値を算出することも含まれる。例えば、図6の(a)から図8の(a)に示されるように、低価格時間帯の開始時刻を21時、所定の期間を24時間とする。この場合、算出部11は、21時の所定の時間前に、蓄電池14の放電量及び充電量を算出し、制御部12は、21時からの24時間において、算出部11が算出した放電量及び充電量に応じて充放電及び充放電のタイミングを制御する。また、所定の時間は、蓄電池14の放電量及び充電量を算出するために必要な時間であり、例えば30分等である。 Further, the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 before a predetermined time before the start time of the low price time zone, and the control unit 12 performs a predetermined period from the start time of the low price time zone. It is preferable to control the charging / discharging and charging / discharging timing of the storage battery 14 according to the discharge amount and the charge amount calculated by the calculation unit 11. That is, the calculation unit 11 responds to the predicted value of power demand and the predicted value of power generation shown in (b) of FIG. 6 to (b) of FIG. 8 before a predetermined time before the start time of the low price period. Then, the discharge amount and the charge amount of the storage battery 14 are calculated. Here, for the calculation unit 11 to calculate the discharge amount and the charge amount of the storage battery 14, the acquisition unit 20 acquires the actual power generation amount data, the actual power demand data, the weather forecast data, and the price data, and the prediction unit 40 includes calculating a predicted value of power demand and a predicted value of power generation. For example, as shown in FIG. 6 (a) to FIG. 8 (a), the start time of the low-priced time zone is 21:00 and the predetermined period is 24 hours. In this case, the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 before a predetermined time at 21:00, and the control unit 12 calculates the discharge amount calculated by the calculation unit 11 in 24 hours from 21:00. And the timing of charging / discharging and charging / discharging is controlled according to charge amount. The predetermined time is a time required for calculating the discharge amount and the charge amount of the storage battery 14, and is, for example, 30 minutes.
 これにより、制御部12は、低価格時間帯の開始時刻から系統電力の蓄電池14への充電を長時間に亘って行うことができる。したがって、高価格時間帯で発生する不足電力量の多くを低価格時間帯における系統電力による充電量で賄うことができる。 Thereby, the control part 12 can charge the storage battery 14 of the system power over a long time from the start time of the low price period. Therefore, much of the shortage of electric power generated in the high price time zone can be covered by the charge amount by the system power in the low price time zone.
 また、図6の(a)から図8の(a)では、所定の期間には、低価格時間帯と高価格時間帯とが含まれたが、これに限らない。例えば、高価格時間帯には、少なくとも第1高価格時間帯と第1高価格時間帯よりも買電単価が大きい第2高価格時間帯とが含まれてもよい。つまり、所定の期間には、低価格時間帯と第1高価格時間帯と第2高価格時間帯との少なくとも3つの価格帯が含まれてもよい。ここで、所定の期間に低価格時間帯と第1高価格時間帯と第2高価格時間帯との3つの価格帯が含まれる場合の制御部12の動作について図10及び図11を用いて説明する。 Further, in FIGS. 6A to 8A, the predetermined period includes the low price period and the high price period, but the present invention is not limited to this. For example, the high price time zone may include at least a first high price time zone and a second high price time zone in which the power purchase unit price is larger than the first high price time zone. That is, the predetermined period may include at least three price ranges of a low price time zone, a first high price time zone, and a second high price time zone. Here, the operation of the control unit 12 when the predetermined period includes three price ranges of the low price time zone, the first high price time zone, and the second high price time zone will be described with reference to FIGS. 10 and 11. explain.
 図10の(a)は、実施の形態に係る制御部12の第1高価格時間帯に蓄電池14の放電を開始する動作の一例を示す図である。図10の(b)は、実施の形態に係る制御部12の第2高価格時間帯に蓄電池14の放電を開始する動作の一例を示す図である。 (A) of FIG. 10 is a figure which shows an example of the operation | movement which starts the discharge of the storage battery 14 in the 1st high price time slot | zone of the control part 12 which concerns on embodiment. (B) of Drawing 10 is a figure showing an example of operation which starts discharge of storage battery 14 in the 2nd high price time zone of control part 12 concerning an embodiment.
 図11の(a)は、実施の形態に係る制御部12の第1高価格時間帯に蓄電池14の放電を開始する動作の他の一例を示す図である。図11の(b)は、実施の形態に係る制御部12の第2高価格時間帯に蓄電池14の放電を開始する動作の他の一例を示す図である。図10及び図11に示される各領域は、図6の(b)におけるものと同じであるため、説明は省略する。 (A) of FIG. 11 is a figure which shows another example of the operation | movement which starts the discharge of the storage battery 14 in the 1st high price time slot | zone of the control part 12 which concerns on embodiment. (B) of Drawing 11 is a figure showing other examples of operation which starts discharge of storage battery 14 in the 2nd high price time zone of control part 12 concerning an embodiment. Each region shown in FIG. 10 and FIG. 11 is the same as that in FIG.
 例えば、図10及び図11に示されるように、低価格時間帯(8円)を23時から7時とし、第1高価格時間帯(22円)を7時から10時及び17時から23時とし、第2高価格時間帯(28円)を10時から17時とする。また、図10及び図11では、図示していないが、所定の期間に亘って買電単価よりも売電単価が大きいとし、余剰電力は全て売電されるとする。なお、図10では、高価格時間帯における不足電力量の全てを賄えるだけの電力量が低価格時間帯において充電されるが、図11では、高価格時間帯における不足電力量の全てを賄えるだけの電力量は低価格時間帯において充電されないとする。つまり、図11では、低価格時間帯における系統電力の蓄電池14への充電量で賄いきれない電力量は高価格時間帯において買電されるとする。 For example, as shown in FIGS. 10 and 11, the low price time zone (8 yen) is set from 23:00 to 7 o'clock, and the first high price time zone (22 yen) is set from 7 o'clock to 10 o'clock and from 17 o'clock to 23 o'clock. The second high price time zone (28 yen) is from 10:00 to 17:00. Although not shown in FIGS. 10 and 11, it is assumed that the unit price of power sale is larger than the unit price of power purchase over a predetermined period, and all surplus power is sold. In FIG. 10, the amount of power sufficient to cover all of the insufficient power amount in the high price period is charged in the low price period, but in FIG. 11, only the amount of insufficient power in the high price period can be covered. It is assumed that the amount of power is not charged in the low price period. That is, in FIG. 11, it is assumed that the amount of power that cannot be covered by the amount of charge of the grid power in the storage battery 14 in the low price time zone is purchased in the high price time zone.
 高価格時間帯に第1高価格時間帯と第2高価格時間帯とが含まれ、第1高価格時間帯の次に第2高価格時間帯となる場合(例えば図10及び図11に示されるように7時から10時が第1高価格時間帯になり10時から17時に第2高価格時間帯になる場合)には、第1高価格時間帯に蓄電池14の放電を開始した方が良い場合と、第2高価格時間帯に蓄電池14の放電を開始した方が良い場合とがある。 The high price time zone includes the first high price time zone and the second high price time zone, and becomes the second high price time zone after the first high price time zone (for example, as shown in FIGS. 10 and 11). In the case where the first high-priced time zone is from 7:00 to 10:00 and the second high-priced time zone is from 10:00 to 17:00, the battery 14 starts discharging in the first high-priced time zone. There are cases where it is better to start discharging the storage battery 14 in the second high price period.
 例えば、予測部40が図10の(a)及び図10の(b)に示されるような電力需要の予測値及び発電量の予測値を算出した場合、第1高価格時間帯に蓄電池14の放電を開始した方が良い。 For example, when the prediction unit 40 calculates the predicted value of the power demand and the predicted value of the power generation amount as shown in (a) of FIG. 10 and (b) of FIG. It is better to start the discharge.
 具体的には、図10の(a)及び図10の(b)に示されるような電力需要及び発電量の場合、第2高価格時間帯では常に発電量が電力需要を上回っているため、第2高価格時間帯では蓄電池14の放電は必要とならない。つまり、図10の(b)に示されるように、第2高価格時間帯の開始時刻(10時)に蓄電池14の放電を開始した場合、第2高価格時間帯では蓄電池14の放電は必要とならず、第1高価格時間帯の7時から9時において無駄な買電が発生してしまう。したがって、この場合、図10の(a)に示されるように、第1高価格時間帯の開始時刻(7時)に蓄電池14の放電を開始した方が良い。 Specifically, in the case of the power demand and power generation amount as shown in FIG. 10 (a) and FIG. 10 (b), the power generation amount always exceeds the power demand in the second high price period, It is not necessary to discharge the storage battery 14 in the second high price period. That is, as shown in FIG. 10B, when the discharge of the storage battery 14 is started at the start time (10 o'clock) of the second high price time zone, the storage battery 14 needs to be discharged in the second high price time zone. In other words, useless power purchase occurs from 7:00 to 9:00 in the first high price period. Therefore, in this case, as shown in FIG. 10A, it is better to start discharging the storage battery 14 at the start time (7:00) of the first high price period.
 また、例えば、予測部40が図11の(a)及び図11の(b)に示されるような電力需要の予測値及び発電量の予測値を算出した場合、第2高価格時間帯に蓄電池14の放電を開始した方が良い。 Further, for example, when the prediction unit 40 calculates a predicted value of power demand and a predicted value of power generation amount as shown in FIG. 11A and FIG. 11B, the storage battery is stored in the second high price period. It is better to start 14 discharges.
 具体的には、図11の(a)及び図11の(b)に示されるような電力需要及び発電量の場合、第2高価格時間帯では電力需要が発電量を上回っている時間が多いため、第2高価格時間帯で蓄電池14の放電は必要となる。このとき、図11の(a)に示されるように、第1高価格時間帯の開始時刻に蓄電池14の放電を開始した場合、第2高価格時間帯での蓄電池14の放電量は少なくなってしまい、第2高価格時間帯での買電量が増えてしまう。したがって、図11の(b)に示されるように、第2高価格時間帯の開始時刻に蓄電池14の放電を開始した方が良い。 Specifically, in the case of the power demand and the power generation amount as shown in FIG. 11 (a) and FIG. 11 (b), the power demand exceeds the power generation amount in the second high price period. Therefore, it is necessary to discharge the storage battery 14 in the second high price time zone. At this time, as shown in FIG. 11A, when the discharge of the storage battery 14 is started at the start time of the first high price period, the discharge amount of the storage battery 14 in the second high price period is reduced. As a result, the amount of electricity purchased in the second high price period increases. Therefore, as shown in FIG. 11B, it is better to start discharging the storage battery 14 at the start time of the second high price period.
 ただし、第1高価格時間帯における不足電力量及び第2高価格時間帯における不足電力量だけでなく蓄電池14の容量も考慮する必要がある。例えば図11の場合に、蓄電池14の容量が7時から10時の第1高価格時間帯及び10時から17時の第2高価格時間帯における不足電力量を全て賄いきれる容量の場合には、第1高価格時間帯の開始時刻に蓄電池14の放電を開始した方がよい。 However, it is necessary to consider not only the shortage of electric power in the first high price period and the shortage of electric power in the second high price period, but also the capacity of the storage battery 14. For example, in the case of FIG. 11, in the case where the capacity of the storage battery 14 is a capacity that can cover all the shortage of electric power in the first high price period from 7:00 to 10:00 and the second high price period from 10:00 to 17:00. It is better to start discharging the storage battery 14 at the start time of the first high price period.
 このように、高価格時間帯には、少なくとも第1高価格時間帯と第1高価格時間帯よりも買電単価が大きい第2高価格時間帯とが含まれ、制御部12は、第1高価格時間帯における不足電力量及び第2高価格時間帯における不足電力量、並びに、蓄電池14の容量に応じて、蓄電池14の放電の開始時刻を決定する。 As described above, the high price time zone includes at least the first high price time zone and the second high price time zone in which the power purchase unit price is larger than the first high price time zone. The start time of discharge of the storage battery 14 is determined according to the amount of insufficient power in the high price period, the amount of insufficient power in the second high price period, and the capacity of the storage battery 14.
 [効果等]
 現状の電気料金プランは、日毎に変化するものではなく固定的であるが、将来的に電力が自由化されるにあたり、電気料金プランが多様化し日毎に変化することが想定される。
[Effects]
The current electricity rate plan is not fixed every day but is fixed, but it is assumed that the electricity rate plan will be diversified and change every day as electricity is liberalized in the future.
 そこで、本実施の形態に係る充放電制御装置10は発電装置13が発電した発電電力、及び、系統200からの系統電力を充電するための蓄電池14の充放電を制御する充放電制御装置である。充放電制御装置10は、所定の期間における、系統電力の買電単価と売電単価との間の大小関係、並びに、需要家100における電力需要の予測値及び発電装置13の発電量の予測値に応じて、蓄電池14の放電量及び充電量を算出する算出部11を備える。また、充放電制御装置10は、所定の期間において、蓄電池14の充放電及び充放電のタイミングを算出部11が算出した放電量及び充電量に応じて制御する制御部12を備える。 Therefore, the charge / discharge control apparatus 10 according to the present embodiment is a charge / discharge control apparatus that controls the charge / discharge of the storage battery 14 for charging the generated power generated by the power generation apparatus 13 and the system power from the system 200. . The charge / discharge control device 10 determines the magnitude relationship between the power purchase unit price and the power sale unit price of the grid power in a predetermined period, and the predicted value of the power demand in the customer 100 and the predicted value of the power generation amount of the power generator 13. Accordingly, the calculation unit 11 that calculates the discharge amount and the charge amount of the storage battery 14 is provided. Moreover, the charging / discharging control apparatus 10 is provided with the control part 12 which controls the charging / discharging and charging / discharging timing of the storage battery 14 according to the discharge amount and the charge amount which the calculation part 11 calculated in the predetermined period.
 また、本実施の形態に係る充放電制御方法は、発電装置13が発電した発電電力、及び、系統200からの系統電力を充電するための蓄電池14の充放電を制御する充放電制御装置10の動作を制御する充放電制御方法である。この充放電制御方法では、所定の期間における、系統電力の買電単価と売電単価との間の大小関係、並びに、需要家100における電力需要の予測値及び発電装置13の発電量の予測値に応じて、蓄電池14の放電量及び充電量を算出し、所定の期間において、蓄電池14の充放電及び充放電のタイミングを算出した放電量及び充電量に応じて制御する。 In addition, the charge / discharge control method according to the present embodiment includes a charge / discharge control device 10 that controls charge / discharge of the storage battery 14 for charging the generated power generated by the power generation device 13 and the system power from the system 200. This is a charge / discharge control method for controlling the operation. In this charge / discharge control method, the magnitude relationship between the power purchase unit price and the power sale unit price of the grid power in a predetermined period, and the predicted value of the power demand in the customer 100 and the predicted value of the power generation amount of the power generator 13 are shown. Accordingly, the discharge amount and the charge amount of the storage battery 14 are calculated, and the charge / discharge and charge / discharge timing of the storage battery 14 are controlled according to the calculated discharge amount and charge amount in a predetermined period.
 また、本実施の形態に係るプログラムは、発電装置13が発電した発電電力、及び、系統200からの系統電力を充電するための蓄電池14の充放電を制御する充放電制御装置10の動作を制御するプログラムである。このプログラムは、充放電制御装置10が備えるコンピュータに、所定の期間における、系統電力の買電単価と売電単価との間の大小関係、並びに、需要家100における電力需要の予測値及び発電装置13の発電量の予測値に応じて、蓄電池14の放電量及び充電量を算出させ、所定の期間において、蓄電池14の充放電及び充放電のタイミングを算出させた放電量及び充電量に応じて制御させる。 The program according to the present embodiment controls the operation of the charge / discharge control device 10 that controls the charge / discharge of the storage battery 14 for charging the generated power generated by the power generation device 13 and the system power from the system 200. It is a program to do. This program is stored in the computer included in the charge / discharge control device 10 in accordance with the magnitude relationship between the unit power purchase price and the power sale unit price for a predetermined period, as well as the predicted value of power demand in the customer 100 and the power generation device. According to the predicted value of the power generation amount 13, the discharge amount and the charge amount of the storage battery 14 are calculated, and the charge / discharge and charge / discharge timings of the storage battery 14 are calculated in a predetermined period according to the discharge amount and the charge amount. Let me control.
 これにより、日毎に買電単価と売電単価とが変化する電気料金プランであっても、買電単価と売電単価との間の大小関係、並びに、電力需要の予測値及び発電量の予測値に応じて、電気料金を抑制するように蓄電池14の放電量及び充電量を、需要家100の負担なく制御することができる。したがって、多様化する電気料金プランに対応して電気料金を抑制することができる。 As a result, even with an electricity rate plan in which the power purchase unit price and the power sale unit price change daily, the magnitude relationship between the power purchase unit price and the power sale unit price, as well as the predicted value of power demand and the prediction of power generation amount Depending on the value, the discharge amount and the charge amount of the storage battery 14 can be controlled without burden on the customer 100 so as to suppress the electricity bill. Therefore, it is possible to suppress the electricity bill corresponding to the diversified electricity bill plan.
 また、算出部11は、買電単価と売電単価との間の大小関係に基づいて、発電電力が電力需要を上回った場合の余剰電力を蓄電池14に充電するか否か判断する。算出部11は、余剰電力を蓄電池14に充電すると判断した場合、電力需要の予測値及び発電量の予測値に応じて、余剰電力に基づく蓄電池14の充電量を算出する。 Further, the calculation unit 11 determines whether or not the storage battery 14 is charged with surplus power when the generated power exceeds the power demand based on the magnitude relationship between the power purchase unit price and the power sale unit price. When determining that the storage battery 14 is charged with surplus power, the calculation unit 11 calculates the charge amount of the storage battery 14 based on the surplus power according to the predicted value of power demand and the predicted value of power generation.
 これにより、電気料金を抑制するように余剰電力を充電することができる。 This makes it possible to charge surplus power so as to reduce electricity charges.
 また、算出部11は、所定の期間に亘って買電単価が売電単価よりも小さい場合、発電電力が電力需要を上回った場合の余剰電力を蓄電池14に充電せずに売電すると判断する。算出部11は、所定の期間に亘って買電単価が売電単価よりも大きい場合、余剰電力を蓄電池14に充電すると判断する。 Further, the calculation unit 11 determines that the surplus power when the generated power exceeds the power demand is sold without charging the storage battery 14 when the power purchase unit price is smaller than the power sale unit price over a predetermined period. . When the power purchase unit price is greater than the power sale unit price over a predetermined period, the calculation unit 11 determines to charge the storage battery 14 with surplus power.
 これにより、買電単価と売電単価との間の大小関係に基づいて、余剰電力を充電するか売電するか判断することができる。したがって、電気料金を抑制するように余剰電力を充電又は売電することができる。 This makes it possible to determine whether the surplus power is charged or sold based on the magnitude relationship between the power purchase unit price and the power sale unit price. Therefore, it is possible to charge or sell surplus power so as to suppress the electricity bill.
 また、所定の期間には、低価格時間帯と低価格時間帯よりも買電単価が大きい高価格時間帯とが含まれる。算出部11は、少なくとも高価格時間帯における電力需要が発電電力を上回った場合の、発電電力では賄いきれない電力である不足電力量が発生するか否かに基づいて、系統電力を蓄電池14に充電するか否か判断する。算出部11は、系統電力を蓄電池14に充電すると判断した場合、電力需要の予測値及び発電量の予測値に応じて、系統電力に基づく蓄電池14の放電量及び充電量を算出する。 In addition, the predetermined period includes a low-priced time zone and a high-priced time zone where the power purchase unit price is larger than the low-priced time zone. The calculation unit 11 supplies the grid power to the storage battery 14 based on whether or not a shortage amount of power that cannot be covered by the generated power is generated when the power demand at least during the high price period exceeds the generated power. Determine whether to charge. When it is determined that the storage battery 14 is charged with the grid power, the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 based on the grid power according to the predicted value of power demand and the predicted value of power generation.
 これにより、買電単価が時刻に応じて変動し、高価格時間帯において不足電力量が発生する場合に、不足電力量を系統電力で賄うことができる。 Thus, when the power purchase unit price fluctuates depending on the time, and the insufficient power amount occurs in the high price period, the insufficient power amount can be covered by the system power.
 また、算出部11、低価格時間帯での系統電力の蓄電池14への充電量を算出し、制御部12は、低価格時間帯において、蓄電池14の充電及び充電タイミングを算出部11が算出した充電量に応じて制御する。 Moreover, the calculation part 11 calculates the charge amount to the storage battery 14 of the system power in a low price time zone, and the control part 12 calculated the charge and charge timing of the storage battery 14 in the low price time zone. Control according to the amount of charge.
 これにより、低価格時間帯において系統電力を蓄電池14に充電することができるため、高価格時間帯における買電量を抑制することができ、電気料金を抑制することができる。 Thereby, since the system power can be charged to the storage battery 14 in the low price time zone, the amount of power purchased in the high price time zone can be suppressed, and the electricity bill can be suppressed.
 また、算出部11は、電気料金が最安値となる蓄電池14の放電量を算出し、制御部12は、蓄電池14の放電及び放電タイミングを算出部11が算出した放電量に応じて制御する。 Further, the calculation unit 11 calculates the discharge amount of the storage battery 14 at which the electricity rate is the lowest value, and the control unit 12 controls the discharge and discharge timing of the storage battery 14 according to the discharge amount calculated by the calculation unit 11.
 これにより、電気料金が最安値となるように蓄電池14を放電することができるため、電気料金を抑制することができる。 Thereby, since the storage battery 14 can be discharged so that the electric charge becomes the lowest price, the electric charge can be suppressed.
 また、高価格時間帯には、少なくとも第1高価格時間帯と第1高価格時間帯よりも買電単価が大きい第2高価格時間帯とが含まれる。制御部12は、第1高価格時間帯における不足電力量及び第2高価格時間帯における不足電力量、並びに、蓄電池14の容量に応じて、蓄電池14の放電の開始時刻を決定する。 In addition, the high price time zone includes at least a first high price time zone and a second high price time zone in which the power purchase unit price is larger than the first high price time zone. The control unit 12 determines the discharge start time of the storage battery 14 according to the insufficient power amount in the first high price time zone, the insufficient power amount in the second high price time zone, and the capacity of the storage battery 14.
 これにより、買電単価が時刻に応じて少なくとも3段階に変動する場合に、電気料金が最安となるように蓄電池14の放電開始時刻を決定することができる。 Thus, when the unit price of power purchase fluctuates in at least three stages according to the time, it is possible to determine the discharge start time of the storage battery 14 so that the electricity rate is the lowest.
 また、算出部11は、低価格時間帯の開始時刻の所定の時間前に、蓄電池14の放電量及び充電量を算出し、制御部12は、低価格時間帯の開始時刻からの所定の期間において、蓄電池14の充放電及び充放電のタイミングを算出部11が算出した放電量及び充電量に応じて制御する。 Further, the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 before a predetermined time before the start time of the low price time zone, and the control unit 12 performs a predetermined period from the start time of the low price time zone. The charging / discharging and charging / discharging timing of the storage battery 14 are controlled according to the discharge amount and the charge amount calculated by the calculation unit 11.
 これにより、高価格時間帯で発生する不足電力量の多くを低価格時間帯における系統電力による充電量で賄うことができる。したがって、高価格時間帯において系統電力を買電することを抑制でき、電気料金を抑制することができる。 This makes it possible to cover most of the shortage of electric power generated during high-priced hours with the amount of power charged by system power during low-priced times. Therefore, it is possible to suppress the purchase of system power in the high price period, and it is possible to suppress the electricity bill.
 (その他の実施の形態)
 以上、実施の形態に係る充放電制御装置10、充放電制御方法及びプログラムについて説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
The charge / discharge control device 10, the charge / discharge control method, and the program according to the embodiment have been described above, but the present invention is not limited to the above embodiment.
 例えば、上記実施の形態では、所定の期間は24時間であったが、これに限らない。例えば、所定の期間は12時間等でもよく、電気料金を抑制できるように充放電制御装置10が判断した期間であってもよい。例えば、買電単価の周期毎に応じた期間であってもよく、最安の買電単価の開始時刻(低価格時間帯の開始時刻)から次の最安の買電単価の開始時刻前までの期間であってもよい。 For example, in the above embodiment, the predetermined period is 24 hours, but is not limited thereto. For example, the predetermined period may be 12 hours or the like, or may be a period determined by the charge / discharge control device 10 so that the electricity bill can be suppressed. For example, it may be a period according to each cycle of the power purchase unit price, from the start time of the lowest power purchase unit price (start time of the low price period) to the start time of the next lowest power purchase unit price It may be a period.
 また、例えば、上記実施の形態では、算出部11は、所定の期間毎に蓄電池14の放電量及び充電量を算出し、制御部12は、所定の期間において蓄電池14の充放電及び充放電のタイミングを算出部11が算出した放電量及び充電量に応じて制御したが、これに限らない。例えば、所定の期間の途中に電力需要の予測値、発電量の予測値、価格データが変わる可能性があるため、算出部11は、所定の期間の途中に蓄電池14の放電量及び充電量を算出し直してもよい。この場合、制御部12は、蓄電池14の充放電及び充放電のタイミングを算出部11が算出し直した放電量及び充電量に応じて制御してもよい。 Further, for example, in the above embodiment, the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 for each predetermined period, and the control unit 12 performs charge / discharge and charge / discharge of the storage battery 14 in the predetermined period. Although the timing is controlled according to the discharge amount and the charge amount calculated by the calculation unit 11, the present invention is not limited to this. For example, since the predicted value of power demand, the predicted value of power generation amount, and price data may change during the predetermined period, the calculation unit 11 calculates the discharge amount and the charge amount of the storage battery 14 during the predetermined period. You may recalculate. In this case, the control unit 12 may control charging / discharging and charging / discharging timing of the storage battery 14 according to the amount of discharge and the amount of charge recalculated by the calculation unit 11.
 なお、本発明の包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。 The comprehensive or specific aspect of the present invention may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer-readable CD-ROM. The system, method, integrated circuit, computer You may implement | achieve with arbitrary combinations of a program or a recording medium.
 その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 Other forms obtained by subjecting the embodiments to various modifications conceived by those skilled in the art, and forms realized by arbitrarily combining the components and functions in the embodiments without departing from the spirit of the present invention. Are also included in the present invention.
 10 充放電制御装置
 11 算出部
 12 制御部
 13 発電装置
 14 蓄電池
 100 需要家
 200 系統
DESCRIPTION OF SYMBOLS 10 Charging / discharging control apparatus 11 Calculation part 12 Control part 13 Power generation apparatus 14 Storage battery 100 Consumer 200 System | strain

Claims (10)

  1.  発電装置が発電した発電電力、及び、系統からの系統電力を充電するための蓄電池の充放電を制御する充放電制御装置であって、
     所定の期間における、前記系統電力の買電単価と売電単価との間の大小関係、並びに、需要家における電力需要の予測値及び前記発電装置の発電量の予測値に応じて、前記蓄電池の放電量及び充電量を算出する算出部と、
     前記所定の期間において、前記蓄電池の充放電及び充放電のタイミングを前記算出部が算出した前記放電量及び前記充電量に応じて制御する制御部と、を備える
     充放電制御装置。
    A charge / discharge control device for controlling charge / discharge of a storage battery for charging generated power generated by a power generation device and grid power from the grid,
    According to the magnitude relationship between the power purchase unit price and the power sale unit price of the grid power in a predetermined period, and the predicted value of the power demand in the consumer and the predicted value of the power generation amount of the power generation device, A calculation unit for calculating a discharge amount and a charge amount;
    A control unit that controls, in the predetermined period, the charge amount of the storage battery and the charge / discharge timing according to the discharge amount calculated by the calculation unit and the charge amount;
  2.  前記算出部は、
     前記買電単価と前記売電単価との間の大小関係に基づいて、前記発電電力が前記電力需要を上回った場合の余剰電力を前記蓄電池に充電するか否か判断し、
     前記余剰電力を前記蓄電池に充電すると判断した場合、前記電力需要の予測値及び前記発電量の予測値に応じて、前記余剰電力に基づく前記蓄電池の充電量を算出する
     請求項1に記載の充放電制御装置。
    The calculation unit includes:
    Based on the magnitude relationship between the power purchase unit price and the power sale unit price, determine whether to charge the storage battery with surplus power when the generated power exceeds the power demand,
    The charge according to claim 1, wherein when it is determined that the storage battery is charged with the surplus power, a charge amount of the storage battery based on the surplus power is calculated according to a predicted value of the power demand and a predicted value of the power generation amount. Discharge control device.
  3.  前記算出部は、
     前記所定の期間に亘って前記買電単価が前記売電単価よりも小さい場合、前記発電電力が前記電力需要を上回った場合の余剰電力を前記蓄電池に充電せずに売電すると判断し、
     前記所定の期間に亘って前記買電単価が前記売電単価よりも大きい場合、前記余剰電力を前記蓄電池に充電すると判断する
     請求項1又は2に記載の充放電制御装置。
    The calculation unit includes:
    When the unit price of power purchase is smaller than the unit price of power sold over the predetermined period, it is determined that the surplus power when the generated power exceeds the power demand is sold without charging the storage battery,
    The charge / discharge control apparatus according to claim 1, wherein when the power purchase unit price is larger than the power sale unit price over the predetermined period, the storage battery is determined to be charged with the surplus power.
  4.  前記所定の期間には、低価格時間帯と当該低価格時間帯よりも前記買電単価が大きい高価格時間帯とが含まれ、
     前記算出部は、
     少なくとも前記高価格時間帯における前記電力需要が前記発電電力を上回った場合の、前記発電電力では賄いきれない電力である不足電力量が発生するか否かに基づいて、前記系統電力を前記蓄電池に充電するか否か判断し、
     前記系統電力を前記蓄電池に充電すると判断した場合、前記電力需要の予測値及び前記発電量の予測値に応じて、前記系統電力に基づく前記蓄電池の放電量及び充電量を算出する
     請求項1~3のいずれか1項に記載の充放電制御装置。
    The predetermined period includes a low price time zone and a high price time zone in which the power purchase unit price is larger than the low price time zone,
    The calculation unit includes:
    Based on whether or not a shortage amount of electric power that cannot be covered by the generated power is generated when the power demand in the high price period exceeds the generated power, the grid power is supplied to the storage battery. Decide whether to charge,
    When it is determined that the storage battery is charged with the grid power, a discharge amount and a charge amount of the storage battery based on the grid power are calculated according to the predicted value of the power demand and the predicted value of the power generation amount. 4. The charge / discharge control device according to claim 1.
  5.  前記算出部は、前記低価格時間帯での前記系統電力の前記蓄電池への充電量を算出し、
     前記制御部は、前記低価格時間帯において、前記蓄電池の充電及び充電のタイミングを前記算出部が算出した前記充電量に応じて制御する
     請求項4に記載の充放電制御装置。
    The calculation unit calculates a charge amount to the storage battery of the grid power in the low price time zone,
    The charge / discharge control apparatus according to claim 4, wherein the control unit controls charging of the storage battery and a charging timing according to the charge amount calculated by the calculation unit in the low price period.
  6.  前記算出部は、電気料金が最安値となる前記蓄電池の放電量を算出し、
     前記制御部は、前記蓄電池の放電及び放電のタイミングを前記算出部が算出した前記放電量に応じて制御する
     請求項4又は5に記載の充放電制御装置。
    The calculation unit calculates the discharge amount of the storage battery at which the electricity rate is the lowest price,
    The charge / discharge control apparatus according to claim 4, wherein the control unit controls the discharge and discharge timing of the storage battery according to the discharge amount calculated by the calculation unit.
  7.  前記高価格時間帯には、少なくとも第1高価格時間帯と当該第1高価格時間帯よりも前記買電単価が大きい第2高価格時間帯とが含まれ、
     前記制御部は、前記第1高価格時間帯における不足電力量及び前記第2高価格時間帯における不足電力量、並びに、前記蓄電池の容量に応じて、前記蓄電池の放電の開始時刻を決定する
     請求項4~6のいずれか1項に記載の充放電制御装置。
    The high price time zone includes at least a first high price time zone and a second high price time zone in which the power purchase unit price is larger than the first high price time zone,
    The control unit determines a discharge start time of the storage battery in accordance with a shortage of electric power in the first high price period, a shortage of electric power in the second high price period, and a capacity of the storage battery. Item 7. The charge / discharge control device according to any one of Items 4 to 6.
  8.  前記算出部は、前記低価格時間帯の開始時刻の所定の時間前に、前記蓄電池の放電量及び充電量を算出し、
     前記制御部は、前記低価格時間帯の開始時刻からの前記所定の期間において、前記蓄電池の充放電及び充放電のタイミングを前記算出部が算出した前記放電量及び前記充電量に応じて制御する
     請求項4~7のいずれか1項に記載の充放電制御装置。
    The calculation unit calculates a discharge amount and a charge amount of the storage battery before a predetermined time before a start time of the low price period,
    The control unit controls charging / discharging and charging / discharging timing of the storage battery in accordance with the discharge amount and the charge amount calculated by the calculation unit in the predetermined period from the start time of the low price period. The charge / discharge control device according to any one of claims 4 to 7.
  9.  発電装置が発電した発電電力、及び、系統からの系統電力を充電するための蓄電池の充放電を制御する充放電制御装置の動作を制御する充放電制御方法であって、
     所定の期間における、前記系統電力の買電単価と売電単価との間の大小関係、並びに、需要家における電力需要の予測値及び前記発電装置の発電量の予測値に応じて、前記蓄電池の放電量及び充電量を算出し、
     前記所定の期間において、前記蓄電池の充放電及び充放電のタイミングを算出した前記放電量及び前記充電量に応じて制御する
     充放電制御方法。
    A charge / discharge control method for controlling the operation of a charge / discharge control device for controlling charge / discharge of a storage battery for charging generated power generated by a power generator and grid power from the grid,
    According to the magnitude relationship between the power purchase unit price and the power sale unit price of the grid power in a predetermined period, and the predicted value of the power demand in the consumer and the predicted value of the power generation amount of the power generation device, Calculate the amount of discharge and charge,
    The charge / discharge control method which controls according to the said discharge amount and the said charge amount which calculated the timing of charging / discharging and the charge / discharge of the said storage battery in the said predetermined period.
  10.  発電装置が発電した発電電力、及び、系統からの系統電力を充電するための蓄電池の充放電を制御する充放電制御装置の動作を制御するプログラムであって、
     前記充放電制御装置が備えるコンピュータに、
     所定の期間における、前記系統電力の買電単価と売電単価との間の大小関係、並びに、需要家における電力需要の予測値及び前記発電装置の発電量の予測値に応じて、前記蓄電池の放電量及び充電量を算出させ、
     前記所定の期間において、前記蓄電池の充放電及び充放電のタイミングを算出させた前記放電量及び前記充電量に応じて制御させる
     プログラム。
    A program for controlling the operation of the charge / discharge control device for controlling the charge / discharge of the storage battery for charging the generated power generated by the power generator and the grid power from the grid,
    In the computer provided in the charge / discharge control device,
    According to the magnitude relationship between the power purchase unit price and the power sale unit price of the grid power in a predetermined period, and the predicted value of the power demand in the consumer and the predicted value of the power generation amount of the power generation device, Let the amount of discharge and charge be calculated,
    The program which controls according to the said discharge amount and the said charge amount which calculated the timing of charging / discharging and the charge / discharge of the said storage battery in the said predetermined period.
PCT/JP2016/004808 2015-11-06 2016-11-04 Charging/discharging control device, charging/discharging control method, and program WO2017077716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015218809A JP2019004529A (en) 2015-11-06 2015-11-06 Charge/discharge control device, charge/discharge control method and program
JP2015-218809 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017077716A1 true WO2017077716A1 (en) 2017-05-11

Family

ID=58661852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004808 WO2017077716A1 (en) 2015-11-06 2016-11-04 Charging/discharging control device, charging/discharging control method, and program

Country Status (2)

Country Link
JP (1) JP2019004529A (en)
WO (1) WO2017077716A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326305B1 (en) 2018-08-27 2019-06-18 Ekergy Llc Personal power plant system and methods of inverse energy generation
JP2019170102A (en) * 2018-03-23 2019-10-03 大和ハウス工業株式会社 Power supply system
US10615610B1 (en) 2019-05-28 2020-04-07 Ekergy Llc System and method for efficient charging of multiple battery cassettes
US20210142349A1 (en) * 2019-11-07 2021-05-13 Honda Motor Co., Ltd. Storage method of secondary battery, storage system of secondary battery and recording medium
CN117639036A (en) * 2023-11-21 2024-03-01 广东健电新能源科技有限公司 Charging and discharging planning method and system for charging pile

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429897B2 (en) * 2019-06-27 2024-02-09 パナソニックIpマネジメント株式会社 Certification methods, certification systems and programs
EP4170618A1 (en) * 2020-06-18 2023-04-26 Kaneka Corporation Abnormality determination system and power generation system
KR102482156B1 (en) * 2022-05-26 2022-12-29 주식회사 성심소프트 Stand alone photovoltaic lighting system and its control method
KR102551190B1 (en) * 2022-11-30 2023-07-04 식스티헤르츠 주식회사 Method and system for scheduling recharge and discharge of energy storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228103A (en) * 2011-04-21 2012-11-15 Sekisui Chem Co Ltd Power control system
WO2015045552A1 (en) * 2013-09-27 2015-04-02 日本電気株式会社 Power-storage-cell management device, power-storage cell, method for managing power-storage cell, and program
WO2015136920A1 (en) * 2014-03-12 2015-09-17 日本電気株式会社 Storage battery sharing system, information processing device, storage battery sharing method, and recording medium recording storage battery sharing program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012228103A (en) * 2011-04-21 2012-11-15 Sekisui Chem Co Ltd Power control system
WO2015045552A1 (en) * 2013-09-27 2015-04-02 日本電気株式会社 Power-storage-cell management device, power-storage cell, method for managing power-storage cell, and program
WO2015136920A1 (en) * 2014-03-12 2015-09-17 日本電気株式会社 Storage battery sharing system, information processing device, storage battery sharing method, and recording medium recording storage battery sharing program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019170102A (en) * 2018-03-23 2019-10-03 大和ハウス工業株式会社 Power supply system
JP7103811B2 (en) 2018-03-23 2022-07-20 大和ハウス工業株式会社 Power supply system
US10326305B1 (en) 2018-08-27 2019-06-18 Ekergy Llc Personal power plant system and methods of inverse energy generation
US11159017B2 (en) 2018-08-27 2021-10-26 Ekergy Llc Personal power plant system and methods of inverse energy generation
US10615610B1 (en) 2019-05-28 2020-04-07 Ekergy Llc System and method for efficient charging of multiple battery cassettes
US10910846B2 (en) 2019-05-28 2021-02-02 Ekergy Llc System and method for efficient charging of multiple battery cassettes
US20210142349A1 (en) * 2019-11-07 2021-05-13 Honda Motor Co., Ltd. Storage method of secondary battery, storage system of secondary battery and recording medium
CN117639036A (en) * 2023-11-21 2024-03-01 广东健电新能源科技有限公司 Charging and discharging planning method and system for charging pile
CN117639036B (en) * 2023-11-21 2024-04-26 广东健电新能源科技有限公司 Charging and discharging planning method and system for charging pile

Also Published As

Publication number Publication date
JP2019004529A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
WO2017077716A1 (en) Charging/discharging control device, charging/discharging control method, and program
JP6216377B2 (en) Power adjustment device, power adjustment method, power adjustment system, power storage device, server, program
JP5891461B2 (en) Power control apparatus and power control system using the same
JP6202403B2 (en) Power supply system
US9639074B2 (en) Power supply system
JP5807201B2 (en) Power control device
US9276411B2 (en) Electricity supply system
JP6148631B2 (en) Electric storage device discharge start time determination system
JP6160157B2 (en) Power supply system, control device, control method, and control program
JPWO2018047415A1 (en) Power storage device and power supply system
JP2017143734A (en) Demand power prediction device, demand power prediction method, and program
JP5969365B2 (en) Power control system
JP2016152703A (en) Power management system, power management method and program
JP2018011452A (en) Method for operating storage battery and storage battery operation device
JP7092558B2 (en) Power demand adjustment device, power demand adjustment system, power demand adjustment method and power demand adjustment program
JP6313922B2 (en) Power selling system
JP6444209B2 (en) Energy management equipment
JP2022120610A (en) Power supply system, management device, management method and program
JP6168938B2 (en) Charge / discharge control device, charge / discharge control method, and program
JP2017201884A (en) Electric power supply system
JP2017118785A (en) Storage battery controller and storage battery control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP